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Preface

Aims and scope

Big Queues aims to give a simple and elegant account of how large deviations
theory can be applied to queueing problems. Large deviations theory is a
collection of powerful results and general techniques for studying rare events,
and has been applied to queueing problems in a variety of ways.

The strengths of large deviations theory are these: it is powerful enough
that one can answer many questions which are hard to answer otherwise, and
it is general enough that one can draw broad conclusions without relying on
special case calculations. This latter strength has been hidden by the rather
piecemeal development of the subject so far, and we feel it is now time for
an account which shows that (in this case at least) abstraction can serve to
simplify rather than to obscure.

We are not aiming to write an encyclopaedia on the subject, nor is this
an attempt to survey the vast literature (including books by Shwartz and
Weiss [91] and Chang [13]) which has evolved on this and related topics.
Instead we present a certain point of view regarding the application of large
deviations theory to queueing problems. Specifically, we will use the ‘con-
tinuous mapping’ approach, which has several benefits.

First, it suggests a style of simple heuristic argument which is easy to
make rigorous.

Second, by basing our results on one key concept, the presentation is
made much simpler. The continuous mapping approach lets us use exactly
the same framework to describe three important scaling regimes: the large
buffer regime; the regime for describing long-range dependence, which has
attracted a good deal of attention in Internet traffic modelling; and the
many-flows regime, which often gives better numerical approximations.

Third, this approach allows us to make very general statements about
how various quantities of interest scale as the system scales, without needing
to make any explicit calculations. In designing networks, it is commonly
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more important to understand such scaling behaviour than it is to obtain
explicit answers. With the help of the continuous mapping approach, we
aim to give an elementary introduction to rare-event scaling phenomena in
queueing theory.

Intended readership

Big Queues targets graduate students in probability and mathematically-
inclined graduate students in engineering, especially those interested in ap-
plications to communications networks. Much of the material is drawn from
lecture courses given by the authors at Uppsala, Cambridge and Bangalore.

The introductory chapters and Chapter 10 on heuristics might also be
of interest to the wider network-engineering research community.

Online material

The website for this book is www.bigqueues.com. It contains corrections,
as well as an ‘active bibliography’ containing links to online versions of the
papers cited (where available) and references to more recent articles.
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Chapter 1

The Single Server Queue

The study of queueing models is an appealing part of applied mathematics
because queues are familiar and intuitive—we face queues nearly every day—
and because they can be used to model many different systems.

The simplest queue is a line of customers, in which the customer at the
head of the line receives service from a single server and then departs, and
arriving customers join the tail of the line. Given the interarrival times and
service requirements, we may wish to know how often the server is idle, what
the average waiting time is, how often the number in the queue exceeds some
level, and so on.

Queues can also be used to model problems in insurance. Suppose an
insurance broker starts with a certain amount of capital. Every day a certain
amount of money is paid out in claims (the ‘service’ that day), and a certain
amount of money is paid in in premiums (the ‘arrivals’ that day), and the
capital at the end of the day is the starting capital plus arrivals minus service.
We may wish to know how likely it is that there is insufficient capital to meet
the claims on a given day.

Another application is to packet-based data networks. Data is parcelled
up into packets and these are sent over wires. At points where several
wires meet, incoming packets are queued up, inspected, and sent out over
the appropriate wire. When the total number of packets in the queue (the
‘amount of work’ in the queue) reaches a certain threshold (the ‘buffer size’),
incoming packets are discarded. We may wish to know the frequency of
packet discard, to know how large to make the buffer.

There are many more applications, and many extensions—multiple servers,
different service disciplines, networks of queues, etc. etc.

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 1–21, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Chapter 1

Consider now the recursion

Qt = (Qt−1 +At − Ct)+,

where t ∈ N (or Z) and Qt, At and Ct ∈ R
+, and x+ denotes the positive

part of x, i.e. max(x, 0). This is known as Lindley’s recursion. It can be
used to describe customers waiting in a line. Interpret Qt as the time that
the (t + 1)th customer spends waiting before his service starts, At as the
service time of the tth customer, and Ct as the interarrival time between
customers t and t+ 1.

It can also be used to describe the insurance model. Interpret Qt−1 as
the amount of capital at the start of day t, and At as the arrivals and Ct as
the service that day.

For the packet data model, consider the modified recursion

Qt =
[
Qt−1 +At −Ct

]B
0

where [x]B0 = max(min(x,B), 0). Interpret Qt as the amount of work in the
queue just after time t ∈ Z, At as the number of packets that arrive in the
interval (t − 1, t), Ct as the number of packets served at time t, and B as
the buffer size.

For these simple models, the goal of queueing theory is to understand
the qualitative behaviour of the queueing system, when the input sequence
A and the service sequence C are random.

If they are both sequences of i.i.d. random variables, then Qt is a ran-
dom walk constrained to stay positive, and one can obtain certain results
using the theory of random walks and renewal processes. If in addition ei-
ther A or C is a sequence of exponential random variables, one can obtain
further results by considering certain embedded Markov chains. In the lat-
ter setting, even for more complicated queueing models, there is beautiful
mathematical theory which has been remarkably successful as a basis for
many applications. See, for example, the introductory texts [3, 11, 49, 52].

However, in recent years, there has been increasing demand for a the-
ory which is tractable and yet allows one to consider input and service
sequences which exhibit highly non-Markovian characteristics. This is es-
pecially important for modelling internet traffic. In general, this is a tall
order—many of the important structures of classical queueing theory break
down completely—but not so tall as it may seem if one restricts one’s at-
tention to rare events.

For example, in the packet data example, we may want to make the
buffer size sufficiently large that packet discard is a rare event. To quantify



The Single Server Queue 3

how large the buffer size needs to be, we need to estimate the probability of
the rare event that the buffer overflows and packets are discarded.

The basic tool for studying rare events is large deviations theory. In this
book we will describe one approach to large deviations theory for queues.
The strength of the theory (and particularly of this approach) is that one can
draw broad conclusions, for systems which are otherwise hard to analyse,
without relying on special-case calculations.

In the remainder of this chapter we focus on the simplest single-server
queueing model and describe how one can apply some elementary large
deviations theory in this context.

1.1 The Single-Server Queueing Model

Consider Lindley’s recursion

Qt = (Qt−1 +At − Ct)+, (1.1)

where t ∈ N (or Z), Qt, At and Ct ∈ R
+, and x+ denotes the positive part

of x.

Note. Throughout this book we will adopt the interpretation that Qt is the
amount of work in a queue just after time t, At is the amount of work that
arrives in (t− 1, t), and Ct is the amount of work that the server can process
at time t.

As we have noted, the recursion can also be interpreted as describing cus-
tomers waiting in a line. Most of our results can be interpreted in this
context.

It is of course unnecessary to keep track of both At and Ct. We could just
define Xt = At −Ct, At ∈ R, and look at the recursion Qt+1 = (Qt +Xt)+.
Nonetheless, we shall (for the moment) persist in keeping separate account
of service, because it is helpful in building intuition. So we will deal with
the recursion

Qt = (Qt−1 +At − C)+, (1.2)

where C is a fixed constant, and allow At ∈ R.
This recursion may have many solutions. One way to get around this is

to impose boundary conditions. For example, suppose we are interested in
Q0. If we impose the boundary condition Q−T = 0, for some T > 0, then
the recursion specifies a unique value for Q0—call it Q−T

0 to emphasize the
rôle of the boundary condition. Now Q−T

0 has a simpler form:
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Lemma 1.1 Let St, t ≥ 1, be the cumulative arrival process: St = A−t+1 +
· · · +A0. By convention, let S0 = 0. Then

Q−T
0 = max

0≤s≤T
Ss − Cs

To prove this, simply apply Lindley’s recursion T times, to Q0 then to
Q−1 and so on to Q−T+1.

One particularly important solution to Lindley’s recursion can be ob-
tained by letting T → ∞. The above lemma implies that Q−T

0 is increasing
in T , which means that the limit

Q−∞
0 = lim

T→∞
Q−T

0

exists (though it may be infinite). The lemma also gives a convenient form:

Q−∞
0 = sup

s≥0
Ss − Cs.

Of course, there is nothing special about time 0, so we can just as well define

Q−∞
−t = sup

s≥t
S[t, s) − C(s− t) (1.3)

where S[t, s) = A−t + · · ·+A−s+1 and S[t, t) = 0. Think of Q−∞
−t intuitively

as the queue size at time −t, subject to the boundary condition that the
queue was empty at time −∞.

This boundary condition is so useful that from now on we will drop the
superscript and write Q−t for Q−∞

−t , where the context is clear.
If the arrival process is stationary, i.e. if (A−t, . . . , A0) has the same

distribution as (A−t−u, . . . , A−u) for every t and u, then Q0 has the same
distribution as Q−t for every t, and this distribution is called the steady
state distribution of queue size.

Note. Why is this boundary condition interesting? Exercise 1.2 shows that if
we impose the boundary condition Q−T = r and let T → ∞ we get the same
answer, for any r, as long as the mean arrival rate is less than the service
rate.

This construction was used by Loynes [60]. He showed that if (At, t ∈ Z) is
a stationary ergodic sequence of random variables with EA0 < C, then for
any initial condition Q0 the sequence Qt, as defined by the recursion (1.2),
converges in distribution as t→ ∞ to a limit which does not depend on Q0.
(It is easy to see that Q−∞

0 has this distribution.) Moreover, the sequence
(Q−∞

t , t ∈ Z) defines a stationary ergodic solution to (1.2)
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Exercise 1.1
Show that (1.3) satisfies (1.2). �

Exercise 1.2
Let R−T

0 (r) be the queue size at time 0, subject to the boundary condition
that Q−T = r. Show that

R−T
0 (r) = max

0≤s≤T

[
Ss − Cs

]
∨ (r + ST − CT ).

Deduce that, if St/t → µ almost surely as t → ∞ for some µ < C, then
almost surely

lim
T→∞

R−T
0 (r) = Q−∞

0 for all r.

This shows that we could just as well take any value for the ‘queue size at
time −∞’—it makes no difference to the queue size at time 0. �

A nice example to keep in mind is the following, a discrete-time analog
of the M/M/1 queue.

Example 1.3
Let C = 1 and let the At be independent and identically distributed: At = 2
with probability p and At = 0 with probability 1−p, p < 1/2. Fix Q0. Then
the process (Qt, t ≥ 0) defined by Lindley’s recursion is a birth-and-death
Markov chain, and it is easy to work out the distribution of the equilibrium
queue length Q: for q ∈ N,

P (Q ≥ q) =
( p

1 − p

)q
. (1.4)

The distribution of the Markov chain converges to this equilibrium distribu-
tion, whatever the value of Q0. Thus, the distribution of Q−T

0 converges to
it also as T → ∞. So the distribution of Q0 (i.e. of Q−∞

0 ) is the equilibrium
distribution of queue size.

We will rewrite (1.4) as

logP (Q0 ≥ q) = −δq (1.5)

where δ = log
(
(1 − p)/p

)
. �

It is a remarkable fact that an approximate version of (1.5) holds quite
generally: for some δ > 0,

logP (Q0 ≥ q) ∼ −δq for large q. (1.6)
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We will frequently refer to the event {Q0 ≥ q} by saying that ‘the queue size
at time 0 overflows a buffer level q’ ; then the statement (1.6) is that the
probability of overflow decays exponentially. The rest of this book is about
making such statements precise.

Note. So far we have assumed that the queue size can grow arbitrarily large.
Similar results also apply when the queue size cannot grow beyond a maxi-
mum value, known as the buffer size, as suggested by the following example.

Exercise 1.4
Suppose the queue has a finite buffer of size B, and we use the modified
version of Lindley’s equation

Qt =
[
Qt−1 +At − C

]B
0

where [x]B0 = max(min(x,B), 0). Find the equilibrium distribution of queue
size for the Markov model of Example 1.3.

It is now possible that incoming work is discarded because the buffer is full.
In this model, if Qt−1 = B and Qt = B then one unit of work was dropped
at time t. Let the steady-state probability of this event be p(B). Calculate
p(B), and show that

lim
B→∞

1
B

log p(B) = −δ
where again δ = log

(
(1 − p)/p

)
. �

Before we go on to make (1.6) precise, let us consider one application.
If the approximation holds, we can (in principle) estimate the frequency
with which large queues build up, by empirically observing the queue-length
distribution over a relatively short time period: plot the log-frequency with
which each level q is exceeded against q, and linearly extrapolate. We have
qualified this statement because actually this is a very challenging statistical
problem. Nevertheless, this ingenious idea, which was first proposed in [19],
has inspired major new developments in the application of large deviation
theory to queueing networks.

We will make (1.6) precise using large deviations theory. In this chapter
we will give an explicit proof in a simple setting, and in later chapters we will
draw on more powerful large deviations techniques to prove more general
results. First, we need to introduce some basic large deviations theory.

1.2 One-Dimensional Large Deviations

Let X be a random variable, and let (Xn, n ∈ N) be a sequence of indepen-
dent, identically distributed random variables, each with the same distribu-



The Single Server Queue 7

tion as X, and let Sn = X1 + · · · +Xn. If EX is finite, then the strong law
of large numbers says that

Sn

n
→ EX almost surely

as n→ ∞.
What about fluctuations of Sn/n around EX? If X has finite variance,

then the central limit theorem says that the sequence of random variables

√
n
(Sn

n
−EX

)

converges in law to a normal distribution. The central limit theorem thus
deals with fluctuations of Sn/n from EX of size O(1/

√
n). The probability

of such a fluctuation is O(1).
The theory of large deviations deals with larger fluctuations. In this

book, we will primarily be interested in fluctuations that are O(1) in size;
the probability of such large fluctuations typically decays exponentially in
n.

Example 1.5
Suppose X is exponential with mean 1/λ. Then for x > 1/λ,

1
n

log P
(Sn

n
≥ x

)
→ −(λx− log(λx) − 1

)
(1.7)

(which is strictly negative). �

It is not straightforward to prove (1.7). Happily, it is easy to find it as
an upper bound, even for general X. Define

Λ(θ) = logEeθX .

This is known as the cumulant or log moment generating function of X. It is
a function defined on θ ∈ R, and taking values in the extended real numbers
R
∗ = R ∪ {+∞}. Closely related to it is

Λ∗(x) = sup
θ∈R

θx− Λ(θ).

This is known as the convex conjugate or Fenchel-Legendre transform of Λ.
It is a function defined on x ∈ R, and taking values in R

∗.
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Lemma 1.2 Let Xn and Sn be as above, and let Λ(θ) be the log moment
generating function of X. Then

1
n

logP
(Sn

n
≥ x

)
≤ − sup

θ≥0
θx− Λ(θ). (1.8)

Proof. For any θ ≥ 0,

P (Sn/n ≥ x) = E
(
1[Sn − nx ≥ 0]

)

≤ E
(
eθ(Sn−nx)) = e−θnxEeθSn .

This inequality is known as the Chernoff bound. Since the Xn are indepen-
dent and identically distributed,

EeθSn =
(
EeθX

)n = enΛ(θ).

Taking logarithms and dividing by n,

1
n

log P (Sn ≥ nx) ≤ −(θx− Λ(θ)
)
.

Optimising this bound over θ yields the result. �

When x > EX, we show in Lemma 2.6 that taking the supremum over
θ ∈ R in Λ∗(x) is the same as taking the supremum over θ ≥ 0, and so the
right hand side in (1.8) is −Λ∗(x). (A similar bound applies to P (Sn ≤ nx)
for x < EX by considering θ ≤ 0.)

Exercise 1.6
Calculate Λ∗(x) in the case where X is exponential with mean 1/λ. Check
that your answer agrees with Example 1.5. �

It turns out that Chernoff’s bound is tight, in the sense that it gives the
correct exponential rate of decay of the probability P (Sn/n ≥ x). This is
the content of Cramér’s theorem.

Cramér’s Theorem

As before, let X be a random variable and let (Xn, n ∈ N) be independent,
identically distributed random variables each distributed like X, and let
Sn = X1 + · · ·+Xn. Let Λ(θ) be the log moment generating function of X,
and let Λ∗(x) be its convex conjugate.
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Theorem 1.3 (Cramér’s theorem) For any measurable set B ⊂ R,

− inf
x∈B◦ Λ∗(x) ≤ lim inf

n→∞
1
n

log P (Sn/n ∈ B) (1.9)

≤ lim sup
n→∞

1
n

logP (Sn/n ∈ B) ≤ − inf
x∈B̄

Λ∗(x), (1.10)

where B◦ denotes the interior of B, and B̄ its closure.

Cramér’s theorem is an example of a large deviations principle (LDP),
a general statement of which can be found in Chapter 4. The inequality
(1.9) is called the large deviations lower bound, and (1.10) is called the
large deviations upper bound. If both hold, we say that the sequence Sn/n
satisfies the large deviations principle with rate function Λ∗.

We collect the proof of Cramér’s theorem, together with some important
properties of Λ and Λ∗, in Chapter 2.

Note. The reader is strongly encouraged to skim through Chapter 2 now.
The results look technical, but it does help to develop a feel for Λ and Λ∗.

Here are some properties which we will need shortly. The function Λ∗

is convex, which means that the region where it is finite is an interval, and
that it is continuous on the interior of this region. Moreover, supposing EX
is finite, Λ∗ attains its minimum at EX, and for x > EX

lim sup
n→∞

1
n

logP
(Sn

n
≥ x

)
≤ − inf

y≥x
Λ∗(y) = −Λ∗(x), (1.11)

and also

lim inf
n→∞

1
n

logP
(Sn

n
> x

)
≥ − inf

y>x
Λ∗(y) = −Λ∗(x+) (1.12)

where Λ∗(x+) = limy↓x Λ∗(y) (and this limit is guaranteed to exist as an
extended real number).

1.3 Application to Queues with Large Buffers

The following theorem is one of the fundamental results in the application
of large deviation theory to queues.

Recall the queueing model from the beginning of this chapter. Let A
be a random variable and let (At, t ∈ Z) be a collection of independent
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random variables each distributed like A. Interpret At as the amount of
work arriving at the queue at (or rather just before) time t. Let the queue
have constant service rate C. Let Q be the queue size at time 0, given by

Q = sup
t≥0

St − Ct,

where St = A0 + · · · +A−t+1 and S0 = 0.
Let Λ(θ) be the log moment generating function of A, and assume that

it is finite for all θ. (This is not necessary, but it does simplify the proof
slightly.)

Theorem 1.4 (LDP for queue size) Assume that EA < C. Then for
sequences of l ∈ R, and q > 0,

lim
l→∞

1
l

logP (Q/l > q) = −I(q)

where
I(q) = inf

t∈R+
tΛ∗(C + q/t).

Before the proof, some remarks. There will be more remarks and examples
after the proofs.

i. Equivalently, q−1 logP (Q > q) → −I(1). We have written out the
fuller form to make it look more like a large deviations principle.

ii. This is a restricted sort of large deviations principle. The theorem only
concerns intervals [q,∞), whereas a full large deviations principle would deal
with general events {Q/l ∈ B}.

iii. The theorem proves a limit, whereas large deviations principles typ-
ically give upper and lower bounds. In fact we will prove large deviations
upper and lower bounds, but in this case they happen to agree.

iv. The assumption that the At are independent is overly restrictive. We
will give a more sophisticated version of this theorem in Chapter 3, drawing
on more advanced large deviations theory than Cramér’s theorem, with less
restrictive assumptions.

v. For this type of theorem to be meaningful, it is necessary that Λ be
finite in a neighbourhood of the origin. When that is not the case, a different
scaling regime is appropriate, sometimes referred to as the heavy tail or
subexponential regime. See for example Asmussen [3], Whitt [98], and Zwart
[103].

Proof. The following lemmas prove: a lim sup result with rate function I1,
then a lim inf result with rate function I2, and finally that I1 = I2 = I. �
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Lemma 1.5 In the setting of Theorem 1.4,

lim sup
l→∞

1
l

logP (Q/l > q) ≤ −q sup{θ > 0 : Λ(θ) < θC}.

Lemma 1.6 In the setting of Theorem 1.4,

lim inf
l→∞

1
l

log P (Q/l > q) ≥ − inf
t∈R+

tΛ∗(C + q/t).

Lemma 1.7 In the setting of Theorem 1.4,

I(q) = inf
t∈R+

tΛ∗(C + q/t) (1.13)

= inf
t∈R+

sup
θ≥0

θ(q + Ct) − tΛ(θ) (1.14)

= q sup{θ > 0 : Λ(θ) < θC}. (1.15)

Proof of Lemma 1.5 As in the upper bound for Cramér’s Theorem, Lemma
1.2, we will use Chernoff’s bound. First, write down the probability we are
trying to estimate. From the definition of Q,

P (Q > lq) = P (sup
t≥0

St − Ct > lq) ≤
∑

t≥0

P (St − Ct ≥ lq)

and so by Chernoff’s bound,

≤ e−θlq
∑

t≥0

et
(
Λ(θ)−Cθ

)
.

for any θ > 0. Restrict attention to those θ for which Λ(θ) < θC. This
makes the sum finite:

≤ e−θlq eΛ(θ)−Cθ

1 − eΛ(θ)−Cθ
,

and so

lim sup
l→∞

1
l

logP (Q > lq) ≤ −θq.

Taking the supremum over all such θ,

lim sup
l→∞

1
l

logP (Q > lq) ≤ −q sup{θ > 0 : Λ(θ) < θC}. �
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If there were no such θ, the bound would be trivial. In fact this is
never the case, by our assumption that EA < C. We assumed that Λ(θ) is
finite and, in particular, finite in a neighbourhood of the origin. Hence it is
differentiable in a neighbourhood of the origin (Lemma 2.3), and furthermore
EA = Λ′(0). Since we have assumed EA < C, there exists a θ > 0 such
that Λ(θ) < θC.

Proof of Lemma 1.6 We will prove the lower bound by estimating the prob-
ability that the queue overflows over some fixed timescale. It is a common
method, in proving large deviations lower bounds, to bound the probability
of a rare event by finding the probability that it occurs in a specific way.
Fix t > 0, t ∈ R. Then, from the definition of Q,

P (Q > lq) = P (∃u : Su −Cu > lq) ≥ P (S
lt� − C�lt > lq),

where �x ∈ Z is the smallest integer greater than or equal to x, i.e. �x−1 <
x ≤ �x. Hence

lim inf
l→∞

1
l

logP (Q ≥ lq) ≥ lim inf
l→∞

1
l

logP (S
lt� − C�lt > lq)

so using the fact that l ≤ �lt/t,

≥ lim inf
l→∞

t

�lt logP
(
S
lt� − C�lt > �lt

t
q
)
.

Defining n = �lt,

= t lim inf
n→∞

1
n

logP (Sn −Cn > nq/t)

= t lim inf
n→∞

1
n

logP (Sn/n > C + q/t).

By the lower bound in Cramér’s theorem, (1.12), this is

≥ −tΛ∗((C + q/t)+
)
.

Since t > 0 was arbitrary

lim inf
l→∞

1
l

logP (Q > lq) ≥ − inf
t>0

tΛ∗((C + q/t)+
)

and it is easy to see from the properties of Λ∗ that this is

= − inf
t>0

tΛ∗(C + q/t). �
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Proof of Lemma 1.7 First, we show (1.14)=(1.13). The latter is

(1.13) = inf
t∈R+

t
(
sup
θ∈R

θ
(
C +

q

t

)− Λ(θ)
)

= inf
t>0

sup
θ∈R

θ(q + Ct)− tΛ(θ).

Since EA < C, EA < (q + Ct)/t and so by Lemma 2.6 we can restrict the
supremum to be over θ ≥ 0, yielding (1.14)=(1.13).

Now we show (1.14) ≥ (1.15). For any θ > 0 such that Λ(θ) < θC, and
t ∈ R

+,
θ(q + Ct) − tΛ(θ) = θq + t

(
θC − Λ(θ)

) ≥ θq.

Taking the supremum over such θ,

sup
θ>0:Λ(θ)<θC

θ(q + Ct) − tΛ(θ) ≥ q sup
θ>0:Λ(θ)<θC

θ

and so by relaxing the left hand side

sup
θ≥0

θ(q + Ct) − tΛ(θ) ≥ q sup{θ > 0 : Λ(θ) < θC}.

Since the right hand side does not depend on t, taking the infimum over t
yields the result.

Finally, we show (1.14) ≤ (1.15). Let θ∗ = sup{θ > 0 : Λ(θ) < θC}. If
θ∗ = ∞ there is nothing to prove. So assume θ∗ <∞. We will see in Lemma
Lemma 2.3 that Λ(θ) is convex, and also that (from our assumption that it
is finite everywhere) it is continuous and differentiable everywhere. It must
then be that Λ(θ∗) = θ∗C and Λ′(θ∗) > C (see the sketch in Figure 1.1 to
convince yourself of this).

Since Λ(θ) is convex, it is bounded below by the tangent at θ∗:

Λ(θ) ≥ θ∗C + Λ′(θ∗)(θ − θ∗).

We will use this to bound (1.14):

(1.14) = inf
t>0

sup
θ≥0

θ(q + Ct) − tΛ(θ)

≤ inf
t>0

sup
θ≥0

θ(q + Ct) − t
(
θ∗C + Λ′(θ∗)(θ − θ∗)

)

= inf
t>0

sup
θ≥0

θ
(
q − t(Λ′(θ∗) −C)

)
+ θ∗t

(
Λ′(θ∗) − C

)
.
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Λ(θ)

θC

θ
θ̂

Figure 1.1: Illustration of θ̂ = sup{θ : Λ(θ) < θC}.

Performing the optimization over θ,

= inf
t>0

{
∞ if t < q/(Λ′(θ∗) − C)
θ∗t(Λ′(θ∗) −C) if t ≥ q/(Λ′(θ∗) − C)

= θ∗q = (1.15).

This completes the proof. �

Some remarks on the proofs.
i. One interpretation of Theorem 1.4 is that the approximation

P (sup
t
St − Ct ≥ q) ≈ sup

t
P (St − Ct ≥ q)

is justified (for large q) on a logarithmic scale. In other words, to estimate
the probability that the queue size is large, we need to find the timescale
t over which it is most likely that the queue fills up to level q, and then
estimate the probability that it fills up over that timescale.

ii. From the proof of Lemma 1.6, the most likely time for the queue to fill
up to some high level lq is lt, where t is the optimizing parameter in I(q).

iii. Another interpretation of Theorem 1.4 is that, on a macroscopic scale,
the process St − Ct is effectively a simple random walk with negative drift.
The theorem implies that the approximation

P (sup
t
St −Ct ≥ q1 + q2) ≈ P (sup

t
St −Ct ≥ q1)P (sup

t
St −Ct ≥ q2) (1.16)

is valid (for large q1 and q2). If St were a simple random walk, we would
have equality in (1.16), by the strong Markov property. Thus the effects of
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path ‘discontinuities’ (sometimes referred to as overshoot) are invisible at
the macroscopic scale. (Note however that these effects contribute to the
value of I(q).)

Example 1.7
Consider again the system in Example 1.3. This has C = 1, and log moment
generating function for A given by

Λ(θ) = log(1 − p+ pe2θ).

This gives

I(q) = q sup{θ > 0 : log(1 − p+ pe2θ) < θ}

= log
(1 +

√
1 − 4p(1 − p)

2p

)

= log
1 − p

p

which agrees with our earlier conclusion. �

Exercise 1.8
If the service is a random variable, say Ct, we can apply the theorem to the
random variable At − Ct (rather than to At) and set C = 0. Then

Λ(θ) = ΛA(θ) − ΛC(θ)

where ΛA and ΛC are the log moment generating functions for the At and
Ct. Show that Λ∗(x) = infy Λ∗

A(y) + Λ∗
C(y − x). Compute I(q) for the

following examples:
i. At are Poisson random variables with mean λ and Ct are independent

Poisson random variables with mean µ > λ,
ii. At are exponential random variables with mean λ and Ct are indepen-

dent exponential random variables with mean µ > λ,
iii. At are Gaussian random variables with mean µ and variance σ2, and

Ct = C > µ. �

1.4 Application to Queues with Many Sources

There is another limiting regime, which considers what happens when a
queue is shared by a large number of independent traffic flows (also called
sources).
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Consider a single-server queue as before, with N sources and constant
service rate CN . Let A(i)

t be the amount of work arriving from source i
at time t. Assume that for each i, (A(i)

t , t ∈ Z) is a stationary sequence of
random variables, and that these sequences are independent of each other,
and identically distributed.

To put this in a familiar context, set AN
t = A

(1)
t + · · · +A

(N)
t and SN

t =
AN

0 + · · ·+AN−t+1 (and SN
0 = 0). So SN

t is the total amount of work arriving
at the queue in the interval (−t, 0]. Then the queue length at time 0 is given
by

QN = sup
t≥0

SN
t −NCt.

We will consider the behaviour of P (QN ≥ Nq) as the number of sources N
becomes large.

We will prove a simple sort of large deviations principle for QN/N , us-
ing the same techniques as before: Chernoff’s bound for the upper bound,
Cramér’s theorem for the lower bound. Define

Λt(θ) = logEeθS1
t .

Assume that, for all t, Λt(θ) is finite for θ in a neighbourhood of the origin.
Assume that the limit

Λ(θ) = lim
t→∞

1
t
Λt(θ) (1.17)

exists and is finite and differentiable, for θ in a neighbourhood of the origin.

Theorem 1.8 Under these two assumptions, and the stability assumption
that ES1

1 < C,

−I(q+) ≤ lim inf
N→∞

1
N

log P (QN > Nq)

≤ lim sup
N→∞

1
N

log P (QN > Nq) ≤ −I(q)

where
I(q) = inf

t∈N

Λ∗
t (q + Ct).

Some remarks.
i. Note that the rate function I(q) has nearly the same form as that for

the large-buffer limit, (1.14).



The Single Server Queue 17

ii. As does Cramér’s theorem, this result involves both an upper and a
lower bound. If Λ∗

t is continuous for each t, then the two bounds agree and
we obtain a straightforward limit.

iii. We have assumed that t−1Λt(θ) converges to a limit Λ(θ), and yet
Λ(θ) does not appear anywhere in the result. The assumption is just a way
to control the tails—to say that there are no surprises in the distribution of
S1

t for large t. See Exercise 1.3 for an example. There are different sorts of
assumption that we can use to control the tail; see Section 3.2 for more.

The many sources limit was first introduced by Weiss [97]. Versions of
Theorem 1.8 were proved independently by Courcoubetis and Weber [21]
(in discrete time, for queues with finite buffers), by Botvich and Duffield
[9] (in discrete and continuous time, for queues with infinite buffers) and
by Simonian and Guibert [92] (in continuous time, for queues with infinite
buffers fed by on-off sources). For more, see Section 3.2 and Chapter 7.

The proof is in two parts, a lower bound and an upper bound, presented
in the following two lemmas.

Lemma 1.9 Under the assumptions of Theorem 1.8,

lim inf
N→∞

1
N

log P
(
QN > Nq

) ≥ − lim
r↓q

inf
t∈N

Λ∗
t (q +Ct).

Lemma 1.10 Under the assumptions of Theorem 1.8,

lim sup
N→∞

1
N

log P
(
QN > Nq

) ≤ − inf
t∈N

Λ∗
t (q + Ct).

Proof of Lemma 1.9 First, write out the probability we are estimating:

P (QN > Nq) = P (sup
t≥0

SN
t −NCt > Nq).

Fix t. This probability is then

≥ P (SN
t /N > q + Ct).

(It seems we are throwing away a lot of probability mass. It turns out in the
large deviations limit that we aren’t: as is common in large deviations lower
bounds, we need only consider the probability that the rare event occurs
in a specific way.) Now, apply the lower bound part of Cramér’s theorem,
(1.12):

lim inf
N→∞

1
N

log P (QN > Nq) ≥ Λ∗
t

(
(q + Ct)+

)
.
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Taking the supremum over all t > 0, and using the properties of Λ∗ men-
tioned in Section 1.2,

lim inf
N→∞

1
N

log P (QN > Nq) ≥ − inf
t>0

inf
r>q

Λ∗
t (r + Ct)

= − inf
r>q

inf
t>0

Λ∗
t (r + Ct)

= − lim
r↓q

inf
t>0

Λ∗
t (r + Ct),

where the last equality follows from the fact that, for each t, Λ∗
t (r + Ct) is

increasing in r. �

Proof of Lemma 1.10 First, write out the probability we are estimating:

P (QN > Nq) = P (sup
t≥0

SN
t −NCt > Nq)

≤
∑

t≥0

P (SN
t ≥ NCt+Nq).

The result we are trying to prove suggests that all the action is happening
at finite timescales. This motivates us to break up the sum, into some
finite-timescale parts and an infinite-timescale tail:

= P (SN
0 ≥ Nq) + · · · + P (SN

t0 ≥ NCt0 +Nq)

+
∑

t>t0

P (SN
t ≥ NCt+Nq).

Now, look at this probability on the large deviations scale: take logarithms,
divide by N , take the lim sup. Using the fact that for sequences an and bn
in R

+

lim sup
n→∞

1
n

log(an + bn) ≤ lim sup
n→∞

1
n

log(an) ∨ lim sup
n→∞

1
n

log(bn),

we obtain

lim sup
N→∞

1
N

logP (QN > Nq) ≤ max
0≤t≤t0

lim sup
N→∞

1
N

log P (SN
t /N ≥ q + Ct)

∨ lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /N ≥ q + Ct).
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(This is an instance of the principle of the largest term, a key idea in large
deviations theory. Here, we are only using a simple form of the principle, a
form which is discussed in more detail in Section 2.2.)

Each of the finite-timescale parts is easy to deal with on its own. By the
upper bound part of Cramér’s theorem, (1.11),

lim sup
N→∞

1
N

logP (SN
t /N ≥ q + Ct) ≤ −Λ∗

t (q + Ct).

The following lemma controls the infinite-timescale part: it says that

lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /N ≥ q + Ct) → −∞ as t0 → ∞.

Combining these two, we have the result. �

Lemma 1.11 Under the assumptions of Theorem 1.8,

lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /N ≥ q + Ct) → −∞ as t0 → ∞.

Proof. We will use Chernoff’s bound, and then the tail-controlling assump-
tion. First, using Chernoff’s bound, for any θ > 0

∑

t>t0

P (SN
t /N ≥ q + Ct) ≤

∑

t>t0

e−Nθ(q+Ct)EeθSN
t .

Using the fact that the input flows are all independent and identically dis-
tributed, this is

=
∑

t>t0

e−N
(
θ(q+Ct)−Λt(θ)

)
. (1.18)

We want to choose a θ such that θ(q + Ct) − Λt(θ) is strictly negative,
uniformly in t. To do this, use the tail-controlling assumption, as follows.

First, note that Λ(·) is the limit of convex functions t−1Λt(·). We have
assumed that for each t, Λt(·) is finite in a neighbourhood of the origin;
hence, by Lemma 2.3, it is differentiable at the origin, with Λ′

t(0) = ES1
t .

By the stationarity assumption, t−1Λ′
t(0) = µ where µ = ES1

1 . By the
following lemma, Lemma 1.12, it follows that Λ′(0) = µ. Also, by the
stability assumption, µ < C. So there exists some θ > 0 for which

Λ(θ) < θ(C − 2δ),
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for some δ > 0.
Since Λt(θ)/t→ Λ(θ), there exists a t0 such that for t > t0,

Λt(θ) < t
(
Λ(θ) + δθ

)

and so

θ(q + Ct) − Λt(θ) ≥ θCt− Λt(θ) > θCt− t
(
Λ(θ) + δθ

)
.

By our choice of θ, this is

> θCt− t
(
θ(C − 2δ) + δθ

)
= θδt.

Now we can estimate the probability we want: for t0 sufficiently large,

(1.18) ≤
∑

t>t0

e−Nθδt =
e−Nθδ(t0+1)

1 − e−Nθδ

and so
lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /t ≥ q +Ct) ≤ −θδ(t0 + 1).

Taking the limit as t0 → ∞ completes the proof. �

Lemma 1.12 Let (fn, n ∈ N) be a sequence of convex functions fn : R →
R∪{∞}, converging pointwise to a function f (which is necessarily convex).
Suppose that for each n, fn is finite and differentiable in a neighbourhood
of the origin, and that f ′n(0) = µn. If f is differentiable at the origin and if
µn → µ then f ′(0) = µ.

Proof. To see that f is convex, note that for any 0 ≤ α ≤ 1

f(αx+ (1 − α)y) = lim
n→∞ fn(αx+ (1 − α)y)

≤ lim
n→∞αfn(x) + (1 − α)fn(y) = αf(x) + (1 − α)f(y).

Now, by convexity and differentiability of fn, for all θ

fn(θ) ≥ θf ′n(0) = θµn.

Hence
f(θ) = lim

n→∞ fn(θ) = lim inf
n→∞ fn(θ) ≥ lim inf

n→∞ θµn = θµ.

Since f is differentiable at the origin, it must be that f ′(0) = µ. �
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Some remarks.
i. The proofs made heavy use of the principle of the largest term: loosely,

the idea that to estimate the probability of a rare event, we only need concern
ourselves with the most likely way in which this event can occur. In proving
the lower bound, we estimated the probability that the queue overflows over
a fixed time t, and took the most likely time t∗. In proving the upper bound,
we showed that the probability of overflow over time t �= t∗ is negligible, on
a logarithmic scale.

ii. In the large-buffer limit, Theorem 1.4, the optimizing τ∗ relates the
queue size q to the most likely time to overflow qτ∗. Thus the most likely
rate for the queue to build up is 1/τ∗, and this does not depend on q. In
the many-sources limit, the optimizing t∗ is simply the most likely time to
overflow. It typically depends on q in a non-linear way.

iii. Compare the forms of the rate functions for the large-buffer limit

I(q) = inf
t∈R+

sup
θ∈R

θ(q + Ct) − tΛ(θ)

and the many-flows limit

I(q) = inf
t∈N0

sup
θ∈R

θ(q + Ct) − Λt(θ).

If in the many-flows case the amount of work arriving from each flow at each
timestep is independent, then Λt(θ) = tΛ(θ), and the two expressions are
nearly identical.

iv. The tail-controlling assumption was needed to prove the upper bound,
Lemma 1.10, but not the lower bound, Lemma 1.9.

Exercise 1.9
Let (A(i)

t , t ∈ Z) be a two-state Markov chain representing a source which
produces an amount of work h in each timestep while in the on state and
no work in the off state, and which flips from on to off with probability p
and from off to on with probability q. Show that

Λt(θ) = log
( q

q + p
Et +

p

q + p
Ft

)

where (
Et

Ft

)
=
(

(1 − p)eθh p
qeθh 1 − q

)t

·
(

1
1

)

Explain why Λt(θ)/t → Λ(θ), and show that Λ(θ) is everywhere differen-
tiable. �



Chapter 2

Large Deviations in
Euclidean Spaces

In Section 1.2 we alluded to Cramér’s Theorem, a result about large devia-
tions for averages of random variables in R. In this chapter we will give a
proof, and a generalisation, and explore some consequences. This chapter
does not mention queues! The presentation given here and in Chapter 4
owes much to the book of Dembo and Zeitouni [25]. Other good sources
include the books of Deuschel and Stroock [28] and den Hollander [26].

2.1 Some Examples

First, a couple of examples.
Example 2.1
Let Ln, n ∈ N, denote the proportion of heads in n independent tosses of a
biased coin, which has probability p of coming up heads. Say n is large and
that we are interested in the probability that Ln exceeds q, for some q > p.
For notational convenience, suppose that qn is an integer. Since nLn has a
binomial distribution, we see that

P (Ln > q) =
n∑

k=qn

(
n

k

)
pk(1 − p)n−k. (2.1)

It is straightforward to check that the largest term in the above sum corre-
sponds to k = qn. Indeed, for any j > qn > pn,

(
n

j + 1

)
pj+1(1 − p)n−(j+1)

/ (
n

j

)
pj(1 − p)n−j =

n− j

j

p

1 − p
< 1.

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 23–45, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Thus

(
n

qn

)
pqn(1 − p)(1−q)n ≤ P (Ln > q) ≤ (1 − q)n

(
n

qn

)
pqn(1 − p)(1−q)n.

We can use Stirling’s formula to simplify the above expression. Ignoring
terms that are in subexponential in n, we get

P (Ln > q) ≈ exp(−nH(q; p)),

where H(q; p) = q log q
p + (1 − q) log 1−q

1−p . This quantity is called the rela-
tive entropy, or Kullback-Leibler divergence, of the probability distribution
(q, 1 − q) with respect to the probability distribution (p, 1 − p). A similar
expression can be obtained for P (Ln < q) when q < p. �

There are two key points to note from this derivation.
i. For all sets A in some class (here A ∈ {(q, 1], [0, q)}), and a sequence of

random variables Ln, we have P (Ln ∈ A) ≈ exp(−nI(A)), where I(·) is some
set function. Large deviation theory deals with probability approximations
of precisely this form: given a parametrised family of random variables or
their probability laws, these are approximated by a term that is exponential
in the parameter. In our example, the parameter space was the natural
numbers, but it is equally easy to deal with an uncountable parameter set,
such as the positive reals.

ii. A single term in the sum in (2.1), namely the term with k = qn, is
sufficient to determine the correct exponential decay rate in n of this sum.
Since it is only this decay rate that we are interested in, we can replace the
sum by the largest term. It turns out this feature is characteristic of many
situations where the theory of large deviations is applicable. See Section 2.2
for more.

The random variable Ln considered earlier is nothing but the average of n
i.i.d. Bernoulli random variables Xi, with P (X1 = 1) = p = 1 − P (X1 = 0),
and this made the calculation easy. Here is another example where the
calculation is also easy: the average is of normal random variables.

