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Preface

The first version of these lecture notes was composed for a last-year under-
graduate course at Chalmers University of Technology, in the spring semester
2000. | wrote a revised and expanded version for the same course one yea
later. This is the third and final (?) version.

The notes are intended to be sufficiently self-contained that they can be read
without any supplementary material, by anyone who has previously taken (and
passed) some basic course in probability or mathematical statistics, plus some
introductory course in computer programming.

The core material falls naturally into two parts: Chapters 2—6 on the basic
theory of Markov chains, and Chapters 7—13 on applications to a number of
randomized algorithms.

Markov chains are a class of random processes exhibiting a certain “mem-
oryless property”, and the study of these — sometimes referred to as Markov
theory — is one of the main areas in modern probability theory. This area
cannot be avoided by a student aiming at learning how to design and implement
randomized algorithms, because Markov chains are a fundamental ingredient
in the study of such algorithms. In fact, any randomized algorithm can (often
fruitfully) be viewed as a Markov chain.

| have chosen to restrict the discussion to disctetee Markov chains
with finite state space. One reason for doing so is that several of the most
important ideas and concepts in Markov theory arise already in this setting;
these ideas are more digestible when they are not obscured by the additiona
technicalities arising from continuous time and more general state spaces. It
can also be argued that the setting with discrete time and finite state space i
the most natural when the ultimate goal is to construct algorithms: Discrete
time is natural because computer programs operate in discrete steps. Finite
state space is natural because of the mere fact that a computer has a finite
amount of memory, and therefore can only be in a finite number of distinct

Vi



viii Preface

“states”. Hence, the Markov chain corresponding to a randomized algorithm
implemented on a real computer has finite state space.

However, | do not claim that more general Markov chains are irrelevant to
the study of randomized algorithms. For instance, an infinite state space is
sometimes useful as an approximation to (and easier to analyze than) a finite
but very large state space. For students wishing to dig into the more gen-
eral Markov theory, the final chapter provides several suggestions for further
reading.

Randomized algorithms are simply algorithms that make use of random
number generators. In Chapters 7-13, the Markov theory developed in previ-
ous chapters is applied to some specific randomized algorithms. The Markov
chain Monte Carlo (MCMC) method, studied in Chapters 7 and 8, is a class
of algorithms which provides one of the currently most popular methods for
simulating complicated stochastic systems. In Chapter 9, MCMC is applied
the problem of counting the number of objects in a complicated combinatorial
set. Then, in Chapters 10-12, we study a recent improvement of standard
MCMC, known as the Propp—Wilson algorithm. Finally, Chapter 13 deals with
simulated annealing, which is a widely used randomized algorithm for various
optimization problems.

It should be noted that the set of algorithms studied in Chapters 7-13
constitutes only a small (and not particularly representative) fraaifoall
randomized algorithms. For a broader view of the wide variety of applications
of randomization in algorithms, consult some of the suggestions for further
reading in Chapter 14.

The following diagram shows the structure of (essential) interdependence
between Chapters 2—13.

/
(2) @ MOA @ @
\@ NENe
How the chapters depend on each other.
Regarding exercises: Most chapters end with a number of problems. These
are of greatly varying difficulty. To guide the student in the choice of problems

to work on, and the amount of time to invest into solving the problems, each
problem has been equipped with a parenthesized number befdeeand
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(10) to rank the approximate size and difficulty of the probldf). means

that the problem amounts simply to checking some definition in the chapter (or
something similar), and should be doable in a couple of minutes. At the other
end of the scalg10) means that the problem requires a deep understanding
of the material presented in the chapter, and at least several hours of work.
Some of the problems require a bit of programming; this is indicated by an
asterisk, as iff7*)

oooo

| am grateful to Sven Erick Alm, Nisse Dotén Devdatt Dubhashi, Mihyun
Kang, Dan Mattsson, Jesper Mgller and Jeff Steif, who all provided corrections
to and constructive criticism of earlier versions of this manuscript.
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1

Basics of probability theory

The majority of readers will probably be best off by takihg following piece
of advice:

Skip this chapter!

Those readers who have previously taken a basic course in probability or
mathematical statistics will already know everything in this chapter, and should
move right on to Chapter 2. On the other hand, those readers who lack such
background will have little or no use for the telegraphic exposition given
here, and should instead consult some introductory text on probability. Rather
than being read, the present chapter is intended to be a collection of (mostly)
definitions, that can be consulted if anything that looks unfamiliar happens to
appear in the coming chapters.

oooo

Let 2 be any set, and |eE be some appropriate class of subset2of
satisfying certain assumptions that we do not go further into (closedness under
certain basic set operations). Element&adre callecevents. ForA C 2, we
write A€ for thecomplementof A in @, meaning that

A°={seQ:sdA}.
A probability measure on 2 is a functionP : ¥ — [0, 1], satisfying

@i P@ =0.
(i) P(A% =1 — P(A) for every eventA.
(iii) If AandB are disjoint events (meaning than B = @), thenP(AUB) =
P(A) + P(B). More generally, ifA;, Az, ... is a countable sequence

1



2 1 Basics of probability theory

of disjoint events &y N Aj = ¢ for alli # j), thenP (U2, A) =
Y21 P(AD.

Note that (i) and (ii) together imply th&(2) = 1.

If A and B are events, an®(B) > 0, then we define theonditional
probability of A given B, denoted?(A| B), as
P(AN B)

P(B)
The intuitive interpretation oP(A| B) is as how likely we consider the event
Ato be, given that we know that the evéihas happened.

Two eventsA and B are said to bendependentif P(AN B) = P(A)P(B).
More generally, the eventa,, ..., A are said to be independent if for any
| <kandanyiq,...,ij €{1,...,k}withiy <i2 <--- < i we have

P(A|B) =

|
P(Ai,NA,N---NA)=]]PA,.
n=1

For an infinite sequence of everii&;, Ay, ...), we say thatA;, A, ... are
independent ifA, ..., Ak are independent for arky

Note that ifP(B) > 0, then independence betweérand B is equivalent
to havingP(A| B) = P(A), meaning intuitively that the occurrence Bfdoes
not affect the likelihood ofA.

A random variable should be thought of as some random quantity which
depends on chance. Usually a random variable is real-valued, in which case it
is a functionX : @ — R. We will, however, also consider random variables
in a more general sense, allowing them to be functi¥nsQ — S, whereS
can be any set.

An eventA is said to bedefined in terms of the random variable X if we
can read off whether or ndt has happened from the value ¥f Examples of
events defined in terms of the random variaklare

A={X<4T)={weQ: X(w) <47}

and
B = {X is an even integér

Two random variables are said to be independent if it is the case that whenevel
the eventA is defined in terms oK, and the evenB is defined in terms oY,

then A andB are independent. Xy, ..., Xk are random variables, then they
are said to be independentAfi, ..., A¢ are independent whenever eagh

is defined in terms oK;. The extension to infinite sequences is similar: The
random variables<1, X», ... are said to be independent if for any sequence
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A1, Ao, ... of events such that for eachA; is defined in terms oK, we have
that A1, Az, ... are independent.

A distribution is the same thing as a probability measureX lis a real-
valued random variable, then thistribution wx of X is the probability
measure orR satisfyingux(A) = P(X € A) for all (appropriate)A € R.
The distribution of a real-valued random variable is characterized in terms of
its distribution function Fx : R — [0, 1] defined byFx (x) = P(X < x) for
allx e R.

A distribution i on a finite setS = {sy, ..., &} is often represented as a
vector (u1, ..., k), whereui = wu(s). By the definition of a probability
measure, we then have that € [0, 1] for eachi, and thatZ!‘:1 ni =1

A sequence of random variable§, X, ... is said to bei.i.d., which is
short forindependent and identically distributed, if the random variables

(i) are independent, and

(if) have the same distribution function, i.€(X; < x) = P(X; < x) for all
i, ] andx.

Very often, a sequenceXy, Xo, ...) is interpreted as the evolution in time
of some random quantityX, is the quantity at tima. Such a sequence is then
called arandom process(or, sometimesstochastic process Markov chains,
to be introduced in the next chapter, are a special class of random processes.

We shall only be dealing with two kinds of real-valued random variables:
discreteandcontinuousrandom variables. The discrete ones take their values
in some finite or countable subsetR®fin all our applications this subset is (or
is contained in)0, 1, 2, .. .}, in which case we say that they arennegative
integer-valueddiscrete random variables.

A continuousrandom variableX is a random variable for which there exists
a so-calledlensity function fx : R — [0, co) such that

X
[ fx (x)dx = Fx(x) = P(X < x)
—00

for all x € R. A very well-known example of a continuous random vari-
able X arises by lettingX have the Gaussian density functidix(x) =
#e*((xfﬂ)z)/z"z with parameters. ande > 0. However, the only con-
tinuous random variables that will be considered in this text areitiferm

[0, 1] ones, which have density function

1 ifxe]l0,1]
0 otherwise

fx(x) = {
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and distribution function

X 0 ifx<oO
Fx(x) = / fx(x)dx=1 x if xe]0,1]
- 1 ifx>1.

Intuitively, if X is a uniform [Q 1] random variable, theiX is equally likely
to take its value anywhere in the unit interval 19. More precisely, for every
intervall of lengtha inside [Q 1], we haveP(X € |) = a.

The expectation (or expected value or mean) E[X] of a real-valued ran-
dom variableX is, in some sense, the “average” value we expect fkoth X is
a continuous random variable with density functig(x), then its expectation
is defined as

E[X] = /OO X fx (x)dx

which in the case wherX is uniform [0 1] reduces to

1 1
E[X]:/ xdx==.
0 2

For thecase whereX is a nonngative integer-valued random variable, the
expectation is defined as

(0.¢]
E[X] = ka(x =k).
k=1
This can be shown to be equivalent to the alternative formula
oo
E[X] = Z P(X > k). (1)
k=1

It is important to understand that the expectatijX] of a random variable
can be infinite, even iKX itself only takes finite values. A famous example is
the following.

Example 1.1: The St Petersburg paradox.Consider the following game. A
fair coin is tossed repeatedly until the first time that it comes up tails.XLbée
the (random) number of heads that come up before the first occurrence of tails.
Suppose that the bank pay% 2oubles depending oX. How much would you
be willing to pay to enter this game?

According to the classical theory of hazard games, you should agree to pay up
to E[Y], whereY = 2X is the amount that you receive from the bank at the end
of the game. So let’s calculaEY]. We have

1 n+1
P(X = n) = P(n heads followed by 1 tgil= (§>
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for eachn, so that

o0 o0
Z KP(Y = k) = 2"pey = 2M)
k=1 n=0

E[Y]

(&

n o0 n 1 n+1
(X=n) E 2 <2)
n=0 n=0

o0
= X
n=0

Hence, there is obviously something wrong with the classical theory of hazard
games in this case.

= X.

NI =

Another important characteristic, besidgs], of a random variablé, is the
variance Var[ X], defined by

Var[X] = E[(X — w)?] wherep = E[X]. 2)

The variance is, thus, the mean square deviatiok &fom its expectation. It
can be computed either using the defining formula (2), or by the identity

Var[X] = E[X?] — (E[X])? (3)

known asSteiner’s formula.
There are various linear-like rules for working with expectations and vari-
ances. For expectations, we have

E[X1+ -+ Xn] = E[Xq] + - - + E[Xn] @)

and, ifcis a constant,

E[cX] = cE[X]. (5)
For variances, we have
Var[cX] = c?Var[X] (6)
and,when X, ..., X, are independent
Var[Xq +---+ Xp] = Var[X1] + --- + Var[ Xy] . @)

Let us compute expectations and variances in some simple cases.
Example 1.2Fix p € [0, 1], and let

X — 1 with probability p
| 0 with probability 1— p.

1 Without this requirement, (gils in general.



6 1 Basics of probability theory

Such anX is called aBernoulli ( p) random variable. The expectation oKX
becomeE[X] =0-P(X =0) + 1-P(X = 1) = p. Furthermore, sincX only
takes the values 0 and 1, we haxé = X, so thatE[X?] = E[X], and

Var[X] = E[X?] - (E[X])?

p—p? = p(d—p)

using Steiner’s formula (3).
Example 1.3Let Y be the sum ofi independent Bernoullig) random variables
) ST Xn. (For instanceY may be the number of headsrintosses of a coin
with heads-probabilityp.) Such aY is said to be ainomial (n, p) random
variable. Then, using (4) and (7), we get

E[Y] = E[Xq] +--- + E[Xn] = np
and

Var[Y] = Var[X1] + --- + Var[Xn] = np(1— p).

Variances are useful, e.g., for bounding the probability that a random variable
deviates by a large amount from its mean. We have, for instance, the following
well-known result.

Theorem 1.1 (Chebyshev's inequality)Let X be a random variable with
meanu and variances?. For any a > 0, we have that the probability
P[|X — u| > a] of a deviation from the mean of at least a, satisfies

o2
PIX—-ulza) = .
a
Proof Define another random variabYeby setting

v_ a? if|IX—ul>a
| 0 otherwise.

Then we always havé < (X—uw)?, sothaE[Y] < E[(X—u)?]. Furthermore,
E[Y] = aP(|X — u| > a), so that

E[Y
PIX—ul>a) = %
_ EX-w?
s =
Var[X] o2
a2  aZ
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Chebyshev’s inequality will be used to prove a key result in Chapter 9
(Lemma 9.3). A more famous application of Chebyshev’s inequality is in the
proof of the following very famous and important result.

Theorem 1.2 (The Law of Large Numbers)Let Xi, Xo, ... be i.i.d. random
variables with finite meap and finite variancer2. Let M, denote the average
of the firstn X's, i.e., My, = %(X1+ -+ +4 Xp). Then, for anyg > 0, we have

lim P(|JMp — | > ¢) =0.
n—oo
Proof Using (4) and (5) we get

1
E[Mn]=ﬁ(ﬂ+"'+ﬂ)=ﬂ-

Similarly, (6) and (7) apply to show that
1, P o2
Var[Mp] = p(a 4+ 409 = -
Hence, Chebyshev's inequality gives
2

o
P(IMy —ul = ¢) < —
(IMn—plz ) = —

which tends to 0 aB — oo. O
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Markov chains

Let us begin with a simple example. We consider a “random walker” in a very
small town consisting of four streets, and four street-corngrsy, vz anduvg
arranged as in Figure 1. At time 0, the random walker stands in coinét
time 1, he flips a fair coin and moves immediatelywtoor v4 according to
whether the coin comes up headstails. At time 2, heflips the coin again
to decide which of the two adjacent corners to move to, with the decision rule
that if the coin comes up heads, then he moves one step clockwise in Figure 1,
while if it comes up tails, he moves one step counterclockwise. ittisedure
is then iterated at times 3, 4,. .

For eachn, let X,, denote the index of the street-corner at which the walker
stands at timan. Hence,(Xo, X1, ...) is a random process taking values in
{1, 2, 3,4}. Since the walker starts at time Ouf, we have

PXo=1)=1. (8)

Fig. 1. Arandom walker in a very small town.

8



Markov chains 9

Next, he will move tovs or vg with probability% each, so that

1
PX1=2) =3 ©)
and
1
PO =4 =73, (10)

To compute the distribution oK, for n > 2 requires a little more thought;
you will be asked to do this in Problethl below. To this end, it is useful to
consider conditional probabilities. Suppose that at timéhe walker stands
at, saywo. Then we get the conditional probabilities

1
PXnt1 =v1| Xp=v2) = >

and

1
P(Xnt1=v3| Xn=v2) = E’

because of the coin-flipping mechanism for deciding where to go next. In fact,
we get the same conditional probabilities if we condition further on the full
history of the process up to time i.e.,

. . . 1
P(Xnt1=v1| Xo =g, X1 =l1,..., Xpo1 =In-1, Xn =v2) = >
and

. . . 1
P(Xnt1 =v3| Xo =g, X1 =l1,..., Xpo1 =In-1, Xn =12) = >

for any choice ofig, ..., ih—1. (This is because the coin flip at tinme+ 1
is independent of all previous coin flips, and hence also independent of
Xo, ..., Xn.) This phenomenon is called thrmemoryless property, also
known as theMarkov property : the conditional distribution oX,;1 given
(Xo, ..., Xp) depends only onX,,. Or in other words: to make the best
possible prediction of what happens “tomorrow” (time- 1), we only need
to consider what happens “today” (timg, as the “past” (times,Q..,n — 1)
gives no additional useful informatidn.

Another interesting feature of this random process is that the conditional
distribution of X,+1 given thatX,, = vy (say) is the same for all. (This is
because the mechanism that the walker uses to decide where to go next is th

2 please note that this is just a property of this particular mathematical modedotifgended as
general advice that we should “never worry about the past”. Of course, we have every reason,
in daily life as well as in politics, to try to learn as much as we can from history in order to
make better decisions for the future!
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same at all times.) This property is knowntase homogeneity or simply
homogeneity
These observations call for a general definition:

Definition 2.1 Let P be a kx k matrix with element§P, j : i, j =1,...,k}.
A random proceséXp, X1, ...) with finite state space S {s1, ..., &} is said
to be a(homogeneous) Markov chain with transition matrix P, if for all n,
alli,je{l,...,k}landallip,...,in—1 € {1, ..., k} we have

P(xﬂ+l:S] |X0:S()v Xl :Sla sy anl:Snflv Xn = S)
=P(Xny1=5j | Xn =89)

=hj.

The elements of the transition matfxare called transition probabilities. The
transition probabilityP; j is the conditional probability of being in stasg
“tomorrow” given that we are in statg “today”. The term “homogeneous” is
often dropped, and taken for granted when talking about “Markov chains”.

For instance, the random walk example above is a Markov chain, with state
spaceg(l, ..., 4} and transition matrix

03 0 3
1 1
s 0 5 O
—| 2 2
=10 101 (11)
1 1
3 030
Every transition matrix satisfies
P,j>0foralli,je{l,... Kk}, (12)
and
k
Y Rj=1forallie{l... k}. (13)

j=1
Property (12) is just the fact that conditional probabilities are always nonneg-
ative, and property (13) is that they sumto 1, i.e.,
PXnt1=s11Xn=5) + PXnt1=9|Xn=5)+ -
+ PXnpi =% Xn=5)=1.
We next consider another important characteristic (besides the transition ma-

trix) of a Markov chain(Xp, X1, ...), namely thanitial distribution , which
tells us how the Markov chain starts. The initial distribution is represented as
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a row vectore© given by

0 (O 0
@ = @ u )

= (P(Xo=151),P(Xo=%),...,P(Xo =)

Sincen© represents a probability distribution, we have

Z N«(O)

In the random walk example above, we have
1@ =(1,0,00) (14)

because of (8).
Similarly, we let the row vectorg», 1@ ... denote the distributions of
the Markov chain at times, 2, . . ., so that

™ = @™

= (P(Xn=151),P(Xnh=92),....P(Xnh =)

For the random walk example, equations (9) and (10) tell us that
n®=(0,307.

It turns out that once we know the initial distributipri® and the transition
matrix P, we can compute all the distributiops?, 1@ ... of the Markov
chain. The following result tells us that this is simply a matter of matrix
multiplication. We writeP" for then™ power of the matrixP.

Theorem 2.1For a Markov chain(Xp, X1, ...) with state spacé¢sy, ..., &},
initial distribution (@ and transition matrix P, we have for any n that the
distribution (™ at time n satisfies

M(n) — M(O)Pn~ (15)

Proof Consider first the case= 1. We get, forj = 1, ..., K, that

k
WY = P(X1=s) =Y PXo=5.X1=5)
i=1

k

= ) P(Xo=95)P(X1=5j|Xo=9)
i=1

= ZM(O)P = (uOP);
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where( (9 P); denotes th¢" element of the row vectqr© P. Henceu™ =
M(O) P.

To prove (15) for the general case, we use induction. riband suppose
that (15) holds fon = m. Forn = m + 1, we get

Kk
/Lgm—’_l) = PXmi1=5sj) = Z PXm =5, Xmi1=58j)
i=1
Kk
Y P(Xm =$)P(Xmt1=5j | Xm =$)
i=1

k
= Y "R = w™pP)
i=1

so thatu ™D = M P, But u™ = 1@ P™ by the induction hypothesis, so
that
l/«(m+1) — M(m)P — M(O)pmp — M(O)pm-Fl

and the proof is complete. O

Let us consider some more examples — two small ones, and one huge:

Example 2.1: The Gothenburg weather.lt is sometimes claimed that the best
way to predict tomorrow's weath®is simply to guess that it will be the same
tomorrow as it is today. If we assume that this claim is corfeten it is natural

to model the weather asMarkov chain. For simplicity, we assume that there are
only two kinds of weather: rain and sunshine. If the above predictor is correct
75% of the time (regardless of whether today’s weather is rain or sunshine), then
the weather forms a Markov chain with state sp8ce {s1, S} (with s; = “rain”

ands, = “sunshine”) and transition matrix

p_[075 025
~| 025 a75 |°

Example 2.2: The Los Angeles weatherNote that in Example 2.1, there is a
perfect symmetry between “rain” and “sunshine”, in the sense that the probability
that today’s weather will persist tomorrow is the same regardless of today’s
weather. This may be reasonably realistic in Gothegblomt not in Los Angeles
where sunshine is much more common than rain. A more reasonable transition
matrix for the Los Angeles weather might therefore be (still witk= “rain” and

s = “sunshine”)
05 05
P :[ 01 09 } ' (16)

3 Better than watching the weather forecast on TV.
4 1 doubt it.
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Example 2.3: The Internet as a Markov chain.Imagine that you are surfing on

the Internet, and that each time that you encounter a web page, you click on one
of its hyperlinks chosen at random (uniformly).Xf, denotes where you are after

n clicks, then(Xg, X1, ...) may be described as a Markov chain with state space
Sequal to the set of all web pages on the Internet, and transition nRgixen

by

R = 617 if pages has a link to pags;

0 otherwise,

whered; is the number of links from pagg. (To make this chain well-defined,

we also need to define what happens if there are no links at allgrokive may,

for instance, seBj = 1 (andP; = Ofor alli # j) in that case, meaning that
when you encounter a page with no links, you are stuck.) This is of course a very
complicated Markov chain (especially compared to Examples 2.1 and 2.2), but it
has nevertheless turned out to be a useful model which under various simplifying
assumptions admits interesting analysis.

A recent variant (see Fagit al. [Fa]) of this model is to take into account
also the possibility to use “back buttons” in web browsers. However, the resulting
process Xg, X1, ...) is then no longer a Markov chain, since what happens when
the back button is pressed depends not only on the presenXstabet in general
also onXp, ..., Xn_1. Nevertheless, it turns out that this variant can be studied
by a number of techniques from the theory of Markov chains. We will not say
anything more about this model here.

A useful way to picture a Markov chain is its so-calteansition graph. The
transition graph consists of nodes representing the states of the Markov chain
and arrows between the nodes, representing transition probabilities. This is
most easily explained by just showing the transition graphs of the examples
considered so far. See Figure 2.

In all examples above, as well as in Definition 2.1, the “rule” for obtaining
Xn+1 from X;, did not change with time. In some situations, it is maalistic,
or for other reasons more desiraBlé let this rule change with time. This
brings us to the topic ohhomogeneous Markov chainsand the following
definition,which generalizes Onition 2.1.

Definition 2.2 Let PP, P@ .. be a sequence of k k matrices, each of
which satisfieg12) and(13). A random proceséXp, X1, ...) with finite state
space S= {sy, ..., %} is said to be arinhomogeneous Markov chain with
transition matrices PD, P@_ .. ifforall n, alli,j € {1,...,k} and all

5 |t may also seem like a very big Markov chain. However, the devoted reader will soon know
how to carry out (not just in principle, but also in practice) computer simulations of much
bigger Markov chains — see, e.g., Problem 7.2.

