
Finite Markov Chains and

Algorithmic Applications

OLLE H�GGSTR�M

London Mathematical Society
Student Texts 00



Finite Markov Chains and Algorithmic Applications



This Page Intentionally Left Blank



Finite Markov Chains
and

Algorithmic Applications
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Preface

The first version of these lecture notes was composed for a last-year under-
graduate course at Chalmers University of Technology, in the spring semester
2000. I wrote a revised and expanded version for the same course one year
later. This is the third and final (?) version.
The notes are intended to be sufficiently self-contained that they can be read

without any supplementary material, by anyone who has previously taken (and
passed) some basic course in probability or mathematical statistics, plus some
introductory course in computer programming.
The core material falls naturally into two parts: Chapters 2–6 on the basic

theory of Markov chains, and Chapters 7–13 on applications to a number of
randomized algorithms.
Markov chains are a class of random processes exhibiting a certain “mem-

oryless property”, and the study of these – sometimes referred to as Markov
theory – is one of the main areas in modern probability theory. This area
cannot be avoided by a student aiming at learning how to design and implement
randomized algorithms, because Markov chains are a fundamental ingredient
in the study of such algorithms. In fact, any randomized algorithm can (often
fruitfully) be viewed as a Markov chain.
I have chosen to restrict the discussion to discretetime Markov chains

with finite state space. One reason for doing so is that several of the most
important ideas and concepts in Markov theory arise already in this setting;
these ideas are more digestible when they are not obscured by the additional
technicalities arising from continuous time and more general state spaces. It
can also be argued that the setting with discrete time and finite state space is
the most natural when the ultimate goal is to construct algorithms: Discrete
time is natural because computer programs operate in discrete steps. Finite
state space is natural because of the mere fact that a computer has a finite
amount of memory, and therefore can only be in a finite number of distinct

vii



viii Preface

“states”. Hence, the Markov chain corresponding to a randomized algorithm
implemented on a real computer has finite state space.
However, I do not claim that more general Markov chains are irrelevant to

the study of randomized algorithms. For instance, an infinite state space is
sometimes useful as an approximation to (and easier to analyze than) a finite
but very large state space. For students wishing to dig into the more gen-
eral Markov theory, the final chapter provides several suggestions for further
reading.
Randomized algorithms are simply algorithms that make use of random

number generators. In Chapters 7–13, the Markov theory developed in previ-
ous chapters is applied to some specific randomized algorithms. The Markov
chain Monte Carlo (MCMC) method, studied in Chapters 7 and 8, is a class
of algorithms which provides one of the currently most popular methods for
simulating complicated stochastic systems. In Chapter 9, MCMC is appliedto
the problem of counting the number of objects in a complicated combinatorial
set. Then, in Chapters 10–12, we study a recent improvement of standard
MCMC, known as the Propp–Wilson algorithm. Finally, Chapter 13 deals with
simulated annealing, which is a widely used randomized algorithm for various
optimization problems.
It should be noted that the set of algorithms studied in Chapters 7–13

constitutes only a small (and not particularly representative) fractionof all
randomized algorithms. For a broader view of the wide variety of applications
of randomization in algorithms, consult some of the suggestions for further
reading in Chapter 14.
The following diagram shows the structure of (essential) interdependence

between Chapters 2–13.
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4

3
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How the chapters depend on each other.

Regarding exercises: Most chapters end with a number of problems. These
are of greatly varying difficulty. To guide the student in the choice of problems
to work on, and the amount of time to invest into solving the problems, each
problem has been equipped with a parenthesized number between(1) and
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(10) to rank the approximate size and difficulty of the problem.(1) means
that the problem amounts simply to checking some definition in the chapter (or
something similar), and should be doable in a couple of minutes. At the other
end of the scale,(10) means that the problem requires a deep understanding
of the material presented in the chapter, and at least several hours of work.
Some of the problems require a bit of programming; this is indicated by an
asterisk, as in(7*) .

� � � �

I am grateful to Sven Erick Alm, Nisse Dohrnér, Devdatt Dubhashi, Mihyun
Kang, DanMattsson, Jesper Møller and Jeff Steif, who all provided corrections
to and constructive criticism of earlier versions of this manuscript.
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1

Basics of probability theory

The majority of readers will probably be best off by takingthe following piece
of advice:

Skip this chapter!

Those readers who have previously taken a basic course in probability or
mathematical statistics will already know everything in this chapter, and should
move right on to Chapter 2. On the other hand, those readers who lack such
background will have little or no use for the telegraphic exposition given
here, and should instead consult some introductory text on probability. Rather
than being read, the present chapter is intended to be a collection of (mostly)
definitions, that can be consulted if anything that looks unfamiliar happens to
appear in the coming chapters.

� � � �

Let � be any set, and let� be some appropriate class of subsets of�,
satisfying certain assumptions that we do not go further into (closedness under
certain basic set operations). Elements of� are calledevents. ForA ⊆ �, we
write Ac for thecomplementof A in �, meaning that

Ac = {s ∈ � : s �∈ A} .

A probability measure on� is a functionP : � → [0,1], satisfying

(i) P(∅) = 0.
(ii) P(Ac) = 1− P(A) for every eventA.
(iii) If A andB are disjoint events (meaning thatA∩B = ∅), thenP(A∪B) =

P(A) + P(B). More generally, ifA1, A2, . . . is a countable sequence

1



2 1 Basics of probability theory

of disjoint events (Ai ∩ Aj = ∅ for all i �= j ), thenP
(⋃∞

i=1 Ai
) =∑∞

i=1P(Ai ).

Note that (i) and (ii) together imply thatP(�) = 1.
If A and B are events, andP(B) > 0, then we define theconditional

probability of A given B, denotedP(A | B), as

P(A | B) = P(A∩ B)

P(B)
.

The intuitive interpretation ofP(A | B) is as how likely we consider the event
A to be, given that we know that the eventB has happened.
Two eventsA andB are said to beindependentif P(A∩ B) = P(A)P(B).

More generally, the eventsA1, . . . , Ak are said to be independent if for any
l ≤ k and anyi1, . . . , i l ∈ {1, . . . , k} with i1 < i2 < · · · < i l we have

P
(
Ai1 ∩ Ai2 ∩ · · · ∩ Ail

) =
l∏

n=1
P(Ain) .

For an infinite sequence of events(A1, A2, . . .), we say thatA1, A2, . . . are
independent ifA1, . . . , Ak are independent for anyk.
Note that ifP(B) > 0, then independence betweenA andB is equivalent

to havingP(A | B) = P(A), meaning intuitively that the occurrence ofB does
not affect the likelihood ofA.
A random variable should be thought of as some random quantity which

depends on chance. Usually a random variable is real-valued, in which case it
is a functionX : � → R. We will, however, also consider random variables
in a more general sense, allowing them to be functionsX : � → S, whereS
can be any set.
An eventA is said to bedefined in terms of the random variableX if we

can read off whether or notA has happened from the value ofX. Examples of
events defined in terms of the random variableX are

A = {X ≤ 4.7} = {ω ∈ � : X(ω) ≤ 4.7}
and

B = {X is an even integer} .

Two random variables are said to be independent if it is the case that whenever
the eventA is defined in terms ofX, and the eventB is defined in terms ofY,
thenA andB are independent. IfX1, . . . , Xk are random variables, then they
are said to be independent ifA1, . . . , Ak are independent whenever eachAi
is defined in terms ofXi . The extension to infinite sequences is similar: The
random variablesX1, X2, . . . are said to be independent if for any sequence
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A1, A2, . . . of events such that for eachi , Ai is defined in terms ofXi , we have
thatA1, A2, . . . are independent.
A distribution is the same thing as a probability measure. IfX is a real-

valued random variable, then thedistribution µX of X is the probability
measure onR satisfyingµX(A) = P(X ∈ A) for all (appropriate)A ⊆ R.
The distribution of a real-valued random variable is characterized in terms of
its distribution function FX : R → [0,1] defined byFX(x) = P(X ≤ x) for
all x ∈ R.
A distributionµ on a finite setS = {s1, . . . , sk} is often represented as a

vector (µ1, . . . , µk), whereµi = µ(si ). By the definition of a probability
measure, we then have thatµi ∈ [0,1] for eachi , and that∑k

i=1µi = 1.
A sequence of random variablesX1, X2, . . . is said to bei.i.d., which is

short forindependent and identically distributed, if the random variables

(i) are independent, and

(ii) have the same distribution function, i.e.,P(Xi ≤ x) = P(X j ≤ x) for all
i , j andx.

Very often, a sequence(X1, X2, . . .) is interpreted as the evolution in time
of some random quantity:Xn is the quantity at timen. Such a sequence is then
called arandom process(or, sometimes,stochastic process). Markov chains,
to be introduced in the next chapter, are a special class of random processes.
We shall only be dealing with two kinds of real-valued random variables:

discreteandcontinuousrandom variables. The discrete ones take their values
in some finite or countable subset ofR; in all our applications this subset is (or
is contained in){0,1,2, . . .}, in which case we say that they arenonnegative
integer-valueddiscrete random variables.
A continuousrandom variableX is a random variable for which there exists

a so-calleddensity function fX : R → [0, ∞) such that∫ x

−∞
fX(x)dx = FX(x) = P(X ≤ x)

for all x ∈ R. A very well-known example of a continuous random vari-
able X arises by lettingX have the Gaussian density functionfX(x) =

1√
2πσ2

e−((x−µ)2)/2σ2 with parametersµ andσ > 0. However, the only con-

tinuous random variables that will be considered in this text are theuniform
[0,1] ones, which have density function

fX(x) =
{
1 if x ∈ [0,1]
0 otherwise
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and distribution function

FX(x) =
∫ x

−∞
fX(x)dx =



0 if x ≤ 0
x if x ∈ [0,1]
1 if x ≥ 1 .

Intuitively, if X is a uniform [0,1] random variable, thenX is equally likely
to take its value anywhere in the unit interval [0,1]. More precisely, for every
interval I of lengtha inside [0,1], we haveP(X ∈ I ) = a.
Theexpectation(or expected value, ormean) E[X] of a real-valued ran-

dom variableX is, in some sense, the “average” value we expect fromx. If X is
a continuous random variable with density functionfX(x), then its expectation
is defined as

E[X] =
∫ ∞

−∞
x fX(x)dx

which in the case whereX is uniform [0,1] reduces to

E[X] =
∫ 1

0
x dx= 1

2
.

For thecase whereX is a nonnegative integer-valued random variable, the
expectation is defined as

E[X] =
∞∑
k=1

kP(X = k) .

This can be shown to be equivalent to the alternative formula

E[X] =
∞∑
k=1

P(X ≥ k) . (1)

It is important to understand that the expectationE[X] of a random variable
can be infinite, even ifX itself only takes finite values. A famous example is
the following.

Example 1.1: The St Petersburg paradox.Consider the following game. A
fair coin is tossed repeatedly until the first time that it comes up tails. LetX be
the (random) number of heads that come up before the first occurrence of tails.
Suppose that the bank pays 2X roubles depending onX. How much would you
be willing to pay to enter this game?
According to the classical theory of hazard games, you should agree to pay up

to E[Y], whereY = 2X is the amount that you receive from the bank at the end
of the game. So let’s calculateE[Y]. We have

P(X = n) = P(n heads followed by 1 tail) =
(
1

2

)n+1
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for eachn, so that

E[Y] =
∞∑
k=1

kP(Y = k) =
∞∑
n=0

2nP(Y = 2n)

=
∞∑
n=0

2nP(X = n) =
∞∑
n=0

2n
(
1

2

)n+1

=
∞∑
n=0

1

2
= ∞ .

Hence, there is obviously something wrong with the classical theory of hazard
games in this case.

Another important characteristic, besidesE[X], of a random variableX, is the
variance Var[X], defined by

Var [X] = E[(X − µ)2] whereµ = E[X] . (2)

The variance is, thus, the mean square deviation ofX from its expectation. It
can be computed either using the defining formula (2), or by the identity

Var [X] = E[X2] − (E[X])2 (3)

known asSteiner’s formula.
There are various linear-like rules for working with expectations and vari-

ances. For expectations, we have

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] (4)

and, ifc is a constant,

E[cX] = cE[X] . (5)

For variances, we have

Var [cX] = c2Var [X] (6)

and,when X1, . . . , Xn are independent,1

Var [X1 + · · · + Xn] = Var [X1] + · · · + Var [Xn] . (7)

Let us compute expectations and variances in some simple cases.

Example 1.2Fix p ∈ [0,1], and let

X =
{
1 with probabilityp
0 with probability 1− p .

1 Without this requirement, (7)fails in general.
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Such anX is called aBernoulli ( p) random variable. The expectation ofX
becomesE[X] = 0 · P(X = 0) + 1 · P(X = 1) = p. Furthermore, sinceX only
takes the values 0 and 1, we haveX2 = X, so thatE[X2] = E[X], and

Var [X] = E[X2] − (E[X])2

= p− p2 = p(1− p)

using Steiner’s formula (3).

Example 1.3Let Y be the sum ofn independent Bernoulli (p) random variables
X1, . . . , Xn. (For instance,Y may be the number of heads inn tosses of a coin
with heads-probabilityp.) Such aY is said to be abinomial (n, p) random
variable. Then, using (4) and (7), we get

E[Y] = E[X1] + · · · + E[Xn] = np

and

Var [Y] = Var [X1] + · · · + Var [Xn] = np(1− p) .

Variances are useful, e.g., for bounding the probability that a random variable
deviates by a large amount from its mean. We have, for instance, the following
well-known result.

Theorem 1.1 (Chebyshev’s inequality)Let X be a random variable with
meanµ and varianceσ 2. For any a > 0, we have that the probability
P[|X − µ| ≥ a] of a deviation from the mean of at least a, satisfies

P(|X − µ| ≥ a) ≤ σ 2

a2
.

Proof Define another random variableY by setting

Y =
{
a2 if |X − µ| ≥ a
0 otherwise.

Then we always haveY ≤ (X−µ)2, so thatE[Y] ≤ E[(X−µ)2]. Furthermore,
E[Y] = a2P(|X − µ| ≥ a), so that

P(|X − µ| ≥ a) = E[Y]
a2

≤ E[(X − µ)2]

a2

= Var [X]
a2

= σ 2

a2
.
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Chebyshev’s inequality will be used to prove a key result in Chapter 9
(Lemma 9.3). A more famous application of Chebyshev’s inequality is in the
proof of the following very famous and important result.

Theorem 1.2 (The Law of Large Numbers)Let X1, X2, . . . be i.i.d. random
variables with finite meanµ and finite varianceσ 2. Let Mn denote the average
of the first n Xi ’s, i.e., Mn = 1

n(X1+ · · · + Xn). Then, for anyε > 0, we have

lim
n→∞P(|Mn − µ| ≥ ε) = 0 .

Proof Using (4) and (5) we get

E[Mn] = 1

n
(µ + · · · + µ) = µ .

Similarly, (6) and (7) apply to show that

Var [Mn] = 1

n2
(σ 2 + · · · + σ 2) = σ 2

n
.

Hence, Chebyshev’s inequality gives

P(|Mn − µ| ≥ ε) ≤ σ 2

nε2

which tends to 0 asn → ∞.



2

Markov chains

Let us begin with a simple example. We consider a “random walker” in a very
small town consisting of four streets, and four street-cornersv1, v2, v3 andv4

arranged as in Figure 1. At time 0, the random walker stands in cornerv1. At
time 1, he flips a fair coin and moves immediately tov2 or v4 according to
whether the coin comes up heads ortails. At time 2, heflips the coin again
to decide which of the two adjacent corners to move to, with the decision rule
that if the coin comes up heads, then he moves one step clockwise in Figure 1,
while if it comes up tails, he moves one step counterclockwise. Thisprocedure
is then iterated at times 3, 4,. . . .
For eachn, let Xn denote the index of the street-corner at which the walker

stands at timen. Hence,(X0, X1, . . .) is a random process taking values in
{1,2,3,4}. Since the walker starts at time 0 inv1, we have

P(X0 = 1) = 1 . (8)

Fig. 1. A random walker in a very small town.

8



Markov chains 9

Next, he will move tov2 or v4 with probability 12 each, so that

P(X1 = 2) = 1

2
(9)

and

P(X1 = 4) = 1

2
. (10)

To compute the distribution ofXn for n ≥ 2 requires a little more thought;
you will be asked to do this in Problem2.1 below. To this end, it is useful to
consider conditional probabilities. Suppose that at timen, the walker stands
at, say,v2. Then we get the conditional probabilities

P(Xn+1 = v1 | Xn = v2) = 1

2

and

P(Xn+1 = v3 | Xn = v2) = 1

2
,

because of the coin-flipping mechanism for deciding where to go next. In fact,
we get the same conditional probabilities if we condition further on the full
history of the process up to timen, i.e.,

P(Xn+1 = v1 | X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = v2) = 1

2

and

P(Xn+1 = v3 | X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = v2) = 1

2

for any choice ofi0, . . . , in−1. (This is because the coin flip at timen + 1
is independent of all previous coin flips, and hence also independent of
X0, . . . , Xn.) This phenomenon is called thememoryless property, also
known as theMarkov property : the conditional distribution ofXn+1 given
(X0, . . . , Xn) depends only onXn. Or in other words: to make the best
possible prediction of what happens “tomorrow” (timen + 1), we only need
to consider what happens “today” (timen), as the “past” (times 0, . . . ,n− 1)
gives no additional useful information.2

Another interesting feature of this random process is that the conditional
distribution ofXn+1 given thatXn = v2 (say) is the same for alln. (This is
because the mechanism that the walker uses to decide where to go next is the

2 Please note that this is just a property of this particular mathematical model. It isnot intended as
general advice that we should “never worry about the past”. Of course, we have every reason,
in daily life as well as in politics, to try to learn as much as we can from history in order to
make better decisions for the future!
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same at all times.) This property is known astime homogeneity, or simply
homogeneity.
These observations call for a general definition:

Definition 2.1 Let P be a k× k matrix with elements{Pi, j : i, j = 1, . . . , k}.
A random process(X0, X1, . . .) with finite state space S= {s1, . . . , sk} is said
to be a(homogeneous) Markov chain with transition matrix P, if for all n,
all i , j ∈ {1, . . . , k} and all i0, . . . , in−1 ∈ {1, . . . , k} we have

P(Xn+1 = sj | X0 = si0, X1 = si1, . . . , Xn−1 = sin−1, Xn = si )

= P(Xn+1 = sj | Xn = si )

= Pi, j .

The elements of the transition matrixP are called transition probabilities. The
transition probabilityPi, j is the conditional probability of being in statesj
“tomorrow” given that we are in statesi “today”. The term “homogeneous” is
often dropped, and taken for granted when talking about “Markov chains”.
For instance, the random walk example above is a Markov chain, with state

space{1, . . . ,4} and transition matrix

P =



0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0


 . (11)

Every transition matrix satisfies

Pi, j ≥ 0 for all i, j ∈ {1, . . . , k} , (12)

and
k∑
j=1

Pi, j = 1 for all i ∈ {1, . . . , k} . (13)

Property (12) is just the fact that conditional probabilities are always nonneg-
ative, and property (13) is that they sum to 1, i.e.,

P(Xn+1 = s1 | Xn = si ) + P(Xn+1 = s2 | Xn = si ) + · · ·
+ P(Xn+1 = sk | Xn = si ) = 1 .

Wenext consider another important characteristic (besides the transitionma-
trix) of a Markov chain(X0, X1, . . .), namely theinitial distribution , which
tells us how the Markov chain starts. The initial distribution is represented as
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a row vectorµ(0) given by

µ(0) = (µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
k )

= (P(X0 = s1),P(X0 = s2), . . . ,P(X0 = sk)) .

Sinceµ(0) represents a probability distribution, we have

k∑
i=1

µ
(0)
i = 1 .

In the random walk example above, we have

µ(0) = (1,0,0,0) (14)

because of (8).
Similarly, we let the row vectorsµ(1), µ(2), . . . denote the distributions of

the Markov chain at times 1,2, . . . , so that

µ(n) = (µ
(n)
1 , µ

(n)
2 , . . . , µ

(n)
k )

= (P(Xn = s1),P(Xn = s2), . . . ,P(Xn = sk)) .

For the random walk example, equations (9) and (10) tell us that

µ(1) = (0, 12,0,
1
2) .

It turns out that once we know the initial distributionµ(0) and the transition
matrix P, we can compute all the distributionsµ(1), µ(2), . . . of the Markov
chain. The following result tells us that this is simply a matter of matrix
multiplication. We writePn for thenth power of the matrixP.

Theorem 2.1For a Markov chain(X0, X1, . . .) with state space{s1, . . . , sk},
initial distribution µ(0) and transition matrix P, we have for any n that the
distributionµ(n) at time n satisfies

µ(n) = µ(0)Pn . (15)

Proof Consider first the casen = 1. We get, forj = 1, . . . , k, that

µ
(1)
j = P(X1 = sj ) =

k∑
i=1

P(X0 = si , X1 = sj )

=
k∑
i=1

P(X0 = si )P(X1 = sj | X0 = si )

=
k∑
i=1

µ
(0)
i Pi, j = (µ(0)P) j
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where(µ(0)P) j denotes thej th element of the row vectorµ(0)P. Henceµ(1) =
µ(0)P.
To prove (15) for the general case, we use induction. Fixm, and suppose

that (15) holds forn = m. Forn = m+ 1, we get

µ
(m+1)
j = P(Xm+1 = sj ) =

k∑
i=1

P(Xm = si , Xm+1 = sj )

=
k∑
i=1

P(Xm = si )P(Xm+1 = sj | Xm = si )

=
k∑
i=1

µ
(m)
i Pi, j = (µ(m)P) j

so thatµ(m+1) = µ(m)P. Butµ(m) = µ(0)Pm by the induction hypothesis, so
that

µ(m+1) = µ(m)P = µ(0)PmP = µ(0)Pm+1

and the proof is complete.

Let us consider some more examples – two small ones, and one huge:

Example 2.1: The Gothenburg weather.It is sometimes claimed that the best
way to predict tomorrow’s weather3 is simply to guess that it will be the same
tomorrow as it is today. If we assume that this claim is correct,4 then it is natural
to model the weather asa Markov chain. For simplicity, we assume that there are
only two kinds of weather: rain and sunshine. If the above predictor is correct
75% of the time (regardless of whether today’s weather is rain or sunshine), then
the weather forms a Markov chain with state spaceS= {s1, s2} (with s1 = “rain”
ands2 = “sunshine”) and transition matrix

P =
[
0.75 0.25
0.25 0.75

]
.

Example 2.2: The Los Angeles weather.Note that in Example 2.1, there is a
perfect symmetry between “rain” and “sunshine”, in the sense that the probability
that today’s weather will persist tomorrow is the same regardless of today’s
weather. This may be reasonably realistic in Gothenburg, but not in Los Angeles
where sunshine is much more common than rain. A more reasonable transition
matrix for the Los Angeles weather might therefore be (still withs1 = “rain” and
s2 = “sunshine”)

P =
[
0.5 0.5
0.1 0.9

]
. (16)

3 Better than watching the weather forecast on TV.
4 I doubt it.
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Example 2.3: The Internet as a Markov chain.Imagine that you are surfing on
the Internet, and that each time that you encounter a web page, you click on one
of its hyperlinks chosen at random (uniformly). IfXn denotes where you are after
n clicks, then(X0, X1, . . .) may be described as a Markov chain with state space
Sequal to the set of all web pages on the Internet, and transition matrixP given
by

Pi j =
{

1
di

if pagesi has a link to pagesj
0 otherwise,

wheredi is the number of links from pagesi . (To make this chain well-defined,
we also need to define what happens if there are no links at all fromsi . We may,
for instance, setPii = 1 (andPi j = 0 for all i �= j ) in that case, meaning that
when you encounter a page with no links, you are stuck.) This is of course a very
complicated Markov chain (especially compared to Examples 2.1 and 2.2), but it
has nevertheless turned out to be a useful model which under various simplifying
assumptions admits interesting analysis.5

A recent variant (see Faginet al. [Fa]) of this model is to take into account
also the possibility to use “back buttons” in web browsers. However, the resulting
process(X0, X1, . . .) is then no longer a Markov chain, since what happens when
the back button is pressed depends not only on the present stateXn, but in general
also onX0, . . . , Xn−1. Nevertheless, it turns out that this variant can be studied
by a number of techniques from the theory of Markov chains. We will not say
anything more about this model here.

A useful way to picture a Markov chain is its so-calledtransition graph . The
transition graph consists of nodes representing the states of the Markov chain,
and arrows between the nodes, representing transition probabilities. This is
most easily explained by just showing the transition graphs of the examples
considered so far. See Figure 2.
In all examples above, as well as in Definition 2.1, the “rule” for obtaining

Xn+1 from Xn did not change with time. In some situations, it is morerealistic,
or for other reasons more desirable,6 to let this rule change with time. This
brings us to the topic ofinhomogeneous Markov chains, and the following
definition,which generalizes Definition 2.1.

Definition 2.2 Let P(1), P(2), . . . be a sequence of k× k matrices, each of
which satisfies(12)and(13). A random process(X0, X1, . . .) with finite state
space S= {s1, . . . , sk} is said to be aninhomogeneous Markov chain with
transition matrices P(1), P(2), . . . , if for all n, all i , j ∈ {1, . . . , k} and all
5 It may also seem like a very big Markov chain. However, the devoted reader will soon know
how to carry out (not just in principle, but also in practice) computer simulations of much
bigger Markov chains – see, e.g., Problem 7.2.

6 Such as in the simulated annealing algorithms of Chapter 13.
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Fig. 2. Transition graphs for the random walker in Figure 1, and for Examples 2.1 and
2.2.

i0, . . . , in−1 ∈ {1, . . . , k} we have

P(Xn+1 = sj | X0 = si0,X1 = si1, . . . , Xn−1 = sin−1, Xn = si )

= P(Xn+1 = sj | Xn = si )

= P(n+1)
i, j .