Example 2.2
Let Yi be an i.i.d. sequence of normal random variables with zero mean and
unit variance, and let Sn = Y1 + . . . + Yn. The sample mean Sn/n is also



Large Deviations in Euclidean Spaces 25

normally distributed, with mean zero and variance 1/n. Thus, for any x > 0,

P
(Sn

n
> x

)
=

1√
2π

∫ ∞

x
e−nz2/2dz

≤ 1
x
√

2π

∫ ∞

x
ze−nz2/2dz =

1
nx

√
2π
e−nx2/2.

Also

P
(Sn

n
> x

)
≥ 1√

2π

∫ x+n−1

x
e−nz2/2dz

≥ 1
n
√

2π
exp

(
−n

2

(
x+

1
n

)2)
=

1
n
√

2π
e−x−(1/2n)e−nx2/2.

Thus, ignoring terms that are subexponential in n, we get

P
(Sn

n
> x

)
≈ exp

(
−nx

2

2

)
.

By symmetry, a similar expression holds for P (Sn/n < x) when x < 0. �

A natural question to ask at this point is whether a similar approximation
holds for sample means of i.i.d. random variables with arbitrary distribution.
The answer is provided by Cramér’s theorem, and is affirmative. This is one
instance of what is called a large deviation principle.

In these examples, the random variables took values in R. Large devi-
ation principles can be stated much more generally, for random variables
taking values in abstract spaces. In later chapters we shall have occasion to
use the LDP for random variables taking values in the space of continuous
functions R

+
0 → R. For a general statement of the large deviations principle,

see Chapter 4. In this chapter, we will stick to R and R
d.

2.2 Principle of the Largest Term

In both the previous examples, the probability estimates were governed by
a single point: n−1Ln = q in the first, n−1Sn = x in the second. This is to
do with the principle of the largest term. We shall have a great deal more
to say about this principle when we introduce abstract large deviations, and
when we apply it to queues. For now, here is a simple concrete explanation.

Let An and Bn be sequences of events, with An and Bn disjoint. Suppose
that

1
n

logP (An) → −a and
1
n

log P (Bn) → −b.
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and a > 0 and b > 0. By the following elementary lemma,

1
n

log P (An ∪Bn) → −(a ∧ b).

Lemma 2.1 (Principle of the largest term) Let an and bn be sequences
in R

+. If n−1 log an → a and n−1 log bn → b then n−1 log(an + bn) → a ∨ b.
(This extends easily to finite sums.)

The principle of the largest term is often expressed in the probability
context by the phrase rare events occur in the most likely way. The event
An ∪Bn is rare, in that a ∧ b > 0, and

P (An|An ∪Bn) =
P (An)

P (An) + P (Bn)
→
{

1 if a < b

0 if a > b

An extension of the principle of the largest term, which we will need for
various estimates in later chapters, is this.

Lemma 2.2 Let an and bn be sequences in R
+. Then

lim sup
n→∞

1
n

log(an + bn) ≤ lim sup
n→∞

1
n

log(an) ∨ lim sup
n→∞

1
n

log(bn),

and

lim inf
n→∞

1
n

log(an + bn) ≥ lim inf
n→∞

1
n

log(an) ∨ lim inf
n→∞

1
n

log(bn).

(This extends easily to finite sums.)

If the gods of probability are being kind, as they are in Lemma 1.10, this
can extend to infinite sums.
Exercise 2.3
Prove Lemma 2.2. �

2.3 Large Deviations Principle

Now it is time to state what we mean by a large deviations principle in R
d.

Look back at theorem 1.3, Cramér’s theorem, which we used in Chapter 1
to derive expressions for the tail of the queue length distribution.

Cramér’s theorem can be rephrased in terms of the following definition—
in the notation of Section 1.2, the theorem says that Sn/n satisfies a large
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deviations principle with rate function Λ∗. In fact this definition can also
be applied to sequences of random variables which do not arise as sums of
i.i.d. random variables, as the examples in Section 4.2 show.

Write R
∗ for the extended real numbers, R ∪ {+∞}.

Definition 2.1 A function I : R
d → R

∗ is a rate function if
• I(x) ≥ 0 for all x ∈ R

d;
• I is lower semicontinuous, i.e. the level sets {x : I(x) ≤ α} are all

closed, for α ∈ R.
It is called a good rate function if in addition

• the level sets are all compact.

Definition 2.2 (Large deviations principle) Let (Xn, n ∈ N) be a se-
quence of random variables taking values in R

d. Say that Xn satisfies a large
deviations principle in R

d with rate function I if I is a rate function, and if
for any measurable set B ⊂ R

d

− inf
x∈B◦ I(x) ≤ lim inf

n→∞
1
n

logP (Xn ∈ B) (2.2)

≤ lim sup
n→∞

1
n

log P (Xn ∈ B) ≤ − inf
x∈B̄

I(x), (2.3)

where B◦ denotes the interior of B, and B̄ its closure.

We will now go on to prove Cramér’s theorem, and some extensions.
First we need a good deal of technical work, to understand some properties
of Λ and Λ∗.

2.4 Cumulant Generating Functions

Definition 2.3 The cumulant generating function or logarithmic moment
generating function of a real-valued random variable X is a function Λ :
R → R

∗, defined by
Λ(θ) = logE(eθX).

Definition 2.4 The effective domain of a function f : X → R
∗ is the set

{x ∈ X : f(x) <∞}.

The following lemma summarises some of the key properties of the cu-
mulant generating function.
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Lemma 2.3 The cumulant generating function Λ is convex and lower semi-
continuous, and Λ(0) = 0. It is differentiable in the interior of its effective
domain, with derivative

Λ′(θ) = E(XeθX)/eΛ(θ).

Proof. Using Hölder’s inequality,

E
(
e(αθ1+(1−α)θ2)X) = E

(
(eθ1X)α(eθ2X)1−α

)

≤ (
E(eθ1X)

)α(
E(eθ2X)

)1−α
,

for α ∈ [0, 1]. Taking logarithms, the convexity of Λ is immediate. Next, fix
θ ∈ R and let θn be any sequence converging to θ. Then, by Fatou’s lemma,

E(eθX) ≤ lim inf
n→∞ E(eθnX).

Taking logarithms yields that Λ is lower semicontinuous. It is also straight-
forward to see that Λ(0) = logE(1) = 0.

To verify differentiability, let θ be in the interior of the effective domain
of Λ and observe that

lim
δ→0

1
δ

(
E(e(θ+δ)X ) − E(eθX )

)
= lim

δ→0
E
(e(θ+δ)X − eθX

δ

)
, (2.4)

by the linearity of expectations. Now, (e(θ+δ)X −eθX)/δ converges pointwise
to XeθX as δ goes to zero, and is dominated by Z := eθX(eε|X| − 1)/ε, for
all δ ∈ (−ε, ε). (This can be readily verified using the convexity of z �→ ezX

for every X.) By the assumption that θ is in the interior of the effective
domain of Λ, so are θ + ε and θ− ε, for small enough ε. Hence EZ is finite.
Thus, by the dominated convergence theorem,

E
(e(θ+δ)X − eθX

δ

)
→ E(XeθX) as δ → 0. (2.5)

Define M(θ) = E(eθX). It follows from (2.4) and (2.5) that M ′(θ) =
E(XeθX ). Since Λ(θ) = logM(θ), the last claim of the lemma follows from
the chain rule. �

Exercise 2.4
Let X and Y be independent random variables with cumulant generating
functions ΛX and ΛY , and let a be non-zero. Find the cumulant generating
functions of X + Y and aX. �
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Exercise 2.5
Suppose N takes values in N, has cumulant generating ΛN , and is indepen-
dent of X1,X2, . . ., which are i.i.d. with cumulant generating function ΛX .
Find the cumulant generating function of X1 + · · · +XN . �

Exercise 2.6
Calculate the cumulant generating functions of the following.

i. X ∼ Bernoulli(p),
ii. X ∼ Binomial(n, p),
iii. X ∼ Poisson(λ),
iv. X ∼ Exponential(λ),
v. X ∼ Geometric(ρ),
vi. X ∼ Normal(µ, σ2),
vii. X ∼ Cauchy, with density f(x) = π−1(1 + x2)−1, x ∈ R. �

Exercise 2.7
Let X be an R

d-valued random variable. Its cumulant generating function
Λ : R

d → R
∗ is defined by

Λ(θ) = logE
(
exp(θ ·X)

)
,

where θ · x denotes the inner product of θ and x in R
d. Show that Lemma

2.3 still applies, i.e. Λ is convex, Λ(0) = 0, and Λ is differentiable in the
interior of its effective domain, with ∇Λ(θ) = E(Xeθ·X)/eΛ(θ). �

2.5 Convex Duality

Let f be a function on R
d taking values in the extended real numbers, R

∗,
and suppose f isn’t identically infinite.

Definition 2.5 The convex conjugate or Fenchel-Legendre transform of f ,
denoted f∗, is another extended real-valued function on R

d, defined by

f∗(θ) = sup
x∈Rd

(
θ · x− f(x)

)
, (2.6)

where θ · x denotes the inner product of θ and x.

The function f∗ doesn’t take the value −∞ as there is at least one x for
which f(x) is finite. Geometrically, f∗(θ) is the smallest amount by which
the hyperplane y = θ · x has to pushed down (or the negative of the largest
amount it can be pushed up) so as to lie below the graph of the function f .
This is easiest to visualise for d = 1, where y = θx is a straight line with
slope θ.
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Lemma 2.4 The function f∗ is convex and lower semicontinuous. If f is
a convex function, differentiable at x ∈ R

d with ∇f(x) = η, then f∗(η) =
η · x− f(x).

Proof. Recall that a function g : R
d → R

∗ is said to be convex if its epigraph,
{(x, y) ∈ R

d+1 : y ≥ g(x)}, is a convex set. The supremum of convex
functions is convex since its epigraph is the intersection of the epigraphs of
the functions over which the supremum is taken. Since f∗ is the supremum
of the convex (in fact, linear) functions, gx(θ) = θ · x − f(x), it is convex.
Next, observe that each gx is continuous, and so the level sets {θ : gx(θ) ≤ α}
are closed for all α ∈ R. The level sets of f∗ = supx gx are the intersection of
the corresponding level sets of the gx, and hence they are closed. Therefore,
f∗ is lower semicontinuous.

Suppose next that f is convex, and that ∇f(x) = η. Then, for all y ∈ R
d,

f(y) ≥ f(x) + η · (y − x). To see this, note that

f
(
(1 − δ)x+ δy

)− f(x)
δ

≤ f(y) − f(x) for all y ∈ R
d and δ ∈ (0, 1],

and that the left hand side converges to η · (y − x) as δ decreases to zero.
Hence

f∗(η) = sup
y∈Rd

(
η · y − f(y)

) ≤ η · x− f(x).

In fact, equality holds above, as can be seen by taking y = x. This completes
the proof of the lemma. �

A function is said to be closed convex if its epigraph is a closed convex
set. A convex function is closed if it is lower semicontinuous. We have
shown that, for any extended real-valued function f , the convex conjugate
f∗ is closed and convex. The following lemma says that, if f is itself a closed
convex function, then it is the conjugate of f∗, i.e., the conjugacy relation
is a duality. For a proof see Rockafellar [88].

Lemma 2.5 (Duality of convex conjugate) If f is a closed convex func-
tion on R

d, then (f∗)∗ ≡ f .

Exercise 2.8 (Weak duality)
Show that, for all f : R

d → R
∗ (i.e. not just for convex functions), (f∗)∗(x) ≤

f(x) for all x ∈ R
d. �

Exercise 2.9
Compute the convex conjugate of each of the cumulant generating functions
in Exercise 2.6. �
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Exercise 2.10
Compute f∗ and (f∗)∗ in each of the following cases:

i. f(x) = |x|.
ii. f(x) = sin(x).
iii. f(x) = 1/(1 − x2) if |x| < 1 and f(x) = +∞ otherwise.
iv. f(x) = x2 if |x| ≤ 1 and f(x) = +∞ otherwise.
v. f(x) = x2 if |x| < 1 and f(x) = +∞ otherwise. �

We conclude this section with a discussion of some properties of the
convex conjugates of cumulant generating functions. These will be useful
for the proof of Cramér’s theorem in the next section.

Lemma 2.6 Let Λ be the cumulant generating function of a real-valued
random variable X, and let Λ∗ be its convex conjugate.
i. Λ∗ is non-negative, convex and lower semi-continuous.
ii. (Λ∗)∗ = Λ.
If Λ(θ) is finite in a neighbourhood of zero, then
iii. µ = EX is finite and equal to Λ′(0),
iv. Λ∗(µ) = 0,
v. Λ∗ is decreasing on (−∞, µ] and increasing on [µ,∞) (though in neither

case is it necessarily strictly so), and

Λ∗(x) = sup
θ≥0

θx− Λ(θ) for x ≥ µ (2.7)

Λ∗(x) = sup
θ≤0

θx− Λ(θ) for x ≤ µ. (2.8)

Some of the properties apply not only to cumulant generating functions
but also to the sort of generalized cumulant generating function which ap-
pears in the generalized version of Cramér’s theorem, Theorem 2.11.

Lemma 2.7 Let Λ be a convex real-valued function, taking value zero at the
origin, and let Λ∗ be its convex conjugate. Then Λ∗ satisfies (i) of Lemma
2.6. If Λ is differentiable at the origin with µ = Λ′(0) then it also satisfies
(iv) and (v).

Proof of Lemma 2.6 Since Λ is a cumulant generating function, it is convex
(by Lemma 2.3) and Λ(0) = 0. If it is finite in a neighbourhood of the origin
then, by the same lemma it is differentiable at the origin with Λ′(0) = EX,
yielding (iii). So the conditions of Lemma 2.7 are satisfied, and (i), (iv) and
(v) follow.

For (ii), note that Λ is convex and lower-semicontinuous by Lemma 2.3,
hence closed convex, hence is equal to (Λ∗)∗ by Lemma 2.5. �
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Proof of Lemma 2.7 The convexity and lower-semicontinuity of Λ∗ follow
from Lemma 2.4. Its non-negativity follows from the fact that Λ(0) = 0.

If it is differentiable at the origin with Λ′(0) = µ then, by Lemma 2.4,
Λ∗(µ) = 0. Since Λ∗ is convex and non-negative, and Λ∗(µ) = 0, it must be
decreasing on (−∞, µ] and increasing on [µ,∞).

Finally, if x ≥ µ and θ < 0,

θx− Λ(θ) ≤ θµ− Λ(θ) ≤ Λ∗(µ) = 0,

and so it is sufficient to take the supremum over θ ≥ 0 in (2.7). Likewise,
(2.8) follows by considering x ≤ µ and θ > 0. �

Note. There is a close connection between exponentially-tilted random vari-
ables and convex conjugation, a connection which is important in large devi-
ations theory.

Let X be a random variable with cumulant generating function Λ, and prob-
ability law µ. Suppose that θ is in the interior of the effective domain of Λ,
and consider the exponentially tilted probability law µ̃ defined by

dµ̃

dµ
(x) = exp

(
θx − Λ(θ)

)
.

Let X̃ be a random variable drawn from µ̃. The tilted mean is

EX̃ = EXeθX−Λ(θ) = Λ′(θ)

by Lemma 2.3. Cramér’s theorem, which follows, concerns a well-chosen
exponential tilting.

Since θ is in the interior of the effective domain of Λ, Λ is infinitely differen-
tiable at θ. We also know that Λ is convex. Suppose now that it is strictly
convex, i.e. that Λ′′(θ) > 0. One can check that Λ∗ is differentiable at x,
with derivative θ.

So we have dual ways of looking at exponential tilts. If X is tilted to have
mean x then the tilt parameter θ satisfies Λ′(θ) = x; if X is tilted by param-
eter θ then the tilted mean satisfies (Λ∗)′(x) = θ.

2.6 Cramér’s Theorem

At last we are ready to prove Cramér’s theorem. In general, our approach
in this book is to take as given the standard results from large deviation
theory, and to focus on their application to queues. We make an exception
for Cramér’s theorem and present a proof, for two reasons. First, it helps to
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demystify the theory and develop some feel for it by seeing at least one proof
worked out in detail. Second, the techniques used here for deriving upper
and lower bounds are of wider applicability and can be used to derive bounds
fairly easily even in situations where it may be quite hard to establish an
LDP.

Theorem 2.8 Let (Xn, n ∈ N) be a sequence of independent random vari-
ables each distributed like X, and let Sn = X1 + · · · + Xn. Let Λ(θ) =
logEeθX , and let Λ∗ be the convex conjugate of Λ. Suppose that Λ is fi-
nite in a neighbourhood of zero. Then the sequence of random variables
(Sn/n, n ∈ N), satisfies an LDP in R with good convex rate function Λ∗.

Proof. We first establish the large deviations upper bound (2.3) for closed
half-spaces, i.e. sets of the form [x,∞) and (−∞, x]. We then extend it to
all closed sets. We then establish the large deviations lower bound (2.2).
Finally we show that Λ∗ is a good convex rate function.

Upper bound for closed half-spaces. Applying Chernoff’s bound,

P
(Sn

n
∈ [x,∞)

)
≤ e−nθxEeθSn = e−nθx

(
EeθX

)n for all θ ≥ 0.

Taking logarithms, for x ≥ EX,

1
n

logP
(Sn

n
∈ [x,∞)

)
≤ − sup

θ≥0
θx− Λ(θ)

= −Λ∗(x) by (2.7)
= − inf

y∈[x,∞)
Λ∗(y)

where the last equality is by the monotonicity of Λ∗ on [EX,∞), shown in
Lemma 2.6. On the other hand, if x < EX, then trivially

1
n

logP
(Sn

n
∈ [x,∞)

)
≤ 0 = −Λ∗(EX) = − inf

y∈[x,∞)
Λ∗(y).

The proof of the LD upper bound for sets of the form (−∞, x] follows by
considering the random variable −X.

LD upper bound for general closed sets. Let F be an arbitrary closed
set. If F contains EX, then the LD upper bound holds trivially since

inf
x∈F

Λ∗(x) = Λ∗(EX) = 0.
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Otherwise, F can be written as the union F = F1 ∪F2 where F1 and F2 are
closed and

F1 ⊆ [EX,∞) and F2 ⊆ (−∞, EX).

Suppose F1 is non-empty, and let x be the infimum of F1. By closure, x ∈ F1.
Now,

1
n

log P
(Sn

n
∈ F1

)
≤ 1
n

log P
(Sn

n
∈ [x,∞)

)

≤ −Λ∗(x) by the upper bound for closed half-spaces
= − inf

y∈F1

Λ∗(y)

where the last equality is by monotonicity of Λ∗ on [EX,∞), in which F1
is contained. Similarly, by considering the LD upper bound for (−∞, x],
where x is the supremum of F2, we obtain

1
n

logP
(Sn

n
∈ F2

)
≤ − inf

y∈F2

Λ∗(y).

In other words, the LD upper bound holds for both of F1 and F2. Hence,
by the principle of the largest term, it holds for F = F1 ∪ F2.

LD lower bound. Let G be any open set, and let x ∈ G. We will show
that

lim inf
n→∞

1
n

log P
(Sn

n
∈ G

)
≥ −Λ∗(x). (2.9)

Taking the supremum over x ∈ G will then yield the large deviations lower
bound. We will proceed by calculating the value of Λ∗(x). We will do this
in two cases: first the case when P (X < x) = 0 or P (X > x) = 0, second
the case when neither holds.

Suppose that P (X < x) = 0. We can calculate Λ∗ explicitly as follows:

Λ∗(x) = sup
θ∈R

θx− Λ(θ)

= sup
θ∈R

logEe−θ(X−x)

= lim
θ→−∞

logEe−θ(X−x) since X ≥ x almost surely

= logE1X=x by monotone convergence
= logP (X = x).



Large Deviations in Euclidean Spaces 35

If P (X = x) = 0, then the lower bound in (2.9) is trivial. If P (X = x) =
p > 0 then

1
n

logP
(Sn

n
∈ (x− δ, x+ δ)

)
≥ 1
n

log P
(
X1 = · · · = Xn = x)

=
1
n

log pn = log p

and so (2.9) is also satisfied. If P (X > x) = 0, a similar argument shows
that the large deviations lower bound holds.

Assume now that P (X > x) > 0 and P (X < x) > 0. Again, we
investigate the value of the lower bound:

Λ∗(x) = sup
θ∈R

θx− Λ(θ)

= − inf
θ∈R

Λ(θ) − θx = − inf
θ∈R

logEeθ(X−x).

Now, the function g(θ) = Λ(θ) − θx satisfies g(θ) → ∞ as |θ| → ∞, by the
assumption that there is probability mass both above and below x; and it
inherits lower-semicontinuity from Λ. Any set of the form {g(θ) ≤ α} is thus
bounded as well as closed, hence compact, and so g attains its infimum, say

Λ∗(x) = θ̂x− Λ(θ̂).

We will use θ̂ to estimate the probability in question.
We will do this using a tilted distribution. Let µ be the measure of X,

and define a tilted measure µ̃ by

dµ̃

dµ
(x) = eθ̂x−Λ(θ̂).

Let X̃ be a random variable drawn from µ̃. Observe that

EX̃ =
∫
x µ̃(dx) =

∫
xeθ̂x−Λ(θ̂) µ(dx)

= EXeθ̂X−Λ(θ̂) = Λ′(θ̂)

where the last equality comes from Lemma 2.3, making the assumption that
Λ is differentiable at θ̂. (We will leave the case where it is not differentiable
to later.) Note also that, by optimality of θ̂ in Λ∗(x), Λ′(θ̂) = x. Thus
EX̃ = x. (This tilted random variables captures the idea of being close in
distribution to X, conditional on having a value close to x.)
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We can now estimate the probability of interest, using the fact that (since
G is open), the set (x − δ, x + δ) is contained in G for sufficiently small δ.
Let S̃n be the sum of n i.i.d. copies of X̃ . Then

P
(∣∣∣
Sn

n
− x

∣
∣∣ < δ

)

=
∫
· · ·
∫

|x1+···+xn−nx|<nδ
µ(dx1) · · · µ(dxn)

=
∫
· · ·
∫

|x1+···+xn−nx|<nδ
e−nθ̂(x1+···+xn)+nΛ(θ̂)µ̃(dx1) · · · µ̃(dxn)

= E
(
e−nθ̂S̃n+nΛ(θ̂)1|S̃n/n−x|<δ

)

≥ E
(
e−n(θ̂x−Λ(θ̂)+|θ̂|δ)1|S̃n/n−x|<δ

)

= e−n(θ̂x−Λ(θ̂)+|θ̂|δ)P
(∣∣
∣
S̃n

n
− x

∣∣
∣ < δ

)
.

By the weak law of large numbers, and the fact that our tilted distribution
has mean x, the term P (·) tends to 1 as n → ∞. Taking logarithms and
then lim inf,

lim inf
n→∞

1
n

logP
(Sn

n
∈ G

)
≥ lim inf

n→∞
1
n

log P
(∣∣∣
Sn

n
− x

∣
∣∣ < δ

)

≥ −(θ̂x− Λ(θ̂) + |θ̂|δ).

But δ was arbitrarily small, so

lim inf
n→∞

1
n

logP
(Sn

n
∈ G

)
≥ −Λ∗(x).

The case when the infimum of Λ is attained at a boundary point of its
effective domain involves some additional technicalities. It can be handled
by considering the truncated random variables X ∧ n, the effective domain
of whose cumulant generating function is the entire real line, and letting n
go to infinity; see Dembo and Zeitouni [25] for details.

Goodness and convexity of rate function. It only remains to verify that
Λ∗ is a good convex rate function. We have already established that it is a
convex rate function in Lemma 2.6. Choosing any θ > 0 such that Λ(θ) <∞
we see that Λ∗(x) ≥ θx− Λ(θ) and so Λ∗(x) → ∞ as x→ ∞. Similarly, by
choosing a θ < 0 for which Λ is finite, Λ∗(x) → ∞ as x → −∞. Therefore
any level set {x : Λ∗(x) ≤ α} is bounded; by lower-semicontinuity it is
closed; hence it is compact. So Λ∗ is good. �
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Some remarks on the proof.
i. It is clear from the proof that the upper bound

1
n

logP
(Sn

n
∈ F

)
≤ − inf

x∈F
Λ∗(x)

holds for all closed intervals F ⊆ R and all n, not just on a logarithmic scale
in the limit as n→ ∞. This follows from the corresponding upper bound for
half-spaces, which is known as Chernoff’s bound. Since Chernoff’s bound
also holds for half-spaces in R

d, it holds for all convex subsets of R
d, as these

are the intersection of half-spaces.
ii. The lower bound is local (the bound for open balls implies the bound

for all open sets) and its proof uses a change of measure argument. Both
these ideas are applicable in more abstract settings, not just in R. They
often yield easy lower bounds, even if these aren’t tight or can’t easily be
turned into a full large deviation principle.

iii. The measure µ̃ is called an exponential tilting of the measure µ, with
tilt parameter θ̂. In order to derive a bound on the probability that the
sample mean lies in (x− δ, x+ δ), we seek a tilt parameter θ̂ that makes the
mean of the tilted distribution equal to x. If θ̂ lies at the boundary of the
effective domain of Λ, then the tilted distribution may not have a mean, so
this method is not applicable. The tilted measure µ̃ is not just a convenient
tool for a proof. It also tells us the most likely way by which the mean of
a large sample turns out to be close to x. More precisely, conditional on
the sample mean Sn/n being in (x− δ, x + δ), the empirical distribution of
X1, . . . ,Xn approaches µ̃ as n→ ∞.

Cramér’s theorem is applicable to random variables for which the origin may
not be in the interior of the effective domain of Λ, with the modification
that the rate function need not be good. The theorem also holds for R

d-
valued random variables, with the modification that Λ is defined on R

d as
Λ(θ) = logE(eθ·X). Proofs of these results can be found in the book of
Dembo and Zeitouni [25].

The following exercise will test whether you have understood the proof
of Cramér’s theorem. The result is also handy in understanding Chapter 6
on large-buffer scalings.

Exercise 2.11
Let (XN/N, N ∈ N) satisfy a large deviations principle in R with convex
rate function I. Let α be a positive real number. Show that (X�αN/N, N ∈N)
satisfies a large deviations principle in R with rate function J(x) = αI(x/α).



38 Chapter 2

Hint: prove the upper bound for closed half-spaces, then extend to general
closed sets; prove the lower bound for small open balls, then extend to
general open sets. �

2.7 Sanov’s Theorem for Finite Alphabets

We shall now use Cramér’s theorem in R
d to derive an LDP for empirical

distributions.
Let (Xn, n ∈ N) be an i.i.d. sequence of random variables, taking values

in a finite set A consisting of d elements. Let µ denote the probability law
of X1. We assume without loss of generality that µ(a) = P (X1 = a) > 0
for all a ∈ A, by restricting A to be the set of x for which this is true.
The empirical distribution Ln of X1, . . . ,Xn is a probability measure on A
defined by

Ln(a) =
1
n

n∑

i=1

1[Xi = a], a ∈ A.

Let M1(A) denote the space of probability measures on A. Observe that
Ln is essentially the sample mean of n i.i.d. random variables in R

d, and so
Cramér’s theorem can tell us about it, as follows. (The following result is a
simple version of Sanov’s theorem. For a more general version, see Chapter
4.)

Theorem 2.9 The sequence of random variables (Ln, n ∈ N), satisfies an
LDP in R

d, with the good convex rate function

I(ν) =

{
H(ν|µ) if ν ∈M1(A),
+∞ otherwise

where H(ν|µ), the Kullback-Leibler divergence of ν with respect to µ, is given
by

H(ν|µ) =
∑

a∈A

ν(a) log
ν(a)
µ(a)

with the convention that 0 log 0 = 0.

(We have stated the LDP for Ln in R
d as that is what we get by applying

Cramér’s theorem. It makes more sense to think of Ln as lying in M1(A),
as we will note in Lemma 2.10.)
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Proof. Let A = {a1, . . . , ad}. Observe that Ln is the sample mean of
Z1, . . . , Zn, where Zi = (1[Xi = a1], . . . , 1[Xi = ad]) is an R

d-valued ran-
dom variable. Moreover, (Zi, i ∈ N) are i.i.d., and the cumulant generating
function of Z1 is given, for θ ∈ R

d, by

Λ(θ) = logEeθ·Z1 = log
d∑

i=1

µ(ai)eθi , (2.10)

which is finite for all θ. Hence, by Cramér’s theorem, Ln satisfies the LDP
in R

d with the good convex rate function Λ∗, which is the convex conjugate
of Λ.

The rest of the proof is just finding an explicit form of Λ∗. We will first
show that

Λ∗(ν) =
∑

a∈A

ν(a) log
ν(a)
µ(a)

for ν ∈M1(A) with ν(a) > 0 for all a ∈ A.

(2.11)
From (2.10), Λ is differentiable, with gradient

(∇Λ(θ)
)
i
= µ(ai)eθi−Λ(θ).

(Thus ∇Λ(θ) is a probability distribution on A, and in fact corresponds to
an exponential tilting of µ.) Pick ν ∈M1(A) and suppose first that ν(a) > 0
for all a ∈ A. We can find θ ∈ R

d such that

ν = ∇Λ(θ) :

just take θi = log ν(ai)/µ(ai). Then, by Lemma 2.4,

Λ∗(ν) = θ · ν − Λ(θ) =
∑

a∈A

ν(a) log
ν(a)
µ(a)

.

Next we deal with the case where ν(a) = 0 for some a ∈ A. Let νk → ν
with νk(a) > 0 for all a ∈ A. By lower-semicontinuity of Λ∗,

Λ∗(ν) ≤ lim inf
k→∞

Λ∗(νk) =
∑

a∈A

ν(a)
ν(a)
µ(a)

(using the convention that 0 log 0 = 0). For the reverse inequality, choose
θk such that θk

i = log ν(ai)/µ(ai) if ν(ai) > 0 and θk
i = −k otherwise. Then

Λ∗(ν) = sup
θ
θ · ν − Λ(θ) ≥ lim sup

k→∞
θk · ν − Λ(θk)

=
∑

a∈A

ν(a)
ν(a)
µ(a)

.



40 Chapter 2

Next, suppose ν �∈ M1(A) and that ν(ai) < 0 for some i. Choose θk

by taking θk
i = −k and θj = 0 for j �= i. Then it is easy to check that

Λ(θk) ≤ 0, and hence deduce

Λ∗(ν) ≥ θk · ν − Λ(θk) ≥ −kν(ai)

which → ∞ as k → ∞.
Finally, suppose ν �∈ M1(A) and that ν(a) ≥ 0 for all a ∈ A. Then∑

a ν(a) �= 1. Choose θ(k,c) by

θ
(k,c)
i =

{
c+ log ν(a)/µ(a) if ν(a) > 0
−k if ν(a) = 0

for some constant k and c, to be specified. Then

Λ∗(ν) ≥ θ(k,c) · ν − Λ(θ(k,c))

=
∑

a∈A

ν(a) log
ν(a)
µ(a)

+ cν(A) − log
(
ecν(A) + e−kν

({a : ν(a) = 0})
)
.

If ν(A) = 0 then taking k → ∞ we see that Λ∗(ν) = ∞. If ν(A) > 1 then
taking c→ ∞ while keeping k fixed we see that Λ∗(ν) = ∞. If 0 < ν(A) < 1
then letting n = −2c and taking c→ ∞ we see that Λ∗(ν) = ∞. �

This is an LDP for Ln in R
d, because that is what we get by applying

Cramér’s theorem. Since the Ln live in M1(A), i.e., P
(
Ln ∈ M1(A)

)
= 1

for all n, it follows by the large deviation lower bound that the infimum of
I on the open set R

d \M1(A) must be infinite, as verified by the theorem.
It is natural to expect that (Ln, n ∈ N) also satisfies the LDP in M1(A),
with the same rate function H(·|ν). This is indeed the case.

Lemma 2.10 The sequence of random variables (Ln, n ∈ N), satisfies the
LDP on M1(A) with rate function H(·|µ), which is continuous on M1(A)
and strictly convex.

Sketch proof. This is because M1(A) is a closed subset of R
d and the rate

function I(ν) is infinite outside M1(A). This is simple to prove, by writing
out the large deviations bounds; alternatively see the abstract result Lemma
4.9. It is straightforward to verify continuity and strict convexity. �

Example 2.12
Let A be a finite subset of R, and as usual let Sn = X1 + · · ·+Xn, where the
Xi are i.i.d. random variables taking values in A. What is the most likely
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value of Ln conditional on Sn/n = x̄? In other words, what is the most
likely way for Sn ≈ nx̄ to happen?

Fix δ > 0 and let M denote the set of all probability distributions on
A whose mean is in [x̄− δ, x̄+ δ]. Since H(·|µ) is continuous on M1(A), its
infimum on the interior and closure of M are the same, and so

lim
n→∞

1
n

log P (Ln ∈M) = − inf
λ∈M

H(λ|µ).

Now M is a closed convex set, so by convexity of H(·|µ) there is a unique
ν ∈ M at which H(·|µ) is minimised. Let B(ν, ε) denote the open ball in
M1(A) with centre ν and radius ε. Its complement B(ν, ε)c is a closed set.
Let the infimum of H(·|µ) on M ∩ B(ν, ε)c be attained at ν ′. By strict
convexity, H(ν ′|µ) > H(ν|µ), and using the large deviation upper bound,

lim sup
n→∞

1
n

logP (Ln /∈ B(ν, ε)|Ln ∈M)

= lim sup
n→∞

1
n

log P (Ln ∈M ∩B(ν, ε)c) − lim
n→∞

1
n

log P (Ln ∈M)

≤ −(H(ν ′|µ) −H(ν|µ)
)
< 0.

Thus, conditional on Ln ∈ M (i.e. on |(Sn/n) − x| ≤ δ), the probability
that Ln is outside an arbitrarily small neighbourhood of ν decays to zero
at some strictly positive exponential rate. In other words, if the sample
mean is close to x, then the empirical distribution is close to the probability
measure ν that has minimum relative entropy with respect to µ among all
distributions whose mean is x. �

Exercise 2.13
Suppose we roll a fair die ten thousand times, and observe that the mean
value of the outcome is 3.8. How many sixes did we roll? �

Exercise 2.14
Let µ be a probability measure on a finite subset A of R. Show that the
distribution ν that minimizes H(ν|µ) subject to the mean,

∑
a∈A aν(a),

being equal to ā corresponds to an exponential tilting of µ. �

2.8 A Generalisation of Cramér’s Theorem

Cramér’s theorem generalizes far beyond the realm of sums of independent
identically distributed random variables. In Theorem 2.8, Sn was the sum
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of n independent identically distributed random variables, with common
cumulant generating function Λ(θ), and so

Λ(θ) =
1
n

logEeθSn .

In the standard generalisation, Sn is any sequence of random variables, and
we consider

Λ(θ) = lim
n→∞

1
n

logEeθSn . (2.12)

If this limit exists and is well-behaved, then the statement of the theorem
still holds. We will use this result in Chapter 3, to prove an LDP for a queue
with a weakly dependent input flow. To state the result properly, we need
a definition.

Definition 2.6 (Essential smoothness) Let f be a function on R
d tak-

ing values in the extended reals R
∗. The function f is essentially smooth

if the interior of its effective domain is non-empty, f is differentiable in
the interior of its effective domain, and f is steep, namely, for any se-
quence θn which converges to a boundary point of the effective domain of f ,
limn→∞ |∇f(θn)| = +∞.

Theorem 2.11 (Generalized Cramér’s Theorem) If the limit (2.12) ex-
ists for each θ ∈ R

d as an extended real number, and if Λ(θ) is finite in a
neighbourhood of θ = 0 and essentially smooth and lower-semicontinuous,
then the sequence of random variables Sn/n satisfies the LDP in R

d with
good convex rate function Λ∗.

Some remarks.
i. This particular generalization of Cramér’s theorem is presented in the

book of Dembo and Zeitouni [25], and referred to as the Gärtner-Ellis the-
orem.

ii. The existence of a non-trivial limit Λ(θ) is essentially a mixing condi-
tion, saying that autocorrelations decay sufficiently fast.

iii. The essential smoothness condition is stronger than necessary. For
example, in one dimension, a sufficient condition is that the effective domain
of Λ∗ be contained in Λ′(R).

iv. Λ∗ is non-negative and, by Lemma 2.4, lower-semicontinuous; hence it
is a rate function. By the same lemma, it is also convex.
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v. If the limit (2.12) exists then Λ, being the pointwise limit of convex
functions, is itself convex. However, although it is the pointwise limit of
functions which are lower-semicontinuous and differentiable in the interior
of their effective domain, it does not necessarily satisfy these two conditions,
and they must be part of the assumption of the theorem.

We illustrate the theorem with a couple of examples.

Example 2.15 (Additive functionals of Markov chains)
Let (ξn, n ∈ N) be an irreducible Markov chain, taking values in a finite
set E, with transition matrix P and invariant distribution π. Let f be a
function from E to R and define Xn = f(ξn), Sn = X1 + . . . + Xn. We
will show that the sequence Sn/n satisfies an LDP and compute the rate
function. For i ∈ E, define vn(i) = E[eθSn |ξ1 = i]. We have

vn(i) = eθf(i)E[eθ(X2+...+Xn)|ξ1 = i]

= eθf(i)
∑

j∈E

pijE[eθ(X2+...+Xn)|ξ2 = j].

Let Q(θ) denote the E × E matrix whose ijth entry is eθf(i)pij, and let
vn be the column vector whose ith entry is vn(i). We can now rewrite the
equation above as vn = Q(θ)vn−1. Hence, vn = Q(θ)nv0, where v0 is the
|E|-dimensional vector of ones. Let ρ(θ) denote the spectral radius of the
non-negative irreducible matrix Q(θ). By the Perron-Frobenius theorem,
ρ(θ)−nv(n) converges to (a scaled version) of the eigenvector of Q(θ) corre-
sponding to the eigenvalue ρ(θ). Since this eigenvector has strictly positive
entries,

lim
n→∞

1
n

logE[eθSn ] = ρ(θ),

for any initial condition ξ1. Hence, Λ(θ) = log ρ(θ), and Λ is finite for all
θ ∈ R. Thus, steepness is not an issue and, in order to apply Theorem 2.11,
we need only to verify that Λ is differentiable everywhere. This follows from
standard results in linear algebra and the fact that ρ(θ) is an isolated eigen-
value of Q(θ), which is a consequence of the Perron-Frobenius theorem. �

Example 2.16 (Gaussian autoregressive processes)
Let a1, . . . , ar be given constants, and consider the recursion

Xt =
r∑

k=1

akXt−k + εt for t ∈ Z,
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where the εt are independent standard normal random variables. If all roots
of the characteristic equation, 1 −∑r

k=1 akz
−k = 0, lie strictly within the

unit circle in the complex plane, then the recursion is stable and has a
unique stationary solution. The solution (Xt, t ∈ Z) is a stationary zero
mean Gaussian process whose covariance structure is most easily described
through its Fourier transform, which is called the power spectral density of
the process. The power spectrum is defined as

SX(ω) =
∞∑

t=−∞
Cov(X0,Xt)eiωt for ω ∈ R.

As the Xt have mean zero, Cov(X0,Xt) = E(X0Xt). Let A(ω) = 1 −∑r
k=1 ake

iωk. It can be shown that SX(ω) = |A(ω)|2 = A(ω)A(−ω).
Let Sn = X1 + . . . +Xn. Define the process

Rm =
m+n∑

t=m+1

Xt for m ∈ Z,

so that Sn = R0. Now, the sequence Rm,m ∈ Z is obtained by the con-
volution of the sequence Xm and the sequence hm defined as hm = 1 for
m ∈ {−n, . . . ,−1}, and hm = 0 otherwise. Hence, for fixed n, Rm is a
stationary, zero mean Gaussian process with power spectral density

SR(ω) = SX(ω)
sin2(nω/2)
sin2(ω/2)

.

By Parseval’s theorem, the variance of Sn = R0 is given by

Var(Sn) =
1
2π

∫ π

−π
SR(ω)dω

=
1
2π

∫ π

−π
SX(ω)

sin2(nω/2)
sin2(ω/2)

dω

= nSX(0) +
∫ π

−π

A(ω)A(−ω) −A(0)2

2 sin2(ω/2)

(
1 − cos(nω)

)
dω.

We have used the fact that
∫ π
−π sin2(nω/2)/ sin2(ω/2)dω = 2πn to obtain

the last equality above. Now, the function

f(ω) =

{(
A(ω)A(−ω) −A(0)2

)
/
(
2 sin2(ω/2)

)
if ω �= 0

2A′(0)2 if ω = 0
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is continuous, hence bounded, on the compact interval [−π, π]. Conse-
quently,

∫ π
−π f(ω)(1−cos(nω))dω is bounded in absolute value by a constant

that does not depend on n. Therefore

lim
n→∞

1
n

Var(Sn) = SX(0) = A(0)2. (2.13)

Since Sn is Gaussian with zero mean, we also have

logE(eθSn) = 1
2θ

2 Var(Sn).

Hence, by (2.13),

lim
n→∞

1
n

logE(eθSn) = 1
2θ

2A(0)2.

This is a quadratic function of θ, so it is finite and differentiable on all
of R. Hence, Sn/n satisfies an LDP by Theorem 2.11, with rate function
I(x) = 1

2x
2/A(0)2. �

Observe that different Gaussian processes having the same power spec-
tral density at zero have the same limiting cumulant generating function
and the same rate function.

The essential property we required of the Gaussian process above was
that its power spectral density be finite and differentiable on [−π, π]. This
basically requires that the correlations decay sufficiently fast. In Chapter 8,
we shall encounter examples of Gaussian processes for which this isn’t true,
and the spectrum has a singularity at zero. It is still possibly to use large
deviation theory, but it requires a different scaling in n.