6 Such as in the simulated annealing algorithms of Chapter 13.
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0.5
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0.5

Fig. 2. Transition graphs for the random walker in Figure 1, and for Examples 2.1 and
2.2.

io,...,inc1 € {1,...,k} we have

PXnt1=5Sj1 X0 =S4 X1=8;,...» Xn-1 =S, Xn =9)
=PXnt1=5j | Xn=9)
AT

Example 2.4: A refined model for the Gothenburg weather. There are of
course many ways in which the crude model in Example 2.1 can be made more
realistic. One way is to take into account seasonal changes: it does not seem
reasonable to disregard whether the calendar says “January” or “July” when pre-
dicting tomorrow’s weather. To this end, we extend the state spasg,®, s3},
wheres; = “rain” and s, = “sunshine” as before, arsd = “snow”. Let

075 025 O 05 03 02
Psummer= 025 075 O and PWinter = 015 07 015 s
05 05 O 02 03 05

and assume that the weather evolves accordinBstghmerin May—September,

and according tdPyinter in October—April. This is an inhomogeneous Markov
chain model for the Gothenburg weather. Note that in May—September, the model
behaves xactly like the one in Example 2.1, except for some possible residual
snowy weather on May 1.

The following result, which is a generalization of Theorem 2.1, tells us how
to compute the distributiona®@, 1@, ... at times 12, ... of an inhomo-

geneous Markov chain with initial distribution® and transition matrices
PO P@ .

Theorem 2.2Suppose thatXg, X1, ...) is an inhomogeneous Markov chain
with state spacésy, ..., s}, initial distribution 1@ and transition matrices



Markov chains 15

PD P®@ . Foranyn,we then have that
W = O pDp@ . pm

Proof Follows by a similar calculation as in the proof of Theorem 2.1. []

Problems

2.1 (5) Consider the Markov chain corresponding to the random walker in Figure 1,
with transition matrixP and initial distributiory.(©) given by (11) and (14).

(a) Compute the squaf? of the transition matri*°. How can we interpreP2?
(See Theorem 2.1, or glance ahead at Problem 2.5.)
(b) Prove by induction that

m _ | ©303% forn=135,...
7] 4030 forn=246,....

2.2 (2) Suppose that we modify the random walk example in Figure 1 as follows. At
each integer time, the random walker tosses coins. The first coin is to decide
whether to stay or go. If it comes up heads, he stays where he is, whereas if it
comes up tails, he lets the second coin decide whether he should move one stey
clockwise, or one step counterclockwise. Write down the transition matrix, and
draw the transition graph, for this new Markov chain.

2.3 (5) Consider Example 2.1 (the Gothenburg weather), and suppose that the
Markov chain starts on a rainy day, so tIpéP) = (1,0).

(a) Prove by induction that
pW=Ga+r2 . z3a-2"")
for everyn.
(b) What happens ta(™ in the limit asn tends to infinity?
2.4 (6)
(a) Consider Example 2.2 (the Los Angeles weather), and suppose that the Markov
chain starts with initial distribution%, %). Show thatu™ = 1@ for anyn,
so that in other words the distribution remains the same at all tfmes.
(b) Can you find an initial distribution for the Markov chain in Example 2.1 for

which we get similar behavior as in (a)? Compare this result to the one in
Problem 2.3 (b).

2.5 (6) Let(Xp, X1, ...) be a Markov chain with state spaf|, ..., &} and tran-
sition matrix P. Show, by arguing as in the proof of Theorem 2.1, that for any
m, n > 0 we have

P(Xm+n = Sj [ Xm=9§)= (Pn)i,j .

7 Such a Markov chain is said to beéguilibrium , and its distribution is said to betationary.
This is a very important topic, which will be treated carefully in Chapter 5.
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Functions of Markov chains are not always Markov chains. Let

2.6 (8)
(Xp, X1, ...) be a Markov chain with state spaf®, sp, s3}, transition matrix

01 0
P=] 0 0 1
1 00

and initial distributiorn©® = (3, 3. 3). For eachn, define

"~1 1 otherwise.

Show that(Yg, Y1, ...) is nota Markov chain.
2.7 (9) Markov chains sampled at regular intervals are Markov chains. Let

(Xg, X1, ...) be a Markov chain with transition matriR.
(a) Define(Yp, Y1, ...) by settingYn, = X, for eachn. Show that(Yg, Y1, ...)

is a Markov chain with transition matriR?.
(b) Find an appropriate generalization of the resultin (a) to the situation where we

sample everyth (rather than every second) value(®fy, X1, ...).
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Computer simulation of Markov chains

A key matter in many (most?) practical applications of Markov theory is the
ability to simulate Markov chains on a computer. This chapter deals with how
that can be done.

We begin by stating a lie:

In most high-level programming languages, we have access to some ran-
dom number generator producing a sequdtgdJ, . .. of i.i.d. random
variables, uniformly distributed on the unit interval [,

This is a lie for at least two reasons:

(A) The numberdJg, Us, ... obtained from random number generators are
not uniformly distributed on [01]. Typically, they have a finite binary (or
decimal) expansion, and are therefore rational. In contrast, it can be shown
that a random variable which (truly) is uniformly distributed onqp(or
in fact any continuous random variable) is irrational with probability 1.

(B) Ug, Uy, ... are not even random! Rather, they are obtained by some
deterministic procedure. For this reason, random number generators are
sometimes (and more accurately) called pseudo-random number genera
tors8

The most important of these objections is (B), because (A) tends not to be a
very big problem when the number of binary or decimal digits is reasonably

large (say, 32 bits). Over the decades, a lot of effort has been put into construct-
ing (pseudo-)random number generators whose output is as indistinguishable

8 There are also various physically generated sequences of random-looking numbers (see,
e.g., the web sitesttp://lavarand.sgi.com/ and http://www.fourmilab.
ch/hotbits/ ) that may be used instead of the usual pseudo-random number generators.
| recommend, however, a healthy dose of skepticism towards claims that these sequences are
in some sense “truly” random.

17
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as possible from a true i.i.d. sequence of uniform1drandom variables.
Today, there exist generators which appear to do this very well (passing all of
a number of standard statistical tests for such generators), and for this reason
we shall simply make the (incorrect) assumption that we have access to an
i.i.d. sequence of uniforf®, 1] random variables |g, Uy, .... Although we

shall not deal any further with the pseudo-randomness issue in the remaindel
of these notes (except for providing a coupfeelevant references in thimal
chapter), we should always keep in mind that it is a potential source of errors
in computer simulatiof.

Let us move on to the core topic of this chapter: How do we simulate a
Markov chain(Xg, X1, ...) with given state spac8& = {s, ..., &}, initial
distribution@ and transition matriX®? As the reader probably has guessed
by now, the random numbeldp, Uy, ... form a main ingredient. The other
main ingredients are two functions, which we call thiéiation function and
theupdate function.

The initiation functionyr : [0, 1] — Sis a function from the unit interval to
the state spac®, which we use to generate the starting vakie We assume

(i) thatvy is piecewise constant (i.e., that [[] can be split into finitely many
subintervals in such a way thétis constant on each interval), and

(ii) that for eachs € S, the total length of the intervals on whiah(x) = s
equalsu©(s).

Another way to state property (ii) is that

1
/0 Ly oo=s) dx = n@(s) (17)

for eachs € S; herely (x)—s is the so-calledndicator function of {y(x) =
s}, meaning that
1 ifyx)=s

Ly oo=s) = i
¥ (0=} {0 otherwise.

Provided that we have such a functign we can generatXo from the first
random numbeldg by settingXo = v (Ug). This gives the correct distribution
of Xo, because for any € Swe get

1
PXo=9) =P (Uo) =9) = /0 lyoo=s) dx = n©@(s)

oA misunderstanding that | have encountered more than once is that a pseudo-random numbel
generator is good if its period (the time until it repeats itself) is long, i.e., longer than the number
of random numbers needed in a particular application. But this is far from sufficient, and many
other things can go wrong. For instance, certain patterns may occur too frequently (or all the
time).
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using (17). Hence, we calf avalid initiation function for the Markov chain
(Xo, X1, ...)if (17) holds for alls € S.

Valid initiation functions are easy to construct: Wigth= {sy, ..., %} and
initial distribution (@, we can set

s forx e[0, u@(sp))
s forx e [u@(sy), n@s) + 9 (s)

V(X) = (18)

s forxe [Zij;ll 1O sy, Zij=1 1O ))

s forxe [Z'j‘ju(o)(sj), 1].

We need to verify that this choice gf satisfies properties (i) and (ii) above.
Property (i) is obvious. As to property (ii), it suffices to check that (17) holds.
It does hold, since

1 i i—1
/o lpoo=sydx =3 1) =3 1) =ns)
= =

fori = 1,...,k. This means thatr as defined in (18) is a valid initiation
function for the Markov chaiiXg, X1, ...).

So now we know how to generate the starting valge If we also figure
out how to generatXn;1 from X, for anyn, then we can use this procedure
iteratively to get the whole chaiXp, X1, ...). To get fromX, to X1, we
use the random numbék, ;1 and anupdate function¢ : Sx [0,1] — S
which takes as input a stade= Sand a number between 0 and 1, and produces
another stats’ € Sas output. Similarly as for the initiation functigh, we
needg to obey certain properties, namely

(i) that for fixeds, the functiong (s, x) is piecewise constant (when viewed
as a function ok), and

(i) that for each fixeds, sj € S, the total length of the intervals on which
¢(s,X) = sj equalsh, j.

Again, as for the initiation function, property (ii) can be rewritten as

1
/0 lips . 0=sj) dX = B j (19)
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forall s, sj e S. If the update functiom satisfies (19), then

PXnt1=S8j [ Xn=58) = P@(@S,Unt1) =sj|Xn=5) (20)
= P(@(s,Unt1) =5j)

1
/o ligs 0=sj) dX =P j.

The reason that the conditioning in (20) can be dropped isUhat is inde-

pendent of(Uog, ..., Up), and hence also aK,. The same argument shows
that the conditional probability remains the same if we condition further on
the values(Xp, X1, ..., Xp—1). Hence, this gives a correct simulation of the

Markov chain. A functiong satisfying (19) is therefore said to be a valid
update function for the Markov chaiiXo, X1, ...).

It remains to construct such a valid update function, but this is no harder
than the construction of a valid initiation function: Set, for each S,

st forxel0, R 1)
s forxe[R1, P1+ P2

#(s,X) = sj forxe [Z|j:_1l R, Z|j:1 P'") e

-SK forxe[: :‘:_11P.,|, 1].

To see that this is a valid update function, note that forsing; € S, we have

1 i -1
[ tewnmsdx=3"Ru- Y Ri=PR.
0 I=1 1=1

Thus, we have a complete recipe for simulating a Markov chain: First
construct valid initiation and update functiofisand¢ (for instance as in (18)
and (21)), and then set

Xo = ¥ (Uo)

X1 = ¢(Xo, U1)
X2 = ¢(X1,U2)
X3 = ¢(X2,U3)

and so on.
Let us now see how the above works for a simple example.

Example 3.1: Simulating the Gothenburg weatherConsider the Markov chain
in Example 2.1, whose state spaceSis= {s1, Sp} wheres; = “rain” and s, =
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“sunshine”, and whose transition matrix is given by

p_[075 025
~| 025 a75 |-

Suppose we start the Markov chain on a rainy day (as in Problem 2.3), so that
w©@ = (1, 0). To simulate this Markov chain using the above scheme, we apply
(18) and (21) to get the initiation function

Y(x) =5 forallx,
and update function given by

| 1 forxe[0,0.75)
(51, X) = { s, forx e[0.75, 1]

and

for x € [0, 0.2
(52, %) = { 2 for x < {of25, 3 (22)
Before closing this chapter, let us finally point out how the above method
can be generalized to cope with simulation of inhomogeneous Markov chains.
Let (Xg, X1, ...) be an inhomogeneous Markov chain with state sface
(s, ..., s}, initial distribution x©, and transition matrice®©, P® .. ..
We can then obtain the initiation functiaf and the starting valug as in
the homogeneous case. The updating is done similarly as in the homogeneou
case, except that since the chain is inhomogeneous, we need several differer
updating functiong®, 9@, ... and for these we need to have

1
n
fo L™ (s x=s) (X dX = Pifj)

for eachn and eacls, sj € S. Such functions can be obtained by the obvious
generalization of (21): Set

s forx €0, Pifri))
% forxe[RY. RY + P

$P(s, 0 =1 _ ~i-1pM i )
S forxe[ i—1 P 2i=1 P )

s forxe[TitRP, 1],
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The inhomogeneous Markov chain is then simulated by setting

Xo = ¥ (Uo)

X1 = ¢D(Xo, U1)
X2 = ¢@ (X1, Up)
X3 = ¢ (X2, Ua)

and so on.

Problems
3.1 (7%
() Find valid initiation and update functions for the Markov chain in Example 2.2
(the Los Angeles weather), with starting distributief? = (3, 3).
(b) Write a computer program for simulating the Markov chain, using the initiation

and update functions in (a).
(c) Forn > 1, defineYy to be the proportion of rainy days up to timei.e.,

=00
Yn = l{Xi=s1} -
n+14 !

Simulate the Markov chain for (say) 1000 steps, and plot Wawevolves

with time. What seems to happen Yg whenn gets large? (Compare with

Problem 2.4 (a).)

3.2 (3) The choice of update function is not necessarily unique Consider Ex-

ample 3.1 (simulating the Gothenburg weather). Show that we get another valid
update function if we replace (22) by

| s forxe[0,0.75
$(s2,X) = { s forx e[0.75,1].
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Irreducible and aperiodic Markov chains

For several of the most interesting results in Markov theory, we need to put
certain assumptions on the Markov chains we are consideltitgyan impor-

tant task, in Markov theory just as in all other branches of mathematics, to find
conditions that on the one hand ateong enough to have useful consequences,
but on the other hand are weak enough to hold (and be easy to check) for many
interesting examples. In this chapter, we will discuss two such conditions
on Markov chains:irreducibility andaperiodicity. Theseconditions are of
central importance in Markov theory, and in particular they play a key role in
the study of stationary distributions, which is the topic of Chapter 5. We shall,
for simplicity, discuss these notions in the setting of homogeneous Markov
chains, although they do have natural extensions to the more general setting o
inhomogeneous Markov chains.

We begin with irreducibility, which, loosely speaking, is the property that
“all states of the Markov chain can be reached from all others”. To make
this more precise, consider a Markov chéky, X1, . ..) with state spac& =
{s1, ..., &} and transition matri¥. We say that a statg communicateswith
another statg;, writing s — sj, if the chain has positive probabily of ever
reachings; when we start frons . In other wordss communicates witls; if
there exists an such that

PXmin=58j| Xm=5) > 0.

By Problem 2.5, this probability is independentrofdue to the homogeneity
of the Markov chain), and equal®"); j.

If s — sj ands; — s, then we say that the statgsands; intercommuni-
cate, and writes <> sj. This takes us directly to the definition of irreducibility.

10 Here and henceforth, by “positive probability”, we always metittly positive probability.

23
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Fig. 3. Transition graph for the Markov chain in Example 4.1.

Definition 4.1 A Markov chain(Xgp, X1, ...) with state space & {si, ..., %}
and transition matrix P is said to biereducible if for all s;, s; € S we have
that § < sj. Otherwise the chain is said to lbeducible.

Another way of phrasing the definition would be to say that the chain is
irreducible if for anys, s; € Swe can find am such thai P"); j > 0.

An easy way to verify that a Markov chain is irreducible is to look at
its transition graph, and check that from each state there is a sequence of
arrows leading to any other state. A glance at Figure 2 thus reveals that the
Markov chains in Examples 24dnd 2.2, as well as the random walk example
in Figure 1, are all irreducibl&! Let us next have a look at an example which
is notirreducible:

Example 4.1: A reducible Markov chain. Consider a Markov chain
(Xp, X1, ...) with state spac& = {1, 2, 3, 4} and transition matrix

05 05 O 0
03 07 O 0
0 0 02 08
0 0 08 02

P=

By taking a look at its transition graph (see Figure 3),imenediately see that if

the chain starts in state 1 or state 2, then it is restricted to states 1 and 2 forever.
Similarly, if it starts in state 3 or state 4, then it can never leave the s{Bsét

of the state space. Hence, the chain is reducible.

Note that if the chain starts in state 1 or state 2, then it behaves exactly as if it
were a Markov chain with state spage 2} and transition matrix

0.5 05
03 07 |-
If it starts in state 3 or state 4, then it behaves like a Markov chain with state space

11 some care is still needed; see Problem 4.1.
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0.2 08

08 02 |-
This illustrates a characteristic feature of reducible Markov chains, which also
explains the term “reducible”: If a Markov chain is reducible, then the analysis of

its long-term behavior can be reduced to the analysis of the long-term behavior of
one or more Markov chains with smaller state space.

{3, 4} and transition matrix

We move on to consider the concept of aperiodicity. For a finite or infinite
set{a, ag, ...} of positive integers, we write g¢di, ap, ...} for the greatest
common divisor ofas, ag, . ... Theperiod d(s) of a states € Sis defined as

ds) =gcdn>1: (P";; > 0}.

In words, the period o is the greatest common divisor of the set of times that
the chain can return (i.e., has positive probability of returning) tgiven that
we start withXg = 5. If d(5) = 1, then we say that the stadeis aperiodic.

Definition 4.2 A Markov chain is said to baperiodic if all its states are
aperiodic. Otherwise the chain is said to periodic.

Consider for instance Example 2.1 (the Gothenburg weather). It is easy to
check that regardless of whether the weather today is rain or sunshine, we
have for anyn that the probability of having the same weathedays later
is strictly positive. Or, expressed more compactl?™); ; > 0 for all n and
all statess .12 This obviously implies that the Markov chain in Example 2.1
is aperiodic. Of course, the same reasoning applies to Example 2.2 (the Los
Angeles weather).

On the other hand, let us consider the random walk example in Figure 1,
where the random walker stands in corngat time 0. Clearly, he has to take
an even number of steps in order to get backtorhis means thatP"); 1 > 0
onlyforn=24,6,.... Hence,

gedn > 1: (P > 0} =gcd2,4,6,...} =2,
and the chain is therefore periodic.
One reason for the usefulness of aperiodicity is the following result.

Theorem 4.1Suppose that we have an aperiodic Markov ch@fg, X1, ...)
with state space S {s1, ..., %} and transition matrix P. Then there exists
an N < oo such that

(PMi; >0

12 By a variant of Problem 2.3 (a), we in fact have thef'); j = 3(1+27").
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foralli e {1,...,k}andalln> N.

To prove this result, we shall borrow the following lemma from number theory.

Lemma4.1Let A= {a1, a2, ...} be a set of positive integers which is

(i) nonlattice, meaning thajcd{as, ap, ...} = 1, and
(i) closed under addition, meaning thatifl@Aandd € A, thenata’ € A.

Then there exists an integer M oo such that ne A foralln > N.
Proof See, e.g., the appendix of@naud [B]. O

Proof of Theorem 4.1Fors € S, let Ay = {n > 1 : (P");; > 0}, so that

in other wordsA; is the set of possible return times to stgtestarting from

s. We assumed that the Markov chain is aperiodic, and therefore thesstate
is aperiodic, so tha#; is nonlattice. Furthermoré); is closed under addition,
for the following reason: I, a’ € Aj, thenP(Xg = s | Xo=5) > 0 and
P(Xarar =S | Xa =5) > 0. This implies that

PXata =S| Xo=5) = PXa=$§,Xata =S1Xo=89)
= PXa=s5|Xo=95)PXaya =S| Xa=15)
> 0

sothata+a’ € A.

In summary, Ay satisfies assumptions (i) and (ii) of Lemma 4.1, which
therefore implies that there exists an inteier< oo such thai P"); j > 0 for
alln > N;.

Theorem 4.1 now follows wittN = max{Ng, ..., Nk}. |

By combining aperiodicity and irreducibility, we get the following important
result, which will be used in the next chapter to prove the so-called Markov
chain convergence theorem (TheorgrR).

Corollary 4.1 Let(Xo, X1, ...) be anirreducible and aperiodic Markov chain
with state space S {s1, ..., %} and transition matrix P. Then there exists
an M < oo such that(P"); ; > Oforalli, j € {1,...,k} and alln> M.

Proof By the assumed aperiodicity and Theorem 4.1, there exists an integer
N < oo such thatP");; > Oforalli € {1,...,k} and alln > N. Fix two
statess, s; € S. By the assumed irreducibility, we can find somg such
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that(P".i); j > 0. LetM; j; = N +n; j. For anym > M; j, we have
P(Xm=sj | Xo=58) > P(Xm-n,; =S, Xm=5j | Xo=9)

= P(Xm-n,; =S | Xo=5)P(Xm=5j | Xm_n, ; =S)
-0 (23)

(the first factor in the second line of (23) is positive because nj j > N,
and the second is positive by the choicenpf). Hence, we have shown that
(P™),j > 0forallm > M; j. The corollary now follows with

M =maxMy1, M12..., M1k, Mo 1, ..., Mkk}.

Problems

4.1 (3) Consider the Markov chaifXg, X1, ...) with state spac& = {s1, S} and
transition matrix

(a) Draw the transition graph of this Markov chain.

(b) Show that the Markov chain isot irreducible (even though the transition
matrix looks in some sense connected).

(c) What happens t&Xp, in the limit asn — oco?

4.2 (3) Show that if a Markov chain is irreducible and has a stasich that?; > 0,
then it is also aperiodic.
4.3 (4) Random chess moves.

(@) Consider a chessboard with a lone white king making random moves, meaning
that at each move, he picks one of the possible squares to move to, uniformly
at random. Is the corresponding Markov chain irreducible and/or aperiodic?

(b) Same question, but with the king replaced by a bishop.

(c) Same question, but instead with a knight.

4.4 (6) Oriented random walk on a torus. Let a andb be positive integers, and
consider the Markov chain with state space
{x,y): xef0,...,a—1},ye{0,...,b—1}},

and the following transition mechanism: If the chain is in statey) at timen, then
allt timen + 1 it moves to((x + 1) moda, y) or (x, (y + 1) modb) with probability
5 each.

2

(@) Show that this Markov chain is irreducible.
(b) Show that it is aperiodic if and only if g¢d, b) = 1.
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Stationary distributions

In this chapter, we consider one of the central issues in Markov theory: asymp-
totics for the long-term behavior of Markov chains. Whkah we say about a
Markov chain that has been running for a long time? Can we find interesting
limit theorems?

If (Xo, X1, ...) is any nontrivial Markov chain, then the value Xf, will
keep fluctuating infinitely many times as — oo, and therefore we cannot
hope to get results aboitt, converging to a limit3 However, we may hope
that thedistribution of X, settles down to a limit. This is indeed the case if
the Markov chain is irreducible and aperiodic, which is whatttaen result of
this chapter, the so-called Markov chain convergence theorem (Theorem 5.2),
says.

Let us for a moment go back to the Markov chain in Example 2.2 (the Los
Angeles weather), with state spgesg, s} and transition matrix given by (16).
We saw in Problem 2.4 (a) that if we let the initial distributioff’ be given by
1@ = (%, 2), then this distribution is preserved for all times, i@ = 1 ©
for all n. By some experimentation, we can easily convince ourselves that no
other choice of initial distributiop.© for this chain has the same property (try
it. Apparently, the distributior(%, g) plays a special role for this Markov
chain, and we call it atationary distribution .14 The general definition is as
follows.