Example 2.4: A refined model for the Gothenburg weather. There are of
course many ways in which the crude model in Example 2.1 can be made more
realistic. One way is to take into account seasonal changes: it does not seem
reasonable to disregard whether the calendar says “January” or “July” when pre-
dicting tomorrow’s weather. To this end, we extend the state space to{s1, s2, s3},
wheres1 = “rain” ands2 = “sunshine” as before, ands3 = “snow”. Let

Psummer=

 0.75 0.25 0
0.25 0.75 0
0.5 0.5 0


 and Pwinter =


 0.5 0.3 0.2
0.15 0.7 0.15
0.2 0.3 0.5


 ,

and assume that the weather evolves according toPsummerin May–September,
and according toPwinter in October–April. This is an inhomogeneous Markov
chain model for the Gothenburg weather. Note that in May–September, the model
behaves exactly like the one in Example 2.1, except for some possible residual
snowy weather on May 1.

The following result, which is a generalization of Theorem 2.1, tells us how
to compute the distributionsµ(1), µ(2), . . . at times 1,2, . . . of an inhomo-
geneous Markov chain with initial distributionµ(0) and transition matrices
P(1), P(2), . . . .

Theorem 2.2Suppose that(X0, X1, . . .) is an inhomogeneous Markov chain
with state space{s1, . . . , sk}, initial distribution µ(0) and transition matrices
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P(1), P(2), . . . . For any n, we then have that

µ(n) = µ(0)P(1)P(2) · · · P(n) .

Proof Follows by a similar calculation as in the proof of Theorem 2.1.

Problems
2.1 (5) Consider the Markov chain corresponding to the random walker in Figure 1,

with transition matrixP and initial distributionµ(0) given by (11) and (14).

(a) Compute the squareP2 of the transition matrixP. How can we interpretP2?
(See Theorem 2.1, or glance ahead at Problem 2.5.)

(b) Prove by induction that

µ(n) =
{

(0, 12,0,
1
2) for n = 1,3,5, . . .

(12,0,
1
2,0) for n = 2,4,6, . . . .

2.2 (2) Suppose that we modify the random walk example in Figure 1 as follows. At
each integer time, the random walker tossestwo coins. The first coin is to decide
whether to stay or go. If it comes up heads, he stays where he is, whereas if it
comes up tails, he lets the second coin decide whether he should move one step
clockwise, or one step counterclockwise. Write down the transition matrix, and
draw the transition graph, for this new Markov chain.

2.3 (5) Consider Example 2.1 (the Gothenburg weather), and suppose that the
Markov chain starts on a rainy day, so thatµ(0) = (1,0).

(a) Prove by induction that

µ(n) = (12(1+ 2−n), 12(1− 2−n))

for everyn.
(b) What happens toµ(n) in the limit asn tends to infinity?

2.4 (6)

(a) Consider Example 2.2 (the Los Angeles weather), and suppose that theMarkov
chain starts with initial distribution(16,

5
6). Show thatµ

(n) = µ(0) for anyn,

so that in other words the distribution remains the same at all times.7

(b) Can you find an initial distribution for the Markov chain in Example 2.1 for
which we get similar behavior as in (a)? Compare this result to the one in
Problem 2.3 (b).

2.5 (6) Let (X0, X1, . . .) be a Markov chain with state space{s1, . . . , sk} and tran-
sition matrix P. Show, by arguing as in the proof of Theorem 2.1, that for any
m,n ≥ 0 we have

P(Xm+n = sj | Xm = si ) = (Pn)i, j .

7 Such a Markov chain is said to be inequilibrium , and its distribution is said to bestationary.
This is a very important topic, which will be treated carefully in Chapter 5.
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2.6 (8) Functions of Markov chains are not always Markov chains. Let
(X0, X1, . . .) be a Markov chain with state space{s1, s2, s3}, transition matrix

P =

 0 1 0
0 0 1
1 0 0




and initial distributionµ(0) = (13,
1
3,
1
3). For eachn, define

Yn =
{
0 if Xn = s1
1 otherwise.

Show that(Y0,Y1, . . .) is nota Markov chain.
2.7 (9) Markov chains sampled at regular intervals are Markov chains. Let

(X0, X1, . . .) be a Markov chain with transition matrixP.

(a) Define(Y0,Y1, . . .) by settingYn = X2n for eachn. Show that(Y0,Y1, . . .)
is a Markov chain with transition matrixP2.

(b) Find an appropriate generalization of the result in (a) to the situation where we
sample everykth (rather than every second) value of(X0, X1, . . .).



3

Computer simulation of Markov chains

A key matter in many (most?) practical applications of Markov theory is the
ability to simulate Markov chains on a computer. This chapter deals with how
that can be done.
We begin by stating a lie:

In most high-level programming languages, we have access to some ran-
dom number generator producing a sequenceU0,U1, . . . of i.i.d. random
variables, uniformly distributed on the unit interval [0,1].

This is a lie for at least two reasons:

(A) The numbersU0,U1, . . . obtained from random number generators are
not uniformly distributed on [0,1]. Typically, they have a finite binary (or
decimal) expansion, and are therefore rational. In contrast, it can be shown
that a random variable which (truly) is uniformly distributed on [0,1] (or
in fact any continuous random variable) is irrational with probability 1.

(B) U0,U1, . . . are not even random! Rather, they are obtained by some
deterministic procedure. For this reason, random number generators are
sometimes (and more accurately) called pseudo-random number genera-
tors.8

The most important of these objections is (B), because (A) tends not to be a
very big problem when the number of binary or decimal digits is reasonably
large (say, 32 bits). Over the decades, a lot of effort has been put into construct-
ing (pseudo-)random number generators whose output is as indistinguishable

8 There are also various physically generated sequences of random-looking numbers (see,
e.g., the web siteshttp://lavarand.sgi.com/ and http://www.fourmilab.
ch/hotbits/ ) that may be used instead of the usual pseudo-random number generators.
I recommend, however, a healthy dose of skepticism towards claims that these sequences are
in some sense “truly” random.

17
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as possible from a true i.i.d. sequence of uniform [0,1] random variables.
Today, there exist generators which appear to do this very well (passing all of
a number of standard statistical tests for such generators), and for this reason,
we shall simply make the (incorrect) assumption that we have access to an
i.i.d. sequence of uniform[0,1] random variables U0,U1, . . . . Although we
shall not deal any further with the pseudo-randomness issue in the remainder
of these notes (except for providing a coupleof relevant references in thefinal
chapter), we should always keep in mind that it is a potential source of errors
in computer simulation.9

Let us move on to the core topic of this chapter: How do we simulate a
Markov chain(X0, X1, . . .) with given state spaceS = {s1, . . . , sk}, initial
distributionµ(0) and transition matrixP? As the reader probably has guessed
by now, the random numbersU0,U1, . . . form a main ingredient. The other
main ingredients are two functions, which we call theinitiation function and
theupdate function.
The initiation functionψ : [0,1] → S is a function from the unit interval to

the state spaceS, which we use to generate the starting valueX0. We assume

(i) thatψ is piecewise constant (i.e., that [0,1] can be split into finitely many
subintervals in such a way thatψ is constant on each interval), and

(ii) that for eachs ∈ S, the total length of the intervals on whichψ(x) = s
equalsµ(0)(s).

Another way to state property (ii) is that∫ 1

0
I {ψ(x)=s} dx = µ(0)(s) (17)

for eachs ∈ S; hereI {ψ(x)=s} is the so-calledindicator function of {ψ(x) =
s}, meaning that

I {ψ(x)=s} =
{
1 if ψ(x) = s
0 otherwise.

Provided that we have such a functionψ , we can generateX0 from the first
random numberU0 by settingX0 = ψ(U0). This gives the correct distribution
of X0, because for anys ∈ Swe get

P(X0 = s) = P(ψ(U0) = s) =
∫ 1

0
I {ψ(x)=s} dx = µ(0)(s)

9 A misunderstanding that I have encountered more than once is that a pseudo-random number
generator is good if its period (the time until it repeats itself) is long, i.e., longer than the number
of random numbers needed in a particular application. But this is far from sufficient, and many
other things can go wrong. For instance, certain patterns may occur too frequently (or all the
time).
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using (17). Hence, we callψ a valid initiation function for the Markov chain
(X0, X1, . . .) if (17) holds for alls ∈ S.
Valid initiation functions are easy to construct: WithS = {s1, . . . , sk} and

initial distributionµ(0), we can set

ψ(x) =




s1 for x ∈ [0, µ(0)(s1))

s2 for x ∈ [µ(0)(s1), µ(0)(s1) + µ(0)(s2))

...
...

si for x ∈
[∑i−1

j=1µ(0)(sj ),
∑i

j=1µ(0)(sj )
)

...
...

sk for x ∈
[∑k−1

j=1µ(0)(sj ), 1
]
.

(18)

We need to verify that this choice ofψ satisfies properties (i) and (ii) above.
Property (i) is obvious. As to property (ii), it suffices to check that (17) holds.
It does hold, since

∫ 1

0
I {ψ(x)=si } dx =

i∑
j=1

µ(0)(sj ) −
i−1∑
j=1

µ(0)(sj ) = µ(0)(si )

for i = 1, . . . , k. This means thatψ as defined in (18) is a valid initiation
function for the Markov chain(X0, X1, . . .).
So now we know how to generate the starting valueX0. If we also figure

out how to generateXn+1 from Xn for anyn, then we can use this procedure
iteratively to get the whole chain(X0, X1, . . .). To get fromXn to Xn+1, we
use the random numberUn+1 and anupdate function φ : S× [0,1] → S,
which takes as input a states ∈ Sand a number between 0 and 1, and produces
another states′ ∈ S as output. Similarly as for the initiation functionψ , we
needφ to obey certain properties, namely

(i) that for fixedsi , the functionφ(si , x) is piecewise constant (when viewed
as a function ofx), and

(ii) that for each fixedsi , sj ∈ S, the total length of the intervals on which
φ(si , x) = sj equalsPi, j .

Again, as for the initiation function, property (ii) can be rewritten as

∫ 1

0
I {φ(si ,x)=sj } dx = Pi, j (19)
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for all si , sj ∈ S. If the update functionφ satisfies (19), then

P(Xn+1 = sj | Xn = si ) = P(φ(si ,Un+1) = sj | Xn = si ) (20)

= P(φ(si ,Un+1) = sj )

=
∫ 1

0
I {φ(si ,x)=sj } dx = Pi, j .

The reason that the conditioning in (20) can be dropped is thatUn+1 is inde-
pendent of(U0, . . . ,Un), and hence also ofXn. The same argument shows
that the conditional probability remains the same if we condition further on
the values(X0, X1, . . . , Xn−1). Hence, this gives a correct simulation of the
Markov chain. A functionφ satisfying (19) is therefore said to be a valid
update function for the Markov chain(X0, X1, . . .).
It remains to construct such a valid update function, but this is no harder

than the construction of a valid initiation function: Set, for eachsi ∈ S,

φ(si , x) =




s1 for x ∈ [0, Pi,1)
s2 for x ∈ [Pi,1, Pi,1 + Pi,2)
...

...

sj for x ∈
[∑ j−1

l=1 Pi,l ,
∑ j

l=1 Pi,l
)

...
...

sk for x ∈
[∑k−1

l=1 Pi,l , 1
]
.

(21)

To see that this is a valid update function, note that for anysi , sj ∈ S, we have

∫ 1

0
I {φ(si ,x)=sj } dx =

j∑
l=1

Pi,l −
j−1∑
l=1

Pi,l = Pi, j .

Thus, we have a complete recipe for simulating a Markov chain: First
construct valid initiation and update functionsψ andφ (for instance as in (18)
and (21)), and then set

X0 = ψ(U0)

X1 = φ(X0,U1)

X2 = φ(X1,U2)

X3 = φ(X2,U3)

and so on.
Let us now see how the above works for a simple example.

Example 3.1: Simulating the Gothenburg weather.Consider the Markov chain
in Example 2.1, whose state space isS = {s1, s2} wheres1 = “rain” and s2 =
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“sunshine”, and whose transition matrix is given by

P =
[
0.75 0.25
0.25 0.75

]
.

Suppose we start the Markov chain on a rainy day (as in Problem 2.3), so that
µ(0) = (1,0). To simulate this Markov chain using the above scheme, we apply
(18) and (21) to get the initiation function

ψ(x) = s1 for all x ,

and update function given by

φ(s1, x) =
{
s1 for x ∈ [0,0.75)
s2 for x ∈ [0.75,1]

and

φ(s2, x) =
{
s1 for x ∈ [0,0.25)
s2 for x ∈ [0.25,1] . (22)

Before closing this chapter, let us finally point out how the above method
can be generalized to cope with simulation of inhomogeneous Markov chains.
Let (X0, X1, . . .) be an inhomogeneous Markov chain with state spaceS =
{s1, . . . , sk}, initial distributionµ(0), and transition matricesP(0), P(1), . . . .

We can then obtain the initiation functionψ and the starting valueX0 as in
the homogeneous case. The updating is done similarly as in the homogeneous
case, except that since the chain is inhomogeneous, we need several different
updating functionsφ(1), φ(2), . . . , and for these we need to have

∫ 1

0
I {φ(n)(si ,x)=sj }(x)dx = P(n)

i, j

for eachn and eachsi , sj ∈ S. Such functions can be obtained by the obvious
generalization of (21): Set

φ(n)(si , x) =




s1 for x ∈ [0, P(n)
i,1 )

s2 for x ∈ [P(n)
i,1 , P(n)

i,1 + P(n)
i,2 )

...
...

sj for x ∈
[∑ j−1

l=1 P
(n)
i,l ,

∑ j
l=1 P

(n)
i,l

)
...

...

sk for x ∈
[∑k−1

l=1 P
(n)
i,l , 1

]
.
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The inhomogeneous Markov chain is then simulated by setting

X0 = ψ(U0)

X1 = φ(1)(X0,U1)

X2 = φ(2)(X1,U2)

X3 = φ(3)(X2,U3)

and so on.

Problems
3.1 (7*)

(a) Find valid initiation and update functions for the Markov chain in Example 2.2
(the Los Angeles weather), with starting distributionµ(0) = (12,

1
2).

(b) Write a computer program for simulating theMarkov chain, using the initiation
and update functions in (a).

(c) Forn ≥ 1, defineYn to be the proportion of rainy days up to timen, i.e.,

Yn = 1

n+ 1

n∑
i=0

I {Xi=s1} .

Simulate the Markov chain for (say) 1000 steps, and plot howYn evolves
with time. What seems to happen toYn whenn gets large? (Compare with
Problem 2.4 (a).)

3.2 (3) The choice of update function is not necessarily unique.Consider Ex-
ample 3.1 (simulating the Gothenburg weather). Show that we get another valid
update function if we replace (22) by

φ(s2, x) =
{
s2 for x ∈ [0,0.75)
s1 for x ∈ [0.75,1] .
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Irreducible and aperiodic Markov chains

For several of the most interesting results in Markov theory, we need to put
certain assumptions on the Markov chains we are considering.It is an impor-
tant task, in Markov theory just as in all other branches of mathematics, to find
conditions that on the one hand arestrong enough to have useful consequences,
but on the other hand are weak enough to hold (and be easy to check) for many
interesting examples. In this chapter, we will discuss two such conditions
on Markov chains:irreducibility andaperiodicity. Theseconditions are of
central importance in Markov theory, and in particular they play a key role in
the study of stationary distributions, which is the topic of Chapter 5. We shall,
for simplicity, discuss these notions in the setting of homogeneous Markov
chains, although they do have natural extensions to the more general setting of
inhomogeneous Markov chains.
We begin with irreducibility, which, loosely speaking, is the property that

“all states of the Markov chain can be reached from all others”. To make
this more precise, consider a Markov chain(X0, X1, . . .) with state spaceS=
{s1, . . . , sk} and transition matrixP. We say that a statesi communicateswith
another statesj , writing si → sj , if the chain has positive probability10 of ever
reachingsj when we start fromsi . In other words,si communicates withsj if
there exists ann such that

P(Xm+n = sj | Xm = si ) > 0 .

By Problem 2.5, this probability is independent ofm (due to the homogeneity
of the Markov chain), and equals(Pn)i, j .
If si → sj andsj → si , then we say that the statessi andsj intercommuni-

cate, and writesi ↔ sj . This takes us directly to the definition of irreducibility.

10 Here and henceforth, by “positive probability”, we always meanstrictly positive probability.

23
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Fig. 3. Transition graph for the Markov chain in Example 4.1.

Definition 4.1AMarkov chain(X0, X1, . . .) with state space S= {s1, . . . , sk}
and transition matrix P is said to beirreducible if for all si , sj ∈ S we have
that si ↔ sj . Otherwise the chain is said to bereducible.

Another way of phrasing the definition would be to say that the chain is
irreducible if for anysi , sj ∈ Swe can find ann such that(Pn)i, j > 0.
An easy way to verify that a Markov chain is irreducible is to look at

its transition graph, and check that from each state there is a sequence of
arrows leading to any other state. A glance at Figure 2 thus reveals that the
Markov chains in Examples 2.1and 2.2, as well as the random walk example
in Figure 1, are all irreducible.11 Let us next have a look at an example which
is not irreducible:

Example 4.1: A reducible Markov chain. Consider a Markov chain
(X0, X1, . . .) with state spaceS= {1,2,3,4} and transition matrix

P =



0.5 0.5 0 0
0.3 0.7 0 0
0 0 0.2 0.8
0 0 0.8 0.2


 .

By taking a look at its transition graph (see Figure 3), weimmediately see that if
the chain starts in state 1 or state 2, then it is restricted to states 1 and 2 forever.
Similarly, if it starts in state 3 or state 4, then it can never leave the subset{3,4}
of the state space. Hence, the chain is reducible.

Note that if the chain starts in state 1 or state 2, then it behaves exactly as if it
were a Markov chain with state space{1,2} and transition matrix[

0.5 0.5
0.3 0.7

]
.

If it starts in state 3 or state 4, then it behaves like a Markov chain with state space

11 Some care is still needed; see Problem 4.1.
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{3,4} and transition matrix [
0.2 0.8
0.8 0.2

]
.

This illustrates a characteristic feature of reducible Markov chains, which also
explains the term “reducible”: If a Markov chain is reducible, then the analysis of
its long-term behavior can be reduced to the analysis of the long-term behavior of
one or more Markov chains with smaller state space.

We move on to consider the concept of aperiodicity. For a finite or infinite
set{a1,a2, . . .} of positive integers, we write gcd{a1,a2, . . .} for the greatest
common divisor ofa1,a2, . . . . Theperiod d(si ) of a statesi ∈ S is defined as

d(si ) = gcd{n ≥ 1 : (Pn)i,i > 0} .

In words, the period ofsi is the greatest common divisor of the set of times that
the chain can return (i.e., has positive probability of returning) tosi , given that
we start withX0 = si . If d(si ) = 1, then we say that the statesi is aperiodic.

Definition 4.2 A Markov chain is said to beaperiodic if all its states are
aperiodic. Otherwise the chain is said to beperiodic.

Consider for instance Example 2.1 (the Gothenburg weather). It is easy to
check that regardless of whether the weather today is rain or sunshine, we
have for anyn that the probability of having the same weathern days later
is strictly positive. Or, expressed more compactly:(Pn)i,i > 0 for all n and
all statessi .12 This obviously implies that the Markov chain in Example 2.1
is aperiodic. Of course, the same reasoning applies to Example 2.2 (the Los
Angeles weather).
On the other hand, let us consider the random walk example in Figure 1,

where the random walker stands in cornerv1 at time 0. Clearly, he has to take
an even number of steps in order to get back tov1. This means that(Pn)1,1 > 0
only for n = 2,4,6, . . . . Hence,

gcd{n ≥ 1 : (Pn)i,i > 0} = gcd{2,4,6, . . .} = 2 ,

and the chain is therefore periodic.
One reason for the usefulness of aperiodicity is the following result.

Theorem 4.1Suppose that we have an aperiodic Markov chain(X0, X1, . . .)
with state space S= {s1, . . . , sk} and transition matrix P. Then there exists
an N< ∞ such that

(Pn)i,i > 0

12 By a variant of Problem 2.3 (a), we in fact have that(Pn)i,i = 1
2(1+ 2−n).
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for all i ∈ {1, . . . , k} and all n≥ N.

To prove this result, we shall borrow the following lemma from number theory.

Lemma 4.1Let A= {a1,a2, . . .} be a set of positive integers which is
(i) nonlattice, meaning thatgcd{a1,a2, . . .} = 1, and

(ii) closed under addition, meaning that if a∈ A and a′ ∈ A, then a+a′ ∈ A.

Then there exists an integer N< ∞ such that n∈ A for all n ≥ N.

Proof See, e.g., the appendix of Brémaud [B].

Proof of Theorem 4.1For si ∈ S, let Ai = {n ≥ 1 : (Pn)i,i > 0}, so that
in other wordsAi is the set of possible return times to statesi starting from
si . We assumed that the Markov chain is aperiodic, and therefore the statesi
is aperiodic, so thatAi is nonlattice. Furthermore,Ai is closed under addition,
for the following reason: Ifa,a′ ∈ Ai , thenP(Xa = si | X0 = si ) > 0 and
P(Xa+a′ = si | Xa = si ) > 0. This implies that

P(Xa+a′ = si | X0 = si ) ≥ P(Xa = si , Xa+a′ = si | X0 = si )

= P(Xa = si | X0 = si )P(Xa+a′ = si | Xa = si )

> 0

so thata+ a′ ∈ Ai .

In summary,Ai satisfies assumptions (i) and (ii) of Lemma 4.1, which
therefore implies that there exists an integerNi < ∞ such that(Pn)i,i > 0 for
all n ≥ Ni .

Theorem 4.1 now follows withN = max{N1, . . . , Nk}.

By combining aperiodicity and irreducibility, we get the following important
result, which will be used in the next chapter to prove the so-called Markov
chain convergence theorem (Theorem5.2).

Corollary 4.1 Let (X0, X1, . . .) be an irreducible and aperiodic Markov chain
with state space S= {s1, . . . , sk} and transition matrix P. Then there exists
an M < ∞ such that(Pn)i, j > 0 for all i , j ∈ {1, . . . , k} and all n≥ M.

Proof By the assumed aperiodicity and Theorem 4.1, there exists an integer
N < ∞ such that(Pn)i,i > 0 for all i ∈ {1, . . . , k} and alln ≥ N. Fix two
statessi , sj ∈ S. By the assumed irreducibility, we can find someni, j such
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that(Pni, j )i, j > 0. LetMi, j = N + ni, j . For anym≥ Mi, j , we have

P(Xm= sj | X0= si ) ≥ P(Xm−ni, j = si , Xm= sj | X0= si )

= P(Xm−ni, j = si | X0= si )P(Xm= sj | Xm−ni, j = si )

> 0 (23)

(the first factor in the second line of (23) is positive becausem− ni, j ≥ N,
and the second is positive by the choice ofni, j ). Hence, we have shown that
(Pm)i, j > 0 for allm≥ Mi, j . The corollary now follows with

M = max{M1,1,M1,2 . . . ,M1,k,M2,1, . . . ,Mk,k} .

Problems
4.1 (3) Consider the Markov chain(X0, X1, . . .) with state spaceS = {s1, s2} and

transition matrix

P =
[ 1

2
1
2

0 1

]
.

(a) Draw the transition graph of this Markov chain.
(b) Show that the Markov chain isnot irreducible (even though the transition

matrix looks in some sense connected).
(c) What happens toXn in the limit asn → ∞?

4.2 (3) Show that if a Markov chain is irreducible and has a statesi such thatPii > 0,
then it is also aperiodic.

4.3 (4) Random chess moves.

(a) Consider a chessboard with a lone white king making randommoves, meaning
that at each move, he picks one of the possible squares to move to, uniformly
at random. Is the corresponding Markov chain irreducible and/or aperiodic?

(b) Same question, but with the king replaced by a bishop.
(c) Same question, but instead with a knight.

4.4 (6) Oriented random walk on a torus. Let a andb be positive integers, and
consider the Markov chain with state space

{(x, y) : x ∈ {0, . . . ,a− 1}, y ∈ {0, . . . ,b− 1}} ,

and the following transitionmechanism: If the chain is in state(x, y) at timen, then
at timen+ 1 it moves to((x+ 1)moda, y) or (x, (y+ 1)modb) with probability
1
2 each.

(a) Show that this Markov chain is irreducible.
(b) Show that it is aperiodic if and only if gcd(a,b) = 1.
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Stationary distributions

In this chapter, we consider one of the central issues in Markov theory: asymp-
totics for the long-term behavior of Markov chains. Whatcan we say about a
Markov chain that has been running for a long time? Can we find interesting
limit theorems?
If (X0, X1, . . .) is any nontrivial Markov chain, then the value ofXn will

keep fluctuating infinitely many times asn → ∞, and therefore we cannot
hope to get results aboutXn converging to a limit.13 However, we may hope
that thedistributionof Xn settles down to a limit. This is indeed the case if
the Markov chain is irreducible and aperiodic, which is what themain result of
this chapter, the so-called Markov chain convergence theorem (Theorem 5.2),
says.
Let us for a moment go back to the Markov chain in Example 2.2 (the Los

Angeles weather), with state space{s1, s2} and transition matrix given by (16).
We saw in Problem 2.4 (a) that if we let the initial distributionµ(0) be given by
µ(0) = (16,

5
6), then this distribution is preserved for all times, i.e.,µ(n) = µ(0)

for all n. By some experimentation, we can easily convince ourselves that no
other choice of initial distributionµ(0) for this chain has the same property (try
it!). Apparently, the distribution(16,

5
6) plays a special role for this Markov

chain, and we call it astationary distribution .14 The general definition is as
follows.

