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Preface

Regression analysis has been one of the most widely employed and most important
statistical methods in applications and has been continually made more sophisti-
cated from various points of view over the last four decades. Among a number of
branches of regression analysis, the method of generalized least squares estimation
based on the well-known Gauss–Markov theory has been a principal subject, and is
still playing an essential role in many theoretical and practical aspects of statistical
inference in a general linear regression model. A general linear regression model is
typically of a certain covariance structure for the error term, and the examples are
not only univariate linear regression models such as serial correlation models, het-
eroscedastic models and equi-correlated models but also multivariate models such
as seemingly unrelated regression (SUR) models, multivariate analysis of variance
(MANOVA) models, growth curve models, and so on.

When the problem of estimating the regression coefficients in such a model
is considered and when the covariance matrix of the error term is known, as an
efficient estimation procedure, we rely on the Gauss–Markov theorem that the
Gauss–Markov estimator (GME) is the best linear unbiased estimator. In practice,
however, the covariance matrix of the error term is usually unknown and hence the
GME is not feasible. In such cases, a generalized least squares estimator (GLSE),
which is defined as the GME with the unknown covariance matrix replaced by
an appropriate estimator, is widely used owing to its theoretical and practical
virtue.

This book attempts to provide a self-contained treatment of the unified theory of
the GLSEs with a focus on their finite sample properties. We have made the content
and exposition easy to understand for first-year graduate students in statistics,
mathematics, econometrics, biometrics and other related fields. One of the key
features of the book is a concise and mathematically rigorous description of the
material via the lower and upper bounds approach, which enables us to evaluate
the finite sample efficiency in a general manner.

In general, the efficiency of a GLSE is measured by relative magnitude of
its risk (or covariance) matrix to that of the GME. However, since the GLSE
is in general a nonlinear function of observations, it is often very difficult to
evaluate the risk matrix in an explicit form. Besides, even if it is derived, it is
often impractical to use such a result because of its complication. To overcome
this difficulty, our book adopts as a main tool the lower and upper bounds approach,

xi



xii PREFACE

which approaches the problem by deriving a sharp lower bound and an effective
upper bound for the risk matrix of a GLSE: for this purpose, we begin by showing
that the risk matrix of a GLSE is bounded below by the covariance matrix of the
GME (Nonlinear Version of the Gauss–Markov Theorem); on the basis of this result,
we also derive an effective upper bound for the risk matrix of a GLSE relative to
the covariance matrix of the GME (Upper Bound Problems). This approach has
several important advantages: the upper bound provides information on the finite
sample efficiency of a GLSE; it has a much simpler form than the risk matrix
itself and hence serves as a tractable efficiency measure; furthermore, in some
cases, we can obtain the optimal GLSE that has the minimum upper bound among
an appropriate class of GLSEs. This book systematically develops the theory with
various examples.

The book can be divided into three parts, corresponding respectively to Chap-
ters 1 and 2, Chapters 3 to 6, and Chapters 7 to 9. The first part (Chapters 1
and 2) provides the basics for general linear regression models and GLSEs. In
particular, we first give a fairly general definition of a GLSE, and establish its
fundamental properties including conditions for unbiasedness and finiteness of
second moments. The second part (Chapters 3–6), the main part of this book,
is devoted to the detailed description of the lower and upper bounds approach
stated above and its applications to serial correlation models, heteroscedastic mod-
els and SUR models. First, in Chapter 3, a nonlinear version of the Gauss–Markov
theorem is established under fairly mild conditions on the distribution of the
error term. Next, in Chapters 4 and 5, we derive several types of effective upper
bounds for the risk matrix of a GLSE. Further, in Chapter 6, a uniform bound
for the normal approximation to the distribution of a GLSE is obtained. The
last part (Chapters 7–9) provides further developments (including mathematical
extensions) of the results in the second part. Chapter 7 is devoted to making a
further extension of the Gauss–Markov theorem, which is a maximal extension
in a sense and leads to a further generalization of the nonlinear Gauss–Markov
theorem proved in Chapter 3. In the last two chapters, some complementary topics
are discussed. These include concentration inequalities, efficiency under elliptical
symmetry, degeneracy of the distribution of a GLSE, and estimation of growth
curves.

This book is not intended to be exhaustive, and there are many topics that are
not even mentioned. Instead, we have done our best to give a systematic and unified
presentation. We believe that reading this book leads to quite a solid understanding
of this attractive subject, and hope that it will stimulate further research on the
problems that remain.

The authors are indebted to many people who have helped us with this work.
Among others, I, Takeaki Kariya, am first of all grateful to Professor Morris
L. Eaton, who was my PhD thesis advisor and helped us get in touch with the
publishers. I am also grateful to my late coauthor Yasuyuki Toyooka with whom
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I published some important results contained in this book. Both of us are thankful
to Dr. Hiroshi Tsuda and Professor Yoshihiro Usami for providing some tables and
graphs and Ms Yuko Nakamura for arranging our writing procedure. We are also
grateful to John Wiley & Sons for support throughout this project. Kariya’s portion
of this work was partially supported by the COE fund of Institute of Economic
Research, Kyoto University.

Takeaki Kariya
Hiroshi Kurata



1

Preliminaries

1.1 Overview

This chapter deals with some basic notions that play indispensable roles in the
theory of generalized least squares estimation and should be discussed in this
preliminary chapter. Our selection here includes three basic notions: multivariate
normal distribution, elliptically symmetric distributions and group invariance. First,
in Section 1.2, some fundamental properties shared by the normal distributions are
described without proofs. A brief treatment of Wishart distributions is also given.
Next, in Section 1.3, we discuss the classes of spherically and elliptically sym-
metric distributions. These classes can be viewed as an extension of multivariate
normal distribution and include various heavier-tailed distributions such as mul-
tivariate t and Cauchy distributions as special elements. Section 1.4 provides a
minimum collection of notions on the theory of group invariance, which facilitates
our unified treatment of generalized least squares estimators (GLSEs). In fact, the
theory of spherically and elliptically symmetric distributions is principally based
on the notion of group invariance. Moreover, as will be seen in the main body of
this book, a GLSE itself possesses various group invariance properties.

1.2 Multivariate Normal and Wishart Distributions

This section provides without proofs some requisite distributional results on the
multivariate normal and Wishart distributions.

Multivariate normal distribution. For an n-dimensional random vector y, let
L(y) denote the distribution of y. Let

µ = (µ1, . . . , µn)
′ ∈ Rn and � = (σij ) ∈ S(n),

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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2 PRELIMINARIES

where S(n) denotes the set of n × n positive definite matrices and a′ the transpo-
sition of vector a or matrix a. We say that y is distributed as an n-dimensional
multivariate normal distribution Nn(µ, �), and express the relation as

L(y) = Nn(µ, �), (1.1)

if the probability density function (pdf) f (y) of y with respect to the Lebesgue
measure on Rn is given by

f (y) = 1

(2π)n/2|�|1/2
exp

(
−1

2
(y − µ)′�−1(y − µ)

)
(y ∈ Rn). (1.2)

When L(y) = Nn(µ, �), the mean vector E(y) and the covariance matrix Cov(y)

are respectively given by

E(y) = µ and Cov(y) = �, (1.3)

where

Cov(y) = E{(y − µ)(y − µ)′}.
Hence, we often refer to Nn(µ, �) as the normal distribution with mean µ and
covariance matrix �.

Multivariate normality and linear transformations. Normality is preserved under
linear transformations, which is a prominent property of the multivariate normal
distribution. More precisely,

Proposition 1.1 Suppose that L(y) = Nn(µ, �). Let A be any m × n matrix such
that rank A = m and let b be any m × 1 vector. Then

L(Ay + b) = Nm(Aµ + b, A�A′). (1.4)

Thus, when L(y) = Nn(µ, �), all the marginal distributions of y are normal. In
particular, partition y as

y =
(

y1
y2

)
with yj : nj × 1 and n = n1 + n2,

and let µ and � be correspondingly partitioned as

µ =
(

µ1
µ2

)
and � =

(
�11 �12
�21 �22

)
. (1.5)

Then it follows by setting A = (In1, 0) : n1 × n in Proposition 1.1 that

L(y1) = Nn1(µ1, �11).

Clearly, a similar argument yields L(y2) = Nn2(µ2, �22). Note here that yj ’s are
not necessarily independent. In fact,
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Proposition 1.2 If L(y) = Nn(µ, �), then the conditional distribution L(y1|y2) of
y1 given y2 is given by

L(y1|y2) = Nn1(µ1 + �12�
−1
22 (y2 − µ2), �11.2) (1.6)

with

�11.2 = �11 − �12�
−1
22 �21.

It is important to notice that there is a one-to-one correspondence between (�11,

�12, �22) and (�11.2, �, �22) with � = �12�
−1
22 . The matrix � is often called

the linear regression coefficient of y1 on y2.
As is well known, the condition �12 = 0 is equivalent to the independence

between y1 and y2. In fact, if �12 = 0, then we can see from Proposition 1.2 that

L(y1) = L(y1|y2) (= Nn1(µ1, �11)),

proving the independence between y1 and y2. The converse is obvious.

Orthogonal transformations. Consider a class of normal distributions of the form
Nn(0, σ 2In) with σ 2 > 0, and suppose that the distribution of a random vector y

belongs to this class:

L(y) ∈ {Nn(0, σ 2In) | σ 2 > 0}. (1.7)

Let O(n) be the group of n × n orthogonal matrices (see Section 1.4). By using
Proposition 1.1, it is shown that the distribution of y remains the same under
orthogonal transformations as long as the condition (1.7) is satisfied. Namely, we
have

Proposition 1.3 If L(y) = Nn(0, σ 2In) (σ 2 > 0), then

L(�y) = L(y) f or any � ∈ O(n). (1.8)

It is noted that the orthogonal transformation a → �a is geometrically either the
rotation of a or the reflection of a in Rn. A distribution that satisfies (1.8) will be
called a spherically symmetric distribution (see Section 1.3). Proposition 1.3 states
that {Nn(0, σ 2In) | σ 2 > 0} is a subclass of the class of spherically symmetric
distributions.

Let ‖A‖ denote the Euclidean norm of matrix A with

‖A‖2 = tr(A′A),

where tr(·) denotes the trace of a matrix ·. In particular,

‖a‖2 = a′a

for a vector a.
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Proposition 1.4 Suppose that L(y) ∈ {Nn(0, σ 2In) | σ 2 > 0}, and let

x ≡ ‖y‖ and z ≡ y/‖y‖ with ‖y‖2 = y′y. (1.9)

Then the following three statements hold:

(1) L
(
x2/σ 2

) = χ2
n , where χ2

n denotes the χ2 (chi-square) distribution with
degrees of freedom n;

(2) The vector z is distributed as the uniform distribution on the unit sphere U(n)

in Rn, where

U(n) = {u ∈ Rn | ‖u‖ = 1};

(3) The quantities x and z are independent.

To understand this proposition, several relevant definitions follow. A random vari-
able w is said to be distributed as χ2

n , if a pdf of w is given by

f (w) = 1

2n/2�(n/2)
w

n
2 −1 exp (−w/2) (w > 0), (1.10)

where �(a) is the Gamma function defined by

�(a) =
∫ ∞

0
ta−1e−tdt (a > 0). (1.11)

A random vector z such that z ∈ U(n) is said to have a uniform distribution on
U(n) if the distribution L(z) of z satisfies

L(�z) = L(z) for any � ∈ O(n). (1.12)

As will be seen in the next section, statements (2) and (3) of Proposition 1.4
remain valid as long as the distribution of y is spherically symmetric. That is, if y

satisfies L(�y) = L(y) for all � ∈ O(n) and if P (y = 0) = 0, then z ≡ y/‖y‖ is
distributed as the uniform distribution on the unit sphere U(n), and is independent
of x ≡ ‖y‖.

Wishart distribution. Next, we introduce the Wishart distribution, which plays a
central role in estimation of the covariance matrix � of the multivariate normal
distribution Nn(µ, �). In this book, the Wishart distribution will appear in the
context of estimating a seemingly unrelated regression (SUR) model (see Example
2.4) and a growth curve model (see Chapter 9).

Suppose that p-dimensional random vectors y1, . . . , yn are independently and
identically distributed as the normal distribution Np(0, �) with � ∈ S(p). We call
the distribution of the matrix

W =
n∑

j=1

yjy
′
j
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the Wishart distribution with parameter matrix � and degrees of freedom n, and
express it as

L(W) = Wp(�, n). (1.13)

When n ≥ p, the distribution Wp(�, n) has a pdf of the form

f (W) = 1

2np/2�p(n/2)|�|n/2
|W | n−p−1

2 exp

(
− tr(W�−1)

2

)
, (1.14)

which is positive on the set S(p) of p × p positive definite matrices. Here �p(a)

is the multivariate Gamma function defined by

�p(a) = πp(p−1)/4
p∏

j=1

�

(
a − j − 1

2

) (
a >

p − 1

2

)
. (1.15)

When p = 1, the multivariate Gamma function reduces to the (usual) Gamma
function:

�1(a) = �(a).

If W is distributed as Wp(�, n), then the mean matrix is given by

E(W) = n�.

Hence, we often call Wp(�, n) the Wishart distribution with mean n� and degrees
of freedom n. Note that when p = 1 and � = 1, the pdf f (W) in (1.14) reduces to
that of the χ2 distribution χ2

n , that is, W1(1, n) = χ2
n . More generally, if L(w) =

W1(σ
2, n), then

L(w/σ 2) = χ2
n . (1.16)

(See Problem 1.2.2.)

Wishart-ness and linear transformations. As the normality is preserved under
linear transformations, so is the Wishart-ness. To see this, suppose that L(W) =
Wp(�, n). Then we have

L(W) = L


 n∑

j=1

yjy
′
j


 ,

where yj ’s are independently and identically distributed as the normal distribution
Np(0, �). Here, by Proposition 1.1, for an m × p matrix A such that rankA =
m, the random vectors Ay1, . . . , Ayn are independent and each Ayj has Np(0,

A�A′). Hence, the distribution of

n∑
j=1

Ayj (Ayj )
′ = A


 n∑

j=1

yjy
′
j


A′
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is Wp(A�A′, n). This clearly means that L(AWA′) = Wp(A�A′, n). Thus, we
obtain

Proposition 1.5 If L(W) = Wp(�, n), then, for any A : m × p such that rank

A = m,

L(AWA′) = Wp(A�A′, n). (1.17)

Partition W and � as

W =
(

W11 W12
W21 W22

)
and � =

(
�11 �12
�21 �22

)
(1.18)

with Wij : pi × pj , �ij : pi × pj and p1 + p2 = p. Then, by Proposition 1.5, the
marginal distribution of the ith diagonal block Wii of W is Wpi

(�ii, n) (i = 1, 2).
A necessary and sufficient condition for independence is given by the following
proposition:

Proposition 1.6 When L(W) = Wp(�, n), the two matrices W11 and W22 are inde-
pendent if and only if �12 = 0.

In particular, it follows:

Proposition 1.7 When W = (wij ) has Wishart distribution Wp(Ip, n), the diagonal
elements wii’s are independently and identically distributed as χ2

n . And hence,

L(tr(W)) = χ2
np. (1.19)

Cholesky–Bartlett decomposition. For any � ∈ S(p), the Cholesky decompo-
sition of � gives a one-to-one correspondence between � and a lower-triangular
matrix �. To introduce it, let G+

T (p) be the group of p × p lower-triangular matri-
ces with positive diagonal elements:

G+
T (p) = {� = (θij ) ∈ G�(p)

∣∣∣ θii > 0 (i = 1, . . . , p), θij = 0 (i < j)},
(1.20)

where G�(p) is the group of p × p nonsingular matrices (see Section 1.4).

Lemma 1.8 (Cholesky decomposition) For any positive definite matrix � ∈ S(p),
there exists a lower-triangular matrix � ∈ G+

T (p) such that

� = ��′. (1.21)

Moreover, the matrix � ∈ G+
T (p) is unique.

By the following proposition known as the Bartlett decomposition, a Wishart
matrix with � = Ip can be decomposed into independent χ2 variables.
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Proposition 1.9 (Bartlett decomposition) Suppose L(W) = Wp(Ip, n) and let

W = T T ′

be the Cholesky decomposition in (1.21). Then T = (tij ) satisfies

(1) L(t2
ii ) = χ2

n−i+1 for i = 1, . . . , p;

(2) L(tij ) = N(0, 1) and hence L(t2
ij ) = χ2

1 for i > j ;

(3) tij ’s (i ≥ j) are independent.

This proposition will be used in Section 4.4 of Chapter 4, in which an optimal
GLSE in the SUR model is derived. See also Problem 1.2.5.

Spectral decomposition. For any symmetric matrix �, there exists an orthogonal
matrix � such that �′�� is diagonal. More specifically,

Lemma 1.10 Let � be any p × p symmetric matrix. Then, there exists an orthog-
onal matrix � ∈ O(p) satisfying

� = �	�′ with 	 =




λ1 0
. . .

0 λp


 , (1.22)

where λ1 ≤ · · · ≤ λp are the ordered latent roots of �.

The above decomposition is called a spectral decomposition of �. Clearly, when
λ1 < · · · < λp, the j th column vector γj of � is a latent vector of � corresponding
to λj . If � has some multiple latent roots, then the corresponding column vectors
form an orthonormal basis of the latent subspace corresponding to the (multiple)
latent roots.

Proposition 1.11 Let L(W) = Wp(Ip, n) and let

W = HLH ′

be the spectral decomposition of W , where H ∈ O(p) and L is the diagonal matrix
with diagonal elements 0 ≤ l1 ≤ · · · ≤ lp. Then

(1) P (0 < l1 < · · · < lp) = 1;

(2) A joint pdf of l ≡ (l1, . . . , lp) is given by

πp2/2

2pn/2�p(p/2)�p(n/2)
exp


−1

2

p∑
j=1

lj


 p∏

j=1

l
(n−p−1)/2
j

∏
i<j

(lj − li ),

which is positive on the set {l ∈ Rp | 0 < l1 < · · · < lp};
(3) The two random matrices H and L are independent.
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A comprehensive treatment of the normal and Wishart distributions can be
found in the standard textbooks on multivariate analysis such as Rao (1973),
Muirhead (1982), Eaton (1983), Anderson (1984), Tong (1990) and Bilodeau and
Brenner (1999). The proofs of the results in this section are also given there.

1.3 Elliptically Symmetric Distributions

In this section, the classes of spherically and elliptically symmetric distributions
are defined, and their fundamental properties are investigated.

Spherically symmetric distributions. An n × 1 random vector y is said to be
distributed as a spherically symmetric distribution on Rn, or the distribution of y

is called spherically symmetric, if the distribution of y remains the same under
orthogonal transformations, namely,

L(�y) = L(y) for any � ∈ O(n), (1.23)

where O(n) denotes the group of n × n orthogonal matrices. Let En(0, In) be the
set of all spherically symmetric distributions on Rn. Throughout this book, we
write

L(y) ∈ En(0, In), (1.24)

when the distribution of y is spherically symmetric.
As is shown in Proposition 1.3, the class {Nn(0, σ 2In) | σ 2 > 0} of normal

distributions is a typical subclass of En(0, In):

{Nn(0, σ 2In) | σ 2 > 0} ⊂ En(0, In).

Hence, it is appropriate to begin with the following proposition, which gives a
characterization of the class {Nn(0, σ 2In) | σ 2 > 0} in En(0, In).

Proposition 1.12 Let y = (y1, . . . , yn)
′ be an n × 1 random vector. Then

L(y) ∈ {Nn(0, σ 2In) | σ 2 > 0} (1.25)

holds if and only if the following two conditions simultaneously hold:

(1) L(y) ∈ En(0, In);

(2) y1, . . . , yn are independent.

Proof. Note first that L(y) ∈ En(0, In) holds if and only if the characteristic
function of y defined by

ψ(t) ≡ E[exp(it ′y)] (t = (t1, . . . , tn)
′ ∈ Rn) (1.26)
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satisfies the following condition:

ψ(�′t) = ψ(t) for any � ∈ O(n), (1.27)

since ψ(�′t) is the characteristic function of �y. As will be proved in Example 1.4
in the next section, the above equality holds if and only if there exists a function
ψ̃ (on R1) such that

ψ(t) = ψ̃(t ′t). (1.28)

Suppose that the conditions (1) and (2) hold. Then the characteristic function
of y1, say ψ1(t1), is given by letting t = (t1, 0, . . . , 0)′ in ψ(t) in (1.26). Hence
from (1.28), the function ψ1(t1) is written as

ψ1(t1) = ψ̃(t2
1 ).

Similarly, the characteristic functions of yj ’s are written as ψ̃(t2
j ) (j = 2, . . . , n).

Since yj ’s are assumed to be independent, the function ψ̃ satisfies

ψ̃(t ′t) =
n∏

j=1

ψ̃(t2
j ) for any t ∈ Rn.

This equation is known as Hamel’s equation, which has a solution of the form
ψ̃(x) = exp(ax) for some a ∈ R1. Thus, ψ(t) must be of the form

ψ(t) = exp(at ′t).

Since ψ(t) is a characteristic function, the constant a must satisfy a ≤ 0. This
implies that y is normal. The converse is clear. This completes the proof.

When the distribution L(y) ∈ En(0, In) has a pdf f (y) with respect to the
Lebesgue measure on Rn, there exists a function f̃ on [0, ∞) such that

f (y) = f̃ (y′y). (1.29)

See Example 1.4.

Spherically symmetric distributions with finite moments. Let

L(y) ∈ En(0, In)

and suppose that the first and second moments of y are finite. Then the mean
vector µ ≡ E(y) and the covariance matrix � ≡ Cov(y) of y take the form

µ = 0 and � = σ 2In for some σ 2 > 0, (1.30)
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respectively. In fact, the condition (1.23) implies that E(�y) = E(y) and Cov
(�y) = Cov(y) for any � ∈ O(n), or equivalently,

�µ = µ and ���′ = � for any � ∈ O(n).

This holds if and only if (1.30) holds (see Problem 1.3.1).
In this book, we adopt the two notations, En(0, σ 2In) and Ẽn(0, In), which

respectively specify the following two classes of spherically symmetric distribu-
tions with finite covariance matrices:

En(0, σ 2In) = the class of spherically symmetric distributions

with mean 0 and covariance matrix σ 2In (1.31)

and

Ẽn(0, In) =
⋃

σ 2>0

En(0, σ 2In). (1.32)

Then the following two consequences are clear:

N(0, σ 2In) ∈ En(0, σ 2In) ⊂ En(0, In)

and

{Nn(0, σ 2In) | σ 2 > 0} ⊂ Ẽn(0, In) ⊂ En(0, In).

The uniform distribution on the unit sphere. The statements (2) and (3) of
Proposition 1.3 proved for the class {Nn(0, σ 2In) | σ 2 > 0} are common properties
shared by the distributions in En(0, In):

Proposition 1.13 Let P ≡ L(y) ∈ En(0, In) and suppose that P (y = 0) = 0. Then
the following two quantities

x ≡ ‖y‖ and z ≡ y/‖y‖ (1.33)

are independent, and z is distributed as the uniform distribution on the unit sphere
U(n) in Rn.

Recall that a random vector z is said to have the uniform distribution on U(n) if

L(�z) = L(z) for any � ∈ O(n).

The uniform distribution on U(n) exists and is unique. For a detailed explanation
on the uniform distribution on the unit sphere, see Chapters 6 and 7 of Eaton
(1983). See also Problem 1.3.2.

The following corollary, which states that the distribution of Z(y) ≡ y/‖y‖
remains the same as long as L(y) ∈ En(0, In), leads to various consequences,
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especially in the robustness of statistical procedures in the sense that some proper-
ties derived under normality assumption are valid even under spherical symmetry.
See, for example, Kariya and Sinha (1989), in which the theory of robustness of
multivariate invariant tests is systematically developed. In our book, an application
to an SUR model is described in Section 8.3 of Chapter 8.

Corollary 1.14 The distribution of z = y/‖y‖ remains the same as long as L(y) ∈
En(0, In).

Proof. Since z is distributed as the uniform distribution on U(n), and since the
uniform distribution is unique, the result follows.

Hence, the mean vector and the covariance matrix of z = y/‖y‖ can be easily
evaluated by assuming without loss of generality that y is normally distributed.

Corollary 1.15 If L(y) ∈ En(0, In), then

E(z) = 0 and Cov(z) = 1

n
In. (1.34)

Proof. The proof is left as an exercise (see Problem 1.3.3).

Elliptically symmetric distributions. A random vector y is said to be distributed
as an elliptically symmetric distribution with location µ ∈ Rn and scale matrix
� ∈ S(n) if �−1/2(y − µ) is distributed as a spherically symmetric distribution,
or equivalently,

L(��−1/2(y − µ)) = L(�−1/2(y − µ)) for any � ∈ O(n). (1.35)

This class of distributions is denoted by En(µ, �):

En(µ, �) = the class of elliptically symmetric distributions

with location µ and scale matrix �. (1.36)

To describe the distributions with finite first and second moments, let

En(µ, σ 2�) = the class of elliptically symmetric distributions

with mean µ and covariance matrix σ 2�, (1.37)

and

Ẽn(µ, �) =
⋃

σ 2>0

En(µ, σ 2�). (1.38)

Here, it is obvious that

{Nn(µ, σ 2�) | σ 2 > 0} ⊂ Ẽn(µ, �) ⊂ En(µ, �).

The proposition below gives a characterization of the class En(µ, �) by using
the characteristic function of y.
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Proposition 1.16 Let ψ(t) be the characteristic function of y:

ψ(t) = E[exp(it ′y)] (t ∈ Rn). (1.39)

Then, L(y) ∈ En(µ, �) if and only if there exists a function ψ̃ on [0, ∞) such that

ψ(t) = exp(it ′µ) ψ̃(t ′�t). (1.40)

Proof. Suppose L(y) ∈ En(µ, �). Let y0 = �−1/2(y − µ) and hence

L(y0) ∈ En(0, In).

Then the characteristic function of y0, say ψ0(t), is of the form

ψ0(t) = ψ̃(t ′t) for some function ψ̃ on [0, ∞). (1.41)

The function ψ in (1.39) is rewritten as

ψ(t) = exp(it ′µ) E[exp(it ′�1/2y0)] (since y = �1/2y0 + µ)

= exp(it ′µ) ψ0(�
1/2t) (by definition of ψ0)

= exp(it ′µ) ψ̃(t ′�t) (by (1.41)),

proving (1.40).
Conversely, suppose (1.40) holds. Then the characteristic function ψ0(t) of

y0 = �−1/2(y − µ) is expressed as

ψ0(t) ≡ E[exp(it ′y0)]

= E[exp(it ′�−1/2y)] exp(−it ′�−1/2µ)

= ψ(�−1/2t) exp(−it ′�−1/2µ)

= ψ̃(t ′t),

where the assumption (1.40) is used in the last line. This shows that L(y0) ∈
En(0, In), which is equivalent to L(y) ∈ En(µ, �). This completes the proof.

If the distribution L(y) ∈ En(µ, �) has a pdf f (y) with respect to the Lebesgue
measure on Rn, then f takes the form

f (y) = |�|−1/2f̃ ((y − µ)′�−1(y − µ)) (1.42)

for some f̃ : [0, ∞) → [0, ∞) such that
∫
Rn f̃ (x′x) dx = 1. In particular, when

L(y) = Nn(µ, �), the function f̃ is given by

f̃ (u) = (2π)−n/2 exp(−u/2).
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Marginal and conditional distributions of elliptically symmetric distributions.
The following result is readily obtained from the definition of En(µ, �).

Proposition 1.17 Suppose that L(y) ∈ En(µ, �) and let A and b be any m × n

matrix of rankA = m and any m × 1 vector respectively. Then

L(Ay + b) ∈ Em(Aµ + b, A�A′).

Hence, if we partition y, µ and � as

y =
(

y1
y2

)
, µ =

(
µ1
µ2

)
and � =

(
�11 �12
�21 �22

)
(1.43)

with yi : ni × 1, µi : ni × 1, �ij : ni × nj and n1 + n2 = n, then the following
result holds:

Proposition 1.18 If L(y) ∈ En(µ, �), then the marginal distribution of yj is also
elliptically symmetric:

L(yj ) ∈ Enj
(µj , �jj ) (j = 1, 2). (1.44)

Moreover, the conditional distribution of y1 given y2 is also elliptically sym-
metric.

Proposition 1.19 If L(y) ∈ En(µ, �), then

L(y1|y2) ∈ En1(µ1 + �12�
−1
22 (y2 − µ2), �11.2) (1.45)

with �11.2 = �11 − �12�
−1
22 �21.

Proof. Without essential loss of generality, we assume that µ = 0: L(y) ∈
En(0, �). Since there is a one-to-one correspondence between y2 and �

−1/2
22 y2,

L(y1|y2) = L(y1|�−1/2
22 y2)

holds, and hence it is sufficient to show that

L(��
−1/2
11.2 w1|�−1/2

22 y2) = L(�
−1/2
11.2 w1|�−1/2

22 y2) for any � ∈ O(n1), (1.46)

where w1 = y1 − �12�
−1
22 y2. By Proposition 1.17,

L(w) ∈ En(0, �) with � =
(

�11.2 0
0 �22

)
,

where

w =
(

w1
w2

)

=
(

In1 −�12�
−1
22

0 In2

)(
y1
y2

)

=
(

y1 − �12�
−1
22 y2

y2

)
.
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And thus L(x) ∈ En(0, In) with x ≡ �−1/2w. Hence, it is sufficient to show that

L(x1|x2) ∈ En1(0, In1) whenever L(x) ∈ En(0, In).

Let P(·|x2) and P denote the conditional distribution of x1 given x2 and the
(joint) distribution of x = (x′

1, x′
2)

′ respectively. Then, for any Borel measurable
set A1 ⊂ Rn1 and A2 ⊂ Rn2 , and for any � ∈ O(n1), it holds that∫

Rn1 ×A2

P(�A1|x2)P (dx1, dx2)

=
∫

Rn1 ×A2

χ{x1∈�A1} P (dx1, dx2)

=
∫

�A1×A2

P (dx1, dx2)

=
∫

A1×A2

P (dx1, dx2)

=
∫

Rn1 ×A2

χ{x1∈A1}P (dx1, dx2)

=
∫

Rn1 ×A2

P(A1|x2)P (dx1, dx2),

where χ denotes the indicator function, that is,

χ{x1∈A1} =
{

1 if x1 ∈ A1
0 if x1 /∈ A1

,

The first and last equalities are due to the definition of the conditional expec-
tation, and the third equality follows since the distribution of x is spherically
symmetric. This implies that the conditional distribution P(·|x2) is spherically
symmetric a.s. x2: for any � ∈ O(n1) and any Borel measurable set A1 ⊂ Rn1 ,

P(�A1|x2) = P(A1|x2) a.s. x2.

This completes the proof.

If L(y) ∈ En(µ, �) and its first and second moments are finite, then the con-
ditional mean and covariance matrix of y1 given y2 are evaluated as

E(y1|y2) = µ1 + �12�
−1
22 (y2 − µ2),

Cov(y1|y2) = g(y2)�11.2 (1.47)

for some function g : Rn2 → [0, ∞), where the conditional covariance matrix is
defined by

Cov(y1|y2) = E{(y1 − E(y1|y2))(y1 − E(y1|y2))
′|y2}.
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In particular, when L(y) ∈ En(0, In),

E(y1|y2) = 0 and Cov(y1|y2) = E
(
y1y

′
1|y2

) = g(y2)In1 . (1.48)

More specifically, it can be proved that g(y2) in the conditional covariance matrix
depends on y2 only through y′

2y2:

Cov(y1|y2) = g̃(y′
2y2)In1 for some g̃ : [0, ∞) → [0, ∞). (1.49)

To see this, suppose that L(y) has a pdf f (y) with respect to the Lebesgue measure
on Rn. Then there exists a function f̃ such that

f (y) = f̃ (y′y) = f̃ (y′
1y1 + y′

2y2).

Hence, the conditional covariance matrix is calculated as

Cov(y1|y2) =
∫

Rn1
y1y

′
1f̃ (y′

1y1 + y′
2y2)dy1/

∫
Rn1

f̃ (y′
1y1 + y′

2y2)dy1,

where the right-hand side of the above equality depends on y2 only through y′
2y2.

For the general case where L(y) may not have a pdf, see Fang, Kotz and Ng
(1990).

Scale mixtures of normal distributions. The class En(µ, �) of elliptically sym-
metric distributions contains various distributions used in practice. A typical exam-
ple is a scale mixture of normal distributions. An n × 1 random vector y is said to
have a scale mixture of normal distributions if the distribution of y is expressed as

L(y) = L(
√

xw) (1.50)

for some random variable x such that x ≥ 0 a.s. and random vector w satisfies
L(w) = Nn(0, In), where x and w are independent.

It is clear that L(y) ∈ En(0, In) whenever y satisfies (1.50). Thus, various
spherically symmetric distributions are produced according to the distribution of
x. For simplicity, let us treat the case where x has a pdf g(x) with respect to the
Lebesgue measure on R1. Since L(y|x) = Nn(0, xIn), the pdf of y in this case is
obtained as

f (y) = 1

(2π)n/2

∫ ∞

0
x−n/2 exp

(
− y′y

2x

)
g(x) dx. (1.51)

More generally, if y satisfies

L(�−1/2(y − µ)) = L(
√

xw),

the pdf of y is expressed as

f (y) = 1

(2π)n/2|�|1/2

∫ ∞

0
x−n/2 exp

(
− (y − µ)′�−1(y − µ)

2x

)
g(x) dx,

(1.52)
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which is an element of En(µ, �). The multivariate t distribution with degrees of
freedom m is a distribution with pdf

f (y) = �((n + m)/2)

�(m/2)(mπ)n/2

[
1 + (y − µ)′�−1(y − µ)

m

]−(n+m)/2

,

which is produced by setting L(m/x) = χ2
m, that is, setting

g(x) = (m/2)m/2

�(m/2)
x− m

2 −1 exp
(
− m

2x

)
,

in (1.52). In particular, the multivariate t distribution with degrees of freedom
m = 1 is known as the multivariate Cauchy distribution, which has no moment.

For textbooks that provide a detailed review on the theory of spherically and
elliptically symmetric distributions, see, for example, Eaton (1983, 1989), Kariya
and Sinha (1989), Fang, Kotz and Ng (1990). The papers by Schoenberg (1938),
Kelker (1970), Eaton (1981, 1986), Cambanis, Huang and Simons (1981) are also
fundamental.

1.4 Group Invariance

In this section, we provide some basic notions and facts on group invariance, which
will be used in various aspects of the theory of generalized least squares estimation.
A thorough discussion on this topic will be found in the textbooks given at the
end of Section 1.3.

Group. Let G be a set with a binary operation ◦ : G × G → G. The set G is called
a group if G satisfies the following conditions:

(1) g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 holds for any g1, g2, g3 ∈ G;

(2) There exists an element e ∈ G such that g ◦ e = e ◦ g = g for any g ∈ G;

(3) For each g ∈ G, there exists an element g−1 ∈ G satisfying g ◦ g−1 = g−1 ◦
g = e.

The elements e and g−1 are called the unit of G and the inverse element of g

respectively. Below we write g1 ◦ g2 simply by g1g2, when no confusion is caused.
Typical examples of the groups are

G�(n) = the group of n × n nonsingular matrices;
G+

T (n) = the group of n × n nonsingular lower-triangular matrices

with positive diagonal elements;
O(n) = the group of n × n orthogonal matrices,
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which have already appeared in the previous sections. In the three groups mentioned
above, the binary operation is the usual matrix multiplication, the unit is the identity
matrix In, and for each element g, the inverse element is the inverse matrix g−1.

The group G+
T (n) and O(n) are subgroups of G�(n). Here, a subset H of a

group G with binary operation ◦ is said to be a subgroup of G, if H is a group
with the same binary operation ◦.

Group action. Let G and X be a group and a set respectively. If there exists a map

G × X → X : (g, x) → gx (1.53)

such that

(1) (g1g2)x = g1(g2x) for any g1, g2 ∈ G and x ∈ X ;

(2) ex = x for any x ∈ X ;

where e is the unit of G, then G is said to act on X via the group action

x → gx.

When G acts on X , each g ∈ G determines a one-to-one and onto transformation
Tg on X by

Tg : X → X : x → gx. (1.54)

Thus, in this case, G can be viewed as a group of transformations on X (see
Problem 1.4.1).

For each x ∈ X , the set

Gx = {gx | g ∈ G} (1.55)

is called the G-orbit of x. Clearly, the set X can be expressed as the union of all
G-orbits, namely,

X =
⋃
x∈X

Gx. (1.56)

The action of G on X is said to be transitive if for any x1, x2 ∈ X , there exits an
element g ∈ G satisfying

x2 = gx1.

In this case, for each x ∈ X , the set X can be written as the G-orbit of x, that is,
there is only one orbit:

X = {gx | g ∈ G}. (1.57)
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Example 1.1 (Action of G�(n) on Rn) Let G ≡ G�(n) and X ≡ Rn − {0}. Then
G�(n) acts on X via the group action

x → Gx

with G ∈ G�(n) and x ∈ Rn, where Gx is understood as the usual multiplication
of matrix and vector. Moreover, the action of G�(n) is transitive on X .

Example 1.2 (Action of O(n) on Rn) Let G ≡ O(n) and X ≡ Rn. Then O(n)

acts on X via

x → �x

with � ∈ O(n) and x ∈ Rn. The action of O(n) on Rn is not transitive. In fact,
for each x0 ∈ Rn, the O(n)-orbit of x0 is expressed as

Gx0 = {x ∈ Rn | ‖x‖ = ‖x0‖} with G = O(n), (1.58)

which is a sphere in Rn with norm ‖x0‖, a proper subset of Rn, and hence Gx0 �=
Rn.

However, if we define X ≡ Gx0 with arbitrarily fixed x0 ∈ X , then clearly the
action of G ≡ O(n) on X is transitive. Hence, by letting x0 be such that ‖x0‖ = 1,
we can see that O(n) acts transitively on the unit sphere

U(n) = {u ∈ Rn | ‖u‖ = 1}.

Invariant functions. Suppose that a group G acts on a set X . Let f be a function
on X . The function f is said to be invariant under G if f satisfies

f (gx) = f (x) for any g ∈ G and x ∈ X . (1.59)

This condition holds if and only if the function f is constant on each G-orbit, that
is, for each x ∈ X ,

f (y) = f (x) for any y ∈ Gx. (1.60)

If a function m on X satisfies

(1) (invariance) m(gx) = m(x) for any g ∈ G and x ∈ X ;

(2) (maximality) m(x) = m(y) implies y ∈ Gx;

then m is called a maximal invariant under G. Note that condition (2) above can
be restated as

if m(x) = m(y), then there exists g ∈ G such that y = gx. (1.61)

A maximal invariant is thus an invariant function that distinguishes the orbits.
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Proposition 1.20 A function f (x) is invariant under G if and only if f (x) is
expressed as a function of a maximal invariant m:

f (x) = f̃ (m(x)) f or some f unction f̃ . (1.62)

Proof. Suppose that the function f is invariant. Let x and y be such that
m(x) = m(y). Then, by the maximality of m, there exists g ∈ G satisfying y = gx.
Hence, by the invariance of f , we have

f (y) = f (gx) = f (x),

which means that f (x) depends on x only through m(x). Thus, there exists a
function f̃ satisfying (1.62). The converse is clear. This completes the proof.

Example 1.3 (Maximal invariant under G�(n)) Let G ≡ G�(n) and X ≡ Rn −
{0}. Since the action of G�(n) on X is transitive, a maximal invariant m on Rn is a
constant function: m(x) = c (say). This clearly implies that any invariant function
must be constant.

Example 1.4 (Maximal invariant under O(n)) When G ≡ O(n) and X ≡ Rn,
a function f on Rn is said to be invariant under O(n) if

f (�x) = f (x) for any � ∈ O(n) and x ∈ Rn. (1.63)

A maximal invariant under O(n) is given by

m(x) = x′x, (1.64)

(see Problem 1.4.4), and hence, every invariant function f can be written as

f (x) = f̃ (x′x) for some f̃ on [0, ∞). (1.65)

Here, recall that the distribution of an n × 1 random vector y is spherically
symmetric if L(�y) = L(y) for any � ∈ O(n). If in addition y has a pdf f (y)

with respect to the Lebesque measure on Rn, then f satisfies

f (�y) = f (y) for any � ∈ O(n) and y ∈ Rn.

Hence, the function f (y) can be expressed as f (y) = f̃ (y′y) for some f̃ : [0, ∞) →
[0, ∞). The same result holds for the characteristic function of y. See (1.28), (1.29)
and (1.42).

OLS residual vector as a maximal invariant. We conclude this section by show-
ing that in a general linear regression model, the ordinary least squares (OLS)
residual vector is a maximal invariant under a group of location transformations.
The result will be used in Chapter 2 to establish an essential equivalence between
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the classes of GLSE and location-equivariant estimators. For relevant definitions,
see Chapter 2.

Consider a general linear regression model of the form

y = Xβ + ε (1.66)

with

y : n × 1, X : n × k and rankX = k.

The Euclidean space G ≡ Rk can be regarded as a group with binary operation
+, the usual addition of vectors. Here, the unit is 0 ∈ Rk and the inverse element
of x ∈ Rk is −x. Let Y ≡ Rn be the space of y. Then G = Rk acts on Y = Rn via

y → y + Xg with y ∈ Y and g ∈ G. (1.67)

The group G = Rk is often called the group of location transformations or simply
the translation group.

A maximal invariant m(y) under G is given by

m(y) = Ny with N = In − X(X′X)−1X′, (1.68)

which is nothing but the OLS residual vector, when

ε′ε = (y − Xβ)′(y − Xβ)

is minimized with respect to β. To see the invariance of m(y), let g ∈ G. Then

m(y + Xg) = N(y + Xg) = Ny = m(y), (1.69)

where the equation

NX = 0 (1.70)

is used. Here, the matrix N is the orthogonal projection matrix onto L⊥(X) with the
null space L(X), where L(X) denotes the linear subspace spanned by the column
vectors of X and L⊥(X) is its orthogonally complementary subspace. Next, to
show the maximality of m(y), suppose that m(y) = m(y∗) for y, y∗ ∈ Y . Then
clearly N(y − y∗) = 0 holds, which is in turn equivalent to

y − y∗ ∈ L(X).

Hence, there exists g ∈ G such that y − y∗ = Xg, proving that m(y) in (1.68) is a
maximal invariant under the action of G = Rk on Y = Rn.

Note that this fact holds no matter what the distribution of the error term ε

may be.
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1.5 Problems

1.2.1 Suppose that

L(y) = Nn(µ, �).

The characteristic function and the moment generating function of y are defined by

ξ(t) = E[exp(it ′y)] (t ∈ Rn),

and

ζ(t) = E[exp(t ′y)] (t ∈ Rn),

respectively.

(1) Show that ξ is expressed as

ξ(t) = exp
(

iµ′t − 1

2
t ′�t

)
.

(2) Show that ζ(t) exists on Rn and is expressed as

ζ(t) = exp
(
µ′t + 1

2
t ′�t

)
.

The answer will be found in standard textbooks listed at the end of Section 1.2.

1.2.2 Verify (1.16).

1.2.3 Consider the following multivariate linear regression model of the form

Y = XB + E,

where Y : n × p, X : n × k with rankX = k, and each row ε′
j of E is indepen-

dently and identically distributed as the normal distribution: L(εj ) = Np(0, �).
Let a random matrix W be defined as

W = Y ′NY with N = In − X(X′X)−1X′.

Show that the matrix W is distributed as the Wishart distribution:

L(W) = Wp(�, n − k).

See, for example, Theorem 10.1.12 of Muirhead (1982).

1.2.4 When L(W) = Wp(Ip, m), show that the expectation of W−1 is given by

E(W−1) = 1

m − p − 1
Ip.

In Problem 3.6 of Muirhead (1982), a more general case is treated.
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1.2.5 Suppose that L(W) = Wp(Ip, n). By using the Bartlett decomposition in
Proposition 1.9:

(1) Show that

L(|W |) = L
( p∏

j=1

χ2
n−j+1

)
,

where |W | denotes the determinant of W , and χ2
a , the random variable dis-

tributed as the χ2 distribution with degrees of freedom a. See, for example,
page 100 of Muirhead (1982);

(2) Evaluate the expectation

E
{ [tr(W)]2

4|W |
}

when p = 2. The answer will be found in the proof of Theorem 4.10 in
Chapter 4.

1.3.1 Show that (1.30) is equivalent to the condition

�µ = µ and ���′ = � for any � ∈ O(n).

1.3.2 Suppose that an n × 1 random vector y = (y1, . . . , yn)
′ satisfies L(y) ∈

En(0, In) and that y has a pdf of the form

f (y) = f̃ (y′y)

with respect to the Lebesgue measure on Rn (see (1.29)). Let a transformation of
y to polar coordinates be

y1 = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1

y2 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1

y3 = r sin θ1 sin θ2 · · · sin θn−3 cos θn−2

...

yn−1 = r sin θ1 cos θ2

yn = r cos θ1,

where r = ‖y‖ > 0, 0 < θj ≤ π (j = 1, . . . , n − 2) and 0 < θn−1 ≤ 2π .

(1) Show that the pdf of (r2, θ1, . . . , θn−1) is given by

1

2
(r2)n/2−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2f̃ (r2),

and thus the quantities r2 and θj ’s are independent.
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(2) Find a pdf of each θj (j = 1, . . . , n − 1), and note that each pdf does not
depend on the functional form of f̃ .

(3) Find a pdf of r2 = ‖y‖2.

An answer will be found, for example, in Theorem 1.5.5 of Muirhead (1982).

1.3.3 To establish Corollary 1.15, suppose without loss of generality that L(y) =
Nn(0, In).

(1) Show that E(z) = 0 by using the identity

E(y) = E(x)E(z),

where x = ‖y‖.

(2) Show that Cov(z) = 1
n
In by using the identity

Cov(y) = E(x2)Cov(z).

1.3.4 Establish Proposition 1.19 under the assumption that L(y) has a pdf with
respect to the Lebesgue measure on Rn.

1.4.1 Show that Tg defined in (1.54) is a one-to-one and onto transformation on X .

1.4.2 Let G ≡ G+
T (n) be the group of n × n lower-triangular matrices with positive

diagonal elements.

(1) Let X ≡ G+
T (n). Show that G acts on X via the group action

T → GT with G ∈ G and T ∈ X ,

and that the action is transitive.

(2) Let X ≡ S(n) be the set of n × n positive definite matrices. Show that G
acts on X via the group action

S → GSG′ with G ∈ G and S ∈ X ,

and that the action is transitive.

1.4.3 Let G ≡ O(n) and X = S(n).

(1) Show that G acts on X via the group action

S → �S�′ with G ∈ G and S ∈ X ,

and that the action is not transitive.

(2) Show that a maximal invariant under G is the ordered latent roots of S, say,
l1 ≤ · · · ≤ ln.
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1.4.4 Verify (1.64).

1.4.5 Let G ≡ (0, ∞), which is a group with binary operation g1 ◦ g2 = g1g2, the
usual multiplication of real numbers. The unit of G is 1, and the inverse element
of g is g−1 = 1/g. The group G acts on Rn via the group action

y → gy with g ∈ G and y ∈ Rn,

and hence G is often called a group of scale transformation.

(1) Show that a maximal invariant m(y) under G is given by

m(y) = y/‖y‖. (1.71)

Hence, if a function f (y) is scale-invariant, namely,

f (gy) = f (y) for any g > 0 and y ∈ Rn, (1.72)

the function f depends on y only through y/‖y‖. As will be illustrated in later
chapters, several types of scale-invariance will appear in the theory of GLSE. See,
for example, Proposition 2.6.

Aside from GLSE, the scale-invariance property (1.72) often implies the robust-
ness of invariant statistics. To see this,

(2) Suppose that L(y1) ∈ En(0, In) and L(y2) = Nn(0, In). Show that for any
scale-invariant function f , the following equality holds:

L (f (y1)) = L (f (y2)) .

Hint: Note that L(y1/‖y1‖) = L(y2/‖y2‖) = the uniform distribution on the
unit sphere in Rn.
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Generalized Least Squares
Estimators

2.1 Overview

This chapter is devoted to establishing some basic results on generalized least
squares estimators (GLSEs) in a general linear regression model. Here, the general
linear regression model is a linear regression model

y = Xβ + ε

with general covariance structure of the error term ε, that is, the covariance matrix
� = σ 2� of ε is given by a function of an unknown but estimable parameter θ :

� = �(θ).

The model includes as its special cases various specific models used in many
applied areas. It includes not only univariate linear regression models such as
serial correlation model, equi-correlated model and heteroscedastic model, but also
multivariate models such as multivariate analysis of variance (MANOVA) model,
seemingly unrelated regression (SUR) model, growth curve model and so on. Such
models are produced according to the specific structure of the regressor matrix X

and the covariance matrix � = σ 2�(θ).
In the problem of estimating these models, it is well known in the Gauss–Markov

theorem that the Gauss–Markov estimator (GME) of the form

b(�) = (X′�−1X)−1X′�−1y

is the best linear unbiased estimator (BLUE) of the regression coefficient vector β,
when the matrix � is known. In most cases, however, the matrix � is unknown

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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and hence, the GME b(�) is not feasible. In such cases, a GLSE b(�̂), which
is defined as the GME with unknown � in b(�) replaced by an estimator �̂, is
widely used in practice. In fact, as will be observed later, most of the estimators
that have been proposed and applied to real data in the above specific models are
special cases of the GLSE b(�̂).

The aim of this chapter is to provide some fundamental results on the GLSEs
in a unified manner. The contents of this chapter are summarized as

2.2 General Linear Regression Model

2.3 Generalized Least Squares Estimators

2.4 Finiteness of Moments and Typical GLSEs

2.5 Empirical Example: CO2 Emission Data

2.6 Empirical Example: Bond Price Data.

In Section 2.2, we define a general linear regression model in a general setup. We
also introduce several typical models for applications such as an AR(1) error model,
Anderson model, equi-correlated model, heteroscedastic model and SUR model.
In Section 2.3, the GLSE is defined on the basis of the Gauss–Markov theorem.
The relation between the GLSEs and some other estimators derived from different
principles including linear unbiased estimators, location-equivariant estimators and
the maximum likelihood estimator is also discussed. Section 2.4 deals with con-
ditions for a GLSE to be unbiased and to have finite second moments. Examples
of typical GLSEs and their fundamental properties are also given. In Sections 2.5
and 2.6, we give simple examples of empirical analysis on CO2 emission data and
bond price data by using GLSEs.

2.2 General Linear Regression Model

In this section, a general linear regression model is defined and several specific
models that are important in application are introduced.

General linear regression model. Throughout this book, a general linear regres-
sion model is defined as

y = Xβ + ε, (2.1)

where y is an n × 1 vector and X : n × k is a known matrix of full rank. Here,
the n × 1 error term ε is a random vector with mean 0 and covariance matrix �:

E(ε) = 0 and Cov(ε) = E(εε′) = � ∈ S(n), (2.2)
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where S(n) denotes the set of n × n positive definite matrices. The finiteness of the
second moment in (2.2) is included in the definition of the general linear regression
model, meaning that for given � ∈ S(n), the class Pn(0, �) of distributions for ε

satisfying (2.2) is combined with the model (2.1). Obviously, the class Pn(0, �) of
distributions with mean 0 and covariance matrix � is very broad, and, in particular,
it includes the normal distribution Nn(0, �) with mean 0 and covariance matrix �.

When it is necessary, the distribution of ε is denoted by P and the expectation
of · by EP (·), or simply by E(·), whenever no confusion is caused. The covariance
matrix � is usually unknown and is formulated as a function of an unknown but
estimable parameter θ :

� = �(θ), (2.3)

where the functional form of �(·) is assumed to be known.
It will be observed below that the model (2.1) with the structure (2.3) includes,

as its special cases, the serial correlation model, the heteroscedastic model, the
SUR model, and so on. Such models are often used in applications. To understand
the structure of these models, the details of these models are described below for
future references.

Typical models. To begin with, let us consider a family of the models of the
following covariance structure:

� = σ 2�(θ)

with

�(θ)−1 = In + λn(θ)C and θ ∈ � ⊂ R1, (2.4)

where C is an n × n known symmetric matrix, λ = λn = λn(θ) is a continuous
real-valued function on �, and the matrix �(θ) is positive definite for any θ ∈ �.

Since C is assumed to be known, it can be set as a diagonal matrix without
loss of generality. To see this, let 	 be an orthogonal matrix that diagonalizes C:

	′C	 =




d1 0
. . .

0 dn


 ≡ D with d1 ≤ · · · ≤ dn. (2.5)

Then transforming y = Xβ + ε to

	′y = 	′Xβ + 	′ε

yields the model with covariance structure Cov(	′ε) = σ 2	′�(θ)	, where

(	′�(θ)	)−1 = In + λn(θ)D (2.6)
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is a diagonal matrix with the j th diagonal element 1 + λn(θ)dj . Among others,
this family includes the Anderson model, equi-correlated model and heteroscedastic
model with two distinct variances. We will describe these models more specifically.

Example 2.1 (AR(1) error model and Anderson model) In the linear regres-
sion model (2.1) with the condition (2.2), let the error term ε = (ε1, . . . , εn)

′ be
generated by the following stationary autoregressive process of order 1 (AR(1)):

εj = θεj−1 + ξj with |θ | < 1 (j = 0, ±1, ±2, . . . ), (2.7)

where ξj ’s satisfy

E(ξi) = 0, Var(ξi) = τ 2,

Cov(ξi, ξj ) = 0 (i �= j).

Then, as is well known, the covariance matrix � is expressed as

� = τ 2� with � = �(θ) = 1

1 − θ2

(
θ |i−j |

)
, (2.8)

and the inverse of � is given by

�−1 =




1 −θ 0
−θ 1 + θ2 −θ

. . .
. . .

. . .

. . .
. . .

. . .

. . . 1 + θ2 −θ

0 −θ 1




. (2.9)

See Problem 2.2.2. The matrix �−1 is not of the form (2.4). In fact, it is expressed as

�−1 = (1 − θ)2
[
In + λ(θ)C + ψ(θ)B

]
, (2.10)

where

λ(θ) = θ

(1 − θ)2
, ψ(θ) = θ

1 − θ
,

C =




1 −1 0
−1 2 −1

. . .
. . .

. . .

. . .
. . .

. . .

. . . 2 −1
0 −1 1
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and

B =




1 0
0

. . .

0
0 1




.

The matrix �−1 is often approximated by replacing the (1, 1)th and (n, n)th ele-
ments in (2.9) by 1 − θ + θ2 (Anderson, 1948), which is the same as �−1 in (2.10)
with ψ(θ) replaced by 0. When it is assumed that the error term has this modified
covariance structure, we call the regression model the Anderson model.

That is, the Anderson model is the model with covariance structure

Cov(ε) = σ 2�(θ)

with

�(θ)−1 = In + λ(θ)C and θ ∈ �, (2.11)

where

σ 2 = τ 2

(1 − θ)2
, λ(θ) = θ

(1 − θ)2
and � = (−1, 1).

Since the latent roots of C are given by (see Problem 2.2.3)

dj = 2

[
1 − cos

(
(j − 1)π

n

)]
(j = 1, . . . , n), (2.12)

the matrix C in (2.11) can be replaced by the diagonal matrix with diagonal
elements d1, . . . , dn:

D =




d1 0
. . .

0 dn


 . (2.13)

Since

−1

4
< λ(θ) < ∞ and d1 = 0 < d2 < · · · < dn < 4, (2.14)

�(θ) in (2.11) is in fact positive definite on �.

Example 2.2 (Equi-correlated model) Suppose that the error term ε = (ε1, . . . ,

εn)
′ of the model (2.1) satisfies

Var(εi) = τ 2 and Cov(εi, εj ) = τ 2θ (i �= j), (2.15)
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for some τ 2 > 0 and θ ∈
(
− 1

n−1 , 1
)

≡ �, that is, the covariance matrix � is
given by

� = τ 2




1 θ · · · θ

θ 1
...

...
. . . θ

θ · · · θ 1


 . (2.16)

The model with this covariance structure is called an equi-correlated model, since
the correlation coefficients between distinct error terms are equally given by θ .
This model is a member of the family (2.4), because � is of the form

� = σ 2�(θ) with �(θ)−1 = In + λn(θ) 1n1′
n, (2.17)

where

σ 2 = τ 2(1 − θ), λn(θ) = − θ

1 + (n − 1)θ

and 1n = (1, . . . , 1)′ : n × 1. Here σ 2 and λn are clearly functionally independent.
Since the latent roots of the matrix 1n1′

n are n and 0s (with multiplicity n − 1),
applying the argument from (2.5) through (2.6), the model (2.15) is rewritten as

� = σ 2�(θ) with �(θ)−1 = I + λn(θ)D, (2.18)

where

D =




0 0
. . .

0
0 n


 (2.19)

without any loss of generality. Here, the matrix �(θ) is in fact positive definite on
�, because

− 1

n
< λn(θ) < ∞. (2.20)

See Problem 2.2.4. In this expression, the equi-correlated model can be regarded
as a heteroscedastic model, which we treat next.

Example 2.3 (Heteroscedastic model) The model (2.1) with the following
structure

y =




y1
...

yp


 : n × 1, X =




X1
...

Xp


 : n × k,

ε =




ε1
...

εp


 : n × 1 (2.21)
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and

� =




σ 2
1 In1 0

. . .

0 σ 2
pInp


 ∈ S(n) (2.22)

is called a heteroscedastic model with p distinct variances or simply, a p-equation
heteroscedastic model, where

yj : nj × 1, Xj : nj × k, εj : nj × 1 and n =
p∑

j=1

nj .

This model consists of p distinct linear regression models

yj = Xjβj + εj (2.23)

with

E(εj ) = 0 and Cov(εj ) = σ 2
j Inj

(j = 1, . . . , p),

where the coefficient vectors are restricted as

β1 = · · · = βp ≡ β. (2.24)

Note that when p = 2, this model is formally expressed as a member of the
family (2.4) with the structure

� = σ 2�(θ) with �(θ)−1 = In + λ(θ)D, (2.25)

where

σ 2 = σ 2
1 , θ = σ 2

1 /σ 2
2 , λ(θ) = θ − 1 and D =

(
0 0
0 In2

)
.

Here θ ∈ � ≡ (0, ∞), and �(θ) is positive definite on �.

Example 2.4 (Seemingly unrelated regression (SUR) model) When the model
y = Xβ + ε in (2.1) is of the form

y =




y1
...

yp


 : n × 1, X =




X1 0
. . .

0 Xp


 : n × k,

β =




β1
...

βp


 : k × 1, ε =




ε1
...

εp


 : n × 1 (2.26)
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with covariance structure

� = � ⊗ Im and � = (σij ) ∈ S(p), (2.27)

it is called a p-equation SUR model, which was originally formulated by Zellner
(1962), where

yj : m × 1, Xj : m × kj , n = pm, k =
p∑

j=1

kj

and ⊗ denotes the Kronecker product. Here, for matrices P = (pij ) : a × b and
Q = (qij ) : c × d, the Kronecker product of P and Q is defined as

P ⊗ Q =




p11Q · · · p1bQ
...

...

pa1Q · · · pabQ


 : ac × bd. (2.28)

See Problem 2.2.6.
The model (2.26) is constructed by p different linear regression models with

the cross-correlation structure:

yj = Xjβj + εj (2.29)

with

E(εj ) = 0, Cov(εj ) = σjj Im

and

Cov(εi, εj ) = σij Im (i, j = 1, . . . , p). (2.30)

The model (2.26) can also be expressed as a multivariate linear regression
model with a restriction on the coefficient matrix:

Y = X∗B + E∗ (2.31)

with

E(E∗) = 0, Cov(E∗) = Im ⊗ �

and

B =




β1 0
. . .

0 βp


 : k × p, (2.32)
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where

Y = (y1, . . . , yp) : m × p, X∗ = (X1, . . . , Xp) : m × k,

E∗ = (ε1, . . . , εp) : m × p.

Note that X∗ may not be of full rank. Here, Cov(E∗) is the covariance matrix
of vec(E′∗), where for an n × m matrix A = (a1, . . . , am) with aj : n × 1, the
quantity vec(A) is defined as

vec(A) =




a1
...

am


 : nm × 1. (2.33)

The zeros in (2.32) are regarded as a restriction on the coefficient matrix B in
(2.31). If the model (2.31) satisfies

k1 = · · · = kp ≡ k0 and X1 = · · · = Xp ≡ X0,

then it reduces to the familiar multivariate linear regression model

Y = X0B0 + E∗ with B0 =
(
β1, . . . , βp

)
: k0 × p, (2.34)

where no restriction is imposed on B0.
When p = 2, the following two special cases are often treated in the literature,

because these cases give an analytically tractable structure:

(i) X′
1X2 = 0;

(ii) L(X1) ⊂ L(X2).

Here, L(A) denotes the linear subspace spanned by the column vectors of matrix
A. Zellner (1962, 1963) considered the first case in which the regressor matrices
X1 and X2 are orthogonal: X′

1X2 = 0, while Revankar (1974, 1976) considered
the second case in which L(X1) ⊂ L(X2). Such cases are of some interest in
the discussion of the efficiency of GLSEs and the OLSE. Some aspects of these
simplified SUR models are summarized in Srivastava and Giles (1987).

2.3 Generalized Least Squares Estimators

In this section, we first define a generalized least squares estimator or a GLSE. It
is often referred to as a feasible GLSE or a two-stage Aitkin estimator in the lit-
erature. The definition here is based on the well-known Gauss–Markov theorem.
We also consider relations among the GLSE and some other important estima-
tors including the linear unbiased estimator, location-equivariant estimator and
maximum-likelihood estimator.

Throughout this book, inequalities for matrices should be interpreted in terms of
nonnegative definiteness. For example, A ≥ B means that A and B are nonnegative
definite and A − B is nonnegative definite.
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The Gauss–Markov estimator (GME). Consider a general linear regression
model of the form

y = Xβ + ε with P ≡ L(ε) ∈ Pn(0, σ 2�), (2.35)

where

y : n × 1, X : n × k and rankX = k.

First suppose that � is known. In this setup, the Gauss–Markov theorem plays a
fundamental role in the problem of estimating the coefficient vector β. To state the
theorem formally, let C0 be the class of linear unbiased estimators of β, that is,

C0 = {β̂ = Cy | C is a k × n matrix such that CX = Ik}. (2.36)

(See Problem 2.3.1.) Here, recall that an estimator β̂ is called linear if it is of the
form β̂ = Cy for a k × n matrix C. If a linear estimator is unbiased, it is called
linear unbiased.