Definition 5.1 Let (Xp, X1,...) be a Markov chain with state space
{s1, ..., S} and transition matrix P. A row vectot = (mq, ..., k) iS said
to be astationary distribution for the Markov chain, if it satisfies

13 Thatis, unless there is some stgt®f the Markov chain with the property th&; = 1; recall
Problem 4.1 (c).

14 Another term which is used by many authors for the same thimy&iant distribution . Yet
another term igquilibrium distribution.

28
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(i) = =0fori =1,....k, and}*, 7 = 1, and
(i) 7P =z, meaning thaE}‘:lm Pj=mforj=1...k

Property (i) simply means that should describe a probability distribution on
{s1, ..., ). Property (ii) implies that if the initial distribution© equalsr,
then the distribution? of the chain at time 1 satisfies

u(l) =M(O)P=7rP =,

and by iterating we see that™ = 5 for everyn.

Since the definition of a stationary distribution really only depends on the
transition matrixP, we also sometimes say that a distributiosatisfying the
assumptions (i) and (ii) in Definition 5.1 gsationary for the matrix P (rather
than for the Markov chain).

The rest of this chapter will deal with three issues: #xéstenceof sta-
tionary distributions, theiniquenessof stationary distributions, and then-
vergenceto stationarity starting from any initial distribution. We shall work
under the conditions introduced in theevious chapter (irreducibility and
aperiodicity), although for some of the results these conditions can be relaxed
somewhat® We begin with the existence issue.

Theorem5.1 (Existence of stationary distributions)For anyirreducible and
aperiodic Markov chain, there exists at least one stationary distribution.

To prove this existence theorem, we first need to prove a lemma concerning
hitting times for Markov chains. If a Markov chaigXg, X1, ...) with state
space€{sy, ..., S} and transition matriXP starts in state, then we can define

the hitting time

T,j =minfn > 1: X, =sj}

with the convention thal; ; = oo if the Markov chain never visitsj. We also
define thanean hitting time

7i,j = E[Ti j].

This means that; j is the expected time taken until we come to stgte
starting from states. For the casé = j, we callt ; the mean return time
for states. We emphasize that when dealing with the hitting tifag, there
is always the implicit assumption thp = 5.

15 By careful modification of our proofs, it is possible to show that Theorem 5.1 holds for
arbitrary Markov chains, and that Theorem 5.3 holds without the aperiodicity assumption.
That irreducibility and aperiodicity are needed for Theorem 5.2, and irreducibility is needed
for Theorem 5.3, will be established by means of counterexamples in Problems 5.2 and 5.3.
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Lemma 5.1For any irreducible aperiodic Markov chain with state space-S
{s1, ..., %} and transition matrix P, we have for any two statgssg € S that
if the chain starts in statg sthen

P(Tij <o0)=1. (24)
Moreover, the mean hitting timeg ; is finite 18 i.e.,

E[Ti,j] < co. (25)

Proof By Corollary 4.1, we can find aM < oo such tha(P'V')i,j > O for all

i,j €{l...,k}. Fix such anM, seta = min{(PM); j : i, j € {1,...,K}},
and note tha > 0. Fix two states ands;j as in the lemma, and suppose that
the chain starts ig;. Clearly,

P(T,j>M)<PXm#s)) <1l-a.

Furthermore, given everything that has happened up to tilmeve have
conditional probability at least of hitting states; at time 2V, so that

P(Ti,j >2M) = P(Tij> MP(Tj>2M|Tj > M)
< P(T,j > M)P(Xom #8j | Ti,j > M)
< 1-w?

Iterating this argument, we get for ahyhat

P(Tij >IM) = P(Ti,j > M)P(T; j > 2M [Ti,j > M)
xP(Tij >IM|Tij > 1 -DM)
< (1-ao,

which tends to 0 as— oo. HenceP(T; j = oo) = 0, so (24) is established.
To prove (25), we use the formula (1) for expectation, and get

o0 o0
E[Tj] = D PMj=nm=>)Y PT;>n (26)
n=1 n=0
oo (I+1H)M-1
= > > PTj=n
I=0 n=IM

16 i you think that this should follow immediately from (24), then take a look at Example 1.1 to
see that things are not always quite that simple.
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oo (I+1)M-1
< > P(T.J>IM)_MZP(T.,>IM)
=0 n=IM
1 M
<

MY 1l-a) =M—-—— = = .
I;( ) 1-(l-a) o  °%
O

Proof of Theorem 5.1Write, as usual(Xp, X1, ...) for the Markov chain,
S={s1,..., ] for the state space, artel for the transition matrix. Suppose
that the chain starts in stagg, and define, for =1, ..., Kk,

o
=Y P(Xn=5.To1>n)
n=0
so that in other wordsy; is the expected number of visits to statep to time
T1,1 — 1. Since the mean return tink§ T1 1] = 1.1 is finite, andp; < 71,1, we
get thatp; is finite as well. Our candidate for a stationary distributi®n

pPL P2 Pk
n:(nl,...,nk)=<—— —)

1 1 T
We need to verify that this choice of satisfies conditions (i) and (ii) of
Definition 5.1.

We first show that the relatioE!‘=1 7i B,j = mj in condition (ii) holds for
j # 1 (the casg = 1 will be treated separately). We get (hold on!)

Pj
7t'=—=— P(Xn =sj, T1,1 > n)
J 71,1 Tll Z " )
1
=— Z P(Xn =sj, Tr1 > 1) (27)
71,1 =1
1 (0.¢]
= — > PXn=s5j,TL1>n-1) (28)
1 n=1

k

Y PXn1=5.Xn=s5,TLi>n-1)

n=1li=1

k

Y PXn1=5.Ti1>n-DPXn=5; | Xn-1=5)
iggiz (29)

I I
£l= gl
[ M8

1 o k
= —ZZ R jPXn-1=5.Ti1>n-1)
1 n=1li=1
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1 k 00
— Y PjY PXn1=s,Tei>n-1

a1 i=1 n=1

k 00

1
EZP"" Y PXm=s,To1>m)

i=1 m=0

k k
EPIEVILNNE oY (30)
i=1

T11

where in lines (27), (28) and (29) we used the assumptionjtkat ; note also
that (29) uses the fact that the evéfi 1 > n — 1} is determined solely by the
variablesXg, ..., Xn—_1.

Next, we verify condition (ii) also for the cage= 1. Note first thap; = 1;
this is immediate from the definition @f. We get

o
pr=1 = P(Ty1<o00) = ZP(Tl,l =n
n—1
k
Z PXn—1=5,Ty1=n)
i=1

I
2

>
[
e

I
2

PXnci=5,Ty1>n—-DPXh=s1| Xno1 = 9)

P.iPXhn—1=5,Ty1>n=-1)

Il
e T
o i

o]
N
Il

N

~

= Zﬂ,lzmxnfl:s,n,pn—l)

i=1 n=1
k 00

= Y P1)Y PXm=s.Tp1>m)
i=1 m=0

Hence

k
=2 P
11 i=1

7:11

By combining this with (30), we have established that condition (ii) holds for
our choice ofr.
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It remains to show that condition (i) holds as well. That> O fori =
1,..., kis obvious. To see thzﬁjikzl i = 1 holds as well, note that

n1 = E[Ta] = Y P(T1>n) (31)

I
0 1

k
D P(Xp=s§,T11>n)
n=0i=1
oo
> PXn=s.To1>n)
n=0

M I~ 1

Il
N

)

(where equation (31) uses (26)) so that

m=—) p=1,
i—1 1§
and condition (i) is verified. O

We shall go on to consider the asymptotic behavior of the distribytiéh
of a Markov chain with arbitrary initial distribution?. To state the main
result (Theorem 5.2), we need to define what it means for a sequence of proba:
bility distributionsv®, v@ | ... to converge to another probability distribution
v, and to this end it is useful to have a metric on probability distributions.
There are various such metrics; one which is useful here is the so-tatibéd
variation distance.

Definition 5.21f v® = P, ..., vP) andv@ = P, ... v?) are prob-
ability distributions on S= {sl, ..., %}, then we define thtotal variation
distancebetween'® andv®@ as
O oo I o o
drv(v', v )ZEZM — Y l. (32)

i=1

If v, v@ . andv are probability distributions on S, then we say thé&?
: - " v

converges tov in total variation as n — oo, writing v™ — v, if

lim drv(™,v) = 0.
n—oo

The constang in (32) is designed to make the total variation distanggtdke
values between 0 and 1. Ifd(v®, v@) = 0, themv® = v@_ In the other
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extreme caset@ (v?, v@) = 1, we have that™® andv@ are “disjoint” in

the sense tha$ can be partitioned into two disjoint subs&sandS’ such that
v puts all of its probability mass i, andv® puts all of its inS”. The total
variation distance also has the natural interpretation

drv (v, v@) = rpa%qv(”(A) —v@ A, (33)
C

an identity that you will be asked to prove in Problem 5.1 below. In words,

the total variation distance betweef? andv® is the maximal difference

between the probabilities that the two distributions assign to any one event.
We are now ready to state the main result about convergence to stationarity.

Theorem 5.2 (The Markov chain convergence theoremlet (Xg, X1, ...)
be an irreducible aperiodic Markov chain with state space-Ssy, ..., &},
transition matrix P, and arbitrary initial distributionx@. Then, for any
distribution which is stationary for the transition matrix P, we have
QA (34)

What the theorem says is that if we run a Markov chain for a sufficiently long
time n, then, regardless of what the initial distribution was, the distribution at
time n will be close to the stationamjistributionsz. This is often referred to as
the Markov chain approachireguilibrium asn — oo.

For the proof, we will use a so-callembupling argument; coupling is one
of the most useful and elegant techniques in contemporary probability. Before
doing the proof, however, the reader is urged to glance ahead at Theorem 5.2
and its proof, to see how easily Theorem 5.2 implies that there cannot be more
than one stationary distribution.

Proof of Theorem 5.2When studying the behavior @i, we may assume
that (Xo, X1, ...) has been obtained by the simulation method outlined in
Chapter 3, i.e.,

Xo = ¥,0 (Uo)
X1 = ¢(Xo, U1)

X2 = ¢(X1,Up)

wherev, o is a valid initiation function foru©, ¢ is a valid update func-
tion for P, and(Ug, U1, ...) is an i.i.d. sequence of uniform ,[@] random
variables.
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Next, we introduce a second Markov ch&in X/, X}, ...) by letting /5
be a valid initiation function for the distribution, letting (Ug, Uy, ...) be
another i.i.d. sequence (independentldf, Uy, . . .)) of uniform [0, 1] random
variables, and setting

Xo = ¥z (Uo)
X} = ¢ (X5 Up)
X} = p(X4, Up)

Sincer is a stationary distribution, we have théf has distributionz for any
n. Also, the chaingXo, X1,...) and (X, X, ...) are independent of each
other, by the assumption that the sequeritsUs, ...) and(U;, Uy, ...) are
independent of each other.

A key step in the proof is now to show that, with probability 1, the two
chains will “meet”, meaning that there exists arsuch thatX, = X;. To
show this, define the “first meeting time”

T =min{n: Xp = X;}

with the convention thal = oo if the chains never meet. Since the Markov
chain (Xo, X1, ...) is irreducible and aperiodic, we can find, using Corol-
lary 4.1, anM < oo such that

(PM)ij >0 foralli, j e {1,...,k}.
Set

a=min{(PM)j:iefl ... Kk,
and note tha& > 0. We get that
PT<M) = P(Xu=Xy)
P(Xm = s1, Xy = s1)
P(Xm = s)P(Xy = s1)

k k
<Z P(Xo=5.Xu = so) (Z P(Xp =5, Xy = 51))

i=1 i=1

A%

17 This is what characterizes the coupling method: to construct two or more processes on the same
probability space, in order to draw conclusions about their respective distributions.
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k
(ZP(XO:3>P(XM = 51| Xo=S))

i=1

P(Xp =S)P(Xy =s11 Xp = s))

k
P(XO—S)> (aZP(X6=s)> = o
i=1

[\
Y
Q
I
-

so that
P(T > M) <1-d?.

Similarly, given everything that has happened up to tishewe have condi-
tional probability at least? of having Xom = X’z,\,I = 51, SO that

P(Xom # Xop | T > M) <1—a?.
Hence,

P(T > 2M)

P(T > M)P(T > 2M|T > M)
1—a®P(T >2M|T > M)

(1 — a®)P(Xam # Xopy | T > M)
1—a??2.

IAIA

IA

By iterating this argument, we get for ahyhat
P(T >IM) < (1 - a?
which tends to 0 ak— oo. Hence,

lim P(T >n)=0 (35)

n—oo
so that in other words, we have shown that the two chains will meet with
probability 1.
The next step of the proof is to construct a third Markov chaifi, X7, ...),
by setting
Xg = Xo (36)
and, for eachn,

v | o(XR, Unyr) if XG # X,
n+1 — ¢(X// U/+l) if qu _ X(]

In other words, the chainXg, X{,...) evolves exactly like the chain
(Xo, X1, ...) until the timeT when it first meets the chai(Xg, X, ...). It
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then switches to evolving exactly like the chai,, X}, ...). Itis important
to realize that X, X/, ...) really is a Markov chain with transition matri.
This may require a pause for thought, but the basic reason why it is true is
that at each update, the update function is exposed to a “fresh” new uniform
[0, 1] variable, i.e., one which is independent of all previous random variables.
(Whether the new chain is exposeddg, or to Ur/]Jrl depends on the earlier
values of the uniform [01] variables, but this does not matter sinde, 1 and
Ur/1+1 have the same distribution and are both independent of everytimig
has happened up to tinme)

Becauseof (36), we have thakj has distributionu@. Hence, for any,
X! has distributionu™. Now, forary i € {1, ..., k} we get

W —m = PXj=s)-P(X;=5)
< P(Xp=s,X,#8)
< P(Xy# Xp)
= P(T>n

which tends to 0 am — oo, due to (35). Using the same argument (with the
roles of X|; and X{, interchanged), we see that

7 — iV < P(T > n)

as well, again tending to 0 &as— oco. Hence,

lim | — 7| =0.
n—o0
This implies that

. ; k
Jim drve® ) = im (30t —ml) @D
= 0

since each term in the right-hand side of (37) tends to 0. Hence, (34) is
established. 0

Theorem 5.3 (Uniqueness of the stationary distribution)Any irreducible
and aperiodic Markov chain has exactly one stationary distribution.

Proof Let (Xp, X1, ...) be an irreducible and aperiodic Markov chain with
transition matrixP. By Theorem 5.1, there exist leastone stationary
distribution for P, so we only need to show that thereatamostone stationary
distribution. Letw and =’ be two (a priori possibly different) stationary
distributions forP; our task is to show that = =’.
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Suppose that the Markov chain starts with initial distributjo® = '
Thenu™ = 7/ for all n, by the assumption that’ is stationary. On the other

hand, Theorem 5.2 tells us that” —% =, meaning that
lim drv(u™,7)=0.
n—o0
Sinceu™ = x/, this is the same as
lim drv(z’,7) =0.
n—oo

But drv (7’, w) does not depend om and hence equals 0. This implies that
7 = 7', so the proof is complete. O

To summarize Theorems 5.2 and 5.3: If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distributigrand the distribution
w™ of the chain at timen approaches asn — oo, regardless of the initial
distribution©@.

Problems
5.1 (7) Prove the formula (33) for total variation distance. Hint: consider the event

A={seS: 1D > 1@ ().

5.2 (4) Theorems 5.2 and 5.3 fail for reducible Markov chains. Consider the
reducible Markov chain in Example 4.1.

(a) Show that botlr = (0.375 0.625,0, 0) andz’ = (0, 0, 0.5, 0.5) are station-
ary distributions for this Markov chain.

(b) Use (a) to show that the conclusions of Theorem 5.2 and 5.3 fail for this
Markov chain.

5.3 (6) Theorem 5.2 fails for periodic Markov chains. Consider the Markov chain
(Xp, X1, ...) describing a knight making random moves on a chessboard, as in
Problem 4.3 (c). Show that(™ does not converge in total variation, if the chain is
started in a fixed state (such as the squdref the chessboard).

5.4 (7) Ifthere are two different stationary distributions, then there are infinitely
many. Suppose thatXg, X1, ...) is a reducible Markov chain with two different
stationary distributions and=’. Show that, for anyp € (0, 1), we get yet another
stationary distribution apz + (1 — p)n’.

5.5 (6) Show that the stationary distribution obtained in the proof of Theorem 5.1 can

be written as
< 1 1 1 )
T=— —,...,— ).
711 122 Tk, k
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Reversible Markov chains

In this chapter we introduce a special class of Markov chains known as the

reversible ones. They are called so because they, in a certain sense, look the
same regardless of whether time runs backwards or forwards; this is made
precise in Problem 6.3 below. Such chains arise naturally in the algorithmic

applications of Chapters 7-13, as well as in several other applied contexts. We
jump right on to the definition:

Definition 6.1 Let (Xg, X1,...) be a Markov chain with state space S

{s1,...,} and transition matrix P. A probability distributior on S is
said to bereversible for the chain (or for the transition matrix P) if for all
i,je{l,...,k} wehave

mi R, =mjPj,. (38)

The Markov chain is said to be reversible if there exists a reversible distribution
for it.

If the chain is started with the reversible distributionthen the left-hand side

of (38) can be thought of as the amount of probability mass flowing at time 1
from states to states;. Similarly, the right-hand side is the probability mass
flowing froms;j to 5. This seems like (and is!) a strong form of equilibrium,
and the following result suggests itself.

Theorem 6.1 Let (Xg, X1,...) be a Markov chain with state space S
{s1, ..., S} and transition matrix P. lfr is a reversible distribution for the
chain, then it is also a stationary distribution for the chain.

39
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Fig. 4. A graph.

Proof Property (i) of Definition 5.1 is immediate, so it only remains to show
that for anyj € {1, ..., k}, we have

k
T = Zm P.j.
i=1

We get
k k k
T ZJTJZP“ =Z7Tij,i =Zmp|,j,
i=1 i=1 i=1
where the last equality uses (38). O

We go on to consider some examples.

Example 6.1: Random walks on graphs.This example is a generalization of
the random walk example in Figure 1.gkaph G = (V, E) consists of avertex
setV = {vy, ..., vk}, together with aredge setE = {eq,...,q}. Each edge
connects two of the vertices; an edge connecting the vertjcasdv; is denoted
(vi,vj). No two edges are allowed to connect the same pair of vertices. Two
vertices are said to heeighborsif they share an edge.

For instance, the graph in Figure 4 has verteX\éet {vq, ..., vg} and edge
set

E = {{v1,v3), (v1. va), (v2, v3), (v2, v5), (v2, VB), (V3. V4),
(v3, v7), (v3, vg), (V4. vg), (Us, Ve), (VG, V7), (V7, Vg)}.
A random walk on a graps = (V, E) is a Markov chain with state spate=
{v1, ..., vk} and the following transition mechanism: If the random walker stands

at a vertexv; at timen, then it moves at tima& + 1 to one of the neighbors of
vj chosen at random, with equal probability for each of the neighbors. Thus, if
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Ri1 Pzz '%3 Rk

S

Rkt

Fig. 5. Transition graph of a Markov chain of the kind discussed in Example 6.2.

we denote the number of neighbors of a verteby d;, then the elements of the
transition matrix are given by

Pi= Elﬂ if vj andv; are neighbors
) 0 otherwise.

It turns out that random walks on graphs are reversible Markov chains, with
reversible distributionr given by

_(d1 do dk
whered = Zikzl di. To see that (38) holds for this choicef we calculate
—_— %‘ralf L= %’ralf 7jPji if v andv; are neighbors
h 0=mjPj; otherwise.

For the graph in Figure 4, (39) becomes
2 3 5 3 2 3 3 3
24’ 24’ 24’ 24’ 24’ 24’ 24’ 24

so that in equilibriumys is the most likely vertex for the random walker to be at,
whereas1 andvsg are the least likely ones.

Example 6.2 Let (Xg, X1,...) be a Markov chain with state spa® =
{s1,..., %} and transition matriX?, and suppose that the transition matrix has
the properties that

() B,j > 0wheneveti — j| =1, and

(i) R j =0wheneveti — j| > 2.

Such a Markov chain is often calledath-and-death process and its transition
graph has the form outlined in Figure 5 (with some or all of #g-"loops”
possibly being absent). We claim that any Markov chain of this kind is reversible.
To construct a reversible distributianfor the chain, we begin by setting| equal

to some arbitrary strictly positive numbar The condition (38) with = 1 and

j = 2 forces us to take

k

JT. .

2
P21
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0.75
—
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OFEO
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Fig. 6. Transition graph of the Markov chain in Example 6.3.

Applying (38) again, now withh = 2 andj = 3, we get

k= n3P23 _ aP12P23 _
P32 P2 1P3 2

We can continue in this way, and get

i—1
«_ alliZ1Pi4
B
I—H=1 Pl
for eachi. Thenz* = (ni‘, e nf(k) satisfies the requirements of a reversible
distribution, except possibly that the entries do not sum to 1, as is required for any

probability distribution. But this is easily taken care of by dividing all entries by
their sum. It is readily checked that

* * *

T T2 Ty

Zk *’Zk ﬂ*""’z!( *
i=17% =17 i=17

T

ﬂ=(ﬂ1,ﬂ2,.-.,ﬂk)=<

is a reversible distribution.

Having come this far, one might perhaps get the impression that most Markov
chains are reversible. This is not really true, however, and to make up for this
false impression, let us also consider an example of a Markov chain which is
notreversible.

Example 6.3: A nonreversible Markov chain. Let us consider a modified
version of the random walk in Figure 1. Suppose that the coin tosses used by
the random walker in Figure 1 abéased in such a way that at each integer time,

he moves one step clockwise with probabil%yand one step counterclockwise

with probability %. This yields a Markov chain with the transition graph in

Figure 6. Itis clear that = (;11, ;11, %, 711) is a stationary distribution for this chain

(right?). Furthermore, since the chain is irreducible, we have by Theorem 5.3 and
Footnote 15 in Chapter 5 that this is the only stationary distribution. Because of



Reversible Markov chains 43

Theorem 6.1 we therefore neadto be reversible in order for the Markov chain
to be reversible. But if we, e.g., try (38) with= 1 andj = 2, we get

13 3 1 11
—_—,e = — > — = — . —
4 4 16 16 4 4
so thatrq Py 2 # m2P2 1, and reversibility fails. Intuitively, the reason why this

chain is not reversible is that the walker has a tendency to move clockwise. |If
we filmed the walker and watched the movie backwards, it would look as if he

preferred to move counterclockwise, so that in other words the chain behaves
differently in “backwards time” compared to “forwards time”.

m1P1o = =mPo1

Let us close this chapter by mentioning the existence of a simple and beautiful
equivalence between reversible Markov chains on the one hand, and resistol
networks on the other. This makes electrical arguments (such as the series an
parallel laws) useful for analyzing Markov chains, and conversely, probabilis-
tic argument available in the study of electrical networks. Unfortunately, a
discussion of this topic would take us too far, considering the modest format
of these notes. Suggestions for further reading can be found in Chapter 14.

Problems

6.1 (6) The king on the chessboard.Recall from Problem 4.3 (a) the king making
random moves on a chessboard. If you solved that problem correctly, then you
know that the corresponding Markov chain is irreducible and aperiodic. By The-
orem 5.3, the chain therefore has a unique stationary distributicd@omputer .