Definition 5.1 Let (X0, X1, . . .) be a Markov chain with state space
{s1, . . . , sk} and transition matrix P. A row vectorπ = (π1, . . . , πk) is said
to be astationary distribution for the Markov chain, if it satisfies

13 That is, unless there is some statesi of the Markov chain with the property thatPii = 1; recall
Problem 4.1 (c).

14 Another term which is used by many authors for the same thing isinvariant distribution . Yet
another term isequilibrium distribution.

28
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(i) πi ≥ 0 for i = 1, . . . , k, and
∑k

i=1πi = 1, and
(ii) πP = π , meaning that

∑k
i=1πi Pi, j = π j for j = 1, . . . , k.

Property (i) simply means thatπ should describe a probability distribution on
{s1, . . . , sk}. Property (ii) implies that if the initial distributionµ(0) equalsπ ,
then the distributionµ(1) of the chain at time 1 satisfies

µ(1) = µ(0)P = πP = π ,

and by iterating we see thatµ(n) = π for everyn.
Since the definition of a stationary distribution really only depends on the

transition matrixP, we also sometimes say that a distributionπ satisfying the
assumptions (i) and (ii) in Definition 5.1 isstationary for the matrix P (rather
than for the Markov chain).
The rest of this chapter will deal with three issues: theexistenceof sta-

tionary distributions, theuniquenessof stationary distributions, and thecon-
vergenceto stationarity starting from any initial distribution. We shall work
under the conditions introduced in theprevious chapter (irreducibility and
aperiodicity), although for some of the results these conditions can be relaxed
somewhat.15 We begin with the existence issue.

Theorem5.1 (Existence of stationary distributions)For anyirreducible and
aperiodic Markov chain, there exists at least one stationary distribution.

To prove this existence theorem, we first need to prove a lemma concerning
hitting times for Markov chains. If a Markov chain(X0, X1, . . .) with state
space{s1, . . . , sk} and transition matrixP starts in statesi , then we can define
the hitting time

Ti, j = min{n ≥ 1 : Xn = sj }
with the convention thatTi, j = ∞ if the Markov chain never visitssj . We also
define themean hitting time

τi, j = E[Ti, j ] .

This means thatτi, j is the expected time taken until we come to statesj ,
starting from statesi . For the casei = j , we callτi,i themean return time
for statesi . We emphasize that when dealing with the hitting timeTi, j , there
is always the implicit assumption thatX0 = si .

15 By careful modification of our proofs, it is possible to show that Theorem 5.1 holds for
arbitrary Markov chains, and that Theorem 5.3 holds without the aperiodicity assumption.
That irreducibility and aperiodicity are needed for Theorem 5.2, and irreducibility is needed
for Theorem 5.3, will be established by means of counterexamples in Problems 5.2 and 5.3.
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Lemma 5.1For any irreducible aperiodic Markov chain with state space S=
{s1, . . . , sk} and transition matrix P, we have for any two states si , sj ∈ S that
if the chain starts in state si , then

P(Ti, j < ∞) = 1 . (24)

Moreover, the mean hitting timeτi, j is finite,16 i.e.,

E[Ti, j ] < ∞ . (25)

Proof By Corollary 4.1, we can find anM < ∞ such that(PM )i, j > 0 for all
i, j ∈ {1, . . . , k}. Fix such anM , setα = min{(PM )i, j : i, j ∈ {1, . . . , k}},
and note thatα > 0. Fix two statessi andsj as in the lemma, and suppose that
the chain starts insi . Clearly,

P(Ti, j > M) ≤ P(XM �= sj ) ≤ 1− α .

Furthermore, given everything that has happened up to timeM , we have
conditional probability at leastα of hitting statesj at time 2M , so that

P(Ti, j > 2M) = P(Ti, j > M)P(Ti, j > 2M | Ti, j > M)

≤ P(Ti, j > M)P(X2M �= sj | Ti, j > M)

≤ (1− α)2 .

Iterating this argument, we get for anyl that

P(Ti, j > lM ) = P(Ti, j > M)P(Ti, j > 2M | Ti, j > M) · · ·
×P(Ti, j > lM | Ti, j > (l − 1)M)

≤ (1− α)l ,

which tends to 0 asl → ∞. HenceP(Ti, j = ∞) = 0, so (24) is established.

To prove (25), we use the formula (1) for expectation, and get

E[Ti, j ] =
∞∑
n=1

P(Ti, j ≥ n) =
∞∑
n=0

P(Ti, j > n) (26)

=
∞∑
l=0

(l+1)M−1∑
n=lM

P(Ti, j > n)

16 If you think that this should follow immediately from (24), then take a look at Example 1.1 to
see that things are not always quite that simple.
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≤
∞∑
l=0

(l+1)M−1∑
n=lM

P(Ti, j > lM ) = M
∞∑
l=0

P(Ti, j > lM )

≤ M
∞∑
l=0

(1− α)l = M
1

1− (1− α)
= M

α
< ∞ .

Proof of Theorem 5.1Write, as usual,(X0, X1, . . .) for the Markov chain,
S= {s1, . . . , sk} for the state space, andP for the transition matrix. Suppose
that the chain starts in states1, and define, fori = 1, . . . , k,

ρi =
∞∑
n=0

P(Xn = si , T1,1 > n)

so that in other words,ρi is the expected number of visits to statei up to time
T1,1−1. Since the mean return timeE[T1,1] = τ1,1 is finite, andρi < τ1,1, we
get thatρi is finite as well. Our candidate for a stationary distributionis

π = (π1, . . . , πk) =
(

ρ1

τ1,1
,

ρ2

τ1,1
, . . . ,

ρk

τ1,1

)
.

We need to verify that this choice ofπ satisfies conditions (i) and (ii) of
Definition 5.1.

We first show that the relation
∑k

i=1πi Pi, j = π j in condition (ii) holds for
j �= 1 (the casej = 1 will be treated separately). We get (hold on!)

π j = ρ j

τ1,1
= 1

τ1,1

∞∑
n=0

P(Xn = sj , T1,1 > n)

= 1

τ1,1

∞∑
n=1

P(Xn = sj , T1,1 > n) (27)

= 1

τ1,1

∞∑
n=1

P(Xn = sj , T1,1 > n− 1) (28)

= 1

τ1,1

∞∑
n=1

k∑
i=1

P(Xn−1 = si , Xn = sj , T1,1 > n− 1)

= 1

τ1,1

∞∑
n=1

k∑
i=1

P(Xn−1 = si , T1,1 > n− 1)P(Xn = sj | Xn−1 = si )
(29)

= 1

τ1,1

∞∑
n=1

k∑
i=1

Pi, jP(Xn−1 = si , T1,1 > n− 1)
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= 1

τ1,1

k∑
i=1

Pi, j
∞∑
n=1

P(Xn−1 = si , T1,1 > n− 1)

= 1

τ1,1

k∑
i=1

Pi, j
∞∑
m=0

P(Xm = si , T1,1 > m)

=
∑k

i=1 ρi Pi, j
τ1,1

=
k∑
i=1

πi Pi, j (30)

where in lines (27), (28) and (29) we used the assumption thatj �= 1; note also
that (29) uses the fact that the event{T1,1 > n− 1} is determined solely by the
variablesX0, . . . , Xn−1.
Next, we verify condition (ii) also for the casej = 1. Note first thatρ1 = 1;

this is immediate from the definition ofρi . We get

ρ1 = 1 = P(T1,1 < ∞) =
∞∑
n=1

P(T1,1 = n)

=
∞∑
n=1

k∑
i=1

P(Xn−1 = si , T1,1 = n)

=
∞∑
n=1

k∑
i=1

P(Xn−1 = si , T1,1 > n− 1)P(Xn = s1 | Xn−1 = si )

=
∞∑
n=1

k∑
i=1

Pi,1P(Xn−1 = si , T1,1 > n− 1)

=
k∑
i=1

Pi,1
∞∑
n=1

P(Xn−1 = si , T1,1 > n− 1)

=
k∑
i=1

Pi,1
∞∑
m=0

P(Xm = si , T1,1 > m)

=
k∑
i=1

ρi Pi,1 .

Hence

π1 = ρ1

τ1,1
=

k∑
i=1

ρi Pi,1
τ1,1

=
k∑
i=1

πi Pi,1 .

By combining this with (30), we have established that condition (ii) holds for
our choice ofπ .
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It remains to show that condition (i) holds as well. Thatπi ≥ 0 for i =
1, . . . , k is obvious. To see that

∑k
i=1πi = 1 holds as well, note that

τ1,1 = E[T1,1] =
∞∑
n=0

P(T1,1 > n) (31)

=
∞∑
n=0

k∑
i=1

P(Xn = si , T1,1 > n)

=
k∑
i=1

∞∑
n=0

P(Xn = si , T1,1 > n)

=
k∑
i=1

ρi

(where equation (31) uses (26)) so that

k∑
i=1

πi = 1

τ1,1

k∑
i=1

ρi = 1 ,

and condition (i) is verified.

We shall go on to consider the asymptotic behavior of the distributionµ(n)

of a Markov chain with arbitrary initial distributionµ(0). To state the main
result (Theorem 5.2), we need to define what it means for a sequence of proba-
bility distributionsν(1), ν(2), . . . to converge to another probability distribution
ν, and to this end it is useful to have a metric on probability distributions.
There are various such metrics; one which is useful here is the so-calledtotal
variation distance.

Definition 5.2 If ν(1) = (ν
(1)
1 , . . . , ν

(1)
k ) andν(2) = (ν

(2)
1 , . . . , ν

(2)
k ) are prob-

ability distributions on S= {s1, . . . , sk}, then we define thetotal variation
distancebetweenν(1) andν(2) as

dTV(ν(1), ν(2)) = 1

2

k∑
i=1

|ν(1)
i − ν

(2)
i | . (32)

If ν(1), ν(2), . . . andν are probability distributions on S, then we say thatν(n)

converges toν in total variation as n → ∞, writing ν(n) TV−→ ν, if

lim
n→∞dTV(ν(n), ν) = 0 .

The constant12 in (32) is designed to make the total variation distance dTV take
values between 0 and 1. If dTV(ν(1), ν(2)) = 0, thenν(1) = ν(2). In the other
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extreme case dTV(ν(1), ν(2)) = 1, we have thatν(1) andν(2) are “disjoint” in
the sense thatScan be partitioned into two disjoint subsetsS′ andS′′ such that
ν(1) puts all of its probability mass inS′, andν(2) puts all of its inS′′. The total
variation distance also has the natural interpretation

dTV(ν(1), ν(2)) = max
A⊆S

|ν(1)(A) − ν(2)(A)| , (33)

an identity that you will be asked to prove in Problem 5.1 below. In words,
the total variation distance betweenν(1) and ν(2) is the maximal difference
between the probabilities that the two distributions assign to any one event.
We are now ready to state the main result about convergence to stationarity.

Theorem 5.2 (The Markov chain convergence theorem)Let (X0, X1, . . .)
be an irreducible aperiodic Markov chain with state space S= {s1, . . . , sk},
transition matrix P, and arbitrary initial distributionµ(0). Then, for any
distributionπ which is stationary for the transition matrix P, we have

µ(n) TV−→ π . (34)

What the theorem says is that if we run aMarkov chain for a sufficiently long
time n, then, regardless of what the initial distribution was, the distribution at
timen will be close to the stationarydistributionπ . This is often referred to as
the Markov chain approachingequilibrium asn → ∞.
For the proof, we will use a so-calledcoupling argument; coupling is one

of the most useful and elegant techniques in contemporary probability. Before
doing the proof, however, the reader is urged to glance ahead at Theorem 5.3
and its proof, to see how easily Theorem 5.2 implies that there cannot be more
than one stationary distribution.

Proof of Theorem 5.2When studying the behavior ofµ(n), we may assume
that (X0, X1, . . .) has been obtained by the simulation method outlined in
Chapter 3, i.e.,

X0 = ψµ(0) (U0)

X1 = φ(X0,U1)

X2 = φ(X1,U2)
...

whereψµ(0) is a valid initiation function forµ(0), φ is a valid update func-
tion for P, and (U0,U1, . . .) is an i.i.d. sequence of uniform [0,1] random
variables.
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Next, we introduce a second Markov chain17 (X′
0, X

′
1, . . .) by lettingψπ

be a valid initiation function for the distributionπ , letting (U ′
0,U

′
1, . . .) be

another i.i.d. sequence (independent of(U0,U1, . . .)) of uniform [0,1] random
variables, and setting

X′
0 = ψπ(U0)

X′
1 = φ(X′

0,U
′
1)

X′
2 = φ(X′

1,U
′
2)

...

Sinceπ is a stationary distribution, we have thatX′
n has distributionπ for any

n. Also, the chains(X0, X1, . . .) and (X′
0, X

′
1, . . .) are independent of each

other, by the assumption that the sequences(U0,U1, . . .) and(U ′
0,U

′
1, . . .) are

independent of each other.

A key step in the proof is now to show that, with probability 1, the two
chains will “meet”, meaning that there exists ann such thatXn = X′

n. To
show this, define the “first meeting time”

T = min{n : Xn = X′
n}

with the convention thatT = ∞ if the chains never meet. Since the Markov
chain (X0, X1, . . .) is irreducible and aperiodic, we can find, using Corol-
lary 4.1, anM < ∞ such that

(PM )i, j > 0 for all i, j ∈ {1, . . . , k} .

Set

α = min{(PM )i, j : i ∈ {1, . . . , k}} ,

and note thatα > 0. We get that

P(T ≤ M) ≥ P(XM = X′
M )

≥ P(XM = s1, X
′
M = s1)

= P(XM = s1)P(X′
M = s1)

=
(

k∑
i=1

P(X0 = si , XM = s1)

)(
k∑
i=1

P(X′
0 = si , X

′
M = s1)

)

17 This is what characterizes the coupling method: to construct two or more processes on the same
probability space, in order to draw conclusions about their respective distributions.
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=
(

k∑
i=1

P(X0 = si )P(XM = s1 | X0 = si )

)

×
(

k∑
i=1

P(X′
0 = si )P(X′

M = s1 | X′
0 = si )

)

≥
(

α

k∑
i=1

P(X0 = si )

)(
α

k∑
i=1

P(X′
0 = si )

)
= α2

so that

P(T > M) ≤ 1− α2 .

Similarly, given everything that has happened up to timeM , we have condi-
tional probability at leastα2 of havingX2M = X′

2M = s1, so that

P(X2M �= X′
2M | T > M) ≤ 1− α2 .

Hence,

P(T > 2M) = P(T > M)P(T > 2M | T > M)

≤ (1− α2)P(T > 2M | T > M)

≤ (1− α2)P(X2M �= X′
2M | T > M)

≤ (1− α2)2 .

By iterating this argument, we get for anyl that

P(T > lM ) ≤ (1− α2)l

which tends to 0 asl → ∞. Hence,

lim
n→∞P(T > n) = 0 (35)

so that in other words, we have shown that the two chains will meet with
probability 1.
The next step of the proof is to construct a third Markov chain(X′′

0, X
′′
1, . . .),

by setting

X′′
0 = X0 (36)

and, for eachn,

X′′
n+1 =

{
φ(X′′

n,Un+1) if X′′
n �= X′

n
φ(X′′

n,U
′
n+1) if X′′

n = X′
n.

In other words, the chain(X′′
0, X

′′
1, . . .) evolves exactly like the chain

(X0, X1, . . .) until the timeT when it first meets the chain(X′
0, X

′
1, . . .). It
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then switches to evolving exactly like the chain(X′
0, X

′
1, . . .). It is important

to realize that(X′′
0, X

′′
1, . . .) really is a Markov chain with transition matrixP.

This may require a pause for thought, but the basic reason why it is true is
that at each update, the update function is exposed to a “fresh” new uniform
[0,1] variable, i.e., one which is independent of all previous random variables.
(Whether the new chain is exposed toUn+1 or toU ′

n+1 depends on the earlier
values of the uniform [0,1] variables, but this does not matter sinceUn+1 and
U ′
n+1 have the same distribution and are both independent of everythingthat
has happened up to timen.)
Becauseof (36), we have thatX′′

0 has distributionµ
(0). Hence, for anyn,

X′′
n has distributionµ

(n). Now, for any i ∈ {1, . . . , k} we get
µ

(n)
i − πi = P(X′′

n = si ) − P(X′
n = si )

≤ P(X′′
n = si , X

′
n �= si )

≤ P(X′′
n �= X′

n)

= P(T > n)

which tends to 0 asn → ∞, due to (35). Using the same argument (with the
roles ofX′′

n andX
′
n interchanged), we see that

πi − µ
(n)
i ≤ P(T > n)

as well, again tending to 0 asn → ∞. Hence,

lim
n→∞ |µ(n)

i − πi | = 0 .

This implies that

lim
n→∞dTV(µ(n), π) = lim

n→∞

(
1
2

∑k
i=1 |µ(n)

i − πi |
)

(37)

= 0

since each term in the right-hand side of (37) tends to 0. Hence, (34) is
established.

Theorem 5.3 (Uniqueness of the stationary distribution)Any irreducible
and aperiodic Markov chain has exactly one stationary distribution.

Proof Let (X0, X1, . . .) be an irreducible and aperiodic Markov chain with
transition matrixP. By Theorem 5.1, there existsat leastone stationary
distribution forP, so we only need to show that there isat mostone stationary
distribution. Letπ and π ′ be two (a priori possibly different) stationary
distributions forP; our task is to show thatπ = π ′.
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Suppose that the Markov chain starts with initial distributionµ(0) = π ′.
Thenµ(n) = π ′ for all n, by the assumption thatπ ′ is stationary. On the other
hand, Theorem 5.2 tells us thatµ(n) TV−→ π , meaning that

lim
n→∞dTV(µ(n), π) = 0 .

Sinceµ(n) = π ′, this is the same as

lim
n→∞dTV(π ′, π) = 0 .

But dTV(π ′, π) does not depend onn, and hence equals 0. This implies that
π = π ′, so the proof is complete.

To summarize Theorems 5.2 and 5.3: If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distributionπ , and the distribution
µ(n) of the chain at timen approachesπ asn → ∞, regardless of the initial
distributionµ(0).

Problems
5.1 (7) Prove the formula (33) for total variation distance. Hint: consider the event

A = {s ∈ S : ν(1)(s) ≥ ν(2)(s)} .

5.2 (4) Theorems 5.2 and 5.3 fail for reducible Markov chains. Consider the
reducible Markov chain in Example 4.1.

(a) Show that bothπ = (0.375,0.625,0,0) andπ ′ = (0,0,0.5,0.5) are station-
ary distributions for this Markov chain.

(b) Use (a) to show that the conclusions of Theorem 5.2 and 5.3 fail for this
Markov chain.

5.3 (6) Theorem 5.2 fails for periodic Markov chains.Consider the Markov chain
(X0, X1, . . .) describing a knight making random moves on a chessboard, as in
Problem 4.3 (c). Show thatµ(n) does not converge in total variation, if the chain is
started in a fixed state (such as the squarea1 of the chessboard).

5.4 (7) If there are two different stationary distributions, then there are infinitely
many. Suppose that(X0, X1, . . .) is a reducible Markov chain with two different
stationary distributionsπ andπ ′. Show that, for anyp ∈ (0,1), we get yet another
stationary distribution aspπ + (1− p)π ′.

5.5 (6) Show that the stationary distribution obtained in the proof of Theorem 5.1 can
be written as

π =
(
1

τ1,1
,
1

τ2,2
, . . . ,

1

τk,k

)
.
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Reversible Markov chains

In this chapter we introduce a special class of Markov chains known as the
reversible ones. They are called so because they, in a certain sense, look the
same regardless of whether time runs backwards or forwards; this is made
precise in Problem 6.3 below. Such chains arise naturally in the algorithmic
applications of Chapters 7–13, as well as in several other applied contexts. We
jump right on to the definition:

Definition 6.1 Let (X0, X1, . . .) be a Markov chain with state space S=
{s1, . . . , sk} and transition matrix P. A probability distributionπ on S is
said to bereversible for the chain (or for the transition matrix P) if for all
i, j ∈ {1, . . . , k} we have

πi Pi, j = π j Pj,i . (38)

TheMarkov chain is said to be reversible if there exists a reversible distribution
for it.

If the chain is started with the reversible distributionπ , then the left-hand side
of (38) can be thought of as the amount of probability mass flowing at time 1
from statesi to statesj . Similarly, the right-hand side is the probability mass
flowing from sj to si . This seems like (and is!) a strong form of equilibrium,
and the following result suggests itself.

Theorem 6.1 Let (X0, X1, . . .) be a Markov chain with state space S=
{s1, . . . , sk} and transition matrix P. Ifπ is a reversible distribution for the
chain, then it is also a stationary distribution for the chain.

39
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Fig. 4. A graph.

Proof Property (i) of Definition 5.1 is immediate, so it only remains to show
that for any j ∈ {1, . . . , k}, we have

π j =
k∑
i=1

πi Pi, j .

We get

π j = π j

k∑
i=1

Pj,i =
k∑
i=1

π j Pj,i =
k∑
i=1

πi Pi, j ,

where the last equality uses (38).

We go on to consider some examples.

Example 6.1: Random walks on graphs.This example is a generalization of
the random walk example in Figure 1. Agraph G = (V, E) consists of avertex
setV = {v1, . . . , vk}, together with anedge setE = {e1, . . . ,el }. Each edge
connects two of the vertices; an edge connecting the verticesvi andv j is denoted
〈vi , v j 〉. No two edges are allowed to connect the same pair of vertices. Two
vertices are said to beneighbors if they share an edge.
For instance, the graph in Figure 4 has vertex setV = {v1, . . . , v8} and edge

set

E = {〈v1, v3〉, 〈v1, v4〉, 〈v2, v3〉, 〈v2, v5〉, 〈v2, v6〉, 〈v3, v4〉,
〈v3, v7〉, 〈v3, v8〉, 〈v4, v8〉, 〈v5, v6〉, 〈v6, v7〉, 〈v7, v8〉}.

A random walk on a graphG = (V, E) is a Markov chain with state spaceV =
{v1, . . . , vk} and the following transition mechanism: If the randomwalker stands
at a vertexvi at timen, then it moves at timen + 1 to one of the neighbors of
vi chosen at random, with equal probability for each of the neighbors. Thus, if
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Fig. 5. Transition graph of a Markov chain of the kind discussed in Example 6.2.

we denote the number of neighbors of a vertexvi by di , then the elements of the
transition matrix are given by

Pi, j =
{

1
di

if vi andv j are neighbors

0 otherwise.

It turns out that random walks on graphs are reversible Markov chains, with
reversible distributionπ given by

π =
(
d1
d

,
d2
d

, . . . ,
dk
d

)
(39)

whered = ∑k
i=1 di . To see that (38) holds for this choice ofπ , we calculate

πi Pi, j =
{

di
d
1
di

= 1
d = dj

d
1
dj

= π j Pj,i if vi andv j are neighbors

0= π j Pj,i otherwise.

For the graph in Figure 4, (39) becomes

π =
(
2

24
,
3

24
,
5

24
,
3

24
,
2

24
,
3

24
,
3

24
,
3

24

)

so that in equilibrium,v3 is the most likely vertex for the random walker to be at,
whereasv1 andv5 are the least likely ones.

Example 6.2 Let (X0, X1, . . .) be a Markov chain with state spaceS =
{s1, . . . , sk} and transition matrixP, and suppose that the transition matrix has
the properties that

(i) Pi, j > 0 whenever|i − j | = 1, and
(ii) Pi, j = 0 whenever|i − j | ≥ 2.

Such a Markov chain is often called abirth-and-death process, and its transition
graph has the form outlined in Figure 5 (with some or all of thePi,i -“loops”
possibly being absent). We claim that any Markov chain of this kind is reversible.
To construct a reversible distributionπ for the chain, we begin by settingπ∗

1 equal
to some arbitrary strictly positive numbera. The condition (38) withi = 1 and
j = 2 forces us to take

π∗
2 = aP1,2

P2,1
.
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Fig. 6. Transition graph of the Markov chain in Example 6.3.

Applying (38) again, now withi = 2 and j = 3, we get

π∗
3 = π∗

2 P2,3
P3,2

= aP1,2P2,3
P2,1P3,2

.

We can continue in this way, and get

π∗
i = a

∏i−1
l=1 Pl ,l+1∏i−1
l=1 Pl+1,l

for eachi . Thenπ∗ = (π∗
1 , . . . , π∗

k ) satisfies the requirements of a reversible
distribution, except possibly that the entries do not sum to 1, as is required for any
probability distribution. But this is easily taken care of by dividing all entries by
their sum. It is readily checked that

π = (π1, π2, . . . , πk) =
(

π∗
1∑k

i=1π∗
i

,
π∗
2∑k

i=1π∗
i

, . . . ,
π∗
k∑k

i=1π∗
i

)

is a reversible distribution.

Having come this far, one might perhaps get the impression that most Markov
chains are reversible. This is not really true, however, and to make up for this
false impression, let us also consider an example of a Markov chain which is
not reversible.

Example 6.3: A nonreversible Markov chain. Let us consider a modified
version of the random walk in Figure 1. Suppose that the coin tosses used by
the random walker in Figure 1 arebiased, in such a way that at each integer time,
he moves one step clockwise with probability34, and one step counterclockwise

with probability 14. This yields a Markov chain with the transition graph in

Figure 6. It is clear thatπ = (14,
1
4,
1
4,
1
4) is a stationary distribution for this chain

(right?). Furthermore, since the chain is irreducible, we have by Theorem 5.3 and
Footnote 15 in Chapter 5 that this is the only stationary distribution. Because of
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Theorem 6.1 we therefore needπ to be reversible in order for the Markov chain
to be reversible. But if we, e.g., try (38) withi = 1 and j = 2, we get

π1P1,2 = 1

4
· 3
4

= 3

16
>
1

16
= 1

4
· 1
4

= π2P2,1

so thatπ1P1,2 �= π2P2,1, and reversibility fails. Intuitively, the reason why this
chain is not reversible is that the walker has a tendency to move clockwise. If
we filmed the walker and watched the movie backwards, it would look as if he
preferred to move counterclockwise, so that in other words the chain behaves
differently in “backwards time” compared to “forwards time”.