Theorem 2.1 (Gauss–Markov theorem) The estimator of the form

b(�) = (X′�−1X)−1X′�−1y, (2.37)

which we call the Gauss–Markov estimator (GME) throughout this book, is the
BLUE of β, that is, the GME is the unique estimator that satisfies

Cov(b(�)) ≤ Cov(β̂) (2.38)

for any β̂ ∈ C0 and P ∈ Pn(0, σ 2�). The covariance matrix of b(�) is given by

Cov(b(�)) = σ 2(X′�−1X)−1.

Proof. Decompose a linear unbiased estimator β̂ = Cy in C0 as

β̂ − β =
[
b(�) − β

]
+
[
β̂ − b(�)

]
(2.39)

= (X′�−1X)−1X′�−1ε +
[
C − (X′�−1X)−1X′�−1

]
ε.

Since the two terms on the right-hand side of (2.39) are mutually uncorrelated (see
Problem 2.3.2), the covariance matrix of β̂ is evaluated as

Cov(β̂) = Cov(b(�)) + E[(β̂ − b(�))(β̂ − b(�))′]

= σ 2(X′�−1X)−1

+σ 2[C − (X′�−1X)−1X′�−1]�[C − (X′�−1X)−1X′�−1]′

(2.40)

≥ σ 2(X′�−1X)−1,

since the second term of (2.40) is nonnegative definite. The equality holds if and
only if C = (X′�−1X)−1X′�−1. This completes the proof.
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It is noted that the distribution P of ε is arbitrary so long as CovP (ε) = σ 2�.
When � = In holds, the GME in (2.37) reduces to the ordinary least squares
estimator (OLSE)

b(In) = (X′X)−1X′y. (2.41)

In other words, the OLSE is the BLUE, when � = In.

Generalized least squares estimators (GLSEs). In applications, � is generally
unknown and hence the GME is not feasible, as it stands. In this case, a natural
estimator of β is a GME with unknown � in b(�) replaced by an estimator �̂,
which we shall call a GLSE. More precisely, an estimator of the form

b(�̂) = (X′�̂−1X)−1X′�̂−1y (2.42)

is called a GLSE if �̂ is almost surely positive definite and is a function of the
OLS residual vector e, where

e = Ny with N = In − X(X′X)−1X′. (2.43)

Let Z be an n × (n − k) matrix such that

N = ZZ′, Z′Z = In−k and X′Z = 0, (2.44)

that is, the set of (n − k) columns of the matrix Z forms an orthonormal basis of
the orthogonally complementary subspace of the column space L(X) of X. In the
sequel, for a given X, we pick a matrix Z satisfying (2.44) and fix it throughout.

A GLSE defined in (2.42) is in general highly nonlinear in y and hence it is
generally difficult to investigate its finite sample properties. However, as will be
seen in the next proposition, the class of GLSEs can be viewed as an extension of
the class C0 of linear unbiased estimators. In fact, any GLSE b(�̂) is expressed as

b(�̂) = C(e)y with C(e) = (X′�̂−1X)−1X′�̂−1

and the matrix-valued function C(·) satisfies C(e)X = Ik for any e. Clearly, a
linear unbiased estimator is obtained by letting C be a constant function. More
precisely, let

C1 = the class of all GLSEs of the form (2.42).

The following proposition given by Kariya and Toyooka (1985) provides a char-
acterization of the class C1.

Proposition 2.2 The class C1 is expressed as

C1 = {β̂ ≡ C(e)y | C(·) is a k × n matrix -valued measurable

function on Rn satisfying C(·)X = Ik}. (2.45)
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More specifically, any estimator of the form β̂ = C(e)y satisfying C(e)X = Ik is a
GLSE b(�̂) with

�̂−1 = C(e)′C(e) + N. (2.46)

Proof. For any estimator of the form β̂ = C(e)y satisfying C(e)X = Ik , let
�̂−1 = C(e)′C(e) + N . Substituting this into b(�̂) and noting that C(e)X = Ik and
X′N = 0 proves the equality b(�̂) = C(e)y. The nonsingularity of �̂−1 follows
because

�̂−1 = (C(e)′, Z)

(
C(e)

Z′
)

,

and (
C(e)

Z′
)

(X, Z) =
(

Ik C(e)Z

0 In−k

)
, (2.47)

where the matrix (X, Z) is clearly nonsingular. This completes the proof.

Clearly, from Proposition 2.2, the class C1 of GLSEs includes the class C0 in
(2.36).

Proposition 2.3 The relation C0 ⊂ C1 holds. More specifically, any linear unbi-
ased estimator β̂ = Cy ∈ C0 is a GLSE b(�) with

�−1 = C ′C + N.

Proof. Let C(e) be a constant function: C(e) ≡ C. Then the result follows.

Note that the class C1 includes some biased estimators. However, it will be
found soon that most of the reasonable GLSEs, such as the ones introduced in the
next section, are unbiased. Note also that the class C1 in (2.45) does not depend on
σ 2� = Cov(ε), and hence, some of the results in Sections 2.3 and 2.4 hold even
if the model is incorrectly specified.

When � is known to be a function of the unknown but estimable vector θ , say

� = �(θ),

it is often the case that θ is first estimated and the GLSE of the form

b(�(θ̂)) = (X′�(θ̂)−1X)−1X′�(θ̂)−1y (2.48)

is used, where θ̂ = θ̂ (e) is an estimator of θ based on the OLS residual vector e.
Clearly, such a GLSE is in C1.

Next, we consider relations among the GLSEs, location-equivariant estimators
and maximum likelihood estimators (MLEs), and show that these estimators are
GLSEs in our sense.
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Relation between GLSEs and location-equivariant estimators. To define a loca-
tion-equivariant estimator, consider the following transformation defined on the
space Rn of y as

y → y + Xg with g ∈ Rk. (2.49)

In other words, as was exposited in Section 1.4 of Chapter 1, the group G ≡ Rk acts
on the set X ≡ Rn via the group action (2.49). This action induces the following
action on the space Rk of β:

β → β + g, (2.50)

that is, by the invariance principle, since the mean of y is Xβ, observing y + Xg

is regarded to be equivalent to considering β + g in the parameter space Rk .
Thus, it will be natural to limit consideration to estimators β̂ = β̂(y) satisfying the
following condition

β̂(y + Xg) = β̂(y) + g for any g ∈ Rk, (2.51)

which is called a location-equivariant estimator of β. For a general theory on
equivariant estimation, the readers may be referred to Ferguson (1967), Eaton
(1983) and Lehmann (1983).

Let C2 be the class of location-equivariant estimators:

C2 = {β̂ | β̂ satisfies (2.51)}.

Although the notion of the location-equivariant estimators appears to be quite
different from that of the GLSEs, the class C2 is in fact essentially equivalent to
the class C1 of GLSEs. To clarify this, we begin with the following proposition.

Proposition 2.4 The class C2 is characterized as

C2 = {β̂(y) ≡ b(In) + d(e) | d is a k × 1 vector-valued

measurable function on Rn}. (2.52)

Proof. First letting g = −b(In) in (2.51), the estimator β̂(y) must be of the
form

β̂(y) = b(In) + d(e) (2.53)

for some measurable function d, where

b(In) = (X′X)−1X′y

is the OLSE. Conversely, the estimator β̂(y) of the form (2.53) satisfies the con-
dition (2.51). This completes the proof.



38 GENERALIZED LEAST SQUARES ESTIMATORS

Here, note that the residual e ≡ e(y) as a function of y is a maximal invariant
under G = Rk (see Section 1.4 of Chapter 1 for the definition). In fact, e(y) is
invariant under the transformation (2.49) and e(y) = e(y∗) implies y = y∗ + Xg

for some g ∈ Rk .
To state the relation between the classes C1 and C2, let χA denote the indicator

function of set A. Further, let

C̃1 = {β̃ = β̂ + a χ{e=0} | β̂ ∈ C1, a ∈ Rk}, (2.54)

which satisfies C̃1 ⊃ C1. Clearly, an estimator β̃ in C̃1 is identically equal to an
estimator β̂ in C1 except on the set {e = 0}. The following result is due to Kariya
and Kurata (2002).

Proposition 2.5 The class C2 in (2.52) of location-equivariant estimators is equal
to C̃1, that is,

C̃1 = C2. (2.55)

In particular, if the distribution P of ε satisfies P (e = 0) = 0, then

C1 = C2 a.s. (2.56)

and hence a location-equivariant estimator is a GLSE and vice versa.

Here, for two sets A and B, A = B a.s. means that for any a ∈ A, there exists
b ∈ B such that a = b a.s. and conversely.

Proof. C̃1 ⊂ C2 follows because for any β̃(y) = C(e)y + a χ{e=0} ∈ C̃1,

β̃(y) = C(e)[X(X′X)−1X′ + N ]y + a χ{e=0}
= b(In) + [C(e)e + a χ{e=0}]

≡ b(In) + d(e) (say), (2.57)

which is in C2. In the first line of (2.57), the identity X(X′X)−1X′ + N = In is
used.

On the other hand, C̃1 ⊃ C2 follows because for any β̂(y) = b(In) + d(e) ∈ C2,

β̂(y) = (X′X)−1X′y + d(e)[χ{e=0} + χ{e �=0}]

= [(X′X)−1X′ + χ{e �=0}d(e)(e′e)−1e′]y + d(e) χ{e=0}

= [(X′X)−1X′ + χ{e �=0}d(e)(e′e)−1e′]y + d(0) χ{e=0}. (2.58)

Thus, by letting

C(e) = (X′X)−1X′ + χ{e �=0}d(e)(e′e)−1e′ and d(0) = a,

the estimator β̂(y) is rewritten as β̂(y) = C(e)y + aχ{e=0}, which is in C̃1. Note
that the equality e′y = e′e is used in the second line of (2.58).

If P (e = 0) = 0, then C̃1 = C1 a.s. holds, from which (2.56) follows. This
completes the proof.
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In particular, if P has a probability density function with respect to the Lebesgue
measure on Rn, then clearly P (e = 0) = 0 holds, implying C1 = C2 a.s. It is noted
that when a regression model (2.1) is considered with the assumption (2.2), a pos-
sibility that P (ε = 0) > 0 for some distribution P ∈ Pn(0, σ 2�) is not excluded.
Here, note that P (ε = 0) ≤ P (e = 0).

Relation between GLSEs and MLEs. Finally, it is sketched that when ε is nor-
mally distributed, the MLE of β is always a GLSE of the form b(�(θ̂)) and that
θ̂ = θ̂ (e) is an even function of the residual vector e, that is, θ̂ (e) = θ̂ (−e). The
result is due to Magnus (1978) and Kariya and Toyooka (1985). Suppose that the
distribution of ε is the normal distribution

Nn(0, σ 2�(θ)) with θ = (θ1, . . . , θd)′ ∈ Rd, (2.59)

and that the MLE of (β, σ 2, θ) exists. Then the MLE is a solution of the following
log-likelihood equation:

∂

∂β
L(β, σ 2, θ) = 0,

∂

∂σ 2
L(β, σ 2, θ) = 0,

∂

∂θ
L(β, σ 2, θ) = 0, (2.60)

where L is the log-likelihood function:

L(β, σ 2, θ) = −n

2
log(2π) − n

2
log(σ 2) − 1

2
log(|�(θ)|)

− 1

2σ 2
(y − Xβ)′�(θ)−1(y − Xβ). (2.61)

The value of (β, σ 2, θ), which maximizes L(β, σ 2, θ), is given by a solution of
the following equation:

β = b(�(θ)), σ 2 = σ̂ 2(θ),
∂

∂θ
Q(θ) = 0, (2.62)

where

σ̂ 2(θ) = 1

n
[y − Xb(�(θ))]′�(θ)−1[y − Xb(�(θ))]

and

Q(θ) = −n

2
log(2π) − n

2
log(σ̂ 2(θ)) − 1

2
log |�(θ)| − n

2
.

Here, the function �(θ) is assumed to be differentiable with respect to θ . See
Problem 2.3.3.

Note that

y − Xb(�) = [In − X(X′�−1X)−1X′�−1]y

= [In − X(X′�−1X)−1X′�−1][X(X′X)−1X′ + N ]y

= [In − X(X′�−1X)−1X′�−1]e, (2.63)
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where � = �(θ), and the matrix identity

X(X′X)−1X′ + N = In

is used in the second line. This implies that if the equation ∂Q(θ)/∂θj = 0 (j =
1, . . . , d) has a solution θ̂ , it must be a function of e. Thus, the MLE is a GLSE
in our sense.

Furthermore, the log-likelihood equation with (2.63) implies that θ̂ is an even
function of e, which in turn implies that the MLE is unbiased. In fact, as is shown
in the next section, if θ̂ (e) is an even function, then the GLSE b(�(θ̂(e))) is
unbiased as long as its first moment is finite.

2.4 Finiteness of Moments and Typical GLSEs

In this section, we introduce certain GLSEs in the specific models stated in Sec-
tion 2.2. We also derive tractable sufficient conditions for the GLSEs to be unbiased
and to have a finite second moment. The results derived here serve as a basis
for later chapters, when the efficiency of the GLSEs in terms of risk matrix or
covariance matrix is considered.

Example 2.5 (Anderson model) Let us consider the Anderson model (2.11) in
Example 2.1, which is restated as

y = Xβ + ε with L(ε) ∈ Pn(0, σ 2�), (2.64)

where X is an n × k known matrix of full rank and � is of the form

�−1 = �(θ)−1 = In + λ(θ)C (θ ∈ �).

Relevant definitions are given in Example 2.1.
To define a GLSE for this model, assume P (e = 0) = 0, where e = (e1, . . . , en)

′
is the OLS residual vector:

e = Ny with N = In − X(X′X)−1X′. (2.65)

Then a typical estimator of θ is given by

θ̂ ≡ θ̂ (e) =
∑n

j=2 ej ej−1∑n
j=1 e2

j

= e′Ke

e′e
, (2.66)

where the matrix K is given by

K = 1

2




0 1 0
1 0 1

. . .
. . .

. . .

. . .
. . .

. . .

1 0 1
0 1 0




: n × n. (2.67)
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This naturally leads to the GLSE

b(�̂) = C(e)y with C(e) = (X′�̂−1X)−1X′�̂−1, (2.68)

where

�̂−1 = �(θ̂)−1 = In + λ(θ̂)C with λ(θ̂) = θ̂

(1 − θ̂ )2
. (2.69)

This GLSE is well defined, that is, the estimator �̂ is almost surely positive definite,
since applying the Cauchy–Schwarz inequality

(a′b)2 ≤ ‖a‖2 ‖b‖2 for any a, b ∈ Rn (2.70)

to the right-hand side of (2.66) yields

θ̂ (e) ∈ � = (−1, 1) a.s.

Note that the estimator θ̂ (e) is a continuous function of e and satisfies

(i) θ̂ (−e) = θ̂ (e);

(ii) θ̂ (ae) = θ̂ (e) for any a > 0.

This implies that C(e) is a continuous function satisfying

(i’) C(−e) = C(e);

(ii’) C(ae) = C(e) for any a > 0.

As will be seen soon, these conditions imply that the GLSE in (2.68) is an unbiased
estimator with a finite second moment.

General theory. Motivated by this example, we derive a condition for which a
GLSE is unbiased and has a finite second moment. Consider the general linear
regression model

y = Xβ + ε with P ≡ L(ε) ∈ Pn(0, �), (2.71)

where

y : n × 1, X : n × k, rankX = k,

and

� = σ 2� ∈ S(n).

Here, L(·) denotes the distribution of · and S(n) the set of n × n positive definite
matrices.
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Proposition 2.6 Let β̂ be an estimator of the form β̂ = C(e)y satisfying C(e)X =
Ik , where e is the OLS residual vector.

(1) Suppose that

L(ε) = L(−ε)

and the function C is an even function in the sense that

C(−e) = C(e), (2.72)

then the estimator β̂ = C(e)y is unbiased as long as its first moment is finite.

(2) Suppose that

P (e = 0) = 0

and that the function C is continuous and is scale-invariant in the sense that

C(ae) = C(e) for any a > 0, (2.73)

then the estimator β̂ = C(e)y has a finite second moment.

Proof. Note that the condition (2.73) is equivalent to the one

C(e) = C(e/||e||), (2.74)

where the norm ||x|| of a vector x is defined as ||x|| = √
x′x.

For unbiasedness of β̂ ∈ C1, since β̂ = β + C(e)ε, it suffices to show that

E[C(e)ε] = 0. (2.75)

This holds since

E[C(e)ε] = E[C(−e)(−ε)] = −E[C(e)ε], (2.76)

where the first equality follows from the assumption that L(ε) = L(−ε) and the
second, from the condition (2.72).

Next, to verify (2), let C(e) = (
cij (e)

)
and y = (y1, . . . , yn)

′. Then clearly,
the (i, j)th element of E(β̂β̂ ′) is given by

E

[(
n∑

u=1

ciu(e)yu

)(
n∑

v=1

cjv(e)yv

)]
(2.77)

By (2.74), the function C can be regarded as a function on the compact set {e ∈
Rn| ‖e‖ = 1}. Since any continuous function defined on a compact (i.e., bounded
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and closed) set is bounded, all the elements cij (e)’s of C(e) are bounded. Let
|cij (e)| < M. Then we have

E



(

n∑
u=1

ciu(e)yu

)2

 ≤ E

[(
n∑

u=1

c2
iu(e)

)(
n∑

u=1

y2
u

)]

≤ nM2E(y′y)

= nM2[σ 2tr(�) + β ′X′Xβ] (< ∞), (2.78)

where the first inequality follows from Cauchy–Schwarz inequality in (2.70). Thus,
the (i, i)th element of E(β̂β̂ ′) is finite.

As for the off-diagonal elements, combining the result above with the following
version of the Cauchy–Schwarz inequality:

[E(AB)]2 ≤ E(A2)E(B2), (2.79)

where A and B are arbitrary random variables with finite second moments, shows
that the (i, j)th element with i �= j is also finite. This completes the proof.

The result (1) of Proposition 2.6 is due to Kariya and Toyooka (1985) and
Eaton (1985), and (2) is given by Kariya and Toyooka (1985) and Toyooka and
Kariya (1995). See Andrews (1986) in which a more general result of (1) is given.

Further examples. We introduce several typical GLSEs with proof of the finite-
ness of the moments and the unbiasedness. To apply Proposition 2.6, we note that
a GLSE b(�) is scale-invariant in the sense that

B(a�) = B(�) for any a > 0, (2.80)

where

B(�) = (X′�−1X)−1X′�−1.

This scale-invariance property will be frequently used to establish the condition
(2.73).

Example 2.6 (Heteroscedastic model) Let us consider the p-equation het-
eroscedastic model, which is a model (2.71) with the following structure:

y =




y1
...

yp


 : n × 1, X =




X1
...

Xp


 : n × k,

ε =




ε1
...

εp


 : n × 1 (2.81)
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and

� = �(θ) =




θ1In1 0
. . .

0 θpInp


 ∈ S(n), (2.82)

where

n =
p∑

j=1

nj , yj : nj × 1, Xj : nj × k, εj : nj × 1.

To define a GLSE, suppose P (e = 0) = 0, where e is the OLS residual vector:

e = Ny with N = In − X(X′X)−1X′. (2.83)

A typical GLSE treated here is of the form

b(�̂) = C(e)y with C(e) = (X′�̂−1X)−1X′�̂−1, (2.84)

where

�̂ ≡ �(θ̂) =




θ̂1In1 0
. . .

0 θ̂pInp


 , (2.85)

and θ̂ is an estimator of θ of the form

θ̂ ≡ θ̂ (e) = (θ̂1, . . . , θ̂p)′ = (θ̂1(e), . . . , θ̂p(e))′ : p × 1, (2.86)

where θ̂j ’s are assumed to be almost surely positive.
We shall introduce two specific GLSEs in accordance with different estimation

procedures of variances θj ’s. Recall that the present model can be viewed as a
collection of the homoscedastic models

y = Xjβj + εj , E(εj ) = 0 and Var(εj ) = θj Inj

with the following restriction

β1 = · · · = βp ≡ β. (2.87)

Then the variances θj ’s can be estimated with or without the restriction (2.87).
With the restriction, the coefficient vector β is common to all the submodels and
hence θj ’s are estimated by using the OLSE b(In) applied to the full model.
The estimators θ̂j ’s thus obtained are called the restricted estimators. Without the
restriction (2.87), the variances θj ’s are estimated by the residual of each submodel.
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Such estimators are called the unrestricted estimators. More specifically, let the
OLS residual vector e in (2.83) be decomposed as

e =




e1
...

ep


 : n × 1 with ej : nj × 1. (2.88)

The restricted GLSE is a GLSE b(�(θ̂)) with θ̂ = θ̂R for θ̂ in (2.86), where

θ̂R = θ̂R(e) = (θ̂R
1 , . . . , θ̂R

p )′ (2.89)

with

θ̂R
j = θ̂R

j (e) = e′
j ej /nj . (2.90)

The restricted GLSE is well defined, since the θ̂j ’s are almost surely positive.
Further, it has a finite second moment. To see this, note first that θ̂R(e) is a
continuous function satisfying

θ̂R(ae) = a2θ̂R(e) for any a > 0. (2.91)

Hence, �̃(e) ≡ �(θ̂R(e)) is also continuous in e and satisfies

�̃(ae) = a2�̃(e). (2.92)

This further implies that the function

C(e) = [X′�̃(e)−1X]−1X′�̃(e)−1

is continuous and satisfies the condition (2.73) of Proposition 2.6:

C(ae) = [X′�̃(ae)−1X]−1X′�̃(ae)−1

= [X′a−2�̃(e)−1X]−1X′a−2�̃(e)−1

= [X′�̃(e)−1X]−1X′�̃(e)−1

= C(e), (2.93)

where the third equality follows from the scale-invariance property (2.80).
Furthermore, if L(ε) = L(−ε), the restricted GLSE is unbiased. To see this,

note that θ̂R satisfies

θ̂R(e) = θ̂R(−e). (2.94)

This clearly implies that C(e) = C(−e) and hence the condition (2.72) of Propo-
sition 2.6 is satisfied.
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On the other hand, the unrestricted GLSE is a GLSE b(�(θ̂)) with θ̂ = θ̂U ,
where

θ̂U = θ̂U (e) = (θ̂U
1 , . . . , θ̂U

p )′ (2.95)

with

θ̂U
j = θ̂U

j (e) = e′
jNjej /(nj − rj ). (2.96)

Here, rj = rankXj and Nj is the orthogonal projection matrix defined as

Nj = Inj
− Xj(X

′
jXj )

+X′
j , (2.97)

where A+ denotes the Moore–Penrose generalized inverse of a matrix A. It can be
easily seen by the same arguments as in the restricted GLSE that the unrestricted
GLSE has a finite second moment and is unbiased when L(ε) = L(−ε).

The difference between θ̂R and θ̂U is found through

Proposition 2.7

θ̂R
j = [yj − Xjb(In)]

′[yj − Xjb(In)]/nj (2.98)

and

θ̂U
j = [yj − Xj β̂j ]′[yj − Xj β̂j ]/(nj − rj ), (2.99)

where β̂j is the OLSE calculated under the submodel yj = Xjβ + εj :

β̂j = (X′
jXj )

+X′
j yj (j = 1, . . . , p). (2.100)

To establish this result, it is convenient to use the following lemma in which
the relation between the OLS residual vector e = (e′

1, . . . , ep)′ in (2.83) and the
equation-wise residual vectors

ε̂j = yj − Xj β̂j = Njyj (j = 1, . . . , p) (2.101)

are clarified.

Lemma 2.8 The vector ej : p × 1 can be decomposed in terms of β̂j ’s and ε̂j ’s as

ej = ε̂j − Xj(X
′X)−1

p∑
i=1

X′
iXi(β̂i − β̂j ) (2.102)

Proof. The proof is the calculation: Let Mj = Xj(X
′
jXj )

+X′
j and so Inj

=
Mj + Nj . Then we have

ej = yj − Xj(X
′X)−1X′y

= yj − Xj(X
′X)−1

( p∑
i=1

X′
iyi

)
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= (Mj + Nj)yj − Xj(X
′X)−1

[ p∑
i=1

X′
i (Mi + Ni)yi

]

= (Xj β̂j + ε̂j ) − Xj(X
′X)−1

( p∑
i=1

X′
iXi β̂i

)

= ε̂j − Xj(X
′X)−1

[ p∑
i=1

X′
iXi(β̂i − β̂j )

]
,

where the last equality is due to

Xj β̂j = Xj(X
′X)−1

[
p∑

i=1

X′
iXi β̂j

]
.

This completes the proof of Lemma 2.8.

Proposition 2.7 readily follows since

ε̂j = Njej .

Example 2.7 (SUR model) Let us consider the p-equation SUR model intro-
duced in Example 2.4, which is described as y = Xβ + ε with

y =




y1
...

yp


 : n × 1, X =




X1 0
. . .

0 Xp


 : n × k,

β =




β1
...

βp


 : k × 1, ε =




ε1
...

εp


 : n × 1 (2.103)

and the covariance structure is given by

� = � ⊗ Im and � = (σij ) ∈ S(p), (2.104)

where

yj : m × 1, Xj : m × kj , n = pm and k =
p∑

j=1

kj .

As has been seen in Example 2.4, this model is equivalent to the multivariate
linear regression model Y = X∗B + E∗ as in (2.31) with prior zero restriction
(2.32) on B.
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To define a GLSE, we assume P (e = 0) = 0, where e is the OLS residual
vector, that is,

e = Ny with N = In − X(X′X)−1X′. (2.105)

We consider the GLSE of the form

b(�̂ ⊗ Im) = C(e)y (2.106)

with

C(e) = [X′(�̂−1 ⊗ Im)X]−1X′(�̂−1 ⊗ Im),

where �̂ = �̂(e) is an estimator of � depending only on e. The typical GLSEs
introduced here are the restricted Zellner estimator (RZE) and the unrestricted
Zellner estimator (UZE)(Zellner, 1962, 1963). To describe these estimators, let the
OLS residual vector e be decomposed as

e = (e′
1, . . . , e′

p)′ with ej : m × 1. (2.107)

Here, the structure of the regressor matrix X in (2.103) enables us to rewrite ej

simply as

ej = Njyj with Nj = Im − Xj(X
′
jXj )

−1X′
j , (2.108)

which is the OLS residual obtained from the j th regression model yj = Xjβj + εj .
The RZE is defined as a GLSE b(�̂ ⊗ Im) with

�̂ = �̂(e) = (e′
iej /m). (2.109)

Note that e′
iej /m is an estimator of σij based on the OLS residual vector in (2.108).

Since �̂(e) is a continuous function of e such that

�̂(e) = �̂(−e)

and

�̂(ae) = a2�̂(e) for any a > 0, (2.110)

by the same arguments as in Example 2.6, the RZE has a finite second moment
and is unbiased when L(ε) = L(−ε).

On the other hand, the UZE is a GLSE b(�̂ ⊗ Im) with �̂ = S/q, where

S = S(e) =
(
e′
iN∗ej

)
,

N∗ = Im − X∗(X′
∗X∗)+X′

∗,

r = rankX∗ and q = m − r. (2.111)



GENERALIZED LEAST SQUARES ESTIMATORS 49

Here, the m × k matrix X∗ is defined in (2.31). Note that e′
iN∗ej /q is an estimator

of σij based on the multivariate OLS residual Ê = N∗Y in the model Y = X∗B +
E∗. In fact, S can be rewritten as

S = Ê′Ê = Y ′N∗Y = E′
∗N∗E∗ (2.112)

(see Problem 2.4.5). The term “unrestricted” is used because σij is estimated from
the multivariate regression model by ignoring the zero restrictions on B in (2.32),
while the term “restricted” is used because the estimator �̂ in (2.109) utilizes the
restriction. Using the scale-invariance property in (2.80), we see that

b
(
(S/q) ⊗ Im

)
= b(S ⊗ Im). (2.113)

Throughout this book, we use the right-hand side of (2.113) as the definition of
the UZE, since it is simpler than the expression on the left-hand side. The UZE
b(S ⊗ Im) also has a finite second moment and is unbiased when L(ε) = L(−ε).

Note also that when the error term ε is normally distributed: L(ε) = Nn(0, � ⊗
Im), the matrix S has the Wishart distribution Wp(�, q) with mean q� and degrees
of freedom q:

L(S) = Wp(�, q). (2.114)

2.5 Empirical Example: CO2 Emission Data

This section demonstrates with real data an example of GLSEs in an AR(1) error
model and Anderson model. The analysis here is in line with Nawata (2001) where
a causal relation between GNP (gross national product) and CO2 (carbon dioxide)
emission is discussed from various points of view. We use the same data set given
in his book. For practical techniques required in regression analysis, consult, for
example, Sen and Srivastava (1990).

CO2 emission and GNP. Table 2.1 gives the data on the volume of CO2 emission
in million ton, and the GNP in trillion yen (deflated by 1990 price) in Japan from
1970 to 1996. Of course, variations in the GNP are here regarded as a causal
variable of those in the CO2 emission volume.

We specify the relation as

CO2 = α1 (GNP)α2 . (2.115)

In this relation, the quantity α2 can be understood as being the elasticity of CO2
relative to GNP as in Figure 2.1. In general, when a relation between two variables
x and y is expressed as y = f (x), the elasticity of y relative to x is defined by

elasticity = lim
�→0

{
f (x + �) − f (x)

f (x)

}/{
(x + �) − x

x

}

= f ′(x)x

f (x)
. (2.116)
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Table 2.1 CO2 emission data of Japan.

Year GNP Volume of CO2 Year GNP Volume of CO2
Emission Emission

1970 187 739 1984 329 934
1971 196 765 1985 344 909
1972 213 822 1986 354 907
1973 230 916 1987 370 897
1974 227 892 1988 393 984
1975 234 854 1989 412 1013
1976 244 875 1990 433 1071
1977 254 919 1991 449 1093
1978 268 916 1992 455 1105
1979 283 951 1993 456 1080
1980 290 920 1994 459 1131
1981 299 903 1995 466 1137
1982 309 879 1996 485 1168
1983 316 866

Trillion yen Million ton Trillion yen Million ton

Source: Nawata (2001) with permission.
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Figure 2.1 Scatter plot of (GNP, CO2) for Japanese data (in log-scale).

Therefore, the elasticity measures percentage change of y for 1% change of x. In
(2.115), this is equal to α2 as f (x) = α1x

α2 . The model in (2.115) is a model with
constant elasticity. The equation (2.115) is clearly equivalent to

log(CO2) = β1 + β2 log(GNP), (2.117)
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where β1 = log(α1) and β2 = α2. Hence, this model is expressed as a linear regres-
sion model:

y = Xβ + ε (2.118)

with X : n × k, n = 27, k = 2,

y =




log(CO21)
...

log(CO227)


 =




log(739)
...

log(1168)


 : 27 × 1,

X =




1 log(GNP1)
...

...

1 log(GNP27)


 =




1 log(187)
...

...

1 log(485)


 : 27 × 2,

β =
(

β1
β2

)
: 2 × 1, ε =




ε1
...

ε27


 : 27 × 1,

where CO2j and GNPj denote the values of CO2 and GNP at year 1969 + j (j =
1, . . . , 27) respectively. (We do not use the notation CO2j for simplicity.)

The model is estimated by the OLSE

b(I27) = (X′X)−1X′y

as

log(CO2) = 4.754 + 0.364 log(GNP), R2 = 0.8142, s = 0.0521.

Thus, the elasticity β2 in question is estimated by 0.364. Here, the quantity R2 is
a measure for goodness of fit defined by

R2 = 1 − e′e
y′N0y

with N0 = I27 − 127(1
′
27127)

−11′
27,

and s denotes the standard error of regression:

s =
√

1

27 − 2
e′e,

where e is the OLS residual vector

e =




e1
...

e27


 = [I27 − X(X′X)−1X′]y.

The statistics s and s2 are measures of variation of the error term ε. In fact, s2 is
the uniformly minimum variance unbiased estimator of σ 2, if the error terms εj ’s
are independently and identically distributed as the normal distribution N(0, σ 2),
that is,

L(ε) = N27(0, σ 2I27). (2.119)
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GLSE in an AR(1) error model. Although computing the OLSE is a basic
procedure to take in the analysis of data, the OLSE may not be efficient, as will
be discussed in Chapters 3, 4 and 5 of this book. As a diagnostic checking for the
assumption of error terms, it is often the case that the Durbin–Watson test statistic
is computed for time-series data. The Durbin–Watson test statistic DW is in our
case calculated as

DW =
∑27

j=2(ej − ej−1)
2

∑27
j=1 e2

j

= 0.5080,

which suggests the presence of positive serial correlation of AR(1) type among the
error terms εj ’s. Hence, we specify that εj ’s follow an AR(1) process

εj = θεj−1 + ξj with |θ | < 1, (2.120)

where ξj ’s are supposed to be independently and identically distributed as N(0, τ 2).
In this specification, the distribution of the error term ε is expressed as L(ε) =
N27(0, σ 2∗ �∗(θ)), where

σ 2
∗ = τ 2

(1 − θ)2
,

�∗(θ)−1 = I27 + λ(θ)C + ψ(θ)B (2.121)

with

λ(θ) = θ

(1 − θ)2
and ψ(θ) = θ

1 − θ
.

See Example 2.1 for the definitions of the matrices C and B. A typical estimator
of θ is given by

θ̂ =
∑27

j=2 ej ej−1∑27
j=1 e2

j

, (2.122)

which is calculated as θ̂ = 0.7001. This value also suggests an application of the
GLSE for the estimation of β, and the GLSE

b(�∗(θ̂)) = (X′�∗(θ̂ )−1X)−1X′�∗(θ̂ )−1y (2.123)

is b(�∗(θ̂ )) = (4.398, 0.425)′. Hence, the model is estimated as

log(CO2) = 4.398 + 0.425 log(GNP).

The estimate suggests that 1% increase in GNP causes 0.425% increase in CO2
emission. The quantities λ(θ) and ψ(θ) are also evaluated by

λ(θ̂) = 7.7814 and ψ(θ̂) = 2.3340.
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GLSE in Anderson model. On the other hand, the Anderson model, which is
the model with ψ(θ) in (2.121) replaced by zero, may be a possible model for this
data. Hence, assume that L(ε) = N27(0, σ 2�(θ)), where

σ 2 = τ 2

(1 − θ)2
,

�(θ)−1 = I27 + λ(θ)C. (2.124)

Under this model, the GLSE b(�(θ̂)) is calculated as

b(�(θ̂)) = (X′�(θ̂)−1X)−1X′�(θ̂)−1y

= (4.521, 0.404)′, (2.125)

from which we obtain

log(CO2) = 4.521 + 0.404 log(GNP). (2.126)

Thus, the elasticity of CO2 relative to GNP in this model is evaluated by 0.404,
which is slightly lower than the case of AR(1) error model. An interesting result is
found here. In the Anderson model, in Figure 2.2, the GLSE b(�(θ̂)) and the OLSE
b(I27) satisfy

1

27
1′

27Xb(�(θ̂)) = 6.8495 (2.127)

and
1

27
1′

27Xb(I27) = 6.8495, (2.128)

where the right-hand sides of the two equations are equal to

y = 1

27

27∑
j=1

yj = 6.8495.
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Figure 2.2 Two regression lines: the line obtained from the OLSE and the one
from the GLSE in the Anderson model (in dotted line).
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The results in (2.127) and (2.128) show that the distribution of the difference
between b(�(θ̂)) and b(I27) is degenerate. This fact will be fully investigated in
Section 8.4 of Chapter 8.

Multiple linear regression models. As is well known, a serial correlation prob-
lem is often solved by adding some appropriate explanatory variables. In Nawata
(2001), various models including polynomial regression models such as

log(CO2) = β1 + β2 log(GNP) + β3[log(GNP)]2 + β4[log(GNP)]3,

and the models with dummy variables such as

log(CO2) = β1 + β2D + β3 log(GNP) + β4D log(GNP),

are estimated and compared in terms of AIC (Akaike Information Criterion). Here,
D = (d1, . . . , d27)

′ is a dummy variable defined by

dj =
{

0 (j = 1, . . . , 11)

1 (j = 12, . . . , 27),

which detects whether the intercept and/or the slope of regression line has changed
after the year 1980. The models mentioned above will be treated again in Section
4.6 in Chapter 4 in the context of estimation of the SUR model.

Table 2.2 CO2 emission data of USA.

Year GNP Volume of CO2 Year GNP Volume of CO2
Emission Emission

1970 3494 4221 1984 5050 4356
1971 3597 4247 1985 5201 4426
1972 3782 4440 1986 5342 4511
1973 3987 4614 1987 5481 4631
1974 3976 4451 1988 5691 4895
1975 3951 4267 1989 5878 4921
1976 4148 4559 1990 5954 4824
1977 4328 4575 1991 5889 4799
1978 4541 4654 1992 6050 4856
1979 4670 4671 1993 6204 5023
1980 4642 4575 1994 6423 5137
1981 4712 4414 1995 6585 5162
1982 4611 4196 1996 6817 5301
1983 4767 4211

Billion dollars Million ton Billion dollars Million ton

Source: Nawata (2001) with permission.
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In Table 2.2, the data on the amount of CO2 emission and the GNP in the USA
is also shown. Readers may try to analyze the data by using the GLS estimation
procedure (see Problem 2.5.1).

2.6 Empirical Example: Bond Price Data
In this section, as an example of empirical analysis with GLSEs, we treat a linear
regression model y = Xβ + ε that models the cross-sectional relation between
the prices y1, . . . , yn of n bonds observed in the market. The covariance matrix
Cov(ε) = σ 2�(θ) of the error term ε is supposed to be a function of the unknown
one-dimensional parameter θ ∈ (−1, 1). The matrix �(θ) models a heteroscedatic
and serially correlated structure that is caused by different timepoints of cash flows
and different maturity of bonds. The model is estimated by a GLSE b(�(θ̂)),
which is obtained as a solution of minimization of the function ψ(β, θ) = (y −
Xβ)′�(θ)−1(y − Xβ).

Covariance structure with one-dimensional parameter. We begin by providing
a rough sketch of the model considered in this section. A complete description of
the model will be given later.

The model considered here is, in short, a general linear regression model y =
Xβ + ε with covariance structure

Cov(ε) = σ 2�(θ),

where �(θ) = (σij (θ)) and

σij (θ) =
{

aiifii (i = j)

θaijfij (i �= j).

Here, θ is an unknown one-dimensional parameter of interest such that −1 < θ <

1, and aij ’s and fij ’s are the quantities that can be calculated from the attributes
or characteristics of the n bonds in question. As will be explained below, the
definition of the quantities aij ’s and fij ’s is based on the nature of heteroscedas-
ticity and correlation shared by the prices of n bonds that are simultaneously and
stochastically determined in the bonds market.

Although θ is one-dimensional, we cannot diagonalize the matrix � since
an orthogonal matrix diagonalizing � in general depends on θ . Furthermore, we
cannot form an estimator θ̂ of θ through an intuitive or constructive approach as
in the specific models treated in the previous sections. Hence, in estimating the
model, we need to obtain a GLSE b(�(θ̂)) by minimizing

ψ(β, θ) = (y − Xβ)′�(θ)−1(y − Xβ)

with respect to β and θ , or equivalently, by minimizing

ψ̃(θ) ≡ ψ(b(�(θ)), θ) = (y − Xb(�(θ)))′�(θ)−1(y − Xb(�(θ)))

with respect to θ . See Problem 2.2.1.
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Basic nature of bonds and discount function. To fix the idea, let P be the
present price (at time 0) of a bond that generates the cash flow C(s) at a (future)
timepoint s. C(·) is called a cash flow function as a function of s. Suppose there
exist M timepoints (0<)s1 < · · · < sM at which the cash flows are generated.
Thus, the cash flows are given by C(s1), . . . , C(sM). The last timepoint sM is
called maturity.

However, it does not hold that the present value of the bond is equal to

P =
M∑

j=1

C(sj ),

since C(sj )s are generated in future timepoints. Instead, each cash flow C(sj )

should be discounted according to the time interval |sj − 0| = sj . In other words,
the present value (at 0) of the cash flow occurring at sj is discounted by a discount
factor D(sj ) as C(sj )D(sj ). Hence, the value of a bond with cash flow {C(sj ) | j =
1, . . . , M} is equal to

P =
M∑

j=1

C(sj )D(sj ),

where D(·) is called a discount function as a function of a timepoint ··.
Usually, the discount function D(·) is regarded as an unobservable random

quantity that depends on characteristics (attributes), say Z, of the bond as well as
the current state of the market. It is noted that the random variables {D(sj ) | j =
1, . . . , M} given by D(·) are correlated in general. Hence, to obtain a model for
P , such conditions should be taken into the structure of the model.

Furthermore, there exist many bonds in a market and these prices are simul-
taneously and stochastically determined in the market. This implies that possible
correlation among the prices of bonds should also be embedded into the structure
of �.

Background of the model. Kariya (1993) introduced a bond pricing model for
individual coupon bonds with different cash flows and different attributes. A main
feature of the model is that a random realization of each individual price is viewed
as equivalent to a random realization of the random discount function discounting
cash flows from each individual bond, where individual attributes are included
in the modeling. This feature differentiates this model from a traditional model
such as in McCulloch (1971, 1975) where the discount function for cash flows is
common to all the bonds.

To describe the model, suppose that there are n bonds to be modeled at t , so
that these n bond prices are observed at t . Without loss of generality, let t = 0.
The ith bond is then characterized as (Ci(·), Zi, Pi), where Ci(·) is the cash flow
function known at 0, Zi is the set of attributes and Pi is its price at 0. Let

0 < s(i)1 < s(i)2 < · · · < s(i)M(i) (2.129)
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be the timepoints in future at which the ith bond generates the cash flows (coupons
and principal). In other words, the cash flow function Ci(s) is zero except for these
points s = s(i)j (j = 1, . . . , M(i)) and the values of the cash flows are

{Ci(s(i)j ) | j = 1, . . . , M(i)}. (2.130)

If the ith bond is a typical bond such as a government bond, C(s(i)M(i)) = 100
(principal). Considering bonds with no default such as government bonds, we take

Zi1 = coupon rate of ith bond,

Zi2 = term to maturity s(i)M(i) of ith bond (2.131)

as attributes for each bond, though attributes such as default risk, and so on, can
be included.

All the prices of n bonds are realized stochastically and simultaneously in
the market with the attributes being taken into account. The prices thus formed
in the market are the discounted present values of the future cash flows that are
stochastically discounted. Thus, let

Di(s) : 0 ≤ s ≤ s(i)M(i) (2.132)

represent the stochastic discount function of the ith bond so that the price is
identified with

Pi =
M(i)∑
j=1

Ci(s(i)j )D(s(i)j ). (2.133)

In this expression, the M(i) discount factors {D(s(i)j )} are unobservable ran-
dom variables, while the cash flows {Ci(s(i)j )} are known at 0.

In specifying Di(s), we need to consider

(1) heteroscedastic property of the prices {Pi |i = 1, . . . , n} that the shorter the
maturity of a bond is, the smaller the variance tends to be;

(2) separation of market variations common to all the bond prices from individual
variations specific to each individual bond;

(3) correlations among discounts {D(s(i)j )}’s at different timepoints with each
bond and correlations among different bond prices;

(4) parsimonious parameterization.

Bond pricing model. To give a model pricing, with all the bonds with these points
taken into account, let

0 < sa1 < sa2 < · · · < saM (2.134)
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with

M = max{M(i)|i = 1, . . . , n} and saM = max{sM(i)|i = 1, . . . , n}

denote all the combined timepoints at which cash flows are generated at least by
one of the n bonds. In this notation, the ith bond price is expressed as

Pi =
M∑

j=1

Ci(saj )D(saj ), (2.135)

where Ci(saj ) = 0 unless saj is a timepoint for one of the cash flows of the ith
bond. For the stochastic discount function, the mean function is assumed to be
specified as a polynomial with coefficients depending on the bond attributes:

µi(s) ≡ E[Di(s)] = 1 + δ1(zi)s + · · · + δpsp, (2.136)

where

δj (zi) = δj1zi1 + · · · + δjqziq . (2.137)

Here, note that δj ’s are common parameters to all the bonds. The random deviations
of the discount function from the mean

νi(s) = Di(s) − µi(s), s ∈ {saj |j = 1, . . . , M} (2.138)

are in general correlated not only within those of the ith bonds but also among
those of different bonds. Considering the above four points, Kariya (1993) specified
them as

Cov(νi(saj ), νk(sar )) = λikφik.jr (2.139)

with

φik.jr = exp(−|saj − sar |),

λik =
{

aii (i = k)

θaik (i �= k),
(2.140)

where

aik = exp(−|sM(i) − sM(k)|). (2.141)

Using these specifications for the random discounts, the whole model for n

bond prices is expressed as a general linear regression model

y = Xβ + ε with L(ε) ∈ Pn(0, σ 2�), (2.142)
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where

y =




y1
...

yn


 : n × 1 with yi = Pi −

M∑
j=1

Ci(saj ),

β =




δ1
...

δp


 : pq × 1 with δi =




δi1
...

δiq


 : q × 1,

and the matrix X of explanatory variables are defined by

X =




X′
1
...

X′
n


 : n × pq

with

Xi =




ui1
...

uip


 : pq × 1 and uir =




ui1r

...

uiqr


 : q × 1.

The quantity uikr is defined by

uikr =
M∑

j=1

ziks
r
ajCi(saj ).

As for the error term ε, let

ε =




ε1
...

εn


 : n × 1

and let

� = (σik) : n × n with σik =
{

aiifii (i = k)

θaikfik (i �= k),

where

fik = C ′
i�ikCk.

Here, �ik is an M × M matrix with the (j, r)th element being φik.jr :

�ik = (φik.jr ) : M × M
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and the vector Ci is defined by

Ci =




Ci (sa1)
...

Ci (saM)


 : M × 1.

In other words, in the pricing model in (2.142), the covariance structure is ex-
pressed as

� = �(θ) with −1 < θ < 1,

where θ is an unknown parameter in �. Hence, the GLSE

b(�(θ̂)) = (X′�(θ̂)−1X)−1X′�(θ̂)−1y (2.143)

is obtained as the estimator minimizing

ψ(β, θ) = (y − Xβ)′�(θ)−1(y − Xβ) (2.144)

with respect to (β, θ). In this specification, the points (1) through (4) made before
have been taken care of as follows. First of all, the covariances of νi’s in (2.139)
are those of Di(saj )’s and the covariance structure determines that of the bond
prices Pi’s through (2.135), which is the covariance structure of εi’s in (2.142).
The covariance matrix in (2.142) is heteroscedastic as well as correlated, because
the variances and covariances of yi’s depend not only on those of Di(saj )’s but also
on the cash flows Ci(saj )’s. Point (1) is reflected in the specification of (2.141),
which is an expression of the fact that the shorter the maturity of a bond is, the
smaller the variance tends to be, because a bond with shorter maturity generates
less cash flow, leading to a smaller variance. The second point (2) is taken care of
by the mean structure that the parameters common to all the bonds are separated
from the attributes of individual bonds. Point (3) is clear from the specification of
the covariances of Di(saj ) and Dk(sar) in (2.139). Finally, a parameterization was
carried out in the specification of the model because there are only five parameters
for more than 100 bond prices.

Empirical result. In Kariya and Tsuda (1994), the Japanese Government bonds
are priced by the above model, which they call the cross-sectional model (CSM).
The model is cross-sectionally fitted with data of monthly individual bond prices
(at the end of each month).

As attributes, coupon rate and term to maturity are taken for zi1 and zi2. The
sample size of each model varies from 33 to 85. The model seems to perform very
well. In fact, almost all the residual standard deviations of the 120 CSMs over
the period from 1983.1 to 1992.12 are less than 1 yen where the face value of a
Japanese Government bond is 100 yen and the initial life of each bond is 10 years.
In addition, in each model, the residuals of the individual bond prices are less than
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Table 2.3 Standard deviations for the CSM (yen).

Date Number of θ δ11 δ21 δ12 δ22 Standard
Bonds (t-value) (t-value) (t-value) (t-value) Deviation

84.12 49 0.30 −0.007073 0.001516 −0.012829 0.000333 0.668
(−3.086) (2.563) (−2.162) (0.696)

85.01 50 0.44 −0.006452 0.001326 −0.013181 0.000472 0.854
(−2.041) (1.868) (−1.640) (0.733)

89.12 70 0.33 −0.007219 0.001060 −0.008762 0.000344 0.338
(−6.414) (3.652) (−4.944) (1.995)

90.01 70 0.10 −0.007564 0.001236 −0.011002 0.000469 0.312
(−9.102) (4.793) (−7.721) (3.783)

1 yen except for a few prices. In the analysis, the polynomial of the mean discount
function is chosen as

Di(s) = 1 + (δ11zi1 + δ12zi2)s + (δ21zi1 + δ22zi2)s
2. (2.145)

Table 2.3 gives the standard deviations of the CSMs and the five parameters
involved in each CSM. All the standard deviations of the models are smaller than
1 yen and hence, less than 1% relative to the face value 100. Hence, the model
shows accuracy and will be useful. In fact, it has been used by the Nissay Life
Co., where the model is extended to a dynamic model.

To check the validity of the CSM as a pricing model for individual bonds, we
draw in Figure 2.3 the two graphs of the realized individual prices and their estimated
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Figure 2.3 Realized individual prices and their estimated values in the 85.1 and
90.1 models.
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Figure 2.3 continued

Table 2.4 Price of bonds, coupon rate and term to maturity.

Data Coupon Term to Price of Data coupon Term to Price of
Number Rate Maturity Bond Number Rate Maturity Bond

1 7.7 0.05 100.05 36 6.0 5.88 98.20
2 8.0 0.05 100.06 37 6.5 5.88 100.34
3 8.7 0.30 100.59 38 6.1 5.97 98.61
4 8.5 0.55 100.95 39 5.7 5.97 96.43
5 8.5 0.80 101.37 40 6.1 6.39 98.55
6 8.0 0.80 100.99 41 6.0 6.39 98.09
7 8.0 1.05 101.33 42 5.7 6.39 96.26
8 7.6 1.05 100.93 43 5.1 6.39 92.51
9 8.0 1.30 101.61 44 5.1 6.47 92.44

10 7.6 1.30 101.13 45 5.1 6.89 92.20
11 8.0 1.55 101.99 46 5.4 6.89 94.05
12 8.0 1.80 102.28 47 5.3 6.89 93.35
13 7.7 2.05 102.02 48 5.0 6.97 91.16
14 7.5 2.39 101.89 49 5.3 7.38 93.17
15 7.5 2.47 102.03 50 5.0 7.38 91.06
16 8.0 2.47 103.10 51 4.7 7.38 89.34
17 8.0 2.89 103.54 52 4.0 7.38 85.35
18 7.7 2.89 102.94 53 3.9 7.38 84.78
19 7.5 2.97 102.51 54 4.3 7.64 86.83
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Table 2.4 continued

Data Coupon Term to Price of Data coupon Term to Price of
Number Rate Maturity Bond Number Rate Maturity Bond

20 7.5 3.38 102.80 55 4.6 7.64 88.58
21 7.5 3.47 102.85 56 4.9 7.64 90.35
22 7.5 3.88 103.13 57 5.0 7.88 90.78
23 7.3 3.88 102.51 58 4.9 8.13 89.98
24 7.3 3.97 102.55 59 4.8 8.13 89.36
25 7.0 4.38 101.74 60 4.8 8.38 89.17
26 7.3 4.47 102.80 61 4.6 8.38 88.05
27 7.1 4.47 102.11 62 5.0 8.64 90.35
28 7.1 4.88 102.26 63 5.0 8.88 90.17
29 6.8 4.88 101.41 64 4.8 8.88 88.84
30 6.5 4.97 100.30 65 4.7 8.88 88.17
31 6.8 4.97 101.43 66 4.7 9.13 87.99
32 6.8 5.38 101.52 67 4.8 9.13 88.67
33 6.5 5.38 100.32 68 4.7 9.38 87.79
34 6.5 5.47 100.32 69 4.8 9.38 89.07
35 6.2 5.47 99.10 70 4.9 9.38 89.21

values in the 85.1 model with σ̂85.1 = 0.854 and the 90.1 model with σ̂90.1 = 0.312.
The horizontal axis of Figure 2.3 denotes the maturities of individual bonds. The
graphs show that the individual model values are rather close to the observed bond
prices. From these observations, it may be concluded that the CSM is a good model
for pricing individual Japanese Government bonds and for bond trading in practice.
In the Table 2.4, the data used in the estimation of bond pricing model at 90.1 is
summarized.

2.7 Problems
2.2.1 In a general linear regression model y = Xβ + ε with X : n × k and rank
X = k, show that

(1) The OLSE b(In) = (X′X)−1X′y minimizes

S(β) = (y − Xβ)′(y − Xβ)

with respect to β ∈ Rk;

(2) The GLSE b(�) = (X′�−1X)−1X′�−1y with � ∈ S(n) minimizes

S(β; �) = (y − Xβ)′�−1(y − Xβ)

with respect to β ∈ Rk .
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(3) Let �(θ) ∈ S(n) be a differentiable function of θ ∈ Rd with d < n. Show
that the function

S(β, θ) = (y − Xβ)′�(θ)−1(y − Xβ)

is minimized by

(β, θ) =
(
b(�(θ̂)), θ̂

)
,

where θ̂ is a solution of minimization of

T (θ) ≡ S (b(�(θ)), θ) = (y − Xb(�(θ)))′ �(θ)−1 (y − Xb(�(θ))) .

Note that the above results hold without distinction of the distribution of the error
term ε.

2.2.2 Show that �−1 in (2.9) is in fact the inverse matrix of �.

2.2.3 Verify (2.12). The answer will be found in Theorem 6.5.4 of Anderson
(1971), in which the latent roots of the matrix

C∗ = 1

2




1 1 0
1 0 1

. . .
. . .

. . .

. . .
. . .

. . .

. . . 0 1
0 1 1




are derived as

cos

(
(j − 1)π

n

)
(j = 1, . . . , n).

The latent roots of C in question is readily obtained from

C = 2In − 2C∗.

The latent vectors are also given there.

2.2.4 Prove the following statements:

(1) The latent roots of 1n1′
n are 0 (with multiplicity n − 1) and n;

(2) The matrix In + α1n1′
n is positive definite if and only if α > −1/n;

(3) The matrix (1 − θ)In + θ1n1′
n is positive definite if and only if θ ∈ (−1/(n −

1), 1);

(4) (In + α1n1′
n)

−1 = In − α
1+nα

1n1′
n for α > −1/n.

2.2.5 Verify (2.25).

Administrator
ferret
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2.2.6 Establish the following formulas:

(1) (A ⊗ B)(C ⊗ D) = AC ⊗ BD;

(2) (A ⊗ B)′ = A′ ⊗ B ′;

(3) (A ⊗ B)−1 = A−1 ⊗ B−1 when A and B are nonsingular;

(4) vec(ABC) = (C ′ ⊗ A)vec(B).

See Section 2.2 of Muirhead (1982).

2.3.1 Show that the class C0 is actually the class of linear unbiased estimator of
β, that is, an estimator of the form Cy is unbiased if and only if CX = Ik .

2.3.2 Show that the two terms of the right-hand side of (2.39) are mutually uncor-
related. That is,

(X′�−1X)−1X′�−1E(εε′)
[
C − (X′�−1X)−1X′�−1

]′ = 0.

2.3.3 For the log-likelihood equation in (2.60):

(1) By using the identity y = Xb(�(θ)) + [y − Xb(�(θ))], show that

L(β, σ 2, θ) ≤ L
[
b(�(θ)), σ 2, θ

]
≡ L1(σ

2, θ)

for any β ∈ Rk , σ 2 > 0 and θ ∈ Rd ;

(2) By differentiating L1 with respect to σ 2, show that

L1(σ
2, θ) ≤ L1(σ̂

2(θ), θ)

for any σ 2 > 0 and θ ∈ Rd ;

(3) Confirm that L1(σ̂
2(θ), θ) = Q(θ).

2.4.1 By using the Cauchy–Schwarz inequality (2.70), show that the estimator
θ̃ (e) in (2.66) is in (−1, 1) for any e ∈ Rn.

2.4.2 The Anderson model with covariance matrix (2.11) is an approximation
to a regression model with covariance matrix (2.8) for AR(1) errors. Hence, in
application, a GLSE under the AR(1) structure is preferred. To obtain a GLSE
in this case, assume L(ε) = Nn(0, τ 2�(θ)) with �(θ) in (2.8) and derive the
estimating equation in (2.62) for the MLE. Show that the MLE has a finite second
moment.
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2.4.3 Consider the heteroscedastic model in Example 2.6. Let

θ̂ = (θ̂1, . . . , θ̂p)′

be an estimator of θ . Show that the GLSE b(�̂) with �̂ = �(θ̂) is rewritten as a
weighted sum of β̂j ’s:

b(�̂) =
( p∑

j=1

θ̂−2
j X′

jXj

)−1
p∑

j=1

θ̂−2
j X′

jXj β̂j .

2.4.4 In the heteroscedastic model in Example 2.6,

(1) Show that the statistic (β̂1, . . . , β̂p; ε̂1, . . . , ε̂p) is a minimal sufficient statis-
tic if L(ε) = Nn(0, �).

(2) Let p = 2 for simplicity. Show that θ̂R = (θ̂R
1 , θ̂R

2 )′ can be rewritten as a
function of the above-mentioned minimal sufficient statistic as

θ̂R
1 =

{
ε̂′

1ε̂1 + (β̂2 − β̂1)
′Q(β̂2 − β̂1)

}
/n1

with Q = (X′
2X2)(X

′X)−1X′
1X1(X

′X)−1(X′
2X2). Here, θ̂R

2 is obtained by
interchanging the suffix.

(3) Evaluate E(θ̂R
j ).

Some related results will be found in Section 5.4. For the definition of minimal
sufficiency, see, for example, Lehmann (1983).

2.4.5 Establish (2.112).

2.4.6 (Moore–Penrose generalized inverse) The Moore–Penrose generalized in-
verse matrix A+ : n × m of a matrix A : m × n is defined as the unique matrix
satisfying AA+A = A, A+AA+ = A+, (AA+)′ = AA+ and (A+A)′ = A+A.

(1) Show that (A′)+ = (A+)′, (A′A)+ = A+(A+)′, rank A = rank A+ = rank
(AA+) and (AA+)2 = AA+.

(2) Show that A+ is unique.

(3) Give an explicit form of A+ when A is symmetric.

See, for example, Rao and Mitra (1971).

2.5.1 For the CO2 emission data in Table 2.2, fit the model with AR(1) error and
the Anderson model, and estimate the models by the GLSEs treated in Section 2.5.
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Nonlinear Versions of the
Gauss–Markov Theorem

3.1 Overview

In Chapter 2, we discussed some fundamental aspects of generalized least squares
estimators (GLSEs) in the general linear regression model

y = Xβ + ε. (3.1)

In this chapter, we treat a prediction problem in regression and establish a nonlinear
version of the Gauss–Markov theorem in both prediction and estimation.

First, to formulate a prediction problem, which includes an estimation problem
as its special case, we generalize the model (3.1) to(

y

y0

)
=

(
X

X0

)
β +

(
ζ

ζ0

)
, (3.2)

and consider the problem of predicting a future value of y0. Here it is assumed
that

E

((
ζ

ζ0

))
=

(
0
0

)

and

Cov

((
ζ

ζ0

))
= σ 2

(
� �′
� �0

)
≡ �. (3.3)

In (3.2), the following three quantities

y : n × 1, X : n × k and X0 : m × k

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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are observable variables, and

y0 : m × 1

is to be predicted. It is further assumed that

rankX = k and � ∈ S(n),

where S(n) denotes the set of n × n positive definite matrices. Clearly, �0 is an
m × m nonnegative definite matrix, σ 2 > 0 and � : m × n.

In this setup, the problem of estimating β in (3.1) is embedded into the problem
of predicting y0 in (3.2). In fact, letting

m = k, X0 = Ik, � = 0 and �0 = 0 (3.4)

yields y0 = β and hence, when (3.4) holds, predicting y0 in (3.2) is equivalent to
estimating β in (3.1).

Typical models for (3.1) and (3.2) include serial correlation models, heteroscedas-
tic models, equi-correlated models, seemingly unrelated regression (SUR) models
and so on, which have been discussed in Chapter 2. Furthermore, in the model (3.2),
the problem of estimating missing observations can be treated by regarding y0 as a
missing observation vector. In this case, the matrix � in (3.3) is usually assumed to
be positive definite.

Under the model (3.2), we establish a nonlinear version of the Gauss–Markov
theorem for generalized least squares predictors (GLSPs) in a prediction problem,
a particular case of which gives a nonlinear version of the Gauss–Markov theorem
in estimation. More specifically, the organization of this chapter is as follows:

3.2 Generalized Least Squares Predictors

3.3 A Nonlinear Version of the Gauss–Markov Theorem in Prediction

3.4 A Nonlinear Version of the Gauss–Markov Theorem in Estimation

3.5 An Application to GLSEs with Iterated Residuals.

In Section 3.2, we first define a GLSP under the model (3.2) and then describe its
basic properties. Section 3.3 is devoted to establishing a nonlinear version of the
Gauss–Markov theorem in prediction, which states that the risk matrix of a GLSP
is bounded below by that of the Gauss–Markov predictor (GMP). The results are
applied to the estimation problem in Section 3.4, and a lower bound for the risk
matrices of the GLSEs is obtained. In Section 3.5, a further application to iterated
GLSEs is presented.

3.2 Generalized Least Squares Predictors

In this section, we define a GLSP and describe its fundamental properties.
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The Gauss–Markov theorem in prediction. To begin with, by transforming

ζ = ε and ζ0 = ��−1ε + ε0

in (3.2), the model is rewritten as(
y

y0

)
=

(
X

X0

)
β +

(
In 0

��−1 Im

)(
ε

ε0

)
(3.5)

with

E

((
ε

ε0

))
=

(
0
0

)
,

Cov

((
ε

ε0

))
= σ 2

(
� 0
0 �0 − ��−1�′

)
≡ �. (3.6)

Thus, we can discuss the model in terms of (ε′, ε′
0)

′. To state the distributional
assumption on the error term in a compact form, let P ≡ L(·) denote the distribu-
tion of · and let

Pn+m(µ, 	) = the set of distributions on Rn+m with mean µ

and covariance matrix 	. (3.7)

Thus, the assumption (3.6) on the vector (ε′, ε′
0)

′ is simply denoted by

P = L
((

ε

ε0

))
∈ Pn+m(0, �). (3.8)

With this preparation, let us first establish the Gauss–Markov theorem in pre-
diction in model (3.5). A predictor

ŷ0 = ŷ0(y) : Rn → Rm

of y0 is a vector-valued function defined on Rn, the space of the observable vec-
tor y, to Rm, the space of the predicted vector y0. A predictor ŷ0 is said to be
unbiased if

EP (ŷ0) = EP (y0) (= X0β), (3.9)

where the suffix P denotes the distribution under which the expectation is taken,
and is omitted when no confusion is caused. A predictor ŷ0 is called linear if it
takes the form

ŷ0 = Cy,

where C is an m × n nonrandom matrix. Further, a predictor is called linear unbi-
ased if it is linear and unbiased. As is easily seen, a linear predictor ŷ0 = Cy is
unbiased (i.e., ŷ0 is linear unbiased) if and only if the matrix C satisfies

CX = X0.
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See Problem 3.2.1. Thus, the class C0(X0) of linear unbiased predictor of y0 is
described as

C0(X0) = {ŷ0 = Cy | C is an m × n matrix such that CX = X0}. (3.10)

In this section, the efficiency of a GLSP ŷ0 of y0 is measured by the risk matrix
defined by

RP (ŷ0, y0) = EP [(ŷ0 − y0)(ŷ0 − y0)
′]. (3.11)

Goldberger (1962) extended the Gauss–Markov theorem to the case in prediction.