Hint: the chain is reversible, and can be handled as in Example 6.1.

6.2 (8) Ehrenfest's urn model. Fix an integerk, and imagine two urns, each
containing a number of balls, in such a way that the total number of balls in the two
urns isk. At each integer time, we pick one ball at random (each with probability
%) and move it to the other ur® If X denotes the number of balls in the first
urn, then(Xg, X1, ...) forms a Markov chain with state spaf . . ., k}.

(@) Write down the transition matrix of this Markov chain.
(b) Show that the Markov chain is reversible with stationary distributiagiven
by
k!

o —k .
n,_”(k_i)!z fori =0,...,k.

(c) Show that the same distribution (known as Bieomial distribution ) also
arises as the distribution of a binomig, %) random variable, as defined in
Example 1.3.

(d) Can you give an intuitive explanation of why Ehrenfest's urn model and Ex-
ample 1.3 give rise to the same distribution?

18 There are various interpretations of this model. Ehrenfest’s original intention was to model
diffusion of molecules between the two halves of a gas container.
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6.3 (7) Time reversal. Let (Xg, X1, ...) be a reversible Markov chain with state
spaceS, transition matrixP, and reversible distributiom. Show that if the chain is
started with initial distribution.(® = 7, then for anyn and anys,,S;.....S, €
S, we have

P(Xo =S¢, X1 =S;,---» Xn=95,) =PXo =5, X1 =S,_1:---» Xn =S) -

In other words, the chain is equally likely to make a tour through the states
Sg: - - - S, in forwards as in backwards order.
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Markov chain Monte Carlo

In this chapter and the next, we consider the following problem: Given a prob-
ability distributionr onS = {sy, ..., &}, how do we simulate a random object
with distributionsz ? To motivate the problem, we begin with an example.

Example 7.1: The hard-core model. Let G = (V, E) be a graph (recall
Example 6.1 for the definition of a graph) with vertex &t= {vq,..., vk}

and edge seE = {e1,...,q}. In the so-called hard-core model @), we
randomly assign the value 0 or 1 to each of the vertices, in such a way that no
two adjacent vertices (i.e., no two vertices that share an edge) both take the value
1. Assignments of 0's and 1's to the vertices are cafledfigurations, and can

be thought of as elements of the ser1)V. Configurations in which no two 1’s
occupy adjacent vertices are calliedsible. The precise way in which we pick

a random configuration is to take each of the feasible configurations with equal
probability. We writeig for the resulting probability measure ¢@, 1}V . Hence,

for & € 0,1}V, we have

% if £ is feasible

ne) = (40)

0 otherwise,

whereZg is the total number of feasible configurations @®r See Figure 7 for
a random configuration chosen accordingug in the case wher6& is a square
grid of size 8x 8.

This model (with the grapls being a three-dimensional grid) was introduced
in statistical physics to capture some of the behavior of a gas whose particles
have nonnegligible radii and cannot overlap; here 1's represent particles and 0’s
represent empty locations. (The model has also been used in telecommunications
for modelling situations where an occupied node disables all its neighboring
nodes.)

A very natural question is now: What is the expected number of 1's in a random
configuration chosen according s ? If we writen(§) for the number of 1's in
the configuratiorg, and X for a random configuration chosen accordingug,

45
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Fig. 7. Afeasible configuration (chosen at random according to the probability measure
ug), whereG is a square grid of size 8 8. Black (resp. white) circles represent 1's
(resp. 0's). Note that no two 1's occupy adjacent vertices.

then this expected value is given by

1
ENC0l= Y n@uc®=5- )Y n@l¢isteasblg.  (41)
se(0.V TR

where Zg is the total number of feasible configurations for the gr&h To
evaluate this sum may be infeasible unless the graph is very small, since the
number of configurations (and hence the number of terms in the sum) grows ex-
ponentially in the size of the graph (for instance, we fét2 1.8. 109 different
configurations for the moderately-sized graph in Figure 7; in physical applications
one is usually interested in much bigger graphs). It may help somewhat that
most of the terms take the value 0, but the number of nonzero terms grows
exponentially as well. Note also that the calculationZef is computationally
nontrivial.

When the exact expression in (41) is beyond what our computational resources
can deal with, a good idea may be to revert to simulations. If we know how to sim-
ulate a random configuratiod with distribution ., then we can do this many
times, and estimat&[n(X)] by the average number of 1’s in our simulations.
By the Law of Large Numbers (Theorem 1.2), this estimate converges to the true
value ofE[n(X)], as the number of simulations tends to infinity, and we can form
confidence intervals etc., using standard statistical procedures.

With this example in mind, let us discuss how we can simulate a random
variableX distributed according to a given probability distributioron a state
spaceS. In principle it is very simple: just enumerate the elementSafs
S1, ..., S, and then let

X=vy(U)
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whereU is a uniform [Q 1] random variable, and the functign: [0, 1] — S
is given by

s forx e [0, m(s1))
s forx e [n(s1), n(s1) + ()

Y =15 forxe [Zij;ll”(si)’ Zij=1”(sj)) o

's< for x € ['Z'j‘jn(sj), 1]

as in (18). By arguing as in Chapter 3, we see thit givesX the desired
distribution z. In practice, however, this approach is infeasible unless the
state spacé& is small. For the hard-core model on a square grid the size of
a chessboard or bigger, the evaluation of the functioim (42) becomes too
time-consuming for this method to be of any practical use.

It is precisely in this kind of situation that thdarkov chain Monte Carlo
(MCMC) method is useful. The method originates in physics, where the
earliest uses go back to the 1950's. It later enjoyed huge booms in other areas
especially in image analysis in the 1980’s, and in the increasingly important
area of statistics known &ayesian statistics® in the 1990's.

The idea is the following: Suppose we can construct an irreducible and
aperiodic Markov chair{Xp, X1, ...), whose (unique) stationary distribution
is . If we run the chain with arbitrary initial distribution (for instance, starting
in a fixed state), then the Markov chain convergence theorem (Theorem 5.2)
guarantees that the distribution of the chain at timeonverges tor, as
n — oo. Hence, if we run the chain for a sufficiently long tinme then
the distribution of X, will be very close tor. Of course this is just an
approximation, but the point is that the approximation can be made arbitrarily
good by picking the running time large.

A natural objection at this stage is: How can it possibly be any easier to
construct a Markov chain with the desired property than to construct a random
variable with distributionr directly? To answer this, we move straight on to
an example.

Example 7.2: An MCMC algorithm for the hard-core model. Let us consider
the hard-core model in Example 7.1 on a gr&pk- (V, E) (which for concrete-
ness may be taken to be the one in Figure 7) With= {v1, ..., vk}. In order

19 infact, it may be argued that the main reason that the Bayesian approach to statistics has gainec
ground compared to classical (frequentist) statistics is that MCMC methods have provided the
computational tool that makes the approach feasible in practice.
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to get an MCMC algorithm for this model, we want to construct a Markov chain
whose state spac®is the set of feasible configurations fGr, i.e.,

S={t {0, 1}V : £isfeasiblg. (43)

In addition, we want the Markov chain to be irreducible and aperiodic, and have
stationary distributiomvg given by (40).

A Markov chain(Xg, X1, ...) with the desired properties can be obtained using
the following transition mechanism. At each integer time 1, we do as follows:

1. Pick avertew € V at random (uniformly).

2. Toss a fair coin.

3. If the coin comes up heads, and all neighbors te#tke value 0 inXp, then let
Xn41(v) = 1; otherwise leX4.1(v) = 0.

4. For all verticesw other thanv, leave the value atv unchanged, i.e., let
Xnt1(w) = Xn(w).

It is not difficult to verify that this Markov chain is irreducible and aperiodic; see
Problem 7.1. Hence, it just remains to show thai is a stationary distribution
for the chain. By Theorem 6.1, it is enough to show thatis reversible. Letting

P: ¢/ denote the transition probability from stageto stateg’ (with transition
mechanism as above), we thus need to check that

nGE)Ps g = ngE)Py ¢ (44)

for any two feasible configurationsandé’. Let us writed = d(&, &) for the
number of vertices in which andg’ differ, and treat the three casgts= 0,d = 1

andd > 2 separately. Firstly, the cade= 0 means that = £’, in which case the
relation (44) is completely trivial. Secondly, the cabe- 2 is almost as trivial,
because the chain never changes the values at more than one vertex at a time
making both sides of (44) equal to 0. Finally, consider the chse 1 whereé

andé¢’ differ at exactly one vertex. Then all neighbors of must take the value 0

in both& andg’, since otherwise one of the configurations would not be feasible.
We therefore get

11
uGE)Ps g = Zak nG(E )Py ¢
and (44) is verified (recall that is the number of vertices). Hence the chain has
uG asareversible (and therefore stationary) distribution.

We can now simulate this Markov chain using the methods of Chapter 3. A
convenient choice of update functignis to split the unit interval [01] into 2k
subintervals of equal Iengt%z, representing the choices

(v1, heads, (v1, tails), (vp, heads, ..., (v, tails)

in the above description of the transition mechanism. If we now run the chain for
a long timen, starting with an arbitrary feasible initial configuration such as the
“all 0’s” configuration, and outpuXp, then we get a random configuration whose
distribution is approximately.g.
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The above is a typical MCMC algorithm in several respects. Firstly, note that
although it is only required that the chain has the desired distribution as a
stationary distribution, we found a chain with the stronger property that the
distribution is reversible. This is the case for the vast majority of known
MCMC algorithms. The reason for this is that in most nontrivial situations,
the easiest way to construct a chain with a given stationary distribuatisriio
make sure that the reversibility condition (38) holds.

Secondly, the algorithm in Example 7.2 is an example of a commonly used
special class of MCMC algorithms known &ibbs samplers These are
useful to simulate probability distributions on state spaces of the forsY,
whereSandV are finite sets. In other words, we have a finite\s&if vertices
with a finite setS of attainable values at each vertex, ané the distribution
of some random assignment of value$ito the vertices irV (in the hard-core
model example, we hav8 = {0, 1}). The Gibbs sampler is a Markov chain
which at each integer time+ 1 does the following.

1. Pick avertex € V at random (uniformly).

2. Pick X,+1(v) according to the conditionad-distribution of the value at
given that all other vertices take values accordingto

3. LetXp1(w) = Xp(w) for all verticesw € V exceptv.

It is not hard to show that this Markov chain is aperiodic, and that itthas a
reversible (hence stationary) distribution. If in addition the chain is irreducible
(which may or may not be the case depending on which elemerg¥% bfave
nonzerar -probability), then this Markov chain is a correct MCMC algorithm
for simulating random variables with distributian We give another example:

Example 7.3: An MCMC algorithm for random g-colorings.LetG = (V, E)
be a graph, and le > 2 be an integer. Ag-coloring of the graphG is an
assignment of values frorfd, ..., g} (thought of asg different “colors”) with
the property that no two adjacent vertices have the same value (color). By a
randomg-coloring forG, we mean a&-coloring chosen uniformly from the set of
possibleg-colorings forG, and we writepg g for the corresponding probability
distributior?® on V..

For a vertexo € V and an assignmegtof colors to the vertices other than
the conditionalpg q-distribution of the color ab is uniform over the set of all
colors that are not attained énat some neighbor of (right?). A Gibbs sampler

20 e are here making the implicit assumption that there exists at leagtoolering forG. This
is not always the case. For instanceqi= 2 andG consists of three vertices connected in
a triangle, then n@-coloring can be found. In general it is a difficult combinatorial problem
to determine whetheg-colorings exist for a given choice @ andq. The famoudour-color
theorem states that ifG is a planar graph (i.eG is a graph that can be drawn in the plane in
such a way that no two edges cross each other),dhert is enough.
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for randomg-colorings is therefore as¥ -valued Markov chain where at each
timen + 1, transitions take place as follows.

1. Pick avertew € V at random (uniformly).

2. PickXp41(v) according to the uniform distribution over the set of colors that
are not attained at any neighbor:of

3. Leave the color unchanged at all other vertices, i.e.X}gt1(w) = Xn(w)
for all verticesw € V exceptv.

This chainis aperiodic and hasg q as a stationary distribution; see Problem 7.3.
Whether or not the chain is irreducible depend<sandq, and it is a nontrivial
problem in general to determine tH%.In case we can show that it is irreducible,
this Gibbs sampler becomes a useful MCMC algorithm.

Let us also mention that a commonly used vari@the Gibbs sampler is the
following. Instead of picking the vertices to update at random, we can cycle
systematically through the vertex set. For instanc®/ i& {v1, ..., v}, we

may decide to update vertex

vy attimeslk+1,2k+1,...
vy attimes2k+2,2k+2,...

vi attimesi,k+i,2k+i,... (45)

vk attimesk, 2k, 3k, ....

This gives an inhomogeneous Markov chain (because ther& ditferent
update rules used at different times) which is aperiodic and has the desired
distribution as a reversible distribution. Furthermore, it is irreducible if and
only if the original “random vertex” Gibbs sampler is irreducible. To prove
these claims is reasonably straightforward, but requires a notationally some-
what inconvenient extension of the theory in Chapters 4-6 to the case of
inhomogeneous Markov chains; we therefore omit the details. This variant
of the Gibbs sampler is referréd as thesystematic sweep Gibbs sampler
Another important general procedure for designing a reversible Markov
chain for MCMC algorithms is the construction of a so-calMétropolis
chain22 Let us describe a way (not the most general possible) to con-
struct a Metropolis chain for simulating a given probability distributiorn=
(71, ..., k) on a setS = {s1,...,%}. The first step is to construct some

21 Compare with the previous footnote. One thing which is not terribly hard is to show that for
any given grapl@, the chain is irreducible for all sufficiently large

22 A more general (and widely used) class of Markov chains for MCMC simulation is that of the
so-calledVetropolis—Hastings chains see the book [GRS] mentioned in Chapter 14.
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graphG with vertex setS. The edge set (neighborhood structure) of this graph
may be arbitrary, except that

(i) the graph must be connected in order to assure irreducibility of the result-
ing chain, and

(ii) each vertex should not be the endpoint of too many edges, since otherwise
the chain becomes computationally too heavy to simulate in practice.

As usual, we say that wwstatess ands; are neighbors if the graph contains
an edge(s, sj) linking them. We also writed; for the number of neighbors
of states. The Metropolis chain corresponding to a given choicéolias
transition matrix

al;m'”{%ﬁv 1} if § ands;j are neighbors

0 if 5 # sj are not neighbors
1- Y Fmin{2d 1} ifi=j,
|

Llas

R.j= (46)

where the sum is over all statgsthat are neighbors of. This transition
matrix corresponds to the following transition mechanism: Supposethat
s . First pick a statsj according to uniform distribution on the set of neighbors
of 5 (so that each neighbor is chosen with probabigi{y Then set

. ™ . ﬂ'di
sj with probability mm{#djf, 1}

Xni1 = 4
" s with probability 1— min{%%, 1} .

To show that this Markov chain hasas its stationary distribution, it is enough
to verify that the reversibility condition

P =Py (47)

holds for alli and j. We proceed as in Example 7.2, by first noting that (47)
is trivial for i = j. For the case whelie# j ands ands; are not neighbors,
(47) holds because both sides are 0. Finally, we split the case sharal

sj are neighbors into two subcases according to whether orz—i‘éjjbtz 1. If

i d;

g > 1, then
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so that (47) holds. Similarly, H?Td] <1, then

and again (47) holds. Se is a reversible (hence stationary) distribution for
the Metropolis chain, which therefore canumed for MCMC simulation of.

Problems

7.1 (5) Show that the Markov chain used for MCMC simulation of the hard-core
model in Example 7.2 is

(a) irreducible?d and
(b) aperiodic?4

7.2 (8%) Write a computer program, using the algorithm in Example 7.2, for simulat-
ing the hard-core model on a genekak k square grid. Then do some simulation
experiment>

7.3 (7) Show, by arguing as in Example 7.2 and Problem 7.1 (b), that the Gibbs
sampler for random-colorings in Example 7.3

(@) haspg q as a stationary distribution, and
(b) is aperiodic.

7.4 (6) A generalized hard-core model.A natural generalization of the hard-core
model is to allow for different “packing intensities” of 1's in the graph. This is
done by introducing a parametgr > 0, and changing the probability measure
e defined in (40) into a probability measuggs ; in which each configuration
£ € {0, 1}V gets probability

ANE) . . .

5— if £ isfeasible
ne (€)= Zex 48
6.6 0 otherwise, (“8)

wheren(£) is the number of 1's i, andZg , = Y ¢ c(0.1yv A" ¢ is feasible
is a normalizing constant. As follows from a direct calculatitiis means that for

23 Hint: We need to show that for any two feasible configuratipasdé’, the chain can go from
£ to £’ in a finite number of steps. The easiest way to show this is to demonstrate that it can
go from¢ to the “all 0’s” configuration in a finite number of steps, and then from the “all 0's”
configuration tct’ in a finite number of steps.

24 Hint: To show that the period of a stages 1, it is enough to show that the Markov chain can
go fromé to & in one step (see also Problem 4.2).

25 When you have managed to do this for, say, a<100 square lattice, consider the following:
Think back to Example 2.3 (the Internet as a Markov chain). Did that example seem to have a
ridiculously huge state space? Well, you have just simulated a Markov chain whose state space
is even bigger! It is not hard to show that the state sifhae defined in (43) contains at least

2
2K%/2 = 250 & 1.1.10'5 elements — much larger than the number of web pages on the Internet
today.
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any vertexv € V, the conditional probability that takes the value 1, given the
values at all other vertices, equals

%4—1 if all neighbors ofv take value 0
0 otherwise.

The model's “desire” to put a 1 at therefore increases gradually asncreases
from 0 to co. The caser = 1 reduces to the standard hard-core model in
Example 7.1.

Construct an MCMC algorithm for this generalized hard-core model.
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Fast convergence of MCMC algorithms

Although the MCMC approach to simulation, described in the previous chap-
ter, is highly useful, let us note two drawbacks of the method:

(A) The main theoretical basis for the MCMC method is Theorem 5.2, which
guarantees that the distributipd™ at timen of an irreducible and ape-
riodic Markov chain started in a fixed state converges to the stationary
distribution asn — oo. But this does not imply that™ ever becomes
equalto r, only that it comes very close. As a matter of fact, in the vast
majority of examples, we have™ # 7 for all n (see, e.g., Problem 2.3).
Hence, no matter how largeis taken to be in the MCMC algorithm, there
will still be some discrepancy between the distribution of the output and
the desired distribution.

(B) In order to make the error due to (A) small, we need to figure out how large
n needs to be taken in order to make sure that the discrepancy between
w™ and  (measured in the total variation distanceyu™, 7)) is
smaller than some given > 0. In many situations, it has turned out
to be very difficult to obtain upper bounds on how lamg@eeds to be
taken, that are small enough to be of any practicaPfise.

Problem (A) above is in itself not a particularly serious obstacle. In most
situations, we can tolerate a small error in the distribution of the output, as long
as we have an idea about how small it is. It is only in combination with (B)
that it becomes really bothersome. Due to difficulties in determining the rate of

26 general, it is possible to extract an explicit upper bound (dependirsgaoml on the chain)
by a careful analysis of the proof of Theorem 5.2. However, this often leads to bounds of
astronomical magnitude, such aspidu™, 7) < 0.01 wheneven > 1010%. This is of
course totally useless, because the simulation 6@‘1§teps of a Markov chain is unlikely to
terminate during our lifetimes. In such situations, one can often suspect that the convergence is

much faster (so that perhaps= 10° would suffice), but to actually prove this often turns out
to be prohibitively difficult.

54
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convergence to stationarity in Markov chains, much of today’s MCMC practice
has the following character: A Markov chaiX{, X1, . ..) whose distribution

w™ converges to the desired distributienas the running time tends taco,

is constructed. The chain is then run for a fairly long timgsay, 1¢ or 1),

and X;, is output, in the hope that the chain has come close to equilibrium by
then. But this is often just a matter of faith, or perhaps some vague handwaving
arguments.

This situation is clearly unsatisfactory, and a substantial amount of effort
has in recent years been put into attempts at rectifying it. In this chapter and in
Chapters 10-12, we shall take a look at two different approaches. The one we
consider in this chapter is to try to overcome the more serious problem (B) by
establishing useful bounds for convergence rates of Markov chains. In general,
this remains a difficult open problem, but in a number of specific situations,
very good results have been obtained.

To illustrate the type of convergence rate results that can be obtained, and
one of the main proof techniques, we will in this chapter focus on one particular
example where the MCMC chain has been successfully analyzed, namely the
randomg-colorings in Example 7.3.

A variety of different(but sometimes related) techniques for proving fast
convergence to equilibrium of Markov chains have been developed, including
eigenvalue bounds, path and flow arguments, various comparisons betweer
different chains, and the concept of strong stationary duality; see Chapter 14
for some references concerning these techniques. Another important tech-
nique, that we touched upon already in Chapter 5, is the use of couplings,
and that is the approach we shall take here.

Let us consider thg-coloring example. Fix a grap8 = (V, E) and an
integerq, and recall thapg q is the probability distribution orl, ..., qtV
which is uniform over alls € {1,...,q}V that are validg-colorings, i.e.,
over all assignments of colors 1., g to the vertices of5 with the property
that no two vertices sharing an edge have the same color. We consider the
Gibbs sampler described in Example 7.3, with the modification that the vertex
to be updated is chosen as in the systematic sweep Gibbs sampler defined i
(45). This means that instead of picking a vertex at random uniformly from
V = {v1, ..., v}, we scan systematically through the vertex set by updating
vertexvs at time 1,v7 at time 2,..., vk at timek, v1 again at timek + 1, and
so on as in (45).

It is natural to phrase the question about convergence rates for this MCMC
algorithm (or others) as follows: Given> 0 (such as for instance= 0.01),
how many iterations of the algorithm do we need in order to make the total
variation distance g, (1™, pg q) less thare? Heren™ is the distribution of
the chain aften iterations.



56 8 Fast convergence of MCMC algorithms

Theorem 8.1Let G = (V, E) be a graph. Let k be the number of vertices

in G, and suppose that any vertexe V has at most d neighbors. Suppose
furthermore that g> 2d2. Then, for any fixed > 0, the number of iterations
needed for the systematic sweep Gibbs sampler described above (starting fron
any fixed q-coloring) to come within total variation distanceof the target
distribution pg q is at most

log(k) + log(e~*) — log(d)
log (%)

Before going to the proof of this result, some comments are in order:

k

+1]. (49)

1. The most important aspect of the bound in (49) is that it is bounded by
Ck(log(k) + log(e™)

for some constan® < oo that does not depend dnor one. This means
that the number of iterations needed to come within total variation distance
¢ from the target distributiopg q does not grow terribly quickly s — oo

or ase — 0. Itis easy to see thainyalgorithm for generating random:
colorings must have a running time that grows at least lineatty(because

it takes about timé even toprint the result). The extra factor Igk) that

we get here is not a particularly serious slowdown.

2. Our boundg > 2d? for when we get fast convergence is a fairly crude
estimate. In fact, Jerrum [J] showed, by means of a refined version of the
proof below, that a convergence rate of the same order of magnitude as in
Theorem 8.1 takes place as soorgas 2d, and it is quite likely that this
bound can be improved even further.

3. If Gis part of the square lattice (such as, for example, the graph in Figure 7),
thend = 4, so that Theorem 8.1 gives fast convergence of the MCMC
algorithm forq > 33. Jerrum’s better bound gives fast convergence for
q=>09.