Let us close this chapter by mentioning the existence of a simple and beautiful
equivalence between reversible Markov chains on the one hand, and resistor
networks on the other. This makes electrical arguments (such as the series and
parallel laws) useful for analyzing Markov chains, and conversely, probabilis-
tic argument available in the study of electrical networks. Unfortunately, a
discussion of this topic would take us too far, considering the modest format
of these notes. Suggestions for further reading can be found in Chapter 14.

Problems
6.1 (6) The king on the chessboard.Recall from Problem 4.3 (a) the king making

random moves on a chessboard. If you solved that problem correctly, then you
know that the corresponding Markov chain is irreducible and aperiodic. By The-
orem 5.3, the chain therefore has a unique stationary distributionπ . Computeπ .
Hint: the chain is reversible, and can be handled as in Example 6.1.

6.2 (8) Ehrenfest’s urn model. Fix an integerk, and imagine two urns, each
containing a number of balls, in such a way that the total number of balls in the two
urns isk. At each integer time, we pick one ball at random (each with probability
1
k ) and move it to the other urn.

18 If Xn denotes the number of balls in the first
urn, then(X0, X1, . . .) forms a Markov chain with state space{0, . . . , k}.
(a) Write down the transition matrix of this Markov chain.
(b) Show that the Markov chain is reversible with stationary distributionπ given

by

πi = k!

i !(k− i )!
2−k for i = 0, . . . , k .

(c) Show that the same distribution (known as thebinomial distribution ) also
arises as the distribution of a binomial(k, 12) random variable, as defined in
Example 1.3.

(d) Can you give an intuitive explanation of why Ehrenfest’s urn model and Ex-
ample 1.3 give rise to the same distribution?

18 There are various interpretations of this model. Ehrenfest’s original intention was to model
diffusion of molecules between the two halves of a gas container.
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6.3 (7) Time reversal. Let (X0, X1, . . .) be a reversible Markov chain with state
spaceS, transition matrixP, and reversible distributionπ . Show that if the chain is
started with initial distributionµ(0) = π , then for anyn and anysi0, si1, . . . , sin ∈
S, we have

P(X0 = si0, X1 = si1, . . . , Xn = sin) = P(X0 = sin , X1 = sin−1, . . . , Xn = si0) .

In other words, the chain is equally likely to make a tour through the states
si0, . . . sin in forwards as in backwards order.
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Markov chain Monte Carlo

In this chapter and the next, we consider the following problem: Given a prob-
ability distributionπ onS= {s1, . . . , sk}, how do we simulate a random object
with distributionπ? To motivate the problem, we begin with an example.

Example 7.1: The hard-core model. Let G = (V, E) be a graph (recall
Example 6.1 for the definition of a graph) with vertex setV = {v1, . . . , vk}
and edge setE = {e1, . . . ,el }. In the so-called hard-core model onG, we
randomly assign the value 0 or 1 to each of the vertices, in such a way that no
two adjacent vertices (i.e., no two vertices that share an edge) both take the value
1. Assignments of 0’s and 1’s to the vertices are calledconfigurations, and can
be thought of as elements of the set{0,1}V . Configurations in which no two 1’s
occupy adjacent vertices are calledfeasible. The precise way in which we pick
a random configuration is to take each of the feasible configurations with equal
probability. We writeµG for the resulting probability measure on{0,1}V . Hence,
for ξ ∈ {0,1}V , we have

µG(ξ) =
{

1
ZG

if ξ is feasible

0 otherwise,
(40)

whereZG is the total number of feasible configurations forG. See Figure 7 for
a random configuration chosen according toµG in the case whereG is a square
grid of size 8× 8.
This model (with the graphG being a three-dimensional grid) was introduced

in statistical physics to capture some of the behavior of a gas whose particles
have nonnegligible radii and cannot overlap; here 1’s represent particles and 0’s
represent empty locations. (The model has also been used in telecommunications
for modelling situations where an occupied node disables all its neighboring
nodes.)
A very natural question is now: What is the expected number of 1’s in a random

configuration chosen according toµG? If we writen(ξ) for the number of 1’s in
the configurationξ , andX for a random configuration chosen according toµG,

45
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Fig. 7. A feasible configuration (chosen at random according to the probability measure
µG), whereG is a square grid of size 8× 8. Black (resp. white) circles represent 1’s
(resp. 0’s). Note that no two 1’s occupy adjacent vertices.

then this expected value is given by

E[n(X)] =
∑

ξ∈{0,1}V
n(ξ)µG(ξ) = 1

ZG

∑
ξ∈{0,1}V

n(ξ)I {ξ is feasible} , (41)

where ZG is the total number of feasible configurations for the graphG. To
evaluate this sum may be infeasible unless the graph is very small, since the
number of configurations (and hence the number of terms in the sum) grows ex-
ponentially in the size of the graph (for instance, we get 264 ≈ 1.8 ·1019 different
configurations for the moderately-sized graph in Figure 7; in physical applications
one is usually interested in much bigger graphs). It may help somewhat that
most of the terms take the value 0, but the number of nonzero terms grows
exponentially as well. Note also that the calculation ofZG is computationally
nontrivial.

When the exact expression in (41) is beyond what our computational resources
can deal with, a good idea may be to revert to simulations. If we know how to sim-
ulate a random configurationX with distributionµG, then we can do this many
times, and estimateE[n(X)] by the average number of 1’s in our simulations.
By the Law of Large Numbers (Theorem 1.2), this estimate converges to the true
value ofE[n(X)], as the number of simulations tends to infinity, and we can form
confidence intervals etc., using standard statistical procedures.

With this example in mind, let us discuss how we can simulate a random
variableX distributed according to a given probability distributionπ on a state
spaceS. In principle it is very simple: just enumerate the elements ofS as
s1, . . . , sk, and then let

X = ψ(U )
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whereU is a uniform [0,1] random variable, and the functionψ : [0,1] → S
is given by

ψ(x) =




s1 for x ∈ [0, π(s1))
s2 for x ∈ [π(s1), π(s1) + π(s2))
...

...

si for x ∈
[∑i−1

j=1π(sj ),
∑i

j=1π(sj )
)

...
...

sk for x ∈
[∑k−1

j=1π(sj ), 1
]

(42)

as in (18). By arguing as in Chapter 3, we see thatthis givesX the desired
distributionπ . In practice, however, this approach is infeasible unless the
state spaceS is small. For the hard-core model on a square grid the size of
a chessboard or bigger, the evaluation of the functionψ in (42) becomes too
time-consuming for this method to be of any practical use.
It is precisely in this kind of situation that theMarkov chain Monte Carlo

(MCMC) method is useful. The method originates in physics, where the
earliest uses go back to the 1950’s. It later enjoyed huge booms in other areas,
especially in image analysis in the 1980’s, and in the increasingly important
area of statistics known asBayesian statistics19 in the 1990’s.
The idea is the following: Suppose we can construct an irreducible and

aperiodic Markov chain(X0, X1, . . .), whose (unique) stationary distribution
isπ . If we run the chain with arbitrary initial distribution (for instance, starting
in a fixed state), then the Markov chain convergence theorem (Theorem 5.2)
guarantees that the distribution of the chain at timen converges toπ , as
n → ∞. Hence, if we run the chain for a sufficiently long timen, then
the distribution ofXn will be very close toπ . Of course this is just an
approximation, but the point is that the approximation can be made arbitrarily
good by picking the running timen large.
A natural objection at this stage is: How can it possibly be any easier to

construct a Markov chain with the desired property than to construct a random
variable with distributionπ directly? To answer this, we move straight on to
an example.

Example 7.2: An MCMC algorithm for the hard-core model. Let us consider
the hard-core model in Example 7.1 on a graphG = (V, E) (which for concrete-
ness may be taken to be the one in Figure 7) withV = {v1, . . . , vk}. In order

19 In fact, it may be argued that the main reason that the Bayesian approach to statistics has gained
ground compared to classical (frequentist) statistics is that MCMC methods have provided the
computational tool that makes the approach feasible in practice.
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to get an MCMC algorithm for this model, we want to construct a Markov chain
whose state spaceS is the set of feasible configurations forG, i.e.,

S= {ξ ∈ {0,1}V : ξ is feasible} . (43)

In addition, we want the Markov chain to be irreducible and aperiodic, and have
stationary distributionµG given by (40).
AMarkov chain(X0, X1, . . .)with the desired properties can be obtained using

the following transition mechanism. At each integer timen+1, we do as follows:
1. Pick a vertexv ∈ V at random (uniformly).
2. Toss a fair coin.
3. If the coin comes up heads, and all neighbors ofv take value 0 inXn, then let

Xn+1(v) = 1; otherwise letXn+1(v) = 0.
4. For all verticesw other thanv, leave the value atw unchanged, i.e., let

Xn+1(w) = Xn(w).

It is not difficult to verify that this Markov chain is irreducible and aperiodic; see
Problem 7.1. Hence, it just remains to show thatµG is a stationary distribution
for the chain. By Theorem 6.1, it is enough to show thatµG is reversible. Letting
Pξ,ξ ′ denote the transition probability from stateξ to stateξ ′ (with transition
mechanism as above), we thus need to check that

µG(ξ)Pξ,ξ ′ = µG(ξ ′)Pξ ′,ξ (44)

for any two feasible configurationsξ andξ ′. Let us writed = d(ξ, ξ ′) for the
number of vertices in whichξ andξ ′ differ, and treat the three casesd = 0,d = 1
andd ≥ 2 separately. Firstly, the cased = 0 means thatξ = ξ ′, in which case the
relation (44) is completely trivial. Secondly, the cased ≥ 2 is almost as trivial,
because the chain never changes the values at more than one vertex at a time,
making both sides of (44) equal to 0. Finally, consider the cased = 1 whereξ
andξ ′ differ at exactly one vertexv. Then all neighbors ofv must take the value 0
in bothξ andξ ′, since otherwise one of the configurations would not be feasible.
We therefore get

µG(ξ)Pξ,ξ ′ = 1

ZG

1

2k
= µG(ξ ′)Pξ ′,ξ

and (44) is verified (recall thatk is the number of vertices). Hence the chain has
µG asa reversible (and therefore stationary) distribution.
We can now simulate this Markov chain using the methods of Chapter 3. A

convenient choice of update functionφ is to split the unit interval [0,1] into 2k
subintervals of equal length12k , representing the choices

(v1, heads), (v1, tails), (v2, heads), . . . , (vk, tails)

in the above description of the transition mechanism. If we now run the chain for
a long timen, starting with an arbitrary feasible initial configuration such as the
“all 0’s” configuration, and outputXn, then we get a random configuration whose
distribution is approximatelyµG.
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The above is a typical MCMC algorithm in several respects. Firstly, note that
although it is only required that the chain has the desired distribution as a
stationary distribution, we found a chain with the stronger property that the
distribution is reversible. This is the case for the vast majority of known
MCMC algorithms. The reason for this is that in most nontrivial situations,
the easiest way to construct a chain with a given stationary distributionπ is to
make sure that the reversibility condition (38) holds.
Secondly, the algorithm in Example 7.2 is an example of a commonly used

special class of MCMC algorithms known asGibbs samplers. These are
useful to simulate probability distributionsπ on state spaces of the formSV ,
whereSandV are finite sets. In other words, we have a finite setV of vertices
with a finite setSof attainable values at each vertex, andπ is the distribution
of some random assignment of values inS to the vertices inV (in the hard-core
model example, we haveS = {0,1}). The Gibbs sampler is a Markov chain
which at each integer timen+ 1 does the following.

1. Pick a vertexv ∈ V at random (uniformly).

2. PickXn+1(v) according to the conditionalπ -distribution of the value atv
given that all other vertices take values according toXn.

3. LetXn+1(w) = Xn(w) for all verticesw ∈ V exceptv.

It is not hard to show that this Markov chain is aperiodic, and that it hasπ as a
reversible (hence stationary) distribution. If in addition the chain is irreducible
(which may or may not be the case depending on which elements ofSV have
nonzeroπ -probability), then this Markov chain is a correct MCMC algorithm
for simulating random variables with distributionπ . We give another example:

Example 7.3: An MCMC algorithm for random q-colorings. LetG = (V, E)

be a graph, and letq ≥ 2 be an integer. Aq-coloring of the graphG is an
assignment of values from{1, . . . ,q} (thought of asq different “colors”) with
the property that no two adjacent vertices have the same value (color). By a
randomq-coloring forG, we mean aq-coloring chosen uniformly from the set of
possibleq-colorings forG, and we writeρG,q for the corresponding probability

distribution20 onSV .
For a vertexv ∈ V and an assignmentξ of colors to the vertices other thanv,

the conditionalρG,q-distribution of the color atv is uniform over the set of all
colors that are not attained inξ at some neighbor ofv (right?). A Gibbs sampler

20 We are here making the implicit assumption that there exists at least oneq-coloring forG. This
is not always the case. For instance, ifq = 2 andG consists of three vertices connected in
a triangle, then noq-coloring can be found. In general it is a difficult combinatorial problem
to determine whetherq-colorings exist for a given choice ofG andq. The famousfour-color
theorem states that ifG is a planar graph (i.e.,G is a graph that can be drawn in the plane in
such a way that no two edges cross each other), thenq = 4 is enough.
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for randomq-colorings is therefore anSV -valued Markov chain where at each
timen+ 1, transitions take place as follows.

1. Pick a vertexv ∈ V at random (uniformly).
2. PickXn+1(v) according to the uniform distribution over the set of colors that
are not attained at any neighbor ofv.

3. Leave the color unchanged at all other vertices, i.e., letXn+1(w) = Xn(w)

for all verticesw ∈ V exceptv.

This chainis aperiodic and hasρG,q as a stationary distribution; see Problem 7.3.
Whether or not the chain is irreducible depends onG andq, and it is a nontrivial
problem in general to determine this.21 In case we can show that it is irreducible,
this Gibbs sampler becomes a useful MCMC algorithm.

Let us also mention that a commonly used variantof the Gibbs sampler is the
following. Instead of picking the vertices to update at random, we can cycle
systematically through the vertex set. For instance, ifV = {v1, . . . , vk}, we
may decide to update vertex



v1 at times 1, k+ 1,2k+ 1, . . .
v2 at times 2, k+ 2,2k+ 2, . . .
...

...

vi at timesi, k+ i,2k+ i, . . .
...

...

vk at timesk,2k,3k, . . . .

(45)

This gives an inhomogeneous Markov chain (because there arek different
update rules used at different times) which is aperiodic and has the desired
distribution as a reversible distribution. Furthermore, it is irreducible if and
only if the original “random vertex” Gibbs sampler is irreducible. To prove
these claims is reasonably straightforward, but requires a notationally some-
what inconvenient extension of the theory in Chapters 4–6 to the case of
inhomogeneous Markov chains; we therefore omit the details. This variant
of the Gibbs sampler is referredto as thesystematic sweep Gibbs sampler.
Another important general procedure for designing a reversible Markov

chain for MCMC algorithms is the construction of a so-calledMetropolis
chain.22 Let us describe a way (not the most general possible) to con-
struct a Metropolis chain for simulating a given probability distributionπ =
(π1, . . . , πk) on a setS = {s1, . . . , sk}. The first step is to construct some
21 Compare with the previous footnote. One thing which is not terribly hard is to show that for
any given graphG, the chain is irreducible for all sufficiently largeq.

22 A more general (and widely used) class of Markov chains for MCMC simulation is that of the
so-calledMetropolis–Hastings chains; see the book [GRS] mentioned in Chapter 14.
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graphG with vertex setS. The edge set (neighborhood structure) of this graph
may be arbitrary, except that

(i) the graph must be connected in order to assure irreducibility of the result-
ing chain, and

(ii) each vertex should not be the endpoint of too many edges, since otherwise
the chain becomes computationally too heavy to simulate in practice.

As usual, we say that two statessi andsj are neighbors if the graph contains
an edge〈si , sj 〉 linking them. We also writedi for the number of neighbors
of statesi . The Metropolis chain corresponding to a given choice ofG has
transition matrix

Pi, j =




1
di
min

{π j di
πi dj

,1
}

if si andsj are neighbors

0 if si �= sj are not neighbors
1−

∑
l

sl∼si

1
di
min

{
πl di
πi dl

,1
}

if i = j ,
(46)

where the sum is over all statessl that are neighbors ofsi . This transition
matrix corresponds to the following transition mechanism: Suppose thatXn =
si . First pick a statesj according to uniform distribution on the set of neighbors
of si (so that each neighbor is chosen with probability1di ). Then set

Xn+1 =


sj with probability min

{π j di
πi dj

,1
}

si with probability 1−min
{π j di

πi dj
,1

}
.

To show that this Markov chain hasπ as its stationary distribution, it is enough
to verify that the reversibility condition

πi Pi, j = π j Pj,i (47)

holds for alli and j . We proceed as in Example 7.2, by first noting that (47)
is trivial for i = j . For the case wherei �= j andsi andsj are not neighbors,
(47) holds because both sides are 0. Finally, we split the case wheresi and
sj are neighbors into two subcases according to whether or not

π j di
πi dj

≥ 1. If
π j di
πi dj

≥ 1, then 


πi Pi, j = πi
1
di

π j Pj,i = π j
1
dj

πi dj
π j di

= πi
di
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so that (47) holds. Similarly, if
π j di
πi dj

< 1, then


πi Pi, j = πi
1
di

π j di
πi dj

= π j
dj

π j Pj,i = π j
1
dj

and again (47) holds. Soπ is a reversible (hence stationary) distribution for
the Metropolis chain, which therefore can beused for MCMC simulation ofπ .

Problems
7.1 (5) Show that the Markov chain used for MCMC simulation of the hard-core

model in Example 7.2 is

(a) irreducible,23 and
(b) aperiodic.24

7.2 (8*) Write a computer program, using the algorithm in Example 7.2, for simulat-
ing the hard-core model on a generalk × k square grid. Then do some simulation
experiments.25

7.3 (7) Show, by arguing as in Example 7.2 and Problem 7.1 (b), that the Gibbs
sampler for randomq-colorings in Example 7.3

(a) hasρG,q as a stationary distribution, and
(b) is aperiodic.

7.4 (6) A generalized hard-core model.A natural generalization of the hard-core
model is to allow for different “packing intensities” of 1’s in the graph. This is
done by introducing a parameterλ > 0, and changing the probability measure
µG defined in (40) into a probability measureµG,λ in which each configuration
ξ ∈ {0,1}V gets probability

µG,λ(ξ) =
{

λn(ξ)

ZG,λ
if ξ is feasible

0 otherwise,
(48)

wheren(ξ) is the number of 1’s inξ , andZG,λ = ∑
ξ∈{0,1}V λn(ξ)I {ξ is feasible}

is a normalizing constant. As follows from a direct calculation,this means that for

23 Hint: We need to show that for any two feasible configurationsξ andξ ′, the chain can go from
ξ to ξ ′ in a finite number of steps. The easiest way to show this is to demonstrate that it can
go fromξ to the “all 0’s” configuration in a finite number of steps, and then from the “all 0’s”
configuration toξ ′ in a finite number of steps.

24 Hint: To show that the period of a stateξ is 1, it is enough to show that the Markov chain can
go fromξ to ξ in one step (see also Problem 4.2).

25 When you have managed to do this for, say, a 10× 10 square lattice, consider the following:
Think back to Example 2.3 (the Internet as a Markov chain). Did that example seem to have a
ridiculously huge state space? Well, you have just simulated a Markov chain whose state space
is even bigger! It is not hard to show that the state spaceSas defined in (43) contains at least

2k
2/2 = 250 ≈ 1.1 ·1015 elements – much larger than the number of web pages on the Internet

today.
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any vertexv ∈ V , the conditional probability thatv takes the value 1, given the
values at all other vertices, equals{

λ
λ+1 if all neighbors ofv take value 0

0 otherwise.

The model’s “desire” to put a 1 atv therefore increases gradually asλ increases
from 0 to ∞. The caseλ = 1 reduces to the standard hard-core model in
Example 7.1.
Construct an MCMC algorithm for this generalized hard-core model.
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Fast convergence of MCMC algorithms

Although the MCMC approach to simulation, described in the previous chap-
ter, is highly useful, let us note two drawbacks of the method:

(A) The main theoretical basis for the MCMC method is Theorem 5.2, which
guarantees that the distributionµ(n) at timen of an irreducible and ape-
riodic Markov chain started in a fixed state converges to the stationary
distributionπ asn → ∞. But this does not imply thatµ(n) ever becomes
equalto π , only that it comes very close. As a matter of fact, in the vast
majority of examples, we haveµ(n) �= π for all n (see, e.g., Problem 2.3).
Hence, no matter how largen is taken to be in the MCMC algorithm, there
will still be some discrepancy between the distribution of the output and
the desired distributionπ .

(B) In order to make the error due to (A) small, we need to figure out how large
n needs to be taken in order to make sure that the discrepancy between
µ(n) and π (measured in the total variation distance dTV(µ(n), π)) is
smaller than some givenε > 0. In many situations, it has turned out
to be very difficult to obtain upper bounds on how largen needs to be
taken, that are small enough to be of any practical use.26

Problem (A) above is in itself not a particularly serious obstacle. In most
situations, we can tolerate a small error in the distribution of the output, as long
as we have an idea about how small it is. It is only in combination with (B)
that it becomes really bothersome. Due to difficulties in determining the rate of

26 In general, it is possible to extract an explicit upper bound (depending onε and on the chain)
by a careful analysis of the proof of Theorem 5.2. However, this often leads to bounds of
astronomical magnitude, such as “dTV(µ(n), π) < 0.01 whenevern ≥ 10100”. This is of
course totally useless, because the simulation of 10100 steps of a Markov chain is unlikely to
terminate during our lifetimes. In such situations, one can often suspect that the convergence is
much faster (so that perhapsn = 105 would suffice), but to actually prove this often turns out
to be prohibitively difficult.

54
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convergence to stationarity in Markov chains, much of today’s MCMC practice
has the following character: A Markov chain (X0, X1, . . .) whose distribution
µ(n) converges to the desired distributionπ , as the running timen tends to∞,
is constructed. The chain is then run for a fairly long timen (say, 104 or 105),
andXn is output, in the hope that the chain has come close to equilibrium by
then. But this is often just a matter of faith, or perhaps some vague handwaving
arguments.
This situation is clearly unsatisfactory, and a substantial amount of effort

has in recent years been put into attempts at rectifying it. In this chapter and in
Chapters 10–12, we shall take a look at two different approaches. The one we
consider in this chapter is to try to overcome the more serious problem (B) by
establishing useful bounds for convergence rates of Markov chains. In general,
this remains a difficult open problem, but in a number of specific situations,
very good results have been obtained.
To illustrate the type of convergence rate results that can be obtained, and

one of themain proof techniques, wewill in this chapter focus on one particular
example where the MCMC chain has been successfully analyzed, namely the
randomq-colorings in Example 7.3.
A variety of different(but sometimes related) techniques for proving fast

convergence to equilibrium of Markov chains have been developed, including
eigenvalue bounds, path and flow arguments, various comparisons between
different chains, and the concept of strong stationary duality; see Chapter 14
for some references concerning these techniques. Another important tech-
nique, that we touched upon already in Chapter 5, is the use of couplings,
and that is the approach we shall take here.
Let us consider theq-coloring example. Fix a graphG = (V, E) and an

integerq, and recall thatρG,q is the probability distribution on{1, . . . ,q}V
which is uniform over allξ ∈ {1, . . . ,q}V that are validq-colorings, i.e.,
over all assignments of colors 1, . . . ,q to the vertices ofG with the property
that no two vertices sharing an edge have the same color. We consider the
Gibbs sampler described in Example 7.3, with the modification that the vertex
to be updated is chosen as in the systematic sweep Gibbs sampler defined in
(45). This means that instead of picking a vertex at random uniformly from
V = {v1, . . . , vk}, we scan systematically through the vertex set by updating
vertexv1 at time 1,v2 at time 2,. . . , vk at timek, v1 again at timek + 1, and
so on as in (45).
It is natural to phrase the question about convergence rates for this MCMC

algorithm (or others) as follows: Givenε > 0 (such as for instanceε = 0.01),
how many iterationsn of the algorithm do we need in order to make the total
variation distance dTV(µ(n), ρG,q) less thanε? Hereµ(n) is the distribution of
the chain aftern iterations.
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Theorem 8.1Let G = (V, E) be a graph. Let k be the number of vertices
in G, and suppose that any vertexv ∈ V has at most d neighbors. Suppose
furthermore that q> 2d2. Then, for any fixedε > 0, the number of iterations
needed for the systematic sweep Gibbs sampler described above (starting from
any fixed q-coloringξ ) to come within total variation distanceε of the target
distributionρG,q is at most

k


 log(k) + log(ε−1) − log(d)

log
(

q
2d2

) + 1


 . (49)

Before going to the proof of this result, some comments are in order:

1. The most important aspect of the bound in (49) is that it is bounded by

Ck(log(k) + log(ε−1))

for some constantC < ∞ that does not depend onk or onε. This means
that the number of iterations needed to come within total variation distance
ε from the target distributionρG,q does not grow terribly quickly ask → ∞
or asε → 0. It is easy to see thatanyalgorithm for generating randomq-
colorings must have a running time that grows at least linearly ink (because
it takes about timek even toprint the result). The extra factor log(k) that
we get here is not a particularly serious slowdown.

2. Our boundq > 2d2 for when we get fast convergence is a fairly crude
estimate. In fact, Jerrum [J] showed, by means of a refined version of the
proof below, that a convergence rate of the same order of magnitude as in
Theorem 8.1 takes place as soon asq > 2d, and it is quite likely that this
bound can be improved even further.