Theorem 3.1 (Gauss–Markov theorem in prediction) Suppose that the matrices
� and � are known. The predictor of the form

ỹ0(�, �) = X0b(�) + ��−1[y − Xb(�)] (3.12)

is the best linear unbiased predictor (BLUP) of y0 in the sense that

R(ỹ0(�, �), y0) ≤ R(ŷ0, y0) (3.13)

holds for any ŷ0 ∈ C0(X0). Here, the quantity b(�) in (3.12) is the Gauss–Markov
estimator (GME) of β:

b(�) = (X′�−1X)−1X′�−1y.

Proof. To see that ỹ0(�, �) is a linear unbiased predictor, rewrite it as

ỹ0(�, �) = C∗y (3.14)

with

C∗ = X0(X
′�−1X)−1X′�−1

+��−1[In − X(X′�−1X)−1X′�−1].

Then the matrix C∗ clearly satisfies C∗X = X0.
Next, to establish the inequality (3.13), fix ŷ0 = Cy ∈ C0(X0) arbitrarily, and

decompose it as

ŷ0 − y0 = [ỹ0(�, �) − y0] + [ŷ0 − ỹ0(�, �)]

= Y1 + Y2 (say). (3.15)

Then, the two terms in the right-hand side of (3.15) are written as

Y1 = ỹ0(�, �) − y0

= (X0 − ��−1X)(X′�−1X)−1X′�−1ε − ε0 (3.16)
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and

Y2 = ŷ0 − ỹ0(�, �)

= (C − ��−1)[In − X(X′�−1X)−1X′�−1]ε (3.17)

respectively. Let

Vij = E(YiY
′
j ) (i, j = 1, 2).

Then

R(ỹ0(�, �), y0) = V11

and

R(ŷ0, y0) = V11 + V12 + V21 + V22.

Here, it is shown by direct calculation that

V12 = 0 = V ′
21.

See Problem 3.2.2. Hence, we obtain

R(ŷ0, y0) = V11 + V22 ≥ V11 = R(ỹ0(�, �), y0).

Here, V11 and V22 are given by

V11 = σ 2[(X0 − ��−1X)(X′�−1X)−1(X0 − ��−1X)′

+(�0 − ��−1�′)] (3.18)

and

V22 = σ 2(C − ��−1)[� − X(X′�−1X)−1X′](C − ��−1)′, (3.19)

respectively. This completes the proof.

We call the predictor ỹ0(�, �) in (3.12) the Gauss–Markov predictor (GMP).
Note that the Gauss–Markov theorem in estimation established in Chapter

2 is a special case of this result. In fact, when the condition (3.4) holds, the
predictand y0 becomes β and the GMP ỹ0(�, �) in (3.12) reduces to the GME
b(�). Correspondingly, the class C0(X0) = C0(In) reduces to the class C0 of linear
unbiased estimators. Hence, for any β̂ ∈ C0,

R(β̂, β) ≡ E[(β̂ − β)(β̂ − β)′]

≥ E[(b(�) − β)(b(�) − β)′]

≡ R(b(�), β) = Cov(b(�))

= σ 2(X′�−1X)−1. (3.20)
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Generalized least squares predictors. Next let us consider GLSPs. When � and
� are unknown, a natural way of defining a predictor of y0 is to replace the
unknown � and � in the GMP ỹ0(�, �) by their estimators, �̂ and �̂. This leads
to the definition of a generalized least squares predictor or GLSP.

More specifically, a predictor of the form

ỹ0(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)] (3.21)

is called a GLSP if the estimators �̂ and �̂ are functions of the ordinary least
squares (OLS) residual vector:

e = Ny with N = In − X(X′X)−1X′, (3.22)

where b(�̂) in (3.21) is a GLSE of β:

b(�̂) = (X′�̂−1X)−1X′�̂−1y. (3.23)

A GLSP ỹ0(�̂, �̂) is clearly rewritten as

ỹ0(�̂, �̂) = C(e)y

by letting

C(e) = X0(X
′�̂−1X)−1X′�̂−1

+�̂�̂−1[In − X(X′�̂−1X)−1X′�̂−1]. (3.24)

The function C(e) satisfies C(e)X = X0. This property characterizes the class of
the GLSPs. More precisely,

Proposition 3.2 Let C1(X0) be the class of GLSPs (3.21). Then it is expressed as

C1(X0) = {ŷ0 = C(e)y | C(·) is an m × n matrix-valued measurable

function satisfying C(·)X = X0}. (3.25)

Proof. For any ŷ0 = C(e)y satisfying C(e)X = X0, choose �̂(e) and �̂(e)

such that

�̂(e)�̂(e)−1 = C(e). (3.26)

(A possible choice is �̂(e) = In and �̂(e) = C(e).) Then for such �̂ and �̂,
ỹ0(�̂, �̂) becomes

ỹ0(�̂, �̂) = X0(X
′�̂−1X)−1X′�̂−1y

+C(e)[In − X(X′�̂−1X)−1X′�̂−1]y

= C(e)y, (3.27)

since C(e)X = X0. This completes the proof.
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It readily follows from (3.10) and (3.25) that

C0(X0) ⊂ C1(X0),

that is, any linear unbiased predictor of y0 is a GLSP in our sense.
When � and � are functions of unknown parameter θ , say � = �(θ) and

� = �(θ), the GLSP of the form

ỹ0(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)] (3.28)

is usually used, where

�̂ = �(θ̂), �̂ = �(θ̂)

and θ̂ = θ̂ (e) is an estimator of θ based on the OLS residual vector e. Obviously,
such a GLSP also belongs to the class C1(X0).

Conditions for unbiasedness and finiteness of moments. The results stated in
Proposition 2.6 can be extended to the prediction problems as

Proposition 3.3 Let ŷ0 be a GLSP of the form ŷ0 = C(e)y satisfying C(e)X = X0.

(1) Suppose that L(ε) = L(−ε) and that C(e) is an even function of e, then the
predictor ŷ0 = C(e)y is unbiased as long as the expectation is finite.

(2) Suppose that the function C(e) is continuous and satisfies C(ae) = C(e) for
any a > 0, then the predictor ŷ0 = C(e)y has a finite second moment.

Proof. The proof is quite similar to that of Proposition 2.6 and omitted.

Since � and � are estimated, it is conjectured that the GLSP ỹ0(�̂, �̂) is less
efficient than the GMP ỹ0(�, �), that is, for any GLSP ỹ0(�̂, �̂) in C1(X0), the
risk matrix R(ỹ0(�̂, �̂), y0) is expected to be bounded below by that of the GMP
ỹ0(�, �):

R(ỹ0(�, �), y0) ≤ R(ỹ0(�̂, �̂), y0). (3.29)

The discussion in the next section concerns the inequality (3.29). We will establish
a nonlinear version of the Gauss–Markov theorem under a mild assumption on the
distribution of (ε′, ε′

0)
′. To do so, let B be the set of all predictors of β with finite

second moment under Pn+m(0, �), and redefine

C1(X0) = {ŷ0 = C(e)y ∈ B | C(·) is an m × n matrix-valued measurable

function satisfying C(·)X = X0}.

3.3 A Nonlinear Version of the Gauss–Markov
Theorem in Prediction

This section is devoted to establishing a nonlinear version of the Gauss–Markov
theorem in prediction. An application to an AR(1) error model is also given.
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Decomposition of a GLSP. To state the theorems, we first make a decomposition
of a GLSP in the model(

y

y0

)
=

(
X

X0

)
β +

(
In 0

��−1 Im

)(
ε

ε0

)

with

P ≡ L
((

ε

ε0

))
∈ Pn+m(0, �), (3.30)

where � is of the form

� = σ 2
(

� 0
0 �0 − ��−1�′

)
, (3.31)

and X : n × k is assumed to be of full rank.
Let Z be an n × (n − k) matrix satisfying

N = ZZ′ and Z′Z = In−k, (3.32)

where N = In − X(X′X)−1X′. The OLS residual vector e is clearly expressed as

e = ZZ′y = ZZ′ε. (3.33)

In the sequel, the following matrix identity is often used (see Problem 3.3.1):

In = X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′, (3.34)

where X(X′�−1X)−1X′�−1 is the projection matrix onto L(X) whose null space
is L(�Z). Here, L(·) denotes the linear subspace spanned by the column vectors
of matrix ·. By using the identity (3.34), the vector ε is decomposed as

ε = X(X′�−1X)−1X′�−1ε + �Z(Z′�Z)−1Z′ε

= XA−1u1 + �B−1u2, (3.35)

where

A = X′�−1X ∈ S(k), B = Z′�Z ∈ S(n − k) (3.36)

and

u1 = X′�−1ε : k × 1, u2 = Z′ε : (n − k) × 1. (3.37)

Since the distribution of (ε′, ε′
0)

′ is given by (3.30), and since


 u1

u2
ε0


 =


 X′�−1 0

Z′ 0
0 Im




(
ε

ε0

)
,
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the distribution of u1, u2 and ε0 is described as

L





 u1

u2
ε0





 ∈ Pn+m





 0

0
0


 , σ 2


 A 0 0

0 B 0
0 0 �0 − ��−1�′





 , (3.38)

and hence u1, u2 and ε0 are mutually uncorrelated. Note here that u1 and u2 are
in one-to-one correspondence with b(�) − β and e respectively, since

b(�) − β = A−1u1 (3.39)

and

e = Zu2, or equivalently u2 = Z′e. (3.40)

Lemma 3.4 A GLSP ŷ0 = C(e)y ∈ C1(X0) is decomposed as

ŷ0 − y0 = [
ỹ0(�, �) − y0

] + [
ŷ0 − ỹ0(�, �)

]
= {(X0 − ��−1X)A−1u1 − ε0}

+{[C(Zu2) − ��−1]�ZB−1u2}
≡ Y1 + Y2 (say). (3.41)

Here the two vectors Y1 and Y2 depend only on (u1, ε0) and u2 respectively. It is
essential for the analysis below that Y1 is a linear function of (u1, ε0).

A nonlinear version of the Gauss–Markov theorem in prediction. Now let us
establish a nonlinear version of the Gauss–Markov theorem in prediction. Let

Vij = E(YiY
′
j ) (i, j = 1, 2). (3.42)

Then, from Lemma 3.4, it is easy to see that

R(ŷ0, y0) = V11 + V12 + V21 + V22, (3.43)

where

V11 = E(Y1Y
′
1)

= E[(ỹ0(�, �) − y0)(ỹ0(�, �) − y0)
′] (3.44)

V22 = E(Y2Y
′
2)

= E[(ŷ0 − ỹ0(�, �))(ŷ0 − ỹ0(�, �))′] (3.45)

and

V12 = E(Y1Y
′
2)

= E[(ỹ0(�, �) − y0)(ŷ0 − ỹ0(�, �))′]

= V ′
21. (3.46)
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If V12 = 0, then it follows from (3.43) that

R(ŷ0, y0) = V11 + V22 ≥ V11 = R(ỹ0(�, �), y0). (3.47)

A sufficient condition for V12 = 0 is the following:

EP (u1|u2) = 0 and EP (ε0|u2) = 0 a.s. (3.48)

In fact, when the condition (3.48) holds, we have

V12 = E[E(Y1|u2) Y ′
2]

= E[(X0 − ��−1X)A−1 E(u1|u2) Y ′
2 − E(ε0|u2) Y ′

2]

= 0. (3.49)

Thus, by defining

Qn+m(0, �) = {P ∈ Pn+m(0, �) | (3.48) holds}, (3.50)

the following theorem holds, which was originally established by Kariya and Toy-
ooka (1985) and Eaton (1985).

Theorem 3.5 Suppose that L
(
(ε′, ε′

0)
′) ∈ Qn+m(0, �). Then, for any GLSP ŷ0 ∈

C1(X0), its conditional risk matrix is decomposed into two parts:

R(ŷ0, y0|u2) = R(ỹ0(�, �), y0)

+(ŷ0 − ỹ0(�, �))(ŷ0 − ỹ0(�, �))′, (3.51)

where

R(ŷ0, y0|u2) = E[(ŷ0 − y0)(ŷ0 − y0)
′|u2]. (3.52)

Noting that the second term of (3.51) is nonnegative definite, we obtain a nonlinear
version of the Gauss–Markov theorem in prediction.

Corollary 3.6 For any ŷ0 ∈ C1(X0), the conditional risk matrix is bounded below
by the risk (covariance) matrix of the GMP:

R(ỹ0(�, �), y0) ≤ R(ŷ0, y0|u2), (3.53)

and thus unconditionally

R(ỹ0(�, �), y0) ≤ R(ŷ0, y0). (3.54)

The class Qn+m(0, �) is a broad one and contains several interesting classes of
distributions. A typical example is a class of elliptically symmetric distributions,
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which has been introduced in Section 1.3 of Chapter 1 and includes the normal
distribution. To see this, suppose

L
((

ε

ε0

))
∈ En+m(0, �).

Then we have from Proposition 1.17 of Chapter 1 that

L





 u1

u2
ε0





 ∈ En+m





 0

0
0


 , σ 2


 A 0 0

0 B 0
0 0 �0 − ��−1�′





 , (3.55)

since (u′
1, u′

2, ε′
0)

′ is given by a linear transformation of (ε′, ε′
0)

′. Hence, from
Proposition 1.19, the condition (3.48) holds, or equivalently,

En+m(0, �) ⊂ Qn+m(0, �). (3.56)

Thus, Theorem 3.5 and its corollary are valid under the class En+m(0, �).

Further decomposition of a GLSP under elliptical symmetry. The quantity

Y1 = ỹ0(�, �) − y0

= (X0 − ��−1X)A−1u1 − ε0

can be decomposed into u1-part and ε0-part. This suggests a further decomposition.
Decompose Y1 as

Y1 = Y11 + Y12

with

Y11 = (X0 − ��−1X)A−1u1, (3.57)

Y12 = −ε0. (3.58)

Here, of course, the following equalities hold:

R11 ≡ E(Y11Y
′
11)

= σ 2(X0 − ��−1X)A−1(X0 − ��−1X)′, (3.59)

and

R12 ≡ E(Y12Y
′
12)

= σ 2(�0 − ��−1�′). (3.60)

Note here that under the condition L
(
(ε′, ε′

0)
′) ∈ En+m(0, �), it holds that

E(u1ε
′
0|u2) = 0 a.s. (3.61)
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in addition to (3.48). In fact, by Proposition 1.19,

L
((

u1
ε0

) ∣∣∣u2

)
∈ Ek+m

((
0
0

)
, σ 2

(
A 0
0 �0 − ��−1�′

))
,

where L(a|b) denotes the conditional distribution of a given b. From this, Theorem
3.5 can be refined as

Theorem 3.7 Suppose that L
(
(ε′, ε′

0)
′) ∈ En+m(0, �). Then, for any ŷ0 ∈ C1(X0),

its conditional risk matrix, given u2, is decomposed into three parts:

R(ŷ0, y0|u2) = R11 + R12 + (ŷ0 − ỹ0(�, �))(ŷ0 − ỹ0(�, �))′. (3.62)

Consequently, by this theorem, the unconditional risk matrix of ŷ0 is decom-
posed as

R(ŷ0, y0) = R11 + R12 + R2 (3.63)

with

R2 = E(Y2Y
′
2) = R(ŷ0, ỹ0(�, �)).

Implications of Theorem 3.7. Let us consider the implications of this risk decom-
position.

The first term R11 in (3.63) is the expected loss of the prediction efficiency
associated with estimating β by the GME b(�). In fact,

Y11 = {X0b(�) + ��−1[y − Xb(�)]} − {X0β + ��−1[y − Xβ]}.

However, from (3.59), the closer X0 − ��−1X is to zero, the smaller the first
term is. Here, the matrix ��−1 is interpreted as a regression coefficient of the
model in which X0 is regressed on X. If X0 − ��−1X = 0, then the risk matrix is
zero and the u1-part of (3.57) vanishes. On the other hand, in the model with � = 0
(or equivalently, ��−1 = 0), the first term attains its maximum as a function of
�. In other words, when y and y0 are uncorrelated, no reduction of risk is obtained
from the R11-part. Consequently,

0 ≤ R11 ≤ σ 2X0A
−1X′

0. (3.64)

Models with � = 0 include a heteroscedastic model and an SUR model (see
Chapter 2). We will treat a serial correlation model as an example of the model
with � 	= 0.

The second term R12 of (3.63) depends on the correlation between ζ and ζ0.
The vector Y12 in question is expressed as

Y12 = {X0β + ��−1[y − Xβ]} − y0 = −(ζ − ��−1ζ0).
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The third term R2 of (3.63) is of the most importance, since it reflects the loss
of the prediction efficiency caused by estimating unknown � and �:

Y2 = ỹ0(�̂, �̂) − ỹ0(�, �).

The evaluation of this quantity will be treated in the subsequent chapters in esti-
mation setup where it is supposed that � = 0.

Example 3.1 (AR(1) error model) An example of the model in which � 	= 0
holds is a linear regression model with AR(1) error. This model is obtained by
letting

ζ = (ζ1, . . . , ζn)
′ and ζ0 = (ζn+1, . . . , ζn+m)′

in the model (3.2), and assuming that ζj ’s are generated by

ζj = θζj−1 + ξj with |θ | < 1.

Here, ξj ’s are uncorrelated with mean 0 and variance σ 2. Then the matrix � ∈
S(n + m) in (3.3) is expressed as

� = �(σ 2, θ) = σ 2

1 − θ2
(θ |i−j |) : (n + m) × (n + m) (3.65)

(see Example 2.1).
For simplicity, let us consider the case of a one-period-ahead prediction, that

is, m = 1. In this case,

� = σ 2
(

� �′
� �0

)
,

where

� = �(θ) = 1

1 − θ2
(θ |i−j |) ∈ S(n),

� = �(θ) = 1

1 − θ2
(θn, . . . , θ) : 1 × n and (3.66)

�0 = 1

1 − θ2
> 0

hold. Hence, we have

��−1 = 1

1 − θ2
(θn, . . . , θ)




1 −θ 0
−θ 1 + θ2 −θ

. . .
. . .

. . .

. . .
. . .

. . .

. . . 1 + θ2 −θ

0 −θ 1




= (0, . . . , 0, θ) : 1 × n.
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Let X0 = x′
0 : 1 × k and x′

j : 1 × k be the j th row vector of X. Then the matrices
R11 and R12 are expressed as

R11 = σ 2(x0 − θxn)
′A−1(x0 − θxn)

and

R12 = σ 2.

To define a GLSP, suppose that P (e = 0) = 0 and L
(
(ε′, ε0)

′) ∈ Qn+1(0, �)

(see (3.51)). A typical estimator of θ is

θ̂ = θ̂ (e) =
∑n

j=2 ej ej−1∑n
j=1 e2

j

. (3.67)

Since θ̂ satisfies θ̂ (ae) = θ̂ (e) for any a > 0, the GLSP

ỹ0(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)]

( = x′
0b(�̂) + θ̂[yn − x′

nb(�̂)])

= C(e)y (3.68)

satisfies C(ae) = C(e) for any a > 0, and hence it belongs to C1(X0), where
�̂ = �(θ̂), �̂ = �(θ̂) and

C(e) = X0(X
′�̂−1X)−1X′�̂−1 + �̂�̂−1[In − X(X′�̂−1X)−1X′�̂−1].

Thus, by Corollary 3.6, we obtain

R(ỹ0(�̂, �̂), y0) ≥ R(ỹ0(�, �), y0). (3.69)

Furthermore, the GLSP is unbiased as long as L(ε) = L(−ε), since θ̂ is an even
function of e.

For applications to other linear models, see, for example, Harville and Jeske
(1992) in which a mixed-effects linear model is considered. See also the references
given there.

An identity between two estimators in a missing data problem. Next, we con-
sider the problem of estimating β when the vector y0 is missing in the model (3.2),
where � ∈ S(n + m) is assumed. While a GLSE

b(�̂) = (X′�̂−1X)−1X′�̂−1y (3.70)

is a natural estimator of β in this setup, it is often suggested to use the following
two-stage estimator of β. First, by estimating the missing observation y0 by the
GLSP:

ỹ0(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)], (3.71)



NONLINEAR VERSIONS OF THE GAUSS–MARKOV THEOREM 81

then substituting ỹ0(�̂, �̂) into the model (3.2), and thirdly forming a “ GLSE ”
from the estimated model with y0 replaced by ỹ0(�̂, �̂):

β̂(�̂) = (XXX′�̂−1XXX)−1XXX′�̂−1yyy, (3.72)

with

�̂ =
(

�̂ �̂′

�̂ �̂0

)
, yyy =

(
y

ỹ0(�̂, �̂)

)
and XXX =

(
X

X0

)
. (3.73)

The following theorem due to Kariya (1988) states that the two-stage estimator
β̂(�̂) thus defined makes no change on the one-stage estimator b(�̂), implying
that no efficiency is obtained from the two-stage procedure. More specifically,

Theorem 3.8 The equality β̂(�̂) = b(�̂) holds for any y ∈ Rn.

Proof. From the definition of the (n + m) × 1 vector yyy in (3.73), the estimator
β̂(�̂) is rewritten as

β̂(�̂) = (XXX′�̂−1XXX)−1XXX′�̂−1
(

In

H

)
y, (3.74)

where

H = X0(X
′�̂−1X)−1X′�̂−1

+�̂�̂−1(In − X(X′�̂−1X)−1X′�̂−1). (3.75)

Replacing In in (3.74) and (3.75) by the right-hand side of the following matrix
identity

In = X(X′�̂−1X)−1X′�̂−1 + �̂Z(Z′�̂Z)−1Z′ (3.76)

yields
(

In

H

)
=

(
X(X′�̂−1X)−1X′�̂−1 + �̂Z(Z′�̂Z)−1Z′

X0(X
′�̂−1X)−1X′�̂−1 + �̂Z(Z′�̂Z)−1Z′

)

= X(X′�̂−1X)−1X′�̂−1 +
(

�̂

�̂

)
Z(Z′�̂Z)−1Z′. (3.77)

Now, substituting this into (3.74), we obtain

β̂(�̂) = b(�̂) + (X′�̂−1X)−1X′�̂−1
(

�̂

�̂

)
Z(Z′�̂Z)−1Z′. (3.78)

Here using

(
�̂

�̂

)
= �̂

(
In

0

)
and X′Z = 0, the second term of the above equality

vanishes. This completes the proof.
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3.4 A Nonlinear Version of the Gauss–Markov
Theorem in Estimation

In this section, the results obtained in the previous sections are applied to the
estimation problem of β, which leads to a nonlinear version of the Gauss–Markov
theorem. Some relevant topics, including a characterization of elliptical symmetry,
are also discussed.

Main theorem with examples. To begin with, we reproduce the general linear
regression model considered in this section:

y = Xβ + ε with L(ε) ∈ Pn(0, σ 2�), (3.79)

where y is an n × 1 vector, X is an n × k known matrix of full rank, and Pn(0, σ 2�)

denotes the class of distributions on Rn with mean 0 and covariance matrix σ 2� as
in (3.7). This model is obtained by letting

m = k, X0 = Ik, � = 0 and �0 = 0 (3.80)

in the model (3.2). The class C0(X0) = C0(Ik) of linear unbiased predictors of y0
considered in the previous section clearly reduces to the class C0 of linear unbiased
estimators of β in the model (3.79), where

C0 = {β̂ = Cy | C is a k × n matrix such that CX = Ik}. (3.81)

Similarly, the class C1(X0) = C1(Ik) of GLSPs becomes the class C1 of GLSEs,
where

C1 = {β̂ = C(e)y ∈ B | C(·) is a k × n matrix-valued measurable

function satisfying C(·)X = Ik}. (3.82)

Here, B is the set of all estimators of β with a finite second moment under
Pn(0, σ 2�), and e is the OLS residual vector given by

e = Ny with N = In − X(X′X)−1X′. (3.83)

A GLSE β̂ = C(e)y ∈ C1 can be decomposed as

β̂ − β = [b(�) − β] + [β̂ − b(�)]

= (X′�−1X)−1u1 + C(e)�Z(Z′�Z)−1u2, (3.84)

where

b(�) = (X′�−1X)−1X′�−1y
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is the GME of β and

u1 = X′�−1ε : k × 1, u2 = Z′ε : (n − k) × 1.

The two terms in (3.84) are uncorrelated under the assumption that

L(ε) ∈ Qn(0, σ 2�), (3.85)

where

Qn(0, σ 2�) = {P ∈ Pn(0, σ 2�)|EP (u1|u2) = 0 a.s.}, (3.86)

the class of distributions in Pn(0, σ 2�) with conditional mean of u1 given u2
being zero. In fact, by using e = Zu2,

E[(X′�−1X)−1u1u
′
2(Z

′�Z)−1Z′�C(e)′]

= E[(X′�−1X)−1u1u
′
2(Z

′�Z)−1Z′�C(Zu2)
′]

= E[(X′�−1X)−1 E(u1|u2) u′
2(Z

′�Z)−1Z′�C(Zu2)
′]

= 0.

Thus, the following theorem obtains

Theorem 3.9 Suppose that L(ε) ∈ Qn(0, σ 2�). Then, for any GLSE β̂ = C(e)y ∈
C1, the conditional risk matrix is decomposed into two parts:

R(β̂, β|u2) = R(b(�), β) +
(
β̂ − b(�)

) (
β̂ − b(�)

)′

= σ 2(X′�−1X)−1

+C(Zu2)�Z(Z′�Z)−1u2u
′
2(Z

′�Z)−1Z′C(Zu2)
′. (3.87)

Consequently, the risk matrix of a GLSE in C1 is bounded below by that of the GME,
that is,

R(β̂, β) ≥ R(b(�), β) = Cov(b(�)) = σ 2(X′�−1X)−1. (3.88)

This result is due to Kariya (1985a), Kariya and Toyooka (1985) and Eaton
(1985). This theorem demonstrates one direction of extension of the original (linear)
Gauss–Markov theorem by enlarging the class of estimators to C1 from C0 on which
the original Gauss–Markov theorem is based. A further extension of this theorem
will be given in Chapter 7. On the other hand, some other extension from different
standpoints may be possible. For example, one may adopt concentration probability
as a criterion for comparison of estimators. This problem has been investigated by,
for example, Hwang (1985), Kuritsyn (1986), Andrews and Phillips (1987), Eaton
(1986, 1988), Berk and Hwang (1989), Ali and Ponnapalli (1990) and Jensen
(1996), some of which will be reviewed in Section 8.2 of Chapter 8.



84 NONLINEAR VERSIONS OF THE GAUSS–MARKOV THEOREM

As applications of Theorem 3.9, we present two examples.

Example 3.2 (Heteroscedastic model) Suppose that the model (3.79) is of the
heteroscedastic structure with p distinct variances, that is,

y =




y1
...

yp


 : n × 1, X =




X1
...

Xp


 : n × k,

ε =




ε1
...

εp


 : n × 1, (3.89)

�(θ) =




θ1In1 0
. . .

0 θpInp


 ∈ S(n) (3.90)

and

θ = (θ1, . . . , θp)′ : p × 1, (3.91)

where yj : nj × 1, Xj : nj × k, εj : nj × 1 and n = ∑p

j=1 nj (see Example 2.3).
In this model, the GME is given by

b(�) = (X′�−1X)−1X′�−1y with � = �(θ), (3.92)

which is not feasible in the case in which θ is unknown.
Theorem 3.9 guarantees that when L(ε) ∈ Qn(0, �(θ)), any GLSE β̂ = C(e)y

∈ C1 satisfies

R(β̂, β) ≥ R(b(�), β) = Cov(b(�)) = (X′�−1X)−1, (3.93)

where e = [In − X(X′X)−1X′]y. Typical examples are the GLSEs of the form

b(�̂) = C(e)y (3.94)

with

C(e) = (X′�̂−1X)−1X′�̂−1 and �̂ = �(θ̂(e)),

where θ̂ (e) = (θ̂1(e), . . . , θ̂p(e))′ : p × 1 is an estimator of θ such that �(θ̂(e)) ∈
S(n) a.s. and

θ̂j (ae) = a2θ̂j (e) for any a > 0 (j = 1, . . . , p). (3.95)

Such GLSEs clearly include the restricted GLSE and the unrestricted GLSE dis-
cussed in Example 2.6.
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Example 3.3 (SUR model) Let us consider the p-equation SUR model

y =




y1
...

yp


 : n × 1, X =




X1 0
. . .

0 Xp


 : n × k,

β =




β1
...

βp


 : k × 1, ε =




ε1
...

εp


 : n × 1 (3.96)

with covariance structure

� = � ⊗ Im and � = (σij ) ∈ S(p), (3.97)

where

yj : m × 1, Xj : m × kj , εj : m × 1, n = pm and k =
p∑

j=1

kj .

The GME for this model is given by

b(� ⊗ Im) = (X′(�−1 ⊗ Im)X)−1X′(�−1 ⊗ Im)y. (3.98)

As an application of Theorem 3.9, we see that the risk matrix of a GLSE β̂ =
C(e)y ∈ C1 is bounded below by the covariance matrix of the GME b(� ⊗ Im):

R(β̂, β) ≥ R(b(� ⊗ Im), β)

= Cov(b(� ⊗ Im))

= (X′(�−1 ⊗ Im)X)−1, (3.99)

where e is the OLS residual vector. Typical examples are the GLSEs of the form

b(�̂ ⊗ Im) = C(e)y (3.100)

with

C(e) = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1 ⊗ Im),

where �̂ = �̂(e) is an estimator of � satisfying �̂(e) ∈ S(p) a.s. and

�̂(ae) = a2�̂(e) for any a > 0. (3.101)

Such GLSEs include the restricted Zellner estimator (RZE) and the unrestricted
Zellner estimator (UZE). See Example 2.7.
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A characterization of elliptical symmetry. Next, we return to the general model
(3.79) and discuss the condition

E(u1|u2) = 0 a.s., (3.102)

which defines the class Qn(0, σ 2�). While the class Qn(0, σ 2�) is much larger
than the class En(0, σ 2�) of elliptically symmetric distributions, it depends on the
regressor matrix X through u1 and u2. The fact that the class Qn(0, σ 2�) depends
on X is not consistent with our setting in which X is known (and hence X is
independent of the error term ε).

This leads to the problem of characterizing the class of distributions that satisfy
the following condition:

E(u1|u2) = 0 a.s. holds for any X : n × k of full rank. (3.103)

Interestingly, the class of distributions satisfying (3.103) is shown to be a class of
elliptically symmetric distributions. This fact follows from Eaton’s (1986) theorem
in which a characterization of spherically symmetric distribution is given. To state
his theorem, it is convenient to enlarge the classes Pn(0, σ 2�), Qn(0, σ 2�) and
En(0, σ 2�) to

P̃n(0, �) =
⋃

σ 2>0

Pn(0, σ 2�),

Q̃n(0, �) =
⋃

σ 2>0

Qn(0, σ 2�),

Ẽn(0, �) =
⋃

σ 2>0

En(0, σ 2�) (3.104)

respectively, and rewrite the condition (3.102) as

E(P�ε|Q�ε) = 0 a.s., (3.105)

where

P� = X(X′�−1X)−1X′�−1

and

Q� = In − P� = �Z(Z′�Z)−1Z′.

Here, P� is the projection matrix onto L(X) whose null space is L(�Z). Equiv-
alence between the conditions (3.102) and (3.105) follows since u2 and Q�ε are
in one-to-one correspondence.

For notational simplicity, let us further rewrite the condition (3.105) in terms of

ε̃ = �−1/2ε. (3.106)
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This clearly satisfies

L(ε̃) ∈ En(0, σ 2In) ⊂ Ẽn(0, In). (3.107)

The condition (3.105) is equivalent to

E(M�ε̃|N�ε̃) = 0 a.s., (3.108)

where the matrix

M� = �−1/2P��1/2 = �−1/2X(X′�−1X)−1X′�−1/2

is the orthogonal projection matrix onto L(�−1/2X), and

N� = In − M�.

Equivalence between (3.105) and (3.108) is shown by the one-to-one correspon-
dence between Q�ε and N�ε̃.

Eaton’s characterization theorem is given below.

Theorem 3.10 Suppose that an n-dimensional random vector v has a mean vector.
Then it satisfies

L(�v) = L(v) f or any � ∈ O(n), (3.109)

if and only if

E(x′v|z′v) = 0 a.s. (3.110)

for any x, z ∈ Rn − {0} such that x′z = 0.

Proof. Suppose that v satisfies (3.109). For each x, z ∈ Rn − {0} such that
x′z = 0, there exists an n × n orthogonal matrix �̃ of the form

�̃ =

 γ ′

1
γ ′

2
�′

3




with

γ1 = x/‖x‖, γ2 = z/‖z‖ and �3 : n × (n − 2).

Let

ṽ = �̃v =

 γ ′

1v

γ ′
2v

�′
3v


 ≡


 ṽ1

ṽ2
ṽ3


 .

Then it holds that

L(v) = L(ṽ).
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Hence, by Proposition 1.17, the marginal distribution of a subvector (ṽ1, ṽ2)
′ : 2 ×

1 of ṽ is also spherically symmetric. Therefore, by Proposition 1.19, it holds that
the conditional distribution of ṽ1 given ṽ2 is also spherically symmetric. From this,

E(ṽ1|ṽ2) = 0 a.s.

is obtained. The above equality is equivalent to (3.110), since correspondence
between ṽ2 and z′v is one-to-one.

Conversely, suppose that (3.110) holds. Let ξ(t) be the characteristic function
of v:

ξ(t) = E[exp(it ′v)] (t = (t1, . . . , tn)
′ ∈ Rn).

It is sufficient to show that

ξ(t) = ξ(�t) for any � ∈ O(n). (3.111)

By using (3.110), observe that for any x, z ∈ Rn − {0} such that x′z = 0,

x′E[v exp(iz′v)] = E[x′v exp(iz′v)]

= E[E(x′v|z′v) exp(iz′v)]

= 0.

This can be restated in terms of ξ(t) as

x′∇ξ(z) = 0. (3.112)

Here,

∇ξ(t) ≡
(

∂

∂t1
ξ(t), . . . ,

∂

∂tn
ξ(t)

)′
: n × 1

denotes the gradient of ξ(t), which is rewritten by

∇ξ(t) = iE[v exp(it ′v)].

Fix t ∈ Rn and � ∈ O(n). Then the vector �t lies in the sphere

U(n; ‖t‖) = {u ∈ Rn | ‖u‖ = ‖t‖}.
Hence, there exists a differentiable function

c : (0, 1) → U(u; ‖t‖)

such that c(α1) = t and c(α2) = �t for some α1, α2 ∈ (0, 1). Since c(α)′c(α) =
‖t‖2 for any α ∈ (0, 1), differentiating both sides with respect to α yields

ċ(α)′c(α) = 0 for any α ∈ (0, 1),
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where ċ(α) = d
dα

c(α) : n × 1. Hence, by letting x = ċ(α) and z = c(α) in (3.112),
we have

ċ(α)′ ∇ξ(c(α)) = 0 for any α ∈ (0, 1). (3.113)

The left-hand side of this equality is equal to d
dα

ξ(C(α)). Thus, ξ(c(α)) is constant
as a function of α on (0, 1). Hence,

ξ(�t) = ξ(C(α2)) = ξ(C(α1)) = ξ(t).

This completes the proof.

The above theorem is an extension of Cambanis, Huang and Simons (1981).
Some related results are found in Fang, Kotz and Ng (1990). Let us apply this
theorem to our setting.

Theorem 3.11 Fix � ∈ S(n) and suppose that ε satisfies L(ε) ∈ P̃n(0, �). Then
the condition (3.103) holds if and only if L(ε) ∈ Ẽn(0, �).

Proof. The condition (3.103) is equivalent to

E(M�ε̃|N�ε̃) = 0 (3.114)

for any X : n × k such that rankX = k. Here, the matrices M� and N� are viewed
as functions of X. Let M be the set of all n × n orthogonal projection matrices
of rank k:

M = {M : n × n | M = M ′ = M2, rankM = k}. (3.115)

Then the matrix M� clearly belongs to the set M. Moreover, the set M is shown
to be equivalent to

M = {�−1/2X(X′�−1X)−1X′�−1/2 | X : n × k, rankX = k}. (3.116)

Therefore, we can see that the condition (3.114) is equivalent to

E(Mε̃|Nε̃) = 0 a.s. for any M ∈ M, (3.117)

where N = In − M . It is clear that this condition holds if L(ε̃) ∈ Ẽn(0, In), or
equivalently L(ε) ∈ Ẽn(0, �). Thus the “if” part of the theorem is proved.

Next, we establish the “only if” part. Since for any x, z ∈ Rn − {0} such that
x′z = 0 there exists an orthogonal projection matrix M ∈ M satisfying Mx = x

and Nz = z,

E(x′ε̃|z′ε̃) = E(x′Mε̃|z′Mε̃)

= E[x′E(Mε̃|Nε̃)|z′Nε̃]

= 0, (3.118)

where the second equality follows since z′Nε̃ is a function of Nε̃. Thus, from
Theorem 3.10, we obtain L(ε̃) ∈ Ẽn(0, In), which is equivalent to L(ε) ∈ Ẽn(0, �).
This completes the proof.
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In addition to the papers introduced above, Berk (1986) and Bischoff, Cremers
and Fieger (1991) are important. Berk (1986) obtained a characterization of normal-
ity assumption in the spherically symmetric distributions. Bischoff, Cremers and
Fieger (1991) also discussed this problem and clarified the relation between an opti-
mality of the ordinary least squares estimator (OLSE) and normality assumption.
See also Bischoff (2000).

3.5 An Application to GLSEs with Iterated Residuals

In some models, one may use iterated residuals in forming a GLSE. Typical
examples are the iterated versions of the Cochrane–Orcutt estimator and the Prais–
Winsten estimator in an AR(1) error model (see e.g., Judge et al., 1985). The
MLE for this model is also obtained from the iterated procedure (see Beach and
MacKinnon, 1978). In this section, we derive the lower bound for the risk matrices
of such iterated estimators by applying Theorem 3.9. The main results are due to
Toyooka (1987). Furthermore, as a similar result to Theorem 3.8, we also discuss
the case in which the use of iterated residuals makes no change on the one with
no iteration.

GLSE with iterated residuals. Let us consider the model

y = Xβ + ε with L(ε) ∈ Pn(0, σ 2�), (3.119)

where y is an n × 1 vector and X is an n × k known matrix of full rank. Suppose
that the matrix � is given by a function of an unknown vector θ :

� = �(θ), (3.120)

where its functional form is supposed to be known.
To define a GLSE with iterated residuals, or simply, an iterated GLSE, let

e[1] = y − Xb(In) = Ny with N = In − X(X′X)−1X′ (3.121)

be the first-step OLS residual vector. A first-step GLSE is defined as

β̂[1] = b(�̂[1]) = (X′�̂−1
[1] X)−1X′�̂−1

[1] y (3.122)

with

�̂[1] = �(θ̂(e[1])),

where θ̂ = θ̂ (e[1]) is an estimator of θ . The first-step GLSE is nothing but the
usual GLSE (without iteration) that we have considered so far. Next, we define the
second-step residual vector as

e[2] = y − Xβ̂[1] = [In − X(X′�̂−1
[1] X)−1X′�̂−1

[1] ]y (3.123)
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and construct the second-step estimator of θ by θ̂ (e[2]). Here we note that the
functional form of θ̂ is fixed throughout the iteration procedure. This leads to the
second-step iterated GLSE

β̂[2] = b(�̂[2]) = (X′�̂−1
[2] X)−1X′�̂−1

[2] y (3.124)

with

�̂[2] = �(θ̂(e[2])).

Similarly, we can formulate the ith step iterated GLSE as

β̂[i] = b(�̂[i]) = (X′�̂−1
[i] X)−1X′�̂−1

[i] y (3.125)

with

�̂[i] = �(θ̂(e[i])),

where

e[i] = y − Xβ̂[i−1] = [In − X(X′�̂−1
[i−1]X)−1X′�̂−1

[i−1]]y (3.126)

is the ith step residual vector.
Here let us confirm that what we called the “iterated GLSE” above is in fact a

GLSE in our sense, or equivalently, that is, we must prove that the iterated GLSE
β̂[i] is rewritten as

β̂[i] = Ci(e)y

for some function Ci(e) such that Ci(e)X = Ik , where e = e[1]. To do so, it is
sufficient to show that the ith step residual vector e[i] depends only on the first-step
residual vector e[1]. Let

Q[i] = �̂[i]Z(Z′�̂[i]Z)−1Z′ (i ≥ 1) and Q[0] = N, (3.127)

where Z is an n × (n − k) matrix satisfying

N = ZZ′ and Z′Z = In−k.

Then, from the matrix identify

In − X(X′�̂−1X)−1X′�̂−1 = �̂Z(Z′�̂Z)−1Z′,

we can see that for i ≥ 1,

e[i] = �̂[i−1]Z(Z′�̂[i−1]Z)−1Z′y

= �̂[i−1]Z(Z′�̂[i−1]Z)−1Z′ZZ′y

= �̂[i−1]Z(Z′�̂[i−1]Z)−1Z′e[1]

= Q[i−1]e[1], (3.128)
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where the second equality follows from Z′Z = In−k and the third from e[1] = Z′y.
This equality shows that e[i] depends only on e[1]. In fact, the matrix Q[i−1] in
(3.128) is a function of e[i−1]. Substituting i = 2 into (3.128) shows that e[2]
depends only on e[1]. And successive substitution yields that the ith step residual
vector e[i] is a function of e[1].

Thus, we have the following result due to Toyooka (1987).

Proposition 3.12 The ith step iterated GLSE β̂[i] in (3.125) can be rewritten as
β̂[i] = Ci(e[1])y for some function Ci such that Ci(e[1])X = Ik.

Hence, all the results that have been proved for class C1 are applicable. For
example, if an iterated GLSE β̂ = C(e[1])y satisfies

C(ae[1]) = C(e[1]) for any a > 0, (3.129)

and if the function C is continuous, then the iterated GLSE has a finite second
moment. If L(ε) = L(−ε) and the GLSE satisfies

C(e[1]) = C(−e[1]), (3.130)

then it is unbiased as long as the first moment is finite.
Applying Theorem 3.9 with

u1 = X′�−1ε : k × 1 and u2 = Z′ε : (n − k) × 1

to the above situation yields

Theorem 3.13 Suppose that L(ε) ∈ Qn(0, σ 2�). Then the conditional risk matrix
of the ith step iterated GLSE β̂[i] = Ci(e[1])y is decomposed into two parts:

R(β̂[i], β|u2) = R(b(�), β) + (β̂[i] − b(�))(β̂[i] − b(�))′ (3.131)

= σ 2(X′�−1X)−1

+Ci(Zu2)�Z(Z′�Z)−1u2u
′
2(Z

′�Z)−1Z′�Ci(Zu2)
′,

where b(�) = (X′�−1X)−1X′�−1y is the GME of β. Thus, the risk matrix is
bounded below by that of the GME:

R(β̂[i], β) ≥ R(b(�), β) = Cov(b(�))

= σ 2(X′�−1X)−1. (3.132)

The MLE derived under normal distribution is given as a solution of the esti-
mating equations, and it is usually approximated by an iterated GLSE because it
is regarded as the limit of iteration.
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An identity between iterated GLSEs. It is not trivial whether an iterated GLSE
is superior to a GLSE with no iteration. In fact, in an AR(1) error model, Magee,
Ullah and Srivastava (1987), Magee (1985), Kobayashi (1985) and Toyooka (1987)
obtained asymptotic expansions of the risk matrices of a typical GLSE and its
iterated version, and pointed out that there is no difference in asymptotic efficiency
among them up to the second order. In an SUR model, Srivastava and Giles (1987)
reported that higher steps iterated GLSEs are generally inferior to the first or second
step GLSE. In this section, we discuss the case in which the iterated GLSE makes
no change on the one with no iteration. For notational simplicity, we write the first
step residual e[1] as e without suffix.

Proposition 3.14 If an estimator θ̂ = θ̂ (e) satisfies the following invariance prop-
erty

θ̂ (e + Xg) = θ̂ (e) f or any g ∈ Rk, (3.133)

then, for any iterated residuals e[i] (i ≥ 2), the following identity holds:

θ̂ (e[i]) = θ̂ (e). (3.134)

Thus, for any i ≥ 2, the ith step iterated GLSE is the same as the one with no
iteration.

Proof. For any i ≥ 2, there exists a function vi(e) satisfying

e[i] = e + Xvi(e), (3.135)

because from (3.128), we obtain

Z′e[i] = Z′e. (3.136)

Hence, we have θ̂ (e[i]) = θ̂ (e + Xvi(e)) = θ̂ (e). This completes the proof.

Examples of the estimator θ̂ satisfying (3.133) are the unrestricted GLSE in a
heteroscedastic model and the UZE in an SUR model.

Example 3.4 (Heteroscedastic model) In the heteroscedastic model in Exam-
ple 3.2, decompose the OLS residual vector e as

e = y − Xb(In) = (e′
1, . . . , e′

p)′ with ej : nj × 1. (3.137)

Then, for any g ∈ Rk , the vector e + Xg is written as

e + Xg =




e1 + X1g
...

ep + Xpg


 . (3.138)
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The unrestricted GLSE is a GLSE b(�(θ̂)) with

θ̂ = θ̂ (e) =




θ̂1
...

θ̂p


 : p × 1,

where

θ̂j = θ̂j (e) = e′
jNjej /(nj − rj ), (3.139)

rj = rankXj ,

Nj = Inj
− Xj(X

′
jXj )

+X′
j .

Since NjXj = 0 holds for j = 1, . . . , p, we obtain from (3.138) that

θ̂j (e + Xg) = (ej + Xjg)′Nj(ej + Xjg)/(nj − rj )

= e′
jNjej /(nj − rj )

= θ̂j (e), (3.140)

and hence θ̂ (e + Xg) = θ̂ (e) for any g ∈ Rk . Thus, from Proposition 3.14, the
iterated versions of the unrestricted GLSE are the same as the one with no iteration.

Example 3.5 (SUR model) In the p-equation SUR model in Example 3.3, the
OLS residual vector is given by

e = y − Xb(Ip ⊗ Im) = (e′
1, . . . , e′

p)′ with ej : m × 1. (3.141)

For any g = (g′
1, . . . , g′

p)′ ∈ Rk with gj : kj × 1, the vector e + Xg is written as

e + Xg =




e1 + X1g1
...

ep + Xpgp


 . (3.142)

The UZE is a GLSE b(�̂ ⊗ Im) with

�̂ = S(e) = (e′
iN∗ej ), (3.143)

where N∗ = Im − X∗(X′∗X∗)+X′∗ and X∗ = (X1, . . . , Xp) : m × k. Since N∗Xj =
0 holds for j = 1, . . . , p, we have from (3.142) that

S(e + Xg) = ((ei + Xigi)
′N∗(ej + Xjgj )) = (e′

iN∗ej ) = S(e). (3.144)

Hence, from Proposition 3.14, the iterated versions of the UZE are the same as the
one with no iteration.
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3.6 Problems

3.1.1 Verify that � in (3.3) is equal to

(
In 0

��−1 Im

)
�

(
In 0

��−1 Im

)′

with � in (3.6).

3.2.1 Show that the unbiasedness of a linear predictor ŷ0 = Cy is equivalent to
CX = X0.

3.2.2 Complete the proof of Theorem 3.1 by showing (3.16), (3.17) and

V12 = 0.

3.2.3 Establish Proposition 3.3.

3.3.1 Establish the following four matrix identities:

(1) �−1/2X(X′�−1X)−1X′�−1/2 + �1/2Z(Z′�Z)−1Z′�1/2 = In;

(2) X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′ = In;

(3) �−1X(X′�−1X)−1X′�−1 + Z(Z′�Z)−1Z′ = �−1;

(4) X(X′�−1X)−1X′ + �Z(Z′�Z)−1Z′� = �.

3.3.2 Verify Lemma 3.4.

3.4.1 Modify Eaton’s characterization theorem (Theorem 3.10) to the case in which
v may not have a finite first moment. The answer will be found in Eaton (1986).

3.4.2 By modifying Lemma 3.1 (and its proof) of Bischoff, Cremers and Fieger
(1991) to the setup treated in Section 3.4, prove the following statement, which can
be understood as the converse of the nonlinear Gauss–Markov theorem in Section
3.4: Let P ≡ L(ε) ∈ Pn(0, σ 2�). If the GME b(�) satisfies

CovP (b(�)) ≤ RP (β̂, β)

for any β̂ ∈ C1, then P belongs to the class Qn(0, σ 2�).

3.4.3 In the two-equation heteroscedastic model (which is obtained by letting p =
2 in Example 3.2), suppose that the error term ε is normally distributed: L(ε) =
Nn(0, �).

(1) Show that β̂j = (X′
jXj )

−1X′
j yj is in C1 (j = 1, 2), that is, the OLSE cal-

culated from each homoscedastic model is a GLSE.
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(2) Find a sufficient condition for which the restricted and unrestricted GLSEs
b(�̂) in Example 2.6 satisfies

Cov(b(�̂)) ≤ Cov(β̂j ).

(3) Evaluate the exact covariance matrix of the unrestricted GLSE.

See Khatri and Shah (1974) in which various results on the efficiency of the GLSEs
are derived. See also Taylor (1977, 1978), Swamy and Mehta (1979) and Kubokawa
(1998). In Kubokawa (1998), several GLSEs that improve the unrestricted GLSE
are obtained.

3.4.4 Consider the two-equation SUR model (which is obtained by letting p = 2
in Example 3.3).

(1) Show that when the regressor matrix X2 of the second equation satisfies
X2 = (X1, G) for some G : m × (k2 − k1), the GME

b(� ⊗ Im) =
(

b1(� ⊗ Im)

b2(� ⊗ Im)

)
with bj (� ⊗ Im) : kj × 1

satisfies

b1(� ⊗ Im) = b1(I2 ⊗ Im) (= (X′
1X1)

−1X′
1y1).

(2) Extend the result above to the case in which L(X1) ⊂ L(X2).

(3) Show that

b(� ⊗ Im) = b(I2 ⊗ Im)

holds if and only if L(X1) = L(X2).

See Revankar (1974, 1976), Kariya (1981b) and Srivastava and Giles (1987).

3.4.5 In the two-equation SUR model, suppose that the error term ε is normally
distributed: L(ε) = Nn(0, � ⊗ Im).

(1) Derive the exact covariance matrix of the UZE under the assumption X′
1X2 =

0.

(2) Derive the exact covariance matrix of the UZE for general X.

For (2), see Kunitomo (1977) and Mehta and Swamy (1976).



4

Efficiency of GLSE
with Applications to SUR
and Heteroscedastic Models

4.1 Overview

In Chapter 3, it was shown that the risk matrix of a generalized least squares estima-
tor (GLSE) is bounded below by the risk (covariance) matrix of the Gauss–Markov
estimator (GME) under a certain condition. The difference between the two risk
matrices reflects the loss of efficiency caused by estimating the unknown parameters
in the covariance matrix of the error term. In this chapter, we consider the problem
of evaluating the efficiency of a GLSE by deriving an effective upper bound for
its risk matrix relative to that of the GME. The upper bound thus derived serves
as a measure of the efficiency of a GLSE.

To describe the problem precisely, let the general linear regression model be

y = Xβ + ε, (4.1)

where y is an n × 1 vector and X is an n × k known matrix of full rank. Let
Pn(0, �) be the set of distributions on Rn with mean 0 and covariance matrix �,
and assume that the distribution of the error term ε is in Pn(0, �), that is,

L(ε) ∈ Pn(0, �) with � ∈ S(n), (4.2)

where as before, L(·) denotes the distribution of · and S(n) the set of n × n

positive definite matrices. In our context, the covariance matrix � is supposed to

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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be a function of an unknown but estimable parameter vector θ , say

� = �(θ), (4.3)

where the functional form of �(·) is known.
In this model, the GME of β is given by

b(�) = (X′�−1X)−1X′�−1y, (4.4)

which is not feasible in application. A feasible estimator of β is a GLSE of the form

b(�̂) = (X′�̂−1X)−1X′�̂−1y, (4.5)

where �̂ is defined by

�̂ = �(θ̂) (4.6)

and θ̂ = θ̂ (e) is an estimator of θ based on the ordinary least squares (OLS) residual
vector

e = Ny with N = In − X(X′X)−1X′. (4.7)

Then clearly, b(�̂) belongs to the class

C1 = {β̂ = C(e)y | C(·) is a k × n matrix-valued function

on Rn satisfying C(·)X = Ik}, (4.8)

since b(�̂) is written as b(�̂) = C(e)y by letting C(e) = (X′�̂−1X)−1X′�̂−1. The
risk matrix of a GLSE b(�̂) is given by

R(b(�̂), β) = E{(b(�̂) − β)(b(�̂) − β)′}.
Let Z be any n × (n − k) matrix satisfying

Z′X = 0, Z′Z = In−k and ZZ′ = N (4.9)

and will be fixed for a given X throughout this chapter. When L(ε) belongs to the
class Qn(0, �), where

Qn(0, �) = {P ∈ Pn(0, �) | EP (u1|u2) = 0 a.s.}
with

u1 = X′�−1ε : k × 1 and u2 = Z′ε : (n − k) × 1,

the risk matrix of a GLSE b(�̂) is bounded below by the covariance matrix of
the GME:

R(b(�̂), β) ≥ Cov(b(�)) = (X′�−1X)−1. (4.10)
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(See Theorem 3.9.) Recall that the class Qn(0, �) contains the class En(0, �) of
elliptically symmetric distribution, which in turn contains the normal distribution
Nn(0, �).

By this inequality, finite sample efficiency of a GLSE can be measured by such
quantities as

δ1 = R(b(�̂), β) − Cov(b(�)), (4.11)

δ2 = |R(b(�̂), β)|/|Cov(b(�))|, (4.12)

δ3 = 1

k
tr

{
R(b(�̂), β) [Cov(b(�))]−1

}
, (4.13)

where |A| denotes the determinant of matrix A. However, since the GLSE b(�̂)

is in general nonlinear in y, it is difficult to evaluate these δ’s in an explicit form.
In fact, the risk matrices of the GLSEs introduced in the previous chapters have
not been analytically derived except for several simple cases. Furthermore, even
in such simple cases, the quantities δ’s are quite complicated functions of θ and
X in general, and hence, these δ’s cannot be tractable measures for the efficiency
of a GLSE.

To overcome this difficulty, we formulate the problem as that of finding an
effective upper bound for the risk matrix R(b(�̂), β) of the form

R(b(�̂), β) ≤ α(b(�̂)) Cov(b(�)), (4.14)

and adopt the quantity α(b(�̂)) as an alternative measure of the efficiency of b(�̂)

instead of the above δ’s. Here α ≡ α(b(�̂)) is a nonrandom real-valued func-
tion associated with a GLSE b(�̂). This function usually takes a much simpler
form than δ’s take, and is expected to be a tractable measure of the efficiency.
Since the inequality (4.14) is based on the matrix ordering, it holds that for any
a ∈ Rk ,

Var(a′b(�)) ≤ R(a′b(�̂), a′β) ≤ α(b(�̂)) Var(a′b(�))

with

R(a′b(�̂), a′β) = E{[a′b(�̂) − a′β]2} = a′R(b(�̂), β)a.

In particular, for each element bj (�̂) of b(�̂) = (b1(�̂), . . . , bk(�̂))′, it holds
that

Var(bj (�)) ≤ R(bj (�̂), βj ) ≤ α(b(�̂)) Var(bj (�)).

To get a clearer idea of our concept of efficiency and of its usefulness, we
demonstrate without proofs an example of the inequality (4.14) for the unrestricted
Zellner estimator (UZE) in a two-equation seemingly unrelated regression (SUR)
model. A detailed discussion will be given in subsequent sections.



100 SUR AND HETEROSCEDASTIC MODELS

Example 4.1 (Two-equation SUR model) The two-equation SUR model is
given by

y =
(

y1
y2

)
: n × 1, X =

(
X1 0
0 X2

)
: n × k, (4.15)

β =
(

β1
β2

)
: k × 1, ε =

(
ε1
ε2

)
: n × 1,

where

yj : m × 1, Xj : m × kj , n = 2m and k = k1 + k2.

We assume that the error term is distributed as the normal distribution Nn(0, �)

with � = � ⊗ Im and � = (σij ) ∈ S(2).
As is discussed in Examples 2.7 and 3.3, the UZE for this model is a GLSE

b(�̂ ⊗ Im) with �̂ = S:

b(S ⊗ Im) = (X′(S−1 ⊗ Im)X)−1X′(S−1 ⊗ Im)y,

where

S = Y ′[Im − X∗(X′
∗X∗)+X′

∗]Y, (4.16)

X∗ = (X1, X2) : m × k,

Y = (y1, y2) : m × 2.

The UZE is an unbiased GLSE with a finite second moment, and the matrix S is
distributed as W2(�, q), the Wishart distribution with mean q� and degrees of
freedom q, where

q = m − rankX∗.

In Section 4.3, it is shown that the UZE satisfies

(X′(�−1 ⊗ Im)X)−1 ≤ Cov(b(S ⊗ Im))

≤ α(b(S ⊗ Im)) (X′(�−1 ⊗ Im)X)−1 (4.17)

with

α(b(S ⊗ Im)) = E

[
(w1 + w2)

2

4w1w2

]
= 1 + 2

q − 3
, (4.18)

where w1 ≤ w2 denotes the latent roots of the matrix W = �−1/2S�−1/2 and the
matrix (X′(�−1 ⊗ Im)X)−1 is the covariance matrix of the GME b(� ⊗ Im). In
view of this inequality, it is reasonable to adopt the upper bound α = αq = α(b(S ⊗
Im)) in (4.18) as a measure of the efficiency of the UZE b(S ⊗ Im) relative to the
GME. In fact, we can see that whatever X may be, the covariance matrix of the
UZE is not greater than [1 + 2/(q − 3)] (X′(�−1 ⊗ Im)X)−1. This clearly shows
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that the UZE can be almost as efficient as the GME when the sample size is large,
since the upper bound is a monotonically decreasing function of q and satisfies

lim
q→∞ αq = 1.

Furthermore, as for δ’s in (4.11), (4.12) and (4.13), we can obtain the following:

(1) Bound for δ1:

0 ≤ δ1 ≤ 2

q − 3
(X′(�−1 ⊗ Im)X)−1; (4.19)

(2) Bound for δ2:

1 ≤ δ2 ≤
[

1 + 2

q − 3

]k

; (4.20)

(3) Bound for δ3:

1 ≤ δ3 ≤ 1 + 2

q − 3
. (4.21)

Also, it follows immediately from (4.17) that for each subvector bj (S ⊗ Im) :
kj × 1 (j = 1, 2) of the UZE, the following inequality holds:

Cov(bj (� ⊗ Im)) ≤ Cov(bj (S ⊗ Im))

≤
{

1 + 2

q − 3

}
Cov(bj (� ⊗ Im)). (4.22)

The results of this example will be established in the p-equation model in Sec-
tion 4.4. Example 4.1 ends here.

In this book, the problem of deriving an upper bound of the form (4.14) will
be called an upper bound problem.

Chapters 4 and 5 will be devoted to the description of various aspects of this
problem. In these two chapters, the problem is first formulated in a general frame-
work and an effective upper bound is derived when the model satisfies some
appropriate assumptions. More precisely, for a GLSE b(�̂) in (4.5), the upper
bound α(b(�̂)) in (4.14) will be derived when either of the following two condi-
tions is satisfied:

(1) The conditional mean and covariance matrix of b(�̂) given �̂ are of the
following form:

E[b(�̂)|�̂] = β and Cov(b(�̂)|�̂) = H(�̂, �), (4.23)

where the function H : S(n) × S(n) → S(k) is defined by

H = H(�̂, �)

= (X′�̂−1X)−1X′�̂−1��̂−1X(X′�̂−1X)−1. (4.24)

We call the structure of H simple covariance structure in the sequel;
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(2) The covariance matrix � = �(θ1, θ2) takes the form

� = θ1�(θ2) (4.25)

with

�(θ2)
−1 = In + λn(θ2) C and θ2 ∈ 
,

where C is an n × n known symmetric matrix, 
 is a set in R1 and λn is a
continuous real-valued function on 
.

Although the condition (4.23) with (4.24) may seem to be quite restrictive, as
will be seen soon, some important GLSEs satisfy this condition when X and �

have certain structures. Typical examples are the UZE in an SUR model and the
unrestricted GLSE in a heteroscedastic model. On the other hand, the covariance
structure in (4.25) has already been introduced in the previous chapters. Typically,
the Anderson model, an equi-correlated model and a two-equation heteroscedastic
model satisfy (4.25), which will be treated in Chapter 5.

With this overview, this chapter develops a theory on the basis of the following
sections:

4.2 GLSEs with a Simple Covariance Structure

4.3 Upper Bound for the Covariance Matrix of a GLSE

4.4 Upper Bound Problem for the UZE in an SUR Model

4.5 Upper Bound Problem for a GLSE in a Heteroscedastic Model

4.6 Empirical Example: CO2 Emission Data.

In Section 4.2, some fundamental properties of the GLSEs will be studied. In
Section 4.3, an upper bound of the form (4.14) for the covariance matrix of a
GLSE will be obtained under a general setting. The results are applied to typical
GLSEs in the SUR model and the heteroscedastic model in Sections 4.4 and 4.5
respectively. In Section 4.6, an empirical example on CO2 emission data is given.

4.2 GLSEs with a Simple Covariance Structure
In this section, we define a class of GLSEs that have simple covariance structure
and investigate its fundamental properties.

A nonlinear version of the Gauss–Markov theorem. The following general
linear regression model

y = Xβ + ε (4.26)

with

L(ε) ∈ Pn(0, �) and � = �(θ) ∈ S(n)
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is studied, where y : n × 1 and X : n × k is a known matrix of full rank. Let C3
be a class of GLSEs of the form (4.5) having the simple covariance structure in
(4.23) with (4.24), that is,

C3 = {b(�̂) ∈ C1| E[b(�̂)|�̂] = β and Cov(b(�̂)|�̂) = H(�̂, �)}. (4.27)

A GLSE b(�̂) in C3 is unbiased, since taking the expectations of both sides of
E(b(�̂)|�̂) = β clearly implies

E[b(�̂)] = β.