4. It may seem odd that we obtain fast convergence for lgrgaly, as one
might intuitively think that it would be more difficult to simulate the larger
g gets, due to the fact that the numbergetolorings onG is increasing in
g. This is, however, misleading, and the correct intuition to have is instead
the following. The largen gets, the less dependent does the coloring of
a vertexv become on its neighbors. df is very large, we might pick the
color atv uniformly at random, and have very little risk that this color is
already taken by one of its neighbors. Hence, the difference betwggn
and uniform distribution oveall elements of{1, ..., q}V becomes very
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small in the limit agq — oo, and the latter distribution is of course easy to
simulate: just assigni.i.d. colors (uniformly froft, . . ., q}) to the vertices.

Enough chat for now — it is time to do the five-page proof of the convergence
rate result!

Proof of Theorem 8.1As in the proof of Theorem 5.2, we will use a coupling
argument: We shall run twl, ..., q}V-vaIued Markov chaingXg, X1, ...)
and(X/,, X/l, ...) simultaneously. They will have the same transition matrices
(namely, the ones given by the systematic sweep Gibbs sampler for random
g-colorings ofG, as described above). The difference will be that the first
chain is started in the fixed sta¥) = &, whereas the second is started in a
random stateX;, chosen according to the stationary distributiafq. Then

X}, has distributionog ¢ for all n, by the definition of stationarity. Also write
w™ for the distribution of the first chainXo, X1, ...) at timen; this is the
chain that we are primarily interested in. We want to bound the total variation
distance av (1", pg q) betweer™ and the stationary distribution, and we
shall see thatg, (™, pG,q) is close to 0 ifP(Xp = X)) is close to 1.

Recall from Example 7.3 that whenever a verteis chosen to be updated,
we should pick a new color far according to the uniform distribution on the
set of colors that are not attained by any neighbar.ddne way to implement
this concretely is to pick a random permutation

R=(RY...,R%)

of the set{1, ..., q}, chosen uniformly from theg! different possible permu-
tations (this is fairly easy; see Problem 8.1) and them Igt the first color of
the permutation that is not attained by any neighbar.of

Of course we need to pick a new (and independent) permutation at each
update of a chain. However, nothing prevents us from uiegsame permu-
tations for the chairiXy, X7, ...) as for(Xo, X1, ...), and this is indeed what
we shall do. LeRy, Ry, ... be ani.i.d. sequence of random permutations, each
of them uniformly distributed on the set of permutation$Xf. . ., q}. Ateach
timen, the updates of the two chains use the permutation

Ro=(R,....RD,
and the vertex to be updated is assigned the new value
Xnt1(v) = R,

where
i =min{j : Xp(w) # R,{ for all neighborsw of v}
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in the first chain. In the second chain, we similarly set

Xnp1(0) = Ry
where
i" =min{j": X, (w) # R,% for all neighborsw of v} .

This defines our coupling @Xo, X1, ...) and(Xy, Xy, ...). What we hope
for is to haveXt = X7 at some (random, but not too large) tiigin which
case we will also haviX, = X}, foralln > T (because the coupling is defined
in such a way that once the two chains coincide, they stay together forever). In
order to estimate the probability that the configuratidfsand X, agree, let
us first consider the probability that they agege particular vertexi.e., that
Xn(v) = X} (v) for a given vertex.

Consider the update of the two chains at a veiteat timen, where we
taken < k, so that in other words we are in the first sweep of the Gibbs
sampler through the vertex set. We call the updatecessfulf it results in
having Xp4+1(v) = X%+1(U)? otherwise we say that the updateaded. The
probability of a successful update depends on the number of colors that are
attained in the neighborhood ofin both configurationsX, and X;,, and on
the number of colors that are attained in each of them. Define

B> = the number of colors € {1, ..., g} that are attained in the
neighborhood ob in both X, and X{,,

By = the number of colors € {1, ..., q} that are attained in the
neighborhood of in exactly oneof X, and X,,

and

Bo = the number of colors € {1, ..., q} that are attained in the
neighborhood of in neitherof X, and X,

and note thaBy + B; + B2, = . Note also that if the first coIoR% in the
permutationR, is among theB, colors attained in the neighborhood wfn

both configurations, then the Gibbs samplers just dis&drdnd look atR,%
instead, and so on. Therefore, the update is successful if and only if the first
color in R, that is attained in the neighborhood ofin neither of X,, and

X, appears earlier in the permutation than the first color that is attained in
the neighborhood of in exactly oneof X, and Xj,. This event (of having a
successful update) therefore has probability

Bo
Bo + B
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conditional onBg, B; andBy. In other words, we ha#é

B1
Bo+ By

We go on to estimate the right-hand side in (50). Clearlyc0By, < d.
Furthermore,

P(failed update = (50)

because counting the neighbors in both configurations, there are in all at most
2d of them, and each color contributing B» uses up two of them. We get
Bt B

Bo+B1 q-— B
2d — 2B, - 2d — B

qa-B2 ~ qg-B
2d(1 - B2

d(1-5) 2

q(l—%) - q

P(failed updatg

(52)

where the first inequality is just (51), while the final inequality is due to the
assumptiory > 2d2, which impliesq > 2d, which in turn implies(1 — %) >
B
(1-%)-
Hence, we have, aftérsteps of the Markov chains (i.e., after the first sweep
of the Gibbs samplers through the vertex set), that, for each vertex

2d
P(Xk(v) # Xi(v)) < i (53)

Now consider updates during the second sweep of the Gibbs sampler, i.e.,
between time& and X. For an update at time during the second sweep to
fail, the configurationsX, and X, need to differ in at least one neighbor of

v. Each neighbotw hasX,(w) # X/, (w) with probability at mos‘%d (due to

(53)), and summing over the at masheighbors, we get that

, 2d?
P(discrepancy < o (54)

where “discrepancy” is short for the event that there exists a neighbor
of v with Xp(w) # Xj(w). Given the event in (54), we have, by re-
peating the arguments in (50) and (52), that the conditional probability

27 Our notation here is a bit sloppy, since it is really a conditional probability we are dealing with,
because we are conditioning &y, B; andBs.
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P(failed update discrepancyof a failed update is bounded l?g Hence,

P(failed updateg = P(discrepancyP(failed update discrepancy
4d3  2d <2d2>

- a2 gql\g
Hence, after R steps of the Markov chains, each veriex V has different
colorsin the two chains with probability at most

2d ( 2d?
P(Xak(v) # X (v)) < —(—) .
a\d
By arguing in the same way for the third sweep as for the second sweep, we
get that

. 2d [ 2d2\2
P(Xak(v) # Xz (v) = E(T) ,

and continuing in the obvious way, we get far= 4, 5, . .. that

2\ m-1
P(Xmk(v) # Xmi(v) < @<ﬂ) :
a\q
After this analysis of the probability thaXmk and X/, differ at a given
vertex we next want to estimate the probabilRyXmk # X/, ) that the first
chain fails to havexactly the same configurati@s the second chain, at time
mk. Since the evenKmk # X/, implies thatXmk(v) # X[, (v) for at least
one vertexy € V, we have

(55)

PXmk # X < > PXmk(®) # X[ (v))
veV
2\ m-1
< k@(ﬂ) (56)
a\q
k (2d2\™
- (%) 7

where the inequality in (56) is due to (55) and the assumption that the graph
hask vertices.

Now let A € {1,...,q}V be any subset ofl,...,q}V. By (33) and
Problem 5.1, we have that

drv (u™¥, PGq) = max
Ac(l,...q}V

= max |P(Xmk € A) — P(Xpe A .  (58)
AC{l,...qV

1™ (A~ peq(A)|
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For any suchA, we have

P(Xmk € A) — P(X/ € A

= PXmke€ A Xpk€ A +PXmke A X & A
— (PXmk € A, Xmk € A) + P(X[ € A Xmk € A)
P(Xmk € A, Xk & A — P(X[ € A, Xmk & A)
P(Xmk € A, X[ & A
P(Xmk # XK

()

where the last inequality uses (57). Similarly, we get

Al

A

IA

2\ m
P(X/ i € A) — P(Xmk € A) < g(%) . (60)

Combining (59) and (60), we obtain

. k (2d2\™
|P(Xmk € A) — P(Xj € A)| < g ) (61)
By taking the maximum over al\ C {1, ..., g}V, and inserting into (58), we
get that
k (2d2\™
dTV(M(mk)’ PG,q) < a(T) , (62)

which tends to 0 asn — oco. Having established this bound, our next and final
issue is:

How large doesn need to be taken in order to make the right-hand side
of (62) less than?

By setting

k (2d2\™
d\ g = ¢

and solving form, we find that

log(k) + log(e~1) — log(d)
m=
log (%)

so that running the Gibbs sampler long enough to get at least this many scans
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through the vertex set gives\d(u(mk), 0G,q) < ¢. To go from the number of
scanam to the number of steps of the Markov chain, we have to multiply by
k, giving that

k(log(k) + log(s~1) — log(d))
n= q
Iog(ﬁ)

should be enough. However, by takings in (63), we do not necessarily get

an integer value fom = ¢, so to be on the safe side we should take be at

least the smallest number which is greater than the right-hand side of (63) and
which make$ an integer. This means increasindpy at mostk compared to

(63), so thaburfinal answer ighat taking

(63)

-1y _
n— K Iog(k)Jrlog(eq ) —log(d) i1
Iog(ﬁ)

suffices, and Theorem 8.1 is (at last!) established. O

Problems

8.1 (4) Describe a simple and efficient way to generate a random (uniform distribu-
tion) permutation of the sét, ..., q}.

8.2 (6) Bounding total variation distance using coupling. Let 71 and 7> be
probability distributions on some finite s&t Suppose that we can construct two
random variable¥7 andY> such that

(i) Yq has distributionry,

(ii) Yz has distributionry, and

(i) P(Y1# Y2) <e,

for some givere € [0, 1]. Show that the total variation distancg\dr1, 7o) is at

moste. Hint: argue as in equations (59), (60) and (61) in the proof of Theorem 8.1.
8.3 (8) Explain where and why the assumption that- 2d2 is needed in the proof

of Theorem 8.1.
8.4 (10) Fast convergence for the random site Gibbs sampleiConsider (instead

of the systematic scan Gibbs sampler) the random site Gibbs sampler for random

g-colorings, as in Example 7.3. Suppose that the gaph (V, E) hask vertices,

and each vertex has at masheighbors. Also suppose that> 2d2.

(a) Show that for any given € V, the probability thaw is chosen to be updated
at some step during the fifsiterations of the Markov chain is at least 1.
(Heree ~ 2.7183 is, of course, the base for the natural logarithm.)

(b) Suppose that we run two copies of this Gibbs sampler, one starting in a fixed
configuration, and one in equilibrium, similarly as in the proof of Theorem 8.1.
Show that the coupling can be carried out in such a way that fopany and
anym, the probability that the two chains have different colors at the vertex
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at timemk s at most

2 m—-1
(e—l +(1- e‘%%) (e—l + (- e—1)23> )

(c) Use the result in (b) to prove an analogue of Theorem 8.1 for the random site
Gibbs sampler.
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Approximate counting

Combinatorics is the branch of mathematics whideals withfinite objects

or sets, and the ways in which these can be combined. Basic objects that
often arise in combinatorics are, e.g., graphs and permutations. Much of
combinatorics deals with the following sort of problem:

Given some se$, what is the number of elements §?

Let us give afew examples of sucltounting problems; the reader will
probably be able to think of several interesting variations of these.

Example 9.1What is the number of permutations= al, ..., r9) of the set
{1,...,q} with the property that no two numbers that differ by exactly 1 are
adjacent in the permutation?

Example 9.2Imagine a chessboard, and a set of 32 domino tiles, such that one
tile is exactly large enough to cover two adjacent squares of the chessboard. In
how many different ways can the 32 tiles be arranged so as to cover the entire
chessboard?

Example 9.3Given a graptG = (V, E), in how many ways can we pick a subset
W of the vertex seV¥, with the property that no two vertices W are adjacent

in G? In other words, how many different feasible configurations exist for the
hard-core model (see Example 7.1)GA

Example 9.4Given an integeq and a graplG = (V, E), how many different
g-colorings (Example 7.3) are there fGr?

In this chapter, we are interested in algorithms for solving counting problems.
For the purpose of illustrating some general techniques, we shall focus on the
one in Example 9.4: the number gfcolorings of a graph. In particular, we
shall see how (perhaps surprisingly!) the MCMC technique turns out to be
useful in the context of counting problems. The same general approach has

64
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proved to be successful in a host of other counting problems, including count-
ing of feasible hard-core configurations and of domino tilings, and estimation
of the normalizing constarég g in the so-called Ising model (which will be
discussed in Chapter 11); see Sinclair [Si] for an overview.

The following algorithm springs immediately to mind as a solution to the
problem of countingj-colorings.

Example 9.5: A naive algorithm for counting g-colorings. If there were no
restriction on the colorings, i.e., if all configurations{ly .. ., q}¥ were allowed,
then the counting problem would be trivial: there q}‘eof them, where is the
number of vertices in the graph. Moreover, it is trivial to make a list of all such
configurations, for instance in some lexicographic order. Given a configuration
£ €{1,...,q}V, the problem of determining whethgiis a propemg-coloring of

G is yet another triviality’® Hence, the following algorithm will work:

Go through all configurations ifL, ..., g}V in lexicographic order, check

for each of them whether it is g-coloring of G, and count the number of
times the answer was “yes”.

This algorithm will certainly give the right answer. However, wheis large, it
will take a very long time to run the algorithm, since it has to work itself through
the list of aIIqI< configurations. For instance, when= 5 andk = 50, there
are 50 ~ 1034 configurations to go through, which is impossible in practice.
Therefore, this algorithm will only be useful for rather small graphs.

The feature which makes the algorithm in Example 9.5 unattractive is that the
running time grows exponentially in the sikeof the graph. The challenge in
this type of situation is therefore to find faster algorithms. In particular, one is
interested irpolynomial time algorithms, i.e., algorithms with the property
that there exists a polynomiakk) in the sizek of the problent® such that the
running time is bounded bp(k) for any k and any instance of the problem

of sizek. This is the same (see Problem 9.1) as asking for algorithms with a
running time bounded b€ k* for some constant€ anda.

A polynomial time algorithm which solves a counting problem is called a
polynomial time counting schemefor the problem. Sometimes, however,
such an algorithm is not available, and we have to settle for something less,
namely toapproximate(rather than calculate exactly) the number of elements

28 e just need to check, for each edge E, that the endvertices efhave different colors.

29 Here we measure the size of the problem in the number of vertices in the graph. This is usually
the most natural choice for problems involving graphs, although sometimes there is reason take
the number of edges instead. In Example 9.1, it is natural todadeethe size of the problem,
whereas in generalizations of Example 9.2 to “chessboards” of arbitrary size, the size of the
problem may be measured in the number of squares of the chessboard (or in the number of
domino tiles). Common to all these measures of size is that the number of elements in the set
to be counted grows (at least) exponentially in the size of the problem, making algorithms like
the one in Example 9.5 infeasible.
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of the set. Suppose that we have an algorithm which, in addition to the instance
of the counting problem, also takes a number> 0 as input. Suppose
furthermore that the algorithm has the properties that

() it always outputs an answer betwe@n— ¢)N and(1 + )N, whereN is
the true answer to the counting problem, and

(i) for any ¢ > 0, there exists a polynomigb, (k) in the sizek of the
problem?3C such that for any instance of sikethe algorithm terminates
in at mostp, (k) steps.

We call such an algorithm golynomial time approximation scheme Given

a prespecifiedllowed relative erroe, the algorithm runs in polynomial time

in the size of the problem, and produces an answer which is within a multi-
plicative errore of the true answer.

Sometimes, however, even this is too much to ask, and we have to be
content with an algorithm which produces an almost correct answer most of
the time, but which may produce a (vastly) incorrect answer with some positive
probability. More precisely, suppose that we have an algorithm which takes
¢ > 0 and the instance of the counting problem as input, and has the properties
that

(i) with probability at leastZ, it outputs an answer betwegh — )N and
(14 ¢)N, whereN is the true answer to the counting problem, and

(i) foranye > 0, there exists a polynomigl (k) in the sizek of the problem,
such that for any instance of sike the algorithm terminates in at most
p: (K) steps.

Such an algorithm is called mndomized polynomial time approximation
scheme and it is to the construction of such a scheme (for gheoloring
counting problem) that this chapter is devoted.

One may (and should!) ask at this stage what is so special about the numbel
%. The answer is that it is, in fact, not special at all, and that it could be replaced
by any number strictly betwee% and 1. For instance, for ardy > 0, if we
have a randomized polynomial time approximation scheme (with the above
definition), then it is not difficult to build further upon it to obtain a randomized
polynomial time approximation scheme with the additional property that it
outputs an answer within a multiplicative errerof the true answer, with
probability at least - §. We can thus get an answer within relative error
at moste of the true answer, with probability as close to 1 as we may wish.
This property will be proved Problem 9.3 below.

30 we allow p: (k) to depend om in arbitrary fashion. Sometimes (although we shall not go into
this subtlety) there is reason to be restrictive about howgdadt) may grow ag — 0.
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Here is our main result concerning randomized polynomial time approxima-
tion schemes for randomp-colorings.

Theorem 9.1Fix integers q and d> 2 such that q> 2d?, and consider the
problem of counting g-colorings for graphs in which each vertex has at most d
neighbors. There exists a randomized polynomial time approximation scheme
for this problem.

Before going on with the proof of this result, some remarks are worth making:

1. Of course, an existence result (i.e., a statement of the form “there exists an
algorithm such that. .”) of this kind is rather useless without an explicit
description of the algorithm. Such a description, will, however, appear
below as part of the proof.

2. The requirement thaj > 2d2 comes from Theorem 8.1, which will be
used in the proof of Theorem 9.1. If we instead use Jerrum’s better result
mentioned in Remark 2 after Theorem 8.1, then we obtain the same result
as in Theorem 9.1 whenevgr> 2d.

3. The restriction ta > 2 is not a particularly severe one, since graphs with
d = 1 consist just of

(i) isolated vertices (having no neighbors), and

(i) pairs of vertices linked to each other by an edge but with no edge
leading anywhere else,

and the number ofj-colorings of such graphs can be calculated directly
(see Problem 9.2).

Another thing which it is instructive to do before the proof of Theorem 9.1 is to
have a look at the following simple-minded attempt at a randomized algorithm,
and to figure out why it does not work well in practice.

Example 9.6: Another naive algorithm for counting g-colorings. Assume
that G = (V, E) is connected wittk vertices, and WritiG,q for the number
of g-colorings of G. Suppose that we assign each vertex independently a color
from {1, ..., q} chosen according to the uniform distribution, without regard to
whether or not adjacent vertices have the same color. Then each configuration
£ e{l,...,q}V arises with the same probabilit[#. Out of thesegk possible
configurations, there arég q that areg-colorings, whence the probability that
this procedure yields @-coloring is

ZG,q

e (64)
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Let us now repeat this experimemtimes, and writeY,, for the number of times
that we goig-colorings. We clearly have

nZG,q
qk

k
q“Yn
E =Z

k
which suggests tha&% might be a good estimator &g q. Indeed, the Law of

k
Large Numbers (Theorem 1.2) may be applied to show, forsanyO, that%

is between(l — ¢)Zg g and(1 + &) Zg g with a probability which tends to 1 as
n — oo.
kY i .

But how large does need to be? CIearI)"fT” is a very bad estimate as long
asYn = 0, so we certainly need to pigksufficiently large to mak&y, > 0 with a
reasonably high probability. Unfortunately, this means thiaas to be takewery
large, as the following argument shows. In each simulation, we get@oring

. . q_l k-1 ..
with probability at mos(T> : this is Problem 9.4. Hence,

E[Yn] =

so that

P(Yn > 0) = P(atleastone of the first simulations yields &-coloring

IA

n
Z P(thei ™ simulation yields aj-coloring)
i=1

k—1
- n(Ll) .
q

To make this probability reasonably large, say greater I;b,awe need to take

k—1
n> % (%) . This quantity grows exponentially ik making the algorithm

useless for large graphs.

Let us pause for a moment and think about precisely what it is that makes the
algorithm in Example 9.6 so creepingly slow. The reason is a combination
of two facts: First, the probability in (64) that we are trying to estimate is
extremely small: exponentially small in the number of vertikesSecond,

to estimate a very small probability by means of simulation requires a very
large number of simulations. In the algorithm that we are about to present as
part of the proof of Theorem 9.1, one of the key ideas is to find other relevant
probabilities to estimate, which have a more reasonable order of magnitude.
Let us now turn to the proof.

First part of the proof of Theorem 9.1. a general description of the algo-
rithm Suppose that the graph = (V, E) hask vertices andk edges; by
the assumption of the theorem we have that dk. Enumerate the edge
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setE as{e, ..., g}, and define the subgrapl@p, G, ..., G; as follows.
Let Go = (V,?) be the graph with vertex s& and no edges, and for
i=1...klet

Gj =\, {en....e}.

In other words,Gj is the graph obtained fronG by deleting the edges
ej+]_, ey eR .

Next, let, forj = 0, ..., k, the number ofj-colorings for the grapli; be
denoted byZ;. SinceGy = G, we have that the number we wish to compute
(or approximate) iZ;. This number can be rewritten as
Zy y £ " Zy, 73

X — X = X Zg. (65)

= —
k=7 7 7 Z
k—1 k—2 1 0

If we can estimate each factor in the telescoped product in (65) to within
sufficient accuracy, then we can multiply these estimates to get a reasonably
accurate estimate &f.

Note first that the last factid is trivial to calculate: sinc&g has no edges,
any assignmerdf colors from{l, ..., g} to the verticess a validg-coloring,
and since5g hask vertices, we have

Zo= qk .

Consider next one of the other factOfs— in (65). Writex; andy; for
the endvertices of the edgg which is |nG but not inGj_1. By definition,
Z; is the number ofj-colorings of the grapiﬁ;J But theg-colorings ofGj
are exactly those configuratiose {1, ..., q}V that areg- colorings ofGj_1
and that in addition satisf§(xj) # g(y,) Hence the ratloz— is exactly the
proportion ofg-coloringsé of G that satisfyg (xj) # £(yj). ThIS means that

% = pe;_1.a(X(X}) # X)), (66)

ie., equals the probability that a random coloriXgof Gj_1, chosen
accordlng to the uniform distributiopg; _, q, satisfiesX(xj) # X(yj).

The key point now is that the probabiliys; q(X(xj) # X(yj)) in (66)
can be estimated using the simulation algonthm,zﬁ@r 1.q considered in
Theorem 8.1. Namely, if we simulate a randqmolorlng X e{l....qV
for Gj_; several timegusing suficiently manysteps in the Gibbs sampler of
Chapter 8), then the proportion of the simulations that result in a configuration
with different colors atx; andy;j is very likely to be clos# to the desired

31 This closeness is due to the Law of Large Numbers (Theorem 1.2).
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expression in (66). We use this procedure to estimate each factor in the
telescoped product in (65), and then multiply these to get a good estimate of
the ZR‘ O

The second part of the proof of Theorem 9.1 consists of figuring out how
many simulations we need to do for estimating each fa%éﬁ, and how
many steps of the Gibbs sampler we need to run in each simulation. For that,
we first need three little lemmas:

Lemma 9.1Fix ¢ € [0, 1], let k be a positive integer, and leta. ., ax and
by, ..., bk be positive numbersatisfying

e aj e
(1-5) = b = (1+5)
for j = 1,..., k. Define the products & ]_['j‘=l ajand b= ]_['J-‘=1 bj. We
then have

l—-e<

<l+e. (67)

ol o

Proof To prove the first inequality in (67), note thet — fR)Z >1- %ﬁ that
(1- 43> 10— 41— %)>1-3 andsoon, sothat

Hence,

ke £
- 2k 2
For the second inequality, we note tlet? < 1+ x for all x € [0, 1] (plot the
functions to see this!), so that

k
R I (RN

j j=1 j=1

Lemma 9.2Fix d > 2and q > 2d2. Let G = (V, E) be a graph in which
no vertex has more than d neighbors, and pick a random g-coloring X for G
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according to the uniform distributiopg . Then, for any two distinct vertices
X, y € V, the probability that Xx) # X(y) satisfies

1
0G,q(X(X) # X(y)) = > (68)

Proof Note first that wherx andy are neighbors irG, then (68) is trivial,
since its left-hand side equals 1. We go on to consider the case wiaggty
are not neighbors.