3. If G is part of the square lattice (such as, for example, the graph in Figure 7),
thend = 4, so that Theorem 8.1 gives fast convergence of the MCMC
algorithm forq ≥ 33. Jerrum’s better bound gives fast convergence for
q ≥ 9.

4. It may seem odd that we obtain fast convergence for largeq only, as one
might intuitively think that it would be more difficult to simulate the larger
q gets, due to the fact that the number ofq-colorings onG is increasing in
q. This is, however, misleading, and the correct intuition to have is instead
the following. The largerq gets, the less dependent does the coloring of
a vertexv become on its neighbors. Ifq is very large, we might pick the
color atv uniformly at random, and have very little risk that this color is
already taken by one of its neighbors. Hence, the difference betweenρG,q

and uniform distribution overall elements of{1, . . . ,q}V becomes very
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small in the limit asq → ∞, and the latter distribution is of course easy to
simulate: just assign i.i.d. colors (uniformly from{1, . . . ,q}) to the vertices.

Enough chat for now – it is time to do the five-page proof of the convergence
rate result!

Proof of Theorem 8.1As in the proof of Theorem 5.2, we will use a coupling
argument: We shall run two{1, . . . ,q}V -valued Markov chains(X0, X1, . . .)
and(X′

0, X
′
1, . . .) simultaneously. They will have the same transition matrices

(namely, the ones given by the systematic sweep Gibbs sampler for random
q-colorings ofG, as described above). The difference will be that the first
chain is started in the fixed stateX0 = ξ , whereas the second is started in a
random stateX′

0 chosen according to the stationary distributionρG,q. Then
X′
n has distributionρG,q for all n, by the definition of stationarity. Also write

µ(n) for the distribution of the first chain(X0, X1, . . .) at timen; this is the
chain that we are primarily interested in. We want to bound the total variation
distance dTV(µ(n), ρG,q) betweenµ(n) and the stationary distribution, and we
shall see that dTV(µ(n), ρG,q) is close to 0 ifP(Xn = X′

n) is close to 1.
Recall from Example 7.3 that whenever a vertexv is chosen to be updated,

we should pick a new color forv according to the uniform distribution on the
set of colors that are not attained by any neighbor ofv. One way to implement
this concretely is to pick a random permutation

R= (R1, . . . , Rq)

of the set{1, . . . ,q}, chosen uniformly from theq! different possible permu-
tations (this is fairly easy; see Problem 8.1) and then letv get the first color of
the permutation that is not attained by any neighbor ofv.
Of course we need to pick a new (and independent) permutation at each

update of a chain. However, nothing prevents us from usingthe same permu-
tations for the chain(X′

0, X
′
1, . . .) as for(X0, X1, . . .), and this is indeed what

we shall do. LetR0, R1, . . . be an i.i.d. sequence of random permutations, each
of them uniformly distributed on the set of permutations of{1, . . . ,q}. At each
timen, the updates of the two chains use the permutation

Rn = (R1n, . . . , R
q
n) ,

and the vertexv to be updated is assigned the new value

Xn+1(v) = Rin

where

i = min{ j : Xn(w) �= Rjn for all neighborsw of v}
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in the first chain. In the second chain, we similarly set

X′
n+1(v) = Ri

′
n

where

i ′ = min{ j ′ : X′
n(w) �= Rj

′
n for all neighborsw of v} .

This defines our coupling of(X0, X1, . . .) and(X′
0, X

′
1, . . .). What we hope

for is to haveXT = X′
T at some (random, but not too large) timeT , in which

case we will also haveXn = X′
n for all n ≥ T (because the coupling is defined

in such a way that once the two chains coincide, they stay together forever). In
order to estimate the probability that the configurationsXn andX′

n agree, let
us first consider the probability that they agreeat a particular vertex, i.e., that
Xn(v) = X′

n(v) for a given vertexv.
Consider the update of the two chains at a vertexv at timen, where we

taken ≤ k, so that in other words we are in the first sweep of the Gibbs
sampler through the vertex set. We call the updatesuccessfulif it results in
havingXn+1(v) = X′

n+1(v); otherwise we say that the update isfailed. The
probability of a successful update depends on the number of colors that are
attained in the neighborhood ofv in both configurationsXn andX′

n, and on
the number of colors that are attained in each of them. Define

B2 = the number of colorsr ∈ {1, . . . ,q} that are attained in the
neighborhood ofv in both Xn andX′

n,

B1 = the number of colorsr ∈ {1, . . . ,q} that are attained in the
neighborhood ofv in exactly oneof Xn andX′

n,

and

B0 = the number of colorsr ∈ {1, . . . ,q} that are attained in the
neighborhood ofv in neitherof Xn andX′

n,

and note thatB0 + B1 + B2 = q. Note also that if the first colorR1n in the
permutationRn is among theB2 colors attained in the neighborhood ofv in
both configurations, then the Gibbs samplers just discardR1n and look atR

2
n

instead, and so on. Therefore, the update is successful if and only if the first
color in Rn that is attained in the neighborhood ofv in neitherof Xn and
X′
n appears earlier in the permutation than the first color that is attained in

the neighborhood ofv in exactly oneof Xn andX′
n. This event (of having a

successful update) therefore has probability

B0
B0 + B1
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conditional onB0, B1 andB2. In other words, we have27

P(failed update) = B1
B0 + B1

. (50)

We go on to estimate the right-hand side in (50). Clearly, 0≤ B2 ≤ d.
Furthermore,

B1 ≤ 2d − 2B2 , (51)

because counting the neighbors in both configurations, there are in all at most
2d of them, and each color contributing toB2 uses up two of them. We get

P(failed update) = B1
B0 + B1

= B1
q − B2

≤ 2d − 2B2
q − B2

≤ 2d − B2
q − B2

= 2d
(
1− B2

2d

)
q
(
1− B2

q

) ≤ 2d

q
(52)

where the first inequality is just (51), while the final inequality is due to the
assumptionq > 2d2, which impliesq > 2d, which in turn implies

(
1− B2

q

) ≥(
1− B2

2d

)
.

Hence, we have, afterk steps of the Markov chains (i.e., after the first sweep
of the Gibbs samplers through the vertex set), that, for each vertexv,

P(Xk(v) �= X′
k(v)) ≤ 2d

q
. (53)

Now consider updates during the second sweep of the Gibbs sampler, i.e.,
between timesk and 2k. For an update at timen during the second sweep to
fail, the configurationsXn andX′

n need to differ in at least one neighbor of
v. Each neighborw hasXn(w) �= X′

n(w) with probability at most2dq (due to
(53)), and summing over the at mostd neighbors, we get that

P(discrepancy) ≤ 2d2

q
(54)

where “discrepancy” is short for the event that there exists a neighborw

of v with Xn(w) �= X′
n(w). Given the event in (54), we have, by re-

peating the arguments in (50) and (52), that the conditional probability

27 Our notation here is a bit sloppy, since it is really a conditional probability we are dealing with,
because we are conditioning onB0, B1 andB2.
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P(failed update|discrepancy) of a failed update is bounded by2dq . Hence,
P(failed update) = P(discrepancy)P(failed update|discrepancy)

≤ 4d3

q2
= 2d

q

(
2d2

q

)
.

Hence, after 2k steps of the Markov chains, each vertexv ∈ V has different
colorsin the two chains with probability at most

P(X2k(v) �= X′
2k(v)) ≤ 2d

q

(
2d2

q

)
.

By arguing in the same way for the third sweep as for the second sweep, we
get that

P(X3k(v) �= X′
3k(v)) ≤ 2d

q

(
2d2

q

)2
,

and continuing in the obvious way, we get form= 4,5, . . . that

P(Xmk(v) �= X′
mk(v)) ≤ 2d

q

(
2d2

q

)m−1
. (55)

After this analysis of the probability thatXmk and X′
mk differ at a given

vertex, we next want to estimate the probabilityP(Xmk �= X′
mk) that the first

chain fails to haveexactly the same configurationas the second chain, at time
mk. Since the eventXmk �= X′

mk implies thatXmk(v) �= X′
mk(v) for at least

one vertexv ∈ V , we have

P(Xmk �= X′
mk) ≤

∑
v∈V

P(Xmk(v) �= X′
mk(v))

≤ k
2d

q

(
2d2

q

)m−1
(56)

= k

d

(
2d2

q

)m
(57)

where the inequality in (56) is due to (55) and the assumption that the graph
hask vertices.
Now let A ⊆ {1, . . . ,q}V be any subset of{1, . . . ,q}V . By (33) and

Problem 5.1, we have that

dTV(µ(mk), ρG,q) = max
A⊆{1,...,q}V

∣∣∣µ(mk)(A) − ρG,q(A)

∣∣∣
= max

A⊆{1,...,q}V
∣∣P(Xmk ∈ A) − P(X′

mk ∈ A)
∣∣ . (58)
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For any suchA, we have

P(Xmk ∈ A) − P(X′
mk ∈ A)

= P(Xmk ∈ A, X′
mk ∈ A) + P(Xmk ∈ A, X′

mk �∈ A)

− (
P(X′

mk ∈ A, Xmk ∈ A) + P(X′
mk ∈ A, Xmk �∈ A)

)
= P(Xmk ∈ A, X′

mk �∈ A) − P(X′
mk ∈ A, Xmk �∈ A)

≤ P(Xmk ∈ A, X′
mk �∈ A)

≤ P(Xmk �= X′
mk)

≤ k

d

(
2d2

q

)m
(59)

where the last inequality uses (57). Similarly, we get

P(X′
mk ∈ A) − P(Xmk ∈ A) ≤ k

d

(
2d2

q

)m
. (60)

Combining (59) and (60), we obtain

∣∣P(Xmk ∈ A) − P(X′
mk ∈ A)

∣∣ ≤ k

d

(
2d2

q

)m
. (61)

By taking the maximum over allA ⊆ {1, . . . ,q}V , and inserting into (58), we
get that

dTV(µ(mk), ρG,q) ≤ k

d

(
2d2

q

)m
, (62)

which tends to 0 asm→ ∞. Having established this bound, our next and final
issue is:

How large doesm need to be taken in order to make the right-hand side
of (62) less thanε?

By setting

k

d

(
2d2

q

)m
= ε

and solving form, we find that

m= log(k) + log(ε−1) − log(d)

log
(

q
2d2

)
so that running the Gibbs sampler long enough to get at least this many scans
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through the vertex set gives dTV(µ(mk), ρG,q) ≤ ε. To go from the number of
scansm to the number of stepsn of the Markov chain, we have to multiply by
k, giving that

n = k(log(k) + log(ε−1) − log(d))

log
( q
2d2

) (63)

should be enough. However, by takingn as in (63), we do not necessarily get
an integer value form = n

k , so to be on the safe side we should taken to be at
least the smallest number which is greater than the right-hand side of (63) and
which makesnk an integer. This means increasingn by at mostk compared to
(63), so thatourfinal answer isthat taking

n = k

(
log(k) + log(ε−1) − log(d)

log
( q
2d2

) + 1

)

suffices, and Theorem 8.1 is (at last!) established.

Problems
8.1 (4) Describe a simple and efficient way to generate a random (uniform distribu-

tion) permutation of the set{1, . . . ,q}.
8.2 (6) Bounding total variation distance using coupling. Let π1 and π2 be

probability distributions on some finite setS. Suppose that we can construct two
random variablesY1 andY2 such that

(i) Y1 has distributionπ1,

(ii) Y2 has distributionπ2, and

(iii) P(Y1 �= Y2) ≤ ε,

for some givenε ∈ [0,1]. Show that the total variation distance dTV(π1, π2) is at
mostε. Hint: argue as in equations (59), (60) and (61) in the proof of Theorem 8.1.

8.3 (8) Explain where and why the assumption thatq > 2d2 is needed in the proof
of Theorem 8.1.

8.4 (10) Fast convergence for the random site Gibbs sampler.Consider (instead
of the systematic scan Gibbs sampler) the random site Gibbs sampler for random
q-colorings, as in Example 7.3. Suppose that the graphG = (V, E) hask vertices,
and each vertex has at mostd neighbors. Also suppose thatq > 2d2.

(a) Show that for any givenv ∈ V , the probability thatv is chosen to be updated
at some step during the firstk iterations of the Markov chain is at least 1−e−1.
(Heree≈ 2.7183 is, of course, the base for the natural logarithm.)

(b) Suppose that we run two copies of this Gibbs sampler, one starting in a fixed
configuration, and one in equilibrium, similarly as in the proof of Theorem 8.1.
Show that the coupling can be carried out in such a way that for anyv ∈ V and
anym, the probability that the two chains have different colors at the vertexv
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at timemk is at most(
e−1+ (1− e−1)2d

q

)(
e−1+ (1− e−1)2d

2

q

)m−1
.

(c) Use the result in (b) to prove an analogue of Theorem 8.1 for the random site
Gibbs sampler.
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Approximate counting

Combinatorics is the branch of mathematics whichdeals withfinite objects
or sets, and the ways in which these can be combined. Basic objects that
often arise in combinatorics are, e.g., graphs and permutations. Much of
combinatorics deals with the following sort of problem:

Given some setS, what is the number of elements ofS?

Let us give afew examples of suchcounting problems; the reader will
probably be able to think of several interesting variations of these.

Example 9.1What is the number of permutationsr = (r 1, . . . , r q) of the set
{1, . . . ,q} with the property that no two numbers that differ by exactly 1 are
adjacent in the permutation?

Example 9.2Imagine a chessboard, and a set of 32 domino tiles, such that one
tile is exactly large enough to cover two adjacent squares of the chessboard. In
how many different ways can the 32 tiles be arranged so as to cover the entire
chessboard?

Example 9.3Given a graphG = (V, E), in how many ways can we pick a subset
W of the vertex setV , with the property that no two vertices inW are adjacent
in G? In other words, how many different feasible configurations exist for the
hard-core model (see Example 7.1) onG?

Example 9.4Given an integerq and a graphG = (V, E), how many different
q-colorings (Example 7.3) are there forG?

In this chapter, we are interested in algorithms for solving counting problems.
For the purpose of illustrating some general techniques, we shall focus on the
one in Example 9.4: the number ofq-colorings of a graph. In particular, we
shall see how (perhaps surprisingly!) the MCMC technique turns out to be
useful in the context of counting problems. The same general approach has

64
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proved to be successful in a host of other counting problems, including count-
ing of feasible hard-core configurations and of domino tilings, and estimation
of the normalizing constantZG,β in the so-called Ising model (which will be
discussed in Chapter 11); see Sinclair [Si] for an overview.
The following algorithm springs immediately to mind as a solution to the

problem of countingq-colorings.

Example 9.5: A naive algorithm for counting q-colorings. If there were no
restriction on the colorings, i.e., if all configurations in{1, . . . ,q}V were allowed,
then the counting problem would be trivial: there areqk of them, wherek is the
number of vertices in the graph. Moreover, it is trivial to make a list of all such
configurations, for instance in some lexicographic order. Given a configuration
ξ ∈ {1, . . . ,q}V , the problem of determining whetherξ is a properq-coloring of
G is yet another triviality.28 Hence, the following algorithm will work:

Go through all configurations in{1, . . . ,q}V in lexicographic order, check
for each of them whether it is aq-coloring ofG, and count the number of
times the answer was “yes”.

This algorithm will certainly give the right answer. However, whenk is large, it
will take a very long time to run the algorithm, since it has to work itself through
the list of all qk configurations. For instance, whenq = 5 andk = 50, there
are 550 ≈ 1034 configurations to go through, which is impossible in practice.
Therefore, this algorithm will only be useful for rather small graphs.

The feature which makes the algorithm in Example 9.5 unattractive is that the
running time grows exponentially in the sizek of the graph. The challenge in
this type of situation is therefore to find faster algorithms. In particular, one is
interested inpolynomial time algorithms, i.e., algorithms with the property
that there exists a polynomialp(k) in the sizek of the problem,29 such that the
running time is bounded byp(k) for any k and any instance of the problem
of sizek. This is the same (see Problem 9.1) as asking for algorithms with a
running time bounded byCkα for some constantsC andα.
A polynomial time algorithm which solves a counting problem is called a

polynomial time counting schemefor the problem. Sometimes, however,
such an algorithm is not available, and we have to settle for something less,
namely toapproximate(rather than calculate exactly) the number of elements

28 We just need to check, for each edgee∈ E, that the endvertices ofehave different colors.
29 Here we measure the size of the problem in the number of vertices in the graph. This is usually
the most natural choice for problems involving graphs, although sometimes there is reason take
the number of edges instead. In Example 9.1, it is natural to takeq as the size of the problem,
whereas in generalizations of Example 9.2 to “chessboards” of arbitrary size, the size of the
problem may be measured in the number of squares of the chessboard (or in the number of
domino tiles). Common to all these measures of size is that the number of elements in the set
to be counted grows (at least) exponentially in the size of the problem, making algorithms like
the one in Example 9.5 infeasible.
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of the set. Suppose that we have an algorithm which, in addition to the instance
of the counting problem, also takes a numberε > 0 as input. Suppose
furthermore that the algorithm has the properties that

(i) it always outputs an answer between(1− ε)N and(1+ ε)N, whereN is
the true answer to the counting problem, and

(ii) for any ε > 0, there exists a polynomialpε(k) in the sizek of the
problem,30 such that for any instance of sizek, the algorithm terminates
in at mostpε(k) steps.

We call such an algorithm apolynomial time approximation scheme. Given
a prespecifiedallowed relative errorε, the algorithm runs in polynomial time
in the size of the problem, and produces an answer which is within a multi-
plicative errorε of the true answer.
Sometimes, however, even this is too much to ask, and we have to be

content with an algorithm which produces an almost correct answer most of
the time, but which may produce a (vastly) incorrect answer with some positive
probability. More precisely, suppose that we have an algorithm which takes
ε > 0 and the instance of the counting problem as input, and has the properties
that

(i) with probability at least23, it outputs an answer between(1 − ε)N and
(1+ ε)N, whereN is the true answer to the counting problem, and

(ii) for any ε > 0, there exists a polynomialpε(k) in the sizek of the problem,
such that for any instance of sizek, the algorithm terminates in at most
pε(k) steps.

Such an algorithm is called arandomized polynomial time approximation
scheme, and it is to the construction of such a scheme (for theq-coloring
counting problem) that this chapter is devoted.
One may (and should!) ask at this stage what is so special about the number

2
3. The answer is that it is, in fact, not special at all, and that it could be replaced
by any number strictly between12 and 1. For instance, for anyδ > 0, if we
have a randomized polynomial time approximation scheme (with the above
definition), then it is not difficult to build further upon it to obtain a randomized
polynomial time approximation scheme with the additional property that it
outputs an answer within a multiplicative errorε of the true answer, with
probability at least 1− δ. We can thus get an answer within relative error
at mostε of the true answer, with probability as close to 1 as we may wish.
This property will be proved Problem 9.3 below.

30 We allow pε(k) to depend onε in arbitrary fashion. Sometimes (although we shall not go into
this subtlety) there is reason to be restrictive about how fastpε(k) may grow asε → 0.
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Here is our main result concerning randomized polynomial time approxima-
tion schemes for randomq-colorings.

Theorem 9.1Fix integers q and d≥ 2 such that q> 2d2, and consider the
problem of counting q-colorings for graphs in which each vertex has at most d
neighbors. There exists a randomized polynomial time approximation scheme
for this problem.

Before going on with the proof of this result, some remarks are worth making:

1. Of course, an existence result (i.e., a statement of the form “there exists an
algorithm such that. . .”) of this kind is rather useless without an explicit
description of the algorithm. Such a description, will, however, appear
below as part of the proof.

2. The requirement thatq > 2d2 comes from Theorem 8.1, which will be
used in the proof of Theorem 9.1. If we instead use Jerrum’s better result
mentioned in Remark 2 after Theorem 8.1, then we obtain the same result
as in Theorem 9.1 wheneverq > 2d.

3. The restriction tod ≥ 2 is not a particularly severe one, since graphs with
d = 1 consist just of

(i) isolated vertices (having no neighbors), and

(ii) pairs of vertices linked to each other by an edge but with no edge
leading anywhere else,

and the number ofq-colorings of such graphs can be calculated directly
(see Problem 9.2).

Another thing which it is instructive to do before the proof of Theorem 9.1 is to
have a look at the following simple-minded attempt at a randomized algorithm,
and to figure out why it does not work well in practice.

Example 9.6: Another naive algorithm for counting q-colorings. Assume
thatG = (V, E) is connected withk vertices, and writeZG,q for the number
of q-colorings ofG. Suppose that we assign each vertex independently a color
from {1, . . . ,q} chosen according to the uniform distribution, without regard to
whether or not adjacent vertices have the same color. Then each configuration
ξ ∈ {1, . . . ,q}V arises with the same probability1

qk
. Out of theseqk possible

configurations, there areZG,q that areq-colorings, whence the probability that
this procedure yields aq-coloring is

ZG,q

qk
. (64)
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Let us now repeat this experimentn times, and writeYn for the number of times
that we gotq-colorings. We clearly have

E[Yn] = nZG,q

qk

so that

E

[
qkYn
n

]
= ZG,q

which suggests thatq
kYn
n might be a good estimator ofZG,q. Indeed, the Law of

Large Numbers (Theorem 1.2) may be applied to show, for anyε > 0, that q
kYn
n

is between(1− ε)ZG,q and(1+ ε)ZG,q with a probability which tends to 1 as
n → ∞.
But how large doesn need to be? Clearly,q

kYn
n is a very bad estimate as long

asYn = 0, so we certainly need to pickn sufficiently large to makeYn > 0 with a
reasonably high probability. Unfortunately, this means thatn has to be takenvery
large, as the following argument shows. In each simulation, we get aq-coloring

with probability at most
(
q−1
q

)k−1
; this is Problem 9.4. Hence,

P(Yn > 0) = P(at least one of the firstn simulations yields aq-coloring)

≤
n∑
i=1

P(the i th simulation yields aq-coloring)

≤ n

(
q − 1

q

)k−1
.

To make this probability reasonably large, say greater than1
2, we need to take

n ≥ 1
2

(
q
q−1

)k−1
. This quantity grows exponentially ink, making the algorithm

useless for large graphs.

Let us pause for a moment and think about precisely what it is that makes the
algorithm in Example 9.6 so creepingly slow. The reason is a combination
of two facts: First, the probability in (64) that we are trying to estimate is
extremely small: exponentially small in the number of verticesk. Second,
to estimate a very small probability by means of simulation requires a very
large number of simulations. In the algorithm that we are about to present as
part of the proof of Theorem 9.1, one of the key ideas is to find other relevant
probabilities to estimate, which have a more reasonable order of magnitude.
Let us now turn to the proof.

First part of the proof of Theorem 9.1: a general description of the algo-
rithm Suppose that the graphG = (V, E) hask vertices andk̃ edges; by
the assumption of the theorem we have thatk̃ ≤ dk. Enumerate the edge
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set E as {e1, . . . ,ek̃}, and define the subgraphsG0,G1, . . . ,Gk̃ as follows.
Let G0 = (V, ∅) be the graph with vertex setV and no edges, and for
j = 1, . . . , k̃, let

Gj = (V, {e1, . . . ,ej }) .

In other words,Gj is the graph obtained fromG by deleting the edges
ej+1, . . . ,ek̃.
Next, let, for j = 0, . . . , k̃, the number ofq-colorings for the graphGj be

denoted byZ j . SinceGk̃ = G, we have that the number we wish to compute
(or approximate) isZk̃. This number can be rewritten as

Zk̃ = Zk̃
Zk̃−1

× Zk̃−1
Zk̃−2

× · · · × Z2
Z1

× Z1
Z0

× Z0 . (65)

If we can estimate each factor in the telescoped product in (65) to within
sufficient accuracy, then we can multiply these estimates to get a reasonably
accurate estimate ofZk̃.
Note first that the last factorZ0 is trivial to calculate: sinceG0 has no edges,

any assignmentof colors from{1, . . . ,q} to the verticesis a validq-coloring,
and sinceG0 hask vertices, we have

Z0 = qk .

Consider next one of the other factors
Z j
Z j−1 in (65). Write xj and yj for

the endvertices of the edgeej which is inGj but not inGj−1. By definition,
Z j is the number ofq-colorings of the graphGj . But theq-colorings ofGj

are exactly those configurationsξ ∈ {1, . . . ,q}V that areq-colorings ofGj−1
and that in addition satisfyξ(xj ) �= ξ(yj ). Hence the ratio

Z j
Z j−1 is exactly the

proportion ofq-coloringsξ of Gj that satisfyξ(xj ) �= ξ(yj ). This means that

Z j
Z j−1

= ρGj−1,q(X(xj ) �= X(yj )) , (66)

i.e.,
Z j
Z j−1 equals the probability that a random coloringX of Gj−1, chosen

according to the uniform distributionρGj−1,q, satisfiesX(xj ) �= X(yj ).
The key point now is that the probabilityρGj ,q(X(xj ) �= X(yj )) in (66)

can be estimated using the simulation algorithm forρGj−1,q considered in
Theorem 8.1. Namely, if we simulate a randomq-coloring X ∈ {1, . . . ,q}V
for Gj−1 several times(using sufficiently manysteps in the Gibbs sampler of
Chapter 8), then the proportion of the simulations that result in a configuration
with different colors atxj and yj is very likely to be close31 to the desired

31 This closeness is due to the Law of Large Numbers (Theorem 1.2).
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expression in (66). We use this procedure to estimate each factor in the
telescoped product in (65), and then multiply these to get a good estimate of
theZk̃.