Hence, the conditional covariance matrix H(�̂, �) is written as

H(�̂, �) = E{(b(�̂) − β)(b(�̂) − β)′|�̂},
which in turn implies that the (unconditional) covariance matrix is given by the
expected value of H(�̂, �):

Cov(b(�̂)) = E[H(�̂, �)]. (4.28)

The reason the conditional covariance matrix H(�̂, �) is called simple lies in
the fact that this property is shared by all the linear unbiased estimators, that is,
C0 ⊂ C3 holds, where

C0 = {β̂ = Cy | C is a k × n matrix such that CX = Ik} (4.29)

is the class of linear unbiased estimators. To see this, note first that a linear unbiased
estimator β̂ = Cy is a GLSE b(�̂0) with �̂0 = [C ′C + N ]−1 (see Proposition 2.3).
Since the matrix �̂0 is nonrandom, the conditional distribution of b(�̂) given �̂0
is the same as the unconditional one. Hence, we have

E[b(�̂0)|�̂0] = β and Cov(b(�̂0)|�̂0) = H(�̂0, �), (4.30)

implying C0 ⊂ C3. Note that this holds without distinction of the structure of X

and �. Typical examples are the GME b(�) with covariance matrix

H(�, �) = (X′�−1X)−1, (4.31)

and the OLSE b(In) = (X′X)−1X′y with covariance matrix

H(In, �) = (X′X)−1X′�X(X′X)−1. (4.32)

The covariance matrix (4.28) of a GLSE in the class C3 is bounded below by
that of the GME b(�):

Theorem 4.1 For any GLSE b(�̂) ∈ C3, the following inequality holds:

H(�, �) ≤ H(�̂, �) a.s. (4.33)

And thus,

Cov (b(�)) ≤ Cov(b(�̂)). (4.34)
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Proof. Using the matrix identity

In = X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′ (4.35)

yields

H(�̂, �) = (X′�̂−1X)−1X′�̂−1��̂−1X(X′�̂−1X)−1

= (X′�̂−1X)−1X′�̂−1[X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′]

× ��̂−1X(X′�̂−1X)−1

= (X′�−1X)−1

+ (X′�̂−1X)−1X′�̂−1�Z(Z′�Z)−1Z′��̂−1X(X′�̂−1X)−1 (4.36)

≥ (X′�−1X)−1

= H(�, �),

where the inequality follows since the second term of (4.36) is nonnegative definite.
This completes the proof.

This theorem is due to Kariya (1981a).

Examples of GLSEs. The class C3 contains several typical GLSEs including the
unrestricted GLSE in a heteroscedastic model and the UZE in the SUR model.

Example 4.2 (Heteroscedastic model) In this example, it is shown that the
unrestricted GLSE in a heteroscedastic model belongs to the class C3, when the
distribution of the error term is normal. The heteroscedastic model considered here
is given by

y =




y1
...

yp


 : n × 1, X =




X1
...

Xp


 : n × k,

ε =




ε1
...

εp


 : n × 1,

� = �(θ) =




θ1In1 0
. . .

0 θpInp


 ∈ S(n), (4.37)

where n = ∑p

j=1 nj , yj : nj × 1, Xj : nj × k, εj : nj × 1 and

θ =




θ1
...

θp


 : p × 1.



SUR AND HETEROSCEDASTIC MODELS 105

We assume that the error term ε is normally distributed:

L(ε) = Nn(0, �).

The unrestricted GLSE is a GLSE b(�̂) with �̂ = �(sss), where

sss = (s2
1 , . . . , s2

p)′ : p × 1, (4.38)

and

s2
j = y′

j [Inj
− Xj(X

′
jXj )

+X′
j ]yj/qj

= ε′
j [Inj

− Xj(X
′
jXj )

+X′
j ]εj /qj , (4.39)

qj = nj − rankXj .

The conditional mean of b(�̂) given �̂ is calculated as follows:

E(b(�̂)|�̂) = β + (X′�̂−1X)−1E(X′�̂−1ε|�̂)

= β + (X′�̂−1X)−1E(X′�̂−1ε|sss), (4.40)

where the last equality is due to one-to-one correspondence between �̂ and sss. By
using the structure of the matrix �̂ and the independence between X′

iεi’s and s2
j ’s

(Problem 4.2.1), we obtain

E(X′�̂−1ε|sss) =
p∑

j=1

s−2
j E(X′

j εj |sss)

=
p∑

j=1

s−2
j E(X′

j εj )

= 0,

proving

E[b(�̂)|�̂] = β. (4.41)

Similarly, it can be easily proved that

E(X′�̂−1εε′�̂−1X|�̂) = X′�̂−1��̂−1X, (4.42)

which implies that

Cov(b(�̂)|�̂) = H(�̂, �). (4.43)

Thus, from (4.41) and (4.43), we see that the unrestricted GLSE b(�̂) belongs to
C3, where

C3 = {b(�̂) ∈ C1 | E(b(�̂)|�̂) = β, Cov(b(�̂)|�̂) = H(�̂, �)}. (4.44)
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Hence, by Theorem 4.1, the following two inequalities are obtained:

Cov(b(�)) = (X′�−1X)−1 = H(�, �)

≤ H(�̂, �) = Cov(b(�̂)|�̂) (4.45)

and

Cov(b(�)) ≤ Cov(b(�̂)), (4.46)

where the latter follows by taking the expectations of both sides of (4.45).
Finally, it is earmarked for later discussion that the conditional distribution of

the unrestricted GLSE b(�̂) is normal, that is,

L(b(�̂)|�̂) = Nk(β, H(�̂, �)). (4.47)

Example 4.3 (SUR model) This example shows that the UZE in an SUR model
belongs to the class C3 under the assumption that the error term is normally dis-
tributed. The SUR model treated here is given by

y =




y1
...

yp


 : n × 1, X =




X1 0
. . .

0 Xp


 : n × k,

β =




β1
...

βp


 : k × 1, ε =




ε1
...

εp


 : n × 1,

� = � ⊗ Im and � = (σij ) ∈ S(p), (4.48)

where

yj : m × 1, Xj : m × kj , n = pm and k =
p∑

j=1

kj .

It is assumed that the error term is normally distributed:

L(ε) = Nn(0, � ⊗ Im).

The UZE is a GLSE b(�̂) with �̂ = �̂ ⊗ Im and �̂ = S, where the matrix S

is defined as

S = Y ′N∗Y = U ′N∗U. (4.49)

Here,

Y = (y1, . . . , yp) : m × p,

U = (ε1, . . . , εp) : m × p,

N∗ = Im − X∗(X′
∗X∗)+X′

∗ : m × m,

X∗ = (X1, . . . , Xp) : m × k. (4.50)
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Recall that

L(S) = Wp(�, q) with q = m − rankX∗, (4.51)

where Wp(�, q) denotes the Wishart distribution with mean q� and degrees of
freedom q.

To calculate the conditional mean of the UZE, note firstly that

X′
jN∗ = 0 for any j = 1, . . . , p (4.52)

holds and therefore the statistic S is independent of X′
iεj ’s (Problem 4.2.2). Hence,

in a similar way as in Example 4.2, we obtain

E(X′�̂−1ε|�̂) = E[X′(S−1 ⊗ Im)ε|S]

=




∑p

j=1 s1jE(X′
1εj |S)

...∑p

j=1 spjE(X′
pεj |S)


 with S−1 = (sij )

=




∑p

j=1 s1jE(X′
1εj )

...∑p

j=1 spjE(X′
pεj )




= 0, (4.53)

establishing the conditional unbiasedness of the UZE, where the first equality fol-
lows from the one-to-one correspondence between �̂ and S and the third from the
independence between X′

iεj ’s and S.
Similarly, it is easy to show that

E[X′(S−1 ⊗ Im)εε′(S−1 ⊗ Im)X|S] = X′(S−1�S−1 ⊗ Im)X. (4.54)

This implies that

Cov(b(S ⊗ Im)|S) = H(S ⊗ Im, � ⊗ Im). (4.55)

Thus, the UZE is also in the class C3, where

C3 = {b(�̂) ∈ C1 | E(b(�̂)|�̂) = β, Cov(b(�̂)|�̂) = H(�̂, �)}. (4.56)

The two inequalities corresponding to (4.45) and (4.46) are given respectively as

Cov(b(� ⊗ Im)) = (X′(�−1 ⊗ Im)X)−1 = H(� ⊗ Im, � ⊗ Im)

≤ H(S ⊗ Im, � ⊗ Im) = Cov(b(S ⊗ Im)|S) (4.57)

and

Cov(b(� ⊗ Im)) ≤ Cov(b(S ⊗ Im)). (4.58)

Again, observe that the conditional distribution of the UZE is normal, that is,

L(b(S ⊗ Im)|S) = Nk(β, H(S ⊗ Im, � ⊗ Im)). (4.59)
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4.3 Upper Bound for the Covariance Matrix
of a GLSE

This section is devoted to deriving an effective upper bound α(b(�̂)) of the form

Cov(b(�̂)) ≤ α(b(�̂)) Cov(b(�)) (4.60)

for a GLSE b(�̂) in the class C3 in a general setup.
To begin with, we fix the model

y = Xβ + ε (4.61)

with

L(ε) ∈ Pn(0, �) and � = �(θ) ∈ S(n),

where y : n × 1 and X : n × k is of full rank. For a GLSE b(�̂) ∈ C3, one way of
obtaining an upper bound in (4.60) is deriving an upper bound for the conditional
covariance matrix

Cov(b(�̂)|�̂) = H(�̂, �)

relative to the covariance matrix of the GME b(�)

Cov(b(�)) = H(�, �) = (X′�−1X)−1.

In fact, suppose that a real-valued random function

L(�̂, �) : S(n) × S(n) → [0, ∞)

of �̂ and � satisfies the following inequality:

H(�̂, �) ≤ L(�̂, �) H(�, �) a.s. (4.62)

For any L satisfying (4.62), the expected value of L(�̂, �) is one of the upper
bounds in the sense of (4.60), since taking the expectations of both sides of (4.62)
yields

Cov(b(�̂)) ≤ α(b(�̂)) Cov(b(�)) (4.63)

with

α(b(�̂)) = E{L(�̂, �)}.
Clearly, α(b(�̂)) thus derived is a nonrandom positive function associated with a
GLSE b(�̂). Thus, the problem is to find an effective one among the upper bounds
L(�̂, �)s that satisfy (4.62).
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Such a function L always exists. A possible choice of L is the largest latent
root of the matrix

H(�, �)−1/2 H(�̂, �) H(�, �)−1/2, (4.64)

because the inequality (4.62) is equivalent to

H(�, �)−1/2 H(�̂, �) H(�, �)−1/2 ≤ L(�̂, �) Ik. (4.65)

Although this is a natural choice of L, we do not use this since it generally depends
on the regressor matrix X in a complicated way and hence it cannot be a tractable
measure of the efficiency of a GLSE.

Reduction of variables. To avoid this difficulty, we first reduce the variables as
follows:

A = X′�−1X ∈ S(k),

X = �−1/2XA−1/2 : n × k,

P = P (�̂, �) = �−1/2�̂�−1/2 ∈ S(n). (4.66)

Here, the regressor matrix X is transformed to the n × k matrix X, which takes a
value in the compact subset Fn,k of Rnk , where

Fn,k = {U : n × k | U ′U = Ik}. (4.67)

The matrices H(�, �) and H(�̂, �) in question are rewritten in terms of X, A

and P as

H(�, �) = A−1, (4.68)

H(�̂, �) = A−1/2(X
′
P −1X)−1X

′
P −2X(X

′
P −1X)−1A−1/2, (4.69)

respectively. Thus, the left-hand side of the inequality (4.65) becomes

�(X, P ) = (X
′
P −1X)−1X

′
P −2X(X

′
P −1X)−1. (4.70)

As a tractable upper bound, we aim to derive a function

l0(P ) : S(n) → [0, ∞)

that depends only on P and satisfies

�(X, P ) ≤ l0(P )Ik a.s. for any X ∈ Fn,k. (4.71)

Since l0(P ) is free from X as well as X, it is expected to take a simple form. For
convenience, we often write the function l0(P ) as a function of �̂ and �, that is,

l0(P ) = L0(�̂, �). (4.72)
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The inequality (4.71) is rewritten as

H(�̂, �) ≤ L0(�̂, �) H(�, �) a.s. (4.73)

and this holds for any X : n × k of full rank. From this, we obtain

Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�)) (4.74)

with

α0(b(�̂)) = E[L0(�̂, �)] = E[l0(P )]. (4.75)

Thus, the problem is formulated as one of obtaining L0(�̂, �) = l0(P ), as described
in (4.72).

Derivation of l0(P ). The following inequality, known as the Kantorovich inequal-
ity is useful for our purpose.

Lemma 4.2 For any n × 1 vector u with u′u = 1 and any � ∈ S(n),

1 ≤ u′�u u′�−1u ≤ (λ1 + λn)
2

4λ1λn

(4.76)

holds, where 0 < λ1 ≤ · · · ≤ λn are the latent roots of �.

Proof. The left-hand side of (4.76) is an easy consequence of Cauchy–Schwarz
inequality in (2.70).

To show the right-hand side, note that the matrix � can be set as a diagonal
matrix. In fact, let  ∈ O(n) be an orthogonal matrix that diagonalizes �:

� = �̃′ with �̃ =




λ1 0
. . .

0 λn


 ,

where O(n) is the group of n × n orthogonal matrices. And let U(n) = {u ∈
Rn | ‖u‖ = 1}. Then

sup
u′u=1

u′�uu′�−1u = sup
u∈U(n)

u′�̃′uu′�̃−1′u

= sup
u∈U(n)

u′�̃uu′�̃−1u,

where the second equality follows since the group O(n) acts transitively on U(n)

via the group action u → ′u (see Example 1.2). For each u ≡ (u1, . . . , un)
′ ∈

U(n), let W ≡ W(u) be a discrete random variable such that

P (W = λj ) = u2
j (j = 1, . . . , n).
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Then we can write

u′�̃uu′�̃−1u = E(W)E(W−1).

On the other hand, for any λ ∈ [λ1, λn], the following inequality holds:

0 ≤ (λ − λ1)(λn − λ)

= (λ1 + λn − λ)λ − λ1λn,

from which

1

λ
≤ λ1 + λn − λ

λ1λn

follows. Since the random variable W satisfies P (W ∈ [λ1, λn]) = 1,

E(W−1) ≤ λ1 + λn − E(W)

λ1λn

holds, and hence

E(W)E(W−1) ≤ {λ1 + λn − E(W)}E(W)

λ1λn

= − 1

λ1λn

{
E(W) − λ1 + λn

2

}2 + (λ1 + λn)
2

4λ1λn

≤ (λ1 + λn)
2

4λ1λn

.

Here, the extreme right-hand side of the above inequality is free from u. This
completes the proof.

Note that the upper bound in (4.76) is attainable. In fact, let ηj be the latent
vector corresponding to λj . Then by letting

u = 1√
2
(η1 + ηn),

we can see that u′�uu′�−1u = (λ1 + λn)/4λ1λn.
The Kantorovich inequality has been used and expanded as an important tool

for evaluating the efficiency of the OLSE relative to the GME. In Chapter 14 of
Rao and Rao (1998), several extensions of this inequality are summarized.

The following lemma derives l0(P ) described above. The proof here is from
Kurata and Kariya (1996). The result can also be obtained from Wang and Shao
(1992) in which a matrix version of the Kantorovich inequality is derived. Wang
and Ip (1999) established a matrix version of the Wielandt inequality, which is
closely related to the Kantorovich inequality.
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Lemma 4.3 Let

π1 ≤ · · · ≤ πn

be the latent roots of P = P (�̂, �). Then the following inequality holds:

�(X, P ) ≤ l0(P ) Ik for any X ∈ Fn,k,

where

l0(P ) = (π1 + πn)
2

4π1πn

. (4.77)

Proof. Note first that

�(X�) = �′�(X)� (4.78)

holds for any k × k orthogonal matrix �, which implies that the latent roots of
�(X) are invariant under the transformation X → X�. For a given X, choose
a k × k orthogonal matrix �1 such that �′

1X
′
P −1X�1 is diagonal and let V =

(v1, . . . , vk) = X�1. Then V is clearly in Fn,k , and �(X) and �(V ) have the
same latent roots. The function �(V ) is written as

�(V ) = (V ′P −1V )−1V ′P −2V (V ′P −1V )−1

=




v′
1P

−1v1 0
. . .

0 v′
kP

−1vk




−1 


v′
1P

−2v1 · · · v′
1P

−2vk

...
...

v′
kP

−2v1 · · · v′
kP

−2vk




×




v′
1P

−1v1 0
. . .

0 v′
kP

−1vk




−1

=




v′
1P

−2v1

(v′
1P

−1v1)2
· · · v′

1P
−2vk

v′
1P

−1v1 v′
kP

−1vk

...
...

v′
kP

−2v1

v′
kP

−1vk v′
1P

−1v1
· · · v′

kP
−2vk

(v′
kP

−1vk)2




= (φij ) (say) (4.79)

with

φij = φ(vi, vj ) = v′
iP

−2vj

v′
iP

−1vi v′
jP

−1vj

. (4.80)

Next, choose a k × k orthogonal matrix such that �′
2�(V )�2 = �(V �2) is diag-

onal. Then the matrix �(U) with U = (u1, . . . , uk) = V �2 ∈ Fn,k is a diagonal
matrix with diagonal elements φ(uj , uj ) (j = 1, . . . , k).
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Therefore, to find the least upper bound l0(P ) that satisfies �(U) ≤ l0(P )Ik,
it suffices to maximize φ(uj , uj ) under u′

juj = 1. Hence, we have

sup
u′

j uj=1
φ(uj , uj ) = sup

u′
j uj =1

(u′
jP

−2uj )(u
′
juj )

(u′
jP

−1uj )2

= sup
uj ∈Rk−{0}

(u′
jP

−2uj )(u
′
juj )

(u′
jP

−1uj )2

= sup
uj ∈Rk−{0}

(u′
jP

−1uj )(u
′
jPuj )

(u′
juj )2

= sup
u′

j uj =1
(u′

jP
−1uj )(u

′
jPuj )

= (π1 + πn)
2

4π1πn

, (4.81)

where the first equality follows from u′
juj = 1, the second from the invariance

under the transformation uj → auj for a > 0, the third from transforming uj →
P 1/2uj and the last from Lemma 4.2. This completes the proof.

The next theorem is due to Kurata and Kariya (1996).

Theorem 4.4 For any GLSE b(�̂) in C3, let P = P (�̂, �) = �−1/2�̂�−1/2 and
L0(�̂, �) = l0(P ) = (π1 + πn)

2/4π1πn, where π1 ≤ · · · ≤ πn are the latent roots
of P . Then the following inequality holds:

Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�)) (4.82)

with

α0(b(�̂)) = E[L0(�̂, �)] = E [l0(P )] . (4.83)

Combining it with Theorem 4.1, a bound for the covariance matrix of a GLSE
b(�̂) is obtained as

Cov(b(�)) ≤ Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�)), (4.84)

from which the bounds for the δ’s in (4.11) to (4.13) are also obtained.

An interpretation of l0(P ) = L0(�̂,�). The upper bound l0(P ) = L0(�̂, �) can
be viewed as a loss function for choosing an estimator �̂ in a GLSE b(�̂). To
explain this more precisely, let x = πn/π1 (≥1) and rewrite l0(P ) as a function
of x:

l0(P ) = (1 + x)2

4x
. (4.85)
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Obviously, l0(P ) is a monotonically increasing function of x such that f (x) ≥ 1,
and the minimum is attained when x = 1, or equivalently, when

P = γ In for some γ > 0, (4.86)

where P = P (�̂, �) = �−1/2�̂�−1/2. Therefore, l0(P ) is regarded as a measure
of the sphericity of the matrix P : as P becomes more and more spherical, l0(P )

becomes closer and closer to its minimum. Since the condition (4.86) is nothing but

�̂ = γ� for some γ > 0, (4.87)

the smaller the upper bound L0(�̂, �) is, the better the estimation efficiency of �̂

for � becomes. Note that the GLSE b(�̂) that satisfies (4.87) is the GME b(�),
since

b(γ�) = b(�) for any γ > 0.

In this sense, the upper bound l0(P ) = L0(�̂, �) can be viewed as a loss function,
and the problem of finding an efficient GLSE b(�̂) via l0(P ) is equivalent to
the problem of deriving an optimal estimator �̂ for the covariance matrix � with
respect to the loss function L0(�̂, �).

Invariance properties of L0(�̂,�) as a loss function. As a loss function for
estimating the covariance matrix �, the upper bound L0(�̂, �) has the following
two invariance properties (see Problem 4.3.1):

(i) Invariance under the transformation (�̂, �) → (�̂−1, �−1):

L0(�̂, �) = L0(�̂
−1, �−1); (4.88)

(ii) Invariance under the transformation (�̂, �) → (a�̂, b�) for a, b > 0:

L0(a�̂, b�) = L0(�̂, �) for any a, b > 0. (4.89)

We make a brief comment on the implication of the invariance property (i), which
is called the symmetric inverse property by Bilodeau (1990) in the context of the
two-equation heteroscedastic model. This means that the loss function L0 equally
penalizes the overestimates and the underestimates of �. Thus, in constructing a
GLSE b(�̂), choosing an optimal estimator �̂ of � with respect to the loss function
L0 is equivalent to choosing an optimal one �̂ of � ≡ �−1. Further investigation
of this topic will be given in Problem 4.3.2, Sections 4.4, 4.5 and Chapter 5. In
Problem 4.3.2, we consider this property in a simple setting in which the variance
of the normal distribution is estimated.
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Upper bound for the OLSE. Next, let us apply Theorem 4.4 to the OLSE b(In).

Corollary 4.5 Let

ω1 ≤ · · · ≤ ωn

be the latent roots of �. Then the following inequality holds:

Cov(b(�)) ≤ Cov(b(In)) ≤ α0(b(In)) Cov(b(�)) (4.90)

with

α0(b(In)) = (ω1 + ωn)
2

4ω1ωn

.

Proof. Since P = P (In, �) = �−1, the upper bound α0(b(In)) is obtained as

α0(b(In)) = l0(�
−1) = L0(In, �)

= L0(In, �−1) = l0(�), (4.91)

where the third equality is due to (4.88).

The upper bound α0(b(In)) is available when the ratio ωn/ω1 of the latent
roots of � is known. Hillier and King (1987) treated this situation and obtained
bounds for linear combinations of the GME and the OLSE b(In).

A greater but simpler upper bound. Although the general expression (4.83) of
the upper bound α0(b(�̂)) is quite simple, it is not easy to evaluate it explicitly
except for some simple cases as in Corollary 4.5. The difficulty lies in the fact that
the distribution of the extreme latent roots of a random matrix usually takes a very
complicated form. Hence, we derive an alternative upper bound. While the upper
bound derived below is greater than α0, it is quite simple and is still effective as
well as useful.

Lemma 4.6 For any positive definite matrix P ∈ S(n) with latent roots π1 ≤ · · · ≤
πn, the following inequality holds:

l0(P ) ≤ l1(P ), (4.92)

where

l1(P ) =

1

n

n∑
j=1

πj

/ n∏
j=1

π
1/n
j




n

= (trP )n

nn |P | . (4.93)

The equality holds if and only if

π2 = · · · = πn−1 = (π1 + πn)/2.
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Proof. Fix π1 ≤ πn and let

f (π2, . . . , πn−1) =

 1

n

n∑
j=1

πj

/ n∏
j=1

π
1/n
j




n

=

 1

n

n∑
j=1

πj




n / n∏
j=1

πj

as a function of π2, . . . , πn−1. Differentiating f with respect to πi (i = 2, . . . , n −
1) yields

∂

∂πi

f (π2, . . . , πn−1) =
[

1
n

∑n
j=1 πj

]n−1

∏n
j=1 πj

πi − 1
n

∑n
j=1 πj

πi

.

Here, ∂
∂πi

f = 0 (i = 2, . . . , n − 1) implies π2 = · · · = πn−1. Hence, to find the
minimum of f , we can set

π2 = · · · = πn−1 = c

without loss of generality. Let

g(c) = f (c, . . . , c)

=
{

1
n

[π1 + πn + (n − 2)c]
}n

π1πncn−2
.

By differentiating g with respect to c, we can easily see that g(c) takes its (unique)
minimum at c = (π1 + πn)/2 and

g

(
π1 + πn

2

)
= (π1 + πn)

2

4π1πn

.

This completes the proof.

Setting P = P (�̂, �) = �−1/2�̂�−1/2 in l1(P ) yields

l1(P ) = [tr(�̂�−1)]n

nn |�̂�−1| ≡ L1(�̂, �), (4.94)

which implies the following result due to Kurata and Kariya (1996).

Theorem 4.7 For any GLSE b(�̂) ∈ C3,

Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�))

≤ α1(b(�̂)) Cov(b(�)) (4.95)

with

α1(b(�̂)) = E{L1(�̂, �)} = E{l1(P )}. (4.96)
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The upper bound α1 = E(L1) is much more easily evaluated than α0, as will
be shown in an SUR model and a heteroscedastic model.

As well as L0, the function L1(�̂, �) = l1(P ) also reflects the efficiency of
estimating � by an estimator �̂, and therefore, it can be viewed as a loss function
for choosing an estimator �̂ in b(�̂). In application, it is often the case that � is
structured and then the distinct latent roots of P are reduced to the case of a lower
dimension. For example, in the two-equation SUR model, P = �−1/2�̂�−1/2 ⊗
Im where � ∈ S(2). In such a case, the following proposition will be useful.

Proposition 4.8 For any � ∈ S(2),

l1(�) = l0(�) (4.97)

holds.

4.4 Upper Bound Problem for the UZE
in an SUR Model

In this section, we treat the SUR model and evaluate the upper bounds for the
covariance matrices of various typical GLSEs including the UZE and the OLSE.
The following two problems of practical importance are studied:

(1) To clarify the condition under which the UZE is more efficient than the
OLSE;

(2) To derive a GLSE whose upper bound is smaller than that of the UZE.

Preliminaries. The SUR model considered in this section is the one given in
Example 4.3, where it was shown that the UZE

b(S ⊗ Im) = (X′(S−1 ⊗ Im)X)−1X′(S−1 ⊗ Im)y

defined in (4.49) belongs to the class C3 in (4.56). To treat the two problems
described in the above paragraph, we first note the following result:

Proposition 4.9 For any GLSE of the form

b(�̂ ⊗ Im) = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1 ⊗ Im)y,

if �̂ is a measurable function of the matrix S, say

�̂ = �̂(S), (4.98)

then the GLSE b(�̂ ⊗ Im) belongs to the class C3, that is,

E[b(�̂ ⊗ Im)|�̂] = β,

Cov(b(�̂ ⊗ Im)|�̂) = H(�̂ ⊗ Im, � ⊗ Im). (4.99)

Proof. See Problem 4.4.1.
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The UZE and the OLSE are particular cases obtained by letting �̂(S) = S and
�̂(S) = Ip respectively, where the latter is a constant function. Thus, the results
in the previous two sections are applicable to the GLSEs b(�̂ ⊗ Im).

Derivation of upper bound. For a GLSE b(�̂ ⊗ Im) in C3, let

P = P (�̂ ⊗ Im, � ⊗ Im) = �−1/2�̂�−1/2 ⊗ Im (4.100)

and let π1 ≤ · · · ≤ πp be the latent roots of the matrix �−1/2�̂�−1/2. Then the
latent roots of P are given by π1 (with multiplicity m), π2 (with multiplicity m),
. . . , πp (with multiplicity m). Hence, the upper bound α0(b(�̂ ⊗ Im)) is obtained
by Theorem 4.4 as

α0(b(�̂ ⊗ Im)) = E{L0(�̂, �)} (4.101)

with

L0(�̂, �) = l0(�
−1/2�̂�−1/2) = (π1 + πp)2

4π1πp

. (4.102)

Here we used the following equality:

L0(�̂ ⊗ Im, � ⊗ Im) = l0(�
−1/2�̂�−1/2 ⊗ Im) = (π1 + πp)2

4π1πp

= l0(�
−1/2�̂�−1/2) = L0(�̂, �) (4.103)

Furthermore, applying Lemma 4.6 and Theorem 4.7 to L0(�̂, �) yields the greater
upper bound

α1(b(�̂ ⊗ Im)) = E{L1(�̂, �)}, (4.104)

where

L1(�̂, �) = l1(P ) = (trP )p

pp|P | = [tr(�̂�−1)]p

pp|�̂�−1| . (4.105)

The results given above are summarized as follows: for any b(�̂ ⊗ Im) ∈ C3,

Cov(b(� ⊗ Im)) ≤ Cov(b(�̂ ⊗ Im))

≤ α0(b(�̂ ⊗ Im)) Cov(b(� ⊗ Im))

≤ α1(b(�̂ ⊗ Im)) Cov(b(� ⊗ Im)). (4.106)

Note that the function L0(�̂, �) as well as L1(�̂, �) can be understood as a
loss function for choosing an estimator �̂ of � in the GLSE b(�̂ ⊗ Im) ∈ C3.
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When the model consists of two equations, that is, when p = 2, Proposition 4.8
guarantees that

L0(�̂, �) = L1(�̂, �). (4.107)

The upper bounds α0 and α1 for the covariance matrices of the UZE b(S ⊗ Im)

and the OLSE b(Ip ⊗ Im) are obtained by letting �̂ = S and �̂ = Ip respectively.
As for the UZE, it is clear that

α0(b(S ⊗ Im)) = E[l0(W)] with l0(W) = (w1 + wp)2

4w1wp

, (4.108)

and

α1(b(S ⊗ Im)) = E[l1(W)] with l1(W) = [tr(W)]p

pp|W | , (4.109)

where

W = P (S, �) = �−1/2S�−1/2, (4.110)

and

w1 ≤ · · · ≤ wp

are the latent roots of the matrix W . The matrix W is distributed as the Wishart
distribution Wp(Ip, q) with mean qIp and degrees of freedom

q = m − rankX∗,

where X∗ = (X1, . . . , Xp) : m × k.
On the other hand, in the case of the OLSE b(Ip ⊗ Im), it is readily seen that

α0(b(Ip ⊗ Im)) = l0(�) with l0(�) = (λ1 + λp)2

4λ1λp

, (4.111)

and

α1(b(Ip ⊗ Im)) = l1(�) with l1(�) = (tr�)p

pp|�| , (4.112)

where λ1 ≤ · · · ≤ λp are the latent roots of �. We used

L0(Ip, �) = l0(�
−1) = l0(�) = L0(Ip, �−1).

The two upper bounds (4.111) and (4.112) can be viewed as measures of the
sphericity of the matrix �. When � = γ Ip for some γ > 0, the two bounds are 1.
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Efficiency comparison between the UZE and the OLSE. As will be seen below,
the upper bound α0(b(S ⊗ Im)) takes quite a complicated form. Hence, we first
evaluate the greater upper bound α1(b(S ⊗ Im)).

Theorem 4.10 Suppose that q > p + 1. Then, for the UZE:

(1) The greater upper bound α1 is given by

α1(b(S ⊗ Im)) =
p−1∏
j=1

(
1 +

[
(p − 2)/p

]
j + 2

q − j − 2

)
; (4.113)

(2) Moreover,

lim
q→∞ α1(b(S ⊗ Im)) = 1; (4.114)

(3) In particular, when p = 2 and q > 3, it holds that

α0(b(S ⊗ Im)) = α1(b(S ⊗ Im)) = 1 + 2

q − 3
. (4.115)

Proof. The greater upper bound is given by

α1(b(S ⊗ Im)) = Eq{l1(W)} with l1(W) = [tr(W)]p

pp|W | , (4.116)

where the suffix q denotes the expectation under the Wishart distribution Wp(Ip, q)

with degrees of freedom q. The probability density function (pdf) of W is given by

d(q) |W |(q−p−1)/2 exp

(
− trW

2

)
(4.117)

with

d(q) = 1

2pq/2p(q/2)
,

which is positive on the set S(p) of p × p positive definite matrices. By absorbing
the denominator |W | of l1(W) into the pdf (4.117), we have

Eq [l1(W)] = 1

pp

d(q)

d(q − 2)
× Eq−2[(trW)p]

= 1

pp

d(q)

d(q − 2)
×

2p
(

p(q−2)
2 + p

)


(

p(q−2)
2

) . (4.118)

From this, (4.113) is readily obtained, since

(x + n) = x(x + 1) . . . (x + n − 1)(x).

On the right-hand side of (4.118), we used the fact that trW is distributed as the
χ2 distribution with degrees of freedom p(q − 2) (see Proposition 1.7 in Chapter 1
and Problem 4.4.2). Thus, (1) is proved, (2) is obvious, and (3) is due to (4.107).
This completes the proof.
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The above theorem is due to Kurata and Kariya (1996). The paper is an exten-
sion of Kariya (1981a) in which the case of p = 2 is dealt with. Note that these
upper bounds are free from unknown parameters and from X.

Corollary 4.11 For any p ≥ 2,

lim
q→∞ α0(b(S ⊗ Im)) = 1. (4.119)

Proof. It is obvious from (2) of the above theorem that

1 ≤ α0(b(S ⊗ Im)) ≤ α1(b(S ⊗ Im)) → 1 as q → ∞.

It is interesting to see that the quantity l1(W) coincides with the reciprocal of
the likelihood ratio test statistic for testing the sphericity of the covariance matrix
of a multivariate normal distribution. See, for example, Section 8.3 of Muirhead
(1982) and Khatri and Srivastava (1971).

By comparing the upper bounds derived above, the upper bound for the covari-
ance matrix of the OLSE can be smaller than that of the UZE when the cor-
relation coefficients ρij = σij /(σiiσjj )

1/2 are close to zero and/or the degrees
of freedom q is small. When p = 2, the condition ρ12 = 0 is clearly equiva-
lent (under the normality condition) to the independence of the two submodels
yj = Xjβj + εj (j = 1, 2). For testing the null hypothesis H : σ12 = 0, one can
use the locally optimal test derived by Kariya (1981b). See also Kariya, Fujikoshi
and Krishnaiah (1984, 1987) and Davis (1989) in which some multivariate exten-
sion of Kariya (1981b) is given. When the model consists of p(≥ 2) equations,
the Lagrange multiplier test for H : σij = 0 (i = j; i, j = 1, . . . p) derived by
Breusch and Pagan (1980) is widely used.

Expression of α0(b(S ⊗ Im)) when p ≥ 3. Kurata and Kariya (1996) gave an
explicit evaluation of the upper bound α0(b(S ⊗ Im)) for the covariance matrix
of the UZE for general p. However, the expression is quite complicated and it
involves the zonal polynomials when p ≥ 4. Hence, only the result for p = 3 is
presented here without proof.

Theorem 4.12 Let p = 3 and suppose that q > 4, then the following equality holds:

α0(b(S ⊗ Im)) = c(q)

∞∑
k=0

(3q/2 + k)

3kk!

2∑
j=0

aj

(k + j + 5)

(q/2 + k + j + 3)

×
k∑

s=0

(
k

s

)
(s + 2)

(s + 4)

∞∑
t=0

(−q/2 + 2)t (k + j + 5)t (s + 2)t

(q/2 + k + j + 3)t (s + 4)t t!
,

(4.120)

where (a0, a1, a2) = (4, −4, 1) and

c(q) = π9/2(q/2 − 2)

4 × 33q/23(3/2)3(q/2)
.
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Derivation of the “optimal” GLSE. In the case in which p = 2, we treat the
problem of finding an optimal GLSE b(�̂B ⊗ Im) in the sense that it satisfies

α0(b(�̂B ⊗ Im)) ≤ α0(b(�̂ ⊗ Im)) (4.121)

for any GLSE b(�̂ ⊗ Im) that belongs to an appropriate subclass of C3.
To this end, consideration is limited to a GLSE b(�̂ ⊗ Im) such that �̂ is a

function of S, say

�̂ = �̂(S).

The matrix S is distributed as the Wishart distribution:

L(S) = W2(�, q).

Since b(�̂ ⊗ Im) with �̂ = �̂(S) is in C3, the upper bound α0 is described as

α0(b(�̂ ⊗ Im)) = E[L0(�̂, �)], (4.122)

where

L0(�̂, �) = L1(�̂, �) = [tr(�̂�−1)]2

4|�̂�−1| .

(See Proposition 4.8.) Therefore, the problem of finding an optimal GLSE b(�̂B ⊗
Im) is nothing but the problem of deriving the optimal estimator

�̂B = �̂B(S)

of � with respect to the loss function L0. The results in the sequel are due to
Bilodeau (1990).

We begin with describing a reasonable subclass of C3. Let G be the group of
2 × 2 nonsingular lower-triangular matrices:

G ≡ GT (2) = {L = (lij ) ∈ G�(2) | lij = 0 (i < j)}.
The group G acts on the space S(2) of S via the group action

S → LSL′, (4.123)

where L ∈ G. For relevant definitions, see Section 1.4 of Chapter 1. Since

L(LSL′) = W2(L�L′, q)

by Proposition 1.5, the action (4.123) on the space of S induces the following
action on the space S(2) of �:

� → L�L′. (4.124)
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Thus, it is natural to consider the class of GLSEs b(�̂ ⊗ Im) that satisfy

�̂(LSL′) = L�̂(S)L′ for any L ∈ G. (4.125)

An estimator �̂ with this property is called an equivariant estimator of � with
respect to the group G.

Let F denote the class of equivariant estimators with respect to G.

Lemma 4.13 The class F is characterized by

F =
{
�̂(S) = T DT ′

∣∣∣ D =
(

d1 0
0 d2

)
, dj > 0, j = 1, 2

}
, (4.126)

where the matrix T = (tij ) is the unique 2 × 2 lower-triangular matrix with positive
diagonal elements such that S = T T ′, that is, the Cholesky decomposition of S (see
Lemma 1.8 and Proposition 1.9).

Proof. Suppose that (4.125) holds for any L ∈ G. Letting S = I2 in (4.125)
yields

�̂(LL′) = L�̂(I2)L
′. (4.127)

Since this equality holds for all diagonal matrices L with diagonal elements ±1,
and since LL′ = I2, we have

�̂(I2) = L�̂(I2)L
′ for any L =

( ±1 0
0 ±1

)
. (4.128)

This shows that the matrix �̂(I2) is diagonal, say

�̂(I2) = D =
(

d1 0
0 d2

)
,

where dj ’s are nonrandom (see Problem 4.4.3). Further, dj ’s are positive, since
the matrix �̂(I2) is positive definite. Here put

L = T

in (4.127). This yields

�̂(S) = T DT ′. (4.129)

Conversely, an estimator �̂(S) of the form (4.129) clearly satisfies (4.125).
Thus, (4.126) follows. This completes the proof.

This leads to a reasonable subclass CF
3 of C3, where

CF
3 = {b(�̂) ∈ C3 | �̂ ∈ F}. (4.130)

While the UZE b(S ⊗ Im) is in CF
3 , the OLSE b(I2 ⊗ Im) is not.
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In the definition of F , we can set d1 = 1 without loss of generality, because
the loss function L0(�̂, �) has the following invariance property:

L0(a�̂, �) = L0(�̂, �) for any a > 0, (4.131)

(see (4.89)). This fact corresponds to the scale-invariance property of GLSEs:
b(a� ⊗ Im) = b(� ⊗ Im) (see (2.80)).

It is easily observed that the loss function L0(�̂, �) is also invariant under G:

L0(L�̂L′, L�L′) = L0(�̂, �) for any L ∈ G. (4.132)

Theorem 4.14 For any �̂(S) = T DT ′ in F with

D =
(

1 0
0 d

)
,

the risk function

R(�̂, �) = E[L0(�̂, �)]

is evaluated as

R(�̂, �) = 1

4

[
(q − 1)(q + 1)

d(q − 3)(q − 2)
+ 2(q − 1)

q − 2
+ d(q − 1)

q − 2

]
, (4.133)

and the minimum risk equivariant estimator �̂B of � is given by

�̂B(S) = T DBT ′ with DB =
(

1 0

0
√

q+1
q−3

)
. (4.134)

Proof. We first show that the risk function R(�̂, �) in question is constant as a
function of �. (This fact is valid under a much more general setup where the group
acts transitively (Section 1.4 of Chapter 1) on parameter space. See Chapter 3 of
Lehmann (1983) for general results.) Let L be the lower-triangular matrix with
positive diagonal elements such that � = LL′. Then transforming S = LWL′ and
noting that

L(W) = W2(I2, q)

yields

R(�̂, �) = E�{L0(�̂(S), �)}
= EI2{L0(�̂(LWL′), LL′)}, (4.135)

where E� and EI2 denote the expectation under W2(�, q) and W2(I2, q) respec-
tively. By using (4.125) and (4.132), the right-hand side of (4.135) is further
evaluated as

EI2{L0(L�̂(W)L′, LL′)} = EI2{L0(�̂(W), I2)}. (4.136)
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Thus, the risk function does not depend on � and hence, we can assume � = I2
without loss of generality.

Next, to evaluate the risk function, let T = (tij ) be the lower-triangular matrix
with positive diagonal elements such that W = T T ′. Then, by Proposition 1.9 of
Chapter 1, all the nonzero elements of T are independent,

L(t2
ii ) = χ2

q−i+1 (i = 1, 2) and L(t2
21) = χ2

1 .

Therefore, we have for any �̂(W) = T DT ′ in F ,

E
[
L0(T DT ′, I2)

] = E

{[
tr(T DT ′)]2

4|T DT ′|

}

= E

{[
t2
11 + t2

21 + dt2
22

]2

4d t2
11t

2
22

}

= 1

4d
E

{
t2
11

t2
22

+ t4
21

t2
11t

2
22

+ d2 t2
22

t2
11

+ 2
t2
21

t2
22

+ 2d + 2d
t2
21

t2
11

}

= 1

4d

{
q

q − 3
+ 3

(q − 2)(q − 3)

+ d2(q − 1)

q − 2
+ 2

q − 3
+ 2d + 2d

q − 2

}
,

proving (4.133). Here, we used the following formulas: let W be a random variable
such that L(W) = χ2

m, then

E(W 2) = m(m + 2),

E(W) = m,

E(W−1) = 1

m − 2
.

See Problem 4.4.2. Thus, for example, the term E[t4
21/(t

2
11t

2
22)] is evaluated as

follows: let Wij = t2
ij .

E

[
t4
21

t2
11t

2
22

]
= E(W 2

21)E(W−1
11 )E(W−1

22 )

= 3 × 1

q − 2
× 1

[(q − 1) − 2]

= 3

(q − 2)(q − 3)
.

Minimizing with respect to d yields the result. This completes the proof.
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Consequently, the GLSE b(�̂B ⊗ Im) is optimum in the class CF
3 , because it

satisfies

α0(b(�̂B ⊗ Im)) ≤ α0(b(�̂ ⊗ Im)) (4.137)

for any b(�̂ ⊗ Im) ∈ CF
3 . The optimal GLSE b(�̂B) has a smaller upper bound

than the UZE has, because the UZE belongs to the class CE
3 .

Finally, we note that the function L0(�̂, �) satisfies

L0(�̂
−1, �−1) = L0(�̂, �). (4.138)

This means that as a loss function for choosing an estimator �̂, the function L0
symmetrically penalizes the underestimate and the overestimate.

4.5 Upper Bound Problems for a GLSE
in a Heteroscedastic Model

In this section, we will treat a heteroscedastic model and evaluate the upper bounds
for the covariance matrices of several typical GLSEs including the unrestricted
GLSE and the OLSE. Since the implications of the results derived here are quite
similar to those of Section 4.4, we often omit the details.

General results. The model considered here is the p-equation heteroscedastic
model treated in Example 4.2, where we have observed that the unrestricted GLSE
defined in (4.38) belongs to the class C3.

To state the results in a general setup, consider a GLSE of the form

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �(θ̂), (4.139)

where θ̂ is an estimator of θ = (θ1, . . . , θp)′, and suppose that θ̂ depends only on
the statistic

sss =




s2
1
...

s2
p


 : p × 1

in (4.38), say

θ̂ =




θ̂1
...

θ̂p


 =




θ̂1(sss)
...

θ̂p(sss)


 = θ̂ (sss) : p × 1. (4.140)
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Then, it is easily seen that a GLSE b(�̂) with �̂ = �(θ̂(sss)) belongs to the class
C3, that is,

E[b(�̂)|�̂] = β,

Cov(b(�̂)|�̂) = H(�̂, �), (4.141)

where the function H is defined by

H(�̂, �) = (X′�̂−1X)−1X′�̂−1��̂−1X(X′�̂−1X)−1. (4.142)

The results in Section 4.3 yield the upper bound α0(b(�̂)) and α1(b(�̂)) for
the covariance matrix of a GLSE b(�̂) ∈ C3. In fact, the latent roots of the matrix
�−1/2�̂�−1/2 are given by π1 (with multiplicity n1), π2 (with multiplicity n2),
. . . , πp (with multiplicity np), where

πj = θ̂j /θj (j = 1, . . . , p).

Let π(j) be the j -th smallest one:

π(1) ≤ · · · ≤ π(p). (4.143)

Then α0(b(�̂)) is obtained from Theorem 4.4 as

Cov(b(�)) ≤ Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�)) (4.144)

with

α0(b(�̂)) = E

{
(π(1) + π(p))

2

4π(1)π(p)

}
. (4.145)

Here in (4.144),

b(�) = (X′�−1X)−1X′�−1y

is the GME and hence

Cov(b(�)) = (X′�−1X)−1.

Further, applying Lemma 4.6 and Theorem 4.7 yields the greater upper bound
α1(b(�̂)):

α0(b(�̂)) ≤ α1(b(�̂))

= E





 1

p

∑p

j=1 π(j)∏p

j=1 π
1/p

(j)




p


= E





 1

p

∑p

j=1 πj∏p

j=1 π
1/p
j




p
 , (4.146)
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where the last equality follows from the permutation invariance. Thus, it follows
that for any b(�̂) ∈ C3,

Cov(b(�)) ≤ Cov(b(�̂))

≤ α0(b(�̂)) Cov(b(�))

≤ α1(b(�̂)) Cov(b(�)). (4.147)

When p = 2, that is, when the model consists of two homoscedastic equations,
Proposition 4.8 guarantees that

α0(b(�̂)) = α1(b(�̂)).

Both the unrestricted GLSE and the OLSE b(In) = (X′X)−1X′y are special
cases of (4.139). The unrestricted GLSE is a GLSE

b(�̂0) = (X′�̂−1
0 X)−1X′�̂−1

0 y

with

�̂0 = �(sss) =




s2
1In1 0

. . .

0 s2
pInp


 ,

which is obtained by letting θ̂ (sss) = sss in (4.140). On the other hand, the OLSE is
given by

b(In) = (X′X)−1X′y,

which is a GLSE b(�̂) with

θ̂ (sss) ≡ 1p ≡




1
...

1


 : p × 1

and hence

�̂ = �(1p) =




In1 0
. . .

0 Inp


 = In.

Efficiency comparison between the unrestricted GLSE and the OLSE. By
letting θ̂ (sss) = sss, the two upper bounds for the covariance matrix of the unrestricted
GLSE b(�̂0) are obtained as

α0(b(�̂0)) = E

{
(v(1) + v(p))

2

4v(1)v(p)

}
(4.148)
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and

α1(b(�̂0)) = E





 1

p

∑p

j=1 vj∏p

j=1 v
1/p

j




p
 , (4.149)

where

v(1) ≤ · · · ≤ v(p)

are the ordered values of vj = s2
j /θj ’s (j = 1, . . . , p).

As for the OLSE b(Ip ⊗ Im), we have the following two equalities:

α0(b(In)) = (θ(1) + θ(p))
2

4θ(1)θ(p)

(4.150)

and

α1(b(In)) =

 1

p

∑p

j=1 θj∏p

j=1 θ
1/p
j




p

, (4.151)

where

θ(1) ≤ · · · ≤ θ(p)

are the ordered values of θ1, . . . , θp. When p = 2, the two upper bounds reduce
to

α0(b(In)) = α1(b(In)) = (θ1 + θ2)
2

4θ1θ2
= (1 + η)2

4η
, (4.152)

where

η = θ1/θ2.

The upper bounds (4.150) and (4.151) can be viewed as measures of the spheric-
ity of the matrix �. This suggests that the OLSE can be more efficient than the
unrestricted GLSE in the sense of the upper bounds, if the matrix � is close to
the identity matrix up to a multiplicative constant. If not, the unrestricted GLSE is
preferable. To see this more precisely, we first evaluate the upper bound α0(b(�̂0))

in (4.148) for the case in which p = 2.
The following theorem is due to Kariya (1981a).

Theorem 4.15 Let p = 2 and suppose that qj > 2 (j = 1, 2). Then the upper
bound for the covariance matrix of the unrestricted GLSE b(�̂0) is given by

α0(b(�̂0)) = α1(b(�̂0)) = 1 + 1

2(q1 − 2)
+ 1

2(q2 − 2)
, (4.153)
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that is,

Cov(b(�)) ≤ Cov(b(�̂0))

≤
[

1 + 1

2(q1 − 2)
+ 1

2(q2 − 2)

]
Cov(b(�)). (4.154)

Proof. This result will be proved as a special case of Theorem 4.16.

The upper bound α0(b(�̂0)) is a monotonically decreasing function of the degrees
of freedom q1 and q2. Furthermore, as qj ’s go to infinity, it converges to 1:

lim
q1,q2→∞ α0(b(�̂0)) = 1. (4.155)

Comparing α0(b(�̂0)) with α0(b(In)), we see that α0(b(In)) ≤ α0(b(�̂0)) holds if
and only if the variance ratio η = θ1/θ2 satisfies

(1 + 2c) − 2
√

c(1 + c) ≤ η ≤ (1 + 2c) + 2
√

c(1 + c), (4.156)

where c = α0(b(�̂0)) − 1. This interval always contains 1 and

(1 + 2c) ± 2
√

c(1 + c) → 1 as q1, q2 → ∞.

Thus, we see that the OLSE can be more efficient in terms of the upper bound
than the unrestricted GLSE in the context of the upper bounds when the ratio η is
close to 1 and the sample size is small.

Derivation of the optimal GLSE. Next, we derive a GLSE b(�̂B) that is optimal
in the sense that

α0(b(�̂B)) ≤ α0(b(�̂)) (4.157)

holds for any GLSE b(�̂) in an appropriate subclass of C3.
To do so, let p = 2 and consider the GLSE

b(�̂) = (X′�̂−1X)−1X′�̂−1y

with �̂ = �(θ̂), where

θ̂ =
(

θ̂1

θ̂2

)
=

(
θ̂1(sss)

θ̂2(sss)

)
= θ̂ (sss) : 2 × 1 (4.158)

and sss = (s2
1 , s2

2)′ is defined in (4.38). It follows from (4.144) that, the GLSE defined
above satisfies

Cov(b(�)) ≤ Cov(b(�̂)) ≤ α0(b(�̂)) Cov(b(�)) (4.159)



SUR AND HETEROSCEDASTIC MODELS 131

with

α0(b(�̂)) = E[L0(θ̂ , θ)] and

L0(θ̂ , θ) = [(θ̂1/θ1) + (θ̂2/θ2)]2

4(θ̂1/θ1)(θ̂2/θ2)
. (4.160)

Thus, the problem is reduced to that of finding an optimal estimator

θ̂B = θ̂B(sss) : 2 × 1

of θ = (θ1, θ2)
′ with respect to the loss function L0.

Let G = (0, ∞) × (0, ∞). The group G acts on the space X = (0, ∞) × (0, ∞)

of sss = (s2
1 , s2

2)′ via the group action

sss =
(

s2
1

s2
2

)
→

(
g1s

2
1

g2s
2
2

)
≡ gsss, (4.161)

where g = (g1, g2) ∈ G. Since

L(qj s
2
j /θj ) = χ2

qj
(j = 1, 2),

this action induces the following action on the space 
 = (0, ∞) × (0, ∞) of
θ = (θ1, θ2)

′:

θ =
(

θ1
θ2

)
→

(
g1θ1
g2θ2

)
≡ gθ. (4.162)

Hence, it is natural to restrict our consideration to the estimators θ̂ (sss) satisfying

θ̂ (gsss) =
(

θ̂1(gsss)

θ̂2(gsss)

)
=

(
g1θ̂1(sss)

g2θ̂2(sss)

)
≡ gθ̂(sss) (4.163)

for any g = (g1, g2) ∈ G. An estimator θ̂ that satisfies this condition is called an
equivariant estimator of θ with respect to G. The loss function L0 in (4.160) is
invariant under these transformations:

L0(gθ̂ , gθ) = L0(θ̂ , θ) for any g ∈ G. (4.164)

As is easily shown (see Problem 4.5.1), the class, say F , of equivariant esti-
mators is characterized by

F =
{

θ̂ (sss) =
(

a1s
2
1

a2s
2
2

) ∣∣∣ aj > 0, j = 1, 2

}
. (4.165)
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This leads to the class CF
3 of GLSEs, where

CF
3 = {b(�̂) ∈ C3 | �̂ = �(θ̂), θ̂ ∈ F}. (4.166)

While the unrestricted GLSE b(�̂0) is a member of CF
3 , the OLSE is not.

As in the case of the SUR model, we can set a2 = 1 in the definition of the
class F without loss of generality, because the loss function L0 is scale-invariant
in the sense that

L0(aθ̂ , θ) = L0(θ̂ , θ) for any a > 0. (4.167)

This corresponds to the fact that b(a�̂) = b(�̂) for any a > 0. The following
theorem due to Bilodeau (1990) derives the best equivariant estimator θ̂B with
respect to the loss function L0.

Theorem 4.16 Let p = 2 and suppose qj > 2 (j = 1, 2). Then, for any estimator
of the form

θ̂ =
(

ds2
1

s2
2

)
∈ F,

the risk function

R(θ̂, θ) = E[L0(θ̂ , θ)]

is given by

R(θ̂, θ) = 1 + (1 − d)2

4d
+ d−1

2(q1 − 2)
+ d

2(q2 − 2)
, (4.168)

and it is minimized when

d =
√

q1(q2 − 2)

(q1 − 2)q2
≡ dB.

Thus, the GLSE b(�̂B) with �̂B = �(θ̂B) where

θ̂B =
(

dBs2
1

s2
2

)
(4.169)

satisfies (4.157) among the subclass CF
3 .

Proof. For any θ̂ = (ds2
1 , s2

2)′, let

η = θ1/θ2 and η̂ = θ̂1/θ̂2.



SUR AND HETEROSCEDASTIC MODELS 133

First observe that

L0(θ̂ , θ) = 1 + (η̂ − η)2

4η̂η

= 1 + 1

4

[
η̂

η
+ η

η̂
− 2

]

≡ L̃0(η̂/η), (4.170)

where

L̃0(t) = 1 + 1

4

(
t + 1

t
− 2

)
.

Let xj = qj s
2
j /θj . Then xj ’s are independently distributed as χ2

qj
, and η̂/η is

expressed as

η̂

η
= d

q2

q1

x1

x2
,

from which both

E
(
η̂/η

) = d
q2

q2 − 2
and E

(
η/η̂

) = 1

d

q1

q1 − 2

follow. This yields (4.168). The right-hand side of (4.168) is clearly minimized
when d = dB . This completes the proof.

By using

b(a�̂) = b(�̂) and �(aθ̂) = a�(θ̂),

another expression of θ̂B is obtained:

θ̂B =



√
q1

q1−2 s2
1√

q2
q2−2 s2

2


 .

which of course yields the GLSE b(�̂B). The result of Theorem 4.15 follows by
substituting d = 1 in the right-hand side of (4.168).

The loss function L̃0(η̂/η) satisfies the following property

L̃0(t) = L̃0(1/t), (4.171)

implying that, as a loss function for choosing an estimator η̂ of η, the function L̃0
equally penalizes underestimates and overestimates.



134 SUR AND HETEROSCEDASTIC MODELS

The case in which p ≥ 3. Next, we treat the case in which p ≥ 3 and consider
the efficiency of the unrestricted GLSE b(�̂0) with �̂0 = �(sss). The upper bound
α0(b(�̂0)) for the covariance matrix of the unrestricted GLSE is given by (4.148).
Although this expression is simple, the evaluation is difficult since the upper bound
α0 depends on the extreme values v(1) and v(p). The following result is due to
Kurata and Kariya (1996).

Theorem 4.17 When qj > 2 (j = 1, . . . , p), the upper bound for the covariance
matrix of the unrestricted GLSE b(�̂0) is given by

α0(b(�̂0)) ≤ α1(b(�̂0))

= 1

pp

∑ p!

p1! . . . pp!

p∏
j=1

(
2

qj

)pj −1 (qj/2 + nj − 1)

(qj /2)
,

where the sum on the right-hand side carries over pj ≥ 0 and
∑p

j=1 pj = p. Fur-
thermore,

1 ≤ α0(b(�̂0)) ≤ α1(b(�̂0)) → 1 (4.172)

as q1, . . . , qp → ∞.

Proof. The proof is straightforward and is hence omitted.

The implication of this result is quite similar to that of Section 4.4 and is also
omitted.

4.6 Empirical Example: CO2 Emission Data

In this section, by using the GLSEs in a two-equation SUR model, we give an
example of analysis on CO2 emission data. The discussion here is a continuation
of Section 2.5 of Chapter 2.

Two-equation SUR model. The data in Tables 2.1 and 2.2 show the volume of
CO2 emission and GNP in Japan and the USA from 1970 to 1996. The values of
GNP are deflated by the 1990 prices.

Let us consider the following SUR model consisting of two simple linear
regression equations:

y = Xβ + ε (4.173)

with n = mp, m = 27, p = 2, k = k1 + k2, k1 = k2 = 2, and

y =
(

y1
y2

)
: n × 1, X =

(
X1 0
0 X2

)
: n × k,

β =
(

β1
β2

)
: k × 1, ε =

(
ε1
ε2

)
: n × 1,
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where

yj =




log(CO2j1)
...

log(CO2jm)


 : m × 1,

Xj =




1 log(GNPj1)
...

...

1 log(GNPjm)


 : m × kj ,

βj =
(

βj1
βj2

)
: kj × 1, εj =




εj1
...

εjm


 : m × 1.

Here, the suffix j = 1 denotes Japan and j = 2 the USA. So β12 and β22 are
understood as the elasticity of CO2 relative to the GNP in Japan and the USA,
respectively. Suppose that the error term ε is distributed as the normal distribution:

L(ε) = Nn(0, � ⊗ Im) with � = (σij ) ∈ S(2), (4.174)

where S(2) denotes the set of 2 × 2 positive definite matrices.
We begin by estimating the model using the OLSE:

b(I2 ⊗ Im) = (X′X)−1X′y (4.175)

=
(

(X′
1X1)

−1X′
1y1

(X′
2X2)

−1X′
2y2

)
: k × 1,

which of course gives an equivalent result when applying the OLS estimation
procedure to the two equations separately. The estimate of β = (β ′

1, β ′
2)

′ obtained
by the OLSE is

b(I2 ⊗ Im) = ((4.754, 0.364)′, (6.102, 0.275)′)′.

Thus, the models are estimated as

log(CO21) = 4.754 + 0.364 log(GNP1) : Japan

log(CO22) = 6.102 + 0.275 log(GNP2) : USA. (4.176)

The elasticities of CO2 in Japan and the USA are estimated at 0.364 and 0.275
respectively.

The estimation procedure above ignores the correlation between the two regres-
sion equations. The matrix � is estimated by

�̂ = (σ̂ij ) = (e′
iej /m) : 2 × 2 (4.177)

=
(

0.002515 0.001456
0.001456 0.001439

)
, (4.178)
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where e is the OLS residual vector defined by

e = [In − X(X′X)−1X′]y

=
(

[Im − X1(X
′
1X1)

−1X′
1]y1

[Im − X2(X
′
2X2)

−1X′
2]y2

)

=
(

e1
e2

)
: n × 1. (4.179)

The correlation between the two regression equations is large and hence needs to
be taken into account in the estimation of the coefficients. In fact, the correlation
coefficient

ρ = σ12/(σ11σ22)
1/2

is estimated as

ρ̂ = σ̂12

(σ̂11σ̂22)1/2
(4.180)

= 0.001456

(0.002515 × 0.001439)1/2

= 0.7656. (4.181)

Let us use this information by the SUR model to improve the efficiency of the
OLSE. In our context, the efficiency may be discussed in terms of the upper bounds.
As is shown in Corollary 4.5, the upper bound α0(b(I2 ⊗ Im)) of the covariance
matrix of the OLSE is given by

α0(b(I2 ⊗ Im)) = (λ1 + λ2)
2

4λ1λ2
= (tr(�))2

4|�| , (4.182)

where λ1 ≤ λ2 denotes the latent roots of �. By replacing � in the right-hand side
of the above equality by the estimate �̂ in (4.178), the upper bound α0(b(I2 ⊗ Im))

is estimated as

α0(b(I2 ⊗ Im)) = (tr(�̂))2

4|�̂| = 2.6095,

which is quite large.
On the other hand, the restricted Zellner estimator (RZE) is given by

b(�̂ ⊗ Im) = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1 ⊗ Im)y

= ((4.686, 0.375)′, (6.065, 0.279)′)′. (4.183)

Thus, the model is estimated as

log(CO21) = 4.686 + 0.375 log(GNP1) : Japan

log(CO22) = 6.065 + 0.279 log(GNP2) : USA. (4.184)
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The UZE is an alternative GLSE for this model. The UZE is a GLSE b(�̂ ⊗ Im)

with �̂ = S/q, where

S = Y ′
∗[Im − X∗(X′

∗X∗)+X′
∗]Y∗. (4.185)

Here, A+ denotes the Moore–Penrose generalized inverse of A, and

Y∗ = (y1, y2) : m × 2, X∗ = (X1, X2) : m × k,

q = m − rankX∗ = 27 − 3 = 24.

The matrix � is estimated by �̂ = S/q as

S/q = 1

24

(
0.06013 0.02925
0.02925 0.02563

)

=
(

0.002505 0.001219
0.001219 0.001068

)
. (4.186)

From this, the value of the UZE is given by

b(S/q ⊗ Im) = b(S ⊗ Im)

= (X′(S−1 ⊗ Im)X)−1X′(S−1 ⊗ Im)y

= ((4.673, 0.378)′, (6.057, 0.280)′)′. (4.187)

Hence, the model is estimated by

log(CO21) = 4.673 + 0.378 log(GNP1) : Japan

log(CO22) = 6.057 + 0.280 log(GNP2) : USA. (4.188)

The elasticity of CO2 in Japan and the USA is given by 0.378 and 0.280 respec-
tively. The above three estimates commonly indicate that the elasticity of CO2 in
Japan is higher than the elasticity of CO2 in the USA.