Exercise 2.17
Let (Yn, n ∈ N) be an irreducible Markov chain on a finite state space E,
and suppose that, conditional on Yn = i, Xn is Poisson with mean λi, where
λi, i ∈ E, are given constants. For Sn = X1 + . . . + Xn, show that Sn/n
satisfies an LDP in R, and compute the rate function. �



Chapter 3

More on the Single Server
Queue

In this chapter we will take further the style of argument of the first chap-
ter, for example to queues with long-range dependent input, and give more
examples. We will need some of the more advanced large deviations theory
of Chapter 2 to prove these results.

Note. It is easy to get lost in the details of the calculations: this is because
our present style of argument is crude and direct. In the following chapters
we will come to a more elegant approach, using a tool from large deviations
called the contraction principle. That approach is however more abstract,
and it is good to see how far we can go with direct methods.

3.1 Queues with Correlated Inputs

This section generalizes the results in Section 1.3. Recall the setup: consider
a queue with constant service rate C and arrival process (At, t ∈ Z), At

being the amount of work arriving at time t. The queue size at time 0 is

Q = sup
t≥0

St −Ct

where St = A0 + · · · + A−t+1 and S0 = 0. In that section we assumed
that the At were independent and identically distributed. Now, we shall
weaken this assumption, using the generalized version of Cramér’s theorem,
Theorem 2.11.

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 47–55, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Theorem 3.1 Let (At, t ∈ Z) be a stationary random process, with EA0 <
C. Let

Λt(θ) = logEeθSt .

Suppose that the limit

Λ(θ) = lim
t→∞

1
t
Λt(θ)

exists in R
∗ for each θ ∈ R, and that it is essentially smooth, and finite

in a neighbourhood of θ = 0; and that Λt(θ) is finite for all t whenever
Λ(θ) < θC. Then for q > 0,

lim
l→∞

1
l

log P (Q > lq) = − inf
t∈R+

tΛ∗(C + q/t).

Some remarks.
i. This theorem says that St − Ct is effectively a simple random walk

with negative drift, in that

P (sup
t
St − Ct > q1 + q2) ≈ P (sup

t
St − Ct > q1)P (sup

t
St − Ct > q2)

for large q1 and q2. In other words, the (weak) dependence of the At is
invisible at the macroscopic scale (though it does contribute to the value of
I(q)).

ii. In stating the theorem, we have implied that Λ(θ) < θC for some
θ > 0. This is a consequence of Lemma 3.2 and the stability assumption
that EA0 < C.

iii. This theorem has appeared in the literature in various more or less
equivalent forms. See for example Báartfai [5], Glynn and Whitt [48] and
Chang [12].

Proof. The proof is very much like that of Theorem 1.4. The lower bound
is proved in exactly the same way as Lemma 1.6: simply replace the appeal
to Cramér’s theorem with an appeal to the generalized version. The upper
bound (the analogue of Lemma 1.5) and the result about rate functions (the
analogue of Lemma 1.7) both need a little more work. They are proved in
lemmas 3.3 and 3.4. �

Lemma 3.2 Under the assumptions of Theorem 3.1, Λ′(0) = EA0.

Lemma 3.3 Under the assumptions of Theorem 3.1,

lim sup
l→∞

1
l

logP (Q > lq) ≤ −q sup{θ : Λ(θ) < θC}.
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Lemma 3.4 Under the assumptions of Theorem 3.1,

I(q) = inf
t∈R+

tΛ∗(C + q/t) (3.1)

= inf
t∈R+

sup
θ≥0

θ(q + Ct) − tΛ(θ) (3.2)

= q sup{θ > 0 : Λ(θ) < θC}. (3.3)

Proof of Lemma 3.2 Since Λ(·) is finite in a neighbourhood of the origin, so
are all t−1Λt(·) for t sufficiently large. Hence by Lemma 2.3 they are convex,
and differentiable in a neighbourhood of the origin with t−1Λ′

t(0) = µ where
µ = EA0. Now by Lemma 1.12 the pointwise limit Λ(·) is convex; and, since
it is assumed to be differentiable at the origin, Λ′(0) = µ. �

Proof of Lemma 3.3 By expanding the definition of Q and using Chernoff’s
bound,

P (Q > lq) ≤ e−θlq
∑

t≥0

eΛt(θ)−θCt (3.4)

for any θ > 0. Pick some θ > 0 such that Λ(θ) < θC. (There exists such a
θ—since by Lemma 3.2 Λ′(0) = µ and by the stability assumption µ < C.)
Choose ε > 0 such that Λ(θ) < θ(C − 2ε). Since Λt(θ)/t → Λ(θ), there
exists t0 such that for t > t0

Λt(θ) < t
(
Λ(θ) + εθ

)

and hence
(3.4) < e−θlq

(∑

t≤t0

eΛt(θ)−θCt +
∑

t>t0

e−εθt
)
.

We have assumed that Λt(θ) is finite, so the first sum is finite; the second
sum is clearly finite. Hence

lim sup
l→∞

1
l

logP (Q > lq) ≤ −θq.

Take the infimum over θ > 0 such that Λ(θ) < θC to obtain the result. �

Proof of Lemma 3.4 The proof that (3.1) = (3.2) is similar to that in Lemma
1.7. The only part that needs to change is the appeal to Lemma 2.6, con-
cerning properties of Λ∗ when Λ is cumulant generating function. It should
be replaced by an appeal to Lemma 2.7, which concerns the properties of
Λ∗ when Λ is merely akin to a cumulant generating function. That lemma
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requires Λ to be convex, to take value 0 at the origin, and to be differentiable
at the origin with gradient less than C. The first follow from the fact that
Λ is the limit of scaled cumulant generating functions, the last follows from
Lemma 3.2.

The proof that (3.2) ≥ (3.3) is exactly the same as in Lemma 1.7. It
remains to show that (3.2) ≤ (3.3). Let θ∗ = sup{θ > 0 : Λ(θ) < θC}. If
θ∗ = ∞, there is nothing to prove. If θ∗ is in the interior of the effective
domain of Λ, the proof of Lemma 1.7 still holds. (The proof uses the fact
that Λ(θ) is convex, which is true since it is the limit of convex functions;
and also the fact that Λ(θ) is differentiable at θ∗, which is true because θ∗

is in the interior of the effective domain.)
It only remains to consider the case where θ∗ is on the boundary of the

effective domain. Let θn ↑ θ∗, with θn in (0, θ∗). Considering the tangents
at θn we see that

Λ(θ) ≥ Λ(θn) + (θ − θn)Λ′(θn).

Using the same argument as in Lemma 1.7,

(3.2) ≤ qθn
Λ′(θn) − Λ(θn)/θn

Λ′(θn) − C
.

As n → ∞, θn → θ∗. Also, by convexity of Λ(·), Λ(θn) ≥ θnΛ′(0) and so
Λ(θn)/θn is bounded below. Moreover, using the convexity of Λ once more,

Λ(θn) ≤
(
1 − θn

θ∗
)
Λ(0) +

θn

θ∗
Λ(θ∗) ≤ θnC

and so Λ(θn)/θn is bounded above. Finally, by the assumption of steepness,
Λ′(θn) → ∞. Thus, taking the limit as n→ ∞ we get

(3.2) ≤ θ∗q = (3.3)

as required. �

Example 3.1
Let (At, t ∈ Z) be a stationary autoregressive process of degree 1. That is,
At = µ+Xt where

Xt = aXt−1 +
√

1 − a2σεt

and |a| < 1 and the εt are i.i.d. standard normal random variables (i.e. with
mean 0 and variance 1). With these parameters, EAt = µ and VarAt = σ2.
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Note. We have given a recursion without specifying the initial condition. It
is clear what is meant; to be precise we could let Xt =

√
1 − a2

∑
i≥0 a

tσεt−i.
This satisfies the recursion and is stationary. However, in the calculations
that follow, we will only be concerned with X(−t, 0], which by stationar-
ity has the same distribution as X(0, t], so we could just as well set X0 ∼
Normal(0, σ2) and define X |(0,t] from this.

What is Λ(θ)? Clearly ESt = µt, and Cov(A0, At) = atσ2, giving

VarSt = σ2
∑

1≤i,j≤t

a|i−j| =
σ2

(1 − a)2
(
t(1 − a2) − 2a(1 − at)

)
.

And since St is normal,

Λt(θ) = θµt+
1
2
σ2

t

where σ2
t = VarSt. Dividing by t and taking the limit,

Λ(θ) = θµ+
θ2

2

(1 + a

1 − a

)
.

The rate function for queue size is

I(q) = q sup{θ > 0 : Λ(θ) < θC}
= 2q(µ− C)

1 − a

1 + a
.

Note that when a→ 1 this becomes very small, meaning that the probability
of large queues is high; and when a→ −1 this becomes very large, meaning
that the probability of large queues is small. �

The following is a useful trick for computing rate functions for on/off
sources. It follows from the time-change formula of Russell [89].

Exercise 3.2
Let (Rk, k ∈ N) and (Tk, k ∈ N), be a pair of i.i.d. sequences taking values
in N. Define another sequence (Xn, n ∈ N) by setting Xn = 1 for n ≤ R1,
Xn = 0 for R1 < n ≤ R1 + T1, Xn = 1 for R1 + T1 < n ≤ R1 + T1 +R2, and
so on. As before, set Sn = X1 + · · · +Xn.

Let the cumulant moment generating functions be ΛR(θ) = logEeθR1

and ΛT (θ) = logEeθT1 . If these are both finite in a neighbourhood of the
origin, it can be shown that Sn/n satisfies an LDP with rate function

I(x) = inf
a>0

aΛ∗
R

(x
a

)
+ aΛ∗

T

(1 − x

a

)
. (3.5)
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Give a heuristic explanation of why this is the right rate function.
Use (3.5) to find the rate function associated with Sn/n when Xn is a

Markov chain on {0, h} (cf. Exercise 1.9.) Use this to calculate the rate
function for queue size.

See Exercise 4.10 for an extension of this example. �

3.2 Queues with Many Sources

and Power-Law Source Scalings

Recall the setup of Section 1.4: let QN be the queue size in a queue serving
N sources at constant service rate NC. Let A(i)

t be the amount of work
arriving from source i at time t. Assume that for each i, (A(i)

t , t ∈ Z)
is a stationary sequence of random variables, and that these sequences are
independent of each other, and identically distributed. Let S1

t be the amount
of work produced by a typical source over time period t.

The theorem in Section 1.4 already allowed the (A(i)
t , t ∈ Z) to have

correlations in time. (That was why we needed our tail-controlling assump-
tion.)

One way to extend the theorem would be to use the generalized version
of Cramér’s theorem, to account for queues where the many sources have
some correlations between them. We will not go down that route. It will be
taken care of automatically when we come to the more abstract formulation
in Chapter 7.

Instead, here is a different sort of generalization. Our tail-controlling
assumption was a restriction on the correlation structure of a single source:
if Λt(θ) = logEeθS1

t , we assumed that the limit

Λ(θ) = lim
t→∞

1
t
Λt(θ)

exists, and is finite and differentiable in a neighbourhood of the origin. This
does not allow for sources with certain interesting scalings, notably frac-
tional Brownian motion described below in Example 3.3. For such flows we
need to introduce a scaling function vt, described in the following theorem,
which depends on how correlations decay in time. For the sources we have
described so far vt = t; for sources like fractional Brownian motion, vt is a
power of t, and so we say they have power-law scalings (or that they exhibit
long-range dependence).
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Theorem 3.5 Suppose that for some sequence (vt, t ∈ N) taking values in
R

+, with vt/ log t→ ∞, the limit

Λ(θ) = lim
t→∞

Λt(θvt/t)
vt

exists and is finite and differentiable in a neighbourhood of the origin. Then
the conclusion of Theorem 1.8 still holds, i.e. if ES1

1 < C then

−I(q+) ≤ lim inf
N→∞

1
N

log P (QN > Nq)

≤ lim sup
N→∞

1
N

log P (QN > Nq) ≤ −I(q)

where
I(q) = inf

t∈N

Λ∗
t (q + Ct).

Various extensions of this result have been proved. Likhanov and Mazum-
dar [59] prove a tighter bound under weaker conditions. Botvich and Duffield
[10] prove it in continuous time, and Mandjes and Kim [69] prove it in con-
tinuous time under weaker conditions.

Proof. The only part of the proof that needs to be changed is the proof of
Lemma 1.11. Choose θ as in that lemma. Let θt = θvt/t, and use θt in
applying Chernoff’s bound. Thus

∑

t>t0

P (SN
t /N > q + Ct) ≤

∑

t>t0

e−N
(
θt(q+Ct)−Λt(θt)

)

and using Λt(θvt/t)/vt → Λ(θ) in the same way as before,

≤
∑

t>t0

e−Nθδvt for some δ > 0.

Since vt/ log t → ∞, given K we can choose a t0 such that for t > t0,
vt > K log t. This makes

lim sup
N→∞

1
N

log
∑

t>t0

e−Nθδvt < lim sup
N→∞

1
N

log
∑

t>t0

t−KNθδ

= Kθδ lim sup
M→∞

1
M

log
∑

t>t0

t−M . (3.6)
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To bound the sum, note that (for M ≥ 2)

∑

t>t0

t−M =
1

(t0 + 1)M

(

1 +
(t0 + 1
t0 + 2

)M
+
(t0 + 1
t0 + 2

)M
+ · · ·

)

≤ 1
(t0 + 1)M

(

1 +
(t0 + 1
t0 + 2

)2
+
(t0 + 1
t0 + 3

)2
+ · · ·

)

≤ π2/6
(t0 + 1)M−2

so that

lim sup
N→∞

1
N

log
∑

t>t0

t−αM ≤ −α log(t0 + 1) for any α > 0, (3.7)

and hence that (for t0 ≥ 2)

(3.6) ≤ −Kθδ log(t0 + 1) < −Kθδ.

In other words, given an arbitrarily large K there exists a t0 such that

lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /N ≥ q + Ct) < −Kθδ,

and hence

lim sup
N→∞

1
N

log
∑

t>t0

P (SN
t /N ≥ q + Ct) → −∞ as t0 → ∞

as required. �

Exercise 3.3
Let (S1

t , t ∈ N) be a discrete-time Gaussian process with marginal distribu-
tions given by

S1
t ∼ Normal(µt, σ2t2H)

for some H ∈ [12 , 1).

Note. Such a process exists. In fact there is a continuous-time process with
the same marginal distributions, with stationary increments (i.e. S1

t+u −
S1

t has the same distribution regardless of the value of u ≥ 0), and with
continuous sample paths, which is known as fractional Brownian motion.
For more on this see Chapter 8.



More on the Single Server Queue 55

Show that Λt(θ)/t does not converge as t → ∞. Show that nonetheless
this traffic source does satisfy Theorem 3.5, and show that

I(q) = inf
t

(
q + (C − µ)t

)2

2σ2t2H
≈ q2(1−H)(C − µ)2H

H2H(1 −H)2(1−H) ,

and that the optimal t is

t ≈ q

C − µ

H

1 −H
.

(Hint: Use scaling function vt = t2(1−H).) �

3.3 Queues with Large Buffers
and Power-Law Source Scalings

The last section showed an indifference result: it doesn’t really make much
difference whether the sources have power-law scalings, as far as the many-
sources limit is concerned—the probability of large queues still decays ex-
ponentially in the number of sources.

A natural question to ask is: can we blend the techniques in Sections 3.1
and 3.2? In a queue with a single traffic source, does long-range dependence
of the source make any difference to the queue size (as far as the large-buffer
limit is concerned)? The answers are yes and yes. In cases where the limit

Λ(θ) = lim
t→∞

1
vt

logEeθStvt/t

exists and is well-behaved, the log-probabilities logP (St/t) are normalized
by vt. This leads to an analogue of Theorem 3.1. For example, if vt = t2(1−H)

for some H ∈ [12 , 1) then under suitable conditions

1
q2(1−H) log P (Q > q) ≈ −I.

It is possible to state and prove this result using the techniques in this
chapter. But since this sort of scaling has a number of interesting conse-
quences, we will postpone a discussion of it to Chapter 8.



Chapter 4

Introduction to Abstract
Large Deviations

We are now ready to explain what is meant by a large deviations principle,
in a more abstract setting. To develop intuition, think back to the large
deviations results for R

d in Chapter 2. One space we will be interested in
in later chapters is the space of continuous functions R

+
0 → R, representing

the space of input flows at a queue.
This chapter will also give some general large deviations results, paying

particular attention to the contraction principle, a result which will be using
heavily in later chapters.

4.1 Topology and Metric Spaces

It takes a hefty amount of basic topology to formulate large deviations in
an abstract setting, so we gather together here some definitions as a handy
reference.

Let X be a set.

A family of subsets τ of X is called a topology if
• ∅ ∈ τ and X ∈ τ
• The union of any family of sets in τ , is in τ
• The intersection of a finite number of sets in τ , is in τ

The elements of τ are called the open sets; their complements are the closed
sets. The pair (X , τ) is called a topological space. We often write it X , when
the topology is clear from the context.

A function d : X ×X → R is a metric if for all x, y, z ∈ X ,

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 57–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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• d(x, y) ≥ 0 with equality iff x = y
• d(x, y) = d(y, x)
• d(x, z) ≤ d(x, y) + d(y, z)

This induces a natural topology, the smallest topology containing all the
balls B(x, ε) = {y : d(x, y) < ε}.

A subset σ of τ is called a basis of the topology τ if every set in τ is
the union of sets in σ. A topological space is separable if it has a countable
basis of open sets.

The topology induced on any subset Y ⊂ X is {A ∩ Y : A ∈ τ}.
A topology σ is finer than a topology τ on the same set X , if σ contains

all the sets in τ ; then τ is coarser than σ.

Let A be a subset of X . A is an open neighbourhood of x if A is open
and x ∈ A. A is a neighbourhood of x if it contains an open neighbourhood
of x. The interior of A, A◦, is the union of all open subsets of A. It is the
largest open set contained in A. The closure of A, Ā, is the intersection of
all closed supersets of A. It is the smallest closed set containing A.

A set A is open iff for all x ∈ A there exists an open neighbourhood B
of x with B ⊂ A.

A set A ⊂ X is dense if its closure Ā is equal to X .

A metric space is separable if it contains a countable dense set.

A topological space X is Hausdorff if for every x ∈ X {x} is closed,
and for all x, y ∈ X there exist open neighbourhoods Bx and By of x and y
that are disjoint. It is regular if in addition for every closed set Ā ⊂ τ and
point y ∈ τ there exist open neighbourhoods BĀ and By of Ā and y that
are disjoint.

Every metric space is regular.

A sequence x1, x2, . . . converges to x if for all neighbourhoods B of x,
xn ∈ B eventually.

In a metric space, xn → x iff limn→∞ d(xn, x) = 0.

A sequence x1, x2, . . . in a metric space is a Cauchy sequence if d(xm, xn) →
0 as m ∧ n → ∞. A metric space X is complete if every Cauchy sequence
converges. A complete separable metric space is called Polish.

Let A be a subset of a topological space. An open cover is a collection
of open sets whose union contains A. A is compact if every open cover has
a finite subcover.
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A closed subset of a compact set is compact. The intersection of a closed
set and a compact set is compact. In a Hausdorff space, every compact set
is closed.

A subset A of a topological space is sequentially compact if every se-
quence of points in A contains a subsequence which converges to a point in
A.

If A is compact then A is sequentially compact. If X is a metric space,
and A is closed and sequentially compact, then A is compact.

Let A be a subset of a metric space. A is closed iff whenever xn is a
sequence in A and xn → x then x ∈ A.

Let X and Y be topological spaces, and let f : X → Y. For Y ⊂ Y, let
f−1(Y ) = {x ∈ X : f(x) ∈ Y }. We say f is continuous if whenever Y is
open in Y, f−1(Y ) is open in X .

If X and Y are metric spaces, a function f is continuous iff whenever
xn → x, f(xn) → f(x).

Let f : X → Y be continuous, and let X ⊂ X and Y ⊂ Y. If Y is open
then f−1(Y ) is open. If Y is closed then f−1(Y ) is closed. If X is compact
then f(X) is compact.

Let f : X → R ∪ {∞}. The level sets of f are the sets of the form
{x : f(x) ≤ α} for α ∈ R. We say f is lower-semicontinuous if all level sets
are closed.

Let X be a metric space and let f : X → R ∪ {∞}. Then f is lower-
semicontinuous iff whenever xn → x, lim infn→∞ f(xn) ≥ f(x).

4.2 Definition of LDP

Let X be a Hausdorff space, throughout the rest of this chapter.

Definition 4.1 (Rate function) A function I : X → R
∗ is called a rate

function if it is non-negative and lower semicontinuous (defined in Section
4.1). A rate function is said to be good if, in addition, its level sets are
compact.

Let (µn, n ∈ N) be a sequence of Borel probability measures on X , and
let B be the Borel σ-algebra.

Definition 4.2 (Large deviations principle) We say that µn satisfies
the large deviation principle (LDP) on X with rate function I if I is a
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rate function and, for all B ∈ B,

− inf
x∈B◦ I(x) ≤ lim inf

n→∞
1
n

log µn(B)

≤ lim sup
n→∞

1
n

log µn(B) ≤ − inf
B̄
I(x).

(4.1)

Some remarks.
i. If Xn is a sequence of random variables with distribution µn, we may

equivalently say that the sequence Xn satisfies the LDP.
ii. If X is a space of functions indexed by R or N, we call the LDP a

sample path LDP.
iii. We could allow n to take values in R

+ instead of N.
iv. Note that infx∈X I(x) = 0 since µn(X ) = 1 for all n.
v. The above formulation of the LDP makes sense even if B is not the

Borel σ-algebra on X . The interior B◦ and the closure B̄, and also the
lower-semicontinuity of I, are specified by the topology on X , which may be
unrelated to the σ-algebra for the probability measures µn. To avoid techni-
calities, in this book we shall always work with Borel probability measures
corresponding to the topology in which we are interested in establishing the
LDP. In that case, the LDP can equivalently be stated as

− inf
x∈F

I(x) ≤ lim inf
n→∞

1
n

log µn(F ) for all open sets F , and (4.2)

lim sup
n→∞

1
n

log µn(G) ≤ − inf
x∈G

I(x) for all closed sets G.

(4.3)

vi. (4.2) is called the large deviations lower bound; (4.3) the upper.
vii. The statement of the LDP above may appear rather complicated. Why

can’t we just require limn−1 log µn(A) = infx∈A I(x) for all measurable sets
A? Because if we did, we would not be able to use the LDP to describe
continuous random variables. To see this, let the sequence µn consist of
measures which are non-atomic, i.e. µn({x}) = 0 for all n and x; then it
must be that I(x) = ∞ for all x; yet this contradicts the requirement that
infx∈X I(x) = 0. So some topological restrictions are needed, and the LDP
is a particularly convenient way of stating them—tight enough to be useful,
loose enough to be true. However, this consideration motivates the following
definition...

Definition 4.3 A set A ⊂ X is called an I-continuity set if

inf
x∈A◦ I(x) = inf

x∈Ā
I(x).
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For such a set, if it is measurable then n−1 log µn(A) → infx∈A I(x).
If X = R and I is continuous, then all intervals are I-continuity sets.

Note. Note the formal similarity of the LDP with the definition of weak con-
vergence of probability measures on R: we say that a sequence of probability
measures µn converges weakly to a probability measure µ if lim supn µn(F ) ≤
µ(F ) for all closed sets F and lim infn µn(G) ≥ µ(G) for all opens sets G. If
a set A is a µ-continuity set, i.e. µ(A◦) = µ(Ā), then limn µn(A) exists and
is equal to µ(A). Likewise in the large deviation setting, if A is a measurable
I-continuity set, then limn n

−1 logµn(A) exists and is equal to − infx∈A I(x).
For more on the analogy with weak convergence, see the book of Dupuis and
Ellis [37].

Lemma 4.1 For any rate function I, if A is a compact set then the infimum
infx∈A I(x) is attained at some x̂ ∈ A. If I is a good rate function then the
infimum is attained on any closed set.

The proof is trivial, though it must take account of the fact that I can
take value +∞.

The interpretation is that x̂ is the most likely way for an event A to occur.
It is the largest term (i.e. has the largest value of I(x)), and it dominates in
P (Xn ∈ A); the smaller terms do not contribute. This is another instance
of the principle of the largest term, which we can make precise as follows.

Lemma 4.2 (Rare events occur in the most likely way) Suppose Xn

satisfies an LDP with good rate function I, and C is a closed set with
infx∈C I(x) = k < ∞. This infimum must be attained; suppose it is at-
tained in C◦. Let B be a neighbourhood of {x ∈ C : I(x) = k}. Then

P (Xn �∈ B|Xn ∈ C) → 0.

Proof. We can simply estimate

lim sup
n→∞

1
n

log P (Xn �∈ B|Xn ∈ C)

= lim sup
n→∞

1
n

(
logP (Xn ∈ C \B) − log P (Xn ∈ C)

)

≤ lim sup
n→∞

1
n

log P (Xn ∈ C \B) − lim inf
n→∞

1
n

logP (Xn ∈ C)

≤ −
(

inf
x∈C\B

I(x) − inf
x∈C◦ I(x)

)
.
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The second term is equal to k, since the minimum is attained in C◦. If the
first term is equal to ∞, we are done. Otherwise, we might as well take B
to be an open neighbourhood, so that C \ B is closed, implying that the
infimum is attained, say at x̂. Since x̂ ∈ C, I(x) ≥ k; since x̂ �∈ B, I(x̂) �= k.
So we are done. �

Example 4.1
Let X be an exponential random variable with mean λ−1, and let Xn =
n−1X. We will now show that Xn satisfies an LDP in R

+
0 with good rate

function I(x) = λx.
First, is I a good rate function? Clearly I(x) ≥ 0. The level sets

{x ∈ R
+
0 : I(x) ≤ α} are just the intervals [0, α/λ] which are certainly

compact.
Does Xn satisfy the large deviations upper bound (4.3)? If the closed

set G is a semi-infinite interval [x,∞] then P (Xn ∈ G) is exp(−nλx) so the
upper bound is exact, even without taking limits. If G is a general closed
set, let x = infG. Then P (Xn ∈ G) is bounded above by P (Xn ≥ x), and
the upper bound holds, even without taking limits.

Does Xn satisfy the large deviations lower bound (4.2)? Consider first
neighbourhoods of points x ∈ R

+
0 . If x > 0, let F be the open set (x−δ, x+δ)

for some 0 < δ < x. Then

P (Xn ∈ F ) = P
(
X > n(x− δ)

) − P (X ≥ n(x+ δ)
)

= e−λn(x−δ) − e−λn(x+δ).

By the principle of the largest term, Lemma 2.2,

lim inf
n→∞

1
n

logP (Xn ∈ F ) = −λ(x− δ) ≥ −λx.

If x = 0, let F be the open interval [0, δ) in R
+
0 .

P (Xn ∈ F ) = 1 − e−nλδ

and so
lim inf
n→∞

1
n

logP (Xn ∈ F ) = 0.

Now, if F is any open set, for any point x ∈ F there is an open interval
containing x, and by the above

lim inf
n→∞

1
n

log P (Xn ∈ F ) ≥ −I(x).

Taking the supremum over x ∈ F gives the result. �
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Exercise 4.2
Let (εn, n ∈ N) be a sequence of real numbers converging to zero, and define
the sequence of ‘random’ variables Xn = εn. Show that Xn satisfies an LDP
in R with good rate function

I(x) =

{
0 if x = 0
∞ otherwise.

In other words, verify the inequalities (4.3) and (4.2), and verify that I is a
good rate function. �

Example 4.3 (Schilder’s theorem)
Let (Wt, t ≥ 0) be a Brownian motion. It can be shown that (n−1/2Wt, 0 ≤
t ≤ 1) satisfies an LDP in the space of continuous functions on [0, 1] with
good rate function

I(f) =

{
1
2

∫ 1
0 ḟ(t)2dt if f is absolutely continuous and f(0) = 0

∞ otherwise.

For a proof see Dembo and Zeitouni [25, Theorem 5.2.3]. �

In general, it is very tedious to establish an LDP directly by verifying
the large deviation lower and upper bounds for all open and closed sets.
Fortunately, a number of tools are available that can be applied to a wide
variety of problems. To establish the lower bound, it is enough to show that
for any x ∈ X , and any open neighbourhood A of x,

lim inf
n→∞

1
n

logP (Xn ∈ A) ≥ −I(x).
This is known as ‘proving the bound locally’. We saw the technique used in
Example 4.1. In establishing the upper bound for compact set, it turns out
the principle of the largest term is often very useful. Extending the upper
bound from compact sets to all closed sets can be difficult, and relies on
problem-specific techniques; see also Exercise 4.8.

In this book, we typically do not establish the LDP from scratch for
the random variables that we are interested in, but rely on more indirect
methods in general, which we now explain.

4.3 The Contraction Principle

Once we have an LDP for one sequence of random variables, we can ef-
fortlessly obtain LDPs for a whole other class of random sequences, namely
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those that are obtained via continuous transformations. The tool for doing
this is the contraction principle.

For example, in queueing applications, we might start with an LDP for
the entire arrival process in the space of continuous functions R

+
0 → R, show

that the queue size function is continuous, and deduce an LDP for queue
size.

The term ‘effortlessly’ is somewhat misleading! It can be quite difficult
to establish the continuity of a given function, and to compute the rate
function for the resulting LDP. Nevertheless, the contraction principle is a
very general and powerful tool, and is the primary technique we use in this
book to establish LDPs for quantities of interest in queueing models.

Let X be a Hausdorff topological space. All measures and functions will
be assumed to be Borel-measurable.

Theorem 4.3 (Contraction principle) Suppose that Xn satisfies an LDP
in X with good rate function I, and that f : X → Y is a continuous map to
another Hausdorff space Y. Then f(Xn) satisfies a large deviations principle
in Y, with good rate function

J(y) = inf
x∈X :f(x)=y

I(x).

Proof. It is simple to show that the large deviations upper and lower bounds
hold for f(Xn). Take the upper bound. Let B ⊂ Y be closed. Then

lim sup
n→∞

1
n

logP
(
f(Xn) ∈ B

)

= lim sup
n→∞

1
n

log P (Xn ∈ f−1B)

≤ − inf
x∈f−1B

I(x) since f−1B is closed

= − inf
y∈B

inf
x:f(x)=y

I(x) = inf
y∈B

J(y).

Similarly for B open.
What is harder is to show that J is a good rate function. It’s trivial that

J(y) ≥ 0; we need to show that J has compact level sets. Consider a level
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set:

{y : J(y) ≤ α} = {y : inf
x:f(x)=y

I(x) ≤ α}

= {y : ∃x : f(x) = y, I(x) ≤ α} using Lemma 4.1
= f({x : I(x) ≤ α})
= f(compact set) as I is good
= compact set, as f is continuous. �

Example 4.4
Let Xn be the average of n independent Normal(µ, σ2) random variables.
By Cramér’s theorem, Xn satisfies an LDP with good rate function I(x) =
(2σ2)−1(x− µ)2. So X2

n satisfies an LDP with good rate function

J(y) = inf
x:x2=y

I(x) =






0 if y < 0
(2σ2)−1(µ−√

y)2 if y ≥ 0, µ ≥ 0
(2σ2)−1(µ+

√
y)2 if y ≥ 0, µ ≤ 0. �

We have to assume the rate function is good, for otherwise the function
J may not even be a rate function:

Example 4.5
Let Xn be the average of n independent Cauchy random variables. By
Cramér’s theorem, Xn satisfies a large deviations principle with rate function
I(x) = 0. Let Yn = eXn . Then J(y) = 0 if y > 0 and ∞ if y ≤ 0. This is
not lower-semicontinuous, hence not a rate function. �

The contraction principle leads to another instance of the idea that rare
events occur in the most likely way. The following lemma follows immedi-
ately from Lemma 4.2.

Lemma 4.4 Under the assumptions of Theorem 4.3: Let D be a closed set
in Y. Then, supposing it to be finite, the infimum infy∈D J(y) is attained.
Suppose it is attained only at x̂, f(x) ∈ D◦. Then for any neighbourhood B
of {x = x̂},

P
(
Xn �∈ B

∣
∣ f(Xn) ∈ D

)→ 0.

Note. The standard contraction principle is not always sufficient for our
applications, and the next two results describe certain extensions. Their
use only becomes clear in the context of the application, so the rest of this
section should be omitted on first reading. Perhaps it should even be omitted
on subsequent readings!
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For the applications in Chapter 9, the quantity we are interested in
is ‘nearly a continuous function but not quite’, in the sense that Yn, the
quantity of interest, is exponentially equivalent (defined in Section 4.4) to
f(Xn) for some continuous function f . Then Theorems 4.3 and 4.8 imply
the following.

Corollary 4.5 (Approximate contraction principle) Suppose that Xn

satisfies an LDP in X with good rate function I, and that f : X → Y is a
continuous map to a metric space Y. Suppose that f(Xn) is exponentially
equivalent to Yn. Then Yn satisfies an LDP in Y with good rate function

J(y) = inf
x∈X :f(x)=y

I(x).

Exercise 4.6
Suppose that, in the context of Corollary 4.5, the metric on Y is d. If
d
(
f(Xn), Yn

) → 0 uniformly then Yn is exponentially equivalent to f(Xn),
and so the result holds. This is used in Section 5.8.

Prove this directly, without recourse to exponential equivalence. �

For the applications in Chapters 7 and 9, the function f is not continuous
on the whole space, but only on the subspace where the rate function is finite.
The contraction principle can easily be modified:

Theorem 4.6 (Extended contraction principle) Suppose Xn satisfies
an LDP in X with good rate function I, and that f : X → Y is a map to
another Hausdorff space Y. Suppose there exists an open neighbourhood A
of the effective domain of I, such that f is continuous on Ā. Then f(Xn)
satisfies an LDP in Y with good rate function

J(y) = inf
x:f(x)=y

I(x) = inf
x∈A:f(x)=y

I(x) = inf
x∈Ā:f(x)=y

I(x).

Proof. First, the large deviations upper bound. Let B ⊂ Y be closed. Then

lim sup
n→∞

1
n

log P
(
f(Xn) ∈ B

)

= lim sup
n→∞

1
n

[
P
(
f(Xn) ∈ B,Xn ∈ Ā)+ P

(
f(Xn) ∈ B,Xn �∈ Ā

)]

= lim sup
n→∞

1
n

log P
(
Xn ∈ f−1(B) ∩ Ā)

∨ lim sup
n→∞

1
n

logP
(
Xn ∈ f−1(B),Xn �∈ Ā

)
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where the last equality is by the principle of the largest term. Since f is
continuous on Ā, the set f−1(B) ∩ Ā is closed, and so by the LDP for Xn

the first term is

≤ − inf
x∈f−1(B)∩Ā

I(x) = − inf
y∈B

inf
x∈Ā:f(x)=y

I(x).

The second term is

≤ lim sup
n→∞

1
n

logP
(
Xn �∈ A

) ≤ − inf
x �∈A

I(x) = −∞.

Putting these together, we get the upper bound

lim sup
n→∞

1
n

logP
(
f(Xn) ∈ B) ≤ − inf

y∈B
inf

x∈Ā:f(x)=y
I(x).

The large deviations lower bound for f(Xn) works similarly: we find that
for open B

lim inf
n→∞

1
n

logP
(
f(Xn) ∈ B

) ≥ − inf
y∈B

inf
x∈A:f(x)=y

I(x).

The three expressions for J(y) are all equal. To see this, consider a
sequence xn → x, with xn �∈ A. Since A is open, x �∈ A, and so I(x) = ∞.
Thus, in seeking

inf
x:f(x)=y

I(x) or inf
x∈Ā:f(x)=y

I(x)

we can restrict attention to x ∈ A.
Finally we need to prove that J is a good rate function. Trivially, J(y) ≥

0. So we need to show that the level sets {y : J(y) ≤ α} are compact for
α ∈ R

+. But this level set is just

f
({x ∈ Ā : I(x) ≤ α}).

Since I is good it has compact level sets. Also Ā is closed. So this expression
is the continuous image of a compact set, so it is compact. �

4.4 Other Useful LDP Results

First, uniqueness of the rate function.

Administrator
ferret
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Lemma 4.7 Let X be a regular Hausdorff space. If Xn satisfies an LDP in
X with rate function I, and with rate function J , then I = J .

We will only prove it when X is a metric space.

Proof. Suppose there exists x̂ such that J(x̂) < I(x̂). Intuitively I says
x̂ is less likely than does J . Consider a neighbourhood of x̂: since I is
lower-semicontinuous, for all δ > 0 there exists ε > 0 such that if d( x̂) ≤ ε
then

f(x) ≥
{
f(x̂− δ) if f(x̂) <∞
1/δ if f(x̂) = ∞

≥ (
f(x̂) − δ

) ∧ 1
δ
.

Now

−J(x̂) ≤ − inf
x:d(x,x̂)<ε

J(x) since x̂ lies in that set

≤ lim inf
n→∞

1
n

logP
(
d(Xn, x̂) < ε

)
by the LD lower bound

≤ lim sup
n→∞

1
n

log P
(
d(Xn, x̂) ≤ ε

)
as this is a bigger event

≤ − inf
x:d(x,x̂)≤ε

I(x) by the LD upper bound

≤ −(I(x̂) − δ
) ∧ 1

δ
as I is lower-semicontinuous.

So for all δ > 0, J(x̂) ≥ (I(x̂) − δ) ∧ δ−1, contradicting J(x̂) < I(x̂). �

The next definition and theorem are also concerned with uniqueness. If
Xn and Yn are close (in a suitable sense) and Xn satisfies an LDP with good
rate function I, then so does Yn.

Definition 4.4 (Exponential equivalence) Let X be a metric space, with
metric d. Let Xn and Yn be sequences of random variables on X . They are
exponentially equivalent if for all δ > 0

lim sup
n→∞

1
n

log P
(
d(Xn, Yn) > δ

)
= −∞.

If the probability they differ even by δ decays superexponentially, and
large deviations can only pick up exponentially-decaying probabilities, then
Xn and Yn should be indistinguishable in their large deviations properties.
This is made precise in the following theorem, a proof of which is given by
Dembo and Zeitouni [25].
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Theorem 4.8 If Xn and Yn are exponentially equivalent, and Xn satisfies
an LDP with good rate function I, then so does Yn.

Sometimes we apply standard results about large deviations, and find
an LDP in a space which is larger than the one we are actually interested
in. (We already saw an example of this with regard to Sanov’s theorem
in Section 2.7. The use of Craḿer’s theorem naturally yielded an LDP on
R
|A|, though it was natural to expect that the LDP hold on the smaller

space M1(A) as that is the space in which all the random variables live.)
This motivates the following.

Lemma 4.9 Let E be a measurable subset of X such that P (Xn ∈ E) = 1
for all n ∈ N. Equip E with the topology induced by X , and suppose E is
closed.

• If (Xn, n ∈ N) satisfies an LDP in E with rate function I, then it satisfies
an LDP in X with rate function

I ′(x) =

{
I(x) if x ∈ E
∞ otherwise.

• If (Xn, n ∈ N) satisfies an LDP in X with rate function I then it satisfies
an LDP in E with the same rate function I.

Exercise 4.7
Prove Lemma 4.9. Hint: for the second part, note that since P (Xn �∈ E) = 0,
by using the large deviations lower bound, infx∈X\E I(x) = ∞. For a proof,
see Dembo and Zeitouni [25, Lemma 4.1.5]. �

The following definition concerns another sort of restriction.

Definition 4.5 (Exponential tightness) Let Xn be a sequence of ran-
dom variables in X . It is exponentially tight if for all α ∈ R

+ there exist
compact sets Kα ⊂ X such that

lim sup
n→∞

1
n

log P (Xn �∈ Kα) < −α.

In other words, Xn is exponentially tight if exponentially much of the
probability mass is found in compact sets.

Exponential tightness is used in proving the following theorem, a partial
converse to the contraction principle. It says that if Xn is a sequence of
random variables in X , and f is a continuous bijection X → Y, and f(Xn)
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satisfies an LDP, then (under certain conditions) so does Xn. We will most
often use this where f is the identity map and Y is X but with a coarser
topology, and we will refer to this use as strengthening the LDP. For a proof
of the theorem see Dembo and Zeitouni [25].

Theorem 4.10 (Inverse contraction principle) Let f be a continuous
bijection from X to another Hausdorff space Y, and suppose f(Xn) satisfied
an LDP in Y with rate function J . If Xn is exponentially tight in X then
Xn satisfies an LDP in X with good rate function I(x) = J(f(x)).

Exercise 4.8
Suppose that Xn satisfies a weak LDP in X with rate function I, i.e.

− inf
x∈B◦ I(x) ≤ lim inf

n→∞
1
n

log P (Xn ∈ B) for all sets B, and

lim sup
n→∞

1
n

logP (Xn ∈ B) ≤ − inf
x∈B

I(x) for compact sets B.

(This is not to be confused with the stronger/weaker LDPs referred to
above.) Suppose that Xn is exponentially tight. Show that Xn satisfies an
LDP with good rate function I. Hint: For any closed set B, divide the event
{Xn ∈ B} into {Xn ∈ B ∩ Kα}, which is compact, and {Xn ∈ B \ Kα},
the probability of which vanishes as α → ∞. For goodness, show that
{x : I(x) ≤ α} is contained in Kα. �

In Cramér’s theorem and its generalisation, we saw that if a sequence
of random variables has finite exponential moments which are smooth in
a neighbourhood of the origin, then the random variables satisfy an LDP.
Conversely, if a sequence of random variables satisfies an LDP, do smooth
functions of them have finite exponential moments? The answer is provided
by Varadhan’s lemma. This lemma can be useful in applications of large
deviation theory. Here we state two special cases; for more general versions
see Dembo and Zeitouni [25, Theorem 4.3.1].