The second part of the proof of Theorem 9.1 consists of figuring out how
many simulations we need to do for estimating each factor

Z j
Z j−1 , and how

many steps of the Gibbs sampler we need to run in each simulation. For that,
we first need three little lemmas:

Lemma 9.1Fix ε ∈ [0,1], let k be a positive integer, and let a1, . . . ,ak and
b1, . . . ,bk be positive numbers satisfying(

1− ε

2k

)
≤ aj
bj

≤
(
1+ ε

2k

)

for j = 1, . . . , k. Define the products a= ∏k
j=1 aj and b= ∏k

j=1 bj . We
then have

1− ε ≤ a

b
≤ 1+ ε . (67)

Proof To prove the first inequality in (67), note that(1− ε
2k )

2 ≥ 1− 2ε
2k , that

(1− ε
2k )

3 ≥ (1− ε
2k )(1− 2ε

2k ) ≥ 1− 3ε
2k , and so on, so that(

1− ε

2k

)k ≥ 1− kε

2k
.

Hence,

a

b
=

k∏
j=1

aj
bj

≥
k∏
j=1

(
1− ε

2k

)
=

(
1− ε

2k

)k

≥ 1− kε

2k
= 1− ε

2
≥ 1− ε .

For the second inequality, we note thatex/2 ≤ 1+ x for all x ∈ [0,1] (plot the
functions to see this!), so that

a

b
=

k∏
j=1

aj
bj

≤
k∏
j=1

(
1+ ε

2k

)
≤

k∏
j=1
exp

( ε

2k

)

= exp
(ε

2

)
≤ 1+ ε .

Lemma 9.2Fix d ≥ 2 and q > 2d2. Let G = (V, E) be a graph in which
no vertex has more than d neighbors, and pick a random q-coloring X for G
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according to the uniform distributionρG,q. Then, for any two distinct vertices
x, y ∈ V , the probability that X(x) �= X(y) satisfies

ρG,q(X(x) �= X(y)) ≥ 1

2
. (68)

Proof Note first that whenx and y are neighbors inG, then (68) is trivial,
since its left-hand side equals 1. We go on to consider the case wherex andy
are not neighbors.
Consider the following experiment, whichis just a way offinding out the

random coloringX ∈ {1, . . . ,q}V : first look at the coloringX(V \ {x}) of all
vertices exceptx, and only then look at the color atx. BecauseρG,q is uniform
over all colorings, we have that the conditional distribution of the colorX(x)
givenX(V\{x}) is uniform over all colors that are not attained by any neighbor
of x. Clearly,x has at leastq − d colors to choose from, so the conditional
probability of getting precisely the color that the vertexy got is at most 1q−d ,
regardless of what particular coloringX(V \ {x}) we got at the other vertices.
It follows thatρG,q(X(x) = X(y)) ≤ 1

q−d , so that

ρG,q(X(x) �= X(y)) = 1− ρG,q(X(x) = X(y))

≥ 1− 1

q − d
≥ 1− 1

2d2 − d

≥ 1− 1

2
= 1

2
.

Lemma 9.3Fix p ∈ [0,1] and a positive integer n. Toss a coin with heads-
probability p independently n times, and let H be the number of heads. Then,
for any a> 0, we have

P(|H − np| ≥ a) ≤ n

4a2
.

Proof Note thatH is a binomial(n, p) random variable; see Example 1.3.
Therefore it has meanE[H ] = npand varianceVar [H ] = np(1− p). Hence,
Chebyshev’s inequality (Theorem 1.1) gives

P(|H − np| ≥ a) ≤ np(1− p)

a2

≤ n

4a2

using the fact thatp(1− p) ≤ 1
4 for all p ∈ [0,1].
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Second part of the proof of Theorem 9.1We need some notation. Forj =
1, . . . , k̃, writeYj for the algorithm’s (random) estimator of

Z j
Z j−1 . Also define

the productsY = ∏k̃
j=1Yj and

Y∗ = Z0Y = qkY = qk
k̃∏
j=1

Yj . (69)

Because of (65), we takeY∗ as the estimator of the desired quantityZk̃, i.e.,
as the output of the algorithm. First, however, we need to generate, forj =
1, . . . , k̃, the estimatorYj of

Z j
Z j−1 . How much error can we allow in each of

these estimatorsY1, . . . ,Yk̃? Well, suppose that we make sure that(
1− ε

2k̃

)
Z j
Z j−1

≤ Yj ≤
(
1+ ε

2k̃

)
Z j
Z j−1

(70)

for each j . This is the same as

1− ε

2k̃
≤ Yj
Z j /Z j−1

≤ 1+ ε

2k̃
,

and Lemma9.1 therefore guarantees that

1− ε ≤ Y∏k̃
j=1(Z j /Z j−1)

≤ 1− ε ,

which is the same as

1− ε ≤ Y

Zk̃/Z0
≤ 1− ε .

The definition (69) of our estimatorY∗ gives

1− ε ≤ Y∗

Zk̃
≤ 1+ ε

which we can rewrite as

(1− ε)Zk̃ ≤ Y∗ ≤ (1+ ε)Zk̃ . (71)

This is exactly what we need. It therefore only remains to obtainYj ’s that
satisfy (70). We can rewrite (70) as

− ε

2k̃

Z j
Z j−1

≤ Yj − Z j
Z j−1

≤ ε

2k̃

Z j
Z j−1

. (72)

Due to (66) and Lemma 9.2, we have that
Z j
Z j−1 ≥ 1

2. Hence, (72) and (70)
follow if we can make sure that

− ε

4k̃
≤ Yj − Z j

Z j−1
≤ ε

4k̃
. (73)
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Recall thatYj is obtained by simulating randomq-colorings forGj−1 several
times, by means of the Gibbs sampler in Chapter 8, and takingYj to be the
proportion of the simulations that result in aq-coloring ξ satisfyingξ(xj ) �=
ξ(yj ). There are two sources of error in this procedure, namely

(i) the Gibbs sampler (which we start in some fixed but arbitraryq-coloringξ )
is only run for a finite numbern of steps, so that the distributionµ(n) of the
coloring that it produces may differ somewhat from the target distribution
ρGj ,q, and

(ii) only finitely many simulations are done, so the proportionYj resulting in
q-coloringsξ with ξ(xj ) �= ξ(yj )may differ somewhat from the expected
valueµ(n)(X(xj ) �= X(yj )).

According to (73), Yj is allowed to differ from
Z j
Z j−1 (i.e., from

ρGj−1,q(X(xj ) �= X(yj )), by (66)) by at mostε4k̃ . One way to accomplish
this is to make sure that∣∣∣µ(n)(X(xj ) �= X(yj )) − ρGj−1,q(X(xj ) �= X(yj ))

∣∣∣ ≤ ε

8k̃
(74)

and that ∣∣∣Yj − µ(n)(X(xj ) �= X(yj ))
∣∣∣ ≤ ε

8k̃
, (75)

In other words, the leewayε
4k̃
allowed by (66) is split up equally between the

two error sources in (i) and (ii).
Let us first consider how many steps of the Gibbs sampler we need to run

in order to make the error from (i) small enough so that (74) holds. By the
formula (33) for total variation distance dTV, it is enough to run the Gibbs
sampler for a sufficiently long timen to make

dTV(µ(n), ρGj−1,q) ≤ ε

8k̃
,

and Theorem 8.1 is exactly suited for determining such ann. Indeed, it suffices,
by Theorem 8.1, to take

n = k

(
log(k) + log

(8k̃
ε

) − log(d)

log
( q
2d2

) + 1

)

≤ k

(
log(k) + log

(8dk
ε

) − log(d)

log
( q
2d2

) + 1

)

= k

(
2 log(k) + log(ε−1) + log(8)

log
( q
2d2

) + 1

)
(76)

where the inequality is becausek̃ ≤ dk.
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Next, we consider the number of simulations ofq-colorings ofGj−1 needed
to make the error from (ii) small enough so that (75) holds, with sufficiently
high probability. By part (i) of the definition of a randomized polynomial time
approximation scheme, the algorithm is allowed to fail (i.e., to produce an
answerY∗ that does not satisfy (71)) with probability at most13. Since there
arek̃ estimatorsYj to compute, we can allow each one to fail (i.e., to disobey
(75)) with probability 1

3k̃
. The probability that the algorithm fails is then at

mostk̃ 1
3k̃

= 1
3, as desired.

Suppose now that we makem simulations32 when generatingYj , and write
Hj for the number of them that result in coloringsξ with ξ(xj ) �= ξ(yj ). Then

Yj = Hj

m
.

By multiplying both sides of (75) withm, we get that (75) is equivalent to

|Hj −mp| ≤ εm

8k̃
,

wherep is defined byp = µ(n)(X(xj ) �= X(yj )). But the distribution ofHj

is precisely the distribution of the number of heads when we tossm coins with
heads-probabilityp. Lemma 9.333 therefore gives

P
[
|Hj −mp| >

εm

8k̃

]
≤ m

4
(

εm
8k̃

)2
= 16k̃2

ε2m
(77)

and we need to make this probability less than1
3k̃
. Setting the expression in

(77) equal to1
3k̃
and solving form gives

m= 48k̃3

ε2
,

and this is the number of simulations we need to make for eachYj . Using
k̃ ≤ dk again, we get

m≤ 48d3k3

ε2
.

32 Each time, we use the Gibbs sampler starting in the same fixedq-coloring, and run it forn
steps, withn satisfying (76).

33 An alternative to using Lemma 9.3 (and therefore indirectly Chebyshev’s inequality), which
leads to sharper upper bounds on how largem needs to be, is to use the so-calledChernoff
bound for the binomial distribution; see, e.g., [MR].
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Let us summarize: The algorithm hask̃ factorsYj to compute. Each one is

obtained using no more than48d
3k3

ε2
simulations, and, by (76), each simulation

requires nomore thank

(
2 log(k)+log(ε−1)+log(8)

log
(

q
2d2

) +1
)
steps of the Gibbs sampler.

The total number of steps needed is therefore at most

dk× 48d3k3

ε2
× k

(
2 log(k) + log(ε−1) + log(8)

log
( q
2d2

) + 1

)

which is of the orderCk5 log(k) ask → ∞ for some constantC that does
not depend onk. This is less thanCk6, so the total number of iterations in the
Gibbs samplergrows no faster than polynomially. Since, clearly, the running
times of all other parts of the algorithm are asymptotically negligible compared
to these Gibbssampler iterations, Theorem 9.1 is established.

Problems
9.1 (3) Suppose that we have an algorithm whose running time is bounded by a

polynomialp(k), wherek is the “size” (see Footnote 29 in this chapter) of the input.
Show that there exist constantsC andα such that the running time is bounded by
Ckα .

9.2 (3) Suppose thatG is a graph consisting ofk isolated vertices (i.e., vertices that
are not the endpoint of any edge) plusl pairs of vertices where in each pair the two
vertices are linked by an edge, but have no other neighbors. Show that the number
of q-colorings ofG is qk+l (q − 1)l .

9.3 (8) The definition of a randomized polynomial time approximation scheme allows
the algorithm to produce, with probability13, an output which is incorrect, in the
sense that it isnot between(1− ε)N and(1+ ε)N, whereN is the true answer
to the counting problem. The error probability13 can be cut to any givenδ > 0
by the following method: Run the algorithm many (saym, wherem is odd) times,
and take the median of the outputs (i.e., them+1

2 th largest output). Show that
this works form large enough, and give an explicit bound (depending onδ) for
determining how large “large enough” is.

9.4 (7) Let G = (V, E) be a connected graph onk vertices, and pickX ∈
{1, . . . ,q}V at random, with probability1

qk
for each configuration. Show that

the probability thatX is aq-coloring is at most(
q − 1

q

)k−1
.

Hint: enumerate the verticesv1, . . . , vk in such a way that eachvi has at least one
edge to some earlier vertex. Then imagine revealing the colors ofv1, v2, . . . one
at a time, each time considering the conditional probability of not getting the same
color as a neighboring vertex.
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The Propp–Wilson algorithm

Recall, from the beginning of Chapter 8, the problems (A) and (B) with
the MCMC method. In that chapter, we saw one approach to solving these
problems, namely to prove that an MCMC chain converges sufficiently quickly
to its equilibrium distribution.
In the early 1990’s, some ideas about a radically different approach began

to emerge. The breakthrough came in a 1996 paper by Jim Propp and David
Wilson [PW], both working at MIT at that time, who presented a refinement
of the MCMC method, yielding an algorithm which simultaneously solves
problems (A) and (B) above, by

(A*) producing an output whose distribution isexactlythe equilibrium distri-
butionπ , and

(B*) determining automatically when to stop, thus removing the need to com-
pute any Markov chain convergence rates beforehand.

This algorithm has become known as thePropp–Wilson algorithm, and is
the main topic of this chapter. The main feature distinguishing the Propp–
Wilson algorithm from ordinary MCMC algorithms is that it involves running
not only one Markov chain, but several copies of it,34 with different initial
values. Another feature which is important (we shall soon see why) is that the
chains are not run from time 0 and onwards, but rather from some time in the
(possibly distant) past, and up to time 0.
Due to property (A*) above, the Propp–Wilson algorithm is sometimes said

to be anexact, or perfectsimulation algorithm.
We go on with a more specific description of the algorithm. Suppose that

we want to sample from a given probability distributionπ on a finite set

34 That is, we are working with a coupling of Markov chains; see Footnote 17 in Chapter 5. For
reasons that will become apparent, Propp and Wilson called their algorithmcoupling from the
past.

76
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S= {s1, . . . , sk}. As in ordinary MCMC, we construct a reversible, irreducible
and aperiodic Markov chain with state spaceS and stationary distributionπ .
Let P be the transition matrix of the chain, and letφ : S× [0,1] → Sbe some
valid update function, as defined in Chapter 3. Furthermore, letN1, N2, . . . be
an increasing sequence of positive integers; a common and sensible35 choice is
to take(N1, N2, . . .) = (1,2,4,8, . . .). (The negative numbers−N1, −N2, . . .
will be used as “starting times” for the Markov chains.) Finally, suppose
that U0,U−1,U−2, . . . is a sequence of i.i.d. random numbers, uniformly
distributed on [0,1]. The algorithm now runs as follows.

1. Setm= 1.

2. For eachs ∈ {s1, . . . , sk}, simulate the Markov chain starting at time−Nm
in states, and running up to time 0 using update functionφ and random
numbersU−Nm+1,U−Nm+2, . . . ,U−1,U0 (these are the same for each of
thek chains).

3. If all k chains in Step 2 end up in the same states′ at time 0, then outputs′

and stop. Otherwise continue with Step 4.

4. Increasem by 1, and continue with Step 2.

It is important that at themth time that we come to Step 2, and need to use
the random numbersU−Nm+1,U−Nm+2, . . . ,U−1,U0, that we actuallyreuse
those random numbersU−Nm−1+1,U−Nm−1+2, . . . ,U−1,U0 that we have used
before. This is necessary for the algorithm to work correctly (i.e., to produce
an unbiased sample fromπ ; see Example 10.2 below), but also somewhat
cumbersome, since it means that we must store a (perhaps very long) sequence
of random numbers, for possible further use.36

In Figure 8, we considera simple example with(N1, N2, . . .) =
(1,2,4,8, . . .) and state spaceS = {s1, s2, s3}. SinceN1 = 1, we start by
running the chain from time−1 to time 0. Suppose (as in the top part of
Figure 8) that it turns out that


φ(s1,U0) = s1
φ(s2,U0) = s2
φ(s3,U0) = s1 .

Hence the state at time 0 can take two different values (s1 or s2) depending on
the state at time−1, and we therefore try again with starting time−N2 = −2.
35 See Problem 10.1.
36 An ingenious way to circumvent this problem of having to store a long sequence of random
numbers will be discussed in Chapter 12.
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Fig. 8. A run of the Propp–Wilson algorithm withN1 = 1, N2 = 2, N3 = 4, and state
spaceS= {s1, s2, s3}. Transitions that are carried out in the running of the algorithm
are indicated with solid lines; others are dashed.

We then get 


φ(φ(s1,U−1),U0) = φ(s2,U0) = s2
φ(φ(s2,U−1),U0) = φ(s3,U0) = s1
φ(φ(s3,U−1),U0) = φ(s2,U0) = s2
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which again produces two different values at time 0. We are therefore again
forced to start the chains from an earlier starting time−N3 = −4. This yields


φ(φ(φ(φ(s1,U−3),U−2),U−1),U0) = · · · = s2
φ(φ(φ(φ(s2,U−3),U−2),U−1),U0) = · · · = s2
φ(φ(φ(φ(s3,U−3),U−2),U−1),U0) = · · · = s2 .

This time, we get to states2 at time 0, regardless of the starting value at time
−4. The algorithm therefore stops with output equal tos2. Note that if we were
to continue and run the chains starting at times−8, −16 and so on, then we
would keep getting the same output (states2) forever. Hence, the output can
be thought of as the value at time 0 of a chain that has been running since time
−∞ (whatever that means!), and which therefore has reached equilibrium.
This is the intuition for why the Propp–Wilson algorithm works; this intuition
will be turned into mathematical rigor in the proof of Theorem 10.1 below.
Note that the Propp–Wilson algorithm contains a potentially unbounded

loop, and that we therefore don’t have any general guarantee that the algorithm
will ever terminate. In fact, it may fail to terminate if the update functionφ

is chosen badly; see Problem 10.2. On the other hand, it is often possible to
show that the algorithm terminates with probability 1.37 In that case, it outputs
an unbiased sample from the desired distributionπ , as stated in the following
theorem.

Theorem 10.1Let P be the transition matrix of an irreducible and aperiodic
Markov chain with state space S= {s1, . . . , sk} and stationary distribution
π = (π1, . . . , πk). Let φ be a valid update function for P, and consider
the Propp–Wilson algorithm as above with(N1, N2, . . .) = (1,2,4,8, . . .).
Suppose that the algorithm terminates with probability1, and write Y for its
output. Then, for any i∈ {1, . . . , k}, we have

P(Y = si ) = πi . (78)

Proof Fix an arbitrary statesi ∈ S. In order to prove (78), it is enough to show
that for anyε > 0, we have

|P(Y = si ) − πi | ≤ ε . (79)

So fix an arbitraryε > 0. By the assumption that the algorithm terminates with

37 To show this, it helps to know that there is a so-called0-1 law for the termination of the
Propp–Wilson algorithm, meaning that the probability that it terminates must be either 0 or
1. Hence, it is enough to show thatP(algorithm terminates) > 0 in order to show that
P(algorithm terminates) = 1.
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probability 1, we can make sure that

P(the algorithm does not need to try starting times earlier than− NM ) (80)

≥ 1− ε ,

by pickingM sufficiently large. Fix such anM , and imagine running a Markov
chain from time−NM up to time 0, with the same update functionφ and
the same random numbersU−NM+1, . . . ,U0 as in the algorithm, butwith the
initial state at time−NM chosen according to the stationary distributionπ .
Write Ỹ for the state at time 0 of this imaginary chain. Sinceπ is stationary,
we have thatỸ has distributionπ . Furthermore,Ỹ = Y if the event in (80)
happens, so that

P(Y �= Ỹ) ≤ ε .

We therefore get

P(Y = si ) − πi = P(Y = si ) − P(Ỹ = si )

≤ P(Y = si , Ỹ �= si )

≤ P(Y �= Ỹ) ≤ ε (81)

and similarly

πi − P(Y = si ) = P(Ỹ = si ) − P(Y = si )

≤ P(Ỹ = si ,Y �= si )

≤ P(Y �= Ỹ) ≤ ε . (82)

By combining (81) and (82), we obtain (79), as desired.

At this stage, a very natural objection regarding the usefulness of the Propp–
Wilson algorithm is the following: Suppose that the state spaceS is very
large,38 as, e.g., in the hard-core model example in Chapter 7. How on earth
can we then run the chains from all possible startingvalues? This will simply
take too much computer time to be doable in practice.
The answer is that various ingenious techniques have been developed for

representing the chains in such a way that not all of the chains have to be
simulated explicitly in order to keep track of their values. Amongst the most
important such techniques is a kind of “sandwiching” idea which works for
Markov chains that obey certain monotonicity properties; this will be the topic
of the next chapter.

38 Otherwise there is no need for a Propp–Wilson algorithm, because if the state spaceS is small,
then the very simple simulation method in (42) can be used.
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0.5

0.5

1

Fig. 9. Transition graph for the Markov chain used as counterexample to the modified
algorithms in Examples 10.1 and 10.2.

Let us close the present chapter by discussing a couple of very tempting (but
unfortunately incorrect) attempts at simplifying the Propp–Wilson algorithm.
The fact that these close variants do not work might possibly explain why the
Propp–Wilsonalgorithm was not discovered much earlier.

Example 10.1: “Coupling to the future”. One of the most common reactions
among bright students upon having understood the Propp–Wilson algorithm is the
following.

OK, that’s nice. But why bother with all these starting times further and
further into the past? Why not simply start chains in all possible states at
time 0, and then run them forwards in time until the first timeN at which
they coalesce, and then output their common value?

This is indeed extremely tempting, but as it turns out, it gives biased samples in
general. To see this, considerthe following simple example. Let(X0, X1, . . .) be
a Markov chain with state spaceS= {s1, s2} and transition matrix

P =
[
0.5 0.5
1 0

]
.

See the transition graph in Figure 9. Clearly, the chain is reversible with stationary
distribution

π = (π1, π2) =
(
2

3
,
1

3

)
. (83)

Suppose that we run two copies of this chain starting at time 0, one in states1 and
the other in states2. They will coalesce (take the same value) for the first time
at some random timeN. Consider the situation at timeN − 1. By the definition
of N, they cannot be in the same state at timeN − 1. Hence one of the chains
is in states2 at timeN − 1. But the transition matrix tells us that this chain will
with probability 1 be in states1 at the next instant, which is timeN. Hence the
chains are with probability 1 in states1 at the first time of coalescence, so that this
modified Propp–Wilson algorithm outputs states1 with probability 1. This is not
in agreement with the stationary distribution in (83), and hence the algorithm is
incorrect.
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Example 10.2Here’s another common suggestion for simplification of the Propp–
Wilson algorithm:

The need to reuse the random variablesU−Nm+1,U−Nm+2, . . . ,U0 when
restarting the chains at time−Nm+1 is really annoying. Why don’t we
simply generate some new random numbers and use them instead?

As an example to show that this modification, like the one in Example 10.1, gives
biased samples, we use again the Markov chain in Figure 9. Let us suppose
that we take the Propp–Wilson algorithm for this chain, with(N1, N2, . . .) =
(1,2,4,8, . . .) and update functionφ given by (21), but modify it according to
the suggested use of fresh new random numbers at each round. LetY denote the
output of this modified algorithm, and define the random variableM as the largest
m for which the algorithm decides to simulate chains starting at time−Nm. A
direct calculation gives

P(Y = s1) =
∞∑
m=1

P(M = m,Y = s1)

≥ P(M = 1,Y = s1) + P(M = 2,Y = s1)

= P(M = 1)P(Y = s1 |M = 1) + P(M = 2)P(Y = s1 |M = 2)

= 1

2
· 1+ 3

8
· 2
3

(84)

= 3

4
>
2

3

(of course, some details are omitted in line (84) of the calculation; see Prob-
lem 10.3). Hence, the distribution of the outputY does not agree with the distri-
butionπ given by (83). The proposed modified algorithm is therefore incorrect.

Problems
10.1 (5) For a given Propp–Wilson algorithm, define the integer-valued random

variableN∗ as

N∗ = min{n : the chains starting at time−n coalesce by time 0} .

If we now choose starting times(N1, N2, . . .) = (1,2,3,4, . . .), then the total
number of time units that we need to run the Markov chains is

1+ 2+ 3+ · · · + N∗ = N∗(N∗ + 1)

2
,

which grows like the square ofN∗. Show that if we instead use(N1, N2, . . .) =
(1,2,4,8, . . .), then the total number of iterations executed is bounded by 4N∗,
so that in particular it grows only linearly inN∗, and therefore is much more
efficient.

10.2 (8) The choice of update function matters.Recall from Problem 3.2 that for a
given Markov chain, there may be more than one possible choice of valid update
function. For ordinary MCMC simulation, this choice is more or less incon-
sequential, but for the Propp–Wilson algorithm, it is often extremely important.
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Fig. 10. Transition graph for the Markov chain considered inProblem 10.2.

Consider for instance the Markov chain39with state spaceS= {s1, s2}, transition
matrix

P =
[
0.5 0.5
0.5 0.5

]
,

and transition graph as in Figure 10. Suppose that we run a Propp–Wilson
algorithm for this Markov chain, with(N1, N2, . . .) = (1,2,4,8, . . .).

(a) One possible choice of valid update function is to set

φ(si , x) =
{
s1 for x ∈ [0,0.5)
s2 for x ∈ [0.5,1]

for i = 1,2. Show that with this choice ofφ, the algorithm terminates (with
probability 1) immediately after having run the chains from time−N1 = −1
to time 0.

(b) Another possible choice of valid update function is to set

φ(s1, x) =
{
s1 for x ∈ [0,0.5)
s2 for x ∈ [0.5,1]

and

φ(s2, x) =
{
s2 for x ∈ [0,0.5)
s1 for x ∈ [0.5,1] .

Show that with this choice ofφ, the algorithmneverterminates.

10.3 (6) Verify that the calculation in equation (84) of Example 10.2 is correct.

39 This particular Markov chain is even more trivial than most of the other examples that we have
considered, because it produces an i.i.d. sequence of 0’s and 1’s. But that is beside the point of
this problem.
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Sandwiching

For the Propp–Wilson algorithm to be of any use in practice, we need to make
it work also in cases where the state spaceSof the Markov chain is very large.
If Scontainsk elements, then the Propp–Wilson algorithm involves runningk
different Markov chains in parallel, which is not doablein practice whenk is
very large. We therefore need to find some way to represent the Markov chains
(or to use some other trick) that allows us to just keep track of a smaller set of
chains.
In this chapter, we will take a look atsandwiching, which is the most

famous (and possibly the most important) such idea for making the Propp–
Wilson algorithm work on large state spaces. The sandwiching idea applies to
Markov chains obeying certain monotonicity properties with respect to some
ordering of the state space; several important examples fit into this context,
but it is also important to keep in mind that there are many Markov chains for
which sandwiching doesnotwork.
To explain the idea, let us first consider a very simple case. Fixk, let the

state space beS= {1, . . . , k}, and let the transition matrix be given by

P11 = P12 = 1

2
,

Pkk = Pk,k−1 = 1

2
,

and, fori = 2, . . . , k− 1,

Pi,i−1 = Pi,i+1 = 1

2
.