Concerning the efficiency of the UZE, the upper bound α(b(S ⊗ Im)) for the
covariance matrix Cov(b(S ⊗ Im)) of the UZE relative to that of the GME b(� ⊗
Im) is given by

α0(b(S ⊗ Im)) = 1 + 2

q − 3
= 1 + 2

24 − 3
= 1.0952. (4.189)

Hence, the result obtained by the RZE and the UZE may be more dependable
than that of the OLSE. Consequently, so long as the specification of the model is
accepted, it is better to use the GLSEs.
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Modification of model. The SUR model considered above requires that the mar-
ginal distribution of the error term εj of each regression equation is normal with
covariance matrix σjj Im:

L(εj ) = Nm(0, σjj Im) (j = 1, 2). (4.190)

However, as has been observed in Section 2.5, the values of the Durbin–Watson
statistic

DWj =
∑m

i=2(eji − ej,i−1)
2∑m

i=1 e2
ji

(j = 1, 2)

calculated from each equation may suggest the presence of serial correlation among
the error terms εji’s, where

ej =




ej1
...

ejm


 : m × 1 (j = 1, 2).

In fact, we obtain

DW1 = 0.5080 and DW2 = 0.4113,

which shows that the assumption (4.190) is inappropriate. Hence, we modify the
model in order to dissolve the serial correlation.

In Nawata (2001), it is shown that the optimal model for Japanese data in terms
of AIC (Akaike Information Criterion) among the following six models is (3):

(1) log(CO2) = β1 + β2 log(GNP),

(2) log(CO2) = β1 + β2 log(GNP) + β3[log(GNP)]2,

(3) log(CO2) = β1 + β2 log(GNP) + β3[log(GNP)]2 + β4[log(GNP)]3,

(4) log(CO2) = β1 + β2D + β3 log(GNP),

(5) log(CO2) = β1 + β2 log(GNP) + β3
[
D log(GNP)

]
,

(6) log(CO2) = β1 + β2D + β3 log(GNP) + β4
[
D log(GNP)

]
,

where D = (d1, . . . , dm)′ is a dummy variable such that

di =
{

0 (i = 1, . . . , 11)

1 (i = 12, . . . , 27(= m))

Arguing in the same way, we can see that the model (6) is optimal for USA
data. Calculation of AIC and several relevant statistics including t-values, R2,
Durbin–Watson statistics and so on, is left to the readers (see Problem 4.6.1).
Note that model (6) is rewritten as

log(CO22i ) = β1 + β3 log(GNP2i ) + ε2i (i = 1, . . . , 11)

log(CO22i ) = β∗
1 + β∗

3 log(GNP2i ) + ε2i (i = 12, . . . , 27), (4.191)
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where β∗
1 = β1 + β2 and β∗

3 = β3 + β4. Here, β2 = 0 (β4 = 0) in the model (6) is
equivalent to β1 = β∗

1 (β3 = β∗
3 ) in (4.191).

The newly adopted model is the model (4.173) with k1, k2, k, X1 and X2
replaced by k1 = 4, k2 = 4, k = k1 + k2 = 8,

X1 =




1 log(GNP11)
[
log(GNP11)

]2 [
log(GNP11)

]3

...
...

...
...

1 log(GNP1m)
[
log(GNP1m)

]2 [
log(GNP1m)

]3




: m × k1 : Japan

and

X2 =




1 d1 log(GNP21) d1 log(GNP21)
...

...
...

...

1 dm log(GNP2m) dm log(GNP2m)




: m × k2 : USA.

The model is estimated by the OLSE b(I2 ⊗ Im) in (4.175) as

log(CO21) = −419.30 + 224.85 log(GNP1) − 39.549 [log(GNP1)]
2

+ 2.319 [log(GNP1)]
3 : Japan

log(CO22) = 5.721 − 2.370 D + 0.323 log(GNP2)

+ 0.268 D log(GNP2) : USA. (4.192)

The matrix � is estimated by �̂ in (4.177) as

�̂ =
(

0.0006597 0.0001202
0.0001202 0.0002989

)
,

from which ρ̂ in (4.180) is calculated as

ρ̂ = 0.2706.

This suggests high efficiency of the OLSE. In fact, the upper bound α0(b(I2 ⊗ Im))

in (4.182) is estimated by

α0(b(I2 ⊗ Im)) = (tr(�̂))2

4|�̂| = 1.2571,

which is much smaller than that of the previous model.
The RZE b(�̂ ⊗ Im) in (4.183) estimates the model by

log(CO21) = −402.77 + 216.15 log(GNP1) − 38.027
[
log(GNP1)

]2

+ 2.230
[
log(GNP1)

]3 : Japan

log(CO22) = 5.910 − 2.456 D + 0.300 log(GNP2)

+ 0.280 D log(GNP2) : USA. (4.193)
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On the other hand, the estimate of � obtained via the matrix S in (4.185) is
given by

S/q = 1

20

(
0.013365 0.0042747

0.0042747 0.0073109

)

=
(

0.0006683 0.0002137
0.0002137 0.0003656

)
,

where q = m − rankX∗ = 27 − 7 = 20. The UZE b(S ⊗ Im) estimates the mod-
el by

log(CO21) = −388.17 + 208.48 log(GNP1) − 36.683 [log(GNP1)]
2

+ 2.152 [log(GNP1)]
3 : Japan

log(CO22) = 6.079 − 2.538 D + 0.280 log(GNP2)

+ 0.290 D log(GNP2) : USA. (4.194)

The upper bound α0(b(S ⊗ Im)) in (4.189) is given by

α0(b(S ⊗ Im)) = 1 + 2

20 − 3
= 1.1177.

Clearly,

α0(b(S ⊗ Im)) < α0(b(I2 ⊗ Im))

holds. In this case, the estimate of ρ is not so large and hence the efficiency of the
OLSE is expected to be high. However, since the sample size m(= 27) of each
equation is moderate, the upper bound α0(b(S ⊗ Im)) becomes smaller than that
of the OLSE.

4.7 Problems

4.2.1 In the heteroscedastic model in Example 4.2, show that X′
iεi’s and s2

j ’s are
independent (i, j = 1, . . . , p).

4.2.2 In the SUR model in Example 4.3, show that S and X′
iεj ’s are independent

(i, j = 1, . . . , p).

4.3.1 Verify the two invariance properties of L0(�̂, �): (4.88) and (4.89).

4.3.2 Suppose that the random variables y1, . . . , yn are independent with

L(yj ) = N(0, σ 2).

As is well known, the minimum variance unbiased estimator (UMVUE) of σ 2 in
this setup is given by S2 = 1

n

∑n
i=1 y2

j . On the other hand, let E be a class of
estimators of the form

σ̂ 2 = σ̂ 2(c) = cS2 with c > 0.
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(1) Find the optimal estimator with respect to the loss function

L1(σ̂
2, σ 2) =

(
σ̂ 2

σ 2
− 1

)2

in the class E .

(2) Find the optimal estimator with respect to the loss function

L2(σ̂
2, σ 2) =

(
σ 2

σ̂ 2
− 1

)2

in the class E .

(3) Find the optimal estimator with respect to the following symmetric inverse
loss function

L0

(
σ̂ 2(c), σ 2

)
= 1

4

[
σ 2

σ̂ 2
+ σ̂ 2

σ 2
− 2

]

in the class E .

4.3.3 Show the following version of Kantorovich inequality: If a function f sat-
isfies 0 < m ≤ f (x) ≤ M on a ≤ x ≤ b, then

∫ b

a

f (x)dx

∫ b

a

1

f (x)
dx ≤ (m + M)2

4mM
(b − a)2.

4.3.4 Consider the efficiency measure δ2 in (4.12). When the efficiency of the
OLSE relative to the GME is measured by

δ2 = |Cov(b(In))|/|Cov(b(�))| = |X′�X||X′�−1X|/|X′X|2,
find a proof for

1 ≤ δ2 ≤
k∏

j=1

(ωj + ωn−j+1)
2

4ωjωn−j+1
,

where 0 < ω1 ≤ · · · ≤ ωn are the latent roots of �, and n ≥ 2k (that is, n − k ≥ k)
is assumed. See Bloomfield and Watson (1975) and Knott (1975).

4.4.1 Establish Proposition 4.9.

4.4.2 Let w be a random variable such that L(w) = χ2
q . Establish the following

equality:

E(wr) = 2r
( q

2 + r
)


( q

2

) .
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4.4.3 Show that the matrix �̂(I2) in (4.128) is diagonal.

4.4.4 As is stated in Bilodeau (1990), an unattractive aspect of the optimal GLSE
b(�̂B ⊗ Im) derived in Theorem 4.14 is that it depends on the coordinate system in
which the matrix S is expressed. Bilodeau (1990) proposes a randomized estimator
of the form b(�̂ ⊗ Im) with

�̂ =
{

�̂P1 ≡ P1T DBT ′P ′
1 with probability 1/2

�̂P2 ≡ P2T DBT ′P ′
2 with probability 1/2,

where P1 and P2 are the 2 × 2 permutation matrices. Discuss the property of this
estimator. Further, consider the following nonrandomized version of this:

�̂ = 1

2

2∑
j=1

�̂Pj
.

See Remarks 2 and 3 of Bilodeau (1990). Some related results in the context
of estimation of covariance matrix will be found in Takemura (1984) and Perron
(1992).

4.5.1 Verify (4.165).

4.6.1 Complement the analysis in Section 4.6 by calculating several relevant statis-
tics including AIC, t-values, R2, and so on.



5

Efficiency of GLSEs with
Applications to a Serial
Correlation Model

5.1 Overview

In Chapter 4, on the basis of our definition, we evaluated the finite sample efficiency
of various typical generalized least squares estimators (GLSEs) possessing a simple
covariance structure (see (4.24)). However, the structure is not necessarily shared
by GLSEs in the models with serially correlated errors. Hence, in this chapter,
we treat the problem of deriving an upper bound for the risk matrix of a GLSE
in some models with serially correlated errors. We also treat the case of a two-
equation heteroscedastic model. To describe the problem, let the general linear
regression model be

y = Xβ + ε, (5.1)

where

y : n × 1, X : n × k, and rank X = k.

We assume that the distribution P ≡ L(ε) of the error term ε satisfies

L(ε) ∈ Pn(0, σ 2�) with σ 2� ∈ S(n), (5.2)

where Pn(0, �) denotes the set of distributions on Rn with mean 0 and covariance
matrix �, and S(n) the set of n × n positive definite matrices. The matrix � is
assumed to be a continuous function of an unknown one-dimensional parameter θ :

� = �(θ),

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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where

�(θ)−1 = In + λn(θ)C (θ ∈ �). (5.3)

Here, C is an n × n known nonnegative definite matrix with latent roots 0 ≤ d1 ≤
· · · ≤ dn, � is an open interval in R1 and λn = λn(θ) is a continuous function on
�. The functional form of λn is assumed to be known. Although λn is allowed to
depend on n, we omit the suffix n for notational simplicity.

A GLSE considered here is given by

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �(θ̂), (5.4)

where θ̂ ≡ θ̂ (e) is an estimator of θ based on the ordinary least squares (OLS)
residual vector

e = Ny with N = In − X(X′X)−1X′. (5.5)

A sufficient condition for which b(�̂) has finite second moment is that θ̂ (e) is a
continuous scale-invariant function of e:

θ̂ (ae) = θ̂ (e) for any a > 0. (5.6)

The risk matrix of the GLSE b(�̂) is given by

R(b(�̂), β) = E{(b(�̂) − β)(b(�̂) − β)′}. (5.7)

As is shown in Theorem 3.9, the risk matrix is bounded below by the covariance
matrix of the Gauss–Markov estimator (GME)

b(�) = (X′�−1X)−1X′�−1y,

when the distribution P = L(ε) of error term ε belongs to the subclass Qn(0, σ 2�)

of Pn(0, σ 2�), that is,

R(b(�̂), β) ≥ Cov(b(�)) = σ 2(X′�−1X)−1. (5.8)

(For definition of the class Qn(0, σ 2�), see (3.86) or Section 5.2). In this chapter,
we derive an upper bound for the risk matrix of a GLSE b(�̂) relative to the
covariance matrix of the GME b(�):

R(b(�̂), β) ≤ γ0(b(�̂)) Cov(b(�)), (5.9)

where γ0 = γ0(b(�̂)) is a nonrandom real-valued function associated with b(�̂),
and is viewed as a measure of the efficiency of b(�̂).

To present these results, this chapter has the following composition:

5.2 Upper Bound for the Risk Matrix of a GLSE

5.3 Upper Bound Problem for a GLSE in the Anderson Model
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5.4 Upper Bound Problem for a GLSE in a Two-equation Heteroscedastic Model

5.5 Empirical Example: Automobile Data.

In Section 5.2, an upper bound of the form (5.9) will be obtained under a general
setup. The result is applied to typical GLSEs for two specific models in Sections 5.3
and 5.4. The Anderson model and a two-equation heteroscedastic model will be
treated. Section 5.5 will be devoted to illustrating an empirical analysis on an
automobile data by using the GLSEs in a heteroscedastic model.

Finally, we note that the results in this chapter are applicable to the OLSE

b(In) = (X′X)−1X′y,

since the OLSE is a GLSE with θ̂ (e) ≡ c, where c is a constant determined by

λ(c) = 0.

5.2 Upper Bound for the Risk Matrix of a GLSE

This section gives an upper bound of the form (5.9) under a general setup.

Decomposition of a GLSE. We begin by providing a decomposition of the risk
matrix of a GLSE. To do so, as before, let Z be any n × (n − k) matrix such that

Z′X = 0, Z′Z = In−k and ZZ′ = N,

where N is defined in (5.5). Transform the matrices X and Z to X and Z respec-
tively, via

X = �−1/2XA−1/2 : n × k,

Z = �1/2ZB−1/2 : n × (n − k), (5.10)

where

A = X′�−1X ∈ S(k) and B = Z′�Z ∈ S(n − k).

Then the matrix 
 defined by


 =
(

X
′

Z
′

)

is an n × n orthogonal matrix. Using this matrix, we define the two uncorrelated
vectors η1 : k × 1 and η2 : (n − k) × 1 by

η = 
ε̃ =
(

X
′
ε̃

Z
′
ε̃

)
=
(

η1
η2

)
, (5.11)
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where
ε̃ = �−1/2ε.

Let
� = �−1/2�̂�−1/2. (5.12)

Then the GLSE b(�̂) in (5.4) can be decomposed in terms of η1 and η2 as

b(�̂) − β = (X′�̂−1X)−1X′�̂−1ε

= A−1/2(X
′
�

−1
X)−1X

′
�

−1
[Xη1 + Zη2]

= A−1/2η1 + A−1/2(X
′
�

−1
X)−1X

′
�

−1
Zη2 (5.13)

= [b(�) − β] + [b(�̂) − b(�)],

where the second equality follows by X = �1/2XA1/2 and ε = �1/2
′η. As is
shown in Chapter 3, if the distribution P = L(ε) is in the class

Qn(0, σ 2�) = {P ∈ Pn(0, σ 2�)|EP {η1|η2} = 0 a.s.},
then the risk matrix R(b(�̂), β) is decomposed as

R(b(�̂), β) = Cov(b(�)) + E{(b(�̂) − b(�))(b(�̂) − b(�))′}
= σ 2A−1 + A−1/2E(��′)A−1/2, (5.14)

where

� = (X
′
�

−1
X)−1X

′
�

−1
Zη2 : k × 1. (5.15)

See Problem 5.2.2. Note that the OLS residual vector e is a function of η2 as

e = ZB1/2η2.

The first term of (5.14) is the covariance matrix of the GME and the second term
reflects the loss of efficiency due to estimating θ in � = �(θ). The evaluation of
the second term is our concern.

Derivation of upper bound. To evaluate the quantity E(��′), decompose the
space Rn of y as

Rn = B1 ∪ B2

with
B1 = {y ∈ Rn|λ̂ ≥ λ} and B2 = {y ∈ Rn|λ̂ < λ},

where λ = λ(θ) and

λ̂ = λ(θ̂) = λ(θ̂(e)).
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And let

W1 = 1, W2 = (1 + λdn)
2

(1 + λ̂dn)2
. (5.16)

Let  be an n × n orthogonal matrix such that

 ′C = D ≡




d1 0
. . .

0 dn


 ,

where d1 ≤ · · · ≤ dn are the latent roots of C. Then clearly the matrices � and �̂

are expressed as

�−1 = (In + λD) ′

= 




1 + λd1 0
. . .

0 1 + λdn


 ′,

and

�̂−1 = (In + λ̂D) ′

= 




1 + λ̂d1 0
. . .

0 1 + λ̂dn


 ′,

respectively. Hence,

�1/2 = 




(1 + λd1)
−1/2 0

. . .

0 (1 + λdn)
−1/2


 ′,

from which the matrix �
−1

can be rewritten as

�
−1 = 




1+λ̂d1
1+λd1

0
. . .

0 1+λ̂dn

1+λdn


 ′

= 


In + (λ̂ − λ)




d1
1+λd1

0
. . .

0 dn

1+λdn




 ′

= In + (λ̂ − λ)F (say). (5.17)
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Here, of course,

F = 




d1
1+λd1

0
. . .

0 dn

1+λdn


 ′ : n × n. (5.18)

Define

V = X
′
FZ : k × (n − k).

Note that the matrix V is nonrandom. The following theorem is due to Toyooka
and Kariya (1986).

Theorem 5.1 For an estimator θ̂ = θ̂ (e) of θ , let

Gj = χBj

(λ̂ − λ)2Wjη
′
2V

′V η2

σ 2
(j = 1, 2), (5.19)

where χB denotes the indicator function of a set B. Then, for the GLSE b(�̂) with
�̂ = �(θ̂), the following inequality holds:

(b(�̂) − b(�))(b(�̂) − b(�))′ ≤ (G1 + G2)(σ
2A−1), (5.20)

and thus an upper bound for the risk matrix is given by

R(b(�̂), β) ≤ γ0(b(�̂))Cov(b(�)) (5.21)

with

γ0(b(�̂)) = 1 + g1 + g2, (5.22)

where gj = E(Gj) (j = 1, 2).

Proof. The vector � is rewritten as

� = (λ̂ − λ)J−1X
′
FZη2

= (λ̂ − λ)J−1V η2, (5.23)

where

J = Ik + (λ̂ − λ)X
′
FX. (5.24)

By using the Cauchy–Schwarz inequality (2.70), we have, for any a ∈ Rk ,

a′��′a = [(λ̂ − λ)a′J−1V η2]2

≤ (λ̂ − λ)2(a′J−2a)(η′
2V

′V η2). (5.25)
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On the set B1 = {λ̂ ≥ λ}, the inequality

J ≥ Ik

holds since X
′
FX ≥ 0. Thus, we have

χB1a
′J−2a ≤ χB1W1a

′a, (5.26)

where W1 = 1. On the other hand, by noting that the function f (x) = x/(1 +
λx) (x ≥ 0) is increasing in x for any λ, it follows that

F ≤ dn

1 + λdn

Ik. (5.27)

This implies that on the set B2 = {λ̂ < λ}, the matrix J is bounded from below
by W

−1/2
2 Ik , because

J = Ik + (λ̂ − λ)X
′
FX

≥ Ik + (λ̂ − λ)
dn

(1 + λdn)
Ik

= W
−1/2
2 Ik, (5.28)

where W2 = (1 + λdn)
2/(1 + λ̂dn)

2. This yields

χB2a
′J−2a ≤ χB2W2a

′a. (5.29)

Therefore, from (5.25), (5.26) and (5.29), the following inequality is obtained: for
any a ∈ Rk ,

a′��′a ≤ (λ̂ − λ)2{W1χB1 + W2χB2}(a′a)(η′
2V

′V η2), (5.30)

or equivalently,

��′ ≤ (λ̂ − λ)2{W1χB1 + W2χB2}η′
2V

′V η2 Ik, (5.31)

which is further equivalent to

��′ ≤ (G1 + G2)σ
2Ik. (5.32)

Hence, we obtain

A−1/2��A−1/2 ≤ (G1 + G2)σ
2A−1,

which is equivalent to (5.20). Further,

σ 2A−1 + A−1/2��A−1/2 ≤ (1 + G1 + G2)σ
2A−1.

This completes the proof.

Combining this result with (5.8), we obtain the following inequality:

Cov(b(�)) ≤ R(b(�̂), β) ≤ γ0(b(�̂))Cov(b(�)). (5.33)
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Interpretation of the upper bound as a loss function. The upper bound γ0 =
γ0(b(�̂)) thus derived can be viewed as a loss function for choosing an estimator
θ̂ in the GLSE b(�(θ̂)). To see this, let

ξj = 1 + λdj (j = 1, · · · , n)

and ξ̂n = 1 + λ̂dn. Then ξ1 ≤ · · · ≤ ξn are the latent roots of the matrix �−1, and
ξ̂n is interpreted as an estimator of ξn. By noting that the factor η′

2V
′V η2 in (5.20)

is free from θ̂ , we rewrite G1 + G2 as

G1 + G2 = Q1 × Q2 (5.34)

with
Q1 = {χ{λ̂≥λ}W1 + χ{λ̂<λ}W2}(λ̂ − λ)2/(1 + λdn)

2

= χ{λ̂≥λ} × 1 × (λ̂ − λ)2

(1 + λdn)2

+ χ{λ̂<λ} × (1 + λdn)
2

(1 + λ̂dn)2
× (λ̂ − λ)2

(1 + λdn)2

= χ{ξ̂n≥ξn}
(ξ̂n − ξn)

2

ξ2
n

+ χ{ξ̂n<ξn}
(ξ̂n − ξn)

2

ξ̂2
n

= χ{ξ̂n≥ξn}(ξ̂n/ξn − 1)2 + χ{ξ̂n<ξn}(ξn/ξ̂n − 1)2

= L(ξ̂n, ξn) (say) (5.35)

and

Q2 = (1 + λdn)
2 η′

2V
′V η2

σ 2

= ξ2
n η′

2V
′V η2

σ 2
. (5.36)

Thus, the first factor Q1 = L(ξ̂n, ξn) in the equality (5.34) is viewed as a loss
function for estimating θ via

ξn = 1 + λ(θ)dn.

As a loss function, L satisfies the following symmetric inverse property:

L(ξ̂n, ξn) = L(ξ̂−1
n , ξ−1

n ), (5.37)

which means that L equally penalizes the underestimate and the overestimate of
ξn. In the subsequent sections, this property is further investigated in the context
of the heteroscedastic model.
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Greater but simpler upper bound. Unfortunately, it is, in general, difficult to
evaluate the upper bound γ0 in an explicit way, since in most cases Q1 and Q2 in
(5.34) are correlated. Hence, we further assume that the error term ε is normally
distributed:

L(ε) = Nn(0, σ 2�(θ)), (5.38)

and derive a greater but simpler upper bound γ1. Note that the condition (5.38) is
restated in terms of η = 
�−1/2ε as

L(η) = Nn(0, σ 2In).

By applying the Cauchy–Schwarz inequality (2.79) to gj ’s, it follows that

gj = E(Gj)

= E

[
χBj

Wj (λ̂ − λ)2 × η′
2V

′V η2

σ 2

]

≤ {E[χBj
W 2

j (λ̂ − λ)4]}1/2 ×
{

E

[(
η′

2V
′V η2

σ 2

)2
]}1/2

. (5.39)

The second factor of the above inequality can be calculated by using the following
lemma whose proof is fairly straightforward and omitted (Problem 5.2.3).

Lemma 5.2 Suppose that L(v) = Nm(0, Im). Then for any m × m symmetric
matrix C, the following equality holds:

E{(v′Cv)2} = [tr(C)]2 + 2 tr(C2). (5.40)

Applying this lemma to η2/σ with L(η2/σ ) = Nn−k(0, In−k) yields

E

{(
η′

2V
′V η2

σ 2

)2
}

= [tr(V ′V )
]2 + 2 tr[(V ′V )2]

= δ2 (say), (5.41)

which leads to the following theorem due to Toyooka and Kariya (1986).

Theorem 5.3 When L(ε) = Nn(0, σ 2�(θ)), the inequality

Cov(b(�)) ≤ R(b(�̂), β) ≤ γ1(b(�̂)) Cov(b(�)) (5.42)

holds, where

γ1(b(�̂)) = 1 + (g1 + g2)δ (5.43)

with

gj = {E[χBj
W 2

j (λ̂ − λ)4]}1/2 (j = 1, 2). (5.44)
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An interpretation of the factor δ. The factor δ in γ1(b(�̂)) defined by (5.41) is
important in the sense that δ = 0 implies that

E{(b(�̂) − b(�))(b(�̂) − b(�))′} = 0,

which is clearly equivalent to the identical equality between the GLSE b(�̂) and
the GME b(�):

b(�̂) = b(�) a.s. (5.45)

Here, note that since the quantity η′
2V

′V η2 depends only on X and � and is
free from the estimator θ̂ of θ , δ does not reflect the efficiency of θ̂ . Instead,
it is a measure of the deviation of the regression model from the model with
Rao’s covariance structure. As will be investigated in Chapter 8, Rao’s covariance
structure is a relation between X and � under which the OLSE b(In) is identically
equal to the GME b(�). More precisely, the identical equality

b(In) = b(�) for any y ∈ Rn (5.46)

holds if and only if the model satisfies

X′�Z = 0. (5.47)

The covariance structure that has the structure (5.47) is called Rao’s covariance
structure. In the case in which

�−1 = In + λC,

the condition (5.47) holds if and only if

δ = 0,

which is in turn equivalent to (5.45).

Proposition 5.4 Under the covariance structure �(θ)−1 = In + λ(θ)C, δ = 0
holds if and only if X′�Z = 0.

Proof. First note that � = In − λF and hence,

� = �−1/2(In − λF)�1/2

= In − λ�−1/2F�1/2.

From (5.41), δ = 0 holds if and only if V = 0, where V = X
′
FZ. Hence, from

the definition of X and Z, the condition V = 0 is equivalent to

X′�−1/2F�1/2Z = 0,

and this holds if and only if λX′�−1/2F�1/2Z = 0, since λ(θ) = 0 implies
X′�−1/2F�1/2Z = 0. Now we have

λX′�−1/2F�1/2Z = X′(In − λ�−1/2F�1/2)Z

= X′�Z, (5.48)

where the first equality is due to X′Z = 0. This completes the proof.
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Efficiency of the OLSE. Finally, it is remarked that the results in this section are
applicable to the OLSE b(In) = (X′X)−1X′y, since the OLSE is a special case of
the GLSE in (5.4). To see this, let θ̂ = θ̂ (e) be a constant function θ̂ (e) = c with
c determined by λ(c) = 0. Then clearly,

�̂ = �(θ̂) = [In + λ(c)C]−1 = In

holds, and therefore, the GLSE b(�̂) reduces to the OLSE b(In). By using

E[η′
2V

′V η2/σ
2] = tr(V ′V ) (5.49)

and by letting λ̂ = 0 in (5.19), the upper bound γ0(b(In)) is calculated as

γ0(b(In)) = 1 + λ2[χ{λ≤0} + χ{λ>0}(1 + λdn)
2]tr(V ′V ), (5.50)

the second term of which attains zero when λ = 0 (i.e., � = In) or V = 0 (i.e.,
the model is of Rao’s covariance structure). The greater upper bound γ1(b(In)) is
also obtained from (5.44) as

γ1(b(In)) = 1 + λ4[χ{λ≤0} + χ{λ>0}(1 + λdn)
4]δ, (5.51)

the second term of which becomes zero when λ = 0 or δ = 0. It is noted that the
second terms of the bounds in (5.50) and (5.51) do not necessarily go to 0 even
when n → ∞.

5.3 Upper Bound Problem for a GLSE in the Ander-
son Model

In this section, the results developed in the previous sections are applied to the
Anderson model. The upper bound γ1 in Theorem 5.3 is evaluated under normality
assumption.

The Anderson model and GLSEs. As is introduced in Example 2.1, the Ander-
son model is a model (5.1) with covariance structure

Cov(ε) = σ 2�(θ)

with

�(θ)−1 = In + λ(θ)C (θ ∈ �), (5.52)

where

σ 2 > 0, λ ≡ λ(θ) = θ

(1 − θ)2
, � = (−1, 1)
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and

C =




1 −1 0
−1 2 −1

. . .
. . .

. . .

. . .
. . .

. . .

. . . 2 −1
0 −1 1




.

The latent roots d1 ≤ · · · ≤ dn of the matrix C are given by

dj = 2[1 − cos(π(j − 1)/n)] (j = 1, · · · , n). (5.53)

The matrix �(θ) is positive definite on � since

−1

4
< λ(θ) < ∞ and d1 = 0 < d2 < · · · < dn < 4. (5.54)

Here, let us assume that the error term ε is normally distributed:

L(ε) = Nn(0, σ 2�(θ)).

A GLSE considered here is of the form b(�̂) in (5.4) with

�̂−1 = �(θ̂)−1 = In + λ̂C, (5.55)

where λ̂ ≡ λ(θ̂) and θ̂ is an estimator of θ based on the OLS residual vector e in
(5.5) satisfying the following conditions:

(1) θ̂ (e) ∈ �a.s.;

(2) θ̂ (e) is an even function in e, that is, θ̂ (e) = θ̂ (−e);

(3) θ̂ (e) is a scale-invariant function in the sense that θ̂ (ae) = θ̂ (e) holds for
any a > 0;

(4) θ̂ (e) is continuous in e.

These conditions guarantee that the GLSE b(�̂) = b(�(θ̂)) with such θ̂ is an
unbiased estimator with finite second moment. Under these conditions, the upper
bound

γ1(b(�̂)) = 1 + (g1 + g2)δ

in Theorem 5.3 will be evaluated below. Since it is difficult to obtain an exact
expression of γ1, evaluation will be limited to an asymptotic one. To this end, the
following condition is imposed on θ̂ in addition to the conditions (1) to (4):

(5)
√

n(θ̂ − θ) →d N(0, 1 − θ2),

where →d denotes convergence in distribution.
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Evaluation of the upper bound. To evaluate γ1 for a GLSE b(�̂) = b(�(θ̂))

with θ̂ satisfying the conditions (1) to (5), we use the following two lemmas.

Lemma 5.5 For any θ̂ such that

θ̂ − θ = Op(1/
√

n), (5.56)

the quantity W2 = [(1 + λdn)/(1 + λ̂dn)]2 is evaluated as

W2 = 1 + Op(1/
√

n). (5.57)

Proof. By Taylor’s theorem, there exists a random variable θ∗ satisfying |θ∗ −
θ | ≤ |θ̂ − θ | and

λ(θ̂) = λ(θ) + λ′(θ∗)(θ̂ − θ). (5.58)

Here,

λ′(θ) = (1 + θ)/(1 − θ)3

is continuous in θ , and

θ∗ →p θ as n → ∞,

where →p denotes convergence in probability. Hence, the equation (5.58) is rewrit-
ten as

λ(θ̂) = λ(θ) + Op(1/
√

n). (5.59)

Next, by using the following two formulas

cos
(
π − π

n

)
= cos π cos(π/n) + sin π sin(π/n)

= − cos(π/n)

and

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · ·

= 1 + o(x)(x → 0),

the quantity

dn = 2
[
1 − cos

(
π − π

n

)]

is expanded as

dn = 4 + o(1/n). (5.60)
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By using (5.59) and (5.60), we obtain

W2 =
(

1 + λdn

1 + λ̂dn

)2

=
[

1 + 4λ + o(1/n)

1 + 4λ + Op(1/
√

n)

]2

= [1 + Op(1/
√

n)]2

= 1 + Op(1/
√

n). (5.61)

This completes the proof.

On the other hand, since χBj
≤ 1,

gj ≡ {E[χBj
W 2

j (λ̂ − λ)4]}1/2

≤ {E[W 2
j (λ̂ − λ)4]}1/2 ≡ hj (j = 1, 2). (5.62)

This leads to an upper bound

γ2(b(�̂)) = 1 + δ(h1 + h2), (5.63)

which of course satisfies γ1(b(�̂)) ≤ γ2(b(�̂)). Using Lemma 5.5 for θ̂ satisfying
the condition (5), the quantities hj ’s are evaluated by the usual delta method with
the following condition:

(6) The remainder terms Op(1/
√

n) in (5.56) and (5.57) satisfy

E[Op(1/
√

n)] = O(1/n).

A typical choice for such a θ̂ is

θ̂0(e) = e′Ke

e′e
, (5.64)

where K = (kij ) is an n × n symmetric matrix such that kij = 1/2 if |i − j | = 1
and kij = 0 otherwise. (See Examples 2.5 and 3.1).

Lemma 5.6 For any θ̂ satisfying conditions (1) to (6),

hj = 1

n

√
3(1 + θ)3

(1 − θ)5
+ o(1/n) (j = 1, 2). (5.65)

Proof. Since

λ(θ̂) − λ(θ) = λ′(θ∗)(θ̂ − θ)

= λ′(θ)(θ̂ − θ) + op(1/
√

n)
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follows from (5.58), the expansion below is obtained from Lemma 5.5:

W 2
j [λ(θ̂) − λ(θ)]4 = [λ′(θ)(θ̂ − θ)]4 + op(1/n2) (j = 1, 2). (5.66)

Since

√
nλ′(θ)(θ̂ − θ) →d N(0, [λ′(θ)]2(1 − θ2)) = N

(
0,

(1 + θ)3

(1 − θ)5

)

follows from the condition (5), it holds that

n2W 2
j [λ(θ̂) − λ(θ)]4 →d L(Z4),

where Z is a random variable such that

L(Z) = N
(

0,
(1 + θ)3

(1 − θ)5

)
.

Hence, we obtain

lim
n→∞ n2E{W 2

j [λ(θ̂) − λ(θ)]4} = 3 ×
[
(1 + θ)3

(1 − θ)5

]2

,

from which

{E{W 2
j [λ(θ̂) − λ(θ)]4}}1/2 =

√
3(1 + θ)3

n(1 − θ)5
+ o(1/n) (5.67)

is established. Here, we used the fact that

E(Z3) = 3σ 4 when L(Z) = N(0, σ 2).

This completes the proof.

Thus, the following theorem due to Toyooka and Kariya (1986) is proved.

Theorem 5.7 The upper bound γ2(b(�̂)) in (5.63) is approximated as

1 + δ

[
2
√

3(1 + θ)3

n(1 − θ)5

]
. (5.68)

Here, the quantity δ is defined in (5.41). In most cases, δ is of O(1).

Corollary 5.8 The result in Theorem 5.7 holds for the GLSE with θ̂0 in (5.64).

Proof. It is easy to see that θ̂0 in (5.64) satisfies (1) to (4). The asymptotic
normality (5) of θ̂0 is shown in the Appendix. Through the result, (6) is also
proved there.
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5.4 Upper Bound Problem for a GLSE in a
Two-equation Heteroscedastic Model

In this section, the results obtained in Section 5.2 are applied to typical GLSEs in
a two-equation heteroscedastic model.

The two-equation heteroscedastic model and GLSEs. The model considered
here is a two-equation heteroscedastic model, which is defined as a model

y = Xβ + ε with L(ε) ∈ Pn(0, �)

with the following structure:

y =
(

y1
y2

)
, X =

(
X1
X2

)
,

ε =
(

ε1
ε2

)
and � =

(
σ 2

1 In1 0
0 σ 2

2 In2

)
, (5.69)

where

n = n1 + n2, yj : nj × 1,

Xj : nj × k and εj : nj × 1(j = 1, 2).

For simplicity, the matrices Xj ’s are assumed to be of full rank:

rank Xj = kj (j = 1, 2),

and the error term ε is normally distributed:

L(ε) = Nn(0, σ 2�(θ)).

The covariance matrix � can be rewritten as (5.3):

� = σ 2�(θ)

with

�−1 = �(θ)−1 = In + λ(θ)D (θ ∈ �), (5.70)

where

σ 2 = σ 2
1 , � = (0, ∞),

θ = σ 2
1 /σ 2

2 ∈ �, λ(θ) = θ − 1,

D =
(

0 0
0 In2

)
. (5.71)
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Let us consider a GLSE of the form

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �(θ̂), (5.72)

where θ̂ = θ̂ (e) is an estimator of θ based on the OLS residual vector e in
(5.5). Typical examples are the restricted GLSE and the unrestricted GLSE (see
Example 2.6).

Upper bound γ0(b(�̂)). We first derive the upper bound γ0 obtained in Theo-
rem 5.1. To do so, note that for any θ̂ such that θ̂ ∈ � a.s., the sets B1 and B2
and the quantities W1, W2 in (5.16) and F in (5.18) are calculated as

B1 = {y ∈ Rn|θ̂ ≥ θ} and B2 = {y ∈ Rn|θ̂ < θ},
and

W1 = 1, W2 = θ2/θ̂2, F = θ−1D, (5.73)

respectively. Also, let

M = (X′�−1X)−1/2X′�−1/2F�−1/2[In − X(X′�−1X)−1X′�−1]. (5.74)

Lemma 5.9 For any GLSE b(�̂) with �̂ = �(θ̂), the following inequality holds:

(b(�̂) − β)(b(�̂) − β)′ ≤ (1 + G1 + G2)σ
2(X′�(θ)−1X)−1 (5.75)

with

Gj = χBj
(θ̂ − θ)2Wjε

′M ′Mε/σ 2 (j = 1, 2). (5.76)

And thus,

Cov(b(�̂)) ≤ γ0(b(�̂))Cov(b(�)) (5.77)

holds, where b(�) = (X′�−1X)−1X′�−1y is the GME of β and

γ0(b(�̂)) = 1 + g1 + g2 with gj = E(Gj ).

The quadratic form ε′M ′Mε in (5.76) is the same as η′
2V

′V η2 in (5.19) (Problem
5.4.1).

To give an interpretation of the upper bound γ0, it is convenient to rewrite the
GLSE b(�̂) as a weighted sum of the two OLSEs, say β̂j ’s, obtained from each
homoscedastic regression model yj = Xjβ + εj (j = 1, 2), that is,

b(�̂) = (X′
1X1 + θ̂X′

2X2)
−1(X′

1X1β̂1 + θ̂X′
2X2β̂2), (5.78)

where

β̂j = (X′
jXj )

−1X′
j yj (j = 1, 2). (5.79)
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Lemma 5.10 The upper bound 1 + G1 + G2 in (5.75) is decomposed as

1 + G1 + G2 = 1 + L(θ̂, θ) Q(β̂1 − β̂2), (5.80)

where the functions L and Q are defined as

L(θ̂, θ) = �(θ̂/θ) + �(θ/θ̂) (5.81)

with

�(t) = (t − 1)2χ{t>1},

and

Q(x) = θ2

σ 2
x′X′

1X1(X
′�−1X)−1X′

2X2

×(X′�−1X)−1X′
2X2(X

′�−1X)−1X′
1X1x

≡ θ2

σ 2
x′Kx (say),

respectively.

Proof. Proof is available as an exercise (Problem 5.4.2).

Note that the function Q(β̂1 − β̂2) in (5.80) does not depend on the choice of
θ̂ . On the other hand, the function L(θ̂, θ) can be regarded as a loss function for
choosing an estimator of θ , and has the following symmetric inverse property:

L(θ̂, θ) = L(θ̂−1, θ−1). (5.82)

The unrestricted GLSE. Now, we treat a class of unbiased GLSEs including the
unrestricted GLSE and evaluate the upper bounds for their covariance matrices.
The class treated is a class of GLSEs b(�̂) = b(�(θ̂)) with θ̂ defined by

θ̂ = θ̂ (e; c) = cS2
1/S2

2 , c > 0, (5.83)

where the statistics S2
j ’s are given by

S2
j = e′

jNjej ,

Nj = Inj
− Xj(X

′
jXj )

−1X′
j ,

e =
(

e1
e2

)
: n × 1 with ej : nj × 1. (5.84)

As is stated in Example 2.6, the statistic S2
j coincides with the sum of squared

residuals calculated from the j th equation:

S2
j = (yj − Xj β̂j )

′(yj − Xj β̂j ) (j = 1, 2), (5.85)



SERIAL CORRELATION MODEL 161

and hence, S2
j /mj with mj = nj − kj is an unbiased estimator of σ 2

j . The unre-
stricted GLSE is obtained by letting c = m2/m1 in (5.83). Since the statistics
β̂1, β̂2, S2

1 and S2
2 are independent, the two factors L(θ̂, θ) and Q(β̂1 − β̂2) in (5.80)

are also independent. Hence, the quantity g1 + g2 in Lemma 5.9 is evaluated as

g1 + g2 = E(G1 + G2)

= E[L(θ̂, θ)]E[Q(β̂1 − β̂2)]

≡ ρ(c; m1, m2) E[Q(β̂1 − β̂2)] (say), (5.86)

where the last line defines the function ρ(c; m1, m2) = E[L(θ̂, θ)]. The quantity
E[Q(β̂1 − β̂2)] is further calculated as

E[Q(β̂1 − β̂2)] = (θ2/σ 2) tr[K Cov(β̂1 − β̂2)]

=
k∑

i=1

θri

(1 + θri)2

≡ q(r1, · · · , rk; θ) (say), (5.87)

where r1, · · · , rk are the latent roots of (X′
1X1)

−1/2X′
2X2(X

′
1X1)

−1/2 (see Problem
5.4.3).

Next, to describe ρ(c; m1, m2), the hypergeometric function defined below is
used:

2F1(a1, a2; a3; z) =
∞∑

j=0

(a1)j (a2)j

(a3)j

zj

j !
(5.88)

with

(a)j =
j−1∏
i=0

(a + i) and (a)0 = 1,

which converges for |z| < 1 (see, for example, Abramowitz and Stegun, 1972).
The following result is due to Kurata (2001).

Theorem 5.11 Let mj > 4(j = 1, 2). Then, for any θ̂ = θ̂ (e; c) = cS2
1/S2

2 (c > 0),
the following equality holds:

ρ(c; m1, m2) =



ρ1(c; m1, m2) (0 < c < 1)

ρ2(m1, m2) (c = 1)

ρ3(c; m1, m2) (1 < c)

(5.89)

holds, where ρ1, ρ2 and ρ3 are given by

ρ1(c; m1, m2) = 1

B
(

m1
2 , m2

2

) [B((m2 − 4)/2, 3)cm2/2

×2F1((m1 + m2)/2, (m2 − 4)/2; (m2 + 2)/2; −c)
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+B((m1 − 4)/2, 3)cm2/2 (1 + c)−(m1+m2)/2

×2F1((m1 + m2)/2, 3; (m1 + 2)/2; (1 + c)−1)], (5.90)

ρ2(m1, m2) = 1

2(m1+m2)/2B
(

m1
2 ,

m2
2

) [B((m2 − 4)/2, 3)

×2F1((m1 + m2)/2, 3; (m2 + 2)/2; 1/2)

+B((m1 − 4)/2, 3)2F1((m1 + m2)/2, 3; (m1 + 2)/2; 1/2)], (5.91)

and

ρ3(c; m1, m2) = ρ1(1/c; m2, m1), (5.92)

respectively. Thus, for any GLSE b(�̂) with �̂ = �(θ̂),

Cov(b(�̂)) ≤ [1 + ρ(c; m1, m2)q(r1, · · · , rk; θ)]Cov(b(�))

holds.

Proof. Let vj = S2
j /σ 2

j so that L(vj ) = χ2
mj

, where χ2
m denotes the χ2 distri-

bution with degrees of freedom m. Then, by (5.81), it is obtained that

ρ(c; m1, m2) = E[�(cv1/v2)] + E[�(v2/cv1)], (5.93)

from which the equality

ρ(c; m1, m2) = ρ(1/c; m2, m1) (5.94)

follows. Letting a = 1/2(m1+m2)/2
(m1/2)
(m2/2), the first term of the right-hand
side of (5.93) is written as

E[�(cv1/v2)] = a

∫ ∫
cv1/v2≥1

(
cv1

v2
− 1

)2

v
m1/2−1
1 v

m2/2−1
2

× exp

(
−v1 + v2

2

)
dv1 dv2.

Making transformation z1 = v1 and z2 = v2/(cv1) with dv1dv2 = cz1dz1dz2 and
integrating with respect to z1 yields

a cm2/2
∫ 1

0
z
(m2/2−2)−1
2 (1 − z2)

2

×
[∫ ∞

0
z
(m1+m2)/2−1
1 exp

(
− (1 + cz2)z1

2

)
dz1

]
dz2

= a′
∫ 1

0
z
(m2/2−2)−1
2 (1 − z2)

2(1 + cz2)
−(m1+m2)/2 dz2 (5.95)
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with

a′ = a × cm2/22(m1+m2)/2
((m1 + m2)/2) = cm2/2

B(m1/2, m2/2)
.

To evaluate (5.95) in the case in which 0 < c < 1, we use the following well-known
formula∫ 1

0
ta2−1(1 − t)a3−a2−1(1 − zt)−a1 dt = B(a2, a3 − a2)2F1(a1, a2; a3; z), (5.96)

which is valid for 0 < a2 < a3 and |z| < 1. Applying (5.96) to (5.95) proves the
first term on the right-hand side of (5.90). When 1 ≤ c, applying the following
formula ∫ 1

0
ta2−1(1 − t)a3−a2−1(1 − zt)−a1 dt

= (1 − z)−a1B(a2, a3 − a2)2F1

(
a1, a3 − a2; a3; z

z − 1

)
, (5.97)

which is valid for 0 < a2 < a3 and z ≤ −1, establishes

E[�(cv1/v2)] = B(m2 − 4)/2, 3)

B(m1/2, m2/2)
(1 + c)−(m1+m2)/2cm2/2

×2F1((m1 + m2)/2, 3; (m2 + 2)/2; c/(1 + c)). (5.98)

Substituting c = 1 into (5.98) yields the first term of (5.91). Next, we consider the
second term on the right-hand side of (5.93). By interchanging m1 and m2 and
replacing c by 1/c in (5.95), we obtain

E[�(v2/cv1)] = a′′
∫ 1

0
z
(m1/2−2)−1
1 (1 − z1)

2

×(1 + c−1z1)
−(m1+m2)/2 dz1 (5.99)

with a′′ = 1/cm1/2B(m1/2, m2/2). Since 0 < c ≤ 1 is equivalent to 1 ≤ c−1,
applying (5.97) to the right-hand side of (5.99) establishes the second term of
(5.90). The second term of (5.91) is obtained by letting c = 1. Thus, (5.90) and
(5.91) are proved. Finally, (5.92) is obtained from (5.94). This completes the proof.

In Table 5.1, we treat the unrestricted GLSE (c = m2/m1) and summarize
the values of ρ(m2/m1; m1, m2) for m1, m2 = 5, 10, 15, 20, 25, 50. The table is
symmetric in m1 and m2, which is a consequence of (5.94). It can be observed
that the upper bound monotonically decreases in m1 and m2.

Comparison with the upper bound in Chapter 4. Next, let us consider a relation
between the upper bound

γ0(b(�̂)) = 1 + ρ(c; m1, m2) q(r1, · · · , rk; θ)

= 1 + E[L(θ̂, θ)] E[Q(β̂1 − β̂2)]
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Table 5.1 Values of ρ(c; m1, m2) with c = m2/m1.

m1
m2 5 10 15 20 25 50

5 18.3875 8.8474 7.7853 7.3423 7.0956 6.6356
10 8.8474 1.8203 1.2826 1.0879 0.9873 0.8138
15 7.7853 1.2826 0.8156 0.6518 0.5687 0.4288
20 7.3423 1.0879 0.6518 0.5013 0.4258 0.3001
25 7.0956 0.9873 0.5687 0.4258 0.3544 0.2369
50 6.6356 0.8138 0.4288 0.3001 0.2369 0.1349

Source: Kurata (2001) with permission.

and the upper bound

α0(b(�̂)) = 1 + E[a(θ̂ , θ)]

with

a(θ̂ , θ) = [(θ̂/θ) − 1]2

4(θ̂/θ)
(5.100)

treated in Chapter 4. The relation between the two upper bounds is indefinite. More
precisely,

Proposition 5.12 The relation between L(θ̂, θ) and a(θ̂ , θ) is given by

1

4
× L(θ̂, θ) ≥ a(θ̂ , θ). (5.101)

The range of the function q is given by

0 < q(r1, · · · , rk; θ) ≤ k

4
,

and its maximum is attained when r1 = · · · = rk = 1/θ . As riθ goes to either 0 or
∞ (i = 1, · · · , k), the function q converges to 0.

Proof. The inequality (5.101) is proved as

L(θ̂, θ) = (θ̂/θ − 1)2χ{θ̂/θ>1} + (θ/θ̂ − 1)2χ{θ/θ̂>1}

≥ (θ̂/θ − 1)2

θ̂/θ
χ{θ̂/θ>1} + (θ/θ̂ − 1)2

θ/θ̂
χ{θ/θ̂>1}

= (θ̂/θ − 1)2

θ̂/θ
χ{θ̂/θ>1} + (θ̂/θ − 1)2

θ̂/θ
χ{θ̂/θ<1}

= (θ̂/θ − 1)2

θ̂/θ

= 4 × a(θ̂ , θ).
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The rest is evident from (5.87). This completes the proof.

The inequality (5.101) clearly implies that

1 + ρ(c; m1, m2) × 1

4
≥ 1 + E[a(θ̂ , θ)].

However, the factor q(r1, · · · , rk; θ) can be so small (or large) that

1 + ρ(c; m1, m2)q(r1, · · · , rk; θ) ≤ (or ≥) 1 + E[a(θ̂ , θ)]

holds. While the upper bound 1 + ρ(c; m1, m2)q(r1, · · · , rk; θ) depends on the
regressor matrix X through ri’s, the alternative upper bound 1 + E[a(θ̂ , θ)] ignores
the information contained in X.

5.5 Empirical Example: Automobile Data

Table 5.2 shows the famous data on automobile speed (in miles per hour) and
distance (in feet) covered to come to a standstill after braking (Sen and Srivastava,
1990; Ezekiel and Fox, 1959). This section gives an example of analysis on this
data by using the unrestricted GLSE in a two-equation heteroscedastic model.

Two-equation heteroscedastic model. Let speedj and distancej (j = 1, · · · , 62)

be the automobile speed and the distance covered to come to a standstill after
braking. It may be reasonable to assume that the relation between the two variables,
speed and distance, are determined by

distancej = β1speedj + β2(speedj )
2 + εj ,

where εj is an error term. It can be said that the scatter plot in Figure 5.1 may
support this assumption. However, it can also be observed that the figure indicates
a possible heteroscedasticity among ε1, . . . , ε62. A possible model for this data is
a model with the assumption that the variance of εj is a function of speedj :

Var(εj ) = σ 2 × f (speedj ) with σ 2 > 0.

Here, a typical choice for f is f (x) = x, or x2. Sen and Srivastava (1990) analyze
this data from this viewpoint. In this book, in order to apply the results in previous
sections and chapters, we divide the data into two sets and consider a two-equation
heteroscedastic model. Let {(speed1, distance1), . . . , (speed35, distance35)} and
{(speed36, distance36), . . . , (speed62, distance62)} be the first and second groups
respectively. Suppose the data of each group is generated by a homoscedas-
tic regression model. This assumption leads to the following two-equation het-
eroscedastic model:

y = Xβ + ε (5.102)
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Table 5.2 Automobile data.

Data Number Speed Distance Data Number Speed Distance

1 4 4 32 18 29
2 5 2 33 18 34
3 5 4 34 18 47
4 5 8 35 19 30
5 5 8 36 20 48
6 7 7 37 21 39
7 7 7 38 21 42
8 8 8 39 21 55
9 8 9 40 24 56
10 8 11 41 25 33
11 8 13 42 25 48
12 9 5 43 25 56
13 9 5 44 25 59
14 9 13 45 26 39
15 10 8 46 26 41
16 10 14 47 27 57
17 10 17 48 27 78
18 12 11 49 28 64
19 12 19 50 28 84
20 12 21 51 29 54
21 13 15 52 29 68
22 13 18 53 30 60
23 13 27 54 30 67
24 14 14 55 30 101
25 14 16 56 31 77
26 15 16 57 35 85
27 16 14 58 35 107
28 16 19 59 36 79
29 16 34 60 39 138
30 17 22 61 40 110
31 17 29 62 40 134

Source: Methods of Correlation and Regression Analysis, Ezekiel and Fox.
1959.  John Wiley & Sons Limited. Reproduced with permission.

with n1 = 35, n2 = 27, n = n1 + n2 = 62, k = 2 and

y =
(

y1
y2

)
: n × 1, X =

(
X1
X2

)
: n × k,

ε =
(

ε1
ε2

)
: n × 1,
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Figure 5.1 Scatter plot of speed and distance.

where

y1 =




distance1
...

distance35


 : 35 × 1, y2 =




distance36
...

distance62


 : 27 × 1,

X1 =




speed1 (speed1)
2

...
...

speed35 (speed35)
2


 : 35 × 2,

X2 =




speed36 (speed36)
2

...
...

speed62 (speed62)
2


 : 27 × 2.

We assume that

L(ε) = Nn(0, �) with � =
(

σ 2
1 In1 0
0 σ 2

2 In2

)
. (5.103)

The matrix � can be rewritten as

� = σ 2�(θ)

with
�(θ)−1 = In + λ(θ)D (θ ∈ �), (5.104)

where σ 2 = σ 2
1 , λ(θ) = θ − 1, � = (0, ∞) and

θ = σ 2
1 /σ 2

2 . (5.105)

The definition of the matrix D is given in (5.71).
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The estimate of β = (β1, β2)
′ by the OLSE

b(In) = (X′X)−1X′y (5.106)

is given by b(In) = (0.577, 0.0621)′. Hence, we get

distance = 0.577 speed + 0.0621 (speed)2. (5.107)

However, since the estimate of the variance ratio θ = σ 2
1 /σ 2

2 is close to zero, the
efficiency of the OLSE is expected to be low. In fact, the estimates of σ 2

1 , σ 2
2 and

θ are obtained by

σ̂ 2
1 = S2

1/m1 = 29.959, (5.108)

σ̂ 2
2 = S2

2/m2 = 193.373, (5.109)

θ̂ = σ̂ 2
1 /σ̂ 2

2 = cS2
1/S2

2 = 0.1549, (5.110)

respectively, where c = m2/m1, m1 = n1 − k = 33 and m2 = n2 − k = 25. As is
shown in Section 4.5 of Chapter 4, the upper bound α0(b(In)) is given by

α0(b(In)) = (σ 2
1 + σ 2

2 )2

4σ 2
1 σ 2

2

= (1 + θ)2

4θ
, (5.111)

which is estimated as

α0(b(In)) = (1 + θ̂ )2

4θ̂
= (1 + 0.1549)2

4 × 0.1549
= 2.1524. (5.112)

On the other hand, the unrestricted GLSE defined by

b(�(θ̂)) = (X′�(θ̂)−1X)−1X′�(θ̂)−1y with θ̂ in (5.110) (5.113)

estimates the model as

distance = 0.569 speed + 0.0623 (speed)2. (5.114)

The two regression lines obtained from the OLSE and the unrestricted GLSE are
given in Figure 5.2.

The upper bound α0(b(�(θ̂))) is calculated as

α0(b(�(θ̂))) = 1 + 1

2(m1 − 2)
+ 1

2(m2 − 2)

= 1 + 1

2(33 − 2)
+ 1

2(25 − 2)

= 1.0379. (5.115)

Clearly,

α0(b(�(θ̂))) < α0(b(In))

holds and hence the unrestricted GLSE seems to be reasonable in this case.
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Figure 5.2 Regression lines obtained from the OLSE and the unrestricted GLSE
(in dotted line). The two lines almost lie one upon the other.

Next, let us examine the upper bound γ0(b(�(θ̂))) derived in Theorem 5.11.
The upper bound γ0(b(�(θ̂))) is of the form

γ0(b(�(θ̂))) = 1 + g1 + g2 with gj = E(Gj)

= 1 + ρ(c; m1, m2) q(r1, r2; θ). (5.116)

For the definition of Gj and ρ(c; m1, m2), see Section 5.4. In this case, the function
q becomes

q(r1, r2; θ) = θr1

(1 + θr1)2
+ θr2

(1 + θr2)2
, (5.117)

where r1 and r2 are latent roots of the matrix (X′
1X1)

−1/2X′
2X2(X

′
1X1)

−1/2. The
latent roots r1 and r2 are calculated as

r1 = 105.9558, r2 = 0.4834. (5.118)

From this, the value of the function q(r1, r2; θ) is estimated by

q(r1, r2; θ̂ ) = θ̂ r1

(1 + θ̂ r1)2
+ θ̂ r2

(1 + θ̂ r2)2
(5.119)

= 0.1189.

On the other hand, the function ρ(c; m1, m2) with m1 = 33, m2 = 25 and
c = m2/m1 = 0.7576(< 1) is evaluated as

ρ(c; m1, m2) = ρ(0.7576; 33, 25) = 0.2937. (5.120)

Thus, from (5.116), we obtain the following estimate of γ0(b(�(θ̂))):

γ0(b(�(θ̂))) = 1 + 0.1189 × 0.2937 = 1.0349, (5.121)

which is almost the same as α0(b(�(θ̂))).
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5.6 Problems

5.2.1 Show that the following three conditions are equivalent:

(1) E(u1|u2) = 0;

(2) E(η1|η2) = 0;

(3) E[b(�)|e] = β.

5.2.2 Establish (5.14).

5.2.3 Establish Lemma 5.2.

5.2.4 Under the assumption of Proposition 5.4, show that δ = 0 is also equivalent
to each of the following two conditions:

1. X′�−1Z = 0;

2. X′�̂−1�Z = 0.

5.3.1 In the Anderson model treated in Section 5.3:

1. Find the inverse matrix � of �−1 in (5.52).

2. By using this, find an expression of {εj } like that of AR(1) process:

εj = θj εj−1 + ξj (j = 1, · · · , n).

5.3.2 Analyze the CO2 emission data given in Section 2.5 by evaluating the upper
bounds for the covariance matrix of the GLSE treated in Section 5.3.

5.4.1 The quadratic form ε′M ′Mε in (5.76) is the same as η′
2V

′V η2 in (5.19).

5.4.2 Establish Lemma 5.10. See Kurata (2001).

5.4.3 Establish the equality (5.87). See Kurata (2001).



6

Bounds for Normal
Approximation to the
Distributions of GLSP
and GLSE

6.1 Overview

In application, the distribution of a generalized least squares predictor (GLSP) is
often approximated by the distribution of the Gauss–Markov predictor (GMP),
which is normal if the error term is normally distributed. Such an approximation is
based on the fact that the GLSPs are asymptotically equivalent to the GMP under
appropriate regularity conditions. In this chapter, we evaluate with a uniform bound,
goodness of the normal approximations to the probability density function (pdf)
and the cumulative distribution function (cdf) of a GLSP. The results are applied to
the case in which the distribution of a generalized least squares estimator (GLSE)
is approximated by that of the Gauss–Markov estimator (GME). To describe the
problem, let a general linear regression model be

(
y

y0

)
=

(
X

X0

)
β +

(
ζ

ζ0

)
(6.1)

where

y : n × 1, y0 : m × 1, X : n × k, X0 : m × k, rankX = k,

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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and the error term is assumed to be normally distributed:

L
((

ζ

ζ0

))
= Nn+m

(
0, σ 2�

)
(6.2)

with

� =
(

� �′
� �0

)
.

Here, � ∈ S(n), �0 : m × m and � : m × n are unknown, and S(n) denotes the set
of n × n positive definite matrices. The submodel y = Xβ + ζ in (6.1) corresponds
to the observable part of the model, while y0 = X0β + ζ0 is to be predicted.

As stated in Chapter 3, the problem of estimating β is a particular case of the
prediction problem. In fact, by letting

m = k, X0 = Ik, � = 0 and �0 = 0, (6.3)

the predictand y0 in (6.1) reduces to y0 = β. Hence, the problem is clearly equiv-
alent to estimation of β in

y = Xβ + ζ with L(ζ ) = Nn(0, σ 2�). (6.4)

By transforming ζ = ε and ζ0 = ��−1ε + ε0 in (6.1), the model is rewritten as
(

y

y0

)
=

(
X

X0

)
β +

(
In 0

��−1 Im

) (
ε

ε0

)
, (6.5)

where

L
((

ε

ε0

))
= Nn+m(0, σ 2�) (6.6)

with

� =
(

� 0
0 �0 − ��−1�′

)
.

When condition (6.3) holds, the reduced model is equivalent to

y = Xβ + ε with L(ε) = Nn(0, σ 2�). (6.7)

The GMP y∗
0 of y0 is given by

y∗
0 ≡ ỹ0(�, �) = X0b(�) + ��−1[y − Xb(�)], (6.8)

where b(�) is the GME of β:

b(�) = (X′�−1X)−1X′�−1y. (6.9)
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The GMP is the best linear unbiased predictor when � and � are known (see
Section 3.2 of Chapter 3). The GLSP ŷ0 of y0 is defined by replacing unknown �

and � by their estimators �̂ and �̂ respectively:

ŷ0 ≡ ỹ0(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)], (6.10)

where b(�̂) is a GLSE of β:

b(�̂) = (X′�̂−1X)−1X′�̂−1y. (6.11)

Here, the quantities �̂ ≡ �̂(e) and �̂ ≡ �̂(e) are functions of the ordinary least
squares (OLS) residual vector e:

e = Ny with N = In − X(X′X)−1X′. (6.12)

As stated in Proposition 3.2, the GLSP ŷ0 in (6.10) can be rewritten as

ŷ0 = C(e)y with C(e)X = X0 (6.13)

by letting

C(e) = X0(X
′�̂−1X)−1X′�̂−1

+�̂�̂−1[In − X(X′�̂−1X)−1X′�̂−1]. (6.14)

Throughout this chapter, we assume that the function C(e) in (6.13) satisfies the
following conditions:

(1) C(e) is continuous in e;

(2) C(e) is scale-invariant in the sense that C(ae) = C(e) for any a > 0;

(3) C(e) is an even function of e, that is, C(−e) = C(e).

These conditions guarantee that the GLSP ŷ0 = C(e)y is an unbiased predictor
with a finite second moment (Proposition 3.3).

In this chapter, the distribution of a GLSP ŷ0 is approximated by that of the
GMP y∗

0 . To describe this approximation, we reproduce the decomposition of a
GLSP described in Section 3.2 of Chapter 3: for a GLSP ŷ0 satisfying conditions
(1) to (3), let Y be the prediction error of ŷ0, namely,

Y = ŷ0 − y0,

and decompose Y as

Y = Y1 + Y2, (6.15)

where

Y1 ≡ y∗
0 − y0 = ỹ0(�, �) − y0,

Y2 ≡ ŷ0 − y∗
0 = ỹ0(�̂, �̂) − ỹ0(�, �).
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Note that the first term Y1 of Y in (6.15) is the prediction error of the GMP.
Moreover, the two terms Y1 and Y2 are independent. To see this, let Z be an
n × (n − k) matrix such that

N = ZZ′ and Z′Z = In−k, (6.16)

and make a transformation
 u1

u2
ε0


 =


 A−1/2X′�−1 0

B−1/2Z′ 0
0 Im


(

ε

ε0

)
(6.17)

with

A ≡ X′�−1X ∈ S(k) and B ≡ Z′�Z ∈ S(n − k).