Consider the following experiment, whidh just a way offinding out the
random coloringX € {1, ..., q}V: first look at the coloringk (V \ {x}) of all
vertices exce, and only then look at the color at Becauseg q is uniform
over all colorings, we have that the conditional distribution of the cl@x)
given X (V\{x}) is uniform over all colors that are not attained by any neighbor
of x. Clearly,x has at least] — d colors to choose from, so the conditional
probability of getting precisely the color that the vertegot is at mostq—}d,
regardless of what particular colorin¢(V \ {x}) we got at the other vertices.
It follows that pg q(X(X) = X(y)) < g5, so that

£G,q(X(X) # X(y)) 1 - pG,q(X(x) = X(y))

1
> _ >l —
- q—-d — 2d2 —d
1 1
> 1— - = —
- 2 2

O

Lemma 9.3Fix p € [0, 1] and a positive integer n. Toss a coin with heads-
probability p independently n times, and let H be the number of heads. Then,
for any a> 0, we have

n
P(H —np| > a) < PR

Proof Note thatH is a binomial(n, p) random variable; see Example 1.3.

Therefore it has meaB[H] = np and varianc&/ar[H] = np(1 — p). Hence,

Chebyshev’s inequality (Theorem 1.1) gives

np(l-p

P(H-nplza) = ——>—
_n
T 4a?

using the fact thap(1 — p) < % forall p € [0, 1]. O
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Second part of the proof of Theorem 9We need some notation. For=
1,...,k, write Y;j for the algorithm’s (random) estimator 9% Also define

the productsy = H'}‘zl Yj and

k
Y*=2ZoY =gy =*]] V. (69)
j=1
Because of (65), we také* as the estimator of the desired quanty, i.e.,
as the output of the algorithm. First, however, we need to generat¢, for

1,...,k, the estimatol; of Zz—il How much error can we allow in each of
these estimatoryy, . .., Y;? Well, suppose that we make sure that
I3 Zj < £ ) Zj
( 2k> Zja~ ! 2k) Zj1 (70)
for eachj. This is the same as
1- 5N g
2k T Zj/Zj 2k
and Lemma.1 therefore guarantees that
Y
1—¢ <1l-—¢,

e S —
[Ti=1(Zj/Zj-0)
which is the same as

l-¢< <l-—e¢.

Zy/Zo

The definition (69) of our estimatdf* gives

Y*
l-e<—=<1+¢

1

which we can rewrite as
QL-eZ;<Y*"<1A+e)Z;. (71)

This is exactly what we need. It therefore only remains to ob¥gia that
satisfy (70). We can rewrite (70) as

LA oy oA A (72)

Due to (66) and Lemma 9.2, we have tr}%{—l > % Hence, (72) and (70)
follow if we can make sure that

(73)
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Recall thatY; is obtained by simulating randogzcolorings forGj_; several
times, by means of the Gibbs sampler in Chapter 8, and takjrng be the
proportion of the simulations that result irgacoloring & satisfying&(x;j) #

£(yj). There are two sources of error in this procedure, namely

() the Gibbs sampler (which we start in some fixed but arbitcaoploring&)
is only run for a finite numben of steps, so that the distributipif™ of the
coloring that it produces may differ somewhat from the target distribution
0G;.q, and
(i) only finitely many simulations are done, so the proportigrresulting in
g-coloringsg with £(xj) # £(yj) may differ somewhat from the expected
valueu ™ (X(xj) # X(¥j)).
According to (73), Yj is allowed to differ from % (i.e., from
pG;_1.q(X(Xj) # X(yj)), by (66)) by at mos%. One way to accomplish
this is to make sure that
&
‘M(n)(x(xj) # X(¥j)) — pG;_1,(X(Xj) # X(yj))‘ < a (74)
and that
&
¥ = o) # X )| = o (75)

In other words, the Ieewafi allowed by (66) is split up equally between the
two error sources in (i) and (ii).

Let us first consider how many steps of the Gibbs sampler we need to run
in order to make the error from (i) small enough so that (74) holds. By the
formula (33) for total variation distancerd, it is enough to run the Gibbs
sampler for a sufficiently long time to make

&
dTV(li(n)’ pGj_l,q) < & ,
and Theorem 8.1 is exactly suited for determining such.dndeed, it suffices,
by Theorem 8.1, to take

8ky _
o (Iog(k) + log(2) — log(d) N 1)
log(537)

N
o
Nl

8dky _
. log(k) + log( : ) — log(d) 1
Iog(ﬁ)
-1
— K <2Iog(k) + Iog(z; ) + log(8) n 1) (76)
Iog(ﬁ)

where the inequality is becauke< dk.
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Next, we consider the number of simulationgjeolorings ofG; _1 needed
to make the error from (ii) small enough so that (75) holds, with sufficiently
high probability. By part (i) of the definition of a randomized polynomial time
approximation scheme, the algorithm is allowed to fail (i.e., to produce an
answerY* that does not satisfy (71)) with probability at mc%t Since there
arek estimatorsyj to compute, we can allow each one to fail (i.e., to disobey

(75)) with probabilitys—llz. The probability that the algorithm fails is then at
mostlzs—lIZ = 1, as desired.

Suppose now that we make simulations2 when generating’j, and write
H; for the number of them that result in coloringsvith £(xj) # &(y;). Then
H;

By multiplying both sides of (75) witim, we get that (75) is equivalent to
em
Hi —mp < —,
Hy —mp = 8

wherep is defined byp = 1™ (X(xj) # X(yj)). But the distribution ofH;
is precisely the distribution of the number of heads when wertossins with
heads-probabilityp. Lemma 9.82 therefore gives

P|:|H mp 8m] < M
P — > —=
e
8k
16k2

= om (77)

and we need to make this probability less tlén Setting the expression in
(77) equal toe,_lk and solving fom gives

m_48|23
=—.

and this is the number of simulations we need to make for &qchUsing
k < dk again, we get
48433

g

m =

32 Each time, we use the Gibbs sampler starting in the same @p@aloring, and run it fom
steps, witn satisfying (76).

33 An alternative to using Lemma 9.3 (and therefore indirectly Chebyshev’s inequality), which
leads to sharper upper bounds on how largeeeds to be, is to use the so-calledernoff
bound for the binomial distribution; see, e.g., [MR].
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Let us summarize: The algorithm hﬁ$actorst to compute. Each one is
obtained using no more théﬁ‘ji—ks simulations, and, by (76), each simulation

-1

requires no more thatr(z'og(k)T'og(’(z ))+'°9(8) +1> steps of the Gibbs sampler.
0og ZETZ

The total number of steps needed is therefore at most

48d3k3 2log(k) + log(e 1) + log(8)
X >— X k g +1
g Iog(ﬁ)

which is of the ordelCk®log(k) ask — oo for some constant that does

not depend otk. This is less tha€ k®, so the total number of iterations in the
Gibbs samplegrows no faster than polynomially. Since, clearly, the running
times of all other parts of the algorithm are asymptotically negligible compared
to these Gibbsampler iterations, Theorem 9.1 is established. O

dk

Problems

9.1 (3) Suppose that we have an algorithm whose running time is bounded by a
polynomialp(k), wherek is the “size” (see Footnote 29 in this chapter) of the input.
Show that there exist constar@sanda such that the running time is bounded by
Ck~.

9.2 (3) Suppose thaG is a graph consisting d&f isolated vertices (i.e., vertices that
are not the endpoint of any edge) plyzairs of vertices where in each pair the two
vertices are linked by an edge, but have no other neighbors. Show that the number
of g-colorings ofG is q"JrI q- '

9.3 (8) The definition of a randomized polynomial time approximation scheme allows
the algorithm to produce, with probabilit%l, an output which is incorrect, in the
sense that it imot between(1 — ¢)N and(1 + ¢)N, whereN is the true answer
to the counting problem. The error probabiliglcan be cut to any gived > 0
by the following method: Run the algorithm many (saywherem is odd) times,
and take the median of the outputs (i.e., ﬁﬁ#th largest output). Show that
this works form large enough, and give an explicit bound (depending )ofor
determining how large “large enough” is.

9.4 (7) Let G = (V,E) be a connected graph dn vertices, and pickX €
{1,..., g}V at random, with probability% for each configuration. Show that

the probability thaiX is ag-coloring is at most

R

Hint: enumerate the verticesg, ..., vk in such a way that eacl has at least one
edge to some earlier vertex. Then imagine revealing the colorg,ab, ... one

at a time, each time considering the conditional probability of not getting the same
color as a neighboring vertex.
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The Propp—Wilson algorithm

Recall, from the beginning of Chapter 8, the problems (A) and (B) with
the MCMC method. In that chapter, we saw one approach to solving these
problems, namely to prove that an MCMC chain converges sufficiently quickly
to its equilibrium distribution.

In the early 1990's, some ideas about a radically different approach began
to emerge. The breakthrough came in a 1996 paper by Jim Propp and David
Wilson [PW], both working at MIT at that time, who presented a refinement
of the MCMC method, yielding an algorithm which simultaneously solves
problems (A) and (B) above, by

(A*) producing an output whose distributionéxactlythe equilibrium distri-
butionr, and

(B*) determining automatically when to stop, thus removing the need to com-
pute any Markov chain convergence rates beforehand.

This algorithm has become known as tAmpp-Wilson algorithm, and is
the main topic of this chapter. The main feature distinguishing the Propp—
Wilson algorithm from ordinary MCMC algorithms is that it involves running
not only one Markov chain, but several copies otditwith different initial
values. Another feature which is important (we shall soon see why) is that the
chains are not run from time 0 and onwards, but rather from some time in the
(possibly distant) past, and up to time O.

Due to property (A*) above, the Propp—Wilson algorithm is sometimes said
to be anexact, or perfectsimulation algorithm.

We go on with a more specific description of the algorithm. Suppose that
we want to sample from a given probability distributianon a finite set

34 That is, we are working with a coupling of Markov chains; see Footnote 17 in Chapter 5. For
reasons that will become apparent, Propp and Wilson called their algaribpiing from the
past.

76
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S={s1,...,%}. Asinordinary MCMC, we construct a reversible, irreducible
and aperiodic Markov chain with state spa@and stationary distribution.

Let P be the transition matrix of the chain, anddet Sx [0, 1] — Sbe some
valid update function, as defined in Chapter 3. Furthermor&l{eiN,, ... be

an increasing sequence of positive integers; a common and sépsitéce is
totake(N1, No,...) = (1, 2,4, 8,...). (The negative numbersN1, —No, ...

will be used as “starting times” for the Markov chains.) Finally, suppose
that Ug, U_1,U_o, ... is a sequence of i.i.d. random numbers, uniformly
distributed on [01]. The algorithm now runs as follows.

1. Setm = 1.

2. Foreacts € {sy, ..., &}, simulate the Markov chain starting at timeNy,
in states, and running up to time 0 using update functirand random
numbersU_ny+1, U-Np+2. - - .- U—1, Ug (these are the same for each of
thek chains).

3. Ifall k chains in Step 2 end up in the same statat time 0, then output’
and stop. Otherwise continue with Step 4.

4. Increasen by 1, and continue with Step 2.

It is important that at then" time that we come to Step 2, and need to use
the random numbens_n,,+1, U_Np+2, - - . » U_1, Ug, that we actuallyeuse
those random numbets_n,, ;+1, U_N,,_;+2, - - -, U_1, Ug that we have used
before. This is necessary for the algorithm to work correctly (i.e., to produce
an unbiased sample from; see Example 10.2 below), but also somewhat
cumbersome, since it means that we must store a (perhaps very long) sequenc
of random numbers, for possible further #e.

In Figure 8, we considefa simple example with(N1, Np,...) =
(1,2,4,8,...) and state spac8 = {5, S, S3}. SinceN; = 1, we start by
running the chain from time-1 to time 0. Suppose (as in the top part of
Figure 8) that it turns out that

$(s1,Up) =951
(2, Up =
¢$(s3,Up) =91

Hence the state at time 0 can take two different valagsi(sy) depending on
the state at time-1, and we therefore try again with starting timeéN, = —2.

35 See Problem 10.1.
36 An ingenious way to circumvent this problem of having to store a long sequence of random
numbers will be discussed in Chapter 12.
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Fig. 8. A run of the Propp—Wilson algorithm witk; = 1, No = 2, N3 = 4, and state
spaceS = {s1, S, s3}. Transitions that are carried out in the running of the algorithm
are indicated with solid lines; others are dashed.

We then get

d(p(s1,U_1),Ug) = (s, Up) =%
P (p(s2, U_1), Ug) = ¢(s3,Up) =51
d(p(s3,U_1),Ug) = (s, Up) =%
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which again produces two different values at time 0. We are therefore again
forced to start the chains from an earlier starting tinMds = —4. This yields

P (@(P(@(s1,U3),U_2),U_1),Up)=--- =%
PP (P(@p(s2,U_3),U_2),U_1),Up)=--- =%
PP (P(@p(s3,U-3),U_2),U_1),Up) =--- =9.

This time, we get to stat® at time 0, regardless of the starting value at time
—4. The algorithm therefore stops with output equabtoNote that if we were

to continue and run the chains starting at time& —16 and so on, then we
would keep getting the same output (stgipforever. Hence, the output can

be thought of as the value at time 0 of a chain that has been running since time
—oo (whatever that means!), and which therefore has reached equilibrium.
This is the intuition for why the Propp—Wilson algorithm works; this intuition
will be turned into mathematical rigor in the proof of Theorem 10.1 below.

Note that the Propp—Wilson algorithm contains a potentially unbounded
loop, and that we therefore don't have any general guarantee that the algorithm
will ever terminate. In fact, it may fail to terminate if the update functipn
is chosen badly; see Problem 10.2. On the other hand, it is often possible to
show that the algorithm terminates with probabilitj“1in that case, it outputs
an unbiased sample from the desired distributigras stated in the following
theorem.

Theorem 10.1Let P be the transition matrix of an irreducible and aperiodic
Markov chain with state space S {s1, ..., %} and stationary distribution
m = (m,...,7k). Let¢ be a valid update function for P, and consider
the Propp—Wilson algorithm as above witN1, N2, ...) = (1,2,4,8,...).
Suppose that the algorithm terminates with probabiliyand write Y for its
output. Then, forany & {1, ..., k}, we have

PY=5)=m. (78)
Proof Fix an arbitrary statg € S. In order to prove (78), it is enough to show
that for anys > 0, we have
IP(Y=5) —mi|<¢. (79)
So fix an arbitrary > 0. By the assumption that the algorithm terminates with

37 To show this, it helps to know that there is a so-calted law for the termination of the
Propp—Wilson algorithm, meaning that the probability that it terminates must be either 0 or
1. Hence, it is enough to show thB(algorithm terminates > 0 in order to show that
P(algorithm terminates= 1.
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probability 1, we can make sure that

P(the algorithm does not need to try starting times earlier thaNy;)  (80)

Z 1_8a

by picking M sufficiently large. Fix such aiM, and imagine running a Markov
chain from time—Npy up to time 0, with the same update functignand
the same random numbeds n,,+1. - . ., Ug as in the algorithm, buwith the
initial state at time—Ny chosen according to the stationary distributian
Write Y for the state at time O of this imaginary chain. Sincés stationary,
we have thaty has distributionz. FurthermoreY = Y if the event in (80)
happens, so that

PYY£Y) <e.
We therefore get
PY=s5)-7m = P(Y=35)-P(Y=35)
< P(Y=5,Y#5s)
< PY#Y) <e¢ (81)
and similarly
m—PY=s5) = PY=s)-PY=5)
< PY=s,Y#53)
< PY#Y) <e. (82)
By combining (81) and (82), we obtain (79), as desired. O

At this stage, a very natural objection regarding the usefulness of the Propp—
Wilson algorithm is the following: Suppose that the state sp&ds very
large3® as, e.g., in the hard-core model example in Chapter 7. How on earth
can we then run the chains from all possible startialyes? This will simply
take too much computer time to be doable in practice.

The answer is that various ingenious techniques have been developed for
representing the chains in such a way that not all of the chains have to be
simulated explicitly in order to keep track of their values. Amongst the most
important such techniques is a kind of “sandwiching” idea which works for
Markov chains that obey certain monotonicity properties; this will be the topic
of the next chapter.

38 Otherwise there is no need for a Propp—Wilson algorithm, because if the stateSdpareall,
then the very simple simulation method in (42) can be used.
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Fig. 9. Transition graph for the Markov chain used as counterexample to the modified
algorithms in Examples 10.1 and 10.2.

Let us close the present chapter by discussing a couple of very tempting (but
unfortunately incorrect) attempts at simplifying the Propp—Wilson algorithm.
The fact that these close variants do not work might possibly explain why the
Propp—Wilsoralgorithm was not discovered much earlier.

Example 10.1: “Coupling to the future”. One of the most common reactions
among bright students upon having understood the Propp—Wilson algorithm is the
following.

OK, that’s nice. But why bother with all these starting times further and
further into the past? Why not simply start chains in all possible states at
time 0, and then run them forwards in time until the first titdeat which

they coalesce, and then output their common value?

This is indeed extremely tempting, but as it turns out, it gives biased samples in
general. To see this, considée following simple example. L&Xg, X1, ...) be
a Markov chain with state spa@&= {s1, Sp} and transition matrix

05 05
Sl

See the transition graph in Figure 9. Clearly, the chain is reversible with stationary
distribution

21
7= = (5.3). )
Suppose that we run two copies of this chain starting at time 0, one irsstanel

the other in statsy. They will coalesce (take the same value) for the first time
at some random timBl. Consider the situation at tinlé — 1. By the definition

of N, they cannot be in the same state at tife- 1. Hence one of the chains

is in states, at timeN — 1. But the transition matrix tells us that this chain will
with probability 1 be in state; at the next instant, which is tim. Hence the
chains are with probability 1 in stasg at the first time of coalescence, so that this
modified Propp—Wilson algorithm outputs statewith probability 1. This is not

in agreement with the stationary distribution in (83), and hence the algorithm is
incorrect.
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Example 10.2Here’s another common suggestion for simplification of the Propp—
Wilson algorithm:

The need to reuse the random variatlesy, 1. U_N,,+2, ..., Ug when
restarting the chains at time Ny is really annoying. Why don't we
simply generate some new random numbers and use them instead?

As an example to show that this modification, like the one in Example 10.1, gives
biased samples, we use again the Markov chain in Figure 9. Let us suppose
that we take the Propp—Wilson algorithm for this chain, willy, Np, ...) =
(1,2,4,8,...) and update functiog given by (21), but modify it according to

the suggested use of fresh new random numbers at each round.degiote the
output of this modified algorithm, and define the random varidblas the largest

m for which the algorithm decides to simulate chains starting at tinfhgn. A

direct calculation gives

o0
PY=s) = Y PM=mY=sg)
m=1
PM=1Y=s)+PM=2Y=g)
= PM=DPY =51|M=1)+PM=2)P(Y =5 |M =2
3 2

1422 84

t3'3 (84)

2
s £

3
(of course, some details are omitted in line (84) of the calculation; see Prob-
lem 10.3). Hence, the distribution of the outptitioes not agree with the distri-
butions given by (83). The proposed modified algorithm is therefore incorrect.

AlwWNIE

Problems

10.1 (5) For a given Propp-Wilson algorithm, define the integer-valued random
variableN* as

N* = min{n : the chains starting at timen coalesce by time}Q

If we now choose starting timedNy, No,...) = (1,2, 3,4,...), then the total

number of time units that we need to run the Markov chains is

N*(N* + 1)
> ,
which grows like the square &i*. Show that if we instead ugédNy, No, ...) =
(1,2,4,8,...), then the total number of iterations executed is boundedNvy, 4
so that in particular it grows only linearly if*, and therefore is much more
efficient.

10.2 (8) The choice of update function matters.Recall from Problem 3.2 that for a
given Markov chain, there may be more than one possible choice of valid update
function. For ordinary MCMC simulation, this choice is more or less incon-
sequential, but for the Propp—Wilson algorithm, it is often extremely important.

14243+ +N*=
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Fig. 10. Transition graph for the Markov chain considereBiiablem 10.2.

Consider for instance the Markov chaftwith state spac& = {s;, s}, transition

matrix
0.5 05
P= [ 05 05 ] ’

and transition graph as in Figure 10. Suppose that we run a Propp—Wilson
algorithm for this Markov chain, witliN;, No, ...) = (1,2,4,8,...).
(&) One possible choice of valid update function is to set

_ | a1 forxe[0,05)
(5, X) = { s, forx e[0.5,1]

fori = 1, 2. Show that with this choice @f, the algorithm terminates (with
probability 1) immediately after having run the chains from timi; = —1
to time O.

(b) Another possible choice of valid update function is to set

_ | s forxe]0,05)
P1%) = { s forx e[0.5 1]
and

| 2 forxe[0,05)
(82, X) = { s, forx e[0.5,1].

Show that with this choice af, the algorithrmeverterminates.
10.3 (6) Verify that the calculation in equation (84) of Example 10.2 is correct.

39 This particular Markov chain is even more trivial than most of the other examples that we have

considered, because it produces an i.i.d. sequence of 0's and 1's. But that is beside the point of
this problem.
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Sandwiching

For the Propp—Wilson algorithm to be of any use in practice, we need to make
it work also in cases where the state sp8ace# the Markov chain is very large.

If Scontainsk elements, then the Propp—Wilson algorithm involves runiking
different Markov chains in parallel, which is not doaliepractice wherk is

very large. We therefore need to find some way to represent the Markov chains
(or to use some other trick) that allows us to just keep track of a smaller set of
chains.

In this chapter, we will take a look aandwiching, which is the most
famous (and possibly the most important) such idea for making the Propp—
Wilson algorithm work on large state spaces. The sandwiching idea applies to
Markov chains obeying certain monotonicity properties with respect to some
ordering of the state space; several important examples fit into this context,
but it is also important to keep in mind that there are many Markov chains for
which sandwiching doesotwork.

To explain the idea, let us first consider a very simple case.kFigt the

state space b8 = {1, ..., k}, and let the transition matrix be given by
P11 = P2 = 1
1n="Fre=73,
1
Pk = Pck-1= >
and, fori =2,...,k—1,
1
Ri-1=Rit1= 5"

All the other entries of the transition matrix are 0. In words, what the Markov
chain does is that at each integer time it takes one step up or one step down the
“ladder” {1, ..., k}, each with probability%; if the chain is already on top of

84
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the ladder (stat&) and tries to take a step up, then it just stays where it is, and
similarly at the bottom of the ladder. Let us call this Markov chainléuzler
walk onk vertices. By arguing as in Example 6.2, it is not hard to show that
this Markov chain has stationary distributiangiven by

1 .
T = fori =1,...,k.