All the other entries of the transition matrix are 0. In words, what the Markov
chain does is that at each integer time it takes one step up or one step down the
“ladder” {1, . . . , k}, each with probability12; if the chain is already on top of

84
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the ladder (statek) and tries to take a step up, then it just stays where it is, and
similarly at the bottom of the ladder. Let us call this Markov chain theladder
walk on k vertices. By arguing as in Example 6.2, it is not hard to show that
this Markov chain has stationary distributionπ given by

πi = 1

k
for i = 1, . . . , k .

To simulate this uniform distribution is of course easy to do directly, but for
the purpose of illustrating the sandwiching idea, we will insist on obtaining it
using the Propp–Wilson algorithm for the ladder walk.
We obtain a valid update function for the ladderwalk on k vertices by

applying (21), which yields

φ(1, x) =
{
1 for x ∈ [0, 12)
2 for x ∈ [ 12,1] ,

(85)

φ(k, x) =
{
k− 1 for x ∈ [0, 12)
k for x ∈ [ 12,1] ,

(86)

and, fori = 2, . . . , k− 1,

φ(i, x) =
{
i − 1 for x ∈ [0, 12)
i + 1 for x ∈ [ 12,1] .

(87)

This update function can informally be described as follows: ifx < 1
2, then try

to take a step down on the ladder, while ifx ≥ 1
2, then try to take a step up.

Consider now the standard Propp–Wilson algorithm (as introduced in the
previous chapter) for this Markov chain, with update functionφ as in (85)–
(87), and negative starting times(N1, N2, . . .) = (1,2,4,8, . . .). A typical
run of the algorithm for the ladder walk withk = 5 is shown in Figure 11.
Note in Figure 11 that no two transitions “cross” each other, i.e., that a

Markov chain starting in a higher state never dips below a chain starting at
the same time in a lower state. This is because the update function defined in
(85)–(87) preserves ordering between states, in the sense that for allx ∈ [0,1]
and alli, j ∈ {1, . . . , k} such thati ≤ j , we have

φ(i, x) ≤ φ( j, x) . (88)

For a proof of this fact, see Problem 11.1.
It follows that any chain starting in some statei ∈ {2, . . . , k − 1} always

remains between the chain starting in state 1 and the chain starting in state
k (this explains the term sandwiching). Hence, once the top and the bottom
chains meet, all the chains starting in intermediate values have to join them as
well; see, e.g., the realizations starting from time−8 in Figure 11. In order
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Fig. 11. A run of the Propp–Wilson algorithm for the ladder walk withk = 5. This
particular run resulted in coalescence from starting time−N4 = −8. Only those
transitions that are actually carried out in the algorithm are drawn, while the others
(corresponding to the dashed lines in Figure 8) are omitted. The chains starting from
the top (i = 5) and bottom (i = 1) states are drawn in thick lines.
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to check whether coalescence between all chains has taken place, we therefore
only need to check whether the top and the bottom chains have met. But this in
turn means that we do not even need to bother with running all the intermediate
chains – running the top and bottom ones is enough! For the casek = 5
illustrated in Figure 11, this is perhaps not such a big deal, but for, say,k = 103

or k = 106, it is of course a substantial simplification to run just two chains
rather than allk.
The next example to which we shall apply the sandwiching technique is the

famousIsing model.

Example 11.1: The Ising model.LetG = (V, E) be a graph. The Ising model is
a way of picking a random element of{−1,1}V , i.e., of randomly assigning−1’s
and+1’s to the vertices ofG. The classical physical interpretation of the model
is to think of the vertices as atoms in a ferromagnetic material, and of−1’s and
+1’s as two possible spin orientations of the atoms. Two quantities that determine
the probability distributions have names taken from this physical interpretation:
theinverse temperatureβ ≥ 0, which is a fixed positive parameter of the model,
and theenergyH(ξ) of a spin configurationξ ∈ {−1,1}V defined as

H(ξ) = −
∑

〈x,y〉∈E
ξ(x)ξ(y) . (89)

Each edge adds 1 to the energy if its endpoints have opposite spins, and subtracts
1 otherwise. Hence, low energy of a configuration corresponds to a large amount
of agreement between neighboring vertices. The Ising model onG at inverse
temperatureβ means that we pick a random spin configurationX ∈ {−1,1}V
according to the probability measureπG,β which to eachξ ∈ {−1,1}V assigns
probability40

πG,β (ξ) = 1

ZG,β
exp(−βH(ξ)) = 1

ZG,β
exp


β

∑
〈x,y〉∈E

ξ(x)ξ(y)


 (90)

whereZG,β = ∑
η∈{−1,1}V exp(−βH(η)) is a normalizing constant, making

the probabilities of allξ ∈ {−1,1}V sum to 1. In the caseβ = 0 (infinite
temperature), every spin configurationξ ∈ {−1,1}V has the same probability, so
that each vertex independently takes the value−1 or+1 with probability 12 each.
If we takeβ > 0, the model favors configurations with low energy, i.e., those
where most neighboring pairs of vertices take the same spin value. This effect
becomes stronger the largerβ is, and in the limit asβ → ∞ (zero temperature),
the probability mass is divided equally between the “all plus” configuration and
the “all minus” configuration. See Figure 12 for an example of howβ influences
the behavior of the model on a square lattice of size 15× 15.

40 The minus signs in (89) and in the expressione−βH(ξ) in (90) cancel each other, so it seems
that it would be mathematically simpler to define energy differently by removing both minus
signs. Physically, however, the present definition makesmore sense, since nature tends to prefer
states with low energy to ones with high energy.
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From a physics point of view, the main reason why the Ising model is inter-
esting is that it exhibits certainphase transition phenomena on various graph
structures. This means that the model’s behavior depends qualitatively on whether
the parameterβ is above or below a certain threshold value. For instance, consider
the case of the square lattice of sizem×m. It turns out that ifβ is less than the
so-called Onsager critical value41 βc = 1

2 log(1+ √
2) ≈ 0.441, then the depen-

dencies between spins are sufficiently weak for a Law of Large Numbers42-type
result to hold: the proportion of+1 spins will tend to12 asm→ ∞. On the other
hand, whenβ > βc, the limiting behavior asm gets large is that one of the spins
takes over and forms a vast majority. Some hints about this behavior can perhaps
be read off from Figure 12. The physical interpretation of this phase transition
phenomenon is that the ferromagnetic material is spontaneously magnetized at
low but not at high temperatures.

We shall now go on to see how the Propp–Wilson algorithm combined
with sandwiching applies to simulation of the Ising model. Thisparticular
example is worth studying for at least two reasons. Firstly, the Ising model has
important applications (not only in physics but also in various other sciences
as well as in image analysis and spatial statistics). Secondly, it is of some
historical interest: it was to a large extent due to the impressive achievement
of generating an exact sample from the Ising model at the critical valueβc on a
square lattice of size 2100× 2100 that the work of Propp & Wilson [PW] was
so quickly recognized as seminal, and taken up by a large community of other
researchers.
Before reading on, the reader is well-advised to try to obtain some additional

understanding of the Ising model by solving Problem 11.3.

Example 11.2: Simulation algorithms for the Ising model.As a first step to-
wards obtaining a Propp–Wilson algorithm for the Ising model, we first construct
a Gibbs sampler for the model, which will then be used as a building block in the
Propp–Wilson algorithm.

Consider the Ising model at inverse temperatureβ on a graphG = (V, E)

with k vertices. The Gibbs sampler for this model is a{−1,1}V -valued Markov
chain(X0, X1, . . .) with evolution as follows (we will simply follow the Gibbs
sampler recipe from Chapter 7). GivenXn, we obtainXn+1 by picking a vertex
x ∈ V at random,and pickingXn+1(x) according to the conditional distribution
(under the probability measureπG,β ) given theXn-spins at all vertices exceptx,
and leaving the spins at the latter setV \ {x} of vertices unchanged. The updating
of the chosen vertexv may be done using a random numberUn+1 (as usual,

41 Similar thresholds are known to exist for cubic and other lattices in 3 dimensions (and also in
higher dimensions), but the exact values are not known.

42 Theorem 1.2.
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Fig. 12. Simulations of the Ising model on a 15× 15 square lattice (vertical and
horizontal nearest neighbors share edges), at parameter valuesβ = 0 (upper left),
β = 0.15 (upper right),β = 0.3 (lower left) andβ = 0.5 (lower right). Black vertices
represent+1’s, and white vertices represent−1’s. In the caseβ = 0, the spins are
i.i.d. Takingβ > 0 means favoring agreement between neighbors, leading to clumping
of like spins. In the caseβ = 0.15, the clumping is just barely noticable compared to
the i.i.d. case, while alreadyβ = 0.3 appears to disrupt the balance between+1’s and
−1’s. This unbalance is even more marked whenβ is raised to 0.5. The fact that the
fourth simulation (β = 0.5) resulted in a majority of−1’s (rather than+1’s) is just a
coincidence; the model is symmetric with respect to interchange of−1’s and+1’s, so
we were equally likely to get a similar majority of+1’s.

uniformly distributed on [0,1]), and setting

Xn+1(x) =
{

+1 if Un+1 <
exp(2β(k+(x,ξ)−k−(x,ξ)))
exp(2β(k+(x,ξ)−k−(x,ξ)))+1

−1 otherwise,
(91)

where (as in Problem 11.3)k+(x, Xn) denotes the number of neighbors ofx
having Xn-spin+1, andk−(x, Xn) similarly denotes the number of such ver-
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tices havingXn-spin−1. That (91) gives the desired conditional distribution of
Xn+1(x) follows from formula (95) in Problem 11.3 (b).
Let us now construct a Propp–Wilson algorithm based on this Gibbs sam-

pler. In the original version of the algorithm (without sandwiching), we have
2k Markov chains to run in parallel: one from each possible spin configuration
ξ ∈ {−1,1}V . In running these chains, it seems most reasonable to pick (at
each timen) the same vertexx to update in all the Markov chains, and also
to use the same random numberUn+1 in all of them when updating the spin
at x according to (91). To fully specify the algorithm, the only thing that
remains to decide is the sequence of starting times, and as usual we may take
(N1, N2, . . .) = (1,2,4,8, . . .).

How can we apply the idea of sandwiching to simplify this algorithm? First
of all, sandwiching requires that we have some ordering of the state spaceS =
{−1,1}V . To this end, we shall use the same ordering� as in Problem 11.3
(c), meaning that for two configurationsξ, η ∈ {−1,1}V , we write ξ � η if
ξ(x) ≤ η(x) for all x ∈ V . (Note that this ordering, unlike the one we used for the
ladder walk, is not a so-calledtotal ordering of the state space, because there are
(many) choices of configurationsξ andη that are not ordered, i.e., we have neither
ξ � η nor η � ξ .) In this ordering, we have onemaximal spin configuration
ξmaxwith the property thatξ � ξmax for all ξ ∈ {−1,1}V , obtained by taking
ξmax(x) = +1 for all x ∈ V . Similarly, the configurationξmin ∈ {−1,1}V
obtained by settingξmin(x) = −1 for all x ∈ V is the uniqueminimal spin
configuration, satisfyingξmin � ξ for all ξ ∈ {−1,1}V .
Consider now two of the 2k different Markov chains run in parallel in the

Propp–Wilson algorithm, starting at time−Nj : let us denote the two chains by
(X−Nj , X−Nj+1, . . . , X0) and(X′

−Nj , X
′
−Nj+1, . . .). Suppose that the starting

configurationsX−Nj andX′
−Nj satisfyX−Nj (x) ≤ X′

−Nj (x) for all x ∈ V , or

in other wordsX−Nj � X′
−Nj . We claim that

X−Nj+1(x) ≤ X′
−Nj+1(x) (92)

for all x ∈ V , so thatX−Nj+1 � X′
−Nj+1. For anyx other than the one chosen

to be updated, this is obvious sinceX−Nj+1(x) = X−Nj (x) andX′
−Nj+1(x) =

X′
−Nj (x). Whenx is the vertex chosen to be updated, (92) follows from (91) in

combination with equation (96) in Problem 11.3 (c) (check this!). So we have
just shown thatX−Nj � X′

−Nj implies X−Nj+1 � X′
−Nj+1. By the same

argument,X−Nj+1 � X′
−Nj+1 implies X−Nj+2 � X′

−Nj+2, and by iterating
this argument, we have that

if X−Nj � X′
−Nj then X0 � X′

0 . (93)

Now write (Xtop−Nj , X
top
−Nj+1, . . . , X

top
0 ) and (Xbottom−Nj , Xbottom−Nj+1, . . . , X

bottom
0 )

for the two chains starting in the extreme configurationsXtop−Nj = ξmax and
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Xbottom−Nj = ξmin. As a special case of (93) we get

Xbottom0 � X0 � Xtop0

where (X−Nj , X−Nj+1, . . . , X0) is any of the other 2k − 2 Markov chains.
But now we can argue in the same way as for the sandwiching trick for the
ladder walk: If the top chain(Xtop−Nj , X

top
−Nj+1, . . . , X

top
0 ) and the bottom chain

(Xbottom−Nj , Xbottom−Nj+1, . . . , X
bottom
0 ) have coalesced by time 0, then all of the other

2k−2 chains must have coalesced with them as well. So in order to check coales-
cence between all chains, it suffices to check it for the top and the bottom chain,
and therefore the top and the bottom chains are the only ones we need to run!
This reduces the task of running 2k different chains in parallel to one of running
just two chains. For large or even just moderately-sized graphs (such as those
having, say,k = 100 vertices), this transforms the Propp–Wilson algorithm from
being computationally completely hopeless, to something that actually works in
practice.43

We shall not make any attempt here to determine in general to which Markov
chainsthe sandwiching idea is applicable, and to which it is not. This has
already been studied quite extensively in the literature; see Chapter 14 for some
references. Problem 11.2 concerns this issue in the special case of birth-and-
death processes.

Problems
11.1 (5) Show that the update functionφ(i, x) for the ladder walk, defined in (85)–

(87), is increasing ini . In other words, show that (88) holds for allx ∈ [0,1]
and alli, j ∈ {1, . . . , k} such thati ≤ j . Hint: consider the casesx ∈ [0, 12) and
x ∈ [ 12,1] separately.

11.2 (9) Note that the ladder walk is a special case of the birth-and-death processes
defined in Example 6.2.

43 The question of whether the algorithm works in practice is actually a little more complicated
than this, because we need the top and the bottom chains to coalsesce “within reasonable time”,
and whether or not this happens depends onG and on the parameterβ. Take for instance the
case of a square lattice of sizem × m (so thatk = m2). It turns out that forβ less than
the Onsager critical valueβc ≈ 0.441, the time to coalescence grows like a (low-degree)
polynomial inm, whereas forβ > βc it grows exponentially inm. Therefore, for large square
lattices, the algorithm runs reasonably quickly whenβ < βc, but takes an astronomical amount
of time (and is therefore useless) whenβ > βc. (This dichotomy is intimately related to the
phase transition behavior discussed in Example 11.1.) As demonstrated by Propp & Wilson
[PW], it is nevertheless possible to obtain exact samples from the Ising model on such graphs
at largeβ by another ingenious trick, which involves applying the Propp–Wilson algorithm
not directly to the Ising model, but to a certain graphical representation known as the Fortuin–
Kasteleyn random-cluster model, and then translating the result to the Ising model.
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(a) Can you find some useful sufficient condition on the transition probabilities
of a birth-and-death process, which ensures that the same sandwiching idea
as for the ladder walk will work?

(b) On the other hand, give an example of a birth-and-death process for which
the sandwiching idea doesnotwork.

11.3 (8) Consider the Ising model at inverse temperatureβ on a graphG = (V, E).
Let x be a particular vertex inV , and letξ ∈ {−1,1}V\{x} be an arbitrary
assignment of−1’s and+1’s to the vertices ofG except for x. Letξ+ ∈ {−1,1}V
be the spin configuration forG which agrees withξ onV \ {x} and which takes
the value+1 atx. Similarly, defineξ− ∈ {−1,1}V to be the spin configuration
for G which agrees withξ on V \ {x} and which takes the value−1 at x. Also
definek+(x, ξ) to be the number of neighbors ofx that take the value+1 in ξ ,
and analogously letk−(x, ξ) be the number of neighborsof x whose value inξ is
−1.
(a) Show that

πG,β (ξ+)

πG,β (ξ−)
= exp(2β(k+(x, ξ) − k−(x, ξ))) . (94)

Hint: use the definition (90), and demonstrate that almost everything cancels
in the left-handside of (94).

(b) Suppose that the random spin configurationX ∈ {−1,1}V is chosen accord-
ing toπG,β . Imagine that we take a look at the spin configurationX(V \ {x})
but hide the spinX(x), and discover thatX(V \ {x}) = ξ . Now we are
interested in the conditional distribution of the spin atx. Use (94) to show
that

πG,β (X(x) = +1 | X(V \ {x}) = ξ) = exp(2β(k+(x, ξ) − k−(x, ξ)))

exp(2β(k+(x, ξ) − k−(x, ξ))) + 1
(95)

holds,44 for anyx ∈ V and anyξ ∈ {−1,1}V\{x}.
(c) For two configurationsξ, η ∈ {−1,1}V\{x}, we writeξ � η if ξ(y) ≤ η(y)

for all y ∈ V \ {x}. Use (95) to show that ifξ � η, then

πG,β (X(x) = +1 | X(V \{x}) = ξ) ≤ πG,β (X(x) = +1 | X(V \{x}) = η) .

(96)

11.4 (8*) Implement and run the Propp–Wilson algorithm for the Ising model as
described in Example 11.2, on a square lattice of sizem×m for various values of
m and the inverse temperature parameterβ. Note how the running time varies45

withm andβ.

44 One particular consequence of (95) is that the conditional distribution ofX(x) givenX(V \{x})
depends only on the spins attained at the neighbors ofx. This is somewhat analogous to the
definition of a Markov chain, and is called theMarkov random field property of the Ising
model.

45 In view of the discussion in Footnote 43, do not be surprised if the algorithm seems not to
terminate at all form large andβ above the Onsager critical valueβc ≈ 0.441.
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Propp–Wilson with
read-once randomness

A drawback of the Propp–Wilson algorithm introduced in the previous two
chapters is the need to reuse old random numbers: Recall that Markov chains
are started at times−N1, −N2, . . . (whereN1 < N2 < · · ·) and so on untilj
is large enough so that starting from time−Nj gives coalescence at time 0. A
crucial ingredient in the algorithm is that when the Markov chains start at time
−Ni , the same random numbers as in previous runs should be used from time
−Ni−1 and onwards. The typical implementation of the algorithm is therefore
to store all new random numbers, and to read them again when needed in later
runs. This may of course be costly in terms of computer memory, and the
worst-case scenario is that one suddenly is forced to abort a simulation when
the computer has run out of memory.
Various approaches to coping with this problem have been tried. For in-

stance, some practitioners of the algorithm have circumvented the need for
storage of random numbers by certain manipulations of (the seeds of) the
random number generator. Such manipulations may, however, lead to all kinds
of unexpected and unpleasant problems, and we therefore advise the reader to
avoid them.
There have also been various attempts to modify the Propp–Wilson algo-

rithm in such a way that each random number only needs to be used once.
For instance, one could modify the algorithm by using new random variables
each time that old ones are supposed to be used. Unfortunately, as we saw
in Example 10.2, this approach leads to the output not having the desired
distribution, and is therefore useless. Another common suggestion is to run
the Markov chains notfrom the pastuntil time 0, but from time 0into the
futureuntil coalescence takes place. This, however, also leads in general to an
output with the wrong distribution, as seen in Example 10.1.
The first satisfactory modification of the Propp–Wilson algorithm avoid-

ing storage and reuse of random numbers was recently obtained by David

93
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Wilson himself, in [W1]. His new scheme, which we have decided to call
Wilson’s modification of the Propp–Wilson algorithm, is a kind of coupling
into the futureprocedure, but unlike in Example 10.1, we don’t stop as soon
as coalescence has been reached, but continue for a certain (random) extra
amount of time. This extra amount of time is obtained in a somewhat involved
manner. The remainder of this chapter will be devoted to an attempt at a precise
description of Wilson’s modification, together with an explanation of why it
produces a correct (unbiased) sample from the stationary distribution of the
Markov chain.
Although Wilson’s modification runsinto the future, it is easier to under-

stand it if we first consider some variations of thefrom the pastprocedure in
Chapter 10, and this is whatwe will do.
To begin with, note that although in Chapter 10 we focused mainly on

starting times of the Markov chains given by(N1, N2, . . .) = (1,2,4,8, . . .),
any strictly increasing sequence of positive integers will work just as well (this
is clear from the proof of Theorem 10.1).
Next, let N1 < N2 < · · · be a random strictly increasing sequence

of positive integers, and take it to be independent of the random variables
U0,U−1,U−2, . . . used in the Propp–Wilson algorithm.46 Then the Propp–
Wilson algorithm with starting times−N1, −N2, . . . still produces unbiased
samples from the target distribution. This is most easily seen by conditioning
on the outcome of the random variablesN1, N2, . . . , and then using the proof
of Theorem 10.1 to see that, given(N1, N2, . . .), the conditional distribution
of the output still has the right distribution, and since this holds for any
outcome of(N1, N2, . . .), the algorithm will produce an output with the correct
distribution.
Furthermore, we note that there is no harm (except for the added running

time) in continuing to run the chains from a few more earlier starting times
−Ni after coalescence at time 0 has been observed. This is because the chains
will keep producing the same value at time 0.
Our next step will be to specify more precisely how to choose the random

sequence(N1, N2, . . .). Let

N1 = N∗
1

N2 = N∗
1 + N∗

2

N3 = N∗
1 + N∗

2 + N∗
3

...
...

46 It is in fact even possible to dispense with this independence requirement, but we do not need
this.
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where(N∗
1 , N

∗
2 , . . .) is an i.i.d. sequence of positive integer-valued random

variables. We take the distribution of theN∗
i ’s to be the same as the distribu-

tion of the timeN needed to get coalescence in the couplinginto the future
algorithm of Example 10.1. The easiest way to generate theN∗

i -variables is to
run chains as in Example 10.1 (independently for eachi ), and to takeN∗

i to be
the time taken to coalescence.
Now comes a key observation: Weclaim that

the probability that the Propp–Wilson algorithm starting from the first
starting time−N1 = −N∗

1 results in coalescence by time 0 (so that no
earlier starting times are needed) is at least1

2.

To see this, letM1 denote the number of steps needed to get coalescence in
the Propp–Wilson algorithm starting at time−N1 (and running past time 0 if
necessary). ThenM1 andN∗

1 clearly have the same distribution, and since they
are also independent we get (by symmetry) that

P(M1 ≤ N∗
1 ) = P(M1 ≥ N∗

1 ) (97)

Note also that

P(M1 ≤ N∗
1 ) + P(M1 ≥ N∗

1 ) = 1− P(M1 > N∗
1 ) + 1− P(M1 < N∗

1 )

= 2− (P(M1 > N∗
1 ) + P(M1 < N∗

1 ))

= 2− P(M1 �= N∗
1 )

≥ 2− 1 = 1 . (98)

Combining (97) and (98), we get thatP(M1 ≤ N∗
1 ) ≥ 1

2, proving the above
claim.
By similar reasoning, if we fail to get coalescence of the Propp–Wilson

algorithm startingfrom time−N1, then we have conditional probability at
least 12 for the event that the Propp–Wilson chains starting at time−N2 =
−(N∗

1 + N∗
2 ) coalesce no later than time−N1. More generally, we have

that given that we come as far as running the Propp–Wilson chains from
time −Nj = −(N∗

1 + · · · + N∗
j ), we have conditional probability at least

1
2 of getting coalescence before time−Nj−1. We call the j th restart of the
Propp–Wilson algorithmsuccessfulif it results in a coalescence no later than
time−Nj−1. Then each restart has (conditional on the previously carried out
restarts) probability at least12 of being successful.
Let Mj denote the amount of time needed to get coalescence startingfrom

time−Nj in the Propp–Wilson algorithm. Note that the only thing that makes
the probability of a successful restart notequalto 12 is the possibility of getting
a tie,Mj = N∗

j ; this is clear from the calculation leading to (98).
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Now, to simplify things, we prefer to work with a probability which is
exactly 12, rather than some unknown probability above

1
2. To this end, we

toss a fair coin (or, rather, simulate a fair coin toss) whenever a tieMj = N∗
j

occurs, and declare thej th result to be∗-successfulif either
Mj < N∗

j

or

Mj = N∗
j and the corresponding coin toss comes up heads

(so that in other words the coin toss acts as a tie-breaker). Then, clearly, each
restart has probability exactly12 of being∗-successful.
Our preliminary (and correct, but admittedly somewhat strange) vari-

ant of the Propp–Wilson algorithm is now to generate the starting times
−N1, −N2, . . . as above, and to keep on until a restart is∗-successful.
The next step will be to translate this variant into an algorithm with read-

once randomness. For this, we need to understand the distribution of the
number of∗-failing (defined as the opposite of∗-successful) restarts needed
before getting a∗-successful restart in the above algorithm. To do this, we pick
up one of the standard items from the probabilist’s (or gambler’s) toolbox:

Example 12.1: The geometric distribution.Fix p ∈ (0,1). An integer-valued
random variableY is said to be geometrically distributed with parameterp, if

P(Y = n) = p(1− p)n

for n = 0,1,2, . . . . Note that if we have a coin with heads-probabilityp which
we toss repeatedly (and independently) until it comes up heads, then the number
of tails we see is geometrically distributed with parameterp.