Then the distribution of (u′
1, u′

2, ε′
0)

′ is obtained as

L





 u1

u2
ε0





 = Nn+m





 0

0
0


 , σ 2


 Ik 0 0

0 In−k 0
0 0 �0 − ��−1�′





 . (6.18)

On the other hand, Y1 and Y2 in (6.15) are rewritten as

Y1 ≡ Y11 + Y12,

Y2 ≡ [C(ZB1/2u2) − ��−1]�ZB−1/2u2, (6.19)

where

Y11 = (X0 − ��−1X)A−1/2u1 and Y12 = −ε0.

It can be observed that the identity

e = ZB1/2u2

is used in (6.19). Thus, Y11, Y12 and Y2 are independent and the distribution of
Y1 = Y11 + Y12 is given by

L(Y1) = Nm(0, V1) with V1 = E(Y1Y
′
1) = V11 + V12, (6.20)

where

V11 ≡ E(Y11Y
′
11) = σ 2(X0 − ��−1X)A−1(X0 − ��−1X)′,

V12 ≡ E(Y12Y
′
12) = σ 2(�0 − ��−1�′), (6.21)

and the conditional distribution of Y = Y1 + Y2 given Y2 is

L(Y |Y2) = Nm(Y2, V1). (6.22)

The distribution of Y2 in (6.19) may be complicated. But it follows:
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Lemma 6.1 Under conditions (1) to (3), Y2 has a finite second moment and

E(Y2) = 0. (6.23)

Proof. Denote

Y2 = Y2(u2)

as a function of u2. Then Y2(u2) is continuous in u2, since C(·) is continuous by
condition (1). For a moment, let

c = ‖u2‖ and v = u2/‖u2‖.

By using condition (2), the function Y2(u2) is expressed as

Y2(u2) = Y2(cv)

= [C(ZB1/2(cv)) − ��−1]�ZB−1/2(cv)

= c × [C(ZB1/2v) − ��−1]�ZB−1/2v

= ‖u2‖ × Y2(u2/‖u2‖).

Here, the quantities c = ‖u2‖ and v = u2/‖u2‖ are independent, L(c2/σ 2) = χ2
n−k

and v is distributed as the uniform distribution on the unit sphere U(n − k) = {u ∈
Rn−k | ‖u‖ = 1} (see Proposition 1.4). Hence,

V2 = E(Y2Y
′
2)

= E[c2Y2(v)Y2(v)′]

= E(c2) × E[Y2(v)Y2(v)′]

= (n − k)σ 2 × E[Y2(v)Y2(v)′]. (6.24)

Since Y2(v) is a continuous function on a compact set U(n − k), it is bounded,
and hence V2 is finite.

Next, to show E(Y2) = 0, note that the function Y2(u2) is an odd function
of u2:

Y2(−u2) = −Y2(u2),

since C(·) is an even function. Hence, by using L(u2) = L(−u2), we obtain

E[Y2(u2)] = E[Y2(−u2)] = −E[Y2(u2)],

from which (6.23) follows. This completes the proof.

Let a pdf of Y = ŷ0 − y0 be f (x). The function f (x) is approximated by

φ(x; V1) = 1

(2π)m/2|V1|1/2
exp

(
−1

2
x′V −1

1 x

)
,

which is a pdf of Y1 = y∗
0 − y0 in (6.20). We are interested in evaluating the

goodness of this approximation by deriving a bound for

sup
x∈Rm

|f (x) − φ(x; V1)|. (6.25)
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We develop the theory in the following order:

6.2 Uniform Bounds for Normal Approximations to the Probability Density
Functions

6.3 Uniform Bounds for Normal Approximations to the Cumulative Distribution
Functions.

In Section 6.2, we obtain a bound for (6.25) under the conditions described above.
The results are applied to typical GLSPs and GLSEs in the AR(1) error model and
a seemingly unrelated regression (SUR) model. Similar analyses are pursued for
the cdf of a GLSP (GLSE) in Section 6.3.

6.2 Uniform Bounds for Normal Approximations
to the Probability Density Functions

In this section, we first discuss a GLSP ỹ0 = C(e)y that satisfies conditions (1) to
(3), and evaluate a bound for the quantity in (6.25) under a general setup. As a
particular case of interest, a bound for the pdf of a GLSE b(�̂) is also obtained.

The main theorem. Let ξ(t) be the characteristic function of Y :

ξ(t) = E[exp(it ′Y)] (t ∈ Rm). (6.26)

The function ξ(t) is the product of the characteristic functions of Yj (j = 1, 2):

ξ(t) = ξ1(t)ξ2(t) (6.27)

where ξj (t) = E{exp(it ′Yj )}, and therefore, ξ1(t) is given by

ξ1(t) = exp
(

− t ′V1t

2

)
,

since L(Y1) = Nm(0, V1) (see Problem 1.2.1). By using the inversion formula (see
e.g., Theorem 2.6.3 of Anderson, 1984), the pdf f (x) of Y is expressed as

f (x) = 1

(2π)m

∫
Rm

exp(−it ′x)ξ(t)dt. (6.28)

Similarly,

φ(x; V1) = 1

(2π)m

∫
Rm

exp(−it ′x)ξ1(t)dt. (6.29)

Here is the main theorem.
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Theorem 6.2 Suppose that a GLSP ŷ0 = C(e)y in (6.13) satisfies conditions (1) to
(3) in Section 6.1. Then the following inequality holds:

sup
x∈Rm

|f (x) − φ(x; V1)| ≤ tr(V2V
−1
1 )√

2(2π)m/2|V1|1/2
. (6.30)

Proof. By Taylor’s theorem,

cos x = 1 − cos(θ1x)
x2

2
for some θ1 ∈ [0, 1],

sin x = x − sin(θ2x)
x2

2
for some θ2 ∈ [0, 1].

Hence, it follows that

exp(ix) = cos x + i sin x

= 1 + ix − [cos(θ1x) + i sin(θ2x)]
x2

2
. (6.31)

Therefore, the function ξ2(t) is evaluated as

ξ2(t) = E[exp(it ′Y2)]

= 1 + it ′E(Y2) − E

{
[cos(θ1t

′Y2) + i sin(θ2t
′Y2)]

(t ′Y2)
2

2

}
,

where θj ’s are random variables such that θj ∈ [0, 1] a.s. Since E(Y2) = 0 (see
Lemma 6.1),

ξ2(t) = 1 − E

[{
cos(θ1t

′Y2) + i sin(θ2t
′Y2)

} (t ′Y2)
2

2

]

= 1 + ν(t) (say). (6.32)

This yields ξ(t) = ξ1(t)[1 + ν(t)], and hence

ξ(t) − ξ1(t) = ξ1(t)ν(t) (6.33)

Now using the inversion formula (6.28) and (6.29) entails

|f (x) − φ(x; V1)| =
∣∣∣∣ 1

(2π)m

∫
Rm

exp(−it ′x) [ξ(t) − ξ1(t)] dt

∣∣∣∣
=

∣∣∣∣ 1

(2π)m

∫
Rm

exp(−it ′x)ξ1(t)ν(t)dt

∣∣∣∣ (from (6.33))

≤ 1

(2π)m

∫
Rm

∣∣∣ exp(−it ′x)ξ1(t)ν(t)

∣∣∣dt

= 1

(2π)m

∫
Rm

ξ1(t)|ν(t)| dt, (6.34)
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where | exp(−it ′x)| = 1 is used in the last line. Here, the factor |ν(t)| is bounded
above by t ′V2t/

√
2, since

|ν(t)| ≤ 1

2
E[| cos(θ1t

′Y2) + i sin(θ2t
′Y2)| (t ′Y2)

2]

= 1

2
E{[cos2(θ1t

′Y2) + sin2(θ2t
′Y2)]

1/2(t ′Y2)
2}

≤ 1

2
E[

√
2(t ′Y2)

2]

= 1√
2
t ′E(Y2Y

′
2)t,

where cos2(x) + sin2(y) ≤ 2 is used in the third line. Hence, the extreme right-hand
side of (6.34) is bounded above by

1√
2(2π)m

∫
Rm

ξ1(t)(t
′V2t)dt = 1√

2(2π)m

∫
Rm

exp

(
−1

2
t ′V1t

)
(t ′V2t)dt.

To evaluate this integral, it is convenient to regard t as a normally distributed
random vector such that L(t) = Nm(0, U1) with U1 = V −1

1 . In fact,

1√
2(2π)m

∫
Rm

exp

(
−1

2
t ′V1t

)
(t ′V2t)dt

= |U1|1/2

√
2(2π)m/2

× 1

(2π)m/2|U1|1/2

∫
Rm

(t ′V2t) exp

(
−1

2
t ′U−1

1 t

)
dt

= |U1|1/2

√
2(2π)m/2

× E{t ′V2t}

= |U1|1/2

√
2(2π)m/2

× tr(V2U1)

= tr(V2V
−1
1 )√

2(2π)m/2|V1|1/2
.

Since the extreme right-hand side of the above equality does not depend on x, this
completes the proof.

This theorem is due to Kariya and Toyooka (1992) and Usami and Toyooka
(1997b). In applications, it is often the case that for any a ∈ Rm, a′V2a → 0 as
n → ∞. Hence, the bound in this theorem will be effective.

Estimation version of Theorem 6.2. As stated in the previous section, the prob-
lem of estimating β is a particular case of prediction problem. Put m = k, X0 = Ik ,
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� = 0 and �0 = 0 in (6.5) and consider the model (6.7). Then a GLSP ŷ0 = C(e)y

with C(e)X = X0 in (6.13) reduces to a GLSE

β̂ = C(e)y with C(e)X = Ik,

which is decomposed into two independent parts as

Y ≡ β̂ − β

= [b(�) − β] + [β̂ − b(�)]

= A−1/2u1 + C(ZB1/2u2)�ZB−1/2u2

≡ Y 1 + Y 2 (say). (6.35)

Corollary 6.3 Suppose that a GLSE β̂ = C(e)y satisfies conditions (1) to (3), and
let the pdf of β̂ − β be f (x). Then the following inequality holds:

sup
x∈Rk

|f (x) − φ(x; V 1)| ≤ tr(V 2V
−1
1 )√

2(2π)k/2|V 1|1/2
, (6.36)

where

V 1 = E(Y 1Y
′
1) = E[(b(�) − β)(b(�) − β)′]

= Cov(b(�)) = σ 2A−1,

V 2 = E(Y 2Y
′
2) = E[(β̂ − b(�))(β̂ − b(�))′], (6.37)

and φ(x; V 1) denotes the pdf of L(Y 1) = Nk(0, V 1).

Proof. The proof is available as an exercise (Problem 6.2.1).

Evaluation by using the upper bounds in Chapters 4 and 5. To evaluate the
bound in the right-hand side of (6.36), we can use the results of Chapters 4 and
5, in which an upper bound for the covariance matrix of a GLSE β̂ ≡ b(�̂) is
obtained as

Cov(b(�̂)) ≤ (1 + γ ) Cov(b(�)) with γ = γ (b(�̂)). (6.38)

This inequality is rewritten in terms of V 1 and V 2 as

V 1 + V 2 ≤ (1 + γ )V 1,

which is in turn equivalent to

V
−1/2
1 V 2V

−1/2
1 ≤ γ Ik. (6.39)

Hence, we obtain
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Corollary 6.4 For any GLSE β̂ = b(�̂) satisfying conditions (1) to (3), the pdf of
β̂ − β is approximated by the normal pdf to the extent

sup
x∈Rk

|f (x) − φ(x; V 1)| ≤ tr(V 2V
−1
1 )√

2(2π)k/2|V 1|1/2
≤ kγ (b(�̂))√

2(2π)k/2|V 1|1/2
. (6.40)

Practical use of the uniform bounds. Note that the uniform bounds derived in
Theorem 6.2 and its corollaries depend on the units of y and X. This is not curious,
since the values of the functions f (x) and φ(x; V1) in the left-hand side of (6.30)
depend on V1 and V2. Hence, for practical use of the uniform bounds, we need to
modify the bounds from this viewpoint. For this purpose, we propose to use the
following inequality for practical use:

• For the inequality in (6.30), we divide both sides of (6.30) by

φ(0; V1) = φ(x; V1)

∣∣∣
x=0

= 1

(2π)m/2|V1|1/2
,

and use the following inequality:

sup
x∈Rm

|f (x) − φ(x; V1)|
/

φ(0; V1) ≤ tr(V2V
−1
1 )√

2
. (6.41)

Similarly,

• For the inequality (6.36) in Corollary 6.3, we use

sup
x∈Rk

|f (x) − φ(x; V 1)|
/

φ(0; V 1) ≤ tr(V 2V
−1
1 )√

2
. (6.42)

• For the inequality (6.40) in Corollary 6.4,

sup
x∈Rk

|f (x) − φ(x; V 1)|
/

φ(0; V 1) ≤ tr(V 2V
−1
1 )√

2
≤ kγ (b(�̂))√

2
. (6.43)

Examples. Here are three simple examples.

Example 6.1 (SUR model) For simplicity, let us consider the two-equation SUR
model. As is proved in (3) of Theorem 4.10, an upper bound for the covariance
matrix of the unrestricted Zellner estimator (UZE) b(S ⊗ Im) is given by

Cov(b(S ⊗ Im)) ≤
[

1 + 2

q − 3

]
Cov(b(� ⊗ Im)), (6.44)

where L(S) = W2(�, q), the Wishart distribution with mean q� and degrees of
freedom q.
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The UZE can be rewritten as

b(S ⊗ Im) = C(e)y with C(e) = (X′(S−1 ⊗ Im)X)−1X′(S−1 ⊗ Im),

and the function C(e) satisfies conditions (1) to (3). Recall that S is a function of
e. Hence, by letting

γ (b(S ⊗ Im)) = 2

q − 3
,

and letting f be the pdf of b(S ⊗ Im) − β, it holds that

sup
x∈Rk

|f (x) − φ(x; V 1)| ≤
√

2k

(2π)k/2|V 1|1/2(q − 3)
, (6.45)

where φ(x; V 1) is the pdf of b(� ⊗ Im) − β, namely, the pdf of Nk(0, V 1). Here

V 1 = (X′(�−1 ⊗ Im)X)−1.

Example 6.2 (CO2 emission data) In Section 4.6 of Chapter 4, by using the
UZE b(S ⊗ Im), we fitted the following two-equation SUR model to the CO2
emission data of Japan and the USA:

log(CO21) = 4.673 + 0.378 log(GNP1) : Japan

log(CO22) = 6.057 + 0.280 log(GNP2) : USA. (6.46)

The data is given in Section 2.5 of Chapter 2. When the matrix � ∈ S(2) is esti-
mated by

S/q = 1

24

(
0.06013 0.02925
0.02925 0.02563

)

=
(

0.002505 0.001219
0.001219 0.001068

)
, (6.47)

an estimate of the matrix

V 1 = (X′(�−1 ⊗ Im)X)−1

is obtained as

V̂ 1 = (X′[(S/q)−1 ⊗ Im]X)−1

=




0.036447 ∗ ∗ ∗
−0.0063078 0.0010945 ∗ ∗

0.039136 −0.0067826 0.076814 ∗
−0.0045964 0.00079751 −0.0090273 0.0010614


,
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which is a symmetric matrix. From this, it follows

|V̂ 1| = 8.587 × 10−16.

Hence, by letting k = 4 and q = 24, the uniform bound in (6.45) is estimated by
√

2k

(2π)k/2|V 1|1/2(q − 3)
= 232855.9.

However, since the value depends on the unit of y and X, we use (6.43) and obtain

sup
x∈Rk

|f (x) − φ(x; V 1)|/φ(0; V 1) ≤ kγ (b(�̂))√
2

= 4 × [2/(24 − 3)]√
2

= 0.2694.

Example 6.3 (Anderson model) In the Anderson model described in Section 5.3
of Chapter 5, Theorem 5.7 shows that if an estimator θ̂ = θ̂ (e) satisfies the conditions
of Theorem 5.7, then the corresponding GLSE b(�̂) with �̂ = �(θ̂) approximately
satisfies

Cov(b(�̂)) ≤
{

1 + δ

[
2

n

√
3(1 + θ)3

(1 − θ)5

]}
Cov(b(�)), (6.48)

where the definition of δ is given in (5.41). When we rewrite b(�̂) as

b(�̂) = C(e)y with C(e) = (X′�̂−1X)−1X′�̂−1,

the function C(e) satisfies conditions (1) to (3). Hence, by Corollaries 6.3 and 6.4,
the following approximation is obtained for the pdf f (x) of b(�̂) − β:

sup
x∈Rk

|f (x) − φ(x; V 1)| ≤ kδ√
2(2π)k/2|V 1|1/2

[
2

n

√
3(1 + θ)3

(1 − θ)5

]
, (6.49)

where φ(x; V 1) is the pdf of b(�) − β, namely, the pdf of Nk(0, V 1) with

V 1 = σ 2(X′�(θ)−1X)−1.

Some complementary results are provided as exercise.

6.3 Uniform Bounds for Normal Approximations
to the Cumulative Distribution Functions

In this section, analyses similar to those of Section 6.2 are pursued for the cdf of a
GLSP ŷ0. Bounds for the normal approximation to the cdf of a linear combination
of the form

a′(ŷ0 − y0) with a ∈ Rm (6.50)

are obtained.
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Bound for the pdf of a′(ŷ0 − y0). Fix a nonnull vector a ∈ Rm. For any GLSP
ŷ0 = C(e)y in (6.13) satisfying conditions (1) to (3), consider a linear combination
of the form

w = a′Y with Y = ŷ0 − y0. (6.51)

By using the decomposition Y = Y1 + Y2 in (6.15), we write w in (6.51) as

w = w1 + w2 with w1 = a′Y1 and w2 = a′Y2, (6.52)

where the two terms w1 and w2 are clearly independent. Then it readily follows
from (6.22) that

L(w|w2) = N(w2, v1) with v1 = a′V1a, (6.53)

where V1 = E(Y1Y
′
1). The pdf of w is approximated by φ(x; v1), which is the pdf

of L(w1) = N(0, v1).

Theorem 6.5 Let h be the pdf of w. Then the following inequality holds:

sup
x∈R1

|h(x) − φ(x; v1)| ≤ v2

2
√

πv
3/2
1

, (6.54)

where v2 = a′V2a with V2 = E(Y2Y
′
2).

Proof. The proof is essentially the same as that of Theorem 6.2. Let the char-
acteristic functions of w, w1 and w2 be ζ(s), ζ1(s) and ζ2(s) respectively, where
s ∈ R1:

ζ(s) = E[exp(isw)] = E[exp(is(w1 + w2))] = ζ1(s)ζ2(s),

ζ1(s) = E[exp(isw1)] and ζ1(s) = E[exp(isw2)]

Then these functions are written in terms of ξ , ξ1 and ξ2 as

ζ(s) = ξ(sa), ζ1(s) = ξ1(sa) = exp(−s2v1/2) and ζ2(s) = ξ2(sa),

where ξ , ξ1 and ξ2 are respectively the characteristic functions of Y , Y1 and Y2.
Hence, we obtain from (6.27)

ζ(s) = ζ1(s)ζ2(s) = exp(−s2v1/2)E[exp(isw2)]. (6.55)

Thus, from the proof of Theorem 6.2, the function ζ is expressed as

ζ(s) = ζ1(s)[1 + ν∗(s)],

where

ν∗(s) = ν(sa) = −E{[cos(θ1sw2) + i sin(θ2sw2)](sw2)
2}/2

(see (6.32)).
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By the inversion formula, the two pdf’s h and φ are expressed as

h(x) = 1

2π

∫ ∞

−∞
exp(−isx)ζ(s)ds

and

φ(x; v1) = 1

2π

∫ ∞

−∞
exp(−isx)ζ1(s)ds

respectively. Hence, for any x ∈ R1,

|h(x) − φ(x; v1)| =
∣∣∣∣ 1

2π

∫
R1

exp(−isx) [ζ(s) − ζ1(s)] ds

∣∣∣∣
≤ 1

2π

∫
R1

ζ1(s)|ν∗(s)|ds

≤ v2

2
√

2π

∫
R1

ζ1(s)s
2ds

= v2

2
√

2π

(2π)1/2

v
3/2
1

,

where

|ν∗(s)| ≤ s2v2/
√

2

and ∫ ∞

−∞
s2 exp(−s2v1/2)ds = 2

∫ ∞

0
s2 exp(−s2v1/2)ds = (2π/v3

1)1/2

are used. This completes the proof.

Arguing in the same way as in Corollary 6.3 yields the following estimation
version of Theorem 6.5 whose proof is available as an exercise (Problem 6.3.1).

Corollary 6.6 For any fixed vector a ∈ Rk with a �= 0, let g be a pdf of the lin-
ear combination w = a′(β̂ − β), where β̂ is a GLSE of the form β̂ = C(e)y with
C(e)X = Ik. Suppose that the function C(e) satisfies conditions (1) to (3). Then the
following inequality holds:

sup
x∈R1

|g(x) − φ(x; v1)| ≤ v2

2
√

πv
3/2
1

, (6.56)

where φ(x; v1) denotes the pdf of L(w1) = N(0, v1),

w1 = a′[b(�) − β],

w2 = a′[β̂ − b(�)],

and

v1 = a′V 1a = E(w2
1) = σ 2a′(X′�−1X)−1a,

v2 = a′V 2a = E(w2
2).
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Bounds for the cdf of w = a′(ŷ0 − y0). Next, we shall derive a uniform bound
for the approximation to the cdf of w = a′Y = a′(ŷ0 − y0). This result is more
important because it directly evaluates the error of the normal approximation.

To this end, we need the following smoothing lemma in the theory of Fourier
transform (see, for example, Feller, 1966, p 512)).

Lemma 6.7 Let G be a cdf satisfying∫
R1

x dG(x) = 0, (6.57)

and let ψ(s) = ∫
R1 exp(isx)dG(x) be the characteristic function of G. Let G0 be

a function such that

lim
x→±∞ [G(x) − G0(x)] = 0, (6.58)

and that G0 has a bounded derivative g0 = G′
0, that is, there exists a positive

constant c > 0 such that

|g0(x)| ≤ c for any x ∈ R1. (6.59)

Let ψ0 be the Fourier transform of g0: ψ0(s) = ∫
R1 exp(isx)g0(x)dx. Suppose fur-

ther that ψ0 is continuously differentiable and satisfies

ψ0(0) = 1 and ψ ′
0(0) = 0. (6.60)

Then for all x and T > 0, the inequality

|G(x) − G0(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ψ(s) − ψ0(s)

s

∣∣∣∣ ds + 24c

πT
(6.61)

holds.

Since the left-hand side of the inequality (6.61) is free from T > 0, this lemma
implies that

|G(x) − G0(x)| ≤ 1

π

∫ ∞

−∞

∣∣∣∣ψ(s) − ψ0(s)

s

∣∣∣∣ ds. (6.62)

Let H be the cdf of w, namely,

H(x) = P (w ≤ x), (6.63)

and let

�(x; v1) =
∫ x

−∞
φ(w1; v1)dw1,

which is the cdf of L(w1) = N(0, v1). Note that (6.58) is trivial when G0 is a cdf.



186 NORMAL APPROXIMATION

To apply Lemma 6.7 to the cdf’s H and �, we check the conditions (6.57) to
(6.60). Since the GLSP ŷ0 in (6.50) is unbiased, it holds that

E(w) =
∫ ∞

−∞
w dH(w) = 0,

proving (6.57). Next, the derivative φ(x; v1) = �′(x; v1) is clearly bounded, and
its Fourier transform, which is given by ζ1(s) = exp(−s2v1/2), is continuously
differentiable and satisfies

ζ1(0) = 1 and ζ ′
1(0) = −v1s exp(−s2v1/2)|s=0 = 0,

proving (6.59) and (6.60). Hence, by Lemma 6.7 and (6.62), we have

|H(x) − �(x; v1)| ≤ 1

π

∫ ∞

−∞

∣∣∣∣ζ(s) − ζ1(s)

s

∣∣∣∣ ds. (6.64)

As shown in the proof of Theorem 6.5, it holds that |ζ(s) − ζ1(s)| = |ν∗(s)|ζ1(s)

and |ν∗(s)| ≤ s2v2/
√

2. Thus, the right-hand side of (6.64) is further bounded
above by

v2√
2π

∫ ∞

−∞
|s|ζ1(s)ds = v2√

2π

∫ ∞

−∞
|s| exp(−s2v1/2)ds

= v2√
2π

× 2
∫ ∞

0
s exp(−s2v1/2)ds

=
√

2v2

πv1
, (6.65)

where the last equality is obtained from
∫ ∞

0 s exp(−s2v1/2)ds = 1/v1. Summariz-
ing the results above yields

Theorem 6.8 For any fixed a ∈ Rm with a �= 0 and any GLSP ŷ0 = C(e)y with
C(e)X = X0 satisfying conditions (1) to (3), the normal approximation of the cdf
H(x) of w = a′(ŷ0 − y0) is evaluated as

sup
x∈R1

|H(x) − �(x; v1)| ≤
√

2v2

πv1
. (6.66)

Corollary 6.9 For any a ∈ Rk with a �= 0, let G be the cdf of the linear combina-
tion w = a′(β̂ − β) of a GLSE β̂ = C(e)y with C(e)X = Ik , and suppose that the
function C(e) satisfies conditions (1) to (3). Then the following inequality holds:

sup
x∈R1

|G(x) − �(x; v1)| ≤
√

2v2

πv1
, (6.67)

where v1 and v2 are defined in Corollary 6.6.
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As done in the previous section, we evaluate the bound obtained above by
using the results of Chapters 4 and 5. If an upper bound for the covariance matrix
of a GLSE b(�̂) is given by

Cov(b(�̂)) ≤ (1 + γ ) Cov(b(�)) with γ = γ (b(�̂)), (6.68)

then clearly

v2 ≤ γ v1 (6.69)

follows, since

Cov(b(�̂)) = V 1 + V 2, Cov(b(�)) = V 1 and vi = a′V ia (i = 1, 2).

Thus, we obtain

sup
x∈R1

|G(x) − �(x; v1)| ≤
√

2v2

πv1
≤

√
2γ

π
. (6.70)

Example 6.4 (SUR model) Let us consider the UZE b(S ⊗ Im) in the SUR
model discussed in Example 6.1. Let G be the cdf of a′[b(S ⊗ Im) − β]. Then
from (6.44), we obtain

v2 ≤ 2

q − 3
v1,

from which

sup
x∈R1

|G(x) − �(x; v1)| ≤ 2
√

2

π(q − 3)
(6.71)

follows.

Example 6.5 (Anderson model) Consider the Anderson model described in
Example 6.3. For a GLSE b(�̂) with �̂ = �(θ̂) treated there, let G be the cdf of
a′[b(�̂) − β]. Then, by (6.48) and (6.69), an approximation

v2 ≤ δ

[
2

n

√
3(1 + θ)3

(1 − θ)5

]
v1, (6.72)

is obtained, where

v1 = σ 2a′(X′�(θ)−1X)−1a.

Hence, by Corollary 6.9, we obtain the following approximation:

sup
x∈R1

|G(x) − �(x; v1)| ≤
√

2δ

π

(
2

n

√
3(1 + θ)3

(1 − θ)5

)
. (6.73)
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Numerical studies. Usami and Toyooka (1997b) numerically evaluated the uni-
form bounds given above by using a Monte Carlo simulation. The model considered
by them is the following:

yj = β1 + β2j + εj (j = 1, · · · , n)

εj = θεj−1 + ξj , (6.74)

where |θ | < 1, and ξj ’s are identically and independently distributed as the normal
distribution N(0, σ 2). In this model, one-step-ahead prediction of yn+1 is made.
Hence, this model is written by the model (6.1) with m = 1, k = 2,

X =




1 1
1 2
...

...

1 n


 : n × 2,

X0 = (1, n + 1) : 1 × 2,

y0 = yn+1 (The predictand is yn+1)

and

� =
(

� �′
� �0

)
∈ S(n + 1),

where

� = �(θ) = 1

1 − θ2
(θ |i−j |) ∈ S(n),

� = �(θ) = 1

1 − θ2
(θn, θn−1, · · · , θ) : 1 × n,

�0 = �0(θ) = 1

1 − θ2
.

The GMP and GLSP are given by

y∗
n+1 = ỹn+1(�, �) = X0b(�) + ��−1[y − Xb(�)]

and

ŷn+1 = ỹn+1(�̂, �̂) = X0b(�̂) + �̂�̂−1[y − Xb(�̂)]

respectively, where �̂ = �(θ̂), �̂ = �(θ̂) and

θ̂ = θ̂ (e) =
∑n

j=2 ej ej−1∑n
j=1 e2

j
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and

b(�̂) = (X′�̂−1X)−1X′�̂−1y.

In this model, the uniform bound obtained in Theorem 6.2 is given by

UBpdf(ŷn+1) = tr(V2V
−1
1 )√

2(2π)1/2|V1|1/2

= V2

2
√

πV
3/2
1

, (6.75)

where V1 = E[(y∗
n+1 − yn+1)

2] and V2 = E[(ŷn+1 − y∗
n+1)

2]. Let

b(�̂) =
(

b1(�̂)

b2(�̂)

)
.

Corresponding to Corollaries 6.3 and 6.6, we define

UBpdf(b(�̂)) = tr(V 2V
−1
1 )

2
√

2π |V1|1/2
,

UBpdf(bi(�̂)) = v2

2
√

πv
3/2
1

(i = 1, 2), (6.76)

respectively. The latter is obtained by letting

a = (1, 0)′, (0, 1)′

in Corollary 6.6. Similarly, let UBcdf(ŷn+1) and UBcdf(bi(�̂)) (i = 1, 2) be the
uniform bounds for the cdf’s of ŷn+1 and bi(�̂) (i = 1, 2) respectively. By using
Theorem 6.8 and Corollary 6.9, these quantities are written by

UBcdf(ŷn+1) =
√

2v2

πv1
,

UBcdf(bi(�̂)) =
√

2v2

πv1
(i = 1, 2),

respectively.
In Usami and Toyooka (1997b), the cases in which

β = (10, 2)′, σ 2 = 102,

θ = 0.1, 0.3, 0.5, 0.7, 0.9,

n = 30, 50
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are treated. Under this setup, the quantities V1 and V 1 are exactly determined. On
the other hand, the values of V2 and V 2 are evaluated by a Monte Carlo simulation
with replication 3000. The results are summarized in Tables 6.1 and 6.2.

Further, in Tables 6.3 and 6.4, the values of V1, V2, V 1 and V 2 are shown.
Figures 6.1, 6.2 and 6.3 show φ(x; V1), φ(x; V1) − UBpdf(ŷn+1) (in dashed line)

Table 6.1 Uniform bounds for pdf (n = 30).

θ UBpdf(ŷn+1) UBpdf(b(�̂)) UBpdf(b1(�̂)) UBpdf(b2(�̂))

0.1 0.00101 0.00190 0.00032 0.00691
0.3 0.00124 0.00179 0.00038 0.00821
0.5 0.00168 0.00172 0.00050 0.01080
0.7 0.00272 0.00163 0.00073 0.01612
0.9 0.00596 0.00103 0.00095 0.02369

Source: Usami and Toyooka (1997b) with permission.

Table 6.2 Uniform bounds for pdf (n = 50).

θ UBpdf(ŷn+1) UBpdf(b(�̂)) UBpdf(b1(�̂)) UBpdf(b2(�̂))

0.1 0.00057 0.00219 0.00018 0.00630
0.3 0.00066 0.00209 0.00022 0.00759
0.5 0.00085 0.00197 0.00028 0.00980
0.7 0.00130 0.00183 0.00041 0.01459
0.9 0.00294 0.00138 0.00072 0.02746

Source: Usami and Toyooka (1997b) with permission.

Table 6.3 The values of V2, V1, V 2 and V 1 (n = 30).

θ V2 V1 V 2 V 1

0.1 4.346 113.91

(
0.0792 −0.0046

−0.0046 0.0003

) (
16.993 −0.833
−0.833 0.054

)

0.3 5.317 113.62

(
0.1854 −0.0107

−0.0107 0.0007

) (
26.663 −1.294
−1.294 0.083

)

0.5 7.153 113.11

(
0.5824 −0.0330

−0.0330 0.0022

) (
47.753 −2.274
−2.274 0.147

)

0.7 11.435 112.09

(
2.9405 −0.1610

−0.1610 0.0104

) (
109.332 −4.986
−4.986 0.322

)

0.9 24.046 109.03

(
35.9805 −1.6216
−1.6216 0.1045

) (
486.336 −17.936
−17.936 1.157

)

Source: Usami and Toyooka (1997b) with permission.
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Table 6.4 The values of V2, V1, V 2 and V 1 (n = 50).

θ V2 V1 V 2 V 1

0.1 2.270 108.21

(
0.020400 −0.000718

−0.000718 0.000028

) (
10.066 −0.298
−0.298 0.012

)

0.3 2.641 108.10

(
0.049833 −0.001738

−0.001738 0.000068

) (
16.124 −0.475
−0.475 0.019

)

0.5 3.374 107.92

(
0.160991 −0.005566

−0.005566 0.000219

) (
29.902 −0.871
−0.871 0.034

)

0.7 5.125 107.53

(
0.914683 −0.030884

−0.030884 0.001209

) (
73.471 −2.084
−2.084 0.082

)

0.9 11.395 106.12

(
20.477519 −0.611951
−0.611951 0.023725

) (
400.795 −9.950
−9.950 0.390

)

Source: Usami and Toyooka (1997b) with permission.
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Normal density function + Bound

Figure 6.1 :φ(x; V1), φ(x; V1) − UBpdf(ŷn+1) (in dashed line) and φ(x; V1) +
UBpdf(ŷn+1) (in dotted line). θ = 0.1 and n = 30. Source: Usami and Toyooka
(1997b) with permission.
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Figure 6.2 :φ(x; V1), φ(x; V1) − UBpdf(ŷn+1) (in dashed line) and φ(x; V1) +
UBpdf(ŷn+1) (in dotted line). θ = 0.5 and n = 30. Source: Usami and Toyooka
(1997b) with permission.
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Figure 6.3 :φ(x; V1), φ(x; V1) − UBpdf(ŷn+1) (in dashed line) and φ(x; V1) +
UBpdf(ŷn+1) (in dotted line). θ = 0.9 and n = 30. Source: Usami and Toyooka
(1997b) with permission.
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Table 6.5 Uniform bounds for the cdf (n = 30).

θ UBcdf(ŷn+1) UBcdf(b1(�̂)) UBcdf(b2(�̂))

0.1 0.01717 0.00210 0.00255
0.3 0.02107 0.00313 0.00378
0.5 0.02847 0.00549 0.00660
0.7 0.04592 0.01211 0.01459
0.9 0.09928 0.03330 0.04066

Source: Usami and Toyooka (1997b) with permission.

Table 6.6 Uniform bounds for the cdf (n = 50).

θ UBcdf(ŷn+1) UBcdf(b1(�̂)) UBcdf(b2(�̂))

0.1 0.00944 0.00091 0.00109
0.3 0.01100 0.00139 0.00165
0.5 0.01407 0.00242 0.00289
0.7 0.02145 0.00560 0.00666
0.9 0.04834 0.02300 0.02737

Source: Usami and Toyooka (1997b) with permission.

and φ(x; V1) + UBpdf(ŷn+1) (in dotted line) for the case in which θ = 0.1, 0.5
and 0.9 respectively (n = 30). From these tables and figures, Usami and Toyooka
(1997b) observed that

(1) As θ increases, the uniform bounds for the pdf’s of ŷn+1 and bi(�̂)s become
larger;

(2) For each θ , the bounds in the case of n = 30 are greater than those in the
case of n = 50;

(3) However, points (1) and (2) do not hold for UBpdf(b(�̂)).

They also evaluated the uniform bounds UBcdf(ŷn+1) and UBcdf(bi(�̂)) (i = 1, 2)

for the cdf’s of ŷn+1 and bi(�̂) (i = 1, 2). The results are summarized in Tables 6.5
and 6.6.

6.4 Problems

6.1.1 Let Pj (j = 1, 2) be two probability distributions, and suppose that Pj s have
pdf pj s with respect to the Lebesgue measure on Rn: dPj/dx = pj (x) (j = 1, 2).
Let B be the Borel σ algebra on Rn. The variational distance between P1 and P2
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is defined by

d(P1, P2) = 2 sup
B∈B

|P1(B) − P2(B)|.

Establish the following identity:

d(P1, P2) =
∫

Rn

|p1(x) − p2(x)|dx = 2
∫

Rn

(
p1(x)

p2(x)
− 1

)+
p2(x)dx,

from which

d(P1, P2) ≤ sup
x∈Rn

(
p1(x)

p2(x)
− 1

)+

follows, where for a function p,

p+(x) = max(p(x), 0).

See, for example, Chapters 7, 8 and 9 of Eaton (1989).

6.2.1 Prove Corollary 6.3.

6.2.2 The OLSE b(In) = (X′X)−1X′y also satisfies conditions (1) to (3) required
in Corollaries 6.3 and 6.4.

(1) Evaluate the bound in the right-hand side of (6.36) in Corollary 6.3 for the
OLSE.

(2) In the Anderson model described in Example 6.3, derive the bound for the
pdf of the OLSE.

(3) In the two-equation SUR model described in Example 6.1, derive the bound
for the pdf of the OLSE.

6.2.3 Using the results in Chapters 4 and 5, derive a bound for the pdf of the
unrestricted GLSE in the two-equation heteroscedastic model.

6.3.1 Prove Corollary 6.6.

6.3.2 Let us consider the distribution of the OLSE b(In).

(1) Evaluate the bound in the right-hand side of (6.67) in Corollary 6.9 for the
OLSE.

(2) In the Anderson model described in Example 6.5, derive the bound for the
cdf of the OLSE.

(3) In the two-equation SUR model described in Example 6.4, derive the bound
for the cdf of the OLSE.

6.3.3 Using the results in Chapters 4 and 5, derive a bound for the cdf of the
unrestricted GLSE in the two-equation heteroscedastic model.
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A Maximal Extension of the
Gauss–Markov Theorem
and Its Nonlinear Versions

7.1 Overview

In this chapter, we first provide a maximal extension of the Gauss–Markov theorem
(GMT, Theorem 2.1) in its linear framework, in particular, the maximal class of
distributions (of the error term) under which the GMT holds is derived. The result
suggests some further extension of the nonlinear GMT (Theorem 3.9) established
in Chapter 3 for nonlinear estimators including generalized least square estimators
(GLSEs) and location-equivariant estimators. An application to elliptically sym-
metric distributions is also given. The results in this chapter are due to Kariya and
Kurata (2002).

Criterion of optimality. To state the problem more precisely, let the general linear
regression model be

y = Xβ + ε, (7.1)

where

y : n × 1, X : n × k, and rankX = k.

The GMT states that if the model (7.1) satisfies the condition

L(ε) ∈ P̃n(0, �) with � ∈ S(n), (7.2)

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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the Gauss–Markov estimator (GME) defined by

b(�) = (X′�−1X)−1X′�−1y (7.3)

minimizes the risk matrix

RP (β̂, β) = EP [(β̂ − β)(β̂ − β)′] (7.4)

in the class C0 of linear unbiased estimators:

C0 = {β̂ = Cy | C is a k × n matrix satisfying CX = Ik}. (7.5)

Here, P ≡ L(ε) denotes the distribution of the error term ε, S(n) the set of n × n

positive definite matrices, and for µ ∈ Rn and � ∈ S(n),

P̃n(µ, �) =
⋃
γ>0

Pn(µ, γ�),

where Pn(µ, γ�) denotes the class of distributions with mean µ and covariance
matrix γ�. The risk matrix in (7.4) is the covariance matrix of β̂ ∈ C0 under (7.2).

It should be noted here that the optimality of the GME depends on the class
P̃n(0, �) of distributions in (7.2) as well as the class C0 of estimators. In fact,
the class C0 is implied by unbiasedness when P̃n(0, �) is first fixed. Hence, it is
appropriate to begin with the notion of optimality adopted in this chapter.

Definition 7.1 For a class C of estimators and for a class P of distributions of ε,
an estimator β̂o is said to be (C,P)-optimal, if β̂o ∈ C and

RP (β̂o, β) ≤ RP (β̂, β) f or all β̂ ∈ C and P ∈ P. (7.6)

In the case of the GMT, the statement along this definition becomes

Theorem 7.2 (Gauss–Markov theorem)

b(�) is (C0, P̃n(0, �))-optimal. (7.7)

A maximal extension of the GMT and its nonlinear version. In this chapter, on
the basis of Definition 7.1, the GMT above will be strengthened in several ways.
The organization of this chapter is as follows:

7.2 An Equivalence Relation on S(n)

7.3 A Maximal Extension of the Gauss–Markov Theorem

7.4 Nonlinear Versions of the Gauss–Markov Theorem.

In Section 7.3, for the given � ∈ S(n) and for the class C0, we will derive a
maximal class, say P̃max(�), of the distributions of ε in the sense that the following
two conditions hold:
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(1) b(�) is (C0, P̃max(�))-optimal;

(2) There is no (ν, �) ∈ Rn × S(n) such that b(�) is (C0,P∗)-optimal, where
P∗ = P̃max(�) ∪ P̃n(ν, �).

The class P̃max(�) derived in this chapter contains a class P̃n(µ, �) with some
µ( �= 0) and �( �= �) as well as the class P̃n(0, �) for which the original GMT
(Theorem 7.2) holds. Note that (1) and (2) imply that b(�) is in particular (C0, P̃n

(µ, �))-optimal as long as P̃n(µ, �) ⊂ P̃max(�). Then C0 is not necessarily the
class of linear unbiased estimators under P ∈ P̃n(µ, �), though it is a class of
linear estimators.

In Section 7.4, by applying the results in Section 7.3, we will extend the class
C0 of linear estimators to the class C2 of the location-equivariant estimators, which
is introduced in Chapter 2 as

C2 = {β̂ = β̂(y) | β̂(y) = b(In) + d(e), d is a k × 1 vector-valued

measurable function on Rn}, (7.8)

where

b(In) = (X′X)−1X′y

is the ordinary least squares estimator (OLSE) and e is the OLS residual vector
defined by

e = Ny with N = In − X(X′X)−1X′. (7.9)

As shown in Proposition 2.5, the class C2 contains the class C1 of GLSEs of
the form

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �̂(e), (7.10)

where �̂(e) is an estimator of �. Section 7.4 is also devoted to finding a subclass
Q̃n(�) of P̃max(�) for which

b(�) is (C2, Q̃n(�))-optimal. (7.11)

Further, it is shown that Q̃n(�) contains a class of elliptically symmetric distribu-
tions. To develop the theory in the sequel, we equip an equivalence relation ∼ on
the set S(n) of n × n positive definite matrices by

� ∼ � if and only if b(�) = b(�) for all y ∈ Rn, (7.12)

which is of course equivalent to

B(�) = B(�)

with

B(�) = (X′�−1X)−1X′�−1.

The relation plays an important role in describing and interpreting the classes of
distributions treated in the following sections.
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7.2 An Equivalence Relation on S(n)

In this section, we characterize the equivalence relation ∼ introduced in (7.12).
Consider the linear regression model

y = Xβ + ε (7.13)

with X : n × k and rankX = k.

An equivalence relation. Now fix � ∈ S(n) and let us consider the problem of
characterizing the matrices �’s that satisfy

� ∼ �.

To do so, let

X� = �−1/2X(X′�−1X)−1/2 : n × k,

Z� = �1/2Z(Z′�Z)−1/2 : n × (n − k), (7.14)

and form the n × n orthogonal matrix

	� =
(

X
′
�

Z
′
�

)
, (7.15)

where Z is an n × (n − k) matrix such that

X′Z = 0, ZZ′ = N and Z′Z = In−k

and it is fixed throughout. Further, let

η = �−1/2ε

and define the two vectors η̃1 : k × 1 and η̃2 : (n − k) × 1 by

η̃ = 	� η =
(

X
′
�η

Z
′
�η

)
=

(
η̃1
η̃2

)
. (7.16)

Then it is easy to see that for � ∈ S(n) fixed,

b(�) − β = (X′�−1X)−1X′�−1ε

= (X′�−1X)−1/2η̃1, (7.17)

and for any � ∈ S(n),

b(�) − β = (X′�−1X)−1X′�−1ε

= (X′�−1X)−1X′�−1[X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′]ε

= (X′�−1X)−1/2η̃1 + (X′�−1X)−1X′�−1�Z(Z′�Z)−1/2η̃2

= [b(�) − β] + [b(�) − b(�)], (7.18)
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where the matrix identity

X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′ = In (7.19)

is used in the second line of (7.18). The following theorem characterizes the equiv-
alence relation in (7.12).

Theorem 7.3 For � and � in S(n), the following three statements are equivalent:

(1) � ∼ �;

(2) X′�−1�Z = 0;

(3) � ∈ R(�), where

R(�) = {� ∈ S(n) | � = XϒX′ + �Z�Z′�, ϒ ∈ S(k), � ∈ S(n − k)}
= {� ∈ S(n) | �−1 = �−1XϒX′�−1 + Z�Z′,

ϒ ∈ S(k), � ∈ S(n − k)}. (7.20)

Proof. From (7.17) and (7.18), the equality b(�) = b(�) for all y ∈ Rn holds
if and only if

(X′�−1X)−1X′�−1�Z(Z′�Z)−1/2η̃2 = 0 for any η̃2 ∈ Rn−k. (7.21)

Hence, it is shown that a necessary and sufficient condition for (7.21) is that
X′�−1�Z = 0. Thus, the equivalence between (1) and (2) follows. The rest is
available as an exercise (see Problem 7.2.1). This completes the proof.

Rao’s covariance structure and some related results. Special attention has been
accorded in the literature to the condition under which the GME is identical to the
OLSE. Below, we briefly review the several relevant results on this problem.

To do so, consider the following general linear regression model

y = Xβ + ε with P ≡ L(ε) ∈ P̃n(0, �), (7.22)

where

y : n × 1, X : n × k, rankX = k.

Then it follows

Theorem 7.4 The identical equality

b(In) = b(�) for any y ∈ Rn (7.23)

holds if and only if � is of the form

� = XϒX′ + Z�Z′ for some ϒ ∈ S(k) and � ∈ S(n − k). (7.24)
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Proof. By using the following expression

b(In) − b(�) = (X′X)−1X′�Z(Z′�Z)−1Z′y,

we see that a necessary and sufficient condition for (7.23) is

X′�Z = 0. (7.25)

On the other hand, let

G = (X, Z) ∈ G(n)

whose inverse is given by

G−1 =
(

(X′X)−1X′
Z′

)
.

In general, any � ∈ S(n) is expressed as

� = GG−1�G′−1
G′

= (X, Z)

(
ϒ �

�′ �

) (
X′
Z′

)
, (7.26)

where

ϒ = (X′X)−1X′�X(X′X)−1 ∈ S(k),

� = Z′�Z ∈ S(n − k),

� = (X′X)−1X′�Z : k × (n − k).

Here, condition (7.24) is clearly equivalent to

� = 0, (7.27)

which is further equivalent to (7.25). Thus, it is proved that (7.23) and (7.24) are
equivalent. This completes the proof.

The structure (7.24) is called Rao’s covariance structure. It was originally
established by Rao (1967) and Geisser (1970), and has been fully investigated by
many papers. Among others, Kruskal (1968) and Zyskind (1967) obtained other
characterizations of the equality (7.23).

Proposition 7.5 The equality (7.23) holds if and only if one of the following two
conditions is satisfied:

(1) (Kruskal (1968)) L(�X) = L(X);

(2) (Zyskind (1967)) L(X) is spanned by k latent vectors of �.

Here, L(A) denotes the linear subspace spanned by the column vectors of matrix
A. In Puntanen and Styan (1989), an excellent survey on this topic is given on the
basis of approximately 100 references.
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Proof. First let us treat Kruskal’s condition (1). For � in (7.26),

�X = (X, Z)

(
ϒ �

�′ �

) (
X′
Z′

)
X

= XϒX′X + Z�′X′X.

Hence, the condition L(�X) = L(X) holds if and only if

�′X′X = 0,

which is equivalent to X′�Z = 0. Hence, (1) is equivalent to the equality (7.23).
Next, consider Zyskind’s condition (2). Suppose that the equality (7.23) holds,

or equivalently, � has Rao’s covariance structure. Then � is expressed as

� = (X, Z)

(
ϒ 0
0 �

) (
X′
Z′

)

= (X(X′X)−1/2, Z)

(
(X′X)1/2ϒ(X′X)1/2 0

0 �

) (
(X′X)−1/2X′

Z′
)

= (X̃, Z̃)

(
ϒ̃ 0
0 �̃

) (
X̃′
Z̃′

)
(say).

Here, (X̃, Z̃) is an n × n orthogonal matrix. To give spectral decompositions
(Lemma 1.10) of ϒ̃ and �̃, let 	1 and 	2 be k × k and (n − k) × (n − k) orthog-
onal matrices such that

ϒ̃ = 	1�1	
′
1 and �̃ = 	2�2	

′
2,

respectively, where �1 : k × k and �2 : (n − k) × (n − k) are diagonal. Then �

is further rewritten as

� = (X̃, Z̃)

(
	1 0
0 	2

) (
�1 0
0 �2

)(
	′

1 0
0 	′

2

) (
X̃′
Z̃′

)

= (X̃	1, Z̃	2)

(
�1 0
0 �2

) (
	′

1X̃
′

	′
2Z̃

′

)
,

where (X̃	1, Z̃	2) is also an n × n orthogonal matrix. Thus, the column vectors of

(X̃	1, Z̃	2) : n × n

are nothing but the latent vectors of �. Here,

L(X) = L(X̃	1)

holds, which is equivalent to Zyskind’s condition (2). Hence, it is shown that
the equality (7.23) implies the condition (2). Conversely, suppose that Zyskind’s
condition (2) holds. Let

� = ��� ′
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be a spectral decomposition of �, where � and � are n × n orthogonal and
diagonal matrices respectively. By assumption, we can assume without loss of
generality that

�1 = XG for some G ∈ G(k),

where

� = (�1, �2) with �1 : n × k and �2 : n × (n − k)

and

� =
(

�1 0
0 �2

)
with �1 : k × k and �2 : (n − k) × (n − k).

Then, by letting ϒ = G�1G
′, � = �2 and Z = �2, the matrix � is expressed as

� = XG�1G
′X′ + �2�2�

′
2

= XϒX′ + Z�Z′.

This shows that Zyskind’s condition implies Rao’s covariance structure. This com-
pletes the proof.

In page 53 of Eaton (1989), another aspect of Rao’s covariance structure is
described by using group invariance.

Some results obtained from different points of view are also found in the litera-
ture. Among others, McElroy (1967) obtained a necessary and sufficient condition
under which the equality (7.23) holds for all X such that the first column vector
of X is 1n = (1, · · · , 1)′. As an extension of McElroy’s theorem, Zyskind (1969)
derived the covariance structure (7.28) under which the equality (7.23) holds for
all X such that L(X) ⊃ L(U), where U is a fixed n × p matrix such that p ≤ k:

� = λIn + U�U ′ for some λ > 0 and � : p × p, (7.28)

Mathew (1983) treated the case in which � may be incorrectly specified.
Next, let

L(ε) ∈ Pn(0, σ 2�),

where Pn(0, σ 2�) is the set of the distributions on Rn with mean 0 and covariance
matrix σ 2�. Kariya (1980) showed that the following two equalities

b(�) = b(In) and s2(�) = s2(In) for all y ∈ Rn (7.29)

simultaneously hold for given X if and only if � has the following structure:

� = XϒX′ + N for some ϒ ∈ S(k), (7.30)
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where N = ZZ′. Here, the statistics s2(�) and s2(In) are defined by

s2(�) = (y − Xb(�))′�−1(y − Xb(�))/m, (7.31)

and

s2(In) = (y − Xb(In))
′(y − Xb(In))/m

respectively, where m = n or n − k. When the problem of estimating σ 2 is con-
sidered, it is assumed without loss of generality that |�| = 1 for the sake of
identifiability. The result (7.30) was further extended by Kurata (1998).

7.3 A Maximal Extension of the Gauss–Markov
Theorem

In the model (7.1), we fix a matrix � ∈ S(n) and derive the class P̃max(�) of
distributions of ε for which b(�) is (C0, P̃max(�))-optimal. The class P̃max(�) is
maximal in the sense of (1) and (2) in Section 7.1

A maximal extension of the GMT. Let P = L(ε) be the distribution of ε. As
before, β̂ = Cy in C0 is decomposed as

β̂ − β = Cε

= C[X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′]ε

= (X′�−1X)−1X′�−1ε + C�Z(Z′�Z)−1Z′ε

= A−1/2η̃1 + Hη̃2, (7.32)

where η̃ = (η̃′
1, η̃′

2)
′ is defined in (7.16),

A = X′�−1X, H = C�Z(Z′�Z)−1/2 (7.33)

and the matrix identity (7.19) is used in the first line of (7.32). Then the risk matrix
of β̂ is expressed as

RP (β̂, β) = EP [(β̂ − β)(β̂ − β)′]

= A−1/2EP (η̃1η̃
′
1)A

−1/2 + HEP (η̃2η̃
′
2)H

′

+A−1/2EP (η̃1η̃
′
2)H

′ + HEP (η̃2η̃
′
1)A

−1/2

= V11 + V22 + V12 + V21 (say). (7.34)

Here we note that V12 = V ′
21,

RP (b(�), β) = V11
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and Vij ’s depend on P . Clearly, if P ∈ P̃n(µ, �), then EP (εε′) = µµ′ + γ� for
some γ > 0, and hence, we see by direct calculation that

V11 = (X′�−1X)−1X′�−1[µµ′ + γ�]�−1X(X′�−1X)−1,

V12 = (X′�−1X)−1X′�−1[µµ′ + γ�]Z(Z′�Z)−1Z′�C ′ = V ′
21,

V22 = C�Z(Z′�Z)−1Z′[µµ′ + γ�]Z(Z′�Z)−1Z′�C ′. (7.35)

Theorem 7.6 Fix � ∈ S(n). A necessary and sufficient condition for b(�) to be
(C0, P̃n(µ, �))-optimal is that

(1) EP (η̃1η̃
′
2) = 0 holds for any P ∈ P̃n(µ, �),

which is equivalent to

(2) (µ, �) ∈ M(�) × R(�), where

M(�) = L(X) ∪ L(�Z). (7.36)

Proof. Suppose first that (1) holds. Then for any β̂ ∈ C0 and any P ∈ P̃n(µ, �),
the risk matrix in (7.34) is expressed as

RP (β̂, β) = V11 + V22,

which is greater than V11 = RP (b(�), β), proving the sufficiency of (1).
Conversely, suppose that b(�) is (C0, P̃n(µ, �))-optimal. Since for any a ∈ R

and any F : (n − k) × k the estimator of the form

β̂ = Cy with C = (X′�−1X)−1X′�−1 + aF ′Z′

belongs to C0, the risk matrix of this estimator is bounded below by that of b(�),
that is,

RP (β̂, β) = V11 + V12 + V21 + V22 ≥ V11 = RP (b(�), β)

holds for any a ∈ R, F : (n − k) × k, P ∈ P̃n(µ, �).

For c ∈ Rk , we set

c′RP (β̂, β)c = a2f2 + 2af1 + f0,

where fi’s are defined as

f0 = c′U11c = c′RP (b(�), β)c,

f1 = c′{U12 + U21}c,
f2 = c′U22c
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with U11 = V11, U12 = V12/a = U ′
21 and U22 = V22/a

2. More specifically, if the
covariance matrix of P = L(ε) ∈ P̃n(µ, �) is given by γ�, the matrices Vij ’s and
Uij ’s are of the form

V11 = (X′�−1X)−1X′�−1[µµ′ + γ�]�−1X(X′�−1X)−1

≡ U11,

V12 = (X′�−1X)−1X′�−1[µµ′ + γ�]Z(Z′�Z)−1Z′�C ′

= a(X′�−1X)−1X′�−1[µµ′ + γ�]ZF

≡ aU12,

V22 = C�Z(Z′�Z)−1Z′[µµ′ + γ�]Z(Z′�Z)−1Z′�C ′

= a2F ′Z′[µµ′ + γ�]ZF

≡ a2U22.

Then (C0, P̃n(µ, �))-optimality of b(�) is equivalent to

a2f2 + 2af1 + f0 ≥ f0

holds for any a ∈ R1, c ∈ Rk , γ > 0 and F : (n − k) × k. Note that fi’s are free
from a, though they depend on c, γ and F . Here, it is easy to see that if f1 �= 0
for some c, γ and F , then we can choose a ∈ R such that a2f2 + 2af1 < 0. This
clearly contradicts the optimality of b(�). Hence, it follows that

f1 = 0 for any c, γ, and F. (7.37)

The condition (7.37) is equivalent to

U12 + U21 = U12 + U ′
12 = 0 for any γ and F,

which implies U12 = 0 for any γ > 0 (see Problem 7.3.1), completing the proof
of (1).

Next, to show that (1) and (2) are equivalent, let

EP (ε) = µ and CovP (ε) = γ� with γ > 0.

Then EP (η̃1η̃
′
2) is directly calculated as

EP (η̃1η̃
′
2) = A−1/2X′�−1[µµ′ + γ�]Z(Z′�Z)−1/2.

The condition (1) is equivalent to

X′�−1[µµ′ + γ�]Z = 0 for any γ > 0,

which is in turn equivalent to

−γX′�−1�Z = X′�−1µµ′Z for any γ > 0. (7.38)
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Since the right-hand side of (7.38) does not depend on γ > 0, it is equivalent to

X′�−1�Z = 0 and X′�−1µµ′Z = 0.

By Theorem 7.3, X′�−1�Z = 0 is equivalent to � ∈ R(�). On the other hand,
X′�−1µµ′Z = 0 holds if and only if

X′�−1µ = 0 or Z′µ = 0,

proving equivalence between (1) and (2). This completes the proof.

Now the following result is obvious.

Corollary 7.7 For fixed � ∈ S(n), let

P̃max(�) =
⋃

(µ,�)∈M(�)×R(�)

P̃n(µ, �). (7.39)

Then

b(�) is (C0, P̃max(�))-optimal, (7.40)

and the class P̃max(�) is maximal.

Examples. The following two examples illustrate the effect of the condition µ ∈
M(�). In Example 7.2, it is shown that b(�) itself is a biased estimator.

Example 7.1 Let

µ = �Zd and � = XϒX′ + �Z�Z′�, (7.41)

where d ∈ Rn−k , ϒ ∈ S(k) and � ∈ S(n − k). Suppose

P = L(ε) ∈ P̃n(µ, �) with CovP (ε) = γ�.

Then b(�) = b(�). And b(�) is unbiased, since

EP [b(�)] = β + (X′�−1X)−1X′�−1EP (ε)

= β + (X′�−1X)−1X′�−1�Zd

= β.

The risk matrix of b(�) is

RP (b(�), β) = (X′�−1X)
−1

X′�−1EP (εε′)�−1X(X′�−1X)
−1

= (X′�−1X)
−1

X′�−1[µµ′ + γ�]�−1X(X′�−1X)
−1

.
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Here, substituting (7.41) for µ and � in the above equality yields

RP (b(�), β) = γϒ.

Further, for β̂ = Cy = β + Cε in C0,

EP (β̂) = β + C�Zd.

Hence, C0 contains some biased estimators in general. However, for any β̂ = Cy ∈
C0, its risk matrix is greater than that of b(�):

RP (β̂, β) = CEP (εε′)C ′

= C[µµ′ + γ�]C ′

= C�Zdd ′Z′�C ′ + γϒ + γC�Z�Z′�C ′

≥ γϒ.

Therefore, b(�) minimizes RP (β̂, β) among C0, and the minimum is γϒ .

Example 7.2 Let

µ = Xc and � = XϒX′ + �Z�Z′�,

and suppose

L(ε) ∈ P̃n(µ, �) with CovP (ε) = γ�,

where c ∈ Rk , ϒ ∈ S(k) and � ∈ S(n − k). Then b(�) = b(�), but b(�) is
biased:

EP [b(�)] = β + (X′�−1X)−1X′�−1Xc

= β + c.

The risk matrix of b(�) is evaluated as

RP (b(�), β) = cc′ + γϒ.

Further, for β̂ = Cy in C0,

RP (β̂, β) = C[µµ′ + γ�]C ′

= cc′ + γϒ + γC�Z�Z′�C ′

≥ cc′ + γϒ.
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7.4 Nonlinear Versions of the Gauss–Markov
Theorem

In this section, we strengthen the results of the previous section by enlarging the
class C0 to C2.

Risk matrix of a location-equivariant estimator. A location-equivariant estima-
tor β̂ = b(In) + d(e) ∈ C2 is expressed as

β̂ − β = (X′X)−1X′ε + d(e)

= (X′X)−1X′[X(X′�−1X)−1X′�−1 + �Z(Z′�Z)−1Z′]ε + d(e)

= (X′�−1X)−1X′�−1ε + [(X′X)−1X′�Z(Z′�Z)−1Z′ε + d(e)]

= A−1/2η̃1 + h
β̂
(η̃2) (say), (7.42)

where

h
β̂
(η̃2) = (X′X)−1X′�Z(Z′�Z)−1Z′ε + d(e)

= (X′X)−1X′�Z(Z′�Z)−1/2η̃2 + d(Z(Z′�Z)1/2η̃2). (7.43)

Here, it is noted that the OLS residual vector e in (7.9) is a function of η̃2:

e = ZZ′ε = Z(Z′�Z)1/2η̃2.

The risk matrix of β̂ ∈ C2 is decomposed as

RP (β̂, β) = A−1/2EP (η̃1η̃
′
1)A

−1/2 + EP [h
β̂
(η̃2) h

β̂
(η̃2)

′]

+A−1/2EP [η̃1 h
β̂
(η̃2)

′] + EP [h
β̂
(η̃2) η̃′

1]A−1/2

= V11 + V22 + V12 + V21 (say), (7.44)

as long as the four terms are finite. Here, since C2 includes C0, it is necessary to
assume (µ, �) ∈ M(�) × R(�) and to let P = L(ε) move over P̃max(�), so that
the linear result in Section 7.3 should hold in this nonlinear extension. Hence, we
impose the moment condition on C2: EP (β̂ ′β̂) < ∞ for any P ∈ P̃max(�), which
holds if and only if β̂ belongs to

D = {β̂ ∈ C2 | EP {β̂ ′β̂} < ∞ for any P ∈ P̃max(�)}. (7.45)

Clearly, D is the maximal class of estimators in C2 that have the finite second
moments for any P ∈ P̃max(�), and it contains all the GLSEs with finite second
moments.
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Theorem 7.8 For fixed � ∈ S(n), let

Q̃1
n(�) = {P ∈ P̃max(�) | EP [η̃1 h

β̂
(η̃2)

′] = 0 f or any β̂ ∈ D}. (7.46)

Then

b(�) is (D, Q̃1
n(�))-optimal. (7.47)

The proof is clear from (7.44) and the definitions of D and Q̃1(�). Clearly,

Q̃1
n(�) ⊂ P̃max(�), though D ⊃ C0.