Lemma 4.11 (Varadhan’s lemma) Let Xn satisfy an LDP in X with
rate function I, and let f : X → R be a bounded and continuous function.
Then

lim
n→∞

1
n

logEenf(Xn) = sup
x∈X

f(x) − I(x). (4.4)

Exercise 4.9
Prove Lemma 4.11. Hint: For the upper bound, divide the range of f into
a finite number of closed sets, and thence divide X into a finite number
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of closed sets Fi such that f varies little on each Fi. Use the principle
of the largest term, Lemma 2.2, to find the Fi that contributes most to the
expectation. For the lower bound, pick any x ∈ X and estimate the moment
generating function only on points near x. �

Lemma 4.12 (Varadhan’s lemma) Let Xn satisfy an LDP in X with
good rate function I and let f : X → R be a continuous function. Assume
that for some γ > 1

lim sup
n→∞

1
n

logEeγnf(Xn) <∞.

Then (4.4) holds.

Exercise 4.10
Let Xn be a Markov chain on {0, h} with transition probabilities p and q for
the jumps h → 0 and 0 → h respectively. Let Sn = X1 + · · · +Xn. Using
your answer to Exercise 3.2, and the second version of Varadhan’s lemma
with f(x) = θx, show that

lim
n→∞

1
n

logEeθSn = log
(
ξ +

√
ξ2 − (1 − p− q)eθh

)

where ξ =
1
2
(
1 − q + (1 − p)eθ

)
. �

Sanov’s theorem, which we first came across in Section 2.7, does not
apply just to empirical measures on finite sets. We include the general
statement here for completeness. A proof of the theorem in a general setting
can be found in [25]. As is often the case in large deviations, the idea is
simple but getting the topology right can be difficult.

Given a set X let M1(X ) be the space of probability measures on X
equipped with the weak topology, namely that generated by the open balls

B(φ, x, δ) =
{
ν ∈M1(X ) :

∣∣Eνφ(X) − x
∣∣ < δ

}

where φ is a bounded continuous real-valued function on X , X is a random
variable drawn from ν, x ∈ R, and δ > 0.

Theorem 4.13 (Sanov’s theorem) Let (Xi, i ∈ N) be a sequence of i.i.d.
random variables taking values in a Polish space X , with distribution µ. The
sequence of empirical measures

µn(A) =
1
n

n∑

i=1

1[Xi ∈ A] for A ⊂ X
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satisfies an LDP in M1(X ) with good convex rate function H(·|µ) given by

H(ν|µ) =

{∫
X

dν
dµ log dν

dµdµ if ν is absolutely continuous with respect to µ

∞ otherwise.

Here, dν/dµ denotes the density, or Radon-Nikodym derivative, of ν with
respect to µ. If ν and µ have densities p and q then dν/dµ (x) = p(x)/q(x).

The next result concerns independent random variables. It is perhaps
the second most useful result, after the contraction principle, in applying
large deviations theory to queues. Intuitively speaking, if

P (Xn ≈ x) ≈ e−nI(x) and P (Yn ≈ y) ≈ e−nJ(y)

then by independence

P
(
(Xn, Yn) ≈ (x, y)

) ≈ e−n[I(x)+J(y)]

Theorem 4.14 Let Xn satisfy an LDP in X with good rate function I,
let Yn satisfy an LDP in Y with good rate function J , and suppose that
Xn is independent of Yn, for each n. Assume that X and Y are separable.
Then the pair (Xn, Yn) satisfies an LDP in X × Y with good rate function
K(x, y) = I(x) + J(y).

In fact, if I and J are infinite outside separable subsets of X and Y, the
result still holds. This turns out to be useful in Chapter 7.

Proof. First we will recall some basic properties of the product topology on
X × Y. Then the proof proceeds in three steps: a proof that that K is a
good rate function; a proof of the large deviations lower bound for open
sets, proved locally; a proof of the large deviations upper bound for closed
cylinder sets, then for general closed sets.

Topology on X × Y. If σ and τ are bases for X and Y then {O × P :
O ∈ σ, P ∈ τ} is a basis for X × Y. Since X and Y are separable, they
have countable bases, and so X ×Y has a countable basis of sets of the form
{Om × Pn, m, n ∈ N} where each Om and Pn is open in X or Y. Open sets
in X × Y are of the form ⋃

n∈N

On × Pn,

where On and Pn are open; and closed sets are of the form
⋂

n∈N

(Cn × Y) ∪ (X ×Dn)
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where Cn and Dn are closed. The set C ×D is closed in X ×Y if C and D
are closed in X and Y.

Goodness of K. Clearly K(x, y) ≥ 0. A typical level set is
{
(x, y) : K(x, y) ≤ α

}
=
{
(x, y) : I(x) + J(y) ≤ α

}

=
⋂

n∈N

⋃

m≤n+1

{
(x, y) : I(x) ≤ m

n
α, J(y) ≤ n+ 1 −m

n
α
}

=
⋂

n∈N

⋃

m≤n+1

{
x : I(x) ≤ m

n
α
}× {

y : J(y) ≤ n+ 1 −m

n
α
}

=
⋂

n∈N

⋃

m≤n+1

compact × compact

= compact.

Thus K is a good rate function.
LD lower bound. Let B be an open set in X × Y, and (x, y) ∈ B. By

the basis we have described, B is the union of sets of the form O×P where
O and P are open in X and Y; and (x, y) ∈ O×P for some O and P . Now

P
(
(Xn, Yn) ∈ B

) ≥ P
(
(Xn, Yn) ∈ O × P

)

= P (Xn ∈ O)P (Yn) ∈ P by independence.

To turn this into a large deviations lower bound,

lim inf
n→∞

1
n

logP
(
(Xn, Yn) ∈ B

)

= lim inf
n→∞

1
n

[
log P (Xn ∈ O) + logP (Yn ∈ P )

]

≥ lim inf
n→∞

1
n

log P (Xn ∈ O) + lim inf
n→∞

1
n

logP (Yn ∈ P )

≥ − inf
x′∈O

I(x′) − inf
y′∈P

J(y′)

≥ −(I(x) + J(y)
)

= −K(x, y).

LD upper bound for cylinders. Consider a closed set of the form

BN =
⋂

n≤N

(Cn × Y) ∪ (X ×Dn).
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For such a set,

P
(
(Xn, Yn) ∈ BN

)

= P

(

(Xn, Yn) ∈
⋃

(i1,...,iN )
∈{0,1}N

⋂

n≤N

{
in = 0 : Cn × Y
in = 1 : X ×Dn

)

= P

(

(Xn, Yn) ∈
⋃

(i1,...,iN )

( ⋂

n:in=0

Cn

)
×
( ⋂

n:in=1

Dn

))

.

and so, by the principle of the largest term and independence,

lim sup
n→∞

1
n

log P
(
(Xn, Yn) ∈ BN

)

≤ − inf
i1,...,iN

(
inf

x∈⋂in=0 Cn

I(x) + inf
y∈⋂in=1 Dn

J(y)
)

= − inf
(x,y)∈BN

I(x) + J(y).

LD upper bound for closed sets. By our remarks on topology, any closed
set B is of the form

B =
⋂

N∈N

BN

(and in fact the sets BN are decreasing, so B = limN→∞BN .) Thus

lim sup
n→∞

1
n

log P
(
(Xn, Yn) ∈ B

)

≤ lim sup
n→∞

1
n

logP
(
(Xn, Yn) ∈ BN

)
for all N

≤ − inf
(x,y)∈BN

K(x, y).

Hence the lim sup is

≤ − lim
N→∞

inf
(x,y)∈BN

K(x, y).

(This is an increasing limit, as the sets BN are decreasing.) We will now
show that

lim
N→∞

inf
z∈BN

K(z) = inf
z∈B

K(z).
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Certainly, LHS≤RHS. Suppose the inequality is strict. Then the left hand
side is bounded, and hence finite. Since each BN is closed, and K is good,
for each N the infimum is attained at some zN . Furthermore, since K is
good and the left hand side is bounded, the zN all live in some compact
space, hence there is a convergent subsequence with limit z∗. Since the BN

form a decreasing sequence, zN , zN+1, . . . all lie in BN , which is closed, so
z∗ ∈ BN for all N , so z∗ ∈ B. Furthermore

lim
N→∞

inf
z∈BN

K(z) = lim inf
zN→z

K(zN )

≥ K(z∗) by lower-semicontinuity
≥ inf

z∈B
K(z).

This completes the proof. �

The next result is the basic tool used to prove sample path LDPs, that
is, LDPs for processes. To state the result properly requires the concept of
projective limit spaces, which is somewhat abstract, and which we will not
define. Instead we will give three examples of projective limit spaces, the
three examples used in this book, and refer the interested reader to Dembo
and Zeitouni [25, Theorem 4.6.1] for a proper definition and a proof of the
following.

Theorem 4.15 (Dawson-Gärtner theorem for projective limits) Let
X be a projective limit space, with projections (pj, j ∈ J). Let Xn be a se-
quence of random variables in X . Suppose that for every j, pj(Xn) satisfies
an LDP in pj(X ) with good rate function Ij . Then Xn satisfies an LDP in
X equipped with the projective limit topology, with good rate function

I(x) = sup
j∈J

Ij(pj(x)).

Example 4.11
Let X be the space of functions x : N → R, equipped with projections
pj : X → R

j given by

pj(x) = (x1, . . . , xj) for j ∈ N.

Let pj(X ) be equipped with the standard topology on R
j. The projective

limit topology is the weakest topology which makes every pj continuous,
namely the topology of pointwise convergence. �
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Example 4.12
Let X be the space of continuous functions x : R

+
0 → R, and Xj the space

of continuous functions from x : [0, j] → R, and consider the projections
pj : X → Xj given by

pj(x) = x|[0,j] for j ∈ R
+
0 .

Let pj(X ) be equipped with the topology of uniform convergence. The
projective limit topology is the weakest topology which makes every pj con-
tinuous, namely the topology of uniform convergence on compact sets. �

Example 4.13
Let X be the space of continuous functions x : [0, 1] → R. Let J be the set
of partitions

J =
{
0 ≤ t1 < t2 < · · · < tn ≤ 1

}

and for j = (t1 < · · · < tn) consider the projection

pj(x) =
(
x(t1), . . . , x(tn)

)
.

Let pj(X ) be equipped with the standard topology on R
n. The projective

limit topology is the weakest topology which makes every pj continuous,
namely the topology of pointwise convergence. �
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Continuous Queueing Maps

The techniques outlined in Chapter 1 are fine for studying the single-server
queue, but they quickly become cumbersome when one tries to apply them
to more complicated queueing networks. Here we introduce a different ap-
proach which uses abstract large deviations theory and which has many
advantages. In this chapter we will describe the general approach; and in
the next two chapters we will apply it to the two scaling regimes described
earlier, the large-buffer regime and the many-flows regime.

5.1 Introduction

Recall the simple queueing model of Chapter 1. Consider a queue operating
in discrete time, with constant service rate C. Let Yt be the amount of work
arriving at time t ∈ Z, and for t > 0 define the cumulative sum process
A(t) = Y−t+1 + · · · + Y0, with A(0) = 0. We found an expression for the
queue size at time 0:

Q0 = sup
t≥0

A(t) − Ct.

Write this more suggestively as

Q0 = f(A)

where A is the entire process A = (A(t), t ≥ 0).

Note. More generally, consider a network of queues fed by a collection of
arrival processes. Write A for the vector of arrival processes. Many quanti-
ties of interest (such as the queue size at any queue in the network, or the
departure process from some queue) can be written as functions f(A). We

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 77–104, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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may wish to include in A any other random influences on the network. For
example, if the service process at a queue is random, that should be included
in A.

The big idea of this chapter (and the rest of the book) is that we can use
the contraction principle to investigate f(A) (or rather f(AL) for various
interesting sequences of processes AL):

Note. Look back through Chapter 4 now if you are not familiar with the
contraction principle.

if the sequence AL satisfies a large deviations principle, and if the function
f is continuous, then the contraction principle tells us that f(AL) satisfies
a large deviations principle, and it even tells us the rate function.

Note. This chapter, and indeed the rest of the book, deals with queues in
steady state; that is, the functions we are interested in are functions of the
entire history of the process (A(t), t ∈ R

+). The techniques we will describe
can also be applied to non-steady-state scenarios. For example, we could
suppose that the queue starts empty at time −T , and only consider the
evolution of the system over [−T, 0], which is a function of (A(t), t ∈ [0, T ]).
This considerably simplifies the problem.

5.2 An Example:
Queues with Large Buffers

To explain how we might choose AL, and to show the steps involved, here is
an outline of how we can use the contraction principle to derive the results
for queues with large buffers in Section 1.3.

We want to let AL be a version of A which is speeded up in time and
scaled down in space:

AL(t) =
1
L
A(Lt).

Actually, we need to be a little more careful than this. It turns out to be
more helpful to work in continuous time. To achieve this, we make the
following definition:

Given a discrete-time process (X(t), t ∈ Z), define its polygonalization
(X̃(t), t ∈ R) by

X̃(t) = (�t+ 1� − t)X(�t�) + (t− �t�)X(�t + 1�).
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Now, we can properly define the scaled processes: if Ã is the polygonalized
version of A, then for t ∈ R

+ define

ÃL(t) =
1
L
Ã(Lt).

Define also the continuous-time version f̃ of the queue size function f :

f̃(Ã) = sup
t∈R+

Ã(t) − Ct.

Consider this function applied to ÃL:

f̃(ÃL) = sup
t∈R+

ÃL(t) − Ct

= L−1 sup
t∈R+

Ã(t) − Ct

= L−1 sup
t∈N0

A(t) − Ct

= L−1f(A) = L−1Q0.

(5.1)

This means that
P (f̃(ÃL) > b) = P (Q0 > Lb).

The contraction principle gives us estimates for the first quantity, and hence
for the second. (We will drop the ∼s after this section!)

Specifically, ÃL will typically satisfy a large deviations principle of the
form

1
L

log P (ÃL ∈ B) ≈ − inf
a∈B

I(a)

for some good rate function I, in some topological space. (The approxima-
tion is in the large deviations sense, (4.1).) If the queue size function f̃ is
continuous on that space, then

1
L

logP (L−1Q0 > b) ≈ −J(b)

where
J(b) = inf

a:f̃(a)>b
I(a). (5.2)

This is exactly the sort of estimate we obtained in Section 1.3.
We glibly define J(b) thus, but to simplify it into a useful form can be

a lot of work. But in some sense, this is a difficulty inherent in queueing
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theory. Often, when one seeks to estimate the probability of a rare event,
a first heuristic is to consider the most likely way for that event to occur.
Around this heuristic one can build various probability estimates. The rate
function J expresses exactly this heuristic, and the contraction principle
does all the work of building probability estimates around it.

The most likely way for the rare event {Q0 > Lb} to occur is when the
input process ÃL is close to the optimizing a in (5.2). The sense of this
can be made precise, using the idea that rare events occur only in the most
likely way (Lemma 4.2). Since this a is a function indexed by time, we call
it the most likely path to overflow.

Note. We can now see why it was necessary to work with continuous-time
polygonalizations: the second equality in (5.1) only works if we are taking
the supremum over R

+
0 , not N0. It is worth checking that this translation

does not mess up the queue size function:

Exercise 5.1
Explain why the third equality in (5.1) is true. �

5.3 The Continuous Mapping Approach

The general approach is this. Consider a queueing network, or rather a
sequence of queueing networks indexed by L, in which the Lth network
has a vector of inputs AL. Include in AL all relevant information, such as
input processes and service processes, so that we can express any quantity
of interest as a function f(AL).

Prove a large deviations principle for AL, in some topological space.
Show that f is continuous on that space. Use the contraction principle to
derive a large deviations principle for f(AL), and simplify the resulting rate
function.

What sort of functions f are suitable? In the last section, f(A) was the
function giving queue size at time 0 in a single-server queue with cumulative
arrival process A. There are many other possible functions: for example,
the queue size in a finite-buffer queue, or the departure process.

What is an interesting sequence of inputs AL? In the last section, we
used a particular definition of AL, and this led to a large deviations principle
for queues with large buffers (Section 1.3). If we had chosen a different AL,
we could have reproduced the large deviations results for queues with many
input flows (Section 1.4) or for queues with power-law scalings (Section 3.3).
These scalings, and others, will be elaborated in the following chapters.

The power of this general technique is threefold:
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• We only need to prove a sample path LDP for AL once, and we can
get LDPs for many different functions f(AL);

• We only need to prove continuity of f once, and we get LDPs for
many different scalings AL;

• We can not only estimate the probability of a rare event {f(AL) ∈ B},
but also find the most likely path â to lead to that event.

The work of finding a large deviations principle for AL, and of simplifying
the rate function, depends very much on how AL is defined. The work of
proving that f is continuous is much the same, though, and the rest of this
chapter looks at a variety of interesting functions on appropriately chosen
spaces.

A continuous mapping approach is useful for stochastic process limits at
scales other than the large deviations scale. See for example Whitt [98] and
references therein.

5.4 Continuous Functions

The first job is to decide on a topological space in which AL satisfies a large
deviations principle and on which f is continuous. This involves a tradeoff:
if the topology is too fine, it will be hard to prove a large deviations principle;
if the topology is too coarse, it will be hard to prove continuity. And the
space will of course depend on the application. Happily there are common
themes. The following defines a suitable space for the single-server queue,
and for many other systems.

Definition 5.1 Define the space Cµ to be the set of continuous functions
x : R

+ → R for which x(0) = 0 and

lim
t→∞

x(t)
t+ 1

= µ (5.3)

equipped with the topology induced by the scaled uniform norm

‖x‖ = sup
t∈R+

∣
∣∣
x(t)
t+ 1

∣
∣∣. (5.4)

(We will use the same notation x for continuous-time and discrete-time
processes; it should be clear from the context which is meant.)

We can think of x as the (polygonalized) cumulative arrival process to a
queue. The µ in (5.3) is called the mean arrival rate. Or we can think of x
as the (polygonalized) cumulative service process, in which case µ is called
the mean service rate.
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Note. The role of the scaled uniform norm (5.4) will become clearer after
reading Example 5.2.

A useful property is that it induces a topology which makes the space Cµ

isomorphic to the space of functions {x : [0, 1] → R : x(1) = µ} equipped
with the uniform norm. This is a Polish space, i.e. a complete separable
metric space. Completeness makes it easier to check continuity; separability
is important in finding LDPs for product spaces, as we saw in Theorem 4.14.

A simple but very important property of the scaled uniform norm is the
following:

Lemma 5.1 Suppose xn → x in Cµ. Then xn → x uniformly on compact
intervals. In other words, for all T > 0,

sup
0≤t≤T

|xn(t) − x(t)| → 0.

The left hand side of this expression is called the supremum norm over
the interval [0, T ].

The proof is trivial. The lemma is nonetheless worth stating, because the
topology of uniform convergence on compact intervals plays an important
role in functions related to queue size, which often involve supremums and
infimums, because of the following trivial result:

Lemma 5.2 The function x �→ sup0≤t≤T x(t) is continuous with respect to
the topology of uniform convergence on compact intervals.

For some of our applications we will need to work in the smaller space
Aµ, which is Cµ restricted to the set of absolutely continuous functions.
(Absolute continuity implies continuity.) We will point out when we need to
assume absolute continuity. A key feature is that if x is absolutely continuous
then its derivative exists almost everywhere and

x(t) =
∫ t

u=0
ẋ(u) du.

Note. Absolute continuity is defined as follows. Consider a sequence (finite
or infinite) of non-overlapping intervals [ui, vi] in R

+. A function x : R
+ → R

is absolutely continuous if
∑

|x(vi) − x(ui)| → 0

as ∑
(vi − ui) → 0.
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Sometimes we will have to deal with truncations. Define CT to be the
space of continuous functions x : [0, T ] → R equipped with the topology of
uniform convergence, and define AT similarly.

5.5 Some Convenient Notation

Because of the many transformations of the arrival process which we will use
in the rest of this chapter, and because it is bothersome to work in ‘reverse
time’, we will first give some notation.

In discrete time, suppose that X(t) is the cumulative sums process cor-
responding to a sequence (Yt, t ∈ N), i.e. X(t) = Y0 + · · · + Yt−1, with
X(0) = 0. Define

X(−u,−v] = X(u) −X(v) for u, v ∈ N0.

If X is an arrival process, with Yt the amount of work arriving at time
−t, then X(−u,−v] is the amount arriving in the interval (−u,−v]. In
particular,

X(−u, 0] = X(u)

and we will use the (·, 0] notation to try to avoid confusion.
In continuous time, for x ∈ Cµ, we similarly define

x(−u,−v] = x(u) − x(v) for u, v ∈ R
+
0 .

If x ∈ Cµ is an arrival process, then x(−u,−v] is the amount of work ar-
riving in the interval (−u,−v]. Since we will usually work with continu-
ous functions, there is no point in insisting on (·, 0] rather than [·, 0] or
[·, 0). But we will stick with this notation because it better parallels the
discrete-time notation we have been using: with these definitions, if x is the
polygonalization of X then x(−u,−v] = X(−u,−v] for u, v ∈ N0, whereas
x[−u,−v] �= X[−u,−v].

Sometimes we will need to deal with truncations. Define CT to be the
space of continuous functions x : [0, T ] → R equipped with the topology of
uniform convergence. Write

x|(−t,0]

for the restriction of x ∈ Cµ to CT . We will use the same notation for
truncations of discrete-time processes.

Finally, if x is absolutely continuous, then for t ≥ 0 write

ẋ−t for
d

dt
x(t) whenever the derivative exists,
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so that for fixed u > 0 and t ∈ [−u, 0]

ẋt =
d

dt
x(−u, t] whenever the derivate exists.

If x is an absolutely continuous arrival process, ẋ−t is the instantaneous
arrival rate at time −t.

If X is a discrete-time process it doesn’t make sense to talk about deriva-
tives, but we will nevertheless use the notation

Ẋ−t = X(t+ 1) −X(t).

If X is an arrival process, Ẋ−t is the amount of work arriving at time −t.

5.6 Queues with Infinite Buffers

In Section 5.2, we explained how to use the contraction principle to esti-
mate the queue length distribution, assuming that the queue size function
is continuous. Here we will prove continuity, along with several other useful
properties.

Theorem 5.3 Suppose µ < ν. Then the queue size function

f(a, c) = sup
t∈R

+
0

a(−t, 0] − c(−t, 0] (5.5)

is continuous on Cµ × Cν. Furthermore, the supremum is attained (and is
finite).

Proof. Since Cµ and Cν are metric spaces, we can check continuity using
sequences. Let (an, cn) → (a, c) in Cµ × Cν . We want to show that for any
ε > 0 there exists N such that for all n > N , |f(an, cn) − f(a, c)| < ε.

Let δ > 0. First, since an → a in Cµ, there exists N such that for all
n > N

sup
t∈R+

∣∣
∣
an(−t, 0] − a(−t, 0]

t+ 1

∣∣
∣ < δ

and hence, for n > N and t ≥ 0

an(−t, 0] < a(−t, 0] + δ(t+ 1).

Second, since a ∈ Cµ, it has mean rate µ, and hence by (5.3) there exists T
such that for t > T ∣

∣∣
a(−t, 0]
t+ 1

− µ
∣
∣∣ < δ,
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and hence
a(−t, 0] < (µ+ δ)(t+ 1).

Putting these together: for n > N and t > T ,

an(−t, 0] < (µ+ 2δ)(t + 1).

We have assumed that µ < ν. Fix σ with µ < σ < ν. By choosing δ
sufficiently small, we find that for n > N and t > T ′,

an(−t, 0] < σt,

and (by a similar argument)

cn(−t, 0] > σt.

Thus

f(an, cn) = sup
t∈R+

an(−t, 0] − cn(−t, 0]

= sup
0≤t≤T ′

an(−t, 0] − cn(−t, 0]. (5.6)

The same is true for f(a, c), with (without loss of generality) the same
T ′. In other words, there exists a time interval [0, T ′] such that (for n
sufficiently large) we can ignore what happens outside that interval. Also,
as we have already remarked, (an, cn) → (a, c) in Cµ ×Cν implies that there
is uniform convergence over that interval. Now Lemma 5.2 implies that (5.6)
is continuous, and so

f(an, cn) → f(a, c)

as required.
Since (a, c) ∈ Cµ × Cν , a − c is continuous. Thus the supremum in

f(a, c) = sup0≤t≤T ′ a(−t, 0] − c(−t, 0] is attained. Since both a and c are
real-valued functions, the supremum is finite. �

Example 5.2
The function f is not continuous on the set Cµ × Cν equipped instead with
the topology of uniform convergence on compact intervals. To see this, for
t ∈ R

+ let

an(−t, 0] =






µt if t < n

µt+ (t− n)
(
(n+ 1)(ν − µ) + 1

)
if n ≤ t < n+ 1

µt+ (n+ 1)(ν − µ) + 1 if t ≥ n+ 1.
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Each arrival process an has mean rate µ; the arrival rate is µ except in
the interval (−n − 1,−n] when it is larger. Also, an → µe uniformly on
compact intervals, where by µe we mean the constant process of rate µ.
Let each cn be the service process of constant rate ν, cn(−t, 0] = νt, i.e.
cn = νe. The arrival process was chosen so as to make f(an, cn) = 1;
however f(µe, νe) = 0. Thus f is not continuous with respect to the topology
of uniform convergence on compact intervals. �

In the course of proving Theorem 5.3, we implicitly established a fact
which merits attention in its own right. To make it explicit, we need another
definition. We have already defined f(a, c), the function giving queue size
at time 0, which we will now call q0(a, c). Now define

q−t(a, c) = sup
u≥t

a(−u,−t] − c(−u,−t]. (5.7)

Interpret q−t(a, c) as the queue size at time −t. Note that this is consistent
with q0(s).

Note. Strictly speaking, what we should do is the following. For discrete-
time arrival process a and service process c, let q−t(a, c) be the queue size at
time −u, as defined by (1.3):

q−t(s) = sup
−u∈Z,−u≤−t

a(−u,−t]− c(−u,−t].

Then q−t(a, c) = q̃−t(ã, c̃), where q̃−t is our equation (5.7). (You should
check this.) In other words, (5.7) is a sensible way to define queue size for
continuous-time input processes, consistent with the discrete-time definition.

Now we can make the claim.

Lemma 5.4 Suppose a and c are continuous.
i. If

q0(a, c) = a(−t, 0] − c(−t, 0]
then the queue is empty at time −t.
ii. The queue is empty at some point in [−T, 0] if and only if

q0(a, c) = sup
−T≤−t≤0

a(−t, 0] − c(−t, 0].

This helps us to understand the role of the supremum in (5.5). If (a, c) ∈
Cµ ×Cν and µ < ν, then the optimal t∗ in q0(s) is attained. By continuity of
a and c, there is a smallest such t∗. For this t∗: by (i), the queue is empty
at −t∗; by (ii), the queue is non-empty (and hence the server is busy) in
(−t∗, 0].
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Proof of Lemma 5.4 First, note that for all −t ≤ 0,

q0(a, c) = sup
−u≤0

a(−u, 0] − c(−u, 0]

≥ sup
−u≤−t

a(−u, 0] − c(−u, 0]

= a(−t, 0] − c(−t, 0] + sup
−u≤−t

a(−u,−t] − c(−u,−t]

= a(−t, 0] − c(−t, 0] + q−t(a, c). (5.8)

(This last expression is what the queue size would be at time 0 if it didn’t
idle in (−t, 0].) Now to prove the claims of the lemma.
i. Suppose not: i.e. q−t(a, c) > 0. By (5.8),

q0(a, c) ≥ a(−t, 0] − c(−t, 0] + q−t(a, c) > a(−t, 0] − c(−t, 0]
which contradicts the assumption.
ii. The if part. We need to show that q−t = 0 for some −t ∈ [−T, 0].
Suppose not, i.e. q−t > 0 for all −t ∈ [−T, 0]. By (5.8),

q0(a, c) > a(−t, 0] − c(−t, 0] for all −t ∈ [−T, 0].
But by assumption

q0(a, c) = sup
−T≤t≤0

a(−t, 0] − c(−t, 0]. (5.9)

We have assumed that a and c are continuous. Thus the supremum in (5.9)
is attained at some −t ∈ [−T, 0]. Hence a contradiction.
The only if part. Suppose that

q0(a, c) = sup
−t≤0

a(−t, 0] − c(−t, 0] �= sup
−T≤−t≤0

a(−t, 0] − c(−t, 0].

Then for any −t ∈ [−T, 0],
q0(a, c) = sup

−u<−t
a(−u, 0] − c(−u, 0], (5.10)

and

q0(a, c) > a(−t, 0] − c(−t, 0]. (5.11)

By (5.10),

q0(a, c) = a(−t, 0] − c(−t, 0] + sup
−u<−t

a(−u,−t] − c(−u,−t]

= a(−t, 0] − c(−t, 0] + q−t,

and, using (5.11), q−t > 0. Hence the queue is never empty in [−T, 0]. �
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Also, a corollary which makes explicit another fact that we proved in the
course of Theorem 5.3.

Lemma 5.5 Let an → a in Cµ and cn → c in Cν, and µ < ν. Then there
exists a T such that the queue qt(a, c), and every queue qt(an, cn), are each
empty at some point in [−T, 0] (though not necessarily the same point).

Finally, a useful way to rewrite the queue size function for time 0, as-
suming we know the queue size at some time −t.
Exercise 5.3
Write q0 for q0(a, c) and q−1 for q−1(a, c). Show that

q0 =
(
q−t + a(−t, 0] − c(−t, 0]

)
∨
(

sup
0≤u≤1

a(−u, 0] − c(−u, 0]
)

�

5.7 Queues with Finite Buffers

There are plenty of other interesting continuous functions apart from queue
size in a queue with an infinite buffer. Now we turn our attention to queues
with finite buffers. This section introduces some new machinery: a pro-
cedure for turning a finite-horizon function into an infinite-horizon one.
(Another term for this is turning a transient problem into an steady-state
problem).

The plan of the section is: introduce the queue size function for discrete-
time queues with finite buffers over finite horizons, find a consistent continuous-
time version, extend it to an infinite-horizon version.

For a similar approach to finite-buffer queues, see Toomey [94], who finds
a different form of the queue size function.

Consider a queue with finite buffer B. Let A(−t, 0] be the amount of
work arriving in (−t, 0], let C(−t, 0] be the amount of service offered in
that time, and let Qt be the queue size at time t. As usual, let A(−t, 0] =
Ȧ−t+1 + · · · + Ȧ0, and similarly for C. The evolution of Qt is described by
the recursion

Qt = [Qt−1 + Ȧt − Ċt]B0 (5.12)

where [x]ab = (x∨ b)∧ a. As was the case with infinite buffers, this recursion
may have many solutions, so we will impose boundary conditions. First we
will work over a finite horizon, imposing the boundary condition Q−T = 0
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and studying Q−t, −T ≤ −t ≤ 0, which we will call Q−T
−t to emphasize the

boundary condition.
We want to find an equivalent description in continuous time. We will

start by finding a more explicit form of the queue size function.

Lemma 5.6

Q−T
0 =

[
X(−T, 0]

]minu∈[0,T ] Nu∨(Mu+B)

maxu∈[0,T ] Nu∧(Mu+B)
(5.13)

where

Mu = min
v∈[0,u]

X(−v, 0]

Nu = max
v∈[0,u]

X(−v, 0]

X(−v, 0] = A(−v, 0] − C(−v, 0].

Sketch proof. This expression comes from expanding the recursion (5.12). It
could be proved formally by induction on T ; here instead is a sketch proof
which is certainly less formal but we hope more revealing. Let Ẋ t = Ȧt−Ċt,
so that X(−v, 0] = Ẋ−v+1 + · · · + Ẋ0. Then

Q0 =
[
Q−1 + Ẋ0

]B
0

=
[[
Q−2 + Ẋ−1

]B
0 + Ẋ0

]B
0

=
[[
Q−2 + Ẋ−1 + Ẋ0

]Ẋ0+B

Ẋ0

]B
0

=
[[
Q−2 +X(−2, 0]

]X(−1,0]+B

X(−1,0]

]X(0,0]+B

X(0,0]

...

=
[· · · [Q−T +X(−T, 0]]X(−T+1,0]+B

X(−T+1,0] · · · ]X(0,0]+B

X(0,0]

=
[· · · [X(−T, 0]]X(−T,0]+B

X(−T,0] · · · ]X(0,0]+B

X(0,0] .

The last equality is by the assumption that Q−T = 0, and because x =
[x]x+B

x .
Convince yourself that this is equal to (5.13), by drawing a picture of

the successive truncations of X(−T, 0], along the lines of Figure 5.1. �

This expression (5.13) suggests how we should define the queue size
function in continuous time. Let a and c be continuous functions, and
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X(0, 0] = N0

X(0, 0] + B
= M0 + B

X(−1, 0]

N1

M1 + B

X(−2, 0]

X(−2, 0] + B

M2 + B

NT−1

MT−1 + B

X(−T, 0]

X(−T, 0]
+B

MT + B

NT

Figure 5.1: A plot of X , M + B and N . The dots show the
successive boundings of X(−T, 0]. At each timestep, the position
of the dot within its vertical line indicates how full the buffer is.

simply use the same expression as before, but allowing the time variables to
range over real numbers rather than just integers. Convince yourself that if
a and c are polygonalized versions of discrete-time processes A and C, then
the two versions of the equation agree. In other words, the continuous-time
definition of queue size is consistent with the discrete-time definition. We
can of course extend the definition to other times: for −T ≤ −t ≤ 0, let

q−T
−t (a, c) =

[
x(−T,−t]

]infu∈[t,T ] nu∨(mu+B)

supu∈[t,T ] nu∧(mu+B)
(5.14)

where

mu = inf
v∈[t,u]

x(−v,−t],

nu = sup
v∈[t,u]

x(−v,−t],

x(−v,−t] = a(−v,−t] − c(−v,−t].
The following remark is trivial.

Lemma 5.7 The function q−T
−t (a, c) is continuous on CT × CT .

The next step is to extend the queue size function to deal with an infinite
time horizon—to use the more intuitive boundary condition, that ‘the queue



Continuous Queueing Maps 91

was empty at time −∞’. We want to define

q−t(a, c) = lim
T→∞

q−T
−t (a, c). (5.15)

We need to verify that the limit exists, and then we will show that the
function is continuous on Cµ × Cν for µ < ν.

The following lemma implies that the limit exists.

Lemma 5.8 The function q−T
0 (a, c) is increasing (though perhaps not strictly)

in T .

Sketch proof. This is hard to see from the formula (5.14), but easy to see
from a picture. Plot the two curves

mT +B = inf
v∈[0,T ]

x(−v, 0]

and nT = sup
v∈[0,T ]

x(−v, 0].

The former is decreasing, the latter increasing, both are continuous, and
m0 +B > n0.

Suppose the two curves cross at U . Then for any T ≥ U , q−T
0 is constant

(with value nU = mU +B), and thus increasing.
Suppose alternatively that either T < U or the curves do not cross. Then

q−T
0 =

[
x(−T, 0]]mT +B

nT
= nT

which is certainly increasing. �

This is sufficient to define q0(a, c), but it doesn’t reveal all the structure.
To see more: Observe that q−T

−t is increasing in buffer size B, and that if we
let r−T

−t be q−T
−t with B set to ∞ the expression simplifies to

r−T
−t (a, c) = sup

v∈[t,T ]
x(−v,−t],

reassuringly the same as the infinite-buffer equations in Section 5.6. Now,
we know from that section that a stable queue empties from time to time.
To be precise, if (a, c) ∈ Cµ × Cν and µ < ν, then there must be some time
−t such that r−∞

−t = 0, and hence r−T
−t = 0 for all T ≥ t. If the infinite-buffer

queue is empty at −t, the finite-buffer queue must be empty too (we have
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just seen that queue size is increasing in buffer size), and so q−T
−t = 0 for all

T ≥ t. Now, by rewriting (5.14),

q−T
0 (a, c) =

[
q−T
−t + x(−t, 0]

]infu∈[0,t] nu∨(mu+B)

supu∈[0,t] nu∧(mu+B)
.

So
q−T
0 = q−t

0 for all T ≥ t. (5.16)

This is another justification for why the limit (5.15) exists.
The last task is to show that the queue size function is continuous. Let

(an, cn) → (a, c) in Cµ ×Cν. First, let us restate (5.16). We have seen that if
r−t = 0 then q−U

0 = q−t
0 for any U ≥ t. In particular, if there exists a T such

that r−t = 0 for some t ≤ T , then q−U
0 = q−T

0 for any U ≥ T . From Lemma
5.5, this time horizon T can be chosen uniformly in (a, c) and (an, cn). So
there exists T such that q0(a, c) = q−T

0 (a, c) and q0(an, cn) = q−T
0 (an, cn).

Lemma 5.7 says that q−T
0 is continuous with respect to the topology of

uniform convergence on compact intervals, so we are done. We have proved

Theorem 5.9 The finite-buffer queue size function q−t : Cµ × Cν → R is
continuous, if µ < ν.

Exercise 5.4
In fact, for stable queues, the queue size definition (5.15) can be written
more simply. Show that if a ∈ Cµ and c ∈ Cν and µ < ν then

inf
u≥t

nu ∨ (mu +B) = sup
u≥t

nu ∧ (mu +B).

Deduce that q−t(a, c) is equal to this common value, and in particular that

q0(a, c) = sup
t≥0

(
sup

0≤s≤t
x(−s, 0]

)
∧
(
B + inf

0≤s≤t
x(−s, 0]

)

where x(−s, 0] = a(−s, 0] − c(−s, 0]. Conclude that the queue size in a
finite-buffer queue is no larger than that in an infinite-buffer queue with the
same service rate. �

5.8 Queueing Delay

How long does it take to ‘drain’ the queue? Let Q0 be the queue size at
time 0, and C(0, t] the amount of service available in the interval (0, t]. The
time to drain the queue is defined to be

W = inf
{
t ∈ N0 : C(0, t] ≥ Q0

}
.
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To apply the contraction principle, we want to express this in continuous
time. The natural guess is the function

w(a, c) = inf
{
t ∈ R

+ : c(0, t] ≥ q0(a, c)
}
.

There are several problems with this. First, it involves c(0, t] for t > 0, but
we have so far only settled on a topology for the history of a process prior to
time 0, not its future. Second, the function w is not even continuous. Third,
because of discretization effects, the two expressions do not agree when a
and c are polygonalized versions of the arrival and service processes. We
will deal with these problems in turn.

The space Cµ we defined in Section 5.4 only contains enough informa-
tion to describe the past of a process. It is simple enough to add in the
future, though: let cpre(·) and cpost(·) be two processes in Cµ, and extend
our convenient notation accordingly:

c(u, v] = cpre([−u]+) − cpre([−v]+) + cpost(v+) − cpost(u+).

Treat c as living in the space C2
µ. (In fact, we can make do with a coarser

topology for the future half of c; but if the past satisfies an LDP in Cµ it
is natural to suppose that the future does too, so we will not complicate
matters by working with different topologies.)

It turns out that there are insurmountable difficulties unless the service
rate is bounded below, so let us assume that c(u, v] ≥ c0(v−u) for all u ≤ v,
for some c0 > 0. Then the function w is continuous:

Lemma 5.10 The function w is continuous on Cµ × Xν for µ < ν, where
Xν is the restriction of C2

ν to the set of service processes whose service rate
is bounded below by c0 > 0.

Proof. Let (an, cn) → (a, c) in Cµ × Xν . By continuity of the queue size
function, and since µ < ν, q0(an, cn) → q0(a, c) and q0(a, c) < ∞. Since the
service rate is bounded below, w(a, c) is finite.

Pick any ε > 0 and let u = w(a, c). Since c ∈ Xν , c is continuous, so
c(0, u] = q. Using the fact that the service rate is bounded below,

q0(a, c) − c(0, u− ε] = q0(a, c) +
(
c(0, u] − c(0, u − ε]

)
− c(0, u]

= c(u− ε, u] ≥ c0ε.

Now q0 is continuous, and cn → c uniformly over finite intervals, so

q0(an, cn) − cn(0, u− ε] → q0(a, c] − c(0, u − ε].
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For n sufficiently large, the left hand side must be strictly positive, and so
w(an, cn) > u− ε. Similarly one can show that w(an, cn) < u+ ε. But ε was
arbitrary, hence w(an, cn) → w(a, c). �

If the service rate is not bounded below, w may not even be finite. Even
when w(a, c) and every w(an, cn) lie in some finite interval, it may still be
that w is discontinuous. (Demonstrating this is left as an exercise.)

The final problem is that W is not equal to w(Ã, C̃) where Ã and C̃ are
the polygonalized versions of A and C. This is not in fact a serious problem.
We will later study queueing delay in the regime described in Section 5.2,
which considers the sequence of scaled arrival process

ÃN (−t, 0] =
1
N
Ã(−Nt, 0]

and similarly for C̃N , as N → ∞. It is clear that
∣∣w(ÃN , C̃N ) −W/N

∣∣ ≤ 1
N

Therefore we will be able to use the version of the approximate contraction
principle described in Example 4.6 to obtain an LDP for W/N .

To study queueing delay for discrete-time processes, of the sort described
in Chapters 7 and 9, one should redefine W to be an infimum over t ∈ R

+
0 .

Otherwise neither this approximation technique nor even Lemma 5.10 works.

5.9 Priority Queues

This is our first example of a queue which shares its capacity between several
flows. Happily, the proof of continuity is trivial, much simpler than the
processor sharing queue in the next section.