The number of∗-failing restarts is clearly seen to be a geometrically distributed
random variable with parameter12; let us denote it byY. The final (and∗-
successful) restart thus takes place at time−NY+1 (becausethere areY ∗-
failing restarts, and one∗-successful).
The key to Wilson’s modification with read-once randomness is that we will

find a way tofirst run the chains from time−NY+1 to time−NY, then from
time−NY to time−NY−1 and so on up to time 0 (without any prior attempts
with starting times that fail to give coalescence at time 0).
To see how this is done, imagine running two independent copies of the

couplinginto the futurealgorithm in Example 10.1. We run both copies for the
number of steps needed to giveboth copies coalescence; hence one of them
may continue for somemore steps after its own coalescence. Let us declare the
copy which coalesces first to be thewinner, and the other to be theloser, with
the usual fair coin toss as the tie-breaker in case they coalesce simultaneously.
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We call the procedure of running two copies of theinto the futurealgorithm in
this way atwin run .
A crucial observation now is that the evolution of the Markov chain from

time−NY+1 to time−NY has exactly the same distribution as the evolution of
the winner of a twin run as above (this probably requires a few moments47 of
thought by the reader!). So the evolution of the Markov chains in the Propp–
Wilson algorithm from time−NY+1 to time−NY (at which coalescence has
taken place) can be simulated using a twin run.
Next, we simulate a geometric (12) random variableY to determine the

number of∗-failing restarts in the Propp–Wilson algorithm.
If we are lucky enough so thatY happens to be 0, then−NY = 0 (and we

have coalescence at that time) then we are done: we have our sample from the
stationary distribution ofthe Markov chain.
If, on the other hand,Y ≥ 1, then we need to simulate the evolution of the

Markov chain from time−NY to time 0. The value ofX(−NY) has already
been established using the first twin run. To simulate the evolution from time
−NY to time−NY−1, we may do another twin run, and let the chain evolve as
in the loserof this twin run, where the loser runs from time 0 until the time at
which thewinnergets coalescence. This gives precisely the right distribution
of the evolution(X(−NY), X(−NY +1), . . . , X(−NY−1)) from time−NY to
time−NY−1; to see this requiresa few more moments48 of thought. We then
go on to simulate the chain from time−NY−1 to time−NY−2 in the same way
using another twin run, and so on up to time 0.
The value of the chain at time 0 then has exactly the same distribution as the

output of the Propp–Wilson algorithm described above. Hence it is a correct
(unbiased) sample from the stationary distribution, and we did not have to
store or reread any of the random numbers. This, dear reader, is Wilson’s
modification!

Problems
12.1 (5) Let� denote the set of all possible evolutions when running the couplinginto

the futurealgorithm in Example 10.1 (for some fixed Markov chain and update
function). Consider running two independent copiesA andB of that coupling
into the futurealgorithm, and writeXA and XB for the evolutions of the two
copies (so thatXA andXB are independent�-valued random variables). Declare
the copy which coalesces first to be the winner, and the other copy to be the loser,

47 This is standard mathematical jargon for something that may sometimes take rather longer. In
any case, Problem 12.1 is designed to help you understand this point.

48 See Footnote 47.
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with a fair coin toss as tie-breaker. WriteXwinner andXloser for the evolutions
of the winner and the loser, respectively.

(a) Show that

P(XA = ω, XB = ω′) = P(XA = ω′, XB = ω)

for anyω, ω′ ∈ �.
(b) Show that for anyω ∈ �, the events{Xwinner= ω} and{A is the winner} are

independent.
(c) Show that the distribution ofXwinner is the same as the conditional distribu-

tion of XA given the event{A is the winner}.
12.2 (3) Show that a random variableX whose distribution is geometric with param-

eterp ∈ (0,1) has expectationE[X] = 1
p − 1.

12.3 (9) Use the result in Problem 12.2 to compare the expected running times in the
original Propp–Wilson algorithm (with(N1, N2, . . .) = (1,2,4,8, . . .)), and in
Wilson’s modification. In particular, show that the expected running times are of
the same order of magnitude, in the sense that there exists a universal constantC
such that the expected running time of one of the algorithms is no more thanC
times the other’s.
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Simulated annealing

The general problem considered in this chapter is the following. We have a set
S= {s1, . . . , sk} and a functionf : S→ R. The objective is to find ansi ∈ S
which minimizes (or, sometimes, maximizes)f (si ).
When the sizek of S is small, then this problem is of course totally trivial –

just computef (si ) for i = 1, . . . , k and keep track sequentiallyof the smallest
value so far, and for whichsi it was attained. What we should have in mind is
the case wherek is huge, so that this simple method becomes computationally
too heavy to be useful in practice. Here are two examples.

Example 13.1: Optimal packing. Let G be a graph with vertex setV and edge
setE. Suppose that we want to pack objects at the vertices of this graph, in such
a way that

(i) at most one object can be placed at each vertex, and
(ii) no two objects can occupy adjacent vertices,

and that we want to squeeze in as many objects as possible under these con-
straints. If we represent objects by 1’s and empty vertices by 0’s, then, in the
terminology of Example 7.1 (the hard-core model), the problem is to find (one
of) the feasible49 configuration(s)ξ ∈ {0,1}V which maximizes the number of
1’s.50 As discussed in Example 7.1, the number of feasible configurations grows
very quickly (exponentially) in the size of the graph, so that the above method of
simply computingf (ξ) (where in this casef (ξ) is the number of 1’s inξ ) for all
ξ is practically impossible even for moderately large graphs.

Example 13.2: The travelling salesman problem.Suppose that we are given
m cities, and a symmetricm × m matrix D with positive entries representing
the distances between the cities. Imagine a salesman living in one of the cities,

49 Recall that a configurationξ ∈ {0,1}V is said to be feasible if no two adjacent vertices are
assigned value 1.

50 For the 8× 8 square grid in Figure 7, the optimal packing problem is trivial. Imagine the
vertices as the squares of a chessboard, and place 1’s at each of the 32 dark squares. This is
easily seen to be optimal. But for other graph structures it may not be so easy to find an optimal
packing.

99
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needing to visit the otherm− 1 cities and then to return home. In which order
should he visit the cities in order to minimize the total distance travelled? This is
equivalent to finding a permutationξ = (ξ1, . . . , ξm) of the set(1, . . . ,m) which
minimizes

f (ξ) =
m−1∑
i=1

Dξi ,ξi+1 + Dξm,ξ1 . (99)

Again, the simple method of computingf (ξ) for all ξ is useless unless the size
of the problem (measured in the number of citiesm) is very small, because the
number of permutationsξ ism!, which grows(even faster than) exponentiallyin
m.

A large number of methods for solving these kinds of optimization problems
have been tried. Here we shall focus on one such method:simulated anneal-
ing.
The idea of simulated annealing is the following. Suppose that we run a

Markov chain with state spaceSwhose unique stationary distribution places
most of its probability on statess ∈ Swith a small value off (s). If we run the
chain for a sufficiently long time, then we arelikely to end up in such a states.
Suppose now that we switch to running another Markov chain whose unique
stationary distribution concentrates even more of its probability on statess
that minimize f (s), so that after a while we are even more likely to be in an
f -minimizing states. Then switch to a Markov chain with an even stronger
preference for states that minimizef , and so on. It seems reasonable to hope
that if this scheme is constructed with some care, then the probability of being
in an f -minimizing states at timen tends to 1 asn → ∞.
If the first Markov chain has transition matrixP′ and is run for timeN1,

the second Markov chain has transition matrixP′′ and is run for timeN2, and
so on, then the whole algorithm can be viewed as an inhomogeneous Markov
chain (recall Definition 2.2) with transition matrices

P(n) =




P′ for n = 1, . . . , N1
P′′ for n = N1 + 1, . . . , N1 + N2,
...

...

There is a general way to choose a probability distribution onSwhich puts
most of its probability mass on states with a small value ofs, namely to take
a so-calledBoltzmann distribution , defined below. A Markov chain with
the Boltzmann distribution as its unique stationary distribution can then be
constructed using the MCMC ideas in Chapter 7.

Definition 13.1 TheBoltzmann distribution π f,T on the finite set S, with
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energy function f : S → R and temperature parameter T > 0, is the
probability distribution on S which to each element s∈ S assigns probability

π f,T (s) = 1

Z f,T
exp

(− f (s)

T

)
. (100)

Here

Z f,T =
∑
s∈S

exp

(− f (s)

T

)
(101)

is a normalizing constant ensuring that
∑

s∈Sπ f,T (s) = 1.

Note that the factor1T plays exactly the same role as the inverse temperature
parameterβ does in the Ising model (Example 11.1). We mention also that
when the goal is to maximize rather than to minimizef , it is useful to replace
the Boltzmann distribution by themodified Boltzmann distribution , in which
the exponent in (100) and (101) isf (s)T instead of− f (s)

T .
The following result tells us that the Boltzmann distribution with a small

value of the temperature parameterT has the desired property of placingmost
of its probability on elementss that minimize f (s).

Theorem 13.1Let S be a finite set and let f: S→ R be arbitrary. For T> 0,
let α(T) denote the probability that a random element Y chosen according to
the Boltzmann distributionπ f,T on S satisfies

f (Y) = min
s∈S

f (s) .

Then

lim
T→0

α(T) = 1 .

Sketch proofWe consider only the case whereS has a uniquef -minimizer;
the case of severalf -minimizers is left to Problem 13.1. Write (as usual)k for
the number of elements ofS. Let s be the uniquef -minimizer, leta = f (s)
and letb = mins′∈S\{s} f (s′). Note thata < b, so that

lim
T→0

exp

(
a− b

T

)
= 0 . (102)

We get

π f,T (s) = 1

Z f,T
exp

(−a
T

)
= exp

(−a
T

)
∑

s′∈Sexp
(− f (s′)

T

)
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= exp
(−a
T

)
exp

(−a
T

) + ∑
s′∈S\{s} exp

(− f (s′)
T

)

≥ exp
(−a
T

)
exp

(−a
T

) + (k− 1)exp
(−b
T

)
= 1

1+ (k− 1)exp
(a−b
T

) ,

which tends to 1 asT → 0, because of (102). Hence

lim
T→0

π f,T (s) = 1 ,

as desired.

The design of a simulated annealing algorithm for finding an elements ∈ S
which minimizes f (s) can now be carried out as follows. First construct an
MCMC chain for simulating the Boltzmann distributionπ f,T on S, with a
general choice ofT . Very often, this is done by constructing a Metropolis
chain as indicated in the final part of Chapter 7. Then we fix a decreasing
sequence of temperaturesT1 > T2 > T3 > · · · with Ti tending to 0 asi → ∞
(hence the termannealing), and a sequence of positive integersN1, N2, . . . .
Starting from an arbitrary initial state inS, we run the chain at temperatureT1
for N1 units of time, then at temperatureT2 for N2 units of time, and so on.
The choice of(T1, T2, . . .) and(N1, N2, . . .) is called the annealing (or cool-

ing) schedule, and is of crucial importance: How fast should the temperature
tend to 0 as timen → ∞? There exist theorems stating that if the temper-
ature approaches 0 sufficiently slowly (which, e.g., can be accomplished by
letting the sequence(N1, N2, . . .) grow sufficiently fast), then the probability
of seeing anf -minimizer at timen does tend to 1 asn → ∞.51 The meaning
of “sufficiently slowly” of course depends on the particular application. Un-
fortunately, the annealing schedules for which these theorems guarantee such
convergence are in most cases so slow that we have to wait for an astronomical
amount of time before having a temperature that is low enough that we can
be anywhere near certain of having found anf -minimizer. Therefore, most
annealing schedules in practical applications are faster than those for which

51 One such theorem was proved by Geman & Geman [GG]: If the temperatureT (n) at timen
converges to 0 slowly enough so that

T (n) ≥ k(maxs∈S f (s) −mins∈S f (s))
logn

for all sufficiently largen, then the probability of seeing anf -minimizer at timen converges to
1 asn → ∞.
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the desired convergence is rigorously known. The danger of this is that if the
cooling takes placetoo rapidly, then the Markov chain risks getting stuck in
a local minimum, rather than in a global one; see Example 13.4 below. The
choice of annealing schedule in practice is therefore a highly delicate balance:
On the one hand, we want it to be fast enough to get convergence in reasonable
time, and on the other hand, we want it to be slow enough to avoid converging
to an element which is not anf -minimizer. This often requires quite a bit of
experimentation, giving the method more the character of “engineering” than
of “mathematics”.

Example 13.3: Simulated annealing for the travelling salesman problem.
Consider the travelling salesman problem in Example 13.2. We wish to find the
permutationξ = (ξ1, . . . , ξn) of (1, . . . ,m) which minimizes the total distance
f (ξ) defined in (99). In order to get a simulated annealing algorithm for this
problem, let us construct a Metropolis chain (see Chapter 7) for the Boltzmann
distributionπ f,T at temperatureT on the set of permutations of(1, . . . ,m). To
this end, we first need to define which permutations to view as “neighbors”,
i.e., between which permutations to allow transitions in the Metropolis chain. A
sensible choice is to declare two permutationsξ andξ ′ to be neighbors if there
exist i, j ∈ {1, . . . ,m} with i < j such thatξ ′ arises by “reversing” the segment
(ξi , . . . , ξ j ), meaning that

ξ ′ = (ξ ′
1, . . . , ξ

′
m) = (ξ1, ξ2, . . . , ξi−1, ξ j , ξ j−1, . . . ,

ξi+1, ξi , ξ j+1, ξ j+2, . . . , ξm) . (103)

This corresponds to removing two edges from the tour through all the cities,
and inserting two other edges with the same four endpoints in such a way that a
different tour is obtained; see Figure 13. The transition matrix for the Metropolis
chain corresponding to this choice of neighborhood structure and the Boltzmann
distribution at temperatureT is obtained by inserting (100) into (46). We get

Pξ,ξ ′ =




2
m(m−1) min

{
exp

(
f (ξ)− f (ξ ′)

T

)
,1

}
if ξ andξ ′
are neighbors

0 if ξ �= ξ ′ are
not neighbors

1−
∑
ξ ′′

ξ ′′∼ξ

2
m(m−1) min

{
exp

(
f (ξ)− f (ξ ′′)

T

)
,1

}
if ξ = ξ ′ ,

(104)
where the sum is over all permutationsξ ′′ that are neighbors ofξ . This cor-
responds to the following transition mechanism. First picki, j ∈ {1, . . . ,m}
uniformly from the set of all choices such thati < j . Then switch from the
present permutationξ to the permutationξ ′ defined in (103) with probability
min

{
exp

(
f (ξ)− f (ξ ′)

T

)
,1

}
, and stay in permutationξ for another time unit with

the remaining probability 1− min
{
exp

(
f (ξ)− f (ξ ′)

T

)
,1

}
. This chain has the
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Fig. 13. A transition in the Metropolis chain in Example 13.3 for the
travelling salesman problem, corresponding to going from the permutation
ξ = (1,2,3,4,5,6,7,8,9,10,11,12,13,14) to the permutation ξ ′ =
(1,2,3,4,11,10,9,8,7,6,5,12,13,14).

Boltzmann distributionπ f,T as a reversible distribution, by the general Metropo-
lis chain theory discussed in Chapter 7. The chain can also be shown to be
irreducible (which is necessary in general for it to qualify as a useful MCMC
chain).

It then only remains to decide upon a suitable cooling schedule, i.e., a suitable
choice of(T1, T2, . . .) and (N1, N2, . . .) in the simulated annealing algorithm.
Unfortunately, we have no better suggestion than to do this by trial and error.

We note one very happy circumstance of the above example: When inserting
the Boltzmann distribution (100) into (46) to obtain (104), the normalizing
constantZ f,T cancelled everywhere, because all the expressions involving the
Boltzmann distribution were in fact ratios between Boltzmann probabilities.
That is very good news, because otherwise we would have had to calculate
Z f,T , which is computationally infeasible. The same thing would happen for
any Boltzmann distribution, and we therefore conclude that Metropolis chains
are in general very convenient tools for simulating Boltzmann distributions.
Next, let us have a look at a simple example to warn against too rapid cooling

schedules.

Example 13.4: The hazard of using a fast annealing schedule.Let S =
{s1, . . . , s4}, let f : S→ R be given by


f (s1) = 1
f (s2) = 2
f (s3) = 0
f (s4) = 2

(105)
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s4 s3

s2s1

Fig. 14. The graph structure chosen for the Metropolis algorithm in Example 13.4.

and suppose that we want to find the minimum off (si ) using simulated an-
nealing.52 To find a Metropolis chain for the Boltzmann distribution onS at
temperatureT , we need to impose a graph structure onS. Let’s say that we opt
for the square formation in Figure 14. By applying (100) and (46), the transition
matrix 


1− e−1/T 1

2e
−1/T 0 1

2e
−1/T

1
2 0 1

2 0
0 1

2e
−2/T 1− e−2/T 1

2e
−2/T

1
2 0 1

2 0




is obtained. Suppose now that we run the inhomogeneous Markov chain
(X0, X1, . . .) on S, corresponding to some given annealing schedule, starting
with X0 = s1. As in Footnote 51, writeT

(n) for the temperature at timen in
this annealing schedule. LetA be the event that the chain remains in states1
forever (so that in particular the chain never finds thef -minimizing states3). We
get

P(A) = P(X1 = s1, X2 = s1, . . .)

= lim
n→∞P(X1 = s1, X2 = s1, . . . , Xn = s1)

= lim
n→∞P(X1 = s1 | X0 = s1)P(X2 = s1 | X1 = s1) · · ·
×P(Xn = s1 | Xn−1 = s1)

= lim
n→∞

n∏
i=1

(
1− e−1/T (i )

)
=

∞∏
i=1

(
1− e−1/T (i )

)

which is equal to 0 if and only if
∑∞
i=1 e−1/T

(i ) = ∞. Hence, ifT (n) is sent to

0 rapidly enough so that
∑∞
i=1 e−1/T

(i )
< ∞, thenP(A) > 0, so that the chain

may get stuck in states1 forever. This happens, e.g., if we takeT
(n) = 1

n . The
simulated annealing algorithm then fails to find the true (global)f -minimizer f3.
Two factors combine to create this failure, namely

(i) the annealing schedule being too fast, and

52 Of course, it is somewhat silly to use simulated annealing on a small problem like this one,
where we can deduce that the minimum isf (s3) = 0 by immediate inspection of (105).
This example is chosen just to give the simplest possible illustration of a phenomenon that
sometimes happens in simulated annealing algorithms for larger andmore interesting problems.
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(ii) state s1 being a local f -minimizer (meaning thatf takes a smaller value
at s1 than at any of the neighbors ofs1 in the graph structure used for the
Metropolis chain) without being a global one.

Let us give one final example of an optimization problem for which simulated
annealing may be a suitable method.

Example 13.5: Graph bisection.Given a graphG = (V, E) whose vertex setV
contains 2k vertices, the graph bisection problem is to find a way of partitioning
V into two setsV1 andV2 with k elements each, such that the total number of
edges having one endpoint inV1 and the other inV2 is minimized. This problem
is relevant for the design of search engines on the Internet:V may be the set of
all web pages on which a given word was found, edges represent links from one
page to another, and the hope is thatV1 andV2 will provide a relevant split into
different subareas.53 For instance, if the search word is “football”, then we may
hope thatV1 contains mostly pages about American football, andV2 mostly pages
about soccer.

In recent years, several researchers haveabandoned the idea of an annealing
schedule, and instead preferred to run the Metropolis chain at a single fixed
temperature, which is chosen on the basis of a careful mathematical analysis
of the optimization problem at hand. For instance, Jerrum & Sorkin [JS] do
this for the graph bisection problem in Example 13.5. They show that fork
large and under reasonable assumptions on the input data, their algorithm finds,
for arbitraryε > 0, the optimal bisection in timeCk2+ε with overwhelming
probability ask → ∞, if T is taken to be of the ordern5/6+ε.

Problems
13.1 (8) Modify the proof of Theorem 13.1 in order to take care of the case where

there are several elementss ∈ Ssatisfying f (s) = mins′∈S f (s′).
13.2 (6) Describe a simulated annealing algorithm for the graph bisection problem in

Example 13.5. In particular, suggest a natural choice of neighborhood structure
in the underlying Metropolis chain.

13.3 (8*) Suppose that we want to solve the optimal packing problem in Exam-
ple 13.1 (i.e., we want to maximizef (ξ) over all feasible configurationsξ ∈
{0,1}V , where f (ξ) is the number of 1’s inξ ), and decide to try simulated
annealing. To find suitable Markov chains, we start by considering Boltzmann
distributions for the functionf (ξ). Since we are dealing with a maximization
(rather than minimization) problem, we considerthe modified Boltzmann distri-
bution with the minus sign in the exponents of (100) and (101) removed.

(a) Show that this modified Boltzmann distribution at temperatureT is the same

as the probability measureµG,λ defined in Problem 7.4, withλ = exp
(
1
T

)
.

53 In this application, it is of course also natural to relax the requirement thatV1 andV2 are of
equal size.
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(b) Implement and run a simulated annealing algorithm for some suitable in-
stances of this problem. (Note that due to (a), the MCMC algorithm con-
structed in Problem 7.4 can be used for this purpose.)



14

Further reading

Markov theory is a huge subject (much bigger than indicated by these notes),
and consequently there are many books written on it. Three books that have
influenced the present text are the ones by Brémaud [B], Grimmett & Stirzaker
[GS], and (the somewhat more advanced book by) Durrett [Du]. Another
nice introduction to the topic is the book by Norris [N]. Some of my Swedish
compatriots will perhaps prefer to consult the texts by Rydén & Lindgren [RL]
and Enger & Grandell [EG]. The reader can find plenty of additional material
(more general theory, as wellas other directions for applications) in any of
these references.
Still on the Markov theory side (Chapters 2–6) of this text, there are two

particular topics that I would warmly recommend for further study to anyone
with a taste for mathematical elegance and the power and simplicity of prob-
abilistic arguments: The first one isthe coupling method, which was used
to prove Theorems 5.2 and 8.1, and which also underlies the algorithms in
Chapters 10–12; see the books by Lindvall [L] and by Thorisson [T]. The
second topic is the relation betweenreversible Markov chains and electrical
networks, which is delightfully treated in the book by Doyle & Snell [DSn].
Häggstr̈om [H] gives a short introduction in Swedish.
Another goldmine for the ambitiousstudent is the collection of papers edited

by Snell [Sn], where many exciting topics in probability, several of which
concern Markov chains and/or randomized algorithms, are presented on a level
accessible to advanced undergraduates.
Moving on to the algorithmic side (Chapters 7–13), it is worth stressing

again that the collection of algorithms considered here in no way is represen-
tative of the entire field of randomized algorithms. A reasonable overview can
be obtained by reading, in addition to these notes, the book by Motwani &
Raghavan [MR]. See also the recent collection edited by Habib & McDiarmid
[HM] for more on randomized algorithms and other topics at the interface
between probability and computer science.

108
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The main standard reference for MCMC (Chapter 7) these days seems to
be the the book edited by Gilks, Richardson & Spiegelhalter [GRS]. Another
book which is definitely worth reading is the research monograph by Sinclair
[Si]. For the particular case of simulating the hard-core model described
in Example 7.1, see, e.g., the paper by Luby & Vigoda [LV]. The problem
discussed in Chapter 8 of proving fast convergence of Markov chains has been
studied by many authors. Some key references in this area are Diaconis & Fill
[DF], Diaconis & Strook [DSt], Sinclair [Si] and Randall & Tetali [RT]; see
also the introductory paper by Rosenthal [R]. The treatment ofq-colorings in
Chapters 8 and 9 is based on the paper by Jerrum [J]. The general approach to
counting in Chapter 9 is treated nicely in [Si].
Moving on to Propp–Wilson algorithms (Chapters 10–12), this is such a re-

cent topic that it has not yet been treated in book form. The original 1996 paper
by Propp & Wilson [PW] has already become a classic, and should be read by
anyone wanting to dig deeper into this topic. Other papers that may serve
as introductions to the Propp–Wilson algorithm are those by Häggstr̈om &
Nelander [HN] and Dimakos [Di]. An annotated bibliography on the subject,
continuously maintained by Wilson, can be found at the web site [W2]. For
treatments of the sandwiching technique of Chapter 11, see [PW] or any of the
other references mentioned here. The subtle issue of exactly under what condi-
tions (on the Markov chain) the sandwiching technique is applicableis treated
in a recent paper by Fill & Machida [FM]. The read-once variant of the Propp–
Wilson algorithm considered in Chapter 12 was introduced by Wilson [W1].
For the purpose of refining MCMCmethods in ways that lead to completely

unbiased samples, there is an interesting alternative to the Propp–Wilson al-
gorithm that has become known asFill’s algorithm . It was introduced by
Fill [Fi], and then substantially generalized by Fill, Machida, Murdoch &
Rosenthal [FMMR].
For an introduction to the Ising model considered in Chapter 11 (and also to

some extent the hard-core model), see Georgii, Häggstr̈om & Maes [GHM].
Concerning simulated annealing (Chapter 13), see the contribution by B. Gi-

das to the aforementioned collection [Sn]. Also worthy of attention is the
recent emphasis on running the algorithm at a carefully chosen fixed tempera-
ture; see Jerrum & Sorkin [JS].
Finally, let me emphasize once more that the difficult problem of making

sure that we have access to a good (pseudo-)random number generator (as
discussed very briefly in the beginning of Chapter 3) deserves serious attention.
The classical reference for this problem is Knuth [K]. See also Goldreich
[G] for an introduction to a promising new approach based on the theory of
algorithmic complexity.
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