Therefore, the nonlinear version of the GMT in the above theorem is not completely
stronger than the GMT in Theorem 7.2.

Subclasses of Q̃1
n(�). We describe two important subclasses of Q̃1(�) in (7.46).

Corollary 7.9 For fixed � ∈ S(n), let

Q̃2
n(�) = {P ∈ P̃max(�) | EP (η̃1|η̃2) = 0 a.s. η̃2}, (7.48)

Q̃3
n(�) = {P ∈ P̃max(�) | LP (−η̃1, η̃2) = LP (η̃1, η̃2)}, (7.49)

where LP (·) denotes the distribution of · under P . Then

Q̃3
n(�) ⊂ Q̃2

n(�) ⊂ Q̃1
n(�) (7.50)

holds, and hence

b(�) is (D, Q̃i
n(�)) − optimal (i = 2, 3). (7.51)

Proof. For any P ∈ Q̃2
n(�) and any β̂ ∈ D, it holds that

EP

(
η̃1 h(η̃2)

′) = E
[
E (η̃1|η̃2) h(η̃2)

′] = 0.

Thus, Q̃2
n(�) ⊂ Q̃1

n(�). It is easy to see that Q̃3
n(�) ⊂ Q̃2

n(�). This completes the
proof.

In the following sections, we will show that Q̃3
n(�) includes a class of ellipti-

cally symmetric distributions. Other examples will be found in Kariya and Kurata
(2002).

Elliptically symmetric distributions. In the model (7.1), suppose that

P ≡ L(ε) ∈ Ẽn(µ, �), (7.52)

where

Ẽn(µ, �) ≡
⋃
γ>0

En(µ, γ�),
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and En(µ, γ�) is the class of elliptically symmetric distributions with mean µ ∈ Rn

and covariance matrix γ� (see Section 1.3 of Chapter 1).
Fix � ∈ S(n). Then a sufficient condition for b(�) to be (D, Ẽn(µ, �))-optimal

is that

Ẽn(µ, �) ⊂ Q̃3
n(�).

Theorem 7.10 Assume µ ∈ L(�Z). Then Ẽn(µ, �) ⊂ Q̃3
n(�) holds if and only if

� ∈ R(�).

Proof. Suppose first that Ẽn(µ, �) ⊂ Q̃3
n(�). Since Q̃3

n(�) is a subclass of
P̃max(�), the matrix � is clearly in R(�).

Conversely, suppose � ∈ R(�) and let

µ = �Zd.

Then Ẽn(µ, �) ⊂ P̃max(�). For any P ∈ Ẽn(µ, �), the distribution of

η̃ = 	��−1/2ε =
(

η̃1
η̃2

)

under P satisfies

LP (η̃) ∈ Ẽn(µ̃, Q).

Here, µ̃ and Q are given by

µ̃ = 	��−1/2µ

=
(

A−1/2X′�−1/2�−1/2�Zd

(Z′�Z)−1/2Z′�1/2�−1/2�Zd

)

=
(

0
(Z′�Z)

1/2
d

)

=
(

0
µ̃2

)
(say), (7.53)

and

Q = 	��−1/2��−1/2	′
�

=
(

Q11 Q12
Q21 Q22

)
,

respectively, where

Q11 = A−1/2X′�−1��−1XA−1/2

Q12 = A−1/2X′�−1�Z(Z′�Z)−1/2

Q21 = Q′
12

Q22 = (Z′�Z)−1/2Z′�Z(Z′�Z)−1/2.
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Since � ∈ R(�) implies X′�−1�Z = 0, the off-diagonal blocks of Q are zero:

Q12 = Q′
21 = 0.

From this,

LP (−η̃1, η̃2) = LP (η̃1, η̃2)

follows. To see this, since LP (η̃) ∈ Ẽn(µ̃, Q), and since

	0 =
( −Ik 0

0 In−k

)
∈ O(n),

it holds that

LP

(
Q

−1/2
11 η̃1

Q
−1/2
22 (η̃2 − µ̃2)

)
= LP (Q−1/2(η̃ − µ̃))

= LP (	0Q
−1/2(η̃ − µ̃))

= LP

(
−Q

−1/2
11 η̃1

Q
−1/2
22 (η̃2 − µ̃2)

)
.

Thus, we see that

LP (u1, u2) = LP (−u1, u2),

where u1 = Q
−1/2
11 η̃1 and u2 = Q

−1/2
22 (η̃2 − µ̃2). Let

f (u1, u2) =
(

Q
1/2
11 u1

Q
1/2
22 u2 + µ̃2

)
.

Then we have

LP (η̃1, η̃2) = LP (f (u1, u2)) = LP (f (−u1, u2)) = LP (−η̃1, η̃2),

proving P ∈ Q̃3(�). This completes the proof.

Corollary 7.11 For a fixed � ∈ S(n),

b(�) is (D, Ẽn(�))-optimal,

where

Ẽn(�) =
⋃

(µ,�)∈L(�Z)×R(�)

Ẽn(µ, �).
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7.5 Problems

7.2.1 Show that (2) and (3) of Theorem 7.3 are equivalent.

7.3.1 In the proof of Theorem 7.6, show that the statement

U12 + U ′
12 = 0 for any γ and F

implies U12 = 0 for any γ > 0.
Hint: Fix γ > 0 and let

R = (X′�−1X)−1X′�−1 [
µµ′ + γ�

]
Z.

Then the condition is equivalent to

RF + F ′R′ = 0 for any F.

By replacing F by some appropriate matrices, it is shown that R = 0.

7.4.1 In Corollary 7.9, show that Q̃3
n(�) ⊂ Q̃2

n(�).
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Some Further Extensions

8.1 Overview

In this chapter, we complement and extend the arguments made in the previous
chapters, and treat the three topics: the concentration inequality for the Gauss–
Markov estimator (GME), the relaxation of the normality assumption in evaluating
an upper bound in a seemingly unrelated regression (SUR) model and the degen-
eracy of the distributions of some generalized least squares estimators (GLSEs).

In Section 8.2, it is shown that under some appropriate conditions, the GME
b(�) maximizes the probability that b(�) − β lies in any symmetric convex set
among a class of GLSEs. The probability in question is often called concentration
probability. The result in Section 8.2 can be viewed as a partial extension of
the nonlinear version of the Gauss–Markov theorem established in Chapter 3. In
fact, maximizing the concentration probability is a stronger criterion than that of
minimizing the risk matrix. However, to establish such a maximization result,
some additional assumption such as unimodality is required on the distribution of
the error term. The results in Section 8.2 are essentially due to Berk and Hwang
(1989) and Eaton (1987, 1988). Some related facts will be found in Hwang (1985),
Kuritsyn (1986), Andrews and Phillips (1987), Ali and Ponnapalli (1990), Jensen
(1996) and Lu and Shi (2000).

In Section 8.3, an extension of the results provided in Chapter 4 is given.
In Chapter 4, we have observed that in a general linear regression model with
normally distributed error, several typical GLSEs such as the unrestricted Zellner
estimator (UZE) in an SUR model have a simple covariance structure. On the
basis of this structure, we obtained upper bounds for the covariance matrices of
these GLSEs. The approach adopted in Chapter 4 depends on the normality of the
error term. This section is devoted to relaxing the normality assumption by treating
the case in which the distribution of the error term is elliptically symmetric. For

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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simplicity, we limit our consideration to the SUR model. The results derived here
are also valid in a heteroscedastic model. This section is due to Kurata (1999). Some
related results on the inference of SUR models under nonnormal distributions will
be found, for example, in Srivastava and Maekawa (1995), Hasegawa (1995), Ng
(2000, 2002) and so on. See also Wu and Perlman (2000).

Section 8.4 is concerned with degeneracy of the distribution of a GLSE. We
first introduce the results of Usami and Toyooka (1997a), in which it is shown
that in general linear regression models with a certain covariance structure, the
distribution of the quantity b(�̂) − b(�), the difference between a GLSE and the
GME, degenerates into a linear subspace of Rk . Next, some extensions of their
results are provided.

8.2 Concentration Inequalities for the
Gauss–Markov Estimator

In this section, it is proved that the GME is most concentrated in a class of
estimators including GLSEs.

Being most concentrated. In this section, a general linear regression model of
the form

y = Xβ + ε (8.1)

is considered, where

y : n × 1, X : n × k and rankX = k.

Let P ≡ L(ε) be the distribution of ε, and suppose that P belongs to the class
En(0, �) of elliptically symmetric distributions with location vector 0 and scale
matrix � ∈ S(n). Here, recall that L(ε) ∈ En(0, �) if and only if

L(��−1/2ε) = L(�−1/2ε) for any � ∈ O(n), (8.2)

where S(n) is the set of n × n positive definite matrices and O(n), the group of n ×
n orthogonal matrices. The class En(0, �) contains some heavy-tailed distributions
without moments such as the multivariate Cauchy distribution (see Section 1.3 of
Chapter 1). Note that

En(0, �) ⊃ En(0, σ 2�)

for any σ 2 > 0, where En(0, σ 2�) is the class of elliptically symmetric distributions
with mean 0 and covariance matrix σ 2�.

Let b(�) be the GME of β:

b(�) = (X′�−1X)−1X′�−1y. (8.3)
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To make the notion of “being most concentrated” clear, let C be an arbitrarily
given class of estimators of β, and let K be a set of symmetric convex sets in
Rk . Here, it is formally assumed that φ and Rk are always in K. Further, a set K

(⊂ Rk) is called symmetric if K satisfies

−K = K with − K = {−x|x ∈ K},
K is said to be convex if

x, y ∈ K implies ax + (1 − a)y ∈ K for any a ∈ [0, 1],

and K is symmetric convex if it is symmetric and convex.
An estimator β̂∗ ∈ C is called most concentrated with respect to K in the class

C under P , if

P (β̂∗ − β ∈ K) ≥ P (β̂ − β ∈ K) (8.4)

for any β ∈ Rk , K ∈ K and β̂ ∈ C. We often refer to (8.4) as concentration inequal-
ity. It should be noted that in the inequality (8.4), the probability P is fixed. If
there exists a class, say tentatively P , of distributions under which (8.4) holds for
any P ∈ P , we say that β̂∗ is most concentrated under P .

Equivalence theorem. In showing that the GME is most concentrated to β, the
following two theorems play an essential role:

(1) Anderson’s theorem, which provides a technical basis for (8.4);

(2) The equivalence theorem, which shows that being most concentrated is
equivalent to being optimal with respect to a class of loss functions.

First, the equivalence theorem due to Berk and Hwang (1989) is introduced, in
which a particular class of loss functions is specified.

Theorem 8.1 (Equivalence theorem) Let C and K be given classes of estima-
tors and symmetric convex sets in Rn respectively. An estimator β̂∗ ∈ C is most
concentrated with respect to K in C, if and only if β̂∗ satisfies

E{g(β̂∗ − β)} ≤ E{g(β̂ − β)} (8.5)

for any β̂ ∈ C and for any nonnegative function g such that

{x ∈ Rk | g(x) ≤ c} ∈ K f or any c ∈ [0, ∞). (8.6)

Proof. Suppose first that β̂∗ ∈ C satisfies the condition (8.5). For each K ∈
K, let

g(x) = 1 − χK(x),
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where χ denotes the indicator function of the set K . Then the function g is non-
negative, and

{x ∈ Rk | g(x) ≤ c} =
{

Rk (∈ K) (1 ≤ c)

K (∈ K) (0 ≤ c < 1)

Hence, by (8.5), we obtain

P (β̂∗ − β ∈ K) ≥ P (β̂ − β ∈ K)

for any β̂ ∈ C and β ∈ Rk .
Conversely, suppose that β̂∗ ∈ C is most concentrated. We use the notion of

stochastic order ≤st whose definition and requisite facts are provided in Prob-
lem 8.2.1. For any nonnegative function g that satisfies the condition (8.6) and for
any c ∈ [0, ∞), let

K = {x ∈ Rk | g(x) ≤ c}.

Then by assumption, for any β̂ ∈ C and β ∈ Rk

P (g(β̂∗ − β) ≤ c) = P (β̂∗ − β ∈ K)

≥ P (β̂ − β ∈ K)

= P (g(β̂ − β) ≤ c)

holds, which shows that

g(β̂∗ − β) ≤st g(β̂ − β),

where A ≤st B means that A is stochastically no greater than B (for details, see
Problem 8.2.1). Then by Problem 8.2.2, it follows that

E{g(β̂∗ − β)} ≤ E{g(β̂ − β)}.

This completes the proof.

In Berk and Hwang (1989), the conditions imposed on the function g are more
general than those of the above theorem. Several versions of such equivalence
theorems can be found in the literature, some of which are closely related to the
notion of stochastic order in the context described in Lehmann (1986, page 84):
see Problems 8.2.1, 8.2.2 and 8.2.3, Hwang (1985), Andrews and Phillips (1987)
and Berk and Hwang (1989).

The following corollary states that being most concentrated implies being opti-
mal in terms of the risk matrix. More specifically,

Corollary 8.2 Suppose that P ≡ L(ε) has finite second moments and let C be a
class of estimators with the finite second moment under P . Let K be the class of
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all symmetric convex sets in Rk . If an estimator β̂∗ ∈ C is most concentrated with
respect to K in the class C, then β̂∗ is optimal in terms of risk matrix, that is,

R(β̂∗, β) ≤ R(β̂, β) for any β̂ ∈ C and β ∈ Rk, (8.7)

where R(β̂, β) is the risk matrix of β̂:

R(β̂, β) = E[(β̂ − β)(β̂ − β)′].

Proof. The inequality (8.7) (to be shown) is equivalent to

a′R(β̂∗, β)a ≤ a′R(β̂, β)a for any a ∈ Rk,

which is further equivalent to

E[ga(β̂
∗ − β)] ≤ E[ga(β̂ − β)] for any a ∈ Rk (8.8)

with ga(x) = (a′x)2. It is easy to see that ga satisfies

K(a, c) ≡ {x ∈ Rk | ga(x) ≤ c} ∈ K

for any c ∈ [0, ∞) and a ∈ Rk . Thus, Theorem 8.1 applies and the inequality (8.8)
is proved.

Anderson’s theorem. Next, we state Anderson’s theorem (Anderson, 1955), which
serves as the main tool for showing (8.4). To do so, two notions on the shape of a
probability density function (pdf) f (x) on Rn are introduced: symmetry about the
origin and unimodality.

A function f is said to be symmetric about the origin if it is an even function in
the sense that

f (−x) = f (x) for any x ∈ Rn.

Also, f is called unimodal if

{x ∈ Rn | f (x) ≥ c} is convex for each c > 0. (8.9)

Theorem 8.3 (Anderson’s theorem) Let f be a pdf on Rn and suppose that it is
symmetric about the origin and unimodal. Let K be a symmetric convex set. Then
for each θ ∈ Rn, the function

	(a) =
∫

K

f (x − aθ) dx (8.10)

defined on R1 satisfies 	(−a) = 	(a) and is nonincreasing on [0, ∞).

Proof. Omitted. See Anderson (1955).
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Anderson’s theorem has a rich potentiality for deriving various results in statistical
analysis, which includes not only concentration inequalities we aim at in this section
but also the monotonicity of the power functions of invariant tests, the construction
of conservative confidence regions, and so on. The theorem, its background and
its extensions are fully investigated in Eaton (1982) from the viewpoint of group
invariance theory. See also Problems 8.2.4 and 8.2.5.

A typical sufficient condition for f to be unimodal is given in the following
proposition (but we shall not use it).

Proposition 8.4 Suppose that a nonnegative function f (x) on Rn is log-concave,
that is,

f (ax + (1 − a)y) ≥ f (x)af (y)1−a (8.11)

holds for any x, y ∈ Rn and a ∈ [0, 1]. Then f is unimodal.

Proof. For each c > 0, let

K(c) = {x ∈ Rn | f (x) ≥ c}.
Then for any x, y ∈ K(c) and any a ∈ [0, 1], we have

f (ax + (1 − a)y) ≥ f (x)af (y)1−a ≥ cac1−a = c,

where the first inequality is due to the log-concavity of f and the second follows
since x, y ∈ K(c). Hence, ax + (1 − a)y ∈ K(c), completing the proof.

The term “log-concave” is due to the fact that the condition (8.11) is equivalent
to the concavity of log f (x) when f (x) is a positive real-valued function.

Concentration inequality. Now to establish the main theorems, consider the
model (8.1) and suppose P ≡ L(ε), the distribution of the error term ε of the
model, is in the class En(0, �) of elliptically symmetric distributions. Suppose
further that P has a pdf fP with respect to the Lebesgue measure on Rn. Hence,
for each P ∈ En(0, �), the function fP can be written as

fP (ε) = |�|−1/2f̃P (ε′�−1ε) (8.12)

for some f̃P : [0, ∞) → [0, ∞).
Let fP be unimodal. A sufficient condition on f̃P for which fP is unimodal is

given by the following proposition.

Proposition 8.5 If the function f̃P in (8.12) is nonincreasing, then fP is unimodal,
and the converse is true.

Proof. The first statement (“if” part) will be proved in the next proposition
under a more general setup. Hence, we show the converse.



SOME FURTHER EXTENSIONS 219

Suppose that fp(ε) is unimodal. Let 0 ≤ u1 < u2, and choose any ε2 ∈ Rn

such that

u2 = ε′
2�

−1ε2.

Let ε1 =
√

u1
u2

ε2. Then ε1 satisfies u1 = ε′
1�

−1ε1. Let

k2 ≡ fP (ε2) = |�|−1/2f̃P (u2).

Then, of course, the two vectors 0 and ε2 are in the set K2, where

K2 = {x ∈ Rk | fP (x) ≥ k2}.
Since K2 is convex,

ε1 =
(

1 −
√

u1

u2

)
0 +

√
u1

u2
ε2 ∈ K2.

This means that fP (ε1) ≥ fP (ε2), which in turn implies that

f̃P (u1) ≥ f̃P (u2).

This completes the proof.

Proposition 8.6 Let Q(x) be a real-valued function on Rn. Suppose that Q(x) is
convex and symmetric about the origin.

(1) If a nonnegative function f on R1 is nonincreasing, then f (Q(x)) is uni-
modal.

(2) For any nonnegative and nondecreasing function L, the set

{x ∈ Rn | L(Q(x)) ≤ c}
is convex for any c > 0.

Proof. For each c > 0, let

K(c) = {x ∈ Rn | f (Q(x)) ≥ c}
and let

q(c) = sup{q ∈ R1 | f (q) ≥ c}.
Then x ∈ K(c) is equivalent to

Q(x) ≤ q(c).

Therefore, for x, y ∈ K(c) and a ∈ [0, 1],

Q(ax + (1 − a)y) ≤ aQ(x) + (1 − a)Q(y) ≤ q(c)

holds and hence,

f (Q(ax + (1 − a)y)) ≥ c,

which implies that ax + (1 − a)y ∈ K(c), proving the unimodality of f (Q(x)).
The statement for L is quite similar and omitted. This completes the proof.
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Note that letting f (x) = |�|−1/2f̃P (x) and Q(ε) = ε′�−1ε in (1) of Proposi-
tion 8.6 yields the first part of Proposition 8.5.

Let C2 be the class of location-equivariant estimators of β. An estimator β̂ =
β̂(y) is called a location-equivariant estimator if it satisfies

β̂(y + Xg) = β̂(y) + g for any g ∈ Rk.

See Section 2.3 of Chapter 2. By using Proposition 2.4, the class C2 is character-
ized as

C2 = {β̂(y) = b(In) + d(e) | d is a k × 1 vector-valued measurable

function on Rn}, (8.13)

where b(In) is the ordinary least squares estimator (OLSE) of β:

b(In) = (X′X)−1X′y,

and e is the ordinary least squares (OLS) residual vector defined by

e = Ny with N = In − X(X′X)−1X′. (8.14)

We use the notation C2 in order to make it clear that the class contains estimators
without moment. Recall that the class includes as its subclass the class C1 of
GLSEs, where

C1 = {β̂ = C(e)y | C(e) is a k × n matrix-valued measurable

function on Rn such that C(e)X = Ik }. (8.15)

The class C1 also contains GLSEs without moments. Note that since the distribution
P has a pdf with respect to the Lebesgue measure, the two classes C1 and C2 are
essentially the same, that is,

C1 = C2 a.s.

See Proposition 2.5.
The following expression of β̂(y) ∈ C2 is more convenient for our purpose:

β̂(y) = b(�) + h(e), (8.16)

where h is a k × 1 vector-valued measurable function. This can be proved easily.
Let Z be any n × (n − k) matrix such that

X′Z = 0, Z′Z = In−k and ZZ′ = N,

and let

X = �−1/2XA−1/2 : n × k with A = X′�−1X ∈ S(k),

Z = �1/2ZB−1/2 : n × (n − k) with B = Z′�Z ∈ S(n − k).
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Then the matrix

� =
(

X
′

Z
′

)
(8.17)

is an n × n orthogonal matrix. Let

η = �−1/2ε

so that L(η) ∈ En(0, In). From (8.12), the pdf of η is given by

|�|1/2fP (�1/2η) = f̃P (η′η).

Hence, the random vector η thus defined satisfies L(�η) = L(η) for any � ∈ O(n).
By choosing � = � in (8.17) and letting

η̃ ≡ �η =
(

X
′
η

Z
′
η

)
≡

(
η̃1
η̃2

)
, (8.18)

we have

β̂ − β = A−1/2η̃1 + h(ZB1/2η̃2)

= A−1/2η̃1 + h̃(η̃2) (say), (8.19)

since e = ZB1/2η̃2. Here note that

L(η) = L(η̃) ∈ En(0, In), (8.20)

and hence the pdf of η̃ = (η̃′
1, η̃′

2)
′ is expressed as

f̃P (η̃′η̃) = f̃P (η̃′
1η̃1 + η̃′

2η̃2). (8.21)

We use the following fact on a symmetric convex set.

Lemma 8.7 If K is a convex set in Rn, then for any nonsingular matrix G, the set

GK = {Gx | x ∈ K}

is also convex. If in addition K is symmetric, so is GK.

Proof. Since any x∗, y∗ ∈ GK can be written as x∗ = Gx and y∗ = Gy for
some x, y ∈ K , it holds that

ax∗ + (1 − a)y∗ = G[ax + (1 − a)y] for any a ∈ [0, 1].

Thus, ax∗ + (1 − a)y∗ ∈ GK since the convexity of K implies ax + (1 − a)y ∈ K .
The rest is clear. This completes the proof.
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Theorem 8.8 Let K be the set of all symmetric convex sets in Rk . Suppose that
P = L(ε) ∈ En(0, �) and P has a pdf fP with respect to the Lebesgue measure
on Rn. If fP is symmetric about the origin and unimodal, then the GME b(�) is
most concentrated to β with respect to K in C2, that is,

P (b(�) − β ∈ K) ≥ P (β̂ − β ∈ K) (8.22)

for any β ∈ Rk , K ∈ K and β̂ ∈ C2.

Proof. For any β̂ ∈ C2, the probability in question is written as

P (β̂ − β ∈ K) = P (A−1/2η̃1 + h̃(η̃2) ∈ K)

= E{P (A−1/2η̃1 + h̃(η̃2) ∈ K | η̃2)}.
Thus, it is sufficient to show that for almost all η̃2,

P (A−1/2η̃1 ∈ K | η̃2) ≥ P (A−1/2η̃1 + h̃(η̃2) ∈ K | η̃2).

This is equivalent to

P (η̃1 ∈ A1/2K | η̃2) ≥ P (η̃1 + A1/2h̃(η̃2) ∈ A1/2K | η̃2), (8.23)

where A1/2K is also convex (Lemma 8.7).
Next, we apply Anderson’s theorem to the conditional pdf, say gP (η̃1|η̃2), of

η̃1 given η̃2. To do so, we show that gP (η̃1|η̃2) is symmetric about the origin and
unimodal. The conditional pdf gP is given by

gP (η̃1|η̃2) ≡ f̃P (η̃′
1η̃1 + η̃′

2η̃2)
/∫

Rk

f̃P (η̃′
1η̃1 + η̃′

2η̃2) dη̃1.

This function is defined for η̃2 ∈ S, where

S =
{
η̃2 ∈ Rn−k

∣∣∣
∫

Rk

f̃P (η̃′
1η̃1 + η̃′

2η̃2)dη̃1 > 0
}
.

Here, P (S) = 1. For each η̃2 ∈ S, gP (·|η̃2) is clearly symmetric about the origin.
Furthermore, the unimodality of gP (·|η̃2) follows from Propositions 8.5 and 8.6. In
fact, for each η̃2 ∈ S, let Q(η̃1) = η̃′

1η̃1 + η̃′
2η̃2. Then Q is convex and symmetric

about the origin. Furthermore, by Proposition 8.5, the function f̃P is nonincreasing.
Hence, from Proposition 8.6, it is shown that the function f̃P (Q(η̃1)) is unimodal,
from which the unimodality of gP (·|η̃2) follows.

Finally, for each η̃2 ∈ S,

P (η̃1 + A1/2h̃(η̃2) ∈ A1/2K | η̃2)

=
∫

Rk

χ{η̃1+A1/2h̃(η̃2)∈A1/2K} gP (η̃1|η̃2) dη̃1
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=
∫

Rk

χ{η̃1∈A1/2K} gP (η̃1 − A1/2h̃(η̃2)|η̃2) dη̃1

=
∫

A1/2K

gP (η̃1 − A1/2h̃(η̃2)|η̃2) dη̃1

≤
∫

A1/2K

gP (η̃1
∣∣η̃2) dη̃1

= P (η̃1 ∈ A1/2K | η̃2),

where χ denotes the indicator function and the inequality in the fifth line is due
to Anderson’s theorem. This completes the proof.

Theorem 8.9 Under the assumption of Theorem 8.8, the following inequality

EP {L[h(b(�) − β)]} ≤ EP {L[h(β̂ − β)]} (8.24)

holds for any β ∈ Rk and β̂ ∈ C2, where L is any nonnegative and nondecreasing
function, and h is any convex function that is symmetric about the origin.

Proof. By the equivalence theorem, it suffices to show that

g(x) ≡ L(h(x))

is nonnegative and satisfies the condition (8.6). Since L is nonnegative, so is g.
The condition (8.6) readily follows from the latter part of Proposition 8.6. This
completes the proof.

Finally, it is noted that the inequality (8.22) remains true even if the set K

is replaced by the random set that depends on y only through the OLS residual
vector e, since e is a function of η̃2. This yields a further extension of Theorem
8.8. See Eaton (1988).

8.3 Efficiency of GLSEs under Elliptical Symmetry
In this section, some results of Chapter 4 established under normality are extended
to the case in which the distribution of the error term is elliptically symmetric.

The SUR model. To state the problem, let a general linear regression model be

y = Xβ + ε (8.25)

with

E(ε) = 0 and Cov(ε) = �,

where

y : n × 1, X : n × k, rankX = k and ε : n × 1.
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The SUR model considered here is the model (8.25) with the following structure:

y =




y1
...

yp


 : n × 1, X =




X1 0
. . .

0 Xp


 : n × k,

β =




β1
...

βp


 : k × 1, ε =




ε1
...

εp


 : n × 1, (8.26)

� = � ⊗ Im and � = (σij ) ∈ S(p), (8.27)

where S(p) denotes the set of p × p positive definite matrices,

yj : m × 1, Xj : m × kj , rankXj = kj ,

n = pm, k =
p∑

j=1

kj

and ⊗ denotes the Kronecker product. Suppose that the distribution of the error
term ε is elliptically symmetric with covariance matrix � ⊗ Im:

L(ε) ∈ En(0, � ⊗ Im), (8.28)

which includes the normal distribution Nn(0, � ⊗ Im) as its special element.
To define a GLSE, let �̂ : S(p) → S(p) be any measurable function and let

�̂ ≡ �̂(S) (8.29)

be an estimator of the matrix �, which depends on the observation vector y only
through the random matrix

S = Y ′N∗Y = E′N∗E : p × p (8.30)

with

N∗ = Im − X∗(X′
∗X∗)+X′

∗,

where

Y = (y1, . . . , yp) : m × p, X∗ = (X1, . . . , Xp) : m × k,

E = (ε1, . . . , εp) : m × p

and A+ denotes the Moore–Penrose inverse of A. The matrix S can be rewritten
as a function of the OLS residual vector e:

S = (e′
iN∗ej ) ≡ S0(e) (say). (8.31)
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Here, the OLS residual vector e is given by

e = Ny with N = In − X(X′X)−1X′,

from which it follows that

e =




e1
...

ep


 with ej = Njyj : m × 1,

where Nj = Im − Xj(X
′
jXj )

−1X′
j . (See Example 2.7).

Let C∗ be a class of GLSEs of the form

b(�̂ ⊗ Im) = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1 ⊗ Im)y (8.32)

with �̂ = �̂(S). The class C∗ is actually a class of GLSEs, since the estimator �̂

is a function of the OLS residual vector e:

�̂ = �̂(S)

= �̂(S0(e))

≡ �̂0(e) (say). (8.33)

Obviously, the class C∗ contains the UZE b(S ⊗ Im) that is obtained by letting
�̂(S) = S. The UZE is an unbiased estimator of β under the condition (8.28).
More generally,

Proposition 8.10 Any GLSE b(�̂ ⊗ Im) in class C∗ is an unbiased estimator of β

as long as the first moment is finite.

Proof. Since the matrix S = S0(e) is an even function of e in the sense that
S0(−e) = S0(e), so is �̂ = �̂0(e). Hence, by Proposition 2.6, the unbiasedness
follows. This completes the proof.

In Chapter 4, it was observed that if L(ε) = Nn(0, � ⊗ Im), then the matrix S

is distributed as the Wishart distribution Wp(�, q) with mean q� and degrees of
freedom q, where

r = rankX∗ and q = m − r. (8.34)

Furthermore, any GLSE b(�̂ ⊗ Im) in C∗ satisfies

L(b(�̂ ⊗ Im)|�̂) = Nk(β, H(�̂ ⊗ Im, � ⊗ Im)), (8.35)

that is, the conditional distribution of b(�̂ ⊗ Im) given �̂ is normal with conditional
mean

E[b(�̂ ⊗ Im)|�̂] = β (8.36)



226 SOME FURTHER EXTENSIONS

and conditional covariance matrix

Cov(b(�̂ ⊗ Im)|�̂) = H(�̂ ⊗ Im, � ⊗ Im), (8.37)

where the function H is defined by

H(�̂ ⊗ Im, � ⊗ Im)

= (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1��̂−1 ⊗ Im)X(X′(�̂−1 ⊗ Im)X)−1 (8.38)

and is called a simple covariance structure.
The distributional properties (8.35), (8.36) and (8.37) strongly depend on the

normality of ε. In this section, the problem of how the assumption of elliptical
symmetry influences the conditional mean and covariance matrix is considered. For
this purpose, we impose the following additional conditions on the estimator:�̂ =
�̂(S) of �:

(1) �̂ = �̂(S) is a one-to-one continuous function of S;

(2) There exists a function γ : (0, ∞) → (0, ∞) such that

�̂(aS) = γ (a)�̂(S) for any a > 0. (8.39)

The condition in (2) will be used to show the finiteness of the second moment of
b(�̂ ⊗ Im). Define a subclass C∗∗ of C∗ by

C∗∗ = {b(�̂ ⊗ Im) ∈ C∗ | �̂ satisfies (1) and (2)}. (8.40)

The class C∗∗ thus defined contains the GLSEs with such �̂(S)’s as

�̂(S) = T DT ′, (8.41)

where T is the lower-triangular matrix with positive diagonal elements such that
S = T T ′ (see Lemma 1.8, Cholesky decomposition) and D is a diagonal matrix
with positive elements. In this case, the function γ in condition (2) is given by

γ (a) = a.

Such GLSEs have already appeared in Section 4.4 of Chapter 4: the UZE b(S ⊗
Im) is obtained by letting D = Ip; when p = 2, the optimal GLSE b(�̂B ⊗ Im),
which is derived in Theorem 4.14, is also an element of C∗∗, where

�̂ = T DBT ′ and DB =




1 0

0

√
q + 1

q − 3


 . (8.42)

Proposition 8.11 Any GLSE b(�̂ ⊗ Im) in C∗∗ has a finite second moment.
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Proof. By Proposition 2.6, it is sufficient to see that the function

C(e) = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1 ⊗ Im) with �̂ = �̂0(e)

is scale-invariant in the sense that

C(ae) = C(e) for any a > 0. (8.43)

To see this, note that

S0(ae) = a2S0(e) for any a > 0. (8.44)

This implies that

�̂0(ae) = �̂(a2S) = γ (a2)�̂(S) = γ (a2)�̂0(e),

where the second equality is due to condition (2). For � ∈ S(n), let

B(�) = (X′�−1X)−1X′�−1.

Then the function B is a scale-invariant function of � in the sense that B(γ�) =
B(�) for any γ > 0. Thus, we obtain

C(ae) = B(�̂0(ae) ⊗ Im) = B(γ (a2)�̂0(e) ⊗ Im) = B(�̂0(e) ⊗ Im) = C(e).

This completes the proof.

Conditional covariance structure. Let X̃ and Z̃ be any m × r and m × q matrices
such that

X̃X̃′ = X∗(X′
∗X∗)+X′

∗, X̃′X̃ = Ir (8.45)

and

Z̃Z̃′ = Im − X∗(X′
∗X∗)+X′

∗, Z̃′Z̃ = Iq (8.46)

Then

� ≡ (X̃, Z̃) ∈ O(m),

where O(m) denotes the group of m × m orthogonal matrices. Let

ε̃ = (�−1/2 ⊗ Im)ε

= (�−1/2 ⊗ Im)




ε1
...

εp




≡




ε̃1
...

ε̃p


 : n × 1 with ε̃j : m × 1. (8.47)
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Then

L(ε̃) ∈ En(0, Ip ⊗ Im) (8.48)

and hence L(	ε̃) = L(ε̃) holds for any 	 ∈ O(n). By choosing 	 = Ip ⊗ �′, we
define

η ≡ (Ip ⊗ �′)ε̃

=




�′ 0
. . .

0 �′







ε̃1
...

ε̃p




≡




η1
...

ηp


 : n × 1 (8.49)

with

ηj = �′ε̃j

(
X̃′ε̃j

Z̃′ε̃j

)
=

(
δj

ξj

)
, (8.50)

where δj : p × 1 and ξj : q × 1. Since any permutation matrix is in O(n), we can
easily see that

L(ε̃) = L(η) = L
((

δ

ξ

))
∈ En(0, In) (8.51)

holds, where

δ =




δ1
...

δp


 : pr × 1 and ξ =




ξ1
...

ξp


 : pq × 1. (8.52)

By Proposition 1.19, the conditional distribution of δ given ξ , and the marginal
distributions of δ and ξ are also elliptically symmetric:

L(δ|ξ) ∈ Ẽpr(0, Ipr) =
⋃
γ>0

Epr(0, γ Ipr);

L(δ) ∈ Epr(0, Ipr);

and

L(ξ) ∈ Epq(0, Ipq).
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Hence, from this,

E(δ|ξ) = 0 (8.53)

and

Cov(δ|ξ) = E(δδ′|ξ) = c̃(‖ξ‖2) Ipr for some function c̃, (8.54)

where c̃ satisfies

E
[
c̃(‖ξ‖2)

]
= 1, (8.55)

since Cov(δ) = Ipr . Clearly, c̃(‖ξ‖2) = 1 when ε is normally distributed (see
Section 1.3 of Chapter 1).

It is important for later discussion to note that S is a function of ξ only. Say

S = S(ξ).

In fact,

Lemma 8.12 The matrix S in (8.30) can be expressed as

S = �1/2U ′U�1/2 with U = (ξ1, . . . , ξp) : q × p. (8.56)

Proof. The proof is straightforward and omitted.

As a function of ξ , S = S(ξ) satisfies

S(aξ) = a2S(ξ) for any a > 0. (8.57)

Theorem 8.13 Suppose that L(ε) ∈ En(0, � ⊗ Im).

(1) If b(�̂ ⊗ Im) ∈ C∗, then

E[b(�̂ ⊗ Im)|�̂] = β.

(2) If b(�̂ ⊗ Im) ∈ C∗, then

Cov(b(�̂ ⊗ Im)|�̂) = c(�̂) H(�̂ ⊗ Im, � ⊗ Im) (8.58)

for some function c such that E[c(�̂)] = 1.

(3) If b(�̂ ⊗ Im) ∈ C∗∗, then c(�̂) and H(�̂ ⊗ Im, � ⊗ Im) are independent.

Proof. By using X′
j Z̃ = 0, the following equality is proved:

X′(�̂−1 ⊗ Im)ε = X′(�̂−1�1/2 ⊗ X̃)δ, (8.59)

from which it follows that

E[b(�̂ ⊗ Im)|�̂] = (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1�1/2 ⊗ X̃) E(δ|�̂) + β.
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Here, the first term of the right-hand side of this equality vanishes. In fact, since
�̂ is a function of ξ , it follows from (8.53) that

E(δ|�̂) = E[E(δ|ξ) |�̂] = 0.

This proves (1).
Similarly, by using (8.54),

E(δδ′|�̂) = E[E(δδ′|ξ) |�̂]

= E[c̃(||ξ ||2)|�̂] Ipr

holds for some function c̃. Hence, letting

c(�̂) = E[c̃(‖ξ‖2)|�̂] (8.60)

yields

E(δδ′|�̂) = c(�̂)Ipr . (8.61)

The function c satisfies E{c(�̂)} = 1, since Cov(δ) = Ipr . Therefore, from (8.59)
and (8.61), we obtain

Cov(β̂(�̂ ⊗ Im)|�̂)

= (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1�1/2 ⊗ X̃)

× E(δδ′|�̂) (�1/2�̂−1 ⊗ X̃′)X(X′(�̂−1 ⊗ Im)X)−1

= c(�̂) (X′(�̂−1 ⊗ Im)X)−1X′(�̂−1��̂−1 ⊗ X̃X̃′)X(X′(�̂−1 ⊗ Im)X)−1.

It is easily proved by direct calculation that

X′(�̂−1��̂−1 ⊗ X̃X̃′)X = X′(�̂−1��̂−1 ⊗ Im)X.

Thus, (2) is obtained.
To prove (3), we assume that b(�̂ ⊗ Im) ∈ C∗∗. As a function of ξ , let

H̃ (ξ) ≡ H(�̂ (S(ξ)) ⊗ Im, � ⊗ Im). (8.62)

The function H̃ (ξ) depends on ξ only through ξ/||ξ ||, since for any a > 0,

H̃ (aξ) = H(�̂(S(aξ)) ⊗ Im, � ⊗ Im)

= H(�̂(a2S(ξ)) ⊗ Im, � ⊗ Im)

= H(γ (a2)�̂(S(ξ)) ⊗ Im, � ⊗ Im)

= H(�̂(S(ξ)) ⊗ Im, � ⊗ Im)

= H̃ (ξ),
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where the second equality follows from (8.57), the third follows from the definition
of C∗∗ and the fourth follows because

H(a�̂ ⊗ Im, � ⊗ Im) = H(�̂ ⊗ Im, � ⊗ Im) holds for any a > 0.

(See (8.38)). Hence, we can write

H(�̂ ⊗ Im, � ⊗ Im) = H̃ (ξ/‖ξ‖).

On the other hand, the function c in (8.60) is a function of ||ξ ||2 because

c(�̂) = E[c̃(‖ξ‖2)|�̂]

= E[c̃(tr(S�−1))|�̂]

= E[c̃(tr(S�−1))|S]

= c̃(tr(S�−1))

= c̃(||ξ ||2),
where the third equality follows since �̂ = �̂(S) is a one-to-one function of S and
we also used

‖ξ‖2 = tr(S�−1),

which follows from (8.56). Since the two quantities ξ/‖ξ‖ and ‖ξ‖ are independent
(see Proposition 1.13), statement (3) is proved. This completes the proof.

Covariance matrix of a GLSE. Theorem 8.13 implies that deviation from the
normality does not affect the magnitude of the covariance matrix of a GLSE in
C∗∗. In fact, by independence of the functions c and H , the covariance matrix is
evaluated as

Cov(b(�̂ ⊗ Im)) = E[c(�̂)] × E[H(�̂ ⊗ Im, � ⊗ Im)]

= E[H(�̂ ⊗ Im, � ⊗ Im)]

= E[H̃ (ξ/‖ξ‖)],

where E[c(�̂)] = 1 is used in the second line. The quantity ξ/‖ξ‖ is distributed
as the (unique) uniform distribution on the unit sphere

U(pq) = {u ∈ Rpq | ‖u‖ = 1}
(see Proposition 1.13 and Corollary 1.14). Hence, we obtain the following.

Theorem 8.14 For any GLSE b(�̂ ⊗ Im) ∈ C∗∗, the covariance matrix Cov(b(�̂ ⊗
Im)) remains the same as long as L(ε) ∈ En(0, � ⊗ Im), that is, let P0 = Nn(0, � ⊗
Im). Then

CovP (b(�̂ ⊗ Im)) = CovP0(b(�̂ ⊗ Im)).
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This result is not surprising, since this property is shared by all the linear
unbiased estimators, and since the structure of the conditional covariance matrices
of the GLSEs considered here are similar to those of linear unbiased estimators.
Here, the covariance matrices of the GME

b(� ⊗ Im) = (X′(�−1 ⊗ Im)X)−1X′(�−1 ⊗ Im)y

and the OLSE

b(Ip ⊗ Im) = (X′X)−1X′y

are given by

Cov(b(� ⊗ Im)) = (X′(�−1 ⊗ Im)X)−1 (8.63)

and

Cov(b(Ip ⊗ Im)) = (X′X)−1X′(� ⊗ Im)X(X′X)−1 (8.64)

respectively, as long as

E(ε) = 0 and Cov(ε) = � ⊗ Im.

Therefore, as for the relative efficiency in terms of the covariance matrices, the
results derived under normality are still valid as long as L(ε) ∈ En(0, � ⊗ Im).
Hence, for example, when p = 2, the following inequality for the covariance matrix
of the UZE b(S ⊗ Im) in C∗∗ remains true:

Cov(b(� ⊗ Im)) ≤ Cov(b(S ⊗ Im))

≤
[

1 + 2

q − 3

]
Cov(b(� ⊗ Im)). (8.65)

More generally, we obtain the following proposition: let

α0(b(�̂ ⊗ Im)) = E[L0(�̂, �)], (8.66)

L0(�̂, �) = (π1 + πp)2

4π1πp

,

where π1 ≤ · · · ≤ πp are the latent roots of �−1/2�̂(S)�−1/2.

Proposition 8.15 For a GLSE b(�̂ ⊗ Im) in C∗∗, α0(b(�̂ ⊗ Im)) remains the same
as long as L(ε) ∈ En(0, � ⊗ Im), that is, let P0 = Nn(0, � ⊗ Im). Then

EP [L0(�̂, �)] = EP0[L0(�̂, �)] for any P ∈ En(0, � ⊗ Im). (8.67)
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Proof. It is sufficient to see that L0 in (8.66) depends on ξ only through
ξ/‖ξ‖. Let

L̃0(ξ) = L0(�̂(S(ξ)), �).

For any a > 0,

L̃0(aξ) = L0(�̂(S(aξ)), �)

= L0(�̂(a2S(ξ)), �)

= L0(γ (a2)�̂(S(ξ)), �)

= L0(�̂(S(ξ)), �)

= L̃0(ξ),

where the last equality is due to

L0(γ �̂, �) = L0(�̂, �) for any γ > 0,

see (4.89). This completes the proof.

This yields the following extension of Theorem 4.14.

Corollary 8.16 Let p = 2. The GLSE b(�̂B ⊗ Im) given in (8.42) minimizes the
upper bound α0(b(�̂ ⊗ Im)) among the GLSEs of the form (8.41).

8.4 Degeneracy of the Distributions of GLSEs
In this section, it is proved that the distribution of the difference between a GLSE
and the GME is degenerate when the covariance matrix of the error term has a
certain kind of simple structure.

The model. Let us consider the following general linear regression model

y = Xβ + ε (8.68)

with

P ≡ L(ε) ∈ Pn(0, σ 2�) and σ 2� ∈ S(n),

where

y : n × 1, X : n × k, rankX = k,

Pn(0, σ 2�) denotes the set of distributions on Rn with mean 0 and covariance
matrix σ 2�, and S(n) the set of n × n positive definite matrices.

Suppose for a moment that the matrix � is of the structure

�−1 = �(θ)−1 = In + θC with θ ∈ �, (8.69)
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where � is a subset of R1 on which �(θ) is positive definite, and C is an n × n

symmetric matrix satisfying

C1n = 0 with 1n = (1, . . . , 1)′ : n × 1. (8.70)

Note that the set � contains 0, since

�(0) = In ∈ S(n).

The model includes some serial correlation models such as the Anderson model
and the model with circularly distributed error.

The Anderson model, which was defined in Example 2.1 and has been repeat-
edly treated in the previous chapters, is the model (8.68) with covariance structure
(8.69), where � = (−1/4, ∞) and the matrix C is given by

C =




1 −1 0
−1 2 −1

. . .
. . .

. . .

. . .
. . .

. . .

. . . 2 −1
0 −1 1




≡ CA (say). (8.71)

The model is an approximation of the AR(1) error model whose error term satisfies

εj = θ∗εj−1 + ξj with |θ∗| < 1, (8.72)

where E(ξj ) = 0, Var(ξj ) = σ 2∗ and Cov(ξi, ξj ) = 0 (i = j). (Here, the two param-
eters σ 2 and θ in (8.68) and (8.69) are written in terms of σ 2∗ and θ∗ in (8.72) as
σ 2 = σ 2∗ /(1 − θ∗)2 and θ = θ∗/(1 − θ∗)2, respectively.)

On the other hand, the model with circularly distributed errors is defined by
imposing the additional assumption εn = ε0 to the equation (8.72), that is,

εj = θ∗εj−1 + ξj with |θ∗| < 1 and ε0 = εn. (8.73)

This model is also an example of the model (8.68) that satisfies (8.69) and (8.70).
In fact, the quantities σ 2, θ , � and C are given respectively by

σ 2 = σ 2

(1 − θ∗)2
, θ = θ∗

(1 − θ∗)2
,

� = (−1/4, ∞)
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and

C =




2 −1 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . .

. . .

. . . 2 −1
−1 −1 2




≡ CC (say). (8.74)

Let a GLSE of β in the model (8.68) be

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �(θ̂), (8.75)

where θ̂ = θ̂ (y) is an estimator of θ such that

θ̂ (y) ∈ � a.s.

In this section, no assumption is imposed on the functional form of the estimator
θ̂ . Hence, θ̂ is not necessarily a function of the OLS residual vector

e = {In − X(X′X)−1X′}y.

Clearly, the GLSE with θ̂ (y) ≡ θ is the GME

b(�) = b(�(θ)) = (X′�−1X)−1X′�−1y

and the GLSE with θ̂ (y) ≡ 0 is the OLSE

b(In) = b(�(0)) = (X′X)−1X′y.

The GME is not feasible in our setup.

Simple linear regression model. We begin with the following interesting result
established by Usami and Toyooka (1997a).

Theorem 8.17 Let k = 2 and

X = (x1, x2) : n × 2 with x1 = 1n.

Suppose that L(ε) ∈ Pn(0, σ 2�), and that � satisfies (8.69) with

C = CA or CC.

Then for any GLSE b(�̂) of the form (8.75), the distribution of the quantity b(�̂) −
b(�) degenerates into the one-dimensional linear subspace of R2. More specifically,
any GLSE b(�̂) satisfies

b1(�̂) + x2b2(�̂) = y, (8.76)



236 SOME FURTHER EXTENSIONS

where

b(�̂) =
(

b1(�̂)

b2(�̂)

)
: 2 × 1, x2 = 1′

nx2

n
and y = 1′

ny

n
.

And therefore

b1(�̂) − b1(�) = −x2[b2(�̂) − b2(�)]. (8.77)

Note that (8.77) follows since the right-hand side of (8.76) does not depend on θ̂ .
The theorem states that

b(�̂) − b(�) ∈ L⊥(v) a.s. with v =
(

1
x2

)
: 2 × 1,

where L(A) denotes the linear subspace spanned by the column vectors of matrix
A, and L⊥(A) denotes the orthogonally complementary subspace of L(A).

The equation (8.76) holds without distinction of the functional form of θ̂ =
θ̂ (y), and hence the equation (8.77) remains true if the GME b(�) is replaced by
another GLSE b(�̂∗) with �̂∗ = �(θ̂∗), which includes the OLSE b(�(0)). Note
also that no distributional assumption (such as elliptical symmetry) is imposed on
the error term except that L(ε) ∈ Pn(0, σ 2�).

The proof given by Usami and Toyooka (1997a) contains element-wise calcu-
lation of b(�̂) and is therefore somewhat complicated. In the following theorem,
we extend their result to the case in which the matrix C in (8.69) is not necessarily
of the form CA in (8.71) or CC in (8.74). Furthermore, the proof given below is a
much simpler one.

Theorem 8.18 Let k = 2 and let x1 = 1n in X = (x1, x2). Suppose that L(ε) ∈
Pn(0, σ 2�) and that the matrix � is of the structure (8.69) and C satisfies the
condition (8.70). Then any GLSE b(�̂) with �̂ = �(θ̂) satisfies

1′
nXb(�̂) = 1′

ny, (8.78)

and hence

1′
nX[b(�̂) − b(�)] = 0. (8.79)

Proof. Note first that the condition (8.70) implies that

�(θ)−11n = 1n for any θ ∈ �, (8.80)

which in turn implies that for any θ̂ = θ̂ (y),

�(θ̂)−11n = 1n a.s. (8.81)

Fix any θ̂ , and let

P
�̂

= �̂−1/2X(X′�̂−1X)−1X′�̂−1/2 with �̂ = �(θ̂).



SOME FURTHER EXTENSIONS 237

Then P
�̂

is the orthogonal projection matrix onto the subspace L(�̂−1/2X). Since
1n ∈ L(X) implies �̂−1/21n ∈ L(�̂−1/2X), the following equality is clear:

1′
n�̂

−1/2P
�̂

= 1′
n�̂

−1/2,

which is written in the original notation as

1′
n�̂

−1X(X′�̂−1X)−1X′�̂−1/2 = 1′
n�̂

−1/2.

Postmultiplying by �̂−1/2 and using (8.81) yields

1′
nX(X′�̂−1X)−1X′�̂−1 = 1′

n. (8.82)

This completes the proof.

Clearly, the statements (8.78) and (8.79) are equivalent to (8.76) and (8.77) respec-
tively.

Corollary 8.19 If in addition x2 = (1, 2, . . . , n)′, then

b1(�̂) + n + 1

2
b2(�̂) = y,

and hence

[b1(�̂) − b1(�)] = −n + 1

2
[b2(�̂) − b2(�)].

The two equalities in the above corollary hold without distinction of C as long as
C satisfies the condition (8.70).

A numerical example. As an illustration of the theorem above, we give a simple
simulation result here. Consider the following simple linear regression model:

yj = β1 + β2x2j + εj (j = 1, . . . , n),

where n = 27, β1 = 4.5, β2 = 0.4 and x2j = log(GNPj ). Here, GNPj ’s are Jap-
anese GNP data treated in Section 2.5 of Chapter 2. Let the error term ε = (ε1, . . . ,

εn)
′ be distributed as the normal distribution with the covariance structure of the

Anderson model:

L(ε) = Nn(0, σ 2�(θ))

with

�(θ)−1 = In + λ(θ)CA,

where σ 2 = 1, λ(θ) = θ/(1 − θ)2, θ = 0.7 and the matrix CA is given in (8.71).
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In this case, for any estimator θ̂ = θ̂ (y), the difference d between the GLSE
b(�̂) with �̂ = �(θ̂) and the GME b(�)

d =
(

d1
d2

)
= b(�̂) − b(�) =

(
b1(�̂) − b1(�)

b2(�̂) − b2(�)

)
: 2 × 1

lies in the straight line

d2 = − 1

x2
d1 (8.83)

in R2 = {(d1, d2) | − ∞ < d1, d2 < ∞}, where

x2 = 5.763 and hence
1

x2
= 0.1735.

Figure 8.1 shows the scatter plot of the realized values of the difference between
the GME and the OLSE obtained by 100 replication, where the OLSE is a GLSE
with θ̂ (y) ≡ 0. It is observed that all the quantities d’s are on the line in (8.83).
The mean vector d and the covariance matrix Sd of d’s are calculated by

d =
( −0.0038

0.0218

)
and Sd =

(
0.0136 −0.0786

−0.0786 0.4532

)
.

The correlation coefficient of d1 and d2 is clearly −1. The readers may try other
cases and observe such degeneracy phenomena.
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Figure 8.1 Scatter plot of the realized values of the difference between the GME
and the OLSE.

An extension to multiple linear regression models. By arguing in the same way
as in the proof of Theorem 8.18, we obtain the following generalization:
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Theorem 8.20 Suppose that the matrix � is of the structure (8.69). If there exists
an n × k0 matrix X0 such that

CX0 = 0 and L(X0) ⊂ L(X), (8.84)

then any GLSE b(�̂) with �̂ = �(θ̂) satisfies

X′
0Xb(�̂) = X′

0y (8.85)

and hence

X′
0X[b(�̂) − b(�)] = 0. (8.86)

Proof. See Problem 8.4.1.

Clearly, the equation (8.86) can be restated as

b(�̂) − b(�) ∈ L⊥(X′X0) a.s. (8.87)

In our context, the dimension of the linear subspace L⊥(X′X0) is of interest.
Needless to say, the smaller dim L⊥(X′X0) is, the more informative the result in
(8.87) will be, where dim denotes the dimension of linear subspace. The dimension
in question depends on the relation between the two linear subspaces L and L(X),
where

L = {x ∈ Rn | Cx = 0}. (8.88)

Here, L is the linear subspace spanned by the latent vectors corresponding to zero
latent roots of C. To see this more precisely, suppose without loss of generality
that C has zero latent roots with multiplicity k0. Then clearly dim L = k0. Let X0
be any n × k0 matrix such that L(X0) = L, or equivalently,

CX0 = 0 and rankX0 = k0.

If, in addition, the matrix X0 satisfies L(X0) ⊂ L(X), then (8.87) holds with

dim L⊥(X′X0) = k − k0. (8.89)

Further extension. The proofs of Theorems 8.18 and 8.20 do not use the full
force of the assumption (8.69) imposed on the structure of �(θ). This suggests a
further extension of the above results to a more general covariance structure. To
this end, consider the general linear regression model

y = Xβ + ε with L(ε) ∈ Pn(0, σ 2�)

and suppose that the matrix � is a function of an unknown but estimable param-
eter θ :

� = �(θ) with θ ∈ � ⊂ Rm, (8.90)
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where � is a subset of Rm and �(θ) is assumed to be positive definite on �. Let
θ̂ = θ̂ (y) be an estimator of θ such that θ̂ (y) ∈ � a.s., and consider the GLSE

b(�̂) = (X′�̂−1X)−1X′�̂−1y with �̂ = �(θ̂). (8.91)

In what follows, it is convenient to use a spectral decomposition of �(θ):

�(θ) = 	(θ) �(θ) 	(θ)′ (8.92)

with

	 = 	(θ) ∈ O(n),

where O(n) is the group of n × n orthogonal matrices, and

� = �(θ) =




λ1(θ) 0
. . .

0 λn(θ)


 : n × n,

is a diagonal matrix with λi = λi(θ) (i = 1, . . . , n) being the latent roots of � =
�(θ). The inverse matrix �−1 is expressed as

�(θ)−1 = 	(θ) �(θ)−1 	(θ)′. (8.93)

Let

ψi = ψi(θ)

be the ith column vector of 	 (i = 1, . . . , n), which is of course a latent vector of
� corresponding to the latent root λi = λi(θ). By interchanging the order of ψi’s
in 	, let

ψ1, . . . , ψk0

be the latent vectors of � such that

(1) ψ1, . . . , ψk0 are free from θ ;

(2) ψ1, . . . , ψk0 ∈ L(X).

Note that this assumption does not lose any generality. In fact, if there is no ψi

satisfying the conditions (1) and (2), we set k0 = 0. Partition 	 and � as

	 = (	1, 	2)

with

	1 = (ψ1, . . . , ψk0) : n × k0,

	2 = 	2(θ) = (ψk0+1(θ), . . . , ψn(θ)) : n × (n − k0),
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and

� =
(

�1 0
0 �2

)

with

�1 = �1(θ) : k0 × k0,

�2 = �2(θ) : (n − k0) × (n − k0),

respectively. 	1 is free from θ .

Theorem 8.21 Under assumptions (1) and (2), any GLSE b(�̂) in (8.91) satisfies

	 ′
1Xb(�̂) = 	 ′

1y, (8.94)

and hence

	 ′
1X[b(�̂) − b(�)] = 0. (8.95)

Proof. The proof is essentially the same as that of Theorem 8.18. But we
produce it here. Since L(	1) ⊂ L(X), it holds that 	 ′

1�
−1/2P� = 	 ′

1�
−1/2, from

which we obtain

	 ′
1�(θ)−1X(X′�(θ)−1X)−1X′�(θ)−1 = 	 ′

1�(θ)−1

for any θ ∈ �. Here, noting that

�(θ)−1	1 = 	1�1(θ)−1 (θ ∈ �) (8.96)

yields

�1(θ)−1	 ′
1X(X′�(θ)−1X)−1X′�(θ)−1 = �1(θ)−1	 ′

1 (θ ∈ �), (8.97)

from which (8.94) follows. This completes the proof.

8.5 Problems

8.2.1 For two random variables A and B, A is said to be stochastically no greater
than B, and is written as A ≤st B, if for any x ∈ R1

P (A ≥ x) ≤ P (B ≥ x).

In particular, if P (A ≥ x) = P (B ≥ x) holds for any x ∈ R1, then L(A) = L(B).
Let us write A =st B (or A =st B), when A and B have identical (or nonidentical)
distribution. And define A <st B by

A ≤st B and A =st B.
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Show that if A ≤st B, then there exist two nondecreasing functions a and b,
and a random variable X such that

a(x) ≤ b(x) for any x ∈ R1, a(X) =st A and b(X) =st B.

The answer will be found in Lemma 1 (page 84) of Lehmann (1986).

8.2.2 Prove the following two statements.

(1) If A ≤st B, then

E(A) ≤ E(B)

holds.

(2) If |E(A)| < ∞, then A <st B if and only if E(A) < E(B).

The answers will be found in Lemma 2.4 of Hwang (1985)

8.2.3 (The equivalence theorem by Hwang (1985)) Let y : n × 1 be a random
vector, and let θ̂ ≡ θ̂ (y) be an estimator of a parameter θ : p × 1. For a fixed
nonnegative definite matrix D, let

‖θ̂ − θ‖D = {(θ̂ − θ)′D(θ̂ − θ)}1/2,

and consider a loss function

L(‖θ̂ − θ‖D),

where L is nondecreasing. Show that the following two statements are equivalent:

(1) An estimator θ̂1 universally dominates θ̂2 with respect to ‖ · ‖D . (Here θ̂1

universally dominates θ̂2 with respect to ‖ · ‖D , if for every θ ∈ Rp and
every nondecreasing loss function L,

Eθ {L(‖θ̂1 − θ‖D)} ≤ Eθ {L(‖θ̂2 − θ‖D)},

holds, and for a particular L, the inequality is strict.)

(2) An estimator θ̂1 stochastically dominates θ̂2 with respect to ‖ · ‖D . (Here θ̂1

stochastically dominates θ̂2 with respect to ‖ · ‖D , if for any θ ∈ Rp,

‖θ̂1 − θ‖D ≤st ‖θ̂2 − θ‖D,

and for some θ , the inequality is strict.)

The proof is given in Theorem 2.3 of Hwang (1985).
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8.2.4 Suppose that the two n × 1 random vectors y and z satisfy

L(y) = Nn(0, �) and L(z) = Nn(0, � + θθ ′),

where � ∈ S(n) and θ ∈ Rn. Show that for any symmetric convex set K , the
vector y is more concentrated to 0 than is z:

P (y ∈ K) ≥ P (z ∈ K).

Hint: Let w be a random variable, which is independent of y and satisfies L(w) =
N(0, 1). Then L(z) = L(y + wθ). Hence, Anderson’s theorem is applicable.

8.2.5 Suppose that

L(y) = Nn(0, �) and L(z) = Nn(0, 	),

(1) Show that y is more concentrated to 0 than z is when

� ≤ 	. (8.98)

(2) Prove the converse, that is, if y is more concentrated to 0 than z is, then the
inequality (8.98) holds.

The answers of (1) and (2) will be found in Eaton (1982) and Theorem 2 of Liski
and Zaigraev (2001) respectively.

8.3.1 Show that the GLSEs b(�̂ ⊗ Im) with �̂ = T DT ′ in (8.41) are in the class
C∗∗. Verify that the function γ in condition (2) is given by γ (a) = a.

8.3.2 Establish Lemma 8.12.

8.3.3 Derive similar results to those in Section 8.3 under p-equation heteroscedas-
tic model. The answer will be found in Kurata (1999).

8.4.1 Establish Theorem 8.20.



9

Growth Curve Model
and GLSEs

9.1 Overview

In this last chapter, we treat generalized least squares estimators (GLSEs) in a
growth curve model as a multivariate case.

As has been observed, whether univariate or multivariate, a general linear
regression model is formally expressed as

y = Xβ + ε with L(ε) ∈ Pn0(0, �), (9.1)

where

y : n0 × 1, X : n0 × k0, rankX = k0, and � ∈ S(n0).

Here, S(n0) denotes the set of n0 × n0 positive definite matrices. This includes the
multivariate model expressed by

Y = X1BX2 + E with L(E) ∈ Pn×p(0, In ⊗ �), (9.2)

where

Y : n × p, X1 : n × k with rankX1 = k,

B : k × q, X2 : q × p with rankX2 = q,

� ∈ S(p).

Here, L(E) is understood as L(vec(E′)), where vec(E′) : np × 1. See (9.9) for
detail. This model is often called the growth curve model . In biometric applications,

Generalized Least Squares Takeaki Kariya and Hiroshi Kurata
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86697-7 (PPC)
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the model is used to describe growth patterns for both groups with and without
treatments. This chapter is devoted to the estimation problem in the growth curve
model (9.2).