Define a priority queue, operating in discrete time, as follows. Let A1
t be

the amount of high-priority work arriving at time t, let A2
t be the amount

of low priority work, and let Ct be the amount of service available. Let Q1
t

and Q2
t be the high-priority and low-priority queue sizes at time t. Their

evolution is described by the recursion

Q1
t = [Q1

t−1 +A1
t − Ct]+ (5.17)

Q2
t = [Q2

t−1 +A2
t − (Ct −Q1

t−1 −A1
t )

+]+.

The second equation can be rewritten

Q1
t +Q2

t = [Q1
t−1 +Q2

t−1 +A1
t +A2

t −Ct]+. (5.18)
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These equations are the standard Lindley equations: (5.17) for a queue fed
by A1, (5.18) for a queue fed by A1 + A2. So it is not hard to see that a
consistent version of the queue-size equations in continuous time is

q1−t = q−t(a1, c)

q2−t = q−t(a1 + a2, c) − q−t(a1, c)

where q−t(a, c) is the normal queue size function q−t(a, c) = supu≥t a(−u,−t]−
c(−u,−t].

Assume the high-priority input a1 is an arrival process in Cµ1 , the low-
priority input a2 is an arrival process in Cµ2 , and c is a service process
in Cν , for some ν > µ1 + µ2. Since (a1, c) �→ q−t(a1, c) is continuous, and
(a1, a2, c) �→ q−t(a1+a2, c) is continuous, the function (a1, a2, c) �→ (q1−t, q

2−t)
is also continuous.

5.10 Processor Sharing

Loosely speaking, a processor sharing queue divides its service between sev-
eral inputs according to a weighted priority scheme. This can be used to
model queueing systems in which the capacity is divided fairly between con-
current users. In this section we describe the queue size function, and also
outline some new machinery—a way to show that the queue size function is
continuous without having to find an explicit formula. (In fact in this case
an explicit formula is known; but it is worth mentioning the new machinery
nonetheless.)

Note. We will not develop LDPs for processor sharing models in this book.
Such results can be found in [4, 8, 22, 38, 50, 72], and also in [78] which
follows our general approach. The cover illustration is of a processor sharing
queue; it plots the amount of work in the queue from each input flow, and
shows paths to overflow, both a simulated path and the most likely path
predicted by large-buffer large deviations theory.

To explain the model precisely: a processor sharing queue (with two
inputs, and constant service rate, for simplicity) evolves in discrete time
according to

Qi
t =

[

Qi
t−1 + Ȧi

t −
{
piC if Qj

t−1 + Ȧj
t > pjC

C −Qj
t−1 − Ȧj

t if Qj
t−1 + Ȧj

t ≤ pjC

]+

(5.19)
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where the two arrival streams are A1 and A2, the weights are p1 and p2, and
the service rate is C, and the equation holds for i �= j ∈ {1, 2}. (Recall our
notation for discrete-time processes: Ȧt is the amount of work that arrives
at time t.)

In words, each queue i is offered an amount of service piC. If one queue
does not have enough work to make use of all this offered service, the unused
service is offered to the other queue.

Some more notation: use a superscript (·)Σ to denote sums and omit the
superscript to denote pairs, so that pΣ = p1 + p2 and p = (p1, p2) etc.

Toomey [93] has found an explicit solution to this recursion, a solution
which extends to continuous time. If the continuous-time arrival processes
are (a1, a2) ∈ CT × CT , we set xi(s, t] = ai(s, t] − piC(t− s), and we impose
the boundary condition that the queues are empty at time −T , then

qi
0 = inf

0≤u≤T
max

{ sup
0≤s≤u

xi(−s, 0],

sup
u≤s≤T

xΣ(−s,−u] + xi(−u, 0]

}

(5.20)

where the equation holds for i �= j. Of course, we can also define qi−t for
0 ≤ t ≤ T in this way. It is tedious but not difficult to show that the
continuous-time solution does indeed agree with the discrete-time recursion,
i.e. that if we take a discrete-time input process, polygonalize it, and apply
the continuous-time queue size functions, we get the same answer as we do
from the discrete-time recursion. This is left as an exercise. (Hint: write
down a recursion based on (5.20).)

It is also not difficult, and left as an exercise, to show that these functions
are continuous on CT × CT .

Thus, given the boundary condition qi
−T = 0, we have defined the queue

size functions qi
0. Write this latter quantity qi

0(a|(−T,0]), to emphasize the
boundary condition. The last step is to extend the definition to complete
input sample paths in Cµ1×Cµ2, for µ1+µ2 < C, and to check that the result-
ing functions are continuous. As before, we will use the intuitive boundary
condition that ‘the queue was empty at time −∞’. In other words, we would
like to define

qi
0(a) = lim

T→∞
qi
0(a|(−T,0]). (5.21)

Lemma 5.11 For a ∈ Cµ1 × Cµ2 , and µΣ < C, this limit exists, and fur-
thermore, the functions qi

0 are continuous on Cµ1 × Cµ2 .
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Sketch proof. Consider the single-server queue size function q−t(aΣ). Since
µΣ < C, the single-server queue fed by aΣ is stable, and so there exists some
t such that q−t(aΣ) = 0. Fix some T ≥ t; then q−t(aΣ|(−U,0]) = 0 for U ≥ T .
(The purpose of this circumlocution about T will become clear later.)

It is easy to verify from (5.20) that if q0(aΣ|(−U,0]) = 0 then qi
0(a|(−U,0]) =

0 for each i. (In fact, we would expect that the sum of the two qi
0 should equal

q0(aΣ), but this is harder to check.) Applying this to time −t, qi−t(a|(−U,0]) =
0 for all U ≥ T .

Now, one can rewrite qi
0(a|(−U,0]) as a function of the queue sizes at time

−t, qi−t(a|(−U,0]), and of the arrival process thereafter, a|(−t,0]. Since the
former quantity does not depend on U (for U ≥ T ), qi

0(a|(−U,0]) does not
depend on U , and in particular

qi
0(a|(−U,0]) = qi

0(a|(−T,0]) for all U ≥ T .

This proves the existence of the limit (5.21).
Furthermore, it establishes continuity, by virtue of Lemma 5.5, which

says that for a convergent sequence of arrival processes, one can find a
uniform horizon bound T ; the continuity of the finite-horizon queue size
functions has already been remarked upon. �

Fluid Equations

One does not always have the ingenuity to take a discrete-time recursion and
write down an explicit continuous-time solution. (For example, no analogue
of (5.20) is known when there are more than two buffers.) For such occasions,
there is a more powerful approach, which we now outline. First, rewrite the
discrete-time equation in terms of Xi(s, t] = Ai(s, t] − piC(t− s):

Qi
t −Qi

t−1 =

[

Ẋi
t +

{
0 if Qj

t−1 + Ẋj
t > 0

Qj
t−1 + Ẋj

t if Qj
t−1 + Ẋj

t ≤ 0

]

∨
(
−Qi

t−1

)
.

This helps to motivate the following system of integral equations (also called
fluid equations): for i �= j and t ∈ [−T, 0],

qi
−T = 0 and qi

t =
∫ t

s=−T

[
ẋi

s +

{
0 if qj

s > 0
ẋj

s if qj
s = 0

]+(qi
s=0)

ds (5.22)

where the notation [x]+(y=0) means

[x]+(y=0) =

{
x+ if y = 0
x if y > 0.
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When the arrival processes are polygonalized versions of discrete-time arrival
processes, it is easy to check that this system of equations has a unique
solution, which one can construct recursively on intervals, and that this
solution agrees with the discrete-time recursion (5.19).

For the equations to make sense for general arrival processes, we have
to assume that (a1, a2) ∈ AT × AT , i.e. that the arrival processes are
absolutely continuous, meaning that the instantaneous rates ẋ1

s and ẋ2
s exist

almost everywhere. (Note that the slicker explicit definition (5.20) works
even when the arrival processes are not absolutely continuous.) Given this
assumption, Dupuis and Ramanan [38] show that the system of equations
(5.22) has a unique solution, and that the solution is continuous with respect
to the topology of uniform convergence.

It remains to extend the queue size functions from AT ×AT to Aµ1×Aµ2 .
This is very similar to Lemma 5.11—even easier, in fact, since it is easy to
see from (5.22) that

qΣ−T = 0 and qΣt =
∫ t

s=−T

[
ẋΣ

s

]+(qΣ
s =0)

and thence to relate the queue size functions for the processor sharing model
to that for a single server queue.

Note. In (5.22), the process x is called the free process. The queue size
process q tries to follow x, but is constrained so that q ≥ 0. It is only
constrained when it is at the boundary of its permissible region; the manner
of the constraint is implicit in the equation. This is a rather general way
of looking at many problems in queueing theory, referred to as Skorokhod
problems. Dupuis and Ramanan [38] develop this approach.

5.11 Departures from a Queue

A rather harder problem is to show that the function which maps an input
process to the corresponding output process is continuous. If we can prove
this, we can use the contraction principle to deduce an LDP for the out-
put process; and, indeed, for the traffic flow at any point in a feedforward
network.

The first step is to define the output process. Consider a queue with
an infinite buffer and variable service rate. Let At be the amount of work
arriving at time t, and let Ct be the amount of service offered at time t.
Define the amount of work departing the queue at time t to be

Dt = At +Qt−1 −Qt. (5.23)
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As before, Qt denotes the queue size at time t.
To express what we want to show, we need some more precise nota-

tion. As usual, write A(−t, 0] for the cumulative arrival process, A(−t, 0] =
A−t+1 + · · · + A0, with A(0, 0] = 0, and C(−t, 0] similarly. Let a and c be
the polygonalizations of A and C. As usual, the queue size at time −t is

q−t = sup
−u≤−t

a(−u,−t] − c(−u,−t].

To make sure that the queue is well-behaved, we will assume from now on
that the arrival process a lives in Cµ and the service process c lives in Cν ,
and that µ < ν.

Now we can define the departure process properly. The polygonalized
departure process is simply

d(−t, 0] = a(−t, 0] + q−t − q0. (5.24)

Persuade yourself that this is consistent with (5.23).
The work of this section is to show that d ∈ Cµ, and that the map from

(a, c) to d is continuous.

Lemma 5.12 If a ∈ Cµ and c ∈ Cν and µ < ν, then d ∈ Cµ.

Proof. We need to show that d(t) is continuous in t, that d(0) = 0, that
supt |d(t)/(t + 1)| is finite, and that d(t)/(t + 1) → µ.

For continuity: we want to show that d(t), or equivalently d(−t, 0], is
continuous in t. Rewrite it by expanding q−t to give

d(−t, 0] = c(−t, 0]+ sup
−u≤−t

{
a(−u, 0]−c(−u, 0]

}
+ sup

−u≤0

{
a(−u, 0]−c(−u, 0]

}
.

(5.25)
The first term c(−t, 0] is continuous. The third term does not involve t.
And it is not hard to check that the second term is continuous also. So d is
continuous.

It’s also obvious from (5.24) that d(0, 0] = 0.
For the last part, note that a(−t, 0]/(t+1) → µ (since a ∈ Cµ), and that

q0 is finite (by Theorem 5.3) so that q0/(t+ 1) → 0. It will therefore suffice
to show that q−t/(t+ 1) → 0, which we do now.

Start with the expression for q−t:

q−t = sup
−u≤−t

a(−u,−t] − c(−u,−t].
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Given any ε > 0, there exists T such that for t ≥ T , |a(t) − µt| < ε, and so

|a(−u,−t] − µ(u− t)| < ε(t+ u).

Similarly for c. This implies that, for t ≥ T ,

q−t ≤ sup
−u≤−t

−(ν − µ)(u− t) + 2ε(u+ t)

= sup
−u≤−t

−(ν − µ− 2ε)u+ (ν − µ+ 2ε)t.

We may assume 2ε < ν − µ. Then, taking the supremum over −u ≤ −t,

q−t ≤ −(ν − µ− 2ε)t + (ν − µ+ 2ε)t = 4εt.

Thus q−t ≤ 4εt for t ≥ T . Since ε was arbitrary, q−t/(t+ 1) → 0. �

Note. If we are dealing with absolutely continuous processes, a similar cor-
responding result holds. We just need to argue that if a and c are absolutely
continuous, then so is d.

To see this, rewrite d(−t, 0] as in (5.25). The first term c(−t, 0] is absolutely
continuous. The third term does not involve t. So we just need to check that
the second term is absolutely continuous. Write x(u) = a(−u, 0] − c(−u, 0];
this is absolutely continuous. Write y(t) = supu≥t x(u). Note that for s > t,

y(s) − y(t) = sup
u≥s

x(s) − sup
u≥t

x(t)

=
[

sup
t≤u≤s

x(u) − sup
u≥t

x(u)
]+

≤
∣
∣
∣ sup
t≤u≤s

x(u) − x(s)
∣
∣
∣

= |x(t′) − x(s)|

for some t′ ∈ [t, s]. If [ti, ui] is a partition of R+, then [t′i, ui] is a smaller
partition, in the sense of (5.4). Since x is absolutely continuous, it must be
that y is absolutely continuous. Hence d is absolutely continuous.

Theorem 5.13 (Continuity of departure process) The function (a, c) �→
d, defined in (5.24), is a continuous function Cµ × Cν → Cµ, for µ < ν.
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Proof. Let an → a and cn → c. We want to show that dn → d. Write it out:

‖dn − d‖ = sup
t≥0

∣
∣∣
d(−t, 0] − dn(−t, 0]

t+ 1

∣
∣∣

≤ sup
t≥0

∣∣
∣
a(−t, 0] − an(−t, 0]

t+ 1

∣∣
∣+ sup

t≥0

∣∣
∣
q0 − qn

0
t+ 1

∣∣
∣+ sup

t≥0

∣∣
∣
q−t − qn−t

t+ 1

∣∣
∣.

The first term → 0 since an → a. The supremum in the second term is
attained at t = 0, and the second term → 0 since q0 is a continuous function
of (a, c). It remains to show that the third term → 0.

We will adopt the strategy of breaking up the supremum into three parts:
for any T ,

sup
t≥0

∣∣
∣
q−t − qn−t

t+ 1

∣∣
∣ ≤ sup

0≤t<T

∣∣
∣
q−t − qn−t

t+ 1

∣∣
∣+ sup

t≥T

∣∣
∣
q−t

t+ 1

∣∣
∣+ sup

t≥T

∣∣
∣
qn−t

t+ 1

∣∣
∣.

The second two term first. As in Lemma 5.12, given ε > 0 (and assuming
2ε < ν − µ), there exists a T (depending on s and c) such that for t ≥ T ,

q−t < 4εt.

Take in addition N such that for n ≥ N , ‖an − a‖ < ε and ‖cn − c‖ < ε, so
that

|a(−u,−t]−an(−u,−t]| ≤ ε(t+ u+ 2) for all t,u (5.26)

and similarly for c. By a similar argument (and assuming 4ε < ν − µ), for
the same T as before, for t ≥ T and n ≥ N ,

qn
−t < 8ε(t + 1).

So given ε > 0 there exists a T and an N such that for t ≥ T and n ≥ N

sup
t≥T

∣
∣∣
q−t

t+ 1

∣
∣∣+ sup

t≥T

∣
∣∣
qn−t

t+ 1

∣
∣∣ < 12ε.

Now for the first term. With T and N as above,

a(−u,−t] − c(−u,−t] ≤ −(ν − µ)(u− t) + 2ε(t+ u)
= −(ν − µ− 2ε)u+ (ν − µ+ 2ε)t, and

an(−t,−u] − cn(−u,−t] ≤ −(ν − µ− 4ε)u+ (ν − µ+ 4ε)t+ 2ε.
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Assume that 4ε < ν − µ. Then there is a T ′ (depending on ε and T ) such
that for −u ≤ −T ′,

a(−u,−t] − c(−u,−t] < 0 and an(−u,−t] − cn(−u,−t] < 0.

So the supremums over −u ≤ −t in q−t and qn−t can be replaced by supre-
mums over −T ′ ≤ −u ≤ −t. Now, for −t ≥ −T and −T ′ ≤ −u ≤ −t, again
using (5.26),
∣
∣
∣
(
a(−u,−t]−c(−u,−t])−(an(−u,−t]−cn(−u,−t])

∣
∣
∣ ≤ 2ε(t+u+2) ≤ 2ε(T+T ′+2),

and putting this into the quantity we want to estimate,

|q−t − qn
−t| =

∣
∣
∣
(

sup
t≤u≤T ′

a(−u,−t]− c(−u,−t])− (
sup

t≤u≤T ′
an(−u,−t] − cn(−u,−t])

∣
∣
∣

≤ 2ε(T + T ′ + 2).

This bound does not depend on the value of t ∈ [0, T ]. Thus

sup
t≤T

∣
∣∣
q−t − qn−t

t+ 1

∣
∣∣ ≤ 2ε(T + T ′ + 2).

This completes the proof. �

An extension is to the case where there are several separate input flows,
sharing the buffer say in a first-come–first-served fashion. A limitation is
that our results only apply to queues with infinite buffers:

Example 5.5
Consider a bufferless resource with constant service rate c. Consider the
arrival process a which has constant arrival rate µ > c/2, so that a(t) = µt,
and the collection of arrival processes an defined by their time-derivatives

ȧn
s =






µ if s < n

µ+ (c− µ+ ε) if s > n and �s� is odd
µ− (c− µ+ ε) if s > n and �s� is even.

for some 0 < ε < 2µ− c. Observe that

sup
t≥0

∣
∣∣
an(t) − a(t)

t+ 1

∣
∣∣ =

c− µ+ ε

n+ 2

which implies that ‖an − a‖ → 0 in Cµ.
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We haven’t formally defined the departure process for queues with finite
buffers, or even for bufferless resources like this one. We will simply assert
that the natural choice of departure process is

ḋs = ȧs ∧ c

and similarly for ḋn. So d(t) = a(t) = µt and d(t)/(t + 1) → µ, whereas

dn(t)
t+ 1

→ µ− 1
2ε

and so
dn(t) − d(t)

t+ 1
→ −1

2ε.

Thus ‖dn − d‖ �→ 0. �

We are not aware of a suitable topology for dealing with departures from
queues with finite buffers.

5.12 Conclusion

We have explained the second ingredient for the contraction principle—a
continuous function AL �→ f(AL). We have introduced several general pieces
of machinery for producing continuous functions. The general procedure we
have followed is this:

i. Start with a discrete-time recursion for the queueing system of interest.
If we are able, write down an explicit solution for the state of the system at
time 0, given a boundary condition of the form ‘the system was empty at
time −T ’. This is known as a finite-horizon solution.

ii. Produce a continuous-time definition of the quantity of interest, sub-
ject to the same finite-horizon boundary condition. If we have an explicit
discrete-time solution, this part is easy. If we do not have an explicit solu-
tion, we may be able to make do by working with a system of differential
equations, referred to as the fluid equations, which is the analogue of the
discrete-time recursion. Verify that this continuous-time definition is con-
sistent with the discrete-time solution, i.e. that it agrees on piecewise-linear
inputs.

iii. Prove that the finite-horizon function is continuous with respect to the
topology of uniform convergence over finite time horizons.
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iv. Extend the finite-horizon definition to the infinite-horizon boundary
condition, which says that ‘the queue was empty at time −∞’. This can
often be done by comparing the system of interest to a simple queue with an
infinite buffer, noting that this simple queue must be empty at some time
−T , deducing that the system of interest was also empty at time −T , and
using the finite-horizon definition to work out the state of the system at
time 0.

v. Prove that the infinite-horizon function found in (iv) is continuous
with respect to the topology of interest. This can often be done by finding
a uniform horizon −T , such that the system of interest must be empty at
some time in [−T, 0].

It may be that we are only interested in the behaviour of the system
over a finite horizon, in which case steps (iv) and (v) are unnecessary. This
is also known as studying the transients of the system, as opposed to the
steady state behaviour. It’s clear from the above list that to understand the
steady state behaviour one must first understand the transients.

Item (ii) may not always be necessary: it depends whether we want
our function f(AL) to be defined on continuous-time processes AL, or on
discrete-time processes AL. In Chapter 6 on the large-buffer scaling regime
and Chapter 8 on long-range dependence, it is necessary to work in contin-
uous time; in Chapter 7 on the many-flows scaling regime and in Chapter 9
on moderate deviations we could work in either, but we choose to work in
discrete time. In this chapter we have worked in continuous time, because
this yields discrete-time results as trivial corollaries.

Item (ii) refers to the case where we are not able to find an explicit
solution to the discrete-time recursion, and must make do with the fluid
equations. It is well known that for more complicated systems, the fluid
equations do not have a unique solution; if that is so, they clearly cannot
give us a definition for the quantity of interest, so we must either work
harder to find an explicit solution, or content ourselves with working solely
with discrete-time processes.

It remains to explain the first ingredient for the contraction principle, a
large deviations principle for AL. We do this in several different ways in the
following chapters.
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Large-Buffer Scalings

In this chapter, we describe how the continuous mapping approach, pre-
sented in the previous chapter, can be used to obtain large-buffer asymp-
totics for queueing networks. The key steps are as follows.

i. We try to express the quantities of interest (e.g. queue lengths) as
continuous functions of the suitably scaled inputs (e.g. sample paths of the
arrival and service processes) in a suitable topology. Suitable functions have
been given in Chapter 5; part of the work of this chapter is to understand
how those functions relate to large-buffer scalings.

ii. Assuming that the inputs satisfy an appropriate LDP, we obtain an
LDP for the quantity of interest, via the contraction principle. In Section
6.2 we give conditions under which the inputs satisfy an appropriate LDP.

iii. Typically, the rate function for this LDP will be given as the solution to
a variational problem. We will show in a number of cases how to solve this
variational problem, by exploiting convexity. More complicated examples
where this approach has been applied, including the first-in first-out single-
server queue with multiple inputs, have been studied by Majewski [63] and
also in [76, 77, 78]. Nonetheless, the fact remains that explicit solutions can
only be obtained in a few special cases.

Note. You should ensure you are familiar with the direct proof of the large-
buffer limiting result in Section 1.3 and with the introduction to Chapter 5
before proceeding.

6.1 The Space of Input Processes

We will suppose that the raw data for the network can be represented as a
sequence of R

d-valued random variables (X(t), t ∈ N), for some fixed d. For

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 105–150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



106 Chapter 6

example, in modelling a simple queue we might let A(t) be the amount of
work arriving in the interval (−t, 0] and C(t) the amount of service offered
in that same interval, and let X(t) =

(
A(t), C(t)

)
.

We will suppose that we are interested in a sequence of quantities which
can be expressed as a continuous function of a sequence of scaled versions
of X. To make this precise, for fixed N ∈ N let (X̃N (t), t ∈ R

+
0 ) be the

piecewise linear approximation to a scaled version of X: for t ∈ R
+
0 ,

X̃(t) =
(�t+ 1� − t

)
X(�t�) +

(
t− �t�)X(�t+ 1�)

and

X̃N (t) =
1
N
X̃(Nt), (6.1)

where �t� denotes the integer part of t. The function X̃ is called the polyg-
onalization of X. We will suppose we are interested in the sequence of
quantities f(X̃N ), for some continuous function f .

In order to talk about the continuity of f , we need to specify a topological
space for the processes X̃N . When d = 1 we will work with Cµ (for some
µ ∈ R) as described in Section 5.4. This is the space of continuous functions
x : R

+
0 → R for which x(0) = 0 and limt→∞ x(t)/(t+ 1) = µ, equipped with

the topology induced by the scaled uniform norm

‖x‖ = sup
t∈R

+
0

∣
∣∣
x(t)
t+ 1

∣
∣∣. (6.2)

We will also work with Aµ, the subspace of Cµ consisting of absolutely
continuous functions. We will also need to refer to CT and AT , the spaces of
continuous and absolutely continuous functions x : [0, T ] → R with x(0) = 0,
equipped with the topology of uniform convergence. When d > 1 and µ ∈ R

d

we will refer to Cµ = Cµ1 × . . .× Cµd
etc. in the obvious way.

If the function f is continuous, and if the sequence of processes X̃N

satisfies a large deviations principle in the appropriate space, then f(X̃N )
will satisfy a large deviations principle

Some convenient notation. For talking about abstract processes, we
will use the notation given above. When we come to study queues, it will be
more convenient to use the extended notation which we described in Section
5.5. Write



Large-Buffer Scalings 107

x(−t, 0] for x(t)
x(−t,−u] for x(t) − x(u), when t ≥ u
x|(−t,0] for the restriction of x to [0, t]
ẋ−t for −dx/dt, when x(t) is indexed by t ∈ R

Ẋ−t for X(t+ 1) −X(t), when X(t) is indexed by t ∈ N

6.2 Large Deviations for Partial Sums Processes

In order to apply the general method outlined above, we need the sequence
X̃N of scaled polygonalized sample paths to satisfy an LDP in Cµ. We want
to find conditions on the input process (X(t), t ∈ N) under which the X̃N

can be expected to satisfy such an LDP. In the rest of this section we give
such conditions. For the applications in this chapter all that will matter is
the main result, which we now state as a definition.

Definition 6.1 Say that the sequence of processes (X̃N , N ∈ N) satisfies a
sample path LDP with linear geodesics, with instantaneous rate function h,
if the following hold:
i. h is a convex rate function and h(µ) = 0 for some µ, referred to as the

mean rate;
ii. (X̃N , t ∈ N) satisfies an LDP in the topological Cµ with good rate func-

tion

I(x) =

{∫∞
0 h

(
ẋ(s)

)
if x ∈ Aµ

+∞ otherwise.
(6.3)

Note that I is convex because Λ∗ is, and that Λ∗ is good because I is. The
meaning of the term ‘linear geodesics’ will be made clear in Section 6.3.

A standard example of such a process is obtained fromX(t) = Y1+· · ·+Yt

where (Yt, t ∈ N) is a sequence of i.i.d. random variables, and where the
X̃N are the scaled polygonalized versions of X given by (6.1). Let Λ(θ) =
logEeθY1 , and suppose it is finite in a neighbourhood of the origin. Then
the X̃N satisfy a sample path LDP with linear geodesics, with instantaneous
rate function Λ∗, and by Lemma 2.6 the mean rate is EY1. We will now go
on to detail weaker conditions under which conclusion holds.

Note. The rest of this section is rather technical. The details are interesting
from the point of view of general large deviations theory, but less interesting
from the point of view of applications to queueing. We suggest that it be
omitted on first reading.
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LDP over Finite Horizon

To start with, let (Yt, t ∈ N) be a sequence of i.i.d. random variables taking
values in R, and let

X(t) = Y1 + · · · + Yt.

Let Λ be the cumulant generating function of Y0 and Λ∗ its convex conjugate,

Λ(θ) = logEeθY1 and Λ∗(x) = sup
θ∈R

θx− Λ(θ).

We saw in Chapter 2 that, by Cramér’s Theorem, the sequence X(t)/t sat-
isfies a large deviations principle in R with rate function Λ∗.

Now fix positive constants T and 0 = α0 < α1 < · · · < αk = T , and
consider the sequence of random variables

ZN =
1
N

(
X
(�α1N�), X(�α2N�)−X

(�α1N�),
. . . ,X

(�αkN�)−X
(�αk−1N�)

)
.

One can show that, for each j ∈ {1, . . . , k}, the sequence

X
(�αjN�)−X

(�αj−1N�)

N
, N ∈ N,

satisfies an LDP in R with rate function

(αj − αj−1)Λ∗
( x

αj − αj−1

)
.

(See Exercise 2.11.) Since these random variables for different values of j
are independent of each other, it is natural to expect that (ZN , N ∈ N)
satisfies an LDP in R

k with rate function

I
(
(xk, . . . , x1)

)
=

k∑

j=1

(αj − αj−1)Λ∗
( xj

αj − αj−1

)
, (6.4)

and this is indeed the case.
Loosely speaking, if we look at the partial means of the sequence Yt over

disjoint intervals, then any finite collection of such partial means satisfies
an LDP. Not only does the sample mean X(NT )/NT concentrate around
EX1, but also the process (X(Nt)/N, 0 ≤ t ≤ T ) concentrates around the
straight line of slope EX1. And just as we can ask how likely the sample
mean is to be ‘close to’ any x ∈ R, so can we ask how likely the sample path
is to lie ‘close to’ an arbitrary curve x : [0, T ] → R.
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The following result makes this rough idea precise. It is due to Varadhan
and Mogulskii. Let CT denote the space of continuous functions x : [0, T ] →
R for which x(0) = 0, equipped with the topology of uniform convergence,
and let AT denote the subspace consisting of absolutely continuous func-
tions. (The result is often stated for T = 1. It is simple to generalise it to
arbitrary T > 0.)

Theorem 6.1 (Sample path LDP for the partial sums process) Let
(Yt, t ∈ N) be a sequence of i.i.d. random variables, and let Λ be the cumu-
lant generating function for Y1. Assume that Λ(θ) is finite for all θ ∈ R.
Let X(t) be the partial sums process X(t) = Y1 + · · ·+ Yt, and let X̃N ∈ CT

be the scaled polygonalized partial sums process as in (6.1), restricted to the
interval [0, T ]. Then the sequence (X̃N , N ∈ N) satisfies an LDP in CT

with rate function

IT (x) =

{∫ T
0 Λ∗(ẋ(s)

)
ds if x ∈ AT

∞ otherwise.
(6.5)

Note. Observe that this rate function is consistent with (6.4). Intuitively,
(6.4) specifies the rate function for piecewise linear x. Since any sufficiently
smooth x can be approximated by piecewise linear functions, the rate function
in (6.5) is as we would expect.

In fact, the LDP for X̃N holds even if Λ is finite only in a neighbourhood
of zero, and it holds even if the random variables (Yt, t ∈ N) are weakly
dependent. Dembo and Zajic [24] describe rather general conditions under
which the LDP can be proved.

LDP over Infinite Horizon

This family of results (an LDP for X̃N |[0,T ] for each T ) can immediately
be extended to an LDP for the entire process X̃N using a standard result
known as the Dawson-Gärtner theorem for projective limits. This establishes
that (X̃N , N ∈ N) satisfies an LDP in the space of continuous functions
x : R

+
0 → R for which x(0) = 0, equipped with the topology of uniform

convergence on compact intervals, with good rate function

I(x) = sup
T∈R

+
0

IT (x|[0,T ])
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where IT is the rate function for X̃N |[0,T ]. By non-negativity of Λ∗, the
supremum is

I(x) =

{∫∞
0 Λ∗(ẋ(s)

)
ds if x is absolutely continuous

∞ otherwise.

Strengthening the Topology

However, this topology is not fine enough for many queueing applications,
since even the queue size function for a single-server queue with an infi-
nite buffer is not continuous with respect to it (as we noted in Chapter 5,
Example 5.2). This has prompted the consideration of finer topologies, for
example by Dobrushin and Pechersky [30] and Ganesh and O’Connell [41].
The next theorem follows the latter.

Let (Yt, t ∈ N) be a stationary sequence of R
d-valued random variables,

and let X(t) = Y1 + · · ·+ Yt. Let X̃N be the scaled polygonalized version of
X, as in (6.1). Suppose that for each θ ∈ R

d the limit

Λ(θ) = lim
N→∞

1
N

logE exp
(
Nθ · X̃N (1)

)
(6.6)

exists as an extended real number, and that, for each T > 0, the sequence
(X̃N |[0,T ], N ∈ N) satisfies an LDP in CT with good rate function

It(x) =

{∫ T
0 Λ∗(ẋ(s)

)
ds if x ∈ AT

∞ otherwise
(6.7)

where Λ∗ is the convex dual of Λ.

Theorem 6.2 In the above setting, if Λ is differentiable in a neighbourhood
of the origin, then X̃N satisfies a sample path LDP with linear geodesics,
with mean rate µ = ∇Λ(0) and instantaneous rate function Λ∗, that is, it
satisfies the LDP in the topological space Cµ with good rate function

I(x) =

{∫∞
0 Λ∗(ẋ(s)

)
ds if x ∈ Aµ

∞ otherwise.
(6.8)

Proof. From the assumptions of the theorem, and using the Dawson-Gärtner
theorem for projective limits, the sequence X̃N satisfies an LDP in the space
of continuous functions x : R

+
0 → R

d for which x(0) = 0, equipped with the
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topology of uniform convergence on compacts, with good rate function I(x)
given by (6.8).

Let µ = ∇Λ(0). Lemma 6.3 shows that the effective domain of I is con-
tained in Cµ, and that P (X̃N ∈ Cµ) = 1; and so by Lemma 4.9, X̃N satisfies
an LDP in the set Cµ equipped with the topology of uniform convergence on
compacts, with good rate function I. Denote this space by (Cµ, τp) (where
τp stands for projective limit topology).

It remains to strengthen the topology to the scaled uniform topology,
i.e. the topology induced by the norm ‖ · ‖ given by (6.2). The space Cµ

is defined to have this topology, but we will emphasize the fact by writing
it as (Cµ, ‖ · ‖). We will strengthen the LDP from (Cµ, τp) to (Cµ, ‖ · ‖) by
appealing to the inverse contraction principle. We need to find, for each
α ∈ R

+, a compact set Kα in (Cµ, ‖ · ‖) for which

lim
α→∞ lim sup

N→∞
1
N

log P (X̃N �∈ Kα) = −∞. (6.9)

We construct these sets as follows. We know that X̃N |[0,1] satisfies an LDP
in C1 with good rate function I1, and that C1 is a Polish space. It follows
that X̃N |[0,1] is exponentially tight, i.e. that there exists a family of compact
sets L′

α ⊂ C1 for which

lim sup
N→∞

1
N

logP
(
X̃N |[0,1] �∈ L′

α

) ≤ −α.

From this, define the set Lα by

Lα =
⋂

n∈N

L′
α(n) where L′

α(n) =
{
x :

1
n
x

�n ∈ L′
α

}
⊂ Cn

and where the speeded-up version x�n is defined by x�n(t) = x(nt). (The
sets L′

α(n) are stretched out versions of L′
α, and they are compact in Cn.)

Next take some process (δt, t ∈ R) and define

Mα =
{
x :

∣
∣
∣
x(t)
t

− µ
∣
∣
∣ ≤ αδt for all t ≥ 1

}

Finally define
Kα = Cµ ∩ Lα ∩Mα.

Lemma 6.4 shows that if δt → 0 as t→ ∞ then Kα is compact in (Cµ, ‖ · ‖).
Lemma 6.5 presents such a process δ for which (6.9) holds. Thus X̃N is
exponentially tight in (Cµ, ‖ · ‖). This completes the proof of the theorem.�
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Lemma 6.3 In the setting of Theorem 6.2, if µ = ∇Λ(0) and I is given by
(6.8), then the effective domain of I is contained in Cµ and also P (X̃N ∈
Cµ) = 1.

Proof. Let x belong to the effective domain of I. Then x is absolutely
continuous. Since Λ∗ is non-negative and convex, by Jensen’s inequality

tΛ∗
(x(t)

t

)
≤ I(x).

This holds for all t > 0, and so Λ∗(x(t)/t
) → 0 as t → ∞. Now, by the

assumption that Λ is differentiable at the origin, Λ∗ has a unique zero at
µ = ∇Λ(0). Hence x(t)/t → µ as t→ ∞, and so x ∈ Cµ.

Next, by the assumption that X̃N |[0,1] satisfies an LDP in C1, and using
the contraction principle, X̃N (1) satisfies an LDP in R

d with rate function
Λ∗. We have already seen that Λ∗ has a unique zero at µ = ∇Λ(0). Hence,
for any ε > 0 there is a δ > 0 such that

P
(|X̃N (1) − µ| > ε

)
< e−Nδ

for all N sufficiently large. Thus, by the Borel-Cantelli lemma, X̃N =
X(N)/N converges to µ almost surely as N → ∞. It is then immediate
that

lim
t→∞

X̃N (t)
1 + t

= µ almost surely

i.e. that P (X̃N ∈ Cµ) = 1. �

Lemma 6.4 In the setting of Theorem 6.2, with the sets Kα as defined
there, if δ(t) → 0 as t→ ∞ then Kα is compact in Cµ.

Proof. By Tychonoff’s theorem, the set Lα is compact in the projective limit
topology, and so Lα ∩ Cµ is compact in the space (Cµ, τp). Hence, given any
sequence xn in Kα ⊂ Lα∩Cµ, we can find a subsequence xj which converges
to some x, in this topology. We will show that x ∈ Kα, and that xj → x
in (Cµ, ‖ · ‖). In other words, we will have shown that Kα is sequentially
compact. Since Kα is a metric space, this proves compactness.

Since xj → x uniformly on compact intervals,

lim
j→∞

sup
t∈[0,T ]

∣∣
∣
xj(t)
1 + t

− x(t)
1 + t

∣∣
∣ = 0 for every T > 0.
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Also, since xj ∈ Kα,

∣∣
∣
xj(t)
t

− µ
∣∣
∣ ≤ αδt for all t ≥ 1

Therefore ∣
∣
∣
x(t)
t

− µ
∣
∣
∣ ≤ αδt for all t ≥ 1

as well, i.e. x ∈ Kα.
Moreover, for any ε > 0 we can choose T > 0 such that αδt < ε for all

t > T . Hence, for j sufficiently large,

‖xj − x‖ ≤ sup
t≤T

∣
∣∣
xj(t)
1 + t

− x(t)
1 + t

∣
∣∣+ sup

t>T

∣
∣∣
xj(t)
1 + t

− x(t)
1 + t

∣
∣∣

≤ ε+ 2αδT < 3ε.

So xj → x in (Cµ, ‖ · ‖). �

Lemma 6.5 In the setting of Theorem 6.2, with the sets Kα as defined
there, there is a function δ such that δ(t) → 0 as t→ ∞, and also

lim
α→∞ lim sup

N→∞
1
N

log P (X̃N �∈ Kα) = −∞. (6.10)

Proof. We will proceed in four stages. First we will show that the sets Lα

are suitably big, i.e. that the limit (6.10) holds for the family of sets Lα.
Then, working in one dimension, we will explain how to choose δt, and prove
that (6.10) holds for the Mα. Since

Kα = Cµ ∩ Lα ∩Mα

it follows that (6.10) holds as it is stated, for the Kα. Finally we extend the
argument to d > 1 dimensions.

The Lα are suitably big. By choice of L′
α,

lim sup
N→∞

1
N

logP
(
X̃N |[0,1] �∈ L′

α

) ≤ −α.

Thus, given ε > 0, there is an N0 such that for N > N0

P
(
X̃N |[0,1] �∈ L′

α

) ≤ e−N(α−ε).
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Thus

lim sup
N→∞

1
N

logP
(
X̃N �∈ Lα

)

= lim sup
N→∞

1
N

log P
(
X̃N |[0,n] �∈ L′

α(n) for some n
)

≤ lim sup
N→∞

1
N

log
∞∑

n=1

P
(
X̃N |[0,n] �∈ L′

α(n)
)

= lim sup
N→∞

1
N

log
∞∑

n=1

P
(
X̃Nn|[0,1] �∈ L′

α

)

(by definition of L′
α(n))

≤ lim sup
N→∞

1
N

log
∞∑

n=1

e−Nn(α−ε)

= lim sup
N→∞

1
N

log
1

eN(α−ε) − 1
≤ −(α− ε).

Since ε was arbitrary, this gives

lim sup
N→∞

1
N

log P
(
X̃N �∈ Lα

) ≤ −α.

Choice of δ in one dimension. Assume for now that X is a real-valued
process, i.e. that we are working in dimension d = 1. Define

ΛN (θ) =
1
N

logE exp
(
NθX̃N (1)

)
for θ ∈ R.

By assumption, the extended real valued functions ΛN converge pointwise to
Λ, which is differentiable, hence finite and continuous, in a neighbourhood
of the origin. Let φ > 0 be such that Λ is differentiable on |θ| ≤ φ. Clearly
ΛN is also finite at θ = ±φ for N sufficiently large. By Lemma 2.3 the scaled
cumulant generating function ΛN is convex and continuous on the interior
of its effective domain. Thus there exists a positive φ′ < φ such that ΛN is
continuous on |θ| ≤ φ′, for N sufficiently large. By continuity, the pointwise
convergence ΛN → Λ must be uniform on |θ| ≤ φ′. In other words, if we set

εn = sup
m≥n

sup
|θ|≤φ′

∣∣Λm(θ) − Λ(θ)
∣∣
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then εn ↓ 0 as n→ ∞. Now define a sequence θn by

θn =
(√
εn + νn

) ∧ φ′ where νn =

√
1 + log n

n
.

Clearly θn ↓ 0 as n→ ∞. From these we can finally define

δt =
Λ(θn)
θn

+
Λ(−θn)
θn

+
εn
θn

+ νn where n = �t�

=
Λ(θn) − µθn

θn
+

Λ(−θn) + θnµ

θn
+
εn
θn

+ νn.

In this last expression, the first two terms both decrease to 0 as n → ∞,
by convexity and differentiability of Λ; the third term decreases to 0, as
one can see by substituting in the definition of θn; and the last term clearly
decreases to 0. Thus δt ↓ 0 as t→ ∞.

The Mα are suitably big, in one dimension. We want to show

lim sup
N→∞

1
N

log P
{∣∣∣
X̃N (t)
t

− µ
∣
∣∣ > αδt for some t ≥ 1

}
(6.11)

→ −∞ as α→ ∞.

If such a limit holds for both the events

X̃N (t)
t

− µ > αδt and
X̃N (t)
t

− µ < αδt (6.12)

then (6.11) is true, by the principle of the largest term. We will give the
proof for the first of these; the proof for the second is similar. First write
down the probability we wish to estimate:

P
(X̃N (t)

t
− µ > αδt for some t ≥ 1

)
(6.13)

≤ P
(
X̃N (t) > αtδt + µt for some t ≥ 1

)

Because of the scaling used in its definition, the polygonalized process X̃N (t)
is linear over intervals of length 1/N ; also δt is constant over intervals of
length 1. Thus it suffices to check the condition at the endpoints of intervals
of length 1/N , that is, at points t = k + i/N where i, k ∈ N and 0 ≤ i < N .
This gives

(6.13) ≤
∞∑

k=1

N−1∑

i=0

P
(
XN (t) > αtδt + µt

)
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(where by writing t we mean k + i/N)

≤
∞∑

k=1

N−1∑

i=0

P
(
X(Nk + i) > (Nk + i)

[
αδk + µ

])

(using the fact that δk+i/N = δk)

≤
∞∑

k=1

N−1∑

i=0

exp
(
−(Nk + i)

[
θkαδk − ΛNk+i(θk) + µθk

])

(by Chernoff’s bound.)

(To estimate the probability associated with the lower bound part of (6.12),
we would use −θk rather than θk in Chernoff’s bound.) A typical term in
brackets [·] in this expression is

θkαδk − ΛNk+i(θk) + µθk

≥ θkαδk − Λ(θk) + µθk − εk (by definition of εk)

= α
[
Λ(θk) − θkµ+ Λ(−θk) + θkµ+ εk + θkνk

]

−
[
Λ(θk) − θkµ

]
− εk (using definition of δk)

= (α− 1)
[
Λ(θk) − θkµ+ εk

]
+ α

[
Λ(−θk) + θkµ+ θkνk

]

≥ αθkνk (for α ≥ 1, since Λ(θ) − θµ ≥ 0 by convexity)

≥ αν2
k (for k sufficiently large that θk < φ′).

Let k0 be such that this last condition holds for k > k0. Now we can bound
the terms in the sum we derived from (6.13), to find that

(6.13) ≤
k0∑

k=1

N−1∑

i=0

e−(Nk+i)αθkνk +
∑

k>k0

N−1∑

i=0

e−(Nk+i)αν2
k

≤ N

k0∑

k=1

e−Nkαθkνk +N
∑

k>k0

e−Nkαν2
k

= N

k0∑

k=1

e−Nkαθkνk +Ne−Nα
∑

k>k0

k−Nα (by definition of νk).

By the principle of the largest term, and using (3.7),

lim sup
N→∞

1
N

log (6.13) ≤ −
([

inf
k≤k0

αkθkνk

]
∧
[
α+ α log(k0 + 1)

])

→ −∞ as α→ ∞.
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This proves that the sets Mα satisfy (6.10).
Extension to d > 1 dimensions. To prove that the Mα satisfy (6.10) in

one dimension, we needed to estimate the probability

P
(∣∣∣
X̃N (t)
t

− µ
∣
∣∣ > αδt

)
(6.14)

We did this by splitting it into two parts, corresponding to

X̃N (t)
t

− µ > αδt and
X̃N (t)
t

− µ < αδt

and proving that the probability of each of these two events is suitably big,
in the sense that (6.10) holds.

In R
d, any natural norm is equivalent to the componentwise supremum

norm |x| = maxi≤d xi. Under this norm we can split (6.14) into 2d parts, two
parts for each component of X̃N (t). The one-dimensional proof given above
applies without modification to each of these parts. We end up constructing
a different function δt(i) for each component, and thus a different set Mα(i).
By taking δt = maxi δt(i), and defining Mα from it, we ensure that the Mα

satisfy (6.10). �

6.3 Linear Geodesics

All the quantities that we study in this chapter can be expressed as functions
of the sequence (X̃N , N ∈ N) of scaled input processes, where each X̃N is
a function R → R

d. We will assume that this sequence satisfies a large
deviations principle with linear geodesics, with instantaneous rate function
Λ∗ : R

d → R. Let µ be the mean rate. The rate function for X̃N , which is
good and convex, is as specified by (6.3):

I(x) =

{∫∞
0 Λ∗(ẋ(s)

)
if x ∈ Aµ

+∞ otherwise.

By the contraction principle, if Y is a Hausdorff topological space and if
f : Cµ → Y is continuous, then f(X̃N ) satisfies an LDP in Y with good rate
function

J(ξ) = inf
x∈Aµ:
f(x)=ξ

∫ ∞

0
Λ∗(ẋ(s)

)
ds. (6.15)

In general, it is very hard to find an explicit solution to this variational
problem.
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The basic tool which we use (in this chapter) to simplify the rate function
is Jensen’s inequality. To illustrate this, consider the simple case where
we are interested in f(x) = x(T ) and d = 1. This function is certainly
continuous, so the contraction principle applies. Now, take any path x ∈ Aµ

with x(T ) = ξ. Construct a new path x′ ∈ Aµ, the straightened version of
x, by

ẋ′(t) =

{
ξ/T if 0 ≤ t < T

µ otherwise

It is the case that I(x) ≥ I(x′). To see this, note that
∫ T

0
Λ∗(ẋ′(t)

)
dt = TΛ∗(ξ/T )

= TΛ∗
(

1
T

∫ T

0
ẋ(t) dt

)

≤ T
1
T

∫ T

0
Λ∗(ẋ(t)

)
dt

using Jensen’s inequality; and also that
∫ ∞

T
Λ∗(ẏ(t)

)
dt = 0 ≤

∫ ∞

T
Λ∗(ẋ(t)

)
dt.

Thus J(ξ) ≥ I(x′) = TΛ∗(ξ/T ). On the other hand, x′ satisfies x′(T ) = ξ,
and so J(ξ) ≤ I(x′). Therefore J(ξ) = TΛ∗(ξ/T ).

Note. In particular, if X̃N is the scaled polygonalized version of X , where
X(t) = Y1 + · · · + Yt, and f(x) = x(1), then f(X̃N ) = X(N)/N ; and by the
above it satisfies an LDP with rate function Λ∗(ξ). Compare this result to
Cramér’s theorem, Theorem 2.8.

The path x′ which achieves the minimum in the above variational prob-
lem has constant gradient ξ/T on the interval (0, T ) (and gradient µ there-
after). This path can be interpreted as the most likely path to satisfy the
constraint f(x) = ξ, in the sense that, conditional on f(X̃N ) = ξ, X̃N lies
in a small neighbourhood of y with high probability. (This idea, that rare
events occur in the most likely way, is made precise in Lemma 4.2.)

Thus, given that X̃N takes an extreme value, it is likely to have got there
along a straight line. This basic property, known as the linear geodesics
property, considerably simplifies many network problems.

Example 6.1
What is the range of a Brownian bridge? A Brownian bridge is a Brownian
motion over the interval [0, 1], conditioned to be 0 at the right endpoint
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t = 1. An easy way to construct a Brownian bridge is to take a standard
Brownian motion B(t) and set X(t) = B(t)− tB(1). Then X is a Brownian
bridge. Its vertical span is

R = max
t∈[0,1]

X(t) − min
t∈[0,1]

X(t).

(A Brownian motion has continuous sample paths, almost surely, and so the
maximum and minimum are attained.) How can we use large deviations to
estimate P (R > r)?

The starting point is a large deviations principle for Brownian mo-
tion. Schilder’s theorem says that if B(t) is a Brownian motion and we
set BN (t) = B(t)/

√
N , then the sequence (BN , N ∈ N) satisfies a large

deviations principle in C1 with good rate function

I(b) =

{
1
2

∫ 1
0 ḃ

2
t dt if b ∈ A1

∞ otherwise.

See Dembo and Zeitouni [25, Theorem 5.2.3] for a proof. Now R is clearly
a continuous function of X, and X is a continuous function of B, so R is a
continuous function f of B. By the contraction principle, we immediately
obtain an LDP for R/

√
N with good rate function

J(r) = inf
{
I(b) : b ∈ C1, f(b) = r

}
(6.16)

We will now solve this variational problem, using the linear geodesics prop-
erty.

Suppose we have a path b ∈ A1 which satisfies the constraint f(b) = r.
Let β = b(1) and m = mint

(
b(t) − tβ

)
and M = maxt

(
b(t) − tβ

)
. Suppose

that the minimum is attained at u and the maximum at v, and suppose for
now that 0 < u < v < 1. Construct a straightened path b′ by

ḃ′(t) =






m/u+ β for t < u

(M −m)/(v − u) + β for u < t < v

−M/(1 − v) + β for v < t

Now I(b) ≥ I(b′) by Jensen’s inequality. If 0 < v < u < 1, or if u or v were
extreme, we would construct b′ slightly differently, but in all cases we can
construct a path b′ for which I(b) ≥ I(b′). Thus we obtain a lower bound
on J(r).
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On the other hand, suppose we are given β, m, M , u and v, such that
r = M −m. The same construction yields a path b′ for which f(b′) = r, and
thus we obtain an upper bound on J(r) which agrees with the lower bound.

Thus we can reduce the general variational problem (6.16) to the simpler
optimization problem

J(r) = 1
2 inf

m,M∈R:
r=M−m

K(m,M) ∧ L(m,M)

K(m,M) = inf
0<u<v<1

u
(
β +

m

u

)2 + (v − u)
(
β +

M −m

v − u

)2

+ (1 − v)
(
β − M

1 − v

)2

L(m,M) = inf
0<v<u<1

v
(
β +

M

v

)2 + (u− v)
(
β − M −m

u− v

)2

+ (1 − u)
(
β − m

1 − u

)2

This is simple to solve. The optimum has β = 0, and there are many
possible optimal values of the other variables. The optimum value is simply
J(r) = 2r2.

Now we can answer the original question. From the LDP for R/
√
N ,

lim
N→∞

1
N

log P (R/
√
N > r) = −2r2.

(The LDP specified lower and upper bounds, and for this event the bounds
agree.) Rewriting,

lim
r→∞

1
r2

log P (R > r) = −2.

Note that, because there are many paths which are optimal for (6.16), there
is no single “most likely path”. �

6.4 Queues with Infinite Buffers

Consider the single-server queue. Let A(−t, 0] be the amount of work arriv-
ing in the interval (−t, 0], and let C(−t, 0] be the amount of service offered,
for t ∈ N. (We’ve switched to the extended notation, described in Section
6.1, since it is more suggestive.) Let X(−t, 0] = A(−t, 0] − C(−t, 0]. Let X̃
be the polygonalized version of X, and let

X̃N (−t, 0] =
1
N
X̃(−Nt, 0] for t ∈ R

+
0 .
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In Chapter 1, we saw that the queue length at time 0 is given by

Q0 = sup
t∈N0

X(−t, 0]. (6.17)

Equivalently
Q0 = sup

t∈R
+
0

X̃(−t, 0]

and so
Q0/N = f(X̃N ) where f(x) = sup

t∈R
+
0

x(−t, 0]. (6.18)

Assume that the sequence (X̃N , N ∈ N) satisfies the sample path large
deviations principles with linear geodesics, with some instantaneous rate
function Λ∗ and mean rate σ. Suppose that σ < 0. Note that X̃N satisfies
an LDP in Cσ, hence must almost surely lie in Cσ, and hence that f(X̃N ) is
almost surely finite, by Theorem 5.3.

Note. The typical setting is this. Let X(−t, 0] = Y−t+1 + · · · + Y0 for some
i.i.d. sequence (Yt, t ∈ Z). Let Λ be the cumulant generating function for Y1.
As mentioned in Section 6.2, X̃N satisfies a sample path LDP with linear
geodesics, with instantaneous rate function Λ∗, and with mean rate EY1.
However, the results in this section apply to much more general sequences
Yt.

As we remarked in Chapter 1, if Yt is stationary and ergodic, and σ < 0,
then Q0 as defined above has the steady state queue size distribution.

In Theorem 5.3 we showed that f is continuous on Cσ, for σ < 0. Thus
we can apply the contraction principle to obtain a large deviations principle
for Q0/N in R

+
0 with good rate function

J(q) = inf
{
I(x) : x ∈ Cσ, f(x) = q

}
(6.19)

for the standard rate function

I(x) =

{∫ 0
−∞ Λ∗(ẋs) ds if x ∈ Aσ

+∞ otherwise.

We now proceed to simplify this rate function.

Theorem 6.6 If X̃N satisfies a sample path LDP with linear geodesics, with
instantaneous rate function Λ∗ and mean rate σ < 0, then Q0/N satisfies
an LDP in R

+ with good rate function

J(q) = δq where δ = inf
ξ>0

Λ∗(ξ)/ξ. (6.20)
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Proof. Let J(q) be defined by (6.19). Note first that we might as well
take the infimum in J(q) over {x ∈ Aσ : f(x) = q}, since I(x) = ∞ for
x ∈ Cσ \ Aσ.

Suppose q = 0. The path x ∈ Aσ of constant rate ẋs = σ has rate
function I(x) = 0, and satisfies f(x) = q, thus J(0) = 0.

Suppose now q > 0. For any path x ∈ Cσ with f(x) = q, there must
exist 0 < t <∞ such that x(−t, 0] = q, by Theorem 5.3, and so

J(q) ≥ inf
t>0

inf
x:x(−t,0]=q

I(x) ≥ inf
t>0

tΛ∗(q/t)

where the last inequality follows by Jensen’s inequality, as in Section 6.3.
Conversely, fix t > 0 and consider the path x defined by

ẋs =

{
σ for s ≤ −t
q/t for −t < s ≤ 0

.

This path satisfies f(x) = q and has rate function I(x) = tΛ∗(q/t). Thus

J(q) ≤ tΛ∗(q/t) for all t > 0.

We conclude that
J(q) = inf

t>0
tΛ∗(q/t) (6.21)

which may be rewritten to give the result. �

The LDP in this case states that for any q > 0

lim
N→∞

1
N

logP (Q0/N > q) = −qδ.

(The large deviations upper and lower bounds agree, since J(q) is continu-
ous, as long as q > 0. If q = 0 they may not agree, in the case δ = ∞.) The
LDP may be rewritten

lim
q→∞

1
q

logP (Q0 > q) = −δ, (6.22)

which means that the queue length distribution has an exponential tail.
This result should be compared with Theorem 1.4 and Theorem 3.1.

In the latter theorem, we assumed that Λ∗ was the convex conjugate of
some function Λ and found, under certain conditions on Λ, the following
alternative characterization of δ:

δ = sup
{
θ : Λ(θ) ≤ 0

}
. (6.23)
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Recalling Section 6.3 we can ask: how do large queues build up? From
the above we see that, given a large queue length q, the most likely path
satisfies ẋ−s = q/t∗ where t∗ is the optimizing parameter in (6.21), or equiv-
alently ẋ−s = ξ∗ where ξ∗ is the optimizing parameter in (6.20). (Note that
t∗ = q/ξ∗.) So the most likely way for the queue to reach q is for it to start
more or less empty and then to grow at constant rate ξ∗ for a time t∗.

Note. To justify calling it the most likely path, we should be more careful.
There is not, in general, a unique most likely path. However...

Exercise 6.2
Suppose that Λ∗ is strictly convex. Show that the most likely path is unique.�

One can also investigate the empirical distribution of the Ẋ−s over the
interval in which the queue builds up from empty to scaled level q. This has
been done by Anantharam [2].

Exercise 6.3
Suppose that (Ẋ−t, t ∈ N) is a sequence of i.i.d. Gaussian random variables
with mean −c and variance σ2, for some c > 0. Show that Λ∗(x) = (x +
c)2/2σ2. Compute ξ∗ as a function of c and σ. �

Exercise 6.4
Suppose that X(−t, 0] = A(−t, 0] − C(−t, 0], where A(−t, 0] is the amount
of work arriving in (−t, 0] and C(−t, 0] is the service capacity. Suppose that
(Ȧ−t, t ∈ Z) and (Ċ−t, t ∈ Z) are i.i.d. sequences and independent of each
other. Compute ξ∗ in the following cases.

i. Arrivals and service capacity in each time slot are Bernoulli random
variables, i.e. P (Ȧ1 = 1) = p, P (Ȧ1) = 0) = 1 − p, P (Ċ1 = 1) = q, and
P (Ċ1) = 0) = 1 − q, and the queue is stable, i.e. p < q.

ii. Arrivals and service capacity in each time slot are geometric random
variables, i.e. P (Ȧ1 = j) = (1 − µ)µj , P (C1 = j) = (1 − ν)νj and
0 < µ < ν < 1. �

Exercise 6.5
Suppose X is as in the previous exercise, that arrivals in each time slot are
exponential random variables with mean µ, i.e. P (Ȧ1 > x) = e−x/µ, and
that service capacity in each time slot is exponential with mean ν > µ.
Compute ξ∗, and write down the LDP for queue size.

As noted in Chapter 1, the solution Q0 of Lindley’s recursion can be
interpreted either as the amount of work in the buffer in a discrete time
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queueing model or the waiting time in a continuous time model. With
the latter interpretation, this model corresponds to an M/M/1 queue with
arrival rate µ−1 and service rate ν−1; it is known that the waiting time
distribution for this queue is a mixture of an atom at zero and an exponential
distribution with parameter ν−1 − µ−1. How does this relate to the LDP
you have found? �

Example 6.6 (Heavy traffic models)
In heavy traffic theory, an object of interest is the queue size in a queue fed
by a Brownian motion. Let B(t) be a standard Brownian motion, and let
A(−t, 0] = B(t) and X(−t, 0] = A(−t, 0] − t.

Note. This model arises as a diffusion approximation to a single-server queue
with general arrivals and service, provided the arrival and service processes
are both sufficiently mixing, and have finite variance, and the mean arrival
rate is close to the mean service rate. Heavy traffic approximation theorems
are normally stated in terms of continuous-time queues, such as the M/M/1
queue, but also apply to discrete-time queues. Whitt [98] gives a survey of
heavy traffic models.

As usual, define the scaled version

AN (−t, 0] =
1
N
A(−Nt, 0].

(Since B is indexed by t ∈ R, we do not need to polygonalize A.) Schilder’s
theorem, recounted in Example 6.1, gives an LDP for the scaled process
B/

√
N on the interval [−1, 0], and because of the scaling properties of Brow-

nian motion this gives us an LDP for AN |(−1,0]. In fact, this LDP can be
extended to give an LDP for AN in A0 with good rate function

I(a) =

{
1
2

∫ 0
−∞ ȧ2

t dt if a ∈ A0

∞ otherwise.
(6.24)

So AN satisfies a sample path LDP with linear geodesics, with instanta-
neous rate function Λ∗

A(α) = α2/2 and mean rate 0; and so the sequence of
similarly scaled processes XN does too but with instantaneous rate function
Λ∗(ξ) = (ξ + 1)2/2 and mean rate −1.

Thus we obtain an LDP for Q0/N with good rate function J(q) = 2q.
In fact, in this model, the process (Qt, t ∈ R) is a reflected Brownian
motion with negative drift, and the steady state distribution Q0 is exactly
exponential. In more complicated networks, the steady distribution is not
so simple, and the large deviations techniques described in later sections can
be useful. �
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6.5 Queues with Finite Buffers

Consider the single-server queue with a finite buffer. Let A(−t, 0] be the
amount of work arriving in the interval (−t, 0], and let C(−t, 0] be the
service offered, for t ∈ N. Let X(−t, 0] = A(−t, 0] − C(−t, 0]. The queue
length, for a queue with finite buffer B, evolves as follows:

QB
t =

[
QB

t−1 + Ẋt

]B
0

where [q]B0 = (q ∨ 0) ∧B.
Let X̃ be the polygonalized version of X, and let X̃N be the scaled

version of X̃:
X̃N (−t, 0] =

1
N
X̃(−Nt, 0].

Suppose that (X̃N , N ∈ N) satisfies the sample path LDP with linear
geodesics, with some mean rate σ < 0. In particular, X̃N ∈ Cσ almost
surely for each N . Let I be the rate function for the X̃N .

We saw in Section 5.7 that if X̃ ∈ Cσ then QB
0 = f(X̃) where

f(x) = sup
t≥0

(
sup

0≤s≤t
x(−s, 0]

)
∧
(
B + inf

0≤s≤t
x(−s, 0]

)
(6.25)

Thus
QNB

0 /N = f(X̃N ).

We also saw that f is continuous on Cσ. Thus, using the contraction princi-
ple, we can find an LDP for QNB

0 /N .
It remains to identify the rate function. We could in principle do this

directly from the rate function that the contraction principle gives us. This
is left as an exercise for the bored reader. We shall instead use a more
indirect approach. Let

J(q) = inf
x∈Cσ :

f(x)=q

I(x). (6.26)

Lemma 6.7 Suppose σ < 0. For 0 ≤ q ≤ B, J(q) is equal to the rate
function for the infinite-buffer queue, as given by (6.21). If q > B then
J(q) = ∞.

Proof. The cases q = 0 and q > B are trivial. So assume 0 < q ≤ B.
Let f be the queue size function for the finite-buffer queue (6.25), and

let g be the queue size function for the infinite-buffer queue (6.18). Let J
be the rate function for f(X̃N ) and K the rate function for g(X̃N ).
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We saw in Section 5.7 that the queue length in the infinite buffer queue
dominates that in the finite buffer queue, i.e. f(x) ≤ g(x) for all x ∈ Cσ.
Thus {f(x) = q} ⊂ {g(x) ≥ q}. It follows immediately that

J(q) = inf
x:f(x)=q

I(x)

≥ inf
x:g(x)≥q

I(x) = inf
r≥q

K(r).

Now we have found that K(r) = δr where δ ≥ 0, so the infimum is attained
at r = q, and we get J(q) ≥ K(q).

To obtain the reverse inequality, recall that the sample path x that
achieves the infimum in K(q) gives rise to a queue size that increases linearly
from 0 to q over some time period [−t, 0]. Thus, as q ≤ B, the queue size
in the infinite-buffer queue never exceeds B. Hence the finite-buffer queue
evolves in the same way as the infinite-buffer queue, and f(x) = g(x) = q.
Or, more rigorously, simply observe from (6.25) that f(x) = q. Thus

J(q) ≤ I(x) = K(q). �

The same LDP was obtained by Toomey [94]. It justifies approximating
the frequency of overflow in a queue with (large) finite buffer B by the
frequency with which queue level B is exceeded in the corresponding queue
with infinite buffer.

6.6 Queueing Delay

Consider the single-server queue with an infinite buffer. Let A(u, v] be the
amount of work arriving in the interval (u, v], and let C(u, v] be the amount
of service offered, for u, v ∈ Z. Let Ã be the polygonalized version of A, and
define the scaled version

ÃN (u, v] =
1
N
Ã(Nu,Nv] for u, v ∈ R

and similarly for C̃N . Let Q0 be the queue size at time 0. In Section 5.8 we
defined the queueing delay

W = inf
{
t ∈ N0 : C(0, t] ≥ Q0

}

and saw that

W/N ≈ f(ÃN , C̃N ) where f(a, c) = inf
{
t ∈ R

+ : c(0, t] ≥ q0(a, c)
}

(6.27)
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To make these definitions we need to describe the behaviour of the service
process after time 0, and we explained in Section 5.8 how to do this by
extending the space Cµ to C2

µ.
Assume that the sequence

(
(ÃN , C̃N ), N ∈ N

)
satisfies a sample path

LDP in C2
µ×C2

ν with instantaneous rate function Λ∗. It should be clear what
is meant by this: we mean that the rate function is

I(a, c) =

{∫∞
−∞ Λ∗(ȧt, ċt) dt if (a, c) ∈ A2

µ ×A2
ν

∞ otherwise.

If the service rate is bounded below by c0 > 0 almost surely, we can use
Lemma 4.9 to restrict the LDP to C2

µ × Xν , where Xν is the restriction of
C2

ν to the set of service processes whose service rate is bounded below by c0.
Suppose also that µ < ν. Then, as described in Section 5.8, the function
f is continuous, and the sense of the approximation in (6.27) is such as to
allow us to apply the approximate contraction principle, as it is described
in Exercise 4.6, to obtain an LDP for W/N with good rate function

J(w) = inf
{
I(a, c) : f(a, c) = w

}

We now proceed to simplify this rate function.

Theorem 6.8 If (ÃN , C̃N ) satisfies a sample path LDP in C2
µ × C2

ν with
instantaneous rate function Λ∗, and the service rate is bounded below by
c0 > 0 almost surely, and µ < ν, then W/N satisfies an LDP with good rate
function

J(w) = γw where γ = inf
σ≥c0

δσ + Λ∗(µ, σ) (6.28)

and δ is as in Theorem 6.6.

Proof. First introduce a dummy variable q into the variational problem
(6.28), representing the queue size at time 0. The problem becomes

minimize I(a, c)

over a ∈ A2
µ, c ∈ A2

ν , q ≥ 0

such that q0(a, c) = q, f(a, c) = w.

The reason we introduce q is that, given q, the constraints split into two
parts, one part over (−∞, 0] and the other over (0,∞). The objective func-
tion also splits into two parts. Therefore the optimization problem splits into
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two subproblems, each parameterized by q, and the solution to the overall
problem is the infimum over q ≥ 0 of the sum of the solutions to these two
subproblems.

The first subproblem is

minimize
∫ 0

−∞
Λ∗(ȧt, ċt) dt

over a ∈ Aµ, c ∈ Aν

such that q0(a, c) = q.

We have already solved this, in Section 6.4. The solution is δq.
The second subproblem is

minimize
∫ 0

−∞
Λ∗(ȧt, ċt) dt

over a ∈ Aµ, c ∈ Aν

such that f(a, c) = w given q0(a, c) = q.

Since the service rate is bounded below by c0 almost surely, the rate func-
tion is infinite for c �∈ Xν . Furthermore the optimization problem is over
absolutely continuous paths; thus we can restrict attention to paths c for
which ċt ≥ c0 for all t. This means that the constraint f(a, c) = w simplifies
to c(0, w] = q. We described in Section 6.3 how to solve such optimization
problems. By the linear geodesics property, one can show that the solution
to this problem is wΛ∗(µ, q/w).

The solution to the overall optimization problem is thus

inf
q≥0

δq +wΛ∗(µ, q/w)

which by reparameterizing in terms of σ = q/w becomes

w inf
σ≥0

δσ + Λ∗(µ, σ)

As we have noted, the rate function I(a, c) is infinite if c �∈ Xν , which means
that Λ∗(µ, σ) = ∞ for σ < c0, so we can restrict the infimum to σ ≥ c0.
This gives the desired rate function. �

6.7 Departure Process

In this section we turn to the departure process. The LDPs we have obtained
so far have been for queue length, which is a real-valued function of the input
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process; the departure process, on the other hand, takes values in the space
of continuous functions on the real line. Even though this is a much more
complicated example in some sense, the techniques are essentially the same.

Consider the single-server queue with an infinite buffer, described in
Section 6.4. Let A(−t, 0] be the amount of work arriving in (−t, 0], and let
C(−t, 0] be the amount of work that can be served, for t ∈ N. Let Z =
(A,C). As usual, define the scaled polygonalized version Z̃N , and assume
that (Z̃N , N ∈ N) satisfies the sample path LDP with linear geodesics. Let
the mean rate be (µ, ν). The departure process was discussed in Section
5.11. It is defined by

D(−t, 0] = A(−t, 0] +Q−t −Q0.

Let X(−t, 0] = A(−t, 0]−C(−t, 0], and define the polygonalized versions
Ã etc. Note that Ã ∈ Cµ and C̃ ∈ Cν almost surely. Define for t ∈ R

+
0 the

queue size function q−t : Cµ × Cν → R by

q−t(a, c) = sup
−s≤−t

a(−s,−t] − c(−s,−t]. (6.29)

Also define the process-valued function f by

f(a, c)(−t, 0] = a(−t, 0] + q−t(a, c) − q0(a, c) for t ∈ R
+
0 . (6.30)

It is easy to see that D(−t, 0] = f(Ã, C̃)(−t, 0] for t ∈ N. It is somewhat
harder to see, but still the case, that D̃ = f(Ã, C̃). It is challenging to see
that f : Cµ × Cν → Cµ and that it is continuous; this is proved in Section
5.11.

Finally, define the scaled polygonalized versions ÃN etc. It is easy to see
that

D̃N = f(ÃN , C̃N ).

Using the contraction principle, we can immediately deduce an LDP for D̃N ,
with rate function

J(d) = inf
a∈Cµ, c∈Cν :
f(a,c)=d

I(a, c) (6.31)

where the input rate function is of the usual form

I(a, c) =

{∫ 0
−∞ Λ∗(ȧt, ċt) dt if a ∈ Aµ and c ∈ Aν

+∞ otherwise.

To solve this variational problem in general is quite hard.
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A natural question to ask at this point is: does the departure process
satisfy a sample path LDP with linear geodesics? If so, then we could
in principle recursively use the approach outlined above to analyse quite
complicated networks of queues. Unfortunately the answer to the question
is: in general, no. Counterexamples are exhibited in [41]. It is shown there
that in the case where Λ∗(ȧt, ċt) = Λ∗

A(ȧt)+Λ∗
C(ċt), a necessary condition for

the departure process to satisfy a sample path LDP with linear geodesics
is that Λ∗

A ≤ Λ∗
C on [0, µ]. It seems to be difficult to obtain sufficient

conditions.
There is one simple case where it is possible give an affirmative answer:

Exercise 6.7
Suppose that the service rate is c, a constant, and greater than the mean
arrival rate µ. Show that the departure process D̃N satisfies a sample path
large deviations principle with linear geodesics, with mean rate µ and in-
stantaneous rate function

M∗(x) =

{
Λ∗(x) if x ≤ c

∞ otherwise.

Hint. Let J be the actual rate function for the departure process, which we
know to be good, and let I be the sample path rate function corresponding
to the instantaneous rate function M∗. We want to show that I(d) = J(d).
Show that I(d) ≤ J(d), by assuming J(d) is finite, taking an optimal arrival
process a, and if a(−t, 0] �= d(−t, 0] for some t then straightening a to make
it equal. Show that I(d) ≥ J(d), by assuming I(d) is finite, and showing
that the queue fed by arrival process d produces departure process d. �

Large deviations for departure processes have also been studied by Bert-
simas et al. [7].

6.8 Mean Rate of Departures

Since we cannot in general find the rate function for the departure process,
let us ask a simpler question. Can we find an LDP for the mean departure
rate over an interval? In the setup of the preceding section, the mean rate of
departures in the interval (−N, 0] is D̃N (−1, 0]. By the contraction principle
we have an LDP for the sequence

(
D̃N (−1, 0], N ∈ N) with good rate

function

J(ξ) = inf
{
I(a, c) : (a, c) ∈ Cµ × Cν , f(a, c)(−1, 0] = ξ

}
(6.32)
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where f is given by (6.30).

Lemma 6.9

J(ξ) = inf
q≥0

δq +K(ξ, q) ∧ L(ξ, q)

where

δ = inf
α>σ

Λ∗(α, σ)
α− σ

K(ξ, q) = inf
C1

Λ∗(α, ξ)

and C1 = {α : q + α ≥ ξ}
L(ξ, q) = inf

C2

(1 − t)Λ∗(α1, σ1) + tΛ∗(α2, σ2)

and C2 =
{

(α1, α2, σ1, σ2, t) : t ∈ [0, 1], α2 ≥ σ2,

q + (1 − t)α1 ≤ (1 − t)σ1,

q + (1 − t)α1 + tσ2 = ξ
}

Before going on to follow the proof, think what the equations suggest.
They suggest that the queue size at time −1 is equal to q, for some q,
and that thereafter either the queue never empties in (−1, 0], or the queue
becomes empty at −t and is then busy in (−t, 0].
Proof. Write x(t, u] for a(t, u]−c(t, u]. Let d be the departure process f(a, c).
Recall that

d(−1, 0] = a(−1, 0] + q−1 − q0 (6.33)

where the two quantities appearing in this equation are

q−1 = sup
−s≤−1

x(−s,−1]

and q0 = sup
−s≤0

x(−s, 0] .

We will adopt the strategy of introducing a dummy variable q for q−1, and
(in a large deviations sense) conditioning on its value. Indeed, let us rewrite
the optimization problem (6.32) as

minimize
∫ −1

−∞
Λ∗(ȧt, ċt) dt +

∫ 0

−1
Λ∗(ȧt, ċt) dt

over (a, c) ∈ Aµ ×Aν and q ≥ 0
subject to q−1 = q and d(−1, 0] = ξ.



132 Chapter 6

The reason we introduce q is that, given that q−1 = q, we can write d(−1, 0]
purely as a function of q and a|(−1,0] and c|(−1,0] (cf. Exercise 5.3). Thus the
constraints are split into two parts, one part over (−∞,−1] and the other
over (−1, 0]. The objective function is also split into two parts. Therefore
the optimization problem splits into two subproblems, each parameterized
by q. The first (after translating the time coordinates) is

minimize
∫ 0

−∞
Λ∗(ȧt, ċt) dt

over (a, c) ∈ Aµ ×Aν ,

subject to q0 = q.

The second problem is

minimize I1(a, c) where I1(a, c) =
∫ 0

−1
Λ∗(ȧt, ċt) dt

over (a, c) ∈ A1 ×A1,

subject to d(−1, 0] = ξ given q−1 = q.

The solution to the overall optimization problem (6.32) is the infimum over
q ≥ 0 of the sum of the solutions to these two subproblems.

The first subproblem we have already solved, in Section 6.4. The value
of the infimum is δq where (in our present notation)

δ = inf
α>σ

Λ∗(α, σ)
α− σ

It remains to solve the second subproblem. Let M(ξ, q) be the solution.
We will show that

M(ξ, q) = K(ξ, q) ∧ L(ξ, q). (6.34)

Then, we will have completed the proof. First we will rewrite the constraint
in a more useful way. According to Exercise 5.3,

q0 = q−1
0 ∨

(
q + a(−1, 0] − c(−1, 0]

)
where q−1

0 = sup
−1≤−s≤0

x(−s, 0].

Interpret q−1
0 as the queue size at time 0 if the system were started empty

at −1. This yields

d(−1, 0] =
(
a(−1, 0] + q − q−1

0

)
∧ c(−1, 0].



Large-Buffer Scalings 133

We will call this function g(a, c).
LHS≥RHS in (6.34). First, take any path (a, c) which satisfies the con-

straint. Then ξ is equal to the minimum of c(−1, 0] and a(−1, 0] + q − q−1
0 .

Consider first the case where ξ is equal to the former. Let α = a(−1, 0]; and
define a new path (a′, c′), a straightening of (a, c), by

ȧ′−t = α

ċ′−t = ξ.
(6.35)

Note that a′(−1, 0] = a(−1, 0] and c′(−1, 0] = c(−1, 0] and so I1(a, c) ≥
I1(a′, c′) by Jensen’s inequality. Furthermore, c(−1, 0] ≤ a(−1, 0] + q − q−1

0
and so ξ ≤ α+ q, which implies that α lies in C2 and I1(a′, c′) ≥ K(ξ, q).

Consider next the case where ξ is equal to a(−1, 0] + q − q−1
0 , and sup-

pose that the supremum in q−1
0 is attained at −t ∈ [−1, 0]. Let α1 =

a(−1,−t]/(1−t), α2 = a(−t, 0]/t, σ1 = c(−1,−t]/(1−t) and σ2 = c(−t, 0]/t;
and define a new path (a′, c′), a straightening of (a, c), by

ȧ′t = α1 for −1 ≤ −t, and α2 otherwise
ċ′t = σ1 for −1 ≤ −t, and σ2 otherwise.

(6.36)

Note that a′(−1,−t] = a(−1,−t] and a′(−t, 0] = c(−t, 0], and similarly for
c and c′, and so I1(a, c) ≥ I1(a′, c′) by Jensen’s inequality. Furthermore,
α2 ≥ σ2 since the supremum in q−1

0 is attained at t > 0 (the special case
t = 0 is left as an exercise); also q + (1 − t)α1 ≤ (1 − t)σ1 for the same
reason (the special case t = 1 is left as an exercise); finally the constraint
says that q + (1 − t)α1 + tσ2 = ξ; thus (α1, α2, σ1, σ2, t) lies in C2 and so
I1(a, c) ≥ L(ξ, q).

We have shown that for any path (a, c) satisfying the constraints of
the M(ξ, q) problem, either I1(a, c) ≥ K(ξ, q) or I1(a, c) ≥ L(ξ, q) hence
I1(a, c) ≥ K(ξ, q) ∧ L(ξ, q), hence this is a lower bound for M(ξ, q) also.

LHS≤RHS in (6.34). We prove the reverse inequality in two separate
cases. For the first case, fix any α in C1, and define the path

ȧ−t = α

ċ−t = ξ.

Observe that g(a, c) = ξ. Thus M(ξ, q) ≤ I1(a, c), and taking the minimum
over such (a, c) we obtain M(ξ, q) ≤ K(ξ, q).

For the second case, fix (α1, α2, σ1, σ2, t) in C2, and define the path

ȧ−t = α1 for −1 ≤ −t, and α2 otherwise
ċ−t = σ1 for −1 ≤ −t, and σ2 otherwise.
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For this path, c(−1, 0] = (1 − t)σ1 + tσ2, a(−1, 0] = (1 − t)α1 + tα2, and
q−1
0 = t(α2 = σ2); by the constraints in C2, g(a, c) = ξ. Taking the minimum

over such (a, c) we obtain M(ξ, q) ≤ L(ξ, q).
Putting these two cases together, we have proved thatM(ξ, q) ≤ K(ξ, q)∧

L(ξ, q). This completes the proof. �

The above problem can be solved numerically; it also admits closed-
form solutions in special cases. Note that both K(ξ, q) and L(ξ, q) are the
solutions to finite-dimensional optimization problems.

The strategy of the proof was as follows. We bounded the rate function
below, by considering certain constraints that an optimal path must satisfy.
We bounded it above, by exhibiting certain paths. If we choose the con-
straints and the paths well, the upper and lower bounds agree. Since the
inputs have linear geodesics, the paths we exhibit will be piecewise linear,
and the constraints will reflect this.

Similar reductions can be obtained in dealing with more complex acyclic
queueing networks; however the number of possible segments in the piecewise
linear paths grows very quickly, rendering this approach impractical for large
networks.

The exercises below provide some instances where it is possibly to derive
closed-form expressions for the rate function governing the mean departure
rate. While such instances are somewhat rare, the situation is not so different
from classical queueing theory, where closed-form solutions for steady state
distributions are available only in a few special cases.
Exercise 6.8
Compute J , the rate function for the mean rate of departures, in each of the
following cases. Assuming that the arrivals {Ȧt, t ∈ Z} and service capacities
{Ċt, t ∈ Z} are i.i.d. sequences and independent of each other.

i. Arrivals and service capacity in each time slot are Bernoulli random
variables, i.e. P (Ȧ1 = 1) = p, P (Ȧ1 = 0) = 1 − p, P (Ċ1 = 1) = q and
P (Ċ1 = 0) = 1 − q, and the queue is stable, i.e. p < q.

ii. Arrivals and service capacity in a time slot are geometric random vari-
ables, i.e. P (Ȧ1 = j) = (1 − µ)µj and P (Ċ1 = j) = (1 − ν)νj, and
0 < µ < ν < 1.

iii. The amount of work arriving in a time slot is exponential with mean µ,
i.e. P (Ȧ1 > x) = e−x/µ, and the service capacity is exponential with
mean ν, and µ < ν. �

A special case of considerable practical importance is that of queues
with deterministic service capacity. The next exercise shows that we can
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explicitly compute the rate function for the mean rate of departures from
such a queue, for arbitrary arrival processes.

Exercise 6.9 (Mean departure rate with constant service rate)
Suppose that the arrival process satisfies a sample path LDP with linear
geodesics, with instantaneous rate function Λ∗

A and mean rate µ, and that
the service process is C(−t, 0] = ct for some c > µ. Show that

J(ξ) =

{
Λ∗(ξ) for 0 ≤ ξ ≤ c

+∞ otherwise. �

We now proceed to derive a joint LDP for the mean rate of departures
over an interval and the work in queue at the end of this interval. This
will turn out to be useful in Section 6.9 below. Specifically, suppose we are
interested in the pair (

D(−N, 0]/N,Q0/N
)
.

As we noted at the beginning of this section, the first component is D̃N (−1, 0]
which is a continuous function of (ÃN , C̃N ); the second component is also a
continuous function q0(ÃN , C̃N ). Thus we can use the contraction principle
to obtain an LDP for the pair, with rate function

J(ξ, r) = inf
{
I(a, c) : (a, c) ∈ Cµ × Cν ,

f(a, c)(−1, 0] = ξ, q0(a, c) = r
} (6.37)

where f is the departure map, given by (6.30).

Lemma 6.10 The rate function J(ξ, r) has the same form as J(ξ) in Lemma
6.9, except that the constraint sets have each been narrowed by the addition
of an equation involving r:

C1 = {α : q + α ≥ ξ, r = q + α− ξ}
C2 =

{
(α1, α2, σ1, σ2, t) : t ∈ [0, 1], α2 ≥ σ2,

q + (1 − t)α1 ≤ (1 − t)σ1,

q + (1 − t)α1 + tσ2 = ξ, r = t(α2 − σ2)
}

Sketch proof. The proof is very much like that of Lemma 6.9: we first of all
introduce a dummy variable q to represent the queue size at time −1; then
we split the optimization problem into two parts, one over (−∞,−1] and the
other over (−1, 0], and to each problem we add the constraint q−1(a, c) = q.
We solve the first part using the result about queue size in Section 6.4, and
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we solve the second part by considering well-chosen straightenings of optimal
paths.

In Lemma 6.9, the constraint sets reflected the properties of the optimal
path. At time −1, the queue size has reached some level q = q−1. Let q0
be the queue size at time 0, and q−1

0 the queue size at time 0 if the queue
were started empty at time −1. We identified two cases: either q0 > q−1

0 , in
which case the mean rate of departures is given by

d(−1, 0] = c(−1, 0]

or q0 = q−1
0 , in which case it is given by

d(−1, 0] = a(−1, 0] + q−1 − q−1
0 .