To simulate this uniform distribution is of course easy to do directly, but for
the purpose of illustrating the sandwiching idea, we will insist on obtaining it
using the Propp—Wilson algorithm for the ladder walk.

We obtain a valid update function for the laddealk on k vertices by
applying (21), which yields

[ 1 forxe[0,d)
oL, X)_{ 2 forxe[i,1], (85)
[ k=1 forxe[0,3)
ok, X)_{ k  forxel[d. 1], (86)
and, fori =2,... k-1,
. [i-1 forxel0,3)
‘“"X)_{ i+1 forxe[d.1]. &7

This update function can informally be described as follows: i % then try
to take a step down on the ladder, whileif- % then try to take a step up.

Consider now the standard Propp—Wilson algorithm (as introduced in the
previous chapter) for this Markov chain, with update functipas in (85)—

(87), and negative starting time&sli, N2,...) = (1,2,4,8,...). A typical
run of the algorithm for the ladder walk with= 5 is shown in Figure 11.

Note in Figure 11 that no two transitions “cross” each other, i.e., that a
Markov chain starting in a higher state never dips below a chain starting at
the same time in a lower state. This is because the update function defined in
(85)—(87) preserves ordering between states, in the sense that{ar g, 1]

andalli, j € {1,...,k} such that < j, we have
¢3,%) < ¢(j,x). (88)
For a proof of this fact, see Problem 11.1.
It follows that any chain starting in some states {2, ...,k — 1} always

remains between the chain starting in state 1 and the chain starting in state
k (this explains the term sandwiching). Hence, once the top and the bottom
chains meet, all the chains starting in intermediate values have to join them as
well; see, e.g., the realizations starting from tim8 in Figure 11. In order
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Fig. 11. A run of the Propp—Wilson algorithm for the ladder walk with= 5. This
particular run resulted in coalescence from starting tinldy, = —8. Only those
transitions that are actually carried out in the algorithm are drawn, while the others
(corresponding to the dashed lines in Figure 8) are omitted. The chains starting from
the top ( = 5) and bottomi( = 1) states are drawn in thick lines.
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to check whether coalescence between all chains has taken place, we therefor
only need to check whether the top and the bottom chains have met. But this in
turn means that we do not even need to bother with running all the intermediate
chains — running the top and bottom ones is enough! For thelcase5
illustrated in Figure 11, this is perhaps not such a big deal, but forksayl 0?
ork = 108, it is of course a substantial simplification to run just two chains
rather than alk.

The next example to which we shall apply the sandwiching technique is the
famouslsing model.

Example 11.1: The Ising modelLet G = (V, E) be a graph. The Ising model is

a way of picking a random element pf 1, 1V, ie., of randomly assigning1's
and+1's to the vertices o65. The classical physical interpretation of the model

is to think of the vertices as atoms in a ferromagnetic material, anedléf and

+1’s as two possible spin orientations of the atoms. Two quantities that determine
the probability distributions have names taken from this physical interpretation:
theinverse temperature > 0, which is a fixed positive parameter of the model,
and theenergy H (¢) of a spin configuratio € {—1, 1}V defined as

HE) =— > £005(Y). (89)
(X,y)eE

Each edge adds 1 to the energy if its endpoints have opposite spins, and subtract:
1 otherwise. Hence, low energy of a configuration corresponds to a large amount
of agreement between neighboring vertices. The Ising modeb @i inverse
temperature8 means that we pick a random spin configuratdne {—1, 1}V
according to the probability measutg; gz which to eactt e {1, 1}V assigns
probability?0

1 1
7G,p(6) = exp(—pH(&)) = exp| B Z §(X)E(Y) (90)
ZG,p ZG.p (x.y)eE

whereZg g = Zne{,l’l}v exp(—BH (n)) is a normalizing constant, making

the probabilities of ale € {—1,1}Y sum to 1. In the casg = O (infinite
temperature), every spin configuratigre {—1, 1}V has the same probability, so
that each vertex independently takes the valdeor +1 with probability% each.

If we take 8 > 0, the model favors configurations with low energy, i.e., those
where most neighboring pairs of vertices take the same spin value. This effect
becomes stronger the largetis, and in the limit agg — oo (zero temperature),

the probability mass is divided equally between the “all plus” configuration and
the “all minus” configuration. See Figure 12 for an example of Ifoinfluences

the behavior of the model on a square lattice of sizex 15.

40 The minus signs in (89) and in the expressior 1) in (90) cancel each other, so it seems
that it would be mathematically simpler to define energy differently by removing both minus
signs. Physically, however, the present definition makes more sense, since nature tends to prefe
states with low energy to ones with high energy.
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From a physics point of view, the main reason why the Ising model is inter-
esting is that it exhibits certaiphase transition phenomena on various graph
structures. This means that the model’'s behavior depends qualitatively on whether
the parametes is above or below a certain threshold value. For instance, consider
the case of the square lattice of simex m. It turns out that ifg is less than the
so-called Onsager critical valtege = % log(1 + +/2) ~ 0.441, then the depen-
dencies between spins are sufficiently weak for a Law of Large Nuffbeype
result to hold: the proportion of1 spins will tend to% asm — oo. On the other
hand, wher8 > B¢, the limiting behavior as gets large is that one of the spins
takes over and forms a vast majority. Some hints about this behavior can perhaps
be read off from Figure 12. The physical interpretation of this phase transition
phenomenon is that the ferromagnetic material is spontaneously magnetized at
low but not at high temperatures.

We shall now go on to see how the Propp—Wilson algorithm combined
with sandwiching applies to simulation of the Ising model. Tpésticular
example is worth studying for at least two reasons. Firstly, the Ising model has
important applications (not only in physics but also in various other sciences
as well as in image analysis and spatial statistics). Secondly, it is of some
historical interest: it was to a large extent due to the impressive achievement
of generating an exact sample from the Ising model at the critical ykloe a
square lattice of size 21002100 that the work of Propp & Wilson [PW] was
so quickly recognized as seminal, and taken up by a large community of other
researchers.

Before reading on, the reader is well-advised to try to obtain some additional
understanding of the Ising model by solving Problem 11.3.

Example 11.2: Simulation algorithms for the Ising model. As a first step to-
wards obtaining a Propp—Wilson algorithm for the Ising model, we first construct
a Gibbs sampler for the model, which will then be used as a building block in the
Propp—Wilson algorithm.

Consider the Ising model at inverse temperatéiren a graphG = (V, E)
with k vertices. The Gibbs sampler for this model i§-dl, l}V-vaIued Markov
chain (Xg, X1, . ..) with evolution as follows (we will simply follow the Gibbs
sampler recipe from Chapter 7). Givé, we obtainX,,,1 by picking a vertex
x € V at randomand pickingXp41(x) according to the conditional distribution
(under the probability measures g) given theXn-spins at all vertices except
and leaving the spins at the latter &t {x} of vertices unchanged. The updating
of the chosen vertex may be done using a random numby, (as usual,

41 similar thresholds are known to exist for cubic and other lattices in 3 dimensions (and also in
higher dimensions), but the exact values are not known.

42 Theorem 1.2.
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Fig. 12. Simulations of the Ising model on a ¥515 square lattice (vertical and
horizontal nearest neighbors share edges), at parameter \alaes) (upper left),

B = 0.15 (upper right)8 = 0.3 (lower left) andg = 0.5 (lower right). Black vertices
representt1’s, and white vertices representl’'s. In the cases = 0, the spins are
i.i.d. Takinggs > 0 means favoring agreement between neighbors, leading to clumping
of like spins. In the casg = 0.15, the clumping is just barely noticable compared to
the i.i.d. case, while already = 0.3 appears to disrupt the balance betwedrs and
—1's. This unbalance is even more marked wigeis raised to (6. The fact that the
fourth simulation g = 0.5) resulted in a majority of-1's (rather thant-1's) is just a
coincidence; the model is symmetric with respect to interchangeléf and+1's, so
we were equally likely to get a similar majority efl’s.

uniformly distributed on [01]), and setting

; exp2B (k4 (X,&)—k- (X.£)))
Xna100 =1 T2 TUni1 < gopicotcxon+d (91
—1 otherwise,

where (as in Problem 11.3), (X, Xp) denotes the number of neighbors of
having Xp-spin +1, andk_(x, Xn) similarly denotes the number of such ver-
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tices havingXp-spin—1. That (91) gives the desired conditional distribution of
Xn+1(x) follows from formula (95) in Problem 11.3 (b).

Let us now construct a Propp—Wilson algorithm based on this Gibbs sam-
pler. In the original version of the algorithm (without sandwiching), we have
2% Markov chains to run in parallel: one from each possible spin configuration
£ € {—=1,13V. In running these chains, it seems most reasonable to pick (at
each timen) the same vertex to update in all the Markov chains, and also
to use the same random numbéy_ 4 in all of them when updating the spin
at x according to (91). To fully specify the algorithm, the only thing that
remains to decide is the sequence of starting times, and as usual we may take
(N1, No,..)=1(1,2,4,8,...).

How can we apply the idea of sandwiching to simplify this algorithm? First
of all, sandwiching requires that we have some ordering of the state §ace
{-1, l}V. To this end, we shall use the same orderi@s in Problem 11.3
(c), meaning that for two configuratios n € {—1, 1}V, we writeé < 75 if
£(X) < n(x) forall x € V. (Note that this ordering, unlike the one we used for the
ladder walk, is not a so-calledtal ordering of the state space, because there are
(many) choices of configuratiogsandn that are not ordered, i.e., we have neither
& < nnorn < &.) In this ordering, we have ormaximal spin configuration
£MaX with the property thag < éM®for all £ € {—1, 1}V, obtained by taking
£MaX(x) = +1 for all x € V. Similarly, the configuratio™" ¢ {—1, 1}V
obtained by setting™"(x) = —1 for all x € V is the uniqueminimal spin
configuration, satisfying™" < ¢ for all & € {—1, 1}V.

Consider now two of the 2 different Markov chains run in parallel in the
Propp—Wilson algorithm, starting at timeN;: let us denote the two chains by
(XNjs XoNj+1s - -+ X0) and(X/_Nj, X/_Nj+1,...). Suppose that the starting

configurationsX_y; and X’_Nj satisfy X_n; (X) < X’_Nj (x) forall x € V, or
in other wordsX,NJ. =< XLNJ_ . We claim that

X—Nj+1(X) = X/_Nj+1(x) (92)

forall x € V, so thatX_; +1 < X’_Nj+1. For anyx other than the one chosen

to be updated, this is obvious singe n; 11(X) = X_n; (x) and XLNjJrl(X) =
X" (X). Whenx is the vertex chosen to be updated, (92) follows from (91) in
combination with equation (96) in Problem 11.3 (c) (check this!). So we have
just shown thatX_NJ. =< X’_Nj implies X_Nj+1 = XLNj+1' By the same
argumentX_;+1 < X/_NjJrl implies X_n; 42 = X/—N,-+2' and by iterating
this argument, we have that

H !/ !/
if X_Nj < X_Nj then Xg < Xj. (93)
; top top top bottom y bottom botto
Now write (X_Nj, X_Nj+1,..., Xy ') and (X_Nj ,X_Nj Yoo XgoMOM

for the two chains starting in the extreme configuratiOht_gf\’lj = ¢M& and
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Xﬁo,fltjomz £Min_As a special case of (93) we get
to
Xgottomﬁ Xo < XO p

where(X,Nj, X_Nj+1, ..., Xp) is any of the other % _ 2 Markov chains.
But now we can argue in the same way as for the sandwiching trick for the
ladder walk: If the top chalmxtOp Xtoﬁl IRTREEY Xg’p) and the bottom chain

(Xbottom Xb",\t}"ﬂ, o Xgotto") have coalesced by time 0, then all of the other

2K — 2 chains must have coalesced with them as well. So in order to check coales-
cence between all chains, it suffices to check it for the top and the bottom chain,
and therefore the top and the bottom chains are the only ones we need to run!
This reduces the task of runninfj different chains in parallel to one of running

just two chains. For large or even just moderately-sized graphs (such as those
having, sayk = 100 vertices), this transforms the Propp—Wilson algorithm from
being computationally completely hopeless, to something that actually works in
practice®3

We shall not make any attempt here to determine in general to which Markov
chainsthe sandwiching idea is applicable, and to which it is not. This has
already been studied quite extensively in the literature; see Chapter 14 for some
references. Problem 11.2 concerns this issue in the special case of birth-and
death processes.

Problems

11.1 (5) Show that the update functiah(i, x) for the ladder walk, defined in (85)—
(87), is increasing in. In other words, show that (88) holds for alle [0, 1]
and alli, j € {1, ...,k} such thai < j. Hint: consider the casese [0, %) and
X e [%, 1] separately.

11.2 (9) Note that the ladder walk is a special case of the birth-and-death processes
defined in Example 6.2.

43 The question of whether the algorithm works in practice is actually a little more complicated
than this, because we need the top and the bottom chains to coalsesce “within reasonable time”
and whether or not this happens depend€oand on the parametg. Take for instance the
case of a square lattice of sipe x m (so thatk = m?2). It turns out that forg less than
the Onsager critical valugc =~ 0.441, the time to coalescence grows like a (low-degree)
polynomial inm, whereas foB > B¢ it grows exponentially irm. Therefore, for large square
lattices, the algorithm runs reasonably quickly witer B¢, but takes an astronomical amount
of time (and is therefore useless) when> Bc. (This dichotomy is intimately related to the
phase transition behavior discussed in Example 11.1.) As demonstrated by Propp & Wilson
[PW], it is nevertheless possible to obtain exact samples from the Ising model on such graphs
at largep by another ingenious trick, which involves applying the Propp—Wilson algorithm
not directly to the Ising model, but to a certain graphical representation known as the Fortuin—
Kasteleyn random-cluster model, and then translating the result to the Ising model.
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(a) Can you find some useful sufficient condition on the transition probabilities
of a birth-and-death process, which ensures that the same sandwiching idea
as for the ladder walk will work?

(b) On the other hand, give an example of a birth-and-death process for which
the sandwiching idea doe®twork.

11.3 (8) Consider the Ising model at inverse temperaftien a graphG = (V, E).
Let x be a particular vertex iV, and leté e {—1, 1}Y\(X} be an arbitrary
assignment of-1's and+1's to the vertices ofs except for xLetst e {—1, 1V
be the spin configuration fd& which agrees witt§ onV \ {x} and which takes
the value+1 atx. Similarly, defines~ e {—1, 1}V to be the spin configuration
for G which agrees witl§ on V \ {x} and which takes the valuel atx. Also
definek; (x, &) to be the number of neighbors grfthat take the value-1 in &,
and analogously l&_ (x, &) be the number of neighboo$ x whose value i is
-1.

(&) Show that
ng,pE™)
7G,p(E7)
Hint: use the definition (90), and demonstrate that almost everything cancels
in the left-handside of (94).
(b) Suppose that the random spin configuratior {—1, 1}V is chosen accord-
ing torg, g. Imagine that we take a look at the spin igaration X (V \ {x})
but hide the spinX(x), and discover thaX(V \ {x}) = &. Now we are

interested in the conditional distribution of the spinxatUse (94) to show
that

= exp2B(ky(x, §) —k-(x,§))). (94)

exp2B (ki (x, §) —k-(x,§)))
exp2B(ky(x, &) —k-(x,§))) +1
(95)

holds?4 for anyx € V and any¢ e {—1, 1}V \X},
(c) For two configurationg, n € {—1, 1}V\X}, we writeg < 7 if £(y) < n(y)
forally € V \ {x}. Use (95) to show that § < », then

76, (X(X) = +1 X(V\{X}) =§) = 7mg g(X(X) = +1| X(V\{x}) =n).
(96)
11.4 (8*) Implement and run the Propp-Wilson algorithm for the Ising model as
described in Example 11.2, on a square lattice of sizem for various values of
m and the inverse temperature paramgteNote how the running time vari¢s
with mandg.

7G,p(X(X) =+1| X(V\ {x}) = §) =

44 One particular consequence of (95) is that the conditional distributiat(of given X (V \ {x})
depends only on the spins attained at the neighbors dthis is somewhat analogous to the
definition of a Markov chain, and is called tivdarkov random field property of the Ising
model.

45 |n view of the discussion in Footnote 43, do not be surprised if the algorithm seems not to
terminate at all fom large and3 above the Onsager critical valgg ~ 0.441.
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Propp—Wilson with
read-once randomness

A drawback of the Propp—Wilson algorithm introduced in the previous two
chapters is the need to reuse old random numbers: Recall that Markov chains
are started at times Ny, —Np, ... (whereN; < N2 < ---) and so on untilj

is large enough so that starting from timéN; gives coalescence at time 0. A
crucial ingredient in the algorithm is that when the Markov chains start at time
—N;i, the same random numbers as in previous runs should be used from time
—Ni -1 and onwards. The typical implementation of the algorithm is therefore
to store all new random numbers, and to read them again when needed in late
runs. This may of course be costly in terms of computer memory, and the
worst-case scenario is that one suddenly is forced to abort a simulation when
the computer has run out of memory.

Various approaches to coping with this problem have been tried. For in-
stance, some practitioners of the algorithm have circumvented the need for
storage of random numbers by certain manipulations of (the seeds of) the
random number generator. Such manipulations may, however, lead to all kinds
of unexpected and unpleasant problems, and we therefore advise the reader t
avoid them.

There have also been various attempts to modify the Propp—Wilson algo-
rithm in such a way that each random number only needs to be used once.
For instance, one could modify the algorithm by using new random variables
each time that old ones are supposed to be used. Unfortunately, as we sav
in Example 10.2, this approach leads to the output not having the desired
distribution, and is therefore useless. Another common suggestion is to run
the Markov chains nofrom the pastuntil time 0, but from time Onto the
future until coalescence takes place. This, however, also leads in general to an
output with the wrong distribution, as seen in Example 10.1.

The first satisfactory modification of the Propp—Wilson algorithm avoid-
ing storage and reuse of random numbers was recently obtained by David

93
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Wilson himself, in [W1]. His new scheme, which we have decided to call
Wilson’s modification of the Propp—Wilson algorithm, is a kind of coupling
into the futureprocedure, but unlike in Example 10.1, we don’t stop as soon
as coalescence has been reached, but continue for a certain (random) extr
amount of time. This extra amount of time is obtained in a somewhat involved
manner. The remainder of this chapter will be devoted to an attempt at a precise
description of Wilson’s modification, together with an explanation of why it
produces a correct (unbiased) sample from the stationary distribution of the
Markov chain.

Although Wilson’s modification run@to the future it is easier to under-
stand it if we first consider some variations of tinem the pasiprocedure in
Chapter 10, and this is whate will do.

To begin with, note that although in Chapter 10 we focused mainly on
starting times of the Markov chains given by, N2, ...) = (1,2,4,8,...),
any strictly increasing sequence of positive integers will work just as well (this
is clear from the proof of Theorem 10.1).

Next, let N7 < Nz < --.- be arandom strictly increasing sequence
of positive integers, and take it to be independent of the random variables
Uo, U_1,U_5, ... used in the Propp—Wilson algorith#f. Then the Propp—
Wilson algorithm with starting times-Nj, —Np, ... still produces unbiased
samples from the target distribution. This is most easily seen by conditioning
on the outcome of the random variablsg, N, ..., and then using the proof
of Theorem 10.1 to see that, givéNs, Na, ...), the conditional distribution
of the output still has the right distribution, and since this holds for any
outcome of(N1, Ny, .. .), the algorithm will produce an output with the correct
distribution.

Furthermore, we note that there is no harm (except for the added running
time) in continuing to run the chains from a few more earlier starting times
—N; after coalescence at time 0 has been observed. This is because the chain
will keep producing the same value at time 0.

Our next step will be to specify more precisely how to choose the random
sequencé&Ni, Np, ...). Let

Nt = Nj
Na = Nf+Nj
Na = Ni+Nj+ N

46 |t is in fact even possible to dispense with this independence requirement, but we do not need
this.
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where (N5, N3, ...) is an i.i.d. sequence of positive integer-valued random
variables. We take the distribution of tiN*’s to be the same as the distribu-
tion of the timeN needed to get coalescence in the couplimg the future
algorithm of Example 10.1. The easiest way to generaté\fheariables is to
run chains as in Example 10.1 (independently for éachnd to takeN:* to be
the time taken to coalescence.

Now comes a key observation: Wkim that

the probability that the Propp—Wilson algorithm starting from the first
starting time—N; = —N;j results in coalescence by time 0O (so that no
earlier starting times are needed) is at Ie}’:lst

To see this, leM1 denote the number of steps needed to get coalescence in
the Propp—Wilson algorithm starting at timeN; (and running past time O if
necessary). Thekl; andNj clearly have the same distribution, and since they
are also independent we get (by symmetry) that

P(M1 < Nj) = P(M1 > N{) (97)
Note also that
P(M1 < N{)+P(M1 > N;{) = 1-P(My> Nj)+1-P(M1< Nj)
2— (P(M1 > Nj) +P(M1 < N{))
= 2—-P(M1#Ny)
> 2—-1=1. (98)

Combining (97) and (98), we get thRtM; < Nj) > % proving the above
claim.

By similar reasoning, if we fail to get coalescence of the Propp—Wilson
algorithm startingfrom time —N1, then we have conditional probability at
Ieast% for the event that the Propp—Wilson chains starting at tinid, =
—(Nj 4+ NJ) coalesce no later than timeN;. More generally, we have
that given that we come as far as running the Propp—Wilson chains from
time —Nj = —(NJy +--- + Nj*), we have conditional probability at least
% of getting coalescence before timeN;j_;. We call thej™ restart of the
Propp—Wilson algorithnsuccessfuif it results in a coalescence no later than
time —Nj_1. Then each restart has (conditional on the previously carried out
restarts) probability at Iea%t of being successful.

Let Mj denote the amount of time needed to get coalescence sthding
time —N;j in the Propp—-Wilson algorithm. Note that the only thing that makes
the probability of a successful restart mojualto % is the possibility of getting
atie,Mj = Nj; this is clear from the calculation leading to (98).
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Now, to simplify things, we prefer to work with a probability which is
exactly%, rather than some unknown probability abo%ne To this end, we
toss a fair coin (or, rather, simulate a fair coin toss) whenever il fie= NJ?k

occurs, and declare thé" result to bex-successfulf either
Mj < NJ?k
or
M = Nj* and the corresponding coin toss comes up heads

(so that in other words the coin toss acts as a tie-tmgalhen, clearly, each
restart has probability exact%/of being=*-successful.

Our preliminary (and correct, but admittedly somewhat strange) vari-
ant of the Propp—Wilson algorithm is now to generate the starting times
—N1, —Ngp, ... as above, and to keep on until a restast-successful.

The next step will be to translate this variant into an algorithm with read-
once randomness. For this, we need to understand the distribution of the
number ofx-failing (defined as the opposite efsuccessful) restarts needed
before getting a-successful restart in the above algorithm. To do this, we pick
up one of the standard items from the probabilist’s (or gambler’s) toolbox:

Example 12.1: The geometric distribution.Fix p € (0, 1). An integer-valued
random variablé is said to be geometrically distributed with parameieif

P(Y=n)=pl-p"

forn=0,1,2,.... Note that if we have a coin with heads-probabilgywhich
we toss repeatedly (and independently) until it comes up heads, then the number
of tails we see is geometrically distributed with parameter

The number ok-failing restarts is clearly seen to be a geometrically distributed
random variable with parametér, let us denote it byy. The final (and-
successful) restart thus takes place at timidy 1 (becausehere areY x-
failing restarts, and one-successful).