The model in (9.2) describes the structure of growth patterns more directly
than the model in (9.1) although they are equivalent. In other words, a model
expressed as in (9.1) contains many specific models according to the structure of
X and �, and the estimation problem in each model is differentiated according to
the structure of the model. Some cases were observed in Chapters 4 and 5.

GLSEs. However, a common feature we enjoyed when writing a model in the
form of (9.1) is that the generalized least squares (GLS) estimation procedure for
estimating the unknown parameter β is commonly applied to any model when it
is expressed as (9.1), and the Gauss–Markov estimator (GME) and GLSEs are
derived by

b(�) = (X′�−1X)−1X′�−1y (9.3)

and

b(�̂) = (X′�̂−1X)−1X′�̂−1y (9.4)

respectively, where �̂ = �̂(e) is an estimator of � based on the ordinary least
squares (OLS) residual vector e:

e = [In0 − X(X′X)−1X′]y.

The linear and nonlinear Gauss–Markov theorems and upper bound problems can
be discussed for the risk matrix

R(b(�̂), β) = E{(b(�̂) − β)(b(�̂) − β)′} : k0 × k0 (9.5)

as long as the second moment of b(�̂) is finite. We will keep this approach for the
estimation problem of the coefficient matrix B in the growth curve model (9.2).

Special forms of the growth curve model have been considered in various forms
and in various problems in association with growth curves. But it is Potthoff and
Roy (1964) that systematically formulated the models in the form of (9.2). An
excellent review of this model will be found in the survey papers of von Rosen
(1991) and Kanda (1994). In Kanda (1994), the growth curve models with several
specific covariance structures are treated in detail. See also the recent textbook by
Pan and Fang (2002). The problem of testing the general linear hypothesis on B

R1BR2 = R0 with Ri’s known (9.6)

is often called the general multivariate analysis of variance (GMANOVA) problem
and the hypothesis in (9.6) is often called a GMANOVA hypothesis. In this line,
the model in (9.2) is often called a GMANOVA model. Note that the model with
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X2 = Ip is a multivariate linear regression model, sometimes referred to as the
MANOVA model, in which the GME and the OLS estimator (OLSE) are identically
equal. The problem of testing

R1B = R0

is called a MANOVA problem.

Notation and some basic facts. We assume that the error term matrix E in (9.2)
is distributed with mean 0 and covariance matrix In ⊗ �, which is denoted by

L(E) ∈ Pn×p(0, In ⊗ �), (9.7)

where, as defined earlier,L(E) = L(vec(E′)). Hence, the covariance matrix Cov(E)

of E is defined by

Cov(E) = Cov(ε) with ε = vec(E′) : np × 1. (9.8)

Here, the vectorization vec(A) of a matrix A : n × m is defined by the vector
stacking column vectors of A:

a = vec(A) if and only if a =




a1
...

am


 , (9.9)

where

A =
(
a1, . . . , am

)
and ai : n × 1.

This notation is often used in this chapter. By this definition, the n rows of E are
uncorrelatedly distributed with mean 0 and covariance matrix � ∈ S(p).

Lemma 9.1 When L(E) ∈ Pn×p(0, In ⊗ �) holds,

L(CED) ∈ Pm×r (0, CC ′ ⊗ D′�D) (9.10)

for any C : m × n with rankC = m and D : p × r with rankD = r .

Proof. By Problem 2.2.6,

vec((CED)′) = vec(D′E′C ′) = (C ⊗ D′)vec(E′).

From this, (9.10) follows. This completes the proof.

Now let us express the model (9.2) as a form y = Xβ + ε in (9.1) by using
the vectorization scheme in (9.9):

y = vec(Y ′) : np × 1, β = vec(B ′) : kq × 1,

ε = vec(E′) : np × 1, (9.11)
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which naturally yields

X = X1 ⊗ X′
2 : np × kq with rankX = kq. (9.12)

Then the GME in (9.3) is expressed as

b(In ⊗ �) = [(X′
1X1)

−1X′
1 ⊗ (X2�

−1X′
2)

−1X2�
−1]y, (9.13)

which we write as

B̂(�) = (X′
1X1)

−1X′
1Y�−1X′

2(X2�
−1X′

2)
−1 (9.14)

by the definition of (9.9). It is easy to see that the GME is unbiased. The risk
matrix, or equivalently, the covariance matrix of the GME is given by

R(B̂(�), B) ≡ R(b(In ⊗ �), β)

= E{(b(In ⊗ �) − β)(b(In ⊗ �) − β)′}
= Cov(b(In ⊗ �))

= (X′
1X1)

−1 ⊗ (X2�
−1X′

2)
−1. (9.15)

Also, the risk matrix of the OLSE is

R(B̂(Ip), B) ≡ R(b(In ⊗ Ip), β)

= Cov(b(In ⊗ Ip))

= (X′
1X1)

−1 ⊗ (X2X
′
2)

−1X2�X′
2(X2X

′
2)

−1, (9.16)

where the OLSE is clearly expressed as

b(In ⊗ Ip) = [(X′
1X1)

−1X′
1 ⊗ (X2X

′
2)

−1X2]y

and

B̂(Ip) = (X′
1X1)

−1X′
1YX′

2(X2X
′
2)

−1

according to (9.13) and (9.14) respectively.
When the matrix � is of the form

� = σ 2�,

the GME clearly satisfies

B̂(�) = B̂(�) and b(In ⊗ �) = b(In ⊗ �).

Furthermore, if the matrix � is known, the GME B̂(�) is the best linear unbiased
estimator by the Gauss–Markov theorem. Hence,

R(B̂(�), B) ≤ R(B̂(Ip), B).
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In fact, we obtain

R(B̂(Ip), B) − R(B̂(�), B)

= (X′
1X1)

−1 ⊗ σ 2[(X2X
′
2)

−1X2�X′
2(X2X

′
2)

−1 − (X2�
−1X′

2)
−1]

= (X′
1X1)

−1 ⊗ σ 2[(X2X
′
2)

−1X2�Z′
2(Z2�Z′

2)
−1Z2�X′

2(X2X
′
2)

−1],

(9.17)
which is nonnegative definite. The last equality follows by using the following
matrix identity:

� = X′
2(X2�

−1X′
2)

−1X2 + �Z′
2(Z2�Z′

2)
−1Z2�

(see Problem 3.3.1), where Z2 is a (p − q) × p matrix satisfying

Z′
2Z2 = N2 and Z2Z

′
2 = Ip−q (9.18)

with

N2 = Ip − M2 and M2 = X′
2(X2X

′
2)

−1X2.

Note that the difference (9.17) of the two risk matrices is equal to

E{(b(In ⊗ �) − b(In ⊗ Ip))(b(In ⊗ �) − b(In ⊗ Ip))′}, (9.19)

the proof of which is clear from (2.40). Hence, R(B̂(Ip), B) = R(B̂(�), B) is
equivalent to the identical equality B̂(�) ≡ B̂(Ip), which is further equivalent to

X2�Z′
2 = 0 (9.20)

(see the last line of (9.17)). This fact will be used in the next section.
This chapter develops the arguments in the following order:

9.2 Condition for the Identical Equality between the GME and the OLSE

9.3 GLSEs and Nonlinear Version of the Gauss–Markov Theorem

9.4 Analysis Based on a Canonical Form

9.5 Efficiency of GLSEs.

In Section 9.2, we establish a necessary and sufficient condition on the structure
of � as well as � for which the GME B̂(�) is identically equal to the OLSE
B̂(Ip). In Section 9.3, a GLSE is defined in a growth curve model and a nonlinear
version of the Gauss–Markov theorem is established. In Sections 9.4 and 9.5, the
model is reduced to a canonical form and the efficiency of GLSEs is discussed.
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9.2 Condition for the Identical Equality between
the GME and the OLSE

In this section, a necessary and sufficient condition for the GME to be identically
equal to the OLSE is derived.

Rao’s covariance structure. Consider the growth curve model in (9.2) with

� = σ 2�.

When the GME B̂(�) is identically equal to the OLSE B̂(Ip), no GLS estimation
problem is involved in a model. As is discussed in Chapter 7, Rao’s covariance
structure is a covariance structure under which the identical equality between the
GME and the OLSE holds. In the case of a growth curve model, the structure of
� for

B̂(�) ≡ B̂(Ip) (9.21)

becomes

� = X′
2ϒX2 + Z′

2�Z2 (9.22)

with ϒ ∈ S(q) and � ∈ S(p − q), where Z2 : (p − q) × p is a fixed matrix sat-
isfying (9.18). Thus, we obtain

Proposition 9.2 The GME B̂(�) is identically equal to the OLSE B̂(Ip) if and only
if � is of the structure in (9.22).

A comprehensive description of Rao’s covariance structure is given in Section 7.2
of Chapter 7.

Example 9.1 (Equi-correlated model) In the growth curve model (9.2), assume
that � is of the structure

� = σ 2�(θ) with �(θ) = (1 − θ)Ip + θ1p1′
p, (9.23)

where 1p = (1, . . . , 1)′ : p × 1 and −1/(p − 1) < θ < 1.
Then B̂(�) = B̂(Ip) holds if and only if

X2�(θ)Z′
2 = 0 for any θ ∈ (−1/(p − 1), 1),

or equivalently

X21p1′
pZ′

2 = 0,

which equals either (1) X21p = 0 or (2) Z21p = 0.
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In case (1), the vector 1p is of the form 1p = Z′
2c for some c ∈ Rp−q , and the

matrix �(θ) is rewritten as

�(θ) = (1 − θ)Ip + θ1p1′
p

= (1 − θ)[X′
2(X2X

′
2)

−1X2 + Z′
2Z2] + θZ′

2cc
′Z2

= X′
2[(1 − θ)(X2X

′
2)

−1]X2 + Z′
2[(1 − θ)Ip−q + θcc′]Z2,

where the matrix identity Ip = X′
2(X2X

′
2)

−1X2 + Z′
2Z2 is used in the second line.

In case (2), 1p = X′
2d for some d ∈ Rq and

�(θ) = X′
2[(1 − θ)(X2X

′
2)

−1 + θdd ′]X2 + Z′
2[(1 − θ)Ip−q]Z2.

In Kariya (1985b), a necessary and sufficient condition for which a Gauss–
Markov-type estimator σ̂ 2

GM of σ 2 (in � = σ 2�) is identically equal to an OLS-
type estimator σ̂ 2

OLS is also given. Combining the condition with the one in
Proposition 9.2 leads to a necessary and sufficient condition for which the two
equalities B̂(�) ≡ B̂(Ip) and σ̂ 2

GM ≡ σ̂ 2
OLS simultaneously hold.

9.3 GLSEs and Nonlinear Version of the
Gauss–Markov Theorem

In this section, we consider GLSEs and develop a nonlinear version of the Gauss–
Markov theorem in line with Chapter 3.

A nonlinear version of the Gauss–Markov theorem. In the growth curve model
(9.1), or equivalently (9.2), the GME is given by (9.13) or equivalently by (9.14).
Hence, when � is unknown, a GLSE is of the form

B̂(�̂) = (X′
1X1)

−1X′
1Y�̂−1X′

2(X2�̂
−1X′

2)
−1, (9.24)

which is equivalent to

b(In ⊗ �̂) = [(X′
1X1)

−1X′
1 ⊗ (X2�̂

−1X′
2)

−1X2�̂
−1]y.

Here, �̂ = �̂(Ê) is an estimator of � based on the OLS residual matrix

Ê = Y − X1B̂(Ip)X2 = E − M1EM2, (9.25)

where M1 = X1(X
′
1X1)

−1X′
1 and M2 = X′

2(X2X
′
2)

−1X2. This is equivalent to

e = vec(Ê′) = [Inp − X(X′X)−1X′]y with X = X1 ⊗ X′
2. (9.26)
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The risk matrix of a GLSE is given by

R(B̂(�̂), β) ≡ R(b(In ⊗ �̂), β)

= E{(b(In ⊗ �̂) − β)(b(In ⊗ �̂) − β)′} (9.27)

as long as it is finite.
To show that this risk matrix is bounded below by that of the GME, we take

the same approach taken in Chapter 3. The result that we obtain by this approach
is applicable to the case in which � is a function of a parameter vector θ :

� = �(θ),

that is, � is of a certain structure.
In a similar manner as in (3.37), let

C =
(

(X′
1X1)

−1/2X′
1

Z′
1

)
≡

(
C ′

1
C ′

2

)
: n × n (9.28)

with C1 : n × k and C2 : n × (n − k), and

D =
(
�−1X′

2, Z′
2

)
≡ (D1, D2) : p × p (9.29)

with D1 : p × q and D2 : p × (p − q), where Z1 and Z2 are n × (n − k) and
(p − q) × p matrices such that

Z′
1Z1 = In−k and Z1Z

′
1 = N1

and

Z2Z
′
2 = Ip−q and Z′

2Z2 = N2,

respectively. Here,

N1 = In − M1 with M1 = X1(X
′
1X1)

−1X′
1

and

N2 = Ip − M2 with M2 = X′
2(X2X

′
2)

−1X2.

The matrices C and D are n × n orthogonal and p × p nonsingular matrices respec-
tively. Let

U = CED

=
(

C ′
1ED1 C ′

1ED2
C ′

2ED1 C ′
2ED2

)

=
(

(X′
1X1)

−1/2X′
1E�−1X′

2 (X′
1X1)

−1/2X′
1EZ′

2
Z′

1E�−1X′
2 Z′

1EZ′
2

)

≡
(

U11 U12
U21 U22

)
(9.30)
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and let

ϒ1 = X′
1X1 ∈ S(k),

ϒ2 = X2�
−1X′

2 ∈ S(q),

�1 = Z′
1Z1 = In−k,

�2 = Z2�Z′
2 ∈ S(p − q). (9.31)

Then it follows from Lemma 9.1 that

L(U) = L
((

U11 U12
U21 U22

))

∈ Pn×p

((
0 0
0 0

)
, In ⊗

(
ϒ2 0
0 �2

))
. (9.32)

In fact, since

vec(U ′) = vec(D′E′C ′) = (C ⊗ D′)vec(E′),

using CC ′ = In and X2Z
′
2 = 0 yields (9.32).

Let

K(�̂, �) = �−1
2 Z2��̂−1X′

2(X2�̂
−1X′

2)
−1 : (p − q) × q.

Note that when �̂ = �, the function K is zero:

K(�, �) = 0.

Note also that the OLS residual Ê in (9.25) is a function of U12, U21 and U22. To
see this, by using

C−1 = C ′ = (X1ϒ
−1/2
1 , Z1)

and

D−1 = (�−1X′
2, Z′

2)
−1 =

(
ϒ−1

2 X2

�−1
2 Z2�

)
, (9.33)

the matrix Ê is rewritten as

Ê = C ′UD−1 − M1C
′UD−1M2

= X1ϒ
−1/2
1 U12�

−1
2 Z2�N2 + Z1U21ϒ

−1
2 X2 + Z1U22�

−1
2 Z2�, (9.34)

where E = C ′UD−1 is used.
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Theorem 9.3 (1) For a GLSE B̂(�̂) of the form (9.24), it holds that

B̂(�̂) − B = [B̂(�) − B] + [B̂(�̂) − B̂(�)]

= ϒ
−1/2
1 U11ϒ

−1
2 + ϒ

−1/2
1 U12K(�̂, �). (9.35)

Hence, for the GME B̂(�),

B̂(�) − B = ϒ
−1/2
1 U11ϒ

−1
2 . (9.36)

(2) If the distribution L(E) of the error term E satisfies

E(U11|U12, U21, U22) = 0 a.s., (9.37)

then for a GLSE B̂(�̂) such that �̂ is a function of Ê only, the risk matrix is
bounded below by that of the GME:

R(B̂(�̂), B) ≥ R(B̂(�), B) = (X′
1X1)

−1 ⊗ (X2�
−1X′

2)
−1. (9.38)

Proof. Since

(X′
1X1)

−1/2X′
1E = U11ϒ

−1
2 X2 + U12�

−1
2 Z2�,

the GLSE B̂(�̂) and the GME B̂(�) are respectively rewritten by

B̂(�̂) = B + (X′
1X1)

−1X′
1E�̂−1X′

2(X2�̂
−1X′

2)
−1

= B + (X′
1X1)

−1/2[(X′
1X1)

−1/2X′
1E]�̂−1X′

2(X2�̂
−1X′

2)
−1

= B + ϒ
−1/2
1 [U11ϒ

−1
2 X2 + U12�

−1
2 Z2�]�̂−1X′

2(X2�̂
−1X′

2)
−1

= B + ϒ
−1/2
1 U11ϒ

−1
2 + ϒ

−1/2
1 U12�

−1
2 Z2��̂−1X′

2(X2�̂
−1X′

2)
−1

= B + ϒ
−1/2
1 U11ϒ

−1
2 + ϒ

−1/2
1 U12K(�̂, �), (9.39)

and

B̂(�) = B + ϒ
−1/2
1 U11ϒ

−1
2 ,

since K(�, �) = 0. Hence (1) follows.
For (2), we use the expression b(In ⊗ �̂) and b(In ⊗ �). It suffices to show that

E{(b(In ⊗ �̂) − b(In ⊗ �))(b(In ⊗ �) − β)′} = 0,

which is equivalent to

E{[ϒ−1/2
1 ⊗ K(�̂, �)′]u12u

′
11[ϒ−1/2

1 ⊗ ϒ−1
2 ]} = 0. (9.40)

Here, uij ’s are defined by

uij = vec(U ′
ij ) (i, j = 1, 2).
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The condition E(U11|U12, U21, U22) = 0 is clearly equivalent to

E(u11|u12, u21, u22) = 0

because of the one-to-one correspondence between Uij ’s and uij ’s. Since K is a
function of (U12, U21, U22), the left-hand side of (9.40) is

E{[ϒ−1/2
1 ⊗ K(�̂, �)′]u12E(u′

11|u12, u21, u22)[ϒ
−1/2
1 ⊗ ϒ−1

2 ]},

which is zero. This completes the proof.

GLSE. It should be mentioned here that if L(E) = L(−E) and if �̂ is an even
function of

U2 ≡ (U21, U22) : (n − k) × p,

then the GLSE B̂(�̂) is unbiased. Here, �̂ is even in U2 means that

�̂(−U2) = �̂(U2),

when we write �̂ = �̂(U2). A typical example is a GLSE B̂(�̂) with

�̂ = Y ′N1Y = E′N1E

= Ê′N1Ê ≡ W (say). (9.41)

In fact, by using (9.34), the matrix N1Ê is expressed as

N1Ê = N1{X1ϒ
−1/2
1 U12�

−1
2 Z2�N2 + Z1U21ϒ

−1
2 X2 + Z1U22�

−1
2 Z2�}

= Z1U21ϒ
−1
2 X2 + Z1U22�

−1
2 Z2�

= Z1U2D
−1, (9.42)

and the matrix W is rewritten as

W = D′−1
U ′

2N1U2D
−1, (9.43)

which is an even function of U2. Hence, the GLSE B̂(W) is an unbiased estimator
of B.

Elliptically symmetric distributions. As has been discussed in Section 3.3, the
condition E(U11|U12, U21, U22) = 0 is satisfied by a class of elliptically symmetric
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distributions, that is, when L(E) ∈ En×p(0, In ⊗ �), or equivalently when

L(vec(E′)) ∈ Enp(0, In ⊗ �), (9.44)

then, as in (9.32), we obtain

L(U) = L
((

U11 U12
U21 U22

))

∈ En×p

((
0 0
0 0

)
, In ⊗

(
ϒ2 0
0 �2

))
(9.45)

This implies that

L







u11
u12
u21
u22







∈ Enp







0
0
0
0


 ,




Ik ⊗ ϒ2 0 0 0
0 Ik ⊗ �2 0 0
0 0 In−k ⊗ ϒ2 0
0 0 0 In−k ⊗ �2





 ,

from which it readily follows that E(u11|u12, u21, u22) = 0 (see Proposition 1.19
in Section 1.3).

9.4 Analysis Based on a Canonical Form

In this section, the original model and its parameters are transformed in order that
the structure of the estimation problem itself is more revealing in the transformed
model. The transformed model is called a canonical form. Once a solution is
obtained in the canonical form, it is inversely transformed to the original problem.

Canonical form. Let us consider the growth curve model (9.2). To transform our
estimation problem to a canonical form, we use the following fact on matrices:

Lemma 9.4 For any n × m matrix A with rankA = m, there exists an m × m non-
singular matrix G ∈ G
(m) and an n × n orthogonal matrix P ∈ O(n) such that

A = P

(
Im

0

)
G,

where G
(m) and O(n) denote the groups of m × m nonsingular matrices and n × n

orthogonal matrices respectively.
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Proof. Let B be an n × (n − m) matrix such that

A′B = 0 and B ′B = In−m.

Then

P ≡ (A(A′A)−1/2, B) ∈ O(n).

Let G = (A′A)1/2 ∈ G
(m). Then

A = (A(A′A)−1/2, B)

(
Im

0

)
(A′A)1/2 = P

(
Im

0

)
G

follows. (Of course, there are other choices for P and G.)

By this lemma, write X1 and X2 as

X1 = P1

(
Ik

0

)
G1 with P1 ∈ O(n), G1 ∈ G
(k),

X2 = G2(Iq, 0)P2 with P2 ∈ O(p), G2 ∈ G
(q). (9.46)

Using this, let

Y ∗ = P ′
1YP ′

2 : n × p, � = G1BG2 : k × q

�∗ = P2�P ′
2 : p × p, E∗ = P ′

1EP ′
2 : n × p. (9.47)

Then the model becomes

Y ∗ = � + E∗ with L(E∗) ∈ Pn×p(0, In ⊗ �∗), (9.48)

where the matrix � is of the form

q p − q

� =
(

�1
�2

)
=

(
� 0
0 0

)
k

n − k
: n × p,

and Y ∗ and E∗ are also partitioned according to �:

Y ∗ =
(

Y ∗
1

Y ∗
2

)
=

(
Y ∗

11 Y ∗
12

Y ∗
21 Y ∗

22

)
,

E∗ =
(

E∗
1

E∗
2

)
=

(
E∗

11 E∗
12

E∗
21 E∗

22

)
. (9.49)

In this canonical form, the problem is to estimate � on the basis of Y ∗. The
original parameter matrix B is estimated by

B̂ = G−1
1 �̂G−1

2 (9.50)

once an estimator �̂ of � is obtained. Understanding the relation in (9.46), we
omit the asterisk ∗ in the notation for simplicity in the sequel.
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The GME. To find the GME for �, let

� =




θ ′
1
...

θ ′
k


 : k × q with θi : q × 1

and

θ = vec(�′) =




θ1
...

θk


 : kq × 1

and rewrite the model as


vec(Y ′
11)

vec(Y ′
12)

vec(Y ′
21)

vec(Y ′
22)


 =




θ

0
0
0


 +




vec(E′
11)

vec(E′
12)

vec(E′
21)

vec(E′
22)


 .

This model is denoted by a univariate linear regression model of the form

y = Xθ + ε, (9.51)

where

y =




vec(Y ′
11)

vec(Y ′
12)

vec(Y ′
21)

vec(Y ′
22)


 : np × 1,

ε =




vec(E′
11)

vec(E′
12)

vec(E′
21)

vec(E′
22)


 ≡




ε11

ε12

ε21

ε22


 : np × 1

and

X =




Ikq

0
0
0




kq

k(p − q)

(n − k)q

(n − k)(p − q)

: np × kq,

and the distribution of ε is obtained as

L(ε) ∈ Pnp (0, �) (9.52)
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with

� =




Ik ⊗ �11 Ik ⊗ �12 0 0
Ik ⊗ �21 Ik ⊗ �22 0 0

0 0 In−k ⊗ �11 In−k ⊗ �12
0 0 In−k ⊗ �21 In−k ⊗ �22


 (9.53)

=
(

�1 0
0 �2

)
(say)

The inverse matrix �−1 of � is given by

�−1 =
(

�−1
1 0
0 �−1

2

)

with

�−1
1 =

(
Ik ⊗ �−1

11.2 Ik ⊗ (−�−1
11.2�12�

−1
22 )

Ik ⊗ (−�−1
22 �21�

−1
11.2) Ik ⊗ �−1

22.1

)

and

�−1
1 =

(
In−k ⊗ �−1

11.2 In−k ⊗ (−�−1
11.2�12�

−1
22 )

In−k ⊗ (−�−1
22 �21�

−1
11.2) In−k ⊗ �−1

22.1

)
.

Recall that �11.2 = �11 − �12�
−1
22 �21 and �22.1 = �22 − �21�

−1
11 �12. Hence,

the GME of θ is given by

θ̂ (�) = (X′�−1X)−1X′�−1y

= (Ik ⊗ �−1
11.2)

−1[Ik ⊗ �−1
11.2, Ik ⊗ (−�−1

11.2�12�
−1
22 ), 0, 0]

×




vec(Y ′
11)

vec(Y ′
12)

vec(Y ′
21)

vec(Y ′
22)




= [Ik ⊗ Iq, Ik ⊗ (−�12�
−1
22 ), 0, 0]




vec(Y ′
11)

vec(Y ′
12)

vec(Y ′
21)

vec(Y ′
22)




= vec(Y ′
11) − [Ik ⊗ (�12�

−1
22 )]vec(Y ′

12). (9.54)

The OLSE is given by letting � = Ip:

θ̂ (Ip) = vec(Y ′
11).
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In matrix notation, the GME and the OLSE are respectively expressed as

�̂(�) = Y11 − Y12�
−1
22 �21, (9.55)

�̂(Ip) = Y11. (9.56)

The following result is a natural consequence of this.

Proposition 9.5 The covariance matrices of the GME and the OLSE are given by

Cov(�̂(�)) = Cov(θ̂ (�)) = Ik ⊗ �11.2, (9.57)

Cov(�̂(Ip)) = Cov(θ̂ (Ip)) = Ik ⊗ �11, (9.58)

respectively.

It is clear that Cov(�̂(Ip)) ≥ Cov(�̂(�)), since �11 ≥ �11.2.

GLSEs. The discussion above leads to the following GLSE

θ̂ (�̂) = vec(Y ′
11) − [Ik ⊗ (�̂12�̂

−1
22 )]vec(Y ′

12), (9.59)

whose matrix notation is given by

�̂(�̂) = Y11 − Y12�̂
−1
22 �̂21, (9.60)

where

�̂ =
(

�̂11 �̂12

�̂21 �̂22

)

is an estimator of �. Consider a GLSE �̂(�̂) with such �̂’s being a function of
Y12, Y21 and Y22, or equivalently, E12, E21 and E22. Typical examples are the
GLSE �̂(�̂) with

�̂ = W, (9.61)

where the matrix W is defined by

W =
(

W11 W12
W21 W22

)

= Y ′
2Y2

=
(

Y ′
21

Y ′
22

)
(Y21, Y22)

=
(

Y ′
21Y21 Y ′

21Y22
Y ′

22Y21 Y ′
22Y22

)

=
(

E′
21E21 E′

21E22
E′

22E21 E′
22E22

)
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=
(

E′
21

E′
22

)
(E21, E22)

= E′
2E2 : p × p (9.62)

and the GLSE �̂(�̂) with

�̂ = S, (9.63)

where

S = W +
(

0q×q 0q×(p−q)

0(p−q)×q V22

)
(9.64)

and

V22 ≡ Y ′
12Y12

= E′
12E12 : (p − q) × (p − q). (9.65)

See Problem 9.4.2. Here, recall that a GLSE has a scale-invariance property:
�̂(c) = �̂() for any c > 0. Hence, when we estimate � by �̂ = S/n, the cor-
responding GLSE �̂(S/n) reduces to �̂(S). While the matrix S in �̂(S) depends
on E12, E21 and E22, the matrix W in �̂(W) is a function of E21 and E22 only.

Let

� = �12�
−1
22 : q × (p − q) and �̂ = �̂12�̂

−1
22 , (9.66)

and let

z = [Ik ⊗ (�̂ − �)]vec(Y ′
12)

= [Ik ⊗ (�̂ − �)]vec(E′
12). (9.67)

Note that �̂ is, in general, a function of Y12 and Y2 = (Y21, Y22) (or equivalently,
E12 and E2 = (E21, E22)).

Theorem 9.6 When the distribution L(E) of E satisfies

E[E11|E12, E21, E22] = E12�
′ a.s., (9.68)

the risk matrix of �̂(�̂) is expressed as

R(�̂(�̂), �) = R(�̂(�), �) + E(zz′), (9.69)

and hence it is bounded below by that of the GME �̂(�):

R(�̂(�̂), �) ≥ R(�̂(�), �). (9.70)
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Proof. Since the GLSE �̂(�̂) is written as

�̂(�̂) = Y11 − Y12�̂
′

= (� + E11) − E12�̂
′,

it holds that

�̂(�̂) − � = [�̂(�) − �] + [�̂(�̂) − �̂(�)]

= (
E11 − E12�

′) − E12(�̂ − �)′. (9.71)

Hence, in vector notation,

θ̂ (�̂) − θ = [θ̂ (�) − θ ] − z,

from which the risk matrix in question is evaluated as

R(�̂(�̂), �) = R(θ̂(�̂), θ)

= E{[θ̂ (�) − θ ][θ̂ (�) − θ ]′} + E(zz′)

−E{[θ̂ (�) − θ ]z′} − E{z[θ̂ (�) − θ ]′}.
Since z depends on E only through E12, E21 and E22, the last two terms vanish.
In fact, by noting that (9.68) is equivalent to

E(ε11|ε12, ε21, ε22) = (Ik ⊗ �)ε12 a.s., (9.72)

we have

E{[θ̂ (�) − θ ]z′} = E{[ε11 − (Ik ⊗ �)ε12]z′}
= E{E[[ε11 − (Ik ⊗ �)ε12]z′ | ε12, ε21, ε22]}
= E{E[ε11|ε12, ε21, ε22]z′ − (Ik ⊗ �)ε12z

′}
= E[(Ik ⊗ �)ε12z

′ − (Ik ⊗ �)ε12z
′]

= 0.

This completes the proof.

Elliptically symmetric distributions. When the distribution of the error term E

is elliptically symmetric:

L(E) ∈ En×p(0, �),

the condition (9.68) is satisfied. In fact, since noting that

L(E12|E12, E21, E22) = L(ε11|ε12, ε21, ε22),



262 GROWTH CURVE MODEL AND GLSEs

by using (9.53) and Proposition 1.19 of Section 1.3 of Chapter 1, we can see that
the conditional distribution is also elliptically symmetric with mean

E (ε11|ε12, ε21, ε22)

= (Ik ⊗ �12, 0, 0)


 Ik ⊗ �22 0 0

0 In−k ⊗ �11 In−k ⊗ �12
0 In−k ⊗ �21 In−k ⊗ �22




−1

×

 ε12

ε21
ε22




= (Ik ⊗ �)ε12.

Hence, in such a class of distributions, the risk matrices of the GLSEs �̂(�̂) are
bounded below by the covariance matrix of the GME �̂(�).

9.5 Efficiency of GLSEs

By Theorem 9.6, it turns out that the problem of evaluating the efficiency of a
GLSE of the form �̂(�̂) is reduced to the problem of evaluating the following
quantity

R1(�̂, �) ≡ E(zz′)

= E{[Ik ⊗ (�̂ − �)]ε12 ε′
12[Ik ⊗ (�̂ − �)′]}. (9.73)

In this section, we evaluate this quantity when the distribution of E is elliptically
symmetric, and � is estimated by W .

Preliminaries. Consider the model (9.48). As before, we omit the asterisk ∗, for
simplicity in the notation. The model can also be expressed as (9.51).

To evaluate the R1(�̂, �), we assume that the distribution P ≡ L(E) is ellip-
tically symmetric:

L(E) ∈ En×p(0, In ⊗ �), (9.74)

and P has a probability density function (pdf) with respect to the Lebesgue measure
on Rnp. (Here Rnp is regarded as the set of all n × p matrices.) As is clear from
(9.52), the distribution of ε : np × 1 in (9.51) is elliptically symmetric:

L(ε) ∈ Enp(0, �),

where � is in (9.53). Hence, by Proposition 1.17, the marginal distribution of
(ε′

12, ε′
21, ε′

22)
′ is given by

L





 ε12

ε21
ε22





 ∈ En0





 0

0
0


 ,


 Ik ⊗ �22 0 0

0 In−k ⊗ �11 In−k ⊗ �12
0 In−k ⊗ �21 In−k ⊗ �22





 (9.75)
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with n0 = k(p − q) + (n − k)p. Furthermore, the following distributional results
are given by the assumption (9.74):

Lemma 9.7 (1) For W in (9.62), let

F = W12W
−1
22 : q × (p − q).

Then

L(ε12|F, ε22) ∈ Ek(p−q)(0, c1(h)Ik ⊗ �22), (9.76)

where

h = tr[(F − �)W22(F − �)′�−1
11.2] + tr(W22�

−1
22 ). (9.77)

Here ci(·)’s in (1) and (2) below are functions of · and their functional forms
depend on the distribution P = L(E).

(2) The distributions of F and E22 are given by

L(F |E22) ∈ Eq×(p−q)(�, c2(tr[W22�
−1
22 ])�11.2 ⊗ W−1

22 ),

L(E22) ∈ E(n−k)×(p−q)(0, In−k ⊗ �22) (9.78)

respectively.

Proof. The marginal distribution of E22 can be directly obtained by applying
Proposition 1.17 to the joint distribution of (ε11, ε12, ε21, ε22).

Next, from (9.75), a joint pdf of (ε12, ε21, ε22) is written by

f (ε12, ε21, ε22)

= d(�) × g

(
ε′

12(Ik ⊗ �−1
22 )ε12

+(ε′
21, ε′

22)

(
In−k ⊗ �11 In−k ⊗ �12
In−k ⊗ �21 In−k ⊗ �22

)−1 (
ε21
ε22

))

= d(�) × g(ε′
12(Ik ⊗ �−1

22 )ε12

+[ε21 − (In−k ⊗ �)ε22]′(In−k ⊗ �−1
11.2)[ε21 − (In−k ⊗ �)ε22]

+ε′
22(In−k ⊗ �−1

22 )ε22) (9.79)

for some function g : [0, ∞) → [0, ∞). Here, the second line of the above equal-
ities follows from the matrix identity:

(
I ⊗ �11 I ⊗ �12
I ⊗ �21 I ⊗ �22

)−1

=
(

I ⊗ I 0
−I ⊗ �′ I ⊗ I

) (
I ⊗ �−1

11.2 0
0 I ⊗ �−1

22

)(
I ⊗ I −I ⊗ �

0 I ⊗ I

)
,
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which is due to(
I ⊗ �11 I ⊗ �12
I ⊗ �21 I ⊗ �22

)

=
(

I ⊗ I I ⊗ �

0 I ⊗ I

) (
I ⊗ �11.2 0

0 I ⊗ �22

) (
I ⊗ I 0
I ⊗ �′ I ⊗ I

)
.

Recall that � = �12�
−1
22 . Here, the function d(�) is given by

d(�) =
∣∣∣∣∣∣
Ik ⊗ �22 0 0

0 In−k ⊗ �11 In−k ⊗ �12
0 In−k ⊗ �21 In−k ⊗ �22

∣∣∣∣∣∣
−1/2

= |Ik ⊗ �22|−1/2
∣∣∣∣ In−k ⊗ �11 In−k ⊗ �12
In−k ⊗ �21 In−k ⊗ �22

∣∣∣∣
−1/2

= |Ik ⊗ �22|−1/2|In−k ⊗ �11.2|−1/2|In−k ⊗ �22|−1/2

= |�11.2|−(n−k)/2|�22|−n/2,

where the formulas |Im ⊗ A| = |A|m and |A| = |A11.2||A22| are used. In the rest
of the proof, the factor d(�) will be absorbed into the function g, since the factor
is not essential.

In matrix form, the three quadratic forms in g are written by

Q12 ≡ ε′
12(Ik ⊗ �−1

22 )ε12

= tr(�−1
22 E′

12E12), (9.80)

Q21 ≡ [ε21 − (In−k ⊗ �)ε22]′(In−k ⊗ �−1
11.2)[ε21 − (In−k ⊗ �)ε22]

= tr[�−1
11.2(E21 − E22�

′)′(E21 − E22�
′)] (9.81)

and

Q22 ≡ ε′
22(In−k ⊗ �−1

22 )ε22

= tr(�−1
22 E′

22E22) (9.82)

respectively.
Let

N22 = In−k − E22(E
′
22E22)

−1E′
22 : (n − k) × (n − k),

and let Z22 be an (n − k) × [(n − k) − (p − q)] random matrix such that

N22 = Z22Z
′
22 and Z′

22Z22 = I(n−k)−(p−q).

By using Z22, define a matrix F21 as

F21 =
(

F ′
G′

)
: (n − k) × q
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with

F = E′
21E22(E

′
22E22)

−1 : q × (p − q)

and

G = E′
21Z22 : q × [(n − k) − (p − q)].

Then

E21 = E22F
′ + Z22G

′

= (E22, Z22)F21.

Here, since E′
22Z22 = 0, it holds that

(E21 − E22�
′)′(E21 − E22�

′)

= [E22(F
′ − �′) + Z22G

′]′[E22(F
′ − �′) + Z22G

′]

= (F − �)E′
22E22(F

′ − �′) + GG′, (9.83)

from which Q21 is decomposed into two parts as

Q21 = tr[�−1
11.2(F − �)E′

22E22(F
′ − �′)] + tr(�−1

11.2GG′)

= Q
(1)
21 + Q

(2)
21 (say). (9.84)

By viewing f as a pdf of (E12, E21, E22) and transforming (E12, E21, E22)

to (E12, F, G, E22), the Jacobian becomes |E′
22E22|q/2. Hence, the joint pdf of

(E12, F, G, E22) is of the form

|E′
22E22|q/2 g(Q12 + Q21 + Q22), (9.85)

where Q12, Q21 and Q22 are given in (9.80), (9.81) and (9.82) respectively. (Recall
that d(�) is absorbed into g.) Integrating f with respect to G yields the pdf of
(E12, F, E22) of the form

f2(E12, F, E22) ≡ |E′
22E22|q/2

∫
g(Q12 + Q

(1)
21 + Q

(2)
21 + Q22)dG

≡ |E′
22E22|q/2g2(Q12 + Q

(1)
21 + Q22) (say).

Integrating f2 with respect to E12 yields the marginal pdf f3 of (F, E22):

f3(F, E22) ≡
∫

f2(E12, F, E22)dE12

= |E′
22E22|q/2

∫
g2(Q12 + Q

(1)
21 + Q22)dE12

≡ |E′
22E22|q/2g3(Q

(1)
21 + Q22) (say). (9.86)
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Hence, the conditional pdf f4 of E12 given (F, E22) is obtained as

f4(E12|F, E22) ≡ f2(E12, F, E22)/f3(F, E22)

= g2(Q12 + Q
(1)
21 + Q22)/g3(Q

(1)
21 + Q22)

≡ g4(Q12; Q
(1)
21 + Q22) (say)

= g4(ε
′
12(Ik ⊗ �−1

22 )ε12; Q
(1)
21 + Q22). (9.87)

This shows that

L(E12|F, E22) ∈ Ek×(p−q)(0, c1(Q
(1)
21 + Q22)Ik ⊗ �22), (9.88)

which is equivalent to (1).
The marginal pdf f5 of E22 is obtained by integrating f3 in (9.86) with respect

to F :

f5(E22) ≡
∫

f3(F, E22)dF

= |E′
22E22|q/2

∫
g3(Q

(1)
21 + Q22)dF

≡ |E′
22E22|q/2g5(Q22) (say). (9.89)

This yields the conditional pdf f6 of F given E22 as

f6(F |E22) ≡ f3(F, E22)/f5(E22)

= g3(Q
(1)
21 + Q22)/g5(Q22)

= g6(Q
(1)
21 ; Q22), (9.90)

where

Q
(1)
21 = [vec(F ′) − vec(�′)]′(�−1

11.2 ⊗ E′
22E22)[vec(F ′) − vec(�′)].

Thus,

L(F |E22) ∈ Eq×(p−q)(�, c2(Q22) �11.2 ⊗ (E′
22E22)

−1)

follows, which is equivalent to the first statement of (2). This completes the proof.

Note that when the distribution of E is normal: L(E) = Nn×p(0, In ⊗ �), the
functions c1 and c2 are

c1(·) ≡ c2(·) ≡ 1,

and E12 and E2 = (E21, E22) are independent.
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Evaluation of the risk matrix. Now using this lemma, the matrix in (9.73) is
evaluated as

R1(�̂, �)

= E{[Ik ⊗ (�̂ − �)]ε12 ε′
12[Ik ⊗ (�̂ − �)′]}

= E{E{[Ik ⊗ (�̂ − �)]ε12 ε′
12[Ik ⊗ (�̂ − �)′]|F, E22}}

= E{c1(h)Ik ⊗ [(�̂ − �)�22(�̂ − �)′]}
= Ik ⊗ R0(�̂, �), (9.91)

where

R0(�̂, �) = E{c1(h) (�̂ − �)�22(�̂ − �)′}.
Hence, to evaluate R1(�̂, �), it suffices to evaluate R0(�̂, �).

Theorem 9.8 Suppose that the assumptions (9.74) holds. Then for the GLSE �̂(W),
the matrix R0(�̂, �) with

�̂ = F = W12W
−1
22

is evaluated as

R0(�̂, �) = E{d(tr(W̃22)) tr(W̃22)} �11.2 (9.92)

for some function d : [0, ∞) → [0, ∞), where the functional form of d depends on
P = L(E), and the matrix W̃22 is defined by

W̃22 = Ẽ′
22Ẽ22 with Ẽ22 = E22�

−1/2
22 .

Proof. Note first that

W̃22 = �
−1/2
22 W22�

−1/2
22 . (9.93)

So W̃22 and W22 are in one-to-one correspondence.
Using �̂ = F and (2) of Lemma 9.7, the conditional distribution of F given

E22 is

L(F |E22) ∈ Eq×(p−q)(�, c2(tr[W22�
−1
22 ])�11.2 ⊗ W−1

22 ). (9.94)

Let

F̃ = �
−1/2
11.2 F �

1/2
22 : q × (p − q),

� = �
−1/2
11.2 � �

1/2
22 : q × (p − q),

and

Ũ = (F̃ − �)W̃
1/2
22 : q × (p − q).
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Then

L(Ũ |Ẽ22) ∈ Eq×(p−q)(0, c2(tr(W̃22))Iq ⊗ Ip−q),

L(Ẽ22) ∈ E(n−k)×(p−q)(0, In−k ⊗ Ip−q), (9.95)

and

R0(F, �) = �
1/2
11.2 E[c1(tr(Ũ Ũ ′) + tr(W̃22)) ŨW̃−1

22 Ũ ′] �
1/2
11.2. (9.96)

Let the ith row vector of Ũ be u′
i : 1 × (p − q) (i = 1, . . . , q). Since, condi-

tional on Ẽ22, the distribution of

u = vec(Ũ ′) =




u1
...

uq


 : q(p − q) × 1

is spherically symmetric, ui’s are uncorrelated and

Cov(u|Ẽ22) = c2(tr(W̃22)) Iq(p−q). (9.97)

Note here that the conditional distribution of u given Ẽ22 depends on Ẽ22 only
through W̃22. We often use this in the discussion below. It also holds that

L(u |Ẽ22) = L(u(j) |Ẽ22) (9.98)

for any j = 1, . . . , q, where u(j) is u with uj replaced by −uj :

u(j) =




u1
...

uj−1
−uj

uj+1
...

uq




: q(p − q) × 1.

This is because there exists an orthogonal matrix � such that �u = u(j).
On the other hand, since

ŨW̃−1
22 Ũ ′ =




u′
1W̃

−1
22 u1 · · · u′

1W̃
−1
22 uq

...
...

u′
qW̃−1

22 u1 · · · u′
qW̃−1

22 uq


 : q × q, (9.99)

and since

tr(Ũ Ũ ′) = ‖u‖2 = u′u =
q∑

i=1

u′
iui,
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the (i, j)th element �ij of the matrix

� ≡ E[c1(tr(Ũ Ũ ′) + tr(W̃22)) ŨW̃−1
22 Ũ ′|Ẽ22] ≡ (�ij ) (9.100)

is given by

�ij = E

[
c1

(
q∑

i=1

u′
iui + tr(W̃22)

)
u′

iW̃
−1
22 uj

∣∣∣Ẽ22

]
. (9.101)

For i �= j , this quantity is equal to the one in which uj is replaced by −uj (or
equivalently, u is replaced by u(j)):

�ij = E

[
c1

(
q∑

i=1

u′
iui + tr(W̃22)

)
u′

iW̃
−1
22 (−uj )

∣∣∣Ẽ22

]

= −E

[
c1

(
q∑

i=1

u′
iui + tr(W̃22)

)
u′

iW̃
−1
22 uj

∣∣∣Ẽ22

]

= −�ij . (9.102)

This implies that

�ij = 0 (i �= j), (9.103)

since the expectation is clearly finite.
Furthermore, for �ii’s, we have

�11 = · · · = �qq. (9.104)

To see this, let

v = u/‖u‖,

and recall that L(v|Ẽ22) is the uniform distribution on the unit sphere on U(q(p −
q)) (see Proposition 1.13), and hence

E{vv′|Ẽ22} = 1

q(p − q)
Iq(p−q) (9.105)

holds by Corollaries 1.14 and 1.15. Let

c = ‖u‖,
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and let W22 be the q(p − q) × q(p − q) block diagonal matrix with ith diagonal
block being W̃−1

22 and the others 0:

W22 =




0
. . .

0
W̃−1

22
0

. . .

0




.

Then we have

�ii = E

[
c1

(
q∑

i=1

u′
iui + tr(W̃22)

)
u′

iW̃
−1
22 ui

∣∣∣Ẽ22

]

= E[c1(c2 + tr(W̃22))u′W22u|Ẽ22]

= E
{
c1(c2 + tr(W̃22))c2E[v′W22v|c, Ẽ22]|Ẽ22}

= E{c1(c2 + tr(W̃22))c2[tr(W̃−1
22 )/q(p − q)]|Ẽ22}

(by (9.105))

= tr(W̃−1
22 ) × 1

q(p − q)
E[c1(c2 + tr(W̃22))c2|Ẽ22]

≡ tr(W̃−1
22 ) d(tr(W̃22)), (9.106)

where

d(tr(W̃22)) = 1

q(p − q)
E[c1(c2 + tr(W̃22))c2|Ẽ22] (9.107)

and the last line of (9.106) is due to the fact that the conditional distribution
L(u|Ẽ22) depends on Ẽ22 only through W̃22. The quantity �ii thus derived is
clearly independent of fixed i. Hence, (9.104) is proved with �ii = tr(W̃−1

22 )d(tr

(W̃22)). Thus, we have

� = tr(W̃−1
22 ) d(tr(W̃22)) Iq .

By combining this with (9.96), it follows that

R0(F, �) = �
1/2
11.2 E(�) �

1/2
11.2

= tr(W̃−1
22 ) d(tr(W̃22)) �11.2. (9.108)

This completes the proof.
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As a particular case, when E is normal, we obtain the following result, which was
first established by Sugiura and Kubokawa (1988).

Corollary 9.9 When the error term E is normally distributed: L(E) = Nn×p(0,

In ⊗ �),

R0(F, �) = dn �11.2 with dn = p − q

(n − k) − (p − q) − 1
. (9.109)

Proof. Under the normal distribution, the function d in (9.107) is

d(·) ≡ 1.

See Problem 9.5.2. (Since in this case, the function c1 in (9.107) is c1(·) ≡ 1.
Hence, the function d is rewritten as

d(tr(W̃22)) = 1

q(p − q)
E(c2|Ẽ22).

Here, L(u) = Nq(p−q)(0, Iq ⊗ Ip−q).) Further, the matrix W̃22 is distributed as the
Wishart distribution with mean (n − k)Ip−q and degrees of freedom n − k:

L(W̃22) = Wp−q(Ip−q, n − k).

Since

E(W̃−1
22 ) = 1

(n − k) − (p − q) − 1
Ip−q,

(see Problem 1.2.4), the result follows.

By these results, the risk matrix of the GLSE �̂(W) is given by

R(�̂(W), �) = (1 + α0) (Ik ⊗ �11.2)

= (1 + α0) R(�̂(�), �),

where

α0 = E{d(tr(W̃22)) tr(W̃−1
22 )}.

Furthermore, when L(E) = Nn×p(0, In ⊗ �), it holds that α0 = dn, and hence,
when n or (n − k) − (p − q) − 1 is large, the quantity dn is small.

9.6 Problems

9.1.1 Prove that b(In ⊗ �) in (9.13) and B̂(�) in (9.14) are equivalent.

9.1.2 Under model (9.2), show that B̂(�) = B̂(Ip) for any Y : n × p, when X2 =
Ip. Consider model (9.2) with X2 = Ip. Express the model as y = Xβ + ε in (9.1),



272 GROWTH CURVE MODEL AND GLSEs

and let Z be an np × (np − kq) matrix such that Z′X = 0 and Z′Z = Inp−kq ,
where X : np × kq is given by (9.12). Show that the matrix Cov(ε) = � = In ⊗ �

is of Rao’s covariance structure as shown in Section 7.2 of Chapter 7.

9.2.1 In Example 9.1, express the GME B̂(�) explicitly.

9.2.2 When

� =
(

θ1Ip1 0
0 θ2Ip2

)
∈ S(p)

with p1 + p2 = p, express the GME B̂(�) explicitly. Find a condition for B̂(�) ≡
B̂(Ip).

9.3.1 Consider the maximum likelihood estimator (MLE) B̃ of B in the model
treated in Section 9.3.

(1) When � is known, show that the MLE B̃ of B is equivalent to the GME:B̃ =
B̂(�).

(2) When � is unknown, show that the MLE B̃ is equivalent to the GLSE
B̂(�̂) = B̂(W) in (9.41).

See Khatri (1966).

9.3.2 Consider the following two growth curve models with common coefficient
matrix:

Y1 = X11BX12 + E1,

Y2 = X21BX22 + E2,

where E1 and E2 are independent, all Xij ’s are of full rank,

Yi : ni × pi, Xi1 : ni × k,

Xi2 : q × pi, L(Ei) = Nni×pi
(0, Ini

⊗ �i),

�i ∈ S(pi) (i = 1, 2).

(1) Derive the MLE of B under the assumption that �i’s are known.

(2) Show that the MLE is unbiased.

(3) Evaluate the covariance matrix of the MLE.

(4) Discuss an estimation procedure for this model when �i’s are unknown.

See Sugiura and Kubokawa (1988).
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9.4.1 Show that the GME �̂(�) in (9.55) and the OLSE �̂(Ip) in (9.56) are
equivalent to those in Section 9.2.

9.4.2 Show that the following two GLSEs B̂(�̂) with

�̂ = Y ′N1Y = Ê′N1Ê

in (9.41) and

�̂ = Ê′Ê

are respectively equivalent to �̂(W) in (9.61) and �̂(S) in (9.63).

9.5.1 In the proof of Lemma 9.7, show that the Jacobian of transforming (E12, E21,

E22) to (E12, F, G, E22) is given by |E′
22E22|q/2.

9.5.2 Show that when L(E) = Nn×p(0, In ⊗ �), the function d in (9.107) is

d(·) ≡ 1.
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Appendix

A.1 Asymptotic Equivalence of the Estimators of θ

in the AR(1) Error Model and Anderson Model

Notation. Recall that the AR(1) model for the error term ε ≡ εAR is L(εAR) =
Nn(0, �AR), where

�AR = τ 2�AR with �AR = 1

1 − θ2
(θ |i−j |).

Note that

�AR = 1

(1 − θ)2
(In + λC + ψB)−1

= 1

(1 − θ)2
�AR,

where λ and ψ are given by

λ = λ (θ) = θ/ (1 − θ)2 and ψ = ψ (θ) = θ/ (1 − θ) .

A typical choice of an estimator of θ in this model is

θ̂AR = e′
ARKeAR/e′

AReAR

with

eAR = NyAR and K = 2In − C − B,

where yAR = Xβ + εAR.
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On the other hand, the Anderson model for the error term ε ≡ εAN is L(εAN) =
Nn(0, �AN), where

�AN = τ 2�AN

= τ 2

(1 − θ)2
(In + λC)−1

= τ 2

(1 − θ)2
�AN.

Here, it is often the case that θ is estimated by

θ̂AN = e′
ANKeAN/e′

ANeAN with eAN = NyAN,

where yAN = Xβ + εAN. In this appendix, we shall show that

lim
n→∞L[

√
n(θ̂AN − θ)] = lim

n→∞L[
√

n(θ̂AR − θ)]

= N(0, 1 − θ2).

AR(1) error model. Consider the AR(1) error model. Drop the suffix AR from
all the symbols since we treat the AR model only in this section. When β = 0
in y = Xβ + ε, it follows that for θ̂ (e) = e′Ke/e′e with e = y = ε,

√
n(θ̂(ε) −

θ) →d N(0, 1 − θ2) (see, for example, Chapter 5 of Brockwell and Davis, 2002).
Also, when β �= 0, it holds that

√
n(θ̂ − θ) → N(0, 1 − θ2), when

lim
n→∞

X′AX

n
≡ VA ∈ S(k) and lim

n→∞
X′FjAX

n
≡ VAj (A.1)

are assumed to be finite and bounded in j , where

Fj = (f
j

ik) with f
j

ik = 1 if |i − k| = j and f
j

ik = 0 otherwise.

To see this, first observe that for A = I and K

g ≡ lim
n→∞ E[

(
ε′Aε − e′Ae

)2]

is finite. If this holds,

plimn→∞
1

n
e′e = plimn→∞

1

n
ε′ε

= σ 2/(1 − θ2)

and

plimn→∞
1√
n
e′Ke = plimn→∞

1√
n
ε′Kε
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and hence
√

n(θ̂(ε) − θ) − √
n(θ̂(e) − θ) = √

n(θ̂(ε) − θ̂ (e))

=
1√
n
ε′Kε

1
n
ε′ε

−
1√
n
e′Ke

1
n
e′e

→p 0.

Consequently, it follows that
√

n(θ̂(e) − θ) →d N(0, 1 − θ2). Now to show that
g is finite, write

ε = �1/2η with �1/2 ∈ S(n) and L(η) = Nn(0, In).

Then

g = lim
n→∞ E{[η′�1/2(A − NAN)�1/2η]2}

= lim
n→∞ E[(η′Qη)2]

= lim
n→∞[2 tr(Q2) + (trQ)2],

where with M = X(X′X)−1X′

Q = �1/2AM�1/2 + �1/2MA�1/2 − �1/2MAM�1/2. (A.2)

The limits of each term in tr(Q) and tr(Q2) exist. For example,

tr(�1/2AM�1/2) = tr

[(
X′�AX

n

) (
X′X
n

)−1
]

,

which has a finite limit by (A.1) when n → ∞. In fact, since � = σ 2 ∑n−1
j=0 θjFj

with σ 2 = τ 2/(1 − θ2),

lim
n→∞ tr(�AM) = σ 2

∞∑
j=0

θj tr(VAjV
−1
I ) for A = I, K. (A.3)

Note that the elements of VAj are linear combinations of wik = limn→∞ x′
ixk/n

with x′
i being the ith row of X where VI = (vIik). Since trV AjV

−1
I in the right

side is bounded, (A.3) converges and equals the left side. Thus, the limit exists.
Similarly the other terms are shown to have their limits.

Anderson model. Consider the Anderson model. Here, we shall show that θ̂AN(e)

is asymptotically equivalent to θ̂AN(ε). We use the following expressions for the
covariance matrix of εAN and εAR below:

�AN = τ 2

(1 − θ)2
�AN
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and with �AN = (In + λC)−1,

�AR = τ 2

(1 − θ)2
[�−1

AN + ϕB]−1.

Since θ̂AN and θ̂AN are scale-invariant, assume for the proof below without loss of
generality τ 2/(1 − θ)2 = 1 so that �AR = �AR and �AN = �AN. Further, note that

B = u1u
′
1 + unu

′
n,

where uj = (uj1, . . . , ujn)
′ ∈ Rn is the unit vector having ujj = 1 and ujk = 0

(j �= k). Note also that for a, b ∈ Rn

(In + ab′)−1 = In − ab′/(1 + a′b).

Use this equation twice to obtain

�AN =
[
In + a1b

′
1

1 + a′
1b1

+ a2b
′
2

1 + a′
2b2

+ a2b
′
1b

′
2a1

(1 + a′
1b1)(1 + a′

2b2)

]
�AR (A.4)

with

a1 = �ARun, b1 = ϕun, a2 = �ARu1 and b2 = ϕu1.

Then, as in the AR case,

gAN = lim
n→∞ E[(ε′Aε − e′Ae)2]

= lim
n→∞ E[(η′Qη)2]

= lim
n→∞[2tr(Q2) + (trQ)2]

is finite, where Q here is given by (A.2) with � = �AN. In fact, the limits of each
term in tr(Q) and tr(Q2) also exist. For example, for

tr(�
1/2
ANAM�

1/2
AN) = tr

[
(X′�ANAX)

n

(
X′X
n

)−1
]

,

substituting �AN above into this, terms such as

1

n
X′�ARAX,

1

n
X′�ARu1u

′
1�ARAX etc

are involved. Since a′
1b1 = ϕ, a′

2b2 = ϕ and b′
2a1 = ϕθn−1, and �AR = ν

∑n−1
j=0 θj

Fj with ν = 1 − θ2,

X′�ARu1 = ν

n−1∑
j=0

θjX′Fju1 = ν

n−1∑
j=0

θjX′uj .
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Here, it holds that b′
2a1 → 0 and

lim
n→∞ X′uj /

√
n = lim

n→∞(the i th row of X)′/
√

n = 0,

since

1

n

n∑
j=1

X′uju
′
jX = 1

n
X′X → VI (n → ∞) .

And

lim
n→∞[X′�ANAX/n] = lim

n→∞[X′�ARAX/n]

exists. Therefore, it is shown that gAN = gAR, and e′
ANAeAN is asymptotically

equivalent to ε′
ANAεAN for A = In and K . Note that under τ 2/(1 − θ)2 = 1

1

n
ε′

ANεAN = 1

n
tr(�ANηη′) → 1 in the mean,

since

1

n2
{E[(η′�ANη)2] − (E[η′�ANη])2} = 1

n2
2 tr(�2

AN) → 0

and tr(�2
AN) = ∑n

i=1(1 + λdi)
−2, where di’s are the latent roots of C and bounded.

In fact,

E

[
1

n
tr(�ANηη′)

]
= 1

n
tr(�AN).

Hence, using (A.4), for example,

tr(a1b
′
1�AR) = ϕu′

n�
2
ARun = ϕ

n−1∑
j=0

θ2j → ϕ
1

1 − θ2
,

meaning limn→∞ 1
n
tr (�AN) = limn→∞ 1

n
tr(�AR) = 1.

Equivalence of the asymptotic distributions. As has been shown,
√

n(θ̂J − θ)

is respectively asymptotically equivalent to

√
n

(
ε′
J KεJ

n
− θ

)
(J = AR, AN) .

The characteristic function of this quantity is given by

φJ (t) = exp
(−it

√
nθ

) ∣∣∣∣In − it√
n

�J K

∣∣∣∣
−1/2

(J = AR, AN) .
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We will show limn→∞ φAN(t) = limn→∞ φAR = exp(−t2/2(1 − θ2)). Let

ψ(t) =
[
φAN(t)

φAR(t)

]2

= |�AR|/|�AN|,

where

�J = In − it√
n
�J K (J = AR, AN).

Then

|�AR| = |�AR|
∣∣∣∣�−1

AR − it√
n
K

∣∣∣∣
= δ

∣∣∣∣In − it√
n

�
1/2
ANK�

1/2
AN + ϕ�

1/2
ANB�

1/2
AN

∣∣∣∣
= δ|�AN|

∣∣∣In + ϕ�−1
AN�

1/2
ANB�

1/2
AN

∣∣∣ ,
where

δ = |�AR|/|�AN|.
Therefore, with ûj = �

1/2
ANuj ,

ψ(t) = δ1δ2,

where with ũj = �
1/2
ANuj ,

δ2 =
∣∣∣In + ϕ�−1

AN�
1/2
ANB�

1/2
AN

∣∣∣
=

∣∣∣In + ϕ�−1
AN(ũ1ũ

′
1 + ũnũ

′
n)

∣∣∣
and

δ−1
1 = |In + ϕ(ũ1ũ

′
1 + ũnũ

′
n)|.

Here using |In + ab′| = 1 + a′b,

δ−1
1 = |In + ϕũ1ũ

′
1||In + (In + ϕũ1ũ

′
1)

−1ϕũnũ
′
n|

= (1 + ϕũ′
1ũ1)

[
1 + ϕũ′

nũn −
(
ϕũ′

nũ1
)2

1 + ϕũ′
1ũ1

]
.

Similarly,

δ2 = (1 + ϕũ′
1�

−1
ANũ1)

[
1 + ϕũ′

n�
−1
ANũn − (ϕũ′

n�
−1
ANũ1)

2

1 + ϕũ′
1�

−1
ANũ1

]
.
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By taking � ∈ O(n) such that

�C�′ = D =




d1
. . .

dn


 with 0 = d1 < · · · < dn < 4,

and using − 1
4 < λ < ∞,

ũi
′ũi = u′

i�ANui

= u′
i� (In + λD)−1 �′ui

≤ max{1, 1/ (1 + 4λ)} (i = 1, n).

Further, since K = 1
2 [2In − C − B],

�
1/2
ANK�

1/2
AN = � (In + λD)−1/2 1

2

(
2In − D − �′B�)

(In + λD)−1/2 �′,

and hence the elements of this matrix are bounded. Consequently, when n is given
but large, �−1

N is expanded as an infinite series:

ũ′
1�

−1
ANũ1 = ũ′

1


 ∞∑

j=0

(
− it√

n

)j

(�
1/2
ANK�

1/2
AN)j


 ũ1

=
∞∑

j=0

(
− it√

n

)j

ũ′
1(�

1/2
ANK�

1/2
AN)j ũ1,

where each term of the series is bounded and converges to 0 except for j = 0.
Therefore,

lim
n→∞ ũ′

1�
−1
ANũ1 = lim

n→∞ ũ′
1ũ1.

Similarly,

lim
n→∞ ũ′

n�
−1
ANũn = lim

n→∞ ũ′
nũn,

and

lim
n→∞ ũ′

n�
−1
ANũ1 = lim

n→∞ ũ′
nũ1.

This implies limn→∞ δ2 = limn→∞ δ−1
1 and hence limn→∞ ψ(t) = 1. Therefore,

the condition (5) in Section 5.3 of Chapter 5 is verified. The condition (6) follows
from the fact that the characteristic function of

√
n(θ̂AN − θ) satisfies limn→∞ log

�AN(t) = − 1
2 (1 − θ2)t2 ≡ ξ(t) and hence log �AN(t) = ξ(t) + O(1/n). This im-

plies that E[θ̂AN − θ ] = O(1/n).
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