In the first case, we study piecewise linear paths of the form (6.35), and in
the second we study piecewise linear paths of the form (6.36)

Now, the rate function (6.37) that we want to calculate here specifies an
additional constraint: that q0 = r. So in the linear sample paths that we
construct must satisfy this constraint. In the first case, q0 = q + α − ξ; in
the second case, q0 = t(α2 −σ2). This explains the additional constraints in
C1 and C2 specified in the statement of the lemma.

(You should work through the proof of Lemma 6.10, and verify that
adding these constraints is the correct thing to do in proving both the lower
and upper bounds on M(ξ, r, q).) �

We can in fact find a slightly more explicit form for J(ξ, r), by simplifying
the constraint sets C1 and C2 above: by setting ζ1 = q + (1 − t)α1 and
ζ2 = (1 − t)σ1, we find that

J(ξ, r) = inf
q≥0

δq +K(ξ, r, q) ∧ L(ξ, r, q)

δ is as in Lemma 6.9
K(ξ, r, q) =Λ∗(r − q + ξ, ξ) (6.38)

L(ξ, r, q) = inf
C2

(1 − t)Λ∗
(ζ1 − q

1 − t
,
ζ2

1 − t

)
+ tΛ∗

(r + ξ − ζ1
t

,
ξ − ζ1
t

)
(6.39)

and C2 =
{
(ζ1, ζ2, t) : t ∈ [0, 1], ζ1 ≤ ζ2

}
. (6.40)

Exercise 6.10
Use Lemma 6.10 and the contraction principle to derive the rate function
J(ξ) governing the LDP for

(
D(−N, 0]/N, N ∈ N). Verify that this is the

same as the rate function given by Lemma 6.9. �
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Exercise 6.11
Compute the rate function J(ξ, q) governing the joint LDP of the pair

(
(D(−N, 0]/N,Q0/N), N ∈ N

)

for the arrival and service processes in Exercise 6.8. �

This problem has also been studied by Ramanan and Dupuis [87] and
Chang and Zajic [15], and by Puhalskii and Whitt [84] in the continuous-
time setting.

6.9 Quasi-Reversibility

A continuous-time queueing system is called quasi-reversible if its ‘state’
is a stationary Markov process, with the property that the state at time t
is independent of both the arrival process after time t, and the departure
process prior to time t. It can be shown that the arrival and departure
processes are both Poisson (with the same rate). It can also be shown
that, in a network of quasi-reversible queues, the joint distribution of queue
states is product-form. This makes such networks analytically tractable,
and has contributed to the popularity of quasi-reversible queueing models
in performance analysis. For more details, see Muntz [74], Kelly [52] and
Walrand [95].

In this section we will explore the large deviations analogue of quasi-
reversibility. Consider a single-server queue whose service process satisfies
a sample path LDP with linear geodesics. We will exhibit a rate function
such that, if the arrival process satisfies a sample path LDP with linear
geodesics and our specified rate function, then the joint rate function for
current queue size, future arrivals, and past departures, is simply the sum
of their individual rate functions. (This is the large-deviations analogue
of independence: see Theorem 4.14). Furthermore, this rate function is
invariant, i.e. the departure process has exactly the same rate function as
the arrival process.

In fact, one can say more: if c is the mean service rate, then for any mean
arrival rate µ < c there is a unique rate function for the sample paths of
the arrival process which both is invariant and satisfies the large-deviations
analogue of quasi-reversibility. We will not prove this here; the details can
be found in [44].

The setup for the rest of this section is as follows. Consider a single-
server queue with an infinite buffer. Let C(−t, 0] be the amount of service
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offered in the interval (−t, 0]. As usual, let C̃ be the polygonalized version,
and define the scaled polygonalized version

C̃N (−t, 0] =
1
N
C̃(−Nt, 0].

Assume that the sequence (C̃N , N ∈ N) satisfies a sample path LDP with
linear geodesics, with instantaneous rate function Λ∗

C and mean rate c. Let
A(−t, 0] be the amount of work arriving in the interval (−t, 0]. Let D be
the departure process, defined by (6.29). Define the scaled polygonalized
versions ÃN and D̃N accordingly.

Theorem 6.11 Assume that Λ∗
C is strictly convex, and finite and differen-

tiable on (0, c].
For µ ∈ (0, c), let θµ = (Λ∗

C)′(µ), and let

Λ∗
A(x) = Λ∗

C(x) − Λ∗
C(µ) − θµ(x− µ). (6.41)

Then Λ∗
A is a convex rate function, and Λ∗

A(µ) = 0. Suppose the sequence
(ÃN , N ∈ N) satisfies a sample path LDP with linear geodesics, with instan-
taneous rate function Λ∗

A, and that ÃN is independent of C̃N . Then
i. The sequence (D̃N , N ∈ N) satisfies a sample path LDP with linear

geodesics, with instantaneous rate function Λ∗
A and mean rate µ;

ii. The sequence (Q0/N, N ∈ N) satisfies an LDP in R
+
0 with good rate

function I(q) = δq, with

δ = inf
α>σ

Λ∗
A(α) + Λ∗

C(σ)
α− σ

iii. The sequence
(
(D̃N , Q0/N), N ∈ N

)
satisfies a large deviations princi-

ple, and the rate function is the sum of the two individual rate functions.

After making some remarks about interpretation, the rest of this section
is given over to proving Theorem 6.11.

i. The theorem does not claim that there exists an arrival process ÃN

with the specified rate function. For some results on existence see [44]. Nor
does the theorem claim that the departure process has the same distribution
as the arrival process—only that the distribution is the same on a large
deviations scale.

ii. Since Λ∗
C is strictly convex, so is Λ∗

A. It is easy to check that Λ∗
A(µ) = 0,

and this must thus be the unique zero, and hence the mean rate of A. The
theorem says that for each µ ∈ (0, c) there is (pace the above remark) an
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arrival process with mean rate µ, whose large deviations rate function is the
same as that of the corresponding departure process. Clearly, there is no
such rate function if µ > c since the mean rate of departures cannot exceed
the mean service rate.

iii. When the service process has i.i.d. increments, there is a concrete
interpretation of (6.41). Let L denote the probability law of Ċ0, the service
offered in a single timeslot, and define the exponentially tilted law L̃ by

dL̃

dL
(ξ) = exp

(
θµξ − ΛC(θµ)

)
, ξ ∈ R.

(This tilting was seen in the note at the end of Section 2.5 and in the proof
of Cramér’s theorem.) Note that by the self-duality property of ΛC (see
Lemmas 2.5 and 2.6)

ΛC(θµ) = θµµ− Λ∗
C(µ)

and in particular that ΛC(θµ) is finite, so the exponential tilt is well-defined.
Now, let X be a random variable drawn from L̃, and consider its log moment
generating function, and its convex dual:

ΛX(θ) = logEeθXeθµX−ΛC(θµ) = ΛC(θ + θµ) − ΛC(θµ) (6.42)
Λ∗

X(ξ) = sup
θ
θξ − (

ΛC(θ + θµ) − ΛC(θµ)
)

= −θµξ + ΛC(θµ) + sup
θ

(θ + θµ)ξ − ΛC(θ + θµ)

= −θµξ + ΛC(θµ) + Λ∗
C(ξ)

= Λ∗
C(ξ) − Λ∗

C(µ) − θµ(ξ − µ) using (6.42)

This is exactly as specified by (6.41). Therefore if we let (. . . , Ȧ−1, Ȧ0) be
a sequence of i.i.d. random variables drawn from L̃, then the sequence of
scaled arrival processes ÃN satisfies the conditions of Theorem 6.11.

The following lemmas are key steps in the proof of Theorem 6.11.

Lemma 6.12 Under the assumptions of Theorem 6.11, δ = −θµ.

Proof. On one hand, by choosing the ‘flipped’ values α = c and σ = µ,

δ = inf
α>σ

Λ∗
A(α) + Λ∗

C(σ)
α− σ

≤ Λ∗
A(c) − Λ∗

C(µ)
c− µ

= −θµ.

(The intuition behind this choice is as follows. The parameter δ represents
an exponential tilt of Ȧ0 and Ċ0. We claim that the appropriate tilt of Ȧ0
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is −θµ. Bearing in mind the note at the end of Section 2.5, the tilted mean
of Ȧ0 must satisfy (Λ∗

A)′(α) = −θµ. The tilted mean is thus c. Similarly for
Ċ0.)

On the other hand, by using the convexity bound

Λ∗
C(σ) ≥ Λ∗

C(µ) + θµ(σ − µ)

and by substituting the equation (6.41) for Λ∗
A into δ,

δ = inf
α>σ

Λ∗
A(α) + Λ∗

C(σ)
α− σ

≥ inf
α>σ

Λ∗
C(α) − θµ(α− σ)

α− σ
≥ −θµ. �

Lemma 6.13 Under the assumptions of Theorem 6.11, and using the no-
tation of Lemma 6.10,

δq +K(ξ, r, q) ≥ δr + Λ∗
A(ξ) (6.43)

and δq + L(ξ, r, q) ≥ δr + Λ∗
A(ξ). (6.44)

Proof. First (6.43):

δq +K(ξ, r, q) = δq + Λ∗
A(r − q + ξ) + Λ∗

C(ξ) using (6.38)
= δq + Λ∗

C(r − q + ξ) + Λ∗
A(ξ) − δq + δr (6.45)

using the definition of Λ∗
A twice

≥ δr + Λ∗
A(ξ) since Λ∗

C is non-negative.

Now for (6.44). This involves the infimum over ζ1 ≤ ζ2 of

δq + (1 − t)
[
Λ∗

A

(ζ1 − q

1 − t

)
+ Λ∗

C

( ζ2
1 − t

)]

+t
[
Λ∗

A

(r + ξ − ζ1
t

)
+ Λ∗

C

(ξ − ζ1
t

)]
(6.46)

By noting that Λ∗
C is convex, and attains its minimum at c, we can restrict

the infimum to {
ζ1 = ζ2

} ∪ {ζ1 ≤ ζ2 ≤ c(1 − t)
}
.

In the first case, when ζ1 = ζ2,

(6.46) ≥ δq + Λ∗
A(ζ1 − q + r + ξ − ζ1) + Λ∗

C(ζ2 + ξ − ζ1)
by convexity of Λ∗

A and Λ∗
C

= δq + Λ∗
A(r − q + ξ) + Λ∗

C(ξ) since ζ1 = ζ2

≥ δr + Λ∗
A(ξ) as it was for δq +K(ξ, r, q).
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Now consider the alternative, that ζ1 ≤ ζ2 ≤ c(1 − t). In this case

(6.46) ≥ δq + (1 − t)Λ∗
A

(ζ1 − q

1 − t

)
+ t

[
Λ∗

A

(r + ξ − ζ1
t

)
+ Λ∗

C

(ξ − ζ1
t

)]

by non-negativity of Λ∗
C

≥ δq + (1 − t)
[
Λ∗

C

(ζ1 − q

1 − t

)
− Λ∗

C(µ) + δ
(ζ1 − q

1 − t
− µ

)]
+ t

[
· · ·
]

using the definition of Λ∗
A

≥ (1 − t)
[
Λ∗

C

( ζ1
1 − t

)
− Λ∗

C(µ) + δ
( ζ1

1 − t
− µ

)]
+ t

[
· · ·
]

since Λ∗
C is decreasing in (−∞, c]

= (1 − t)Λ∗
A

( ζ1
1 − t

)
+ t

[
Λ∗

A

(r + ξ − ζ1
t

)
+ Λ∗

C

(ξ − ζ1
t

)]

using the definition of Λ∗
A

= δr + (1 − t)Λ∗
A

( ζ1
1 − t

)
+ t

[
Λ∗

A

(ξ − ζ1
t

)
+ Λ∗

C

(ξ − ζ1
t

)]

using the definition of Λ∗
A twice

≥ δr + Λ∗
A(ξ) + tΛ∗

C

(r + ξ − ζ1
t

)
by convexity of Λ∗

A

≥ δr + Λ∗
A(ξ) by non-negativity of Λ∗

C

�

At several points in the proof, we used the definition of Λ∗
A (and the

characterization of δ as −θµ) in order to rewrite the expression Λ∗
A(α) +

Λ∗
C(β) as Λ∗

A(β) + Λ∗
A(α) + δ(α − β). This idea, of flipping arrival and

service rates, was also used in proving δ = −θµ, and recurs in the following
result.

Lemma 6.14 Under the assumptions of Theorem 6.11, and using the no-
tation of Lemma 6.10,

J(ξ, r) = δr + Λ∗
A(ξ).

Proof. Lemma 6.10 gives the expression

J(ξ, r) = inf
q≥0

δq +K(ξ, r, q) ∧ L(ξ, r, q).

Lemma 6.13 shows that J(ξ, r) ≥ δr + Λ∗
A(ξ). We will now show that

inf
q≥0

δq +K(ξ, r, q) ≤ δr + Λ∗
A(ξ) if ξ/c+ r ≥ 1

and inf
q≥0

δq + L(ξ, r, q) ≤ δr + Λ∗
A(ξ) if ξ/c+ r < 1.
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This will complete the proof.
First, suppose ξ/c+ r ≥ 1. Pick q = r+ ξ/c− 1. As we saw in (6.45) in

the proof of Lemma 6.13,

δq +K(ξ, r, q) = δr + Λ∗
A(ξ) + Λ∗

C(r − q + ξ)
= δr + Λ∗

A(ξ) by choice of q

Now suppose ξ/c + r < 1. Pick q = 0, t = r/(c − ξ), ζ1 = ξ(1 − t) and
ζ2 = c(1 − t). Then 0 < t < 1 (the trivial case t = 0 should be dealt with
separately), and ζ1 < ζ2, so these parameters lie in C2. With this choice of
parameters,

δq + L(ξ, r, q) ≤ δq + (1 − t)
[
Λ∗

A

(ζ1 − q

1 − t

)
+ Λ∗

C

( ζ2
1 − t

)]

+t
[
Λ∗

A

(r + ξ − ζ1
t

)
+ Λ∗

C

(ξ − ζ1
t

)]

= (1 − t)
[
Λ∗

A(ξ) + Λ∗
C(c)

]
+ t

[
Λ∗

A(c) + Λ∗
C(ξ)

]

= (1 − t)Λ∗
A(ξ) + t

[
Λ∗

A(c) + Λ∗
C(ξ)

]
since Λ∗

C(c) = 0
= (1 − t)Λ∗

A(ξ) + t
[
Λ∗

A(ξ) + Λ∗
C(c) + δ(C − ξ)

]

by flipping arrival and service rates
= δr + Λ∗

A(ξ) since Λ∗
C(c) = 0.

This completes the proof. �

Lemma 6.15 Under the assumptions of Theorem 6.11, for any k ∈ N and
0 = t0 < t1 < · · · < tk, the random vector

(
D̃N (−tk,−tk−1], . . . , D̃N (−t1, 0], Q0/N

)

satisfies an LDP in R
k × R

+ with good rate function

J(ξj , . . . , ξ1, r) = δr +
k∑

i=1

(ti − ti−1)Λ∗
A

( ξi
ti − ti−1

)

Sketch proof. The proof is by induction on k. We will in fact only argue
cases k = 1 and k = 2; then the induction argument should be clear.

When k = 1, this is just a slightly more general version of Lemma 6.14.
That lemma described the case when t1 = 1, but it is easy to extend it to
general t1 by simply rescaling the most likely path leading to d(−1, 0] = ξ
and q0 = r identified there.
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Now consider the case k = 2. We already know (from Section 6.7)
that the entire departure process D̃N is a continuous function of the scaled
arrival and service processes, as is Q0/N . This means that the vector we
are interested in is also a continuous function, which means we can use
the contraction principle to compute the rate function J . The variational
problem we have to solve is

minimize I(a, c)
over (a, c) ∈ Aµ ×Aν

subject to d(−t2,−t1] = ξ2, d(−t1, 0] = ξ1, q0 = r.

We will adopt the same strategy as in Lemma 6.9, of introducing a dummy
variable q to represent the queue size at time t−1, giving the expanded
problem

minimize I(a, c)
over (a, c) ∈ Aµ ×Aν , q ≥ 0
subject to d(−t2,−t1] = ξ2, q−t1 = q, d(−t1, 0] = ξ1, q0 = r.

Given q, this problem splits into two parts, one over (−∞,−t1] and the other
over (−t1, 0]. We know the solution to the first part, by the k = 1 case. It
results in the simplified problem

minimize δq + (t2 − t1)Λ∗
A

( ξ2
t2 − t1

)
+
∫ 0

−t1

Λ∗
A(ȧt) + Λ∗

C(ċt) dt

over (a, c) ∈ At1 ×At1 , q ≥ 0
subject to q−t1 = q, d(−t1, 0] = ξ1, q0 = r.

But this is, apart from the addition of
(
t2 − t1)Λ∗

A(ξ2/(t2 − t1)
)
, exactly the

optimization problem that was solved in Lemma 6.10; and by Lemma 6.14
the solution is just

(t2 − t1)Λ∗
A

( ξ2
t2 − t1

)
+ t1Λ∗

A

(ξ2
t1

)
+ δr.

This completes the proof. �

We are finally ready to complete the proof of the main result.

Sketch proof of Theorem 6.11 We need to go from a discrete-time rate func-
tion like that in 6.15 to a full rate function for (D̃N , Q0/N). The argument
is similar to that of Mogulskii’s theorem, described in Section 6.2.
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First, consider (D̃N |(−t,0], Q0/N). This is the projective limit of systems
of the form appearing in Lemma 6.15, and by the Dawson-Gärtner theorem
it satisfies an LDP in Ct × R

+. It can be shown that the rate function is

Jt(d, r) =

{∫ 0
−t Λ∗

A(ḋt) dt + δr if d ∈ At

∞ otherwise.

The topology on Ct is that of pointwise convergence, which is what the
Dawson-Gärtner theorem gives us, and let us write (Ct, τp) to emphasize
this. We would like to establish the LDP in (Ct, τu) × R

+, where by the
first term we mean Ct equipped with the topology of uniform convergence.
We can do this using the contraction principle. We know from Section 6.7
that (D̃N , Q0/N) satisfies an LDP in Cµ × R

+, and so by the contraction
principle (D̃N |[−t,0], Q0/N) satisfies an LDP in (Ct, τu)×R

+ with some good
rate function Kt. Applying the contraction principle again, this time to
the identity map, (D̃N |[−t,0], Q0/N) satisfies an LDP in (Ct, τp) × R

+ with
the same good rate function Kt. But, by uniqueness of the rate function,
Kt = Jt. Thus we obtain an LDP in the finer topology with good rate
function Jt.

By taking projective limits again, we obtain an LDP for (D̃N , Q0/N) in
X × R

+ with rate function

J(d, r) =

{∫ 0
−∞ Λ∗

A(ḋt) dt + δr if d ∈ A
∞ otherwise

where X is the space of continuous functions R
+ → R equipped with the

topology of uniform convergence on compacts, which is what the Dawson-
Gärtner theorem gives us. By the same argument we used before, we can
strengthen this to an LDP in Cµ × R

+. �

Exercise 6.12
We have studied quasi-reversibility in the large deviations sense for the sim-
ple single-server queue. Kelly [52] describes a broad class of queueing net-
work models which are quasi-reversible in the conventional sense. Are they
also quasi-reversible in the large deviations sense? �

6.10 Scaling Properties of Networks

Often the variational problems that arise in networks are too complicated
to be of practical use. However, there are some simple observations which
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can be made about scaling behaviour, which are perhaps more important
than knowing the exact value of a rate function.

Imagine a complicated queueing network, and suppose we are interested
in the queue size at some queue. As usual, we assume that the amount of
work arriving to the network, and the service capacities, can be represented
by a sequence of R

d-valued random variables
(
X(−t, 0], t ∈ N

)
, for some

fixed d. Let X̃ be the polygonalized version of X. The queue size at the
queue we are interested in will generally be of the form Q = f(X̃), although
the function f can be quite complicated.

This function f generally satisfies two basic properties. First, since the
queue length is expressed in the same units as the inputs and service ca-
pacities, and taking all buffer sizes to be infinite, the function f is linear in
space: f(κx) = κf(x) for any κ > 0. Second, f is homogeneous in time: if
we define the speeded-up input process x�κ by x�κ(−t, 0] = x(−κt, 0] then
f(x�κ) = f(x). These two properties, together with continuity of f , are
sufficient for us to deduce that the queue size Q has exponential tails!

To illustrate: when we studied the single-server queue with an infinite
buffer in Section 6.4, the function was f(x) = supt x(−t, 0], which is linear
in space and homogeneous in time. The sequence of scaled input processes
N−1X̃�N satisfies an LDP, from which we obtain an LDP for Q/N , from
which we deduced (6.22), namely that

lim
q→∞

1
q

log P (Q > q) = −δ for some δ > 0 (6.47)

(under quite general conditions on the LDP for N−1X̃�N ).

Theorem 6.16 Suppose that the sequence of inputs N−1X̃�N satisfies a
sample path LDP with linear geodesics, with mean rate µ and instantaneous
rate function Λ∗ which is strictly convex. Write I(x) for the rate function

I(x) =

{∫ 0
−∞ Λ∗(ẋt) dt if x ∈ Aµ

∞ otherwise.

Let Q = f(X̃), and suppose
i. f is continuous, and linear in space and homogeneous in time;
ii. the system is stable, i.e. for the path x with constant gradient ẋt = µ,

f(x) = 0;
iii. the problem is non-degenerate, i.e. there exists some x ∈ Aµ for which

I(x) <∞ and f(x) > 0.
Then Q has exponential tails, i.e. it satisfies (6.47).
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Proof. By the contraction principle, Q/N satisfies an LDP with good rate
function

J(q) = inf
{
I(x) : x ∈ Aµ, f(x) = q

}

We will first show that J(q) = qJ(1). Pick any r > 0 and consider J(r).
Since the rate function is good, the optimal path in J(r) is attained; let
it be y. Now consider the scaled path z = (q/r) y�r/q. By (i) f(z) = q;
and by a change of variables I(z) = (q/r) I(y). Thus J(q) ≤ (q/r)J(r). So
J(q) ≤ qJ(1), and J(1) ≤ J(q)/q for q > 0, and so J(q) = qJ(1).

Second, we will show that J(1) > 0. Suppose J(1) = 0, and let y be the
optimal path. By the form of the rate function, y is absolutely continuous
and Λ∗(ẏt) = 0 for almost all t. Since the rate function is strictly convex,
ẏt = µ for almost all t. By (ii), f(y) = 0, which contradicts its optimality
for J(1).

Third, we will show that J(1) < ∞. Let x be the path in (iii). By the
above bound, J(1) ≤ I(x)/f(x) <∞.

Now consider the event {Q/N > q}. As f(q) is linear in q, the large
deviations upper and lower bounds agree, and so

lim
N→∞

1
N

log P (Q/N > q) = −J(1)q.

If we write q′ for N and let q = 1 we obtain the desired result. �

6.11 Statistical Inference for
the Tail-Behaviour of Queues

A key observation we made in Section 6.4 is that the queue length distri-
bution has an exponential tail, under very general assumptions about the
arrival and service processes. On the basis of the large deviations limit result
(6.22) we make the approximation

P (Q0 > q) ≈ exp(−δq)
In that section we explained how the parameter δ is related to the distri-
butions of the arrival and service processes. However, in practice, those
distributions are rarely known. This motivates us to consider how to esti-
mate δ from observations, either of the arrival and service processes or the
queue length process. In this section we will consider this problem, in both
frequentist and Bayesian settings.

Note. Exactly the same estimation problem arises in risk theory, in which
context δ is called the risk adjustment coefficient.
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A Frequentist Approach

Recall the discussion of the single-server queue in Section 1.3. Let A(−t, 0]
be the amount of work arriving at the queue in interval (−t, 0], let C(−t, 0]
be the service offered, and let X(−t, 0] = A(−t, 0]−C(−t, 0]. We showed in
Theorem 3.1 that

δ = sup
{
θ > 0 : Λ(θ) < 0

}
where Λ(θ) = lim

t→∞ logEeθX(−t,0] (6.48)

Suppose first that (Ẋt, t ∈ Z) are i.i.d.. One approach to estimating
δ is to specify a parametric model for the distribution of Ẋt, estimate the
parameters from observations of Ẋ1, . . . , Ẋn, and use the fitted model to
compute δ. This is usually appropriate if the distribution of Ẋt can be
described by a simple model.

In more complicated situations, there is typically far more informa-
tion in the model than is needed to quantify its impact on the build-up
of queues. The formula (6.48) suggests that one can, alternatively, adopt
a non-parametric approach and estimate δ directly, without reference to a
particular model. Thus, if we use the empirical distribution of Ẋ1, . . . , Ẋn

as an estimate of the distribution of Ẋ1, we obtain the estimate

Λ̂(θ) = log

(
1
n

n∑

i=1

exp θẊi

)

for its cumulant generating function. Substituting Λ̂ into the equation for
δ yields an estimate δ̂ for δ. This approach, for estimating δ and finding
confidence intervals for it, has been studied by Pitts et al. [83] and also by
[32].

More generally, when (Ẋ t, t ∈ Z) are not independent, the formula
(6.48) suggests the following estimator for the limiting scaled cumulant gen-
erating function:

Λ̂(θ) =
1
t

log

(
1

n− t+ 1

n−t∑

i=0

exp θX(i, i+ t]

)

Thus, we divide up the observations into overlapping blocks of size t. We es-
timate the moment generating function corresponding to a block of size t by
averaging over blocks. We use overlapping blocks instead of non-overlapping
blocks with the intention of reducing the variance of the estimator. The
block size t needs to be chosen carefully. We want t to be large, since Λ(θ)
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is given by a limit as t → ∞ and so by increasing t we decrease the bias
of the estimator. On the other hand, we want t to be small, since this
gives more independent blocks of size t in the data, and hence a lower vari-
ance for the estimator. Statistical properties of this estimator are discussed
in [32, 42, 86].

These estimators rely on observations of the input process. An alterna-
tive approach is based directly on observations of the queue length; in the
light of the scaling result of Section 6.10 this can of great practical value.
Such an approach was first suggested by Courcoubetis et al. [19], and has
subsequently been studied by many others. The basic idea is to take a sam-
ple of the queue length process, estimate the distribution function P (Q > q)
by the empirical distribution P̂ (Q > q), plot log P̂ (Q > q) against q, draw
a straight line through the points, and estimate δ by the slope of the line.

There are not many rigorous results concerning direct estimators. One
case where rigorous results are known is as follows: Let Mt be the maxi-
mum queue size attained in the interval [0, t] and let δ̂t = − logMt/t. Glynn
and Zeevi [47] have shown that, under very general conditions, this estima-
tor is strongly consistent i.e. δ̂t → δ almost surely as t → ∞. However,
convergence is slow; the error is of order 1/ log t in probability.

A Bayesian Approach

We now consider a Bayesian approach to estimating the probability that the
queue size is large. Assume again that the (Ẋ t, t ∈ Z) are i.i.d., and let L be
their common probability law. We will suppose we start with a prior distri-
bution π(L) for L, make a sequence of observations X|[1,n] = (Ẋ1, . . . , Ẋn),
use Bayes’s rule to find the posterior distribution π′n(L) = π

(
L
∣∣ X|[1,n]

)
,

and we want to compute the expected posterior loss probability

Eπ′
n

[
PL(Q > q)

]
.

In fact it is difficult to compute this exactly in all but a few special cases.
Instead, we will use large deviations techniques to find

lim
n→∞

1
n

logEπ′
n

[
PL(Q > nq)

]
. (6.49)

(Note that we are scaling both the number of observations and the queue size
threshold.) We know that PL(Q > q) ≈ e−qδ(L) where δ(L) is the standard
large deviations rate; we would therefore expect (6.49) to be involve −qδ(M)
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for some ‘most likely’ posterior law M . The following theorem makes this
rigorous.

For technical reasons, we have already assumed that the (Ẋ t, t ∈ Z) are
i.i.d. We will also assume that they take values in a finite set A. Let M1(A)
denote the set of probability measures on A, and for L ∈M1(A) write L(a)
for L({a}).

Note. The following result involves large deviations for empirical distribu-
tions. You may like to look back to Sanov’s theorem in Section 2.7 before pro-
ceeding. Sanov’s theorem involves the relative entropy H(L|M) as a function
of L; it not a typographical error that the result below involves the relative
entropy as a function of M .

Theorem 6.17 Under the above assumptions, for L-almost every X,

(6.49) = − inf
M∈ supp π

qδ(M) +H(L|M)

where H(L|M) =
∑

a∈A

L(a) log
L(a)
M(a)

is the relative entropy of L with respect to M , and suppπ is the support of
π.

Sketch proof. We will use Varadhan’s lemma. This involves a continuous
function and an LDP. The continuous function we will use will be an estimate
of PL(Q > nq), and the LDP will be for a random measure drawn from the
posterior distribution π′n.

It is a standard result, a refinement of Wald’s approximation for hitting
probabilities of random walks, that

c1e
−qδ(L)q ≤ PL(Q > q) ≤ c2e

−qδ(L)

for some positive constants c1 and c2. From this it follows that (6.49) is
equal to

lim
n→∞

1
n

logEπ′
n
e−nq δ(L) (6.50)

provided this limit exists. Now, δ(L) is a continuous bounded function on
M1(A). To see this, consider the characterization of δ(L) given in (6.48). In
the present case it simplifies, since

Λ(θ) = log
(∑

a∈A

L(a)eθa
)
.
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From this it is easy to verify the necessary properties of δ.
Now for the posterior distribution. In fact, by our assumption that

the Ẋ t are i.i.d., the posterior distribution π(L|X[1,n]) simplifies to π(L|Ln)
where Ln is the empirical distribution

Ln(a) =
1
n

n∑

i=1

1[Ẋ i = a].

Let Ln be a random measure on A drawn from the posterior distribution
π(·|Ln). It can be shown that Ln satisfies an LDP in M1(A) with good rate
function

I(M) =

{
H(L|M) if M ∈ suppπ
∞ otherwise

where L is the distribution of the Ẋt. A proof of this can be found in [40];
it is also implicit in [29], and is a corollary of a more general result for
posteriors of Markov transition matrices established in [80].

We can now apply Varadhan’s lemma, to conclude that

(6.50) = sup
M∈M1(A)

−qδ(M) − I(M).

This completes the proof. �

While we are still faced with a variational problem, this is much simpler
than exact computation of the posterior expectation, and can be solved
numerically. It can also be simplified in special cases. Under additional
conditions on the prior, the result can be extended to i.i.d. Ẋ t taking values
in a compact set [43, 61]. It can also be extended to dependent sequences;
the Markovian case is treated in [39, 81].



Chapter 7

Many-Flows Scalings

In this chapter we will systematize the result of Section 1.4: a large de-
viations principle for queues with many input flows. We will develop the
theory using the general framework outlined in Chapter 5: decide on the
scaling (Section 7.1), find a suitable topological space to work in (Section
7.2), establish an LDP for traffic processes (Section 7.3), then apply the con-
traction principle to deduce LDPs for various functions of interest (Sections
7.6–7.10).

We will then go on (Section 7.11) to describe some results concerning
networks, which do not fit into this general framework.

7.1 Traffic Scaling

Consider a queue fed by many input flows. Let A(i)(t) be the amount of
work arriving to the queue in the interval (−t, 0], t ∈ Z, from input flow
i. Suppose that each flow is a random process, and that the different flows
are independent and identically distributed. (These assumptions are neither
necessary nor sufficient for what we will do later. In Section 7.3 we will be
precise; for now this will do.)

Let AN be the average of N input flows:

AN (t) =
1
N

(
A(1)(t) + · · · +A(N)(t)

)
.

Some convenient notation. For talking about abstract processes, we
will use the notation A(t). When we come to study queues, it will be more
convenient to use the extended notation which we described in Section 5.5.
Write

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 151–181, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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x(−t, 0] for x(t)
x(−t,−u] for x(t) − x(u), when t ≥ u
x|(−t,0] for the restriction of x to {−(t+ 1), . . . , 0}
ẋ−t for x(t+ 1) − x(t)

Queue scaling. Consider the queue size function (with constant service
rate, for simplicity) applied to AN :

q(AN , C) = sup
t≥0

AN (−t, 0] − Ct

= N−1 sup
t

N∑

i=1

A(i)(−t, 0] −NCt

= N−1RN
0

where RN
0 is the queue size at time 0 in a queue fed by N flows A(1), . . . , A(N)

and served at rate NC.
Now suppose that AN satisfies a large deviations principle with good rate

function I and that q is continuous. Applying the contraction principle, we
obtain a large deviations principle of the form

1
N

log P (q(AN , C) ≥ b) ≈ −J(b)

and hence
1
N

logP (RN
0 ≥ Nb) ≈ −J(b),

the usual form of the many-flows estimate (as in Theorem 1.8).

7.2 Topology for Sample Paths

In some ways it is easier to study continuity of queue-size functions in the
many-flows limit than in the large-buffer limit, in some ways harder. Easier
because we only need to work in discrete time; harder because it is harder
to deal with the mean rate of an arrival process.

Discrete-time sample paths. We start with the set of sample paths

D = {x : N0 → R, x(0) = 0}. (7.1)
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Any arrival process AN lies in this set; we do not need any polygonalization
tricks, and we don’t need to switch to continuous time. This simplifies
working with queue-size functions.

For example, consider the processor-sharing queue in Section 5.10. In
that section we started with a pair of discrete-time equations (5.19) which
describe the system. With a finite-horizon boundary condition, they yield
a finite-horizon queue-size function q(·|(−T,0]). We then proposed a pair
of continuous-time equations (5.22) with the same finite-horizon boundary
condition, and established three things:

• that the continuous-time queue-size equations have a unique solution
q̃−T over any finite time horizon;

• that they are consistent with the discrete-time queue-size functions (i.e.
q(x) = q̃(∼(x)), where ∼ is the polygonalization operator);

• that the continuous-time finite-horizon functions q̃−T are continuous on
CT , that is, with respect to the topology of uniform convergence on
compact intervals.

For our work on the many-flows scaling it is sufficient to work in discrete
time. This makes things simpler:

• the discrete-time equations (5.19), together with the finite-horizon bound-
ary condition, clearly have a unique solution q−T ;

• we haven’t defined any new functions, so we don’t need to check consis-
tency;

• the discrete-time finite-horizon functions q−T are clearly continuous on
D with respect to the topology of uniform convergence on compact in-
tervals, i.e. with respect to pointwise convergence.
So, it is simpler to describe the finite-horizon behaviour of the queueing

system in discrete time than in continuous time. We still need to extend to
the infinite-horizon boundary condition, that ‘the queue was empty at time
−∞’, and to prove that the infinite-horizon queue-size function is continu-
ous. We have already done all this work in continuous time:

• we defined the infinite-horizon queue-size function q̃(x) = limT→∞ q̃−T (x);
• we proved that q̃ was continuous on Cµ.

We have done this work, so we will simply
• define the infinite-horizon queue-size function q(x) = limT→∞ q−T (x);
• note that q(x) = q̃(∼(x)), and that the map ∼ is continuous (with respect

to a topology on X which we will define in a moment), and conclude that
if q̃ is continuous then so is q.

It is possible to prove continuity directly, but given the work we have done
already, there is no need.
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Mean arrival rate. The part that is harder is dealing with mean arrival
rates. The trouble is that a typical arrival process AN may not have the
right mean rate. For example, let A(i) be independent copies of a constant-
rate random process, each rate drawn independently from Normal(µ, σ2).
Then the limit

lim
t→∞

AN (t)
t+ 1

is not necessarily equal to µ—in fact, the limit is a normal random variable
with mean µ and variance N−1σ2. We can define a space Dµ analogously to
Cµ, but AN almost surely does not lie in Dµ, and so we cannot speak about
a large deviations principle for AN in Dµ.

The way around this problem is to work in a larger space and use the
extended contraction principle, Theorem 4.6. It turns out that the rate
function of any sample path not in Dµ is infinite, which essentially means
we can ignore those sample paths that are not in a neighbourhood of Dµ.
To make this precise, we will define some more topological spaces. We will
see how to use them in Section 7.5.

For convenience define the lower and upper mean rates of an arrival
process:

x = lim inf
t→∞

x(t)
t+ 1

x̄ = lim sup
t→∞

x(t)
t+ 1

.

Equip D with the extended scaled uniform topology defined below; we will
obtain an LDP for AN in this space.

Definition 7.1 Define the extended scaled uniform topology on D as fol-
lows. If x = ∞ or x̄ = −∞ then let x be an isolated point. Equip the
remainder of D with the topology obtained from the normal scaled uniform
norm (5.4): recall its definition

‖x‖ = sup
t≥0

∣
∣∣
x(t)
t+ 1

∣
∣∣.

Next, define two subspaces of D:

D(µ,ν) = {x ∈ D : µ < x ≤ x̄ < ν}

and

D[µ,ν] = {x ∈ D : µ ≤ x ≤ x̄ ≤ ν}.
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Recall also

Dµ = {x ∈ D : x = x̄ = µ}.
It is not hard to check that the results in Chapter 5, which show that various
queue-size functions are continuous on Dµ, carry through to D[µ−ε,µ+ε] for
ε sufficiently small.

Note. These isolated points will not be at all important. As we have already
mentioned, we can effectively ignore all sample paths outside X[µ−ε,µ+ε],
including all these isolated points. If we had made the extra assumption
that X is ergodic, it would not even have been necessary to include them,
since if AL is ergodic then ĀN = AN and this is finite.

The space D[µ−ε,µ+ε] is not Polish; it is not even separable. Separability
is needed for certain LDP results such as Theorem 4.14 for product spaces.
However, as noted after that theorem, it is sufficient if there is a separable
subspace which contains the effective domain of the rate function. It will
turn out that the rate function is infinite outside Dµ, which is Polish and
hence separable.

7.3 The Sample Path LDP

We will give here a simplified version of the large deviations principle. There
are some extra subtleties which are needed to describe networks, which we
will give in Section 7.11, and some generalizations, which can be found in
[101].

Let XN be the average of N independent arrival processes with common
distribution X. We will prove an LDP for XN .

Note. We could simply state the LDP as an assumption, as we did for the
large-buffer scaling, and then apply the contraction principle; and this would
be the most elegant way to proceed. However, the LDP is somewhat convo-
luted and abstract, and it is perhaps more helpful to work with a concrete
theorem.

Definition 7.2 For t ∈ N and θ ∈ R
t, define the log moment generating

function
Λt(θ) = logE exp(θ ·X|(−t,0]).

Say that X is regular over finite horizons if each Λt is finite in a neighbour-
hood of 0, and essentially smooth (i.e. differentiable in the interior of its
effective domain, and steep).
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A scaling function is a function v : N → R for which vt/ log t → ∞.
Given a scaling function, define for θ ∈ R the scaled log moment generating
function

Λ̃t(θ) =
1
vt

Λt(eθvt/t).

where e is the vector of 1s. Say that X is regular over the infinite horizon
if the functions Λ̃t converge pointwise to a limit Λ̃ which is differentiable in
a neighbourhood of the origin.

Theorem 7.1 (Many-flows sample path LDP) Let XN be the average
of N independent identically distributed copies of some process X. If X is
regular over finite horizons, then XN satisfies a sample path large deviations
principle with good rate function

I(x) = sup
t∈N

Λ∗
t (x|(−t,0]) = lim

t→∞Λ∗
t (x|(−t,0]), (7.2)

where
Λ∗

t (y) = sup
θ∈Rt

θ · y − Λt(θ) for y ∈ R
t,

in the space D defined by (7.1) and equipped with the topology of pointwise
convergence.

If in addition XN is regular over the infinite horizon then it is expo-
nentially tight in D equipped with the extended scaled uniform topology, and
satisfies an LDP in that space with the same good rate function.

Note. The concept of regularity over the infinite horizon is needed to estab-
lish tightness, but neither the scaling function vt nor the limiting scaled log
moment generating function Λ̃ appear in the LDP above. Their only purpose
is to control the tail behaviour of XN . For most processes, the scaling func-
tion vt = t is appropriate; though it is useful to allow the more general vt

to cope with processes with non-standard tail behaviour, such as fractional
Brownian motion.

In the rest of this chapter, we will say that XN satisfies a sample path
LDP if it is regular over finite and infinite horizons, and if it has stationary
increments, i.e. XN (−t + u, u] has the same distribution as XN (−t, 0] for
all u ≤ 0.

Proof. We will first appeal to the generalized Cramér’s theorem (Theorem
2.11) to establish an LDP for XN |(−t,0] in R

t. (Since XN is the average
of i.i.d. random variables, the generalized version of the theorem is in fact
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overkill.) By assumption, Λ is essentially smooth and finite in a neighbour-
hood of the origin; by Lemma 2.3 it is lower-semicontinuous. Thus the
conditions of the theorem are satisfied, and so XN |(−t,0] satisfies an LDP in
R

t for each t, with good rate function Λ∗
t .

Second, by the Dawson-Gärtner theorem we can extend this collection of
LDPs to an LDP for XN in (D, τp), by which we mean the set D equipped
with the topology of pointwise convergence (which is the projective limit
topology for discrete sequences), with good rate function I(x).

Third, we want to turn the LDP in (D, τp) into an LDP in (D, ‖ · ‖), by
which we mean D equipped with our extended scaled uniform norm topology.
(When we write D this topology is to be understood; we are just spelling
it out here for emphasis.) This can be done using the inverse contraction
principle (Theorem 4.10). The ingredients are as follows: to show that the
identity map (D, ‖ · ‖) → (D, τp) is continuous, which is trivial; an LDP for
XN in (D, τp), which we have just found; and exponentially tightness of XN

in (D, ‖ · ‖). The proof of exponential tightness is very technical, and is left
to Lemma 7.3 at the end of this section.

To see that the two expressions for the rate function are equal, simply
note that Λ∗

t (x|(−t,0]) is increasing in t. �

We have used the term mean rate in connection with sample paths, in
Section 5.4. The following theorem establishes equality between the mean
rate and t−1EX(−t, 0]. (Since X has stationary increments, this quantity
does not depend on t.)

Theorem 7.2 Under the conditions of Theorem 7.1, if µ = t−1EX(−t, 0],
then for x �∈ Dµ

I(x) = ∞.

Proof. Let µ = t−1EX(−t, 0]. We want to show that I(x) = ∞ if x �∈ Dµ.
Now,

I(x) = sup
t∈N

Λ∗
t (x|(−t,0])

= sup
t∈N

sup
θ∈Rt

θ · x− Λt(θ)

≥ sup
t∈N

sup
φ∈R

φvt

t
x(−t, 0] − Λt

(φvt

t
e
)

(by choosing θ = eφvt/t)

= sup
t∈N

sup
φ∈R

φvt

[x(−t, 0]
t

− Λ̃t(φ)
φ

]
.
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Now suppose that x̄ > µ. Then, for any ε > 0, there exist infinitely many
t such that x(−t, 0]/t > x̄ − ε. By convergence of the Λ̃t, given θ > 0
sufficiently small and ε > 0, t it is the case that Λ̃t(φ)/φ < Λ̃(φ)/φ + ε for
sufficiently large t. Putting these together, for φ > 0 sufficiently small and
for infinitely many t,

I(x) ≥ φvt

[
x̄− Λ̃(φ)/φ − 2ε

]
.

We will show shortly that Λ̃′(0) = µ. Thus there exists a φ0 > 0 such
that Λ̃(φ0) < φ0(µ + ε), and so, for some sufficiently small φ < φ0 and for
infinitely many t,

I(x) ≥ φvt

[
x̄− µ− 3ε

]
.

Letting t→ ∞, recalling from the definition of a scaling function that vt →
∞, and choosing ε sufficiently small,

I(x) = ∞.

Similarly, if x̄ < µ we can choose φ < 0, with the same conclusion.
It remains to show that Λ̃′(0) = µ. We have assumed that Λ̃ is dif-

ferentiable at 0. Furthermore, it is the pointwise limit of convex functions
which are all differentiable at 0, with common derivative µ. By Lemma 1.12,
Λ̃′(0) = µ. �

Exponential Tightness

We now prove claim about exponential tightness in Theorem 7.1. The proof
is rather technical, and should be omitted on first reading.

Lemma 7.3 If XN is regular over finite and infinite horizons, then it is
exponentially tight in (D, ‖ · ‖). In other words, there exist compact sets Kα

in (D, ‖ · ‖) for which

lim
α→∞ lim sup

N→∞
1
N

log P (XN �∈ Kα) = −∞.

A suitable choice is

Kα =
{
x ∈ D :

x(−t, 0]
t

∈ [µ− αδt, µ+ αδt
]

for all t
}
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for well-chosen δt, where µ = Λ̃′(0). The proof of compactness is given
in Lemma 7.4; it requires that δt be sufficiently small. The proof of the
limit is given in Lemma 7.5; it requires that δt be sufficiently large. The
correct choice of δt hinges on the scaling function vt in the definition of
infinite-horizon regularity.

Lemma 7.4 If (δt, t ∈ N) is chosen so that δt → 0, then the sets Kα are
compact in D.

Proof. Note first that Kα =
⋂

T Kα(T ), where

Kα(T ) =
{
x ∈ D :

x(−t, 0]
t

∈ [µ− αδt, µ+ αδt
]

for t ≤ T
}

Because we are working in a metric space, it suffices to show that the sets
Kα are sequentially compact. So, let xk be a sequence of processes. Since
the T -dimensional truncation of Kα(T ) is compact in R

T for each T , the
intersection Kα is compact under the projective limit topology. That is,
there is a subsequence xj(k) which converges pointwise, say to x. It remains
to show that xj → x under the scaled uniform topology on D.

Given any ε > 0, since δt → 0 as t → ∞, we can find t0 such that for
t ≥ t0, 2δtα < ε. And since x and all the xj are in Kα,

sup
t≥t0

∣
∣∣
xj(−t, 0]

t
− x(−t, 0]

t

∣
∣∣ < ε.

Also, since the xj converge pointwise, there exists a j0 such that for j ≥ j0

sup
t<t0

∣∣
∣
xj(−t, 0]

t
− x(−t, 0]

t

∣∣
∣ < ε.

Putting these two together gives the result. �

Lemma 7.5 There is a choice of (δt, t ∈ N) for which δt → 0 as t → ∞,
and also

lim
α→∞ lim sup

N→∞
1
N

log P (XN �∈ Kα) = −∞. (7.3)

Proof. We will split up the set Kα into several parts. First note that if
Kα = Lα ∩Mα, and that if both Lα and Mα satisfy conditions of the form
(7.3) then so does Kα.
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The first way we will split Kα is by

P (XN �∈ Kα) ≤
∑

t∈N

P
(XN (−t, 0]

t
> µ+αδt

)
+
∑

t∈N

P
(XN (−t, 0]

t
< µ+αδt

)
.

(7.4)
We will only prove the condition (7.3) for the first term, as the second term
can be dealt with similarly.

We will split the probability further, breaking the infinite sum up into
several parts: several finite-timescale parts, and a long-timescale infinite
part. This strategy is at the core of the proof of our first many-flows limit
theorem, Theorem 1.8.

First, fix t and consider a single term in the sum.

lim sup
N→∞

1
N

log P
(XN (−t, 0]

t
> µ+ αδt

)

≤ −
[
θ(µt+ αtδt) − Λt(θe)

]
for all θ > 0

by Chernoff’s bound. Choosing any θ for which Λt(θe) is finite, we see that
this quantity → −∞ as α→ ∞.

Now for the remaining terms in the sum. We will show below that

lim sup
N→∞

1
N

log
∑

t>t0

P
(XN (−t, 0]

t
> µ+ αδt

)
≤ −α log(t0 + 1) (7.5)

for t0 sufficiently large, not depending on α, and α ≥ 1. This will complete
the proof. To show (7.5) we will first explain how to choose δt, and then go
on to establish the limit.

Choice of δt. By assumption, the functions Λ̃t converge pointwise to Λ̃,
which is differentiable, hence finite and continuous, in a neighbourhood of
the origin. Let φ > 0 be such that Λ̃ is differentiable on |θ| ≤ φ. Clearly,
Λ̃t is also finite at θ = ±φ for t sufficiently large. By Lemma 2.3 the scaled
cumulant generating function Λ̃t is convex and continuous on the interior
of its effective domain. Thus there exists a positive φ′ < φ such that Λ̃t is
continuous on |θ| ≤ φ′, for t sufficiently large. By convexity, the pointwise
convergence Λ̃t → Λ̃ must be uniform. In other words, if we set

εt = sup
u>t

sup
|θ|≤φ′

∣∣Λ̃t(θ) − Λ̃(θ)
∣∣

then εt ↓ 0 as t→ ∞. Now define a sequence θt by

θt =
(√
εt + νt

) ∧ φ′ where νt =
√

log t
vt
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By definition of scaling function, νt → 0; thus θt → 0 as t→ ∞. From these
we can finally define

δt =
Λ̃(θt) − µθt

θt
+

Λ̃(−θt) + µθt

θt
+
εt
θt

+ νt.

The first two terms both decrease to 0 as t → ∞, since Λ̃ is convex and
differentiable at 0 with derivative µ = Λ̃′(0); the third term decreases to 0,
as one can see by substituting in the definition of θt; and we have already
said why νt → 0. Thus δt → 0 as t→ ∞.

Establishing the limit. Pick t0 sufficiently large that the convergence
discussed above of Λ̃t to Λ̃ is uniform on |θ| ≤ φ′. Now,

lim sup
N→∞

1
N

log
∑

t>t0

P
(XN (−t, 0]

t
> µ+ αδt

)
(7.6)

≤ lim sup
N→∞

1
N

log
∑

t>t0

exp
(
−Nψt(µt+ αtδt) +NΛt(ψt)

)

(for any choice of ψt > 0, by Chernoff’s bound) (7.7)

≤ lim sup
N→∞

1
N

log
∑

t>t0

exp
(
−Nvt

[
θt(µ+ αδt) − Λ̃t(θt)

])

(by choosing ψt = θtvt/t) (7.8)

(To estimate the probability associated with the lower bound part of (7.4),
we would use −ψt rather than ψt in Chernoff’s bound.) A typical term in
brackets [·] in this expression is

θt(µ+ αδt) − Λ̃t(θt)
≥ θt(µ+ αδt) − Λ̃(θt) − εt (by definition of εt)
= αθtδt −

(
Λ̃(θt) − µθt

)− εt

= α
[
Λ̃(θt) − µθt + Λ̃(−θt) + µθt + εt + θtνt

]
− (

Λ̃(θt) − µθt

)− εt

= (α− 1)
[
Λ̃(θt) − µθt + εt

]
+ α

[
Λ̃(−θt) + µθt + θtνt

]

≥ αθtνt (assuming α ≥ 1, and since Λ̃(θ) − θµ ≥ 0 by convexity)

≥ αν2
t (for t sufficiently large that θt < φ′)

= α log t/vt.

We can use this to bound the sum we derived from (7.6), to find that

(7.6) ≤ lim sup
N→∞

1
N

log
∑

t>t0

e−Nα log t
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= lim sup
N→∞

1
N

log
∑

t>t0

t−αN

= α lim sup
M→∞

1
M

log
∑

t>t0

t−M

≤ −αM log(t0 + 1) (by (3.7)).

Note that this holds for t0 sufficiently large, and that the choice of t0 does
not depend on α. This completes the proof. �

7.4 Example Sample Path LDPs

Example 7.1 (Gaussian)
Let XN be the average of N independent arrival processes each distributed
like X, where (Xt, t ∈ Z) is a stationary Gaussian process characterized by
its mean and covariance structure:

X|(−t,0] ∼ Normal(µe,Σt)

where Σt is the t× t matrix (Σt)ij = Cov(X−t+i,X−t+j).

Note. Instead of Σt, we could specify the autocorrelation structure

ρt = Cov(X−t+1, X0)

or even the marginal variances Vt = VarX(−t, 0], by using the relations

V1 = ρ0,

Vt+1 = Vt + 2(ρ1 + · · · + ρt) + ρ0.

For such a process,

Λt(θ) = µθ · e+ 1
2θ · Σtθ

which is everywhere continuous, so X is regular over finite horizons. The
scaled log moment generating function is

Λ̃t(θ) = θµ+ 1
2θ

2vt/t
2Vt.

The natural choice of scaling function is vt = t2/Vt, which gives

Λ̃(θ) = Λ̃t(θ) = θµ+ 1
2θ

2.
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Whether or not XN is regular over the infinite horizon depends on the speed
with which vt → ∞. It is regular if Vt = o(t2/ log t), i.e. if

Vt

t2/ log t
→ ∞ as t→ ∞.

There is no simple form for the rate function

Λ∗
t (y) = sup

θ∈Rt

θ · y − µθ · e− 1
2θ · Σtθ,

unless Σt is invertible in which case

Λ∗
t (y) = 1

2(y − µe) · Σ−1
t (y − µe). �

Example 7.2 (Fractional Brownian motion)
Let XN be the average of N independent copies of the process X, defined
by

X(−t, 0] = µt+ σZt

where Zt is a fractional Brownian motion with Hurst parameter H. Then
for θ ∈ R

t

Λt(θ) = µθ · e+ 1
2σ

2θ · Stθ

where the t× t matrix St is given by

(St)ij =
(|j − i− 1|2H + |j − i+ 1|2H − 2|j − i|2H

)
.

(This gives the marginal variances Vt = σ2t2H .) To show regularity over
infinite horizons, choose the scaling function

v(t) = t2(1−H),

so that
Λ̃t(θ) = µθ + 1

2σ
2θ2.

This does not depend on t, so it is equal to Λ̃(θ), and XN is regular over
the infinite horizon. �

Example 7.3 (Markov-modulated fluid)
Let XN be the average of N independent sources distributed like X, where
X is a Markov chain which produces an amount of work h each timestep
while in the on state and no work while in the off state, and which flips from
on to off with probability p and from off to on with probability q.
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Since X(−t, 0] can only take a finite number of values, it is clear that
XN is regular over finite horizons.

We can calculate Λt(θe). First define

Ft = E
(
eθX(−t,0]|Ẋ−t = on

)

and Gt = E
(
eθX(−t,0]|Ẋ−t = off

)
.

We can find expressions for Ft and Gt by conditioning on Ẋ−t+1:

(
Ft

Gt

)
=
(

(1 − p)eθh p
qeθh 1 − q

)t( 1
1

)

And now
Λt(θe) = log

( p

p+ q
Ft +

q

p+ q
Gt

)
.

Is this regular over the infinite horizon?
We can rewrite Λt(θe) as

Λt(θe) = log
(
κ1(θ)et log λ1(θ) + κ2(θ)et log λ2(θ)

)

where λ1 and λ2 are the two eigenvalues of the matrix above. This suggests
the scaling function vt = t, leading to the limiting scaled log moment gen-
erating function Λ̃(θ) = log λ1(θ)∨ log λ2(θ). This is differentiable in θ near
θ = 0. �

Example 7.4 (Sources with independent increments)
Let XN be the average of N independent sources distributed like X, and
suppose that the (Ẋ t, t ∈ Z) are independent. Suppose that

Λ1(θ) = logEeθẊ1

is finite in a neighbourhood of the origin, and essentially smooth. Then

Λt(θ) =
∑

i

Λ1(θi)

which is also finite in a neighbourhood of the origin and essentially smooth.
So XN is regular over finite horizons. With the scaling function vt = t,

Λ̃t(θ) = Λ1(θ)

so XN is regular over the infinite horizon.
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The rate function is

I(x) =
0∑

t=−∞
Λ∗

1(xt).

This is qualitatively just like the rate function in Chapter 6, for large-buffer
scalings; and so the basic method of argument used there, namely straight-
ening sample paths into piecewise linear paths, carries through. �

7.5 Applying the Contraction Principle

We now have the ingredients to apply the extended contraction principle,
Theorem 4.6, which gives us

Corollary 7.6 Suppose XN is the average of N independent copies of a
process X, and XN satisfies the sample path LDP and has mean rate µ.
Suppose f is a function which is continuous on D[µ−ε,µ+ε] for some ε > 0.
Then Y N = f(XN ) satisfies an LDP with good rate function

J(y) = inf
x∈D:f(x)=y

I(x) = inf
x∈Dµ:f(x)=y

I(x)

where I(x) is given by (7.2).

Proof. We have the ingredients for the extended contraction principle: by
Theorem 7.2, the rate function is infinite outside Dµ; it is easy to see that
D(µ−ε,µ+ε) is an open neighbourhood of Dµ; and it is also easy to see that
D[µ−ε,µ+ε] is closed. This gives us: Y N satisfies an LDP with good rate
function

J(y) = inf
x∈D:f(x)=y

I(x) = inf
x∈D[µ−ε,µ+ε]:f(x)=y

I(x).

Since the rate function is infinite outside Dµ, we can restrict the infimum to
Dµ. This completes the proof. �

The trouble with the rate function I(x) is that it can be very general.
This makes it hard to say anything about J(y). Only in some special cases
can it be simplified to something useful. In the following sections we will
look at some of these special cases.
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7.6 Queues with Infinite Buffers

Consider the single server queue with an infinite buffer. Let A(i)(−t, 0] be
the amount of work arriving in the interval (−t, 0] from a single flow i, and
suppose the queue is fed by N i.i.d. flows. Let

AN (−t, 0] =
1
N

N∑

i=1

A(i)(−t, 0].

Suppose that the service rate is scaled in proportion to be NC. In Chapter
1, we saw that the queue length at time 0 is given by

QN
0 = sup

t∈N0

NAN (−t, 0] −NCt

and so
QN

0 /N = f(AN ) where f(a) = sup
t∈N0

a(−t, 0] − Ct.

Assume that AN satisfies the sample path LDP and has mean rate µ. The-
orem 5.3 shows that f is continuous on D[µ−ε,µ+ε], for µ+ ε < C. So, by the
extended contraction principle, QN

0 /N satisfies a large deviations principle
with good rate function

J(q) = inf
a∈D:f(a)=q

I(a).

The following theorem is rather heavy work, but it does tell us a lot
about J(q).

Theorem 7.7 If AN is regular over both finite and infinite horizons, and
µ < C, then J(q) is given by

J(q) = inf
t≥0

sup
θ≥0

θ(q + Ct) − Λt(eθ). (7.9)

First an example.

Example 7.5 (Fractional Brownian motion)
Let A be a fractional Brownian motion input as in Example 7.2. This has

Λt(θe) = µθ + 1
2σ

2t2H .
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We can calculate the optimizing parameters in (7.9) explicitly. They are
known as the critical spacescale and the critical timescale, and they are
respectively

θ̂ =
q + (C − µ)t̂

σ2t̂2H
and t̂ =

q

C − µ

H

1 −H

(or rather, t̂ is an integer close to this value; but we will ignore this minor
complication). This gives rate function

J(q) =
1

2σ2 q
2(1−H)(C − µ)2H

( H

1 −H

)2(1−H) 1
H2 .

Gibbens and Teh [46] estimate the rate function corresponding to certain
Internet traffic traces, and investigate how well it can be approximated by
this analytical rate function for fractional Brownian motion. �

Proof of Theorem 7.7 We will give an oblique proof of this theorem, break-
ing it into two lemmas which we will later refer to separately. The first
lemma makes explicit which properties of the rate function we are using;
the second lemma proves the rate function from them. �

Lemma 7.8 If AN is regular over both finite and infinite horizons, and has
mean rate µ, then
i. For all t, AN |(−t,0] satisfies an LDP in R

t with good rate function Λ∗
t (a).

ii. I(a) = supt Λ∗
t (a), and I is good.

iii. I(a) = ∞ if a �∈ Dµ.
iv. Λ∗

t (eµ) = 0.
v. Λ∗

t is convex.
vi. Λt(θ) = supa∈Rt Λ∗

t (a).

Proof. Items (i) and (ii) come from Theorem 7.1. Item (iii) comes from
Theorem 7.2. Item (iv) is by Exercise 2.7. Items (v) and (vi) are from
Lemma 2.6. �

Lemma 7.9 If AN satisfies an LDP with rate function I, and satisfies the
conclusions of Lemma 7.8, and the mean rate µ is less than C, then J(q) is
increasing and

J(q) = inf
a∈D:f(a)=q

I(a) (7.10)

= inf
t≥0

inf
a∈R

t:
a(−t,0]=q+Ct

It(a) (7.11)

= inf
t≥0

sup
θ≥0

θ(q + Ct) − Λt(eθ). (7.12)
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If q > 0 then the infimum can be taken over t > 0; if additionally Λt(θ) is
differentiable at θ = 0 it can be taken over θ > 0.

Proof. If q = 0, then (7.10) takes the value 0 on the path a = eµ, and (7.11)
and (7.12) take the value 0 at t = 0. So restrict attention to the case q > 0.

First, J(q) is increasing. To see this, let

Kt(r) = inf
a∈Rt:

a(−t,0]=r

Λ∗
t (a).

By the contraction principle, Kt is a rate function, and in particular Kt is
non-negative. Since Λ∗

t is convex, so is Kt. Since Λ∗
t (eµ) = 0, Kt(µt) = 0,

and by convexity Kt(r) is increasing for r ≥ µt, and in particular Kt(q+Ct)
is increasing for q ≥ 0. Now,

J(q) = inf
t≥0

Kt(q +Ct)

and the infimum of increasing functions is increasing, so J is increasing.
Next, (7.10) ≥ (7.11). Suppose (7.10) is finite (otherwise the inequality

is trivial). The sample path rate function I is good, so an optimal path â
is attained. And I(â) < ∞, so â ∈ Dµ. Now q(â) = supt â(−t, 0] − Ct = q,
and by Theorem 5.3 this supremum is attained, say at t̂. Thus

I(â) = sup
t

Λ∗
t (â|(−t,0])

≥ Λ∗
t̂
(â|(−t̂,0]) ≥ (7.11).

Next, (7.10) ≤ (7.11). Suppose (7.11) is finite (otherwise the inequality
is trivial). For given t, an optimal path â|(−t,0] is attained, by goodness
of the rate function Λ∗

t . And an optimal t̂ is also attained. For suppose
not, and take a sequence tn → ∞ and an|(−tn,0] with an(−tn, 0] = q + Ctn
and Λ∗

t (a
n|(−tn,0]) bounded above by K say. By the contraction principle

and the goodness of the rate function I, we can extend an|(−tn,0] ∈ R
tn to

an ∈ D, with I(an) < K. Since I is good it has compact level sets, so the
an have a convergent subsequence, say ak → a, also with I(a) < K. But
then a(−tk, 0]/tk → C so a �∈ Dµ so I(a) = ∞, a contradiction.

By the contraction principle and the goodness of the rate function I, we
can extend â|(−t̂,0] ∈ R

t̂ to â ∈ X , with I(â) = Λ∗
t (â|(−t̂,0]). Since the rate

function is finite, â ∈ Dµ. If q(â) = q the inequality is proved. So suppose,
for some t̂, that q(â) = q′ �= q for all such extensions â of all optimal â|(−t̂,0].
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Since â(−t̂, 0] = q+Ct̂, q′ > q. Then there is some s �= t̂ with â(−s, 0] = q′.
But then

inf
t

inf
a∈R

t:
a(−t,0]=q+Ct

Λ∗
t (a|(−t,0]) ≥ inf

s �=t̂
inf

a∈Rs:
a(−s,0]=q′+Ct

Λ∗
s(a|(−s,0])

≥ inf
s �=t̂

inf
a∈R

s:
a(−s,0]=q+Ct

Λ∗
s(a|(−s,0])

where the last inequality is because Kt(q + Ct) is increasing in q. The
inequalities must then both be inequalities. Repeat this procedure until
we find some â for which q(â) = q. We will eventually find some such â,
for otherwise there are arbitrarily large optimal t̂, and as in the previous
paragraph this yields a contradiction.

Next, (7.11) = (7.12). We will first show

Kt(x) = sup
θ∈R

θx− Λt(eθ).

Note that Λ∗
t is closed convex (it is a rate function, hence lower semicontin-

uous, and we assume it to be convex). By Lemma 2.4, Λ∗
t = Λ∗

t , where Λt

is given by (vi) in Lemma 7.8. For the upper bound on Kt(x),

Kt(x) = inf
a∈R

t:
a(−t,0]=x

sup
θ∈Rt

θ · a− Λt(θ)

≥ inf
a∈R

t:
a(−t,0]=x

sup
θ∈R

θx− Λt(eθ)

= sup
θ∈R

θx− Λt(eθ).

For the lower bound on Kt(x),

sup
θ∈R

θx− Λt(eθ) = sup
θ∈R

θx−
[
sup
y∈R

sup
a∈R

t:
a(−t,0]=y

eθ · a− Λ∗
t (a)

]

= sup
θ∈R

inf
y∈R

θ(x− y) +Kt(y)

= Kt(x) + sup
θ∈R

inf
y∈R

Kt(y) −
(
Kt(x) + θ(y − x)

)

≥ Kt(x),

where the last equality comes from taking a supporting plane to the convex
function Kt(y) at x.
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For J(q), we are interested in Kt(q + Ct). As we noted before, Kt(x) is
increasing for x ≥ µt, so the supporting plane has θ ≥ 0. It is clear we can
also restrict attention to θ ≥ 0 in the upper bound for Kt(q + Ct). Hence

Kt(q + Ct) = sup
θ≥0

θx− Λt(eθ).

Finally, the case q > 0. The rate function at t = 0 is infinite, so we can
restrict attention to t > 0. As we have just seen, the supremum can be taken
over θ ≥ 0. The upper bound for Kt(x) still works if we restrict attention
to θ > 0. For the lower bound, except in the pathological case Kt(x) = 0
for all x ≥ µt, it can similarly be shown that, for x ≥ µt,

sup
θ>0

θx− Λteθ ≥ Kt(x) − ε

where ε can be arbitrarily small, so we restrict attention to θ > 0.
The pathological case cannot happen if Λt is differentiable at the origin.

For then d/dθ Λ(eθ) = µt at θ = 0, so there is some θ > 0 for which
Λ(eθ) < Ct, and the lower bound for Kt(q +Ct) is strictly positive. �

7.7 Queues with Finite Buffers

Consider now the single-server queue with a finite buffer. As in the previous
section, let NAN (−t, 0] be the total amount of work arriving in the interval
(−t, 0] from N i.i.d. flows, and suppose that AN satisfies the sample path
LDP. Suppose the service rate is scaled in proportion to be NC, and the
buffer size is scaled in proportion to be NB. Let QN

0 be the queue size at
time 0.

By rescaling the units in which work is expressed, it is clear thatQN
0 /N =

f̄(AN ), where f̄ is the finite-buffer queue size function described in Section
5.7. In that section we proved that f̄ is continuous on D[µ−ε,µ+ε] for µ+ ε <

C, so the extended contraction principle again tells us that q̄(XN ) satisfies
a large deviations principle with good rate function

J̄(q) = inf
x∈D:f̄(x)=q

I(x).

What is J̄(q)? The following theorem relates J̄(q) to the rate function J(q)
for the infinite-buffer queue from the preceding section.

Theorem 7.10 For q ≤ B, J̄(q) = J(q); and for q > B, J̄(q) = ∞.
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Proof. The last clause is obvious: the queue size can never be greater than
B. So suppose q ≤ B. We wish to show J̄(q) = J(q). This hints that the
most likely path might be the same in each case. To relate the queue sizes
for a given path, note that f(a) ≥ f̄(a). This was discussed in Section 5.7.

Suppose J̄(q) is finite. Then there is an optimal path â for which f̄(â) =
q, so f(â) ≥ q. Since J(q) is increasing, J(q) must be finite. In other words,
if J(q) is infinite, then J̄(q) is infinite also.

So suppose J(q) is finite. Let â be an optimizing path in Theorem 7.7.
Consider the queue size for the infinite-buffer queue under this path. The
queue is empty at −t̂ by Lemma 5.4. The queue then builds up. Suppose
it first reaches level q′ ≥ q at time −s. Consider the truncated process
b = â|(−∞,−s]. Suppose we feed b into the finite-buffer queue. Since finite-
buffer queue size is no larger than infinite-buffer queue size, the finite-buffer
queue must be empty at time −(t̂ − s). By construction, the finite-buffer
queue will not reach level q before time 0, so f̄(b) = f(b), so J̄(q) ≤ I(b).

What is this rate function? By stationarity,

I(â) ≥ I(b).

Also f(b) ≥ q. Since J(q) is increasing, J(q) ≤ I(b). By optimality, J(q) =
I(â). So I(b) = I(â), and thus J̄(q) ≤ J(q).

Consider the optimal path b̂ in J̄(q). It causes q̄(b̂) = q, and so q(b̂) ≥ q.
Since J(q) is increasing, J(q) ≤ J̄(q).

Hence J(q) = J̄(q). �

7.8 Overflow and Underflow

Before leaving the simple single-server queue, there are some more large
deviations results which are interesting, and which are, at first sight, easily
confused with those of Sections 7.6 and 7.7.

The first gives the probability that a queue with an infinite buffer is
non-empty. At first sight, we can find this from the LDP in Section 7.6:
just consider the event that q > 0. But the large deviations upper bound
we get is useless, because it involves the closure of this set—which is q ≥ 0,
the entire space. So for a better bound, we can go back to the sample path
LDP and look at the closure of the set of sample paths for which f(a) > 0
(where f is the infinite-buffer queue size function), now not the entire space.

Theorem 7.11 If AN is regular over finite and infinite horizons, and has
mean rate µ < C, then the event {f(AN ) > 0} has large deviations lower
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bound −J(0+) and upper bound −J+(0), where

J+(0) = sup
θ
θC − Λ1(θe)

and
J(q+) = lim

r↓q
J(r).

Proof. Lower bound. Let F be the event {f(a) > 0}. The large deviations
lower bound is

inf
a∈F

I(a).

Since F = ∪q>0{f(a) = q},

inf
a∈F

I(a) = inf
q>0

J(q).

But since J(q) is increasing, this is just

lim
q↓0

J(q).

Upper bound. We will prove that

inf
a∈F̄

I(a) = inf
t>0

inf
a:a(−t,0]=Ct

I(a). (7.13)

This reduces to
inf
t>0

sup
θ
θCt− Λt(θe)

as in Theorem 7.7. By convexity,

Λt(θe) ≤ Λ1(tθe),

so the optimum is attained at t = 1 and we are left with J+(0).
LHS≤RHS in (7.13). Suppose a(−t, 0] = Ct for some t > 0. For ε > 0,

let
aε = (. . . , a−2, a−1, ε+ a0).

Then q(aε) > 0 so aε ∈ F . Also aε → a as ε→ 0, so a ∈ F̄ . Thus

{a : ∃t > 0, a(−t, 0] = Ct} ⊂ F̄ .

Taking the infimum of I over these sets gives the result.
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LHS≥RHS in (7.13). Let a ∈ F̄ . Then there exist an → a in F , and
f(an) → f(a) by Theorem 5.3. If f(a) > 0 then

I(a) ≥ inf
q>0

J(q) ≥ inf
t>0

sup
θ
θCt− θCt− Λt(θe)

because the optimal t̂ in (7.12) must be strictly positive for q > 0. So
suppose q(an) → 0. As in Theorem 5.3, there exist an n0 and t0 such that,
for n ≥ n0,

q(an) = sup
t≤t0

an(−t, 0] − Ct.

And because q(an) > 0, the supremum must be attained at t > 0. Some
t must be repeated infinitely often as n → ∞; for that t, a(−t, 0] = Ct.
Taking the infimum over such a gives the result. �

The same technique can be used to estimate the probability that a queue
with a finite buffer is non-empty, or that work is lost. Let f̄ be the queue
size function for a queue with finite buffer B.

Corollary 7.12 If AN satisfies the conditions of Theorem 7.11, and B > 0,
then {f̄(AN ) > 0} has the same large deviations bounds as {f(AN ) > 0}.

Proof. If f̄(a) > 0 then f(a) > 0 also, so the same upper bound works. As
for {q > 0}, the lower bound is straightforward. �

The technique for estimating the probability of lost work is similar, so
the following is left as an exercise.

Exercise 7.6
Show that the event that incoming work is lost has large deviations lower
bound −J(B+) and upper bound −J(B) (or −J+(0) if B = 0). �

7.9 Paths to Overflow

The expressions for the rate function in Section 7.6 tell us more than just
the probability that the queue reaches a certain level: they tell us how the
queue reaches that level. Because the rate function I is good, the infimum
in

J(q) = inf
a∈D:q(a)=q

I(a) (7.14)

is attained, as long as J(q) < ∞. Furthermore, the sample path LDP tells
us the probability of any deviation from this path.
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For the large-buffer scaling, we showed in Section 6.4 the most likely
path to overflow was linear, a consequence of the linear geodesic property.
In the many-flows scaling, the most likely path is not in general linear.
Nonetheless, we can still find its form explicitly, at least for the case of a
single-server queue.

Theorem 7.13 If J(q) is finite then the optimal timescale t̂ and the opti-
mizing path â are both attained. If additionally the optimizing parameter θ̂
is attained, and the rate function J(q) is strictly increasing at q, then an
optimal path is given by, for t ≥ t̂,

â|(−t,0] = ∇Λt(θ̂s|(−t,0]),

where s is the step function

s = e|(−t̂,0] + 0e.

Proof. We explained why the optimal timescale is attained, in the proof of
Theorem 7.7. Suppose that the optimal parameter θ̂ is attained. Since J(q)
is finite, Λt̂(θ̂e) is finite. This is equal to Λt(θ̂s) for t ≥ t̂, which is thus also
finite. By essential smoothness (a consequence of being regular over finite
horizon t) Λt must be differentiable at θ̂s. Define â by â|(−t,0] = ∇Λt(θ̂s).
(These definitions, one for each t, are clearly all consistent.) This path has
the right rate function: using Lemma 2.4, Λ∗

t (â|(−t,0]) is equal to (7.9). And
it also causes the queue to reach at least the right level: from differentiating
θ(q +Ct̂)−Λt̂(eθ) with respect to θ at θ = θ̂, â(−t̂, 0] = q +Ct. If q(â) = q
then we are done. If q(â) = q′ > q then J(q′) ≤ I(â). But J(q′) > J(q) =
I(â), a contradiction. �

Example 7.7 (Gaussian sources)
Let A be a Gaussian, as in Example 7.1. It is easy to work out the optimal
path:

∇Λt(θs|(−t,0]) = µe+ θΣts.

where (Σt)ij = ρ|i−j|.
Consider the case of fractional Brownian motion, 7.2, where

ρt = 1
2σ

2
(
(t− 1)2H − 2t2H + (t+ 1)2H

)
and ρ0 = σ2.

The most likely path to overflow can be computed to be, for −t̂ < −t ≤ 0,

ȧ−t = µ+ 1
2 θ̂σ

2
(
(t+ 1)2H − t2H + (t̂− t− 2)2H − (t̂− t− 1)2H

)
.
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If H > 1
2 , the source exhibits long-range dependence, and the most likely

input path t �→ ȧt leading to overflow is concave; whereas if H < 1
2 , the path

to overflow is convex. �

Exercise 7.8
Let A be a single-step autoregressive process:

At = µ+ a(At−1 − µ) +
√

1 − α2σεt

where the εt are independent Normal(0, 1) and |a| < 1. Then ρt = σ2at.
Show that the most likely path to overflow is, for −t̂ < −s ≤ 0,

a−t = µ+ θ̂σ2
(
1 +

1 − at+1

1 − a
+

1 − at̂−t

1 − a

)
.

�

Example 7.9 (Markov-modulated on-off source)
Let A be an on-off Markov fluid flow, as in Example 7.3. To calculate the
most likely path to overflow, note

a−t =
(∇Λt(θ̂s)

)
−t

=
E(A−te

θA(−t̂,0])
E(eθA(−t̂,0])

.

We can now calculate

E
(
A−te

θA(−t̂,0]) = E
[
A−tE

(
eθA(−t̂,−t−1]|A−t

)
eθA−tE

(
eθA(−t,0]|A−t

)]

=
q

p+ q
hFt−1e

θhFt̂−t.

The first equality follows from the Markov property, and the second equality
follows from reversibility. This gives

a−t =
qheθhFt̂−t−1Ft

qFt̂ + pGt̂

.

If p + q < 1 the path to overflow t �→ ȧt is concave over t ∈ (−t̂, 0]: the
sources start slowly, then conspire to produce lots of work in the middle of
the critical timeperiod, then slow down again at the end. (If p+ q > 1 it is
convex.) �
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7.10 Priority Queues

In the examples so far, the rate function has simplified enough that we can
draw fairly detailed conclusions. That is the exception: under the many-
flows scaling, very often, all we can write down is that J is the solution to
a complicated optimization problem, and leave it at that.

A priority queue is such a case. But even though we cannot work out
the rate function exactly, we can still interpret the result and give some
interesting bounds.

Consider a priority queue fed by two flows: the high priority flow AN ,
the average of N independent copies of some stationary process A, and the
low priority flow BN , the average of L independent copies of some stationary
process B. Let µ and ν be the mean rates of A and B. Suppose A and B are
regular over finite and infinite horizons. Let the queue be served at constant
service rate C > λ+ µ, and let it have an infinite buffer.

Let QN be the amount of high priority work in the queue, and RN the
amount of low priority work. As we discussed in Section 5.9, the easiest way
to define these is

QN = q(AN )

RN = r(AN , BN ) = q(AN +BN) − q(AN ),

where q is the queue size function for the single-server queue with infinite
buffer. (We have described how to interpret the scaling of similar quantities
in Sections 7.6 and 7.7, and we will not repeat it here.)

The function (a, b) �→ (q(a), r(a, b)) is continuous on D[λ−ε,λ+ε]×D[µ−ε,µ+ε]

for ε sufficiently small. By the extended contraction principle, (QN , RN )
satisfies an LDP with good rate function

J(q, r) = inf
a∈D,b∈D:

q(a)=q,q(a+b)=q+r

sup
t

Λ∗
t (a|(−t,0]) + sup

t
M∗

t (b|(−t,0]),

where Λt and Mt are the log moment generating functions of A and B. By
the contraction principle, RN satisfies an LDP with good rate function

J(·, r) = inf
q≥0

J(q, r).

The following lemma gives a bound on the rate function.

Lemma 7.14

J(·, r) ≥ inf
t

sup
θ
θ(r + Ct) − Λt(θe) − Mt(θe). (7.15)
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Proof. It is easy to prove lower bounds for rate functions: we just need to
make some simple observations on properties of optimal paths.

If J(·, r) is finite, then optimal paths (a, b) must be attained, since the
rate function is good. For such paths, there must be a last time −t at which
both queues were empty; and after time −t, a(−t, 0] + b(−t, 0] ≥ r + Ct.
Now apply the contraction principle to the sample path LDP for (AN , BN )
to find that the rate function for x = a(−t, 0] + b(−t, 0] is

sup
θ
θx− Λt(θe) − Mt(θe).

As in Theorem 7.7, this is increasing in x for x ≥ C. Taking the infimum
over t yields the result. �

The expression on the right hand side in (7.15) looks just like the rate
function for overflow J(r), given in (7.9), for a single server queue fed by
BN , except that the constant service rate C has been replaced by an effective
service rate C̃(θ, t) = C−(θt)−1Λt(θe). In other words, the low priority flow
sees an effective service rate of at least C̃(θ, t), the total service rate less the
effective bandwidth of the high priority flow. (The sense of ‘effective service
rate’ and ‘effective bandwidth’ is described later in Section 10.1.)

Berger and Whitt [6] have observed a similar result in the large-buffer
scaling, and they stress the point that approximating J(·, r) by the expres-
sion in (7.15) leads to simple control decisions. On the other hand, [101]
gives an example showing when the inequality is strict. Priority queues have
also been studied by Mandjes and van Uitert [70], Shakkottai and Srikant
[90] and Delas et al. [23].

7.11 Departures from a Queue

In Chapter 5 we saw that the function which maps arrival process to de-
parture process is continuous, and in Chapter 6 we used this result and the
contraction principle to derive an LDP for the departure process.

Exactly the same procedure works here. The aggregate departure process
from a queue with many flows satisfies an LDP. The problem is that the rate
function is so complicated that it gives no insight at all. Even for the large-
buffer limit, when the rate function for arrivals has a simple form, the rate
function for departures is typically intractable; in the many-flows limit the
rate function for arrivals is much more general, so what hope is there of
simplifying the rate function for aggregate departures?
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It is an open question whether the sample path rate function for depar-
tures even has the same form as that for arrivals. It is simple to see that
it satisfies most points of Lemma 7.8, but it is not clear whether it satisfies
the last two. So we doubt that the rate function for downstream queues can
be simplified to the form in Theorem 7.7. If this is the case, it is akin to the
negative result for the large buffer scaling, described in Section 6.7.

Instead, here is a totally different approach. We are considering queues
fed by many input flows. What if, instead of asking about aggregate de-
partures, we want to investigate how a single flow is affected by passing
through the queue?

Let A be a typical input flow in a queue fed by N independent identically
distributed flows, and served at rate NC, and let D(N) be the corresponding
departure flow. (We will be more precise about how this is defined later.)
We will investigate the characteristics of D(N) as L→ ∞.

Now, A on its own does not satisfy a large deviations principle, so we
cannot hope that D(N) does either. Instead, A is described via a large
deviations principle for AN , the average of N independent copies of A. So
it is natural to try to describe D(N) by seeking a large deviations principle
for DN , the average of N independent copies of D(N).

The surprising result of this section is that DN satisfies the same large
deviations principle as AN . In other words, in this large deviations sense,
the characteristics of a flow of traffic are not changed as it passes through a
queue.

Note. It’s worth emphasizing that we are not attempting to find a large
deviations principle for the aggregate departures. Think carefully about what
it is that we are attempting to describe here with an LDP.

Let us now be precise about the setup. Suppose the queue has service
rate NC and finite buffer NB. (It will turn out to be important for our
proof technique that the buffer be finite.) Let it be fed by the aggregate of
N independent copies of A, assumed to be regular over finite and infinite
horizons. Let D(N) be a typical departure flow. It doesn’t matter exactly
what the service discipline is, as long as all work that arrived at time t− 1
is served before any of the work that arrives at time t. Assume that Ȧt ≥
0 almost surely (otherwise it is hard to interpret the departure process).
Assume that the mean rate of A is strictly less than C.

We want to find an LDP for DN , the average of N i.i.d. copies of D(N).
Following Section 7.3, we will ask whether it is regular over finite and infinite
horizons.
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Finite-Horizon Regularity of DN

Our earlier definition of regularity over finite horizons is not entirely ap-
propriate here. In Section 7.3 we dealt with a process XN which was the
average of L independent copies of X; here DN is the average of N indepen-
dent copies of D(N), which depends on N . This is not a significant obstacle:
to obtain the sample path LDP, it is sufficient that the limit

Mt(θ) = lim
N→∞

1
N

logE exp(Nθ ·DN |(−t,0])

exists, and that Mt satisfies the usual conditions: for each t the origin belongs
to the interior of the effective domain of Mt and Mt is essentially smooth.

The following theorem tells us that D(N) is regular over finite horizons
(with this enhanced definition), and that furthermore its statistical charac-
teristics are essentially the same as those of X.

Write Λt for the log moment generating function associated with A, and
I for its rate function.

Theorem 7.15 Mt exists, and is equal to Λt, for θ in the interior of the
effective domain of Λt.

Proof. Let A be the arrival process which becomes D(N). First note that

D(N)(−t, 0] ≤ A(−t− �B/C�, 0]