The key to Wilson’s modification with read-once randomness is that we will
find a way tofirst run the chains from time-Ny 1 to time —Ny, thenfrom
time —Ny to time —Ny_1 and so on up to time 0 (without any prior attempts
with starting times that fail to give coalescence at time 0).

To see how this is done, imagine running two independent copies of the
couplinginto the futurealgorithm in Example 10.1. We run both copies for the
number of steps needed to giketh copies coalescence; hence one of them
may continue for some more steps after its own coalescence. Let us declare the
copy which coalesces first to be tinner, and the other to be tHeser, with
the usual fair coin toss as the tie-breaker in case they coalesce simultaneously
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We call the procedure of running two copies of thi the futurealgorithm in
this way atwin run .

A crucial observation now is that the evolution of the Markov chain from
time —Ny 1 to time —Ny has exactly the same distribution as the evolution of
the winner of a twin run as above (this probably requires a few morfteots
thought by the reader!). So the evolution of the Markov chains in the Propp—
Wilson algorithm from time—Nv,1 to time —Ny (at which coalescence has
taken place) can be simulated using a twin run.

Next, we simulate a geometri%X random variableY to determine the
number ofx-failing restarts in the Propp—Wilson algorithm.

If we are lucky enough so that happens to be 0, theaNy = 0 (and we
have coalescence at that time) then we are done: we have our sample from the
stationary distribution ofhe Markov chain.

If, on the other handy > 1, then we need to simulate the evolution of the
Markov chain from time—Ny to time 0. The value oX(—Ny) has already
been established using the first twin run. To simulate the evolution from time
—Ny to time —Ny_3, we may do another twin run, and let the chain evolve as
in theloserof this twin run, where the loser runs from time 0 until the time at
which thewinnergets coalescence. This gives precisely the right distribution
of the evolution(X(—Ny), X(—=Ny + 1), ..., X(—Ny_1)) from time—Ny to
time —Ny_1; to see this requirea few more moment$ of thought. We then
go on to simulate the chain from timeNy_; to time —Ny_» in the same way
using another twin run, and so on up to time 0.

The value of the chain at time 0 then has exactly the same distribution as the
output of the Propp—Wilson algorithm described above. Hence it is a correct
(unbiased) sample from the stationary distribution, and we did not have to
store or reread any of the random numbers. This, dear reader, is Wilson’s
modification!

Problems

12.1 (5) LetQ denote the set of all possible evolutions when running the couipitog
the futurealgorithm in Example 10.1 (for some fixed Markov chain and update
function). Consider running two independent copfesnd B of that coupling
into the futurealgorithm, and writeX o and Xg for the evolutions of the two
copies (so thaK o and X g are independerf2-valued random variables). Declare
the copy which coalesces first to be the winner, and the other copy to be the loser,

47 This is standard mathematical jargon for something that may sometimes take rather longer. In
any case, Problem 12.1 is designed to help you understand this point.

48 see Footnote 47.
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with a fair coin toss as tie-breaker. Wri¥gyinner and X|oser for the evolutions
of the winner and the loser, respectively.

(&) Show that
P(Xa =w, Xg =) =P(Xp =o', Xg = w)

for anyw, o’ € Q.

(b) Show that for anw € 2, the event$ Xwinner = @} and{A is the winnef are
independent.

(c) Show that the distribution oKyinner is the same as the conditional distribu-
tion of X 5 given the eventA is the winne}.

12.2 (3) Show that a random variabk whose distribution is geometric with param-
eterp e (0, 1) has expectatioB[X] = L — 1.

12.3 (9) Use the resultin Problem 12.2 to compare the expected running times in the
original Propp—Wilson algorithm (witliNy, N2, ...) = (1,2,4,8,...)), and in
Wilson’s modification. In particular, show that the expected running times are of
the same order of magnitude, in the sense that there exists a universal c@Gnstant
such that the expected running time of one of the algorithms is no more2than
times the other’s.
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Simulated annealing

The general problem considered in this chapter is the following. We have a set
S={s1,...,%} and afunctionf : S— R. The objectiveistofindag € S
which minimizes (or, sometimes, maximizes)s ).

When the sizd of Sis small, then this problem is of course totally trivial —
just computef (5) fori =1, ..., kand keep track sequentialty the smallest
value so far, and for which it was attained. What we should have in mind is
the case wherk is huge, so that this simple method becomes computationally
too heavy to be useful in practice. Here are two examples.

Example 13.1: Optimal packing. Let G be a graph with vertex s&t and edge
setE. Suppose that we want to pack objects at the vertices of this graph, in such
a way that

(i) at most one object can be placed at each vertex, and
(ii) no two objects can occupy adjacent vertices,

and that we want to squeeze in as many objects as possible under these con
straints. If we represent objects by 1's and empty vertices by 0’s, then, in the
terminology of Example 7.1 (the hard-core model), the problem is to find (one
of) the feasibl&® configuration(sk < {0, 1}V which maximizes the number of
1's50 As discussed in Example 7.1, the number of feasible configurations grows
very quickly (exponentially) in the size of the graph, so that the above method of
simply computingf (¢£) (where in this casé (¢) is the number of 1's i§) for all

& is practically impossible even for moderately large graphs.

Example 13.2: The travelling salesman problem.Suppose that we are given
m cities, and a symmetrim x m matrix D with positive entries representing
the distances between the cities. Imagine a salesman living in one of the cities,

49 Recall that a configuratiod € {0,1}V is said to be feasible if no two adjacent vertices are
assigned value 1.

50 For the 8x 8 square grid in Figure 7, the optimal packing problem is trivial. Imagine the
vertices as the squares of a chessboard, and place 1's at each of the 32 dark squares. This i
easily seen to be optimal. But for other graph structures it may not be so easy to find an optimal
packing.

99
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needing to visit the othem — 1 cities and then to return home. In which order
should he visit the cities in order to minimize the total distance travelled? This is
equivalent to finding a permutatign= (¢4, ..., &m) of the seft(d, .. ., m) which
minimizes

m—1

& =) Dg g1 + Depty - (99)

i=1

Again, the simple method of computiniy&) for all & is useless unless the size
of the problem (measured in the number of citigsis very small, because the
number of permutations is m!, which grows(even faster than) exponentiaity
m.

A large number of methods for solving these kinds of optimization problems
have been tried. Here we shall focus on one such metiotilated anneal-
ing.

The idea of simulated annealing is the following. Suppose that we run a
Markov chain with state spac®whose unique stationary distribution places
most of its probability on statese Swith a small value off (s). If we run the
chain for a sufficiently long time, then we dikely to end up in such a state
Suppose now that we switch to running another Markov chain whose unique
stationary distribution concentrates even more of its probability on states
that minimize f (s), so that after a while we are even more likely to be in an
f-minimizing states. Then switch to a Markov chain with an even stronger
preference for states that minimiZe and so on. It seems reasonable to hope
that if this scheme is constructed with some care, then the probability of being
in an f-minimizing states at timen tends to 1 as — oo.

If the first Markov chain has transition matriR’ and is run for timeNy,
the second Markov chain has transition maffik and is run for timeN,, and
so on, then the whole algorithm can be viewed as an inhomogeneous Markov
chain (recall Definition 2.2) with transition matrices

P’ forn=1,...,N;
pm — P” forn=Ni+1, ..., N7+ Ny,

There is a general way to choose a probability distributiorsevhich puts
most of its probability mass on states with a small valus,afamely to take
a so-calledBoltzmann distribution, defined below. A Markov chain with
the Boltzmann distribution as its unique stationary distribution can then be
constructed using the MCMC ideas in Chapter 7.

Definition 13.1 The Boltzmann distribution st 1 on the finite set S, with
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energy function f : S — R andtemperature parameter T > 0, is the
probability distribution on S which to each elemert S assigns probability

1 —f
T (S) = 7. - exp( T(S)> . (100)

Here

zir= e 12 (101)

seS

is a normalizing constant ensuring that, g 1(s) = 1.

Note that the facto% plays exactly the same role as the inverse temperature
parameteB does in the Ising model (Example 11.1). We mention also that
when the goal is to maximize rather than to minimizgt is useful to replace
the Boltzmann distribution by theodified Boltzmann distribution, in which
the exponent in (100) and (101)4¢2 instead of—<.

The following result tells us that the Boltzmann distribution with a small
value of the temperature paramelehas the desired property of placingpst
of its probability on elementsthat minimizef (s).

Theorem 13.1Let S be afinite set and let:fS — R be arbitrary. For T > 0,
let «(T) denote the probability that a random element Y chosen according to
the Boltzmann distribution ¢ T on S satisfies

f(Y)= rsnelg f(s).

Then

lim o(T) =1.
TIHOO[( )

Sketch proofWe consider only the case wheshas a uniquef -minimizer;
the case of severdl-minimizers is left to Problem 13.1. Write (as usuafpr
the number of elements &. Lets be the uniquef -minimizer, leta = f(s)
and letb = mingcs,(s) f (). Note thata < b, so that

. a—b
'II'IEIO exp<7) =0. (202)

We get
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exp(7°)

. ()
exp(7) + Loess P —12)

) exp()
~ exp(R) + k- Dexp(P)
1

1+ (k—Dexp(32)’
which tendsto 1 a§ — 0, because of (102). Hence
li =1
TILnOJTf,T(S) )
as desired. O

The design of a simulated annealing algorithm for finding an elesmens
which minimizesf (s) can now be carried out as follows. First construct an
MCMC chain for simulating the Boltzmann distributiory + on S, with a
general choice off. Very often, this is done by constructing a Metropolis
chain as indicated in the final part of Chapter 7. Then we fix a decreasing
sequence of temperaturés > T> > T3 > --- with Tj tendingto 0 as — oo
(hence the ternannealing), and a sequence of positive integés, No, . ...
Starting from an arbitrary initial state i®, we run the chain at temperatufg
for N1 units of time, then at temperatufe for Ny units of time, and so on.

The choice of T, T, ...) and(N1, N2, .. .) is called the annealing (or cool-
ing) schedule, and is of crucial importance: How fast should the temperature
tend to O as timen — oco? There exist theorems stating that if the temper-
ature approaches 0 sufficiently slowly (which, e.g., can be accomplished by
letting the sequencéNs, No, . ..) grow sufficiently fast), then the probability
of seeing anf -minimizer at timen does tend to 1 as — 00.°1 The meaning
of “sufficiently slowly” of course depends on the particular application. Un-
fortunately, the annealing schedules for which these theorems guarantee sucl
convergence are in most cases so slow that we have to wait for an astronomica
amount of time before having a temperature that is low enough that we can
be anywhere near certain of having found &aminimizer. Therefore, most
annealing schedules in practical applications are faster than those for which

51 One such theorem was proved by Geman & Geman [GG]: If the temperBfQtet timen
converges to 0 slowly enough so that

T o k(maxes f(s) — Minses f (s))
- logn

for all sufficiently largen, then the probability of seeing afirminimizer at timen converges to
1asn — oo.
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the desired convergence is rigorously known. The danger of this is that if the

cooling takes placéoo rapidly, then the Markov chain risks getting stuck in

a local minimum, rather than in a global one; see Example 13.4 below. The
choice of annealing schedule in practice is therefore a highly delicate balance:
On the one hand, we want it to be fast enough to get convergence in reasonable
time, and on the other hand, we want it to be slow enough to avoid converging

to an element which is not afi-minimizer. This often requires quite a bit of

experimentation, giving the method more the character of “engineering” than

of “mathematics”.

Example 13.3: Simulated annealing for the travelling salesman problem.
Consider the travelling salesman problem in Example 13.2. We wish to find the
permutationt = (&1, ..., &n) of (1, ..., m) which minimizes the total distance

f (¢) defined in (99). In order to get a simulated annealing algorithm for this
problem, let us construct a Metropolis chain (see Chapter 7) for the Boltzmann
distributions ¢ T at temperaturd on the set of permutations of, ..., m). To

this end, we first need to define which permutations to view as “neighbors”,
i.e., between which permutations to allow transitions in the Metropolis chain. A
sensible choice is to declare two permutatignend&’ to be neighbors if there
existi, j € {1,...,m}withi < j such that’ arises by “reversing” the segment
&, ..., &j), meaning that

£ = &m) = G162 6 1,651,
&1, 6641, 642, -+ Em). (103)

This corresponds to removing two edges from the tour through all the cities,
and inserting two other edges with the same four endpoints in such a way that a
different tour is obtained; see Figure 13. The transition matrix for the Metropolis
chain corresponding to this choice of neighborhood structure and the Boltzmann
distribution at temperatur€ is obtained by inserting (100) into (46). We get

m min {exp(w) , 1} if £ andg’
are neighbors
0 if £ £ & are
Pe g = not neighbors
2 ; fE-fE" T
1-— Z mmln{exp<f),l} if &€ =¢,
é—//
£~
(104)
where the sum is over all permutatiof$ that are neighbors of. This cor-
responds to the following transition mechanism. First gick € {1,...,m}

uniformly from the set of all choices such that< j. Then switch from the
present permutatiog to the permutatiort’ defined in (103) with probability

min [exp(M) , 1], and stay in permutatiop for another time unit with
the remaining probability - min{exp(f@)%f(s/)) , 1}. This chain has the
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14 2

12

11

Fig. 13. A transition in the Metropolis chain in Example 13.3 for the
travelling salesman problem, corresponding to going from the permutation
& = (1,23,4,56,7,89,10,11,12, 13 14 to the permutationg =
(1,2,3,4,11,10,9,8,7,6,5,12,13, 14).

Boltzmann distributionr ¢ T as a reversible distribution, by the general Metropo-
lis chain theory discussed in Chapter 7. The chain can also be shown to be
irreducible (which is necessary in general for it to qualify as a useful MCMC
chain).

It then only remains to decide upon a suitable cooling schedule, i.e., a suitable
choice of (T1, Ty, ...) and (Ng, Np, ...) in the simulated annealing algorithm.
Unfortunately, we have no better suggestion than to do this by trial and error.

We note one very happy circumstance of the above example: When inserting
the Boltzmann distribution (100) into (46) to obtain (104), the normalizing
constantZ ¢ 1 cancelled everywhere, because all the expressions involving the
Boltzmann distribution were in fact ratios between Boltzmann probabilities.
That is very good news, because otherwise we would have had to calculate
Zs 1, which is computationally infeasible. The same thing would happen for
any Boltzmann distribution, and we therefore conclude that Metropolis chains
are in general very convenient tools for simulating Boltzmann distributions.

Next, let us have a look at a simple example to warn against too rapid cooling
schedules.

Example 13.4: The hazard of using a fast annealing scheduleLet S =
{St,..., 1}, let f : S— R be given by

f(sp)=1
f(sp) =2
f(s3) =0 (105)

f(sg) =2
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S S
S S

Fig. 14. The graph structure chosen for the Metropolis algorithm in Example 13.4.

and suppose that we want to find the minimum fafs) using simulated an-
nealing®? To find a Metropolis chain for the Boltzmann distribution &mat
temperaturel, we need to impose a graph structure®nLet’s say that we opt

for the square formation in Figure 14. By applying (100) and (46), the transition

matrix
1_e YT %efl/T 0 %efl/T
3 0 3 0
0 %e—Z/T 1—e-2/T %e—Z/T
3 0 3 0

is obtained. Suppose now that we run the inhomogeneous Markov chain
(Xg, X1,...) on S, corresponding to some given annealing schedule, starting
with Xg = s1. As in Footnote 51, writel (" for the temperature at time in

this annealing schedule. L& be the event that the chain remains in stgte
forever (so that in particular the chain never finds fheminimizing statess). We

get

P(A)

P(X1=5,X2=9%,...)

= nll)moop(xlzslvxzzslv'vxn:Sﬂ_)

= lim P(X1=s11Xo=8s)P(Xz =81/ Xy =51
X P(Xn = 81| Xp-1 = 51)

im [T (1-e ™) = [T (1-e¥")
n=ool 1 -

which is equal to 0 if and only -2, e VTV _ 5. Hence, ifT™ is sent to
0 rapidly enough so that’ 2, e UTY _ o, thenP(A) > 0, so that the chain
may get stuck in stats; forever. This happens, e.g., if we také" = % The

simulated annealing algorithm then fails to find the true (glotbathinimizer fs.
Two factors combine to create this failure, namely

(i) the annealing schedule being too fast, and

52 Of course, it is somewhat silly to use simulated annealing on a small problem like this one,
where we can deduce that the minimumfigsz) = 0 by immediate inspection of (105).
This example is chosen just to give the simplest possible illustration of a phenomenon that
sometimes happens in simulated annealing algorithms for larger and more interesting problems.
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(ii) states; being a localf-minimizer (meaning thatf takes a smaller value
ats; than at any of the neighbors ef in the graph structure used for the
Metropolis chain) without being a global one.

Let us give one final example of an optimization problem for which simulated
annealing may be a suitable method.

Example 13.5: Graph bisection.Given a graptG = (V, E) whose vertex se¥
contains R vertices, the graph bisection problem is to find a way of partitioning
V into two setsVq and V> with k elements each, such that the total number of
edges having one endpointif; and the other if/; is minimized. This problem

is relevant for the design of search engines on the InteMehay be the set of

all web pages on which a given word was found, edges represent links from one
page to another, and the hope is tiatand V> will provide a relevant split into
different subarea®> For instance, if the search word is “football”, then we may
hope thal/; contains mostly pages about American football, ¥panostly pages
about soccer.

In recent years, several researchers tab@ndoned the idea of an annealing
schedule, and instead preferred to run the Metropolis chain at a single fixed
temperature, which is chosen on the basis of a careful mathematical analysis
of the optimization problem at hand. For instance, Jerrum & Sorkin [JS] do
this for the graph bisection problem in Example 13.5. They show thalt for
large and under reasonable assumptions on the input data, their algorithm finds
for arbitrarye > 0, the optimal bisection in tim€k+¢ with overwhelming
probability ask — oo, if T is taken to be of the order®/6+=.

Problems

13.1 (8) Modify the proof of Theorem 13.1 in order to take care of the case where
there are several elemerste S satisfying f (s) = ming s f(S).

13.2 (6) Describe a simulated annealing algorithm for the graph bisection problem in
Example 13.5. In particular, suggest a natural choice of neighborhood structure
in the underlying Metropolis chain.

13.3 (8%) Suppose that we want to solve the optimal packing problem in Exam-
ple 13.1 (i.e., we want to maximiz€&(¢) over all feasible configurations e
{0, 1}V, where (&) is the number of 1's irg), and decide to try simulated
annealing. To find suitable Markov chains, we start by considering Boltzmann
distributions for the functionf (¢£). Since we are dealing with a maximization
(rather than minimization) problem, we considiee modfied Boltzmann distri-
bution with the minus sign in the exponents of (100) and (101) removed.

(a) Show that this modified Boltzmann distribution at temperaiuige the same

as the probability measugeg ; defined in Problem 7.4, with = exp(%).

53 In this application, it is of course also natural to relax the requirementhaind V, are of
equal size.



Simulated annealing 107

(b) Implement and run a simulated annealing algorithm for some suitable in-
stances of this problem. (Note that due to (a), the MCMC algorithm con-
structed in Problem 7.4 can be used for this purpose.)
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Further reading

Markov theory is a huge subject (much bigger than indicated by these notes),
and consequently there are many books written on it. Three books that have
influenced the present text are the ones bymBaud [B], Grimmett & Stirzaker
[GS], and (the somewhat more advanced book by) Durrett [Du]. Another
nice introduction to the topic is the book by Norris [N]. Some of my Swedish
compatriots will perhaps prefer to consult the texts by &yé& Lindgren [RL]

and Enger & Grandell [EG]. The reader can find plenty of additional material
(more general theory, as wedk other directions for applications) in any of
these references.

Still on the Markov theory side (Chapters 2—6) of this text, there are two
particular topics that | would warmly recommend for further study to anyone
with a taste for mathematical elegance and the power and simplicity of prob-
abilistic arguments: The first one ike coupling method which was used
to prove Theorems 5.2 and 8.1, and which also underlies the algorithms in
Chapters 10-12; see the books by Lindvall [L] and by Thorisson [T]. The
second topic is the relation betwemversible Markov chains and electrical
networks, which is delightfully treated in the book by Doyle & Snell [DSn].
Haggstdom [H] gives a short introduction in Swedish.

Another goldmine for the ambitiowsgudent is the collection of papers edited
by Snell [Sn], where many exciting topics in probability, several of which
concern Markov chains and/or randomized algorithms, are presented on a leve
accessible to advanced undergraduates.

Moving on to the algorithmic side (Chapters 7-13), it is worth stressing
again that the collection of algorithms considered here in no way is represen-
tative of the entire field of randomized algorithms. A reasonable overview can
be obtained by reading, in addition to these notes, the book by Motwani &
Raghavan [MR]. See also the recent collection edited by Habib & McDiarmid
[HM] for more on randomized algorithms and other topics at the interface
between probability and computer science.

108
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The main standard reference for MCMC (Chapter 7) these days seems to
be the the book edited by Gilks, Richardson & Spiegelhalter [GRS]. Another
book which is definitely worth reading is the research monograph by Sinclair
[Si]. For the particular case of simulating the hard-core model described
in Example 7.1, see, e.g., the paper by Luby & Vigoda [LV]. The problem
discussed in Chapter 8 of proving fast convergence of Markov chains has been
studied by many authors. Some key references in this area are Diaconis & Fill
[DF], Diaconis & Strook [DSt], Sinclair [Si] and Randall & Tetali [RT]; see
also the introductory paper by Rosenthal [R]. The treatmeqgtadlorings in
Chapters 8 and 9 is based on the paper by Jerrum [J]. The general approach t
counting in Chapter 9 is treated nicely in [Si].

Moving on to Propp—Wilson algorithms (Chapters 10-12), this is such a re-
cent topic that it has not yet been treated in book form. The original 1996 paper
by Propp & Wilson [PW] has already become a classic, and should be read by
anyone wanting to dig deeper into this topic. Other papers that may serve
as introductions to the Propp—Wilson algorithm are those hgdstom &
Nelander [HN] and Dimakos [Di]. An annotated bibliography on the subject,
continuously maintained by Wilson, can be found at the web site [W2]. For
treatments of the sandwiching technique of Chapter 11, see [PW] or any of the
other references mentioned here. The subtle issue of exactly under what condi:
tions (on the Markov chain) the sandwiching technique is applidahiteated
in a recent paper by Fill & Machida [FM]. The read-once variant of the Propp—
Wilson algorithm considered in Chapter 12 was introduced by Wilson [W1].

For the purpose of refining MCMC methods in ways that lead to completely
unbiased samples, there is an interesting alternative to the Propp—Wilson al-
gorithm that has become known Bdl's algorithm . It was introduced by
Fill [Fi], and then substantially generalized by Fill, Machida, Murdoch &
Rosenthal [FMMR].

For an introduction to the Ising model considered in Chapter 11 (and also to
some extent the hard-core model), see Geord@gdstom & Maes [GHM].

Concerning simulated annealing (Chapter 13), see the contribution by B. Gi-
das to the aforementioned collection [Sn]. Also worthy of attention is the
recent emphasis on running the algorithm at a carefully chosen fixed tempera-
ture; see Jerrum & Sorkin [JS].

Finally, let me emphasize once more that the difficult problem of making
sure that we have access to a good (pseudo-)random number generator (&
discussed very briefly in the beginning of Chapter 3) deserves serious attention.
The classical reference for this problem is Knuth [K]. See also Goldreich
[G] for an introduction to a promising new approach based on the theory of
algorithmic complexity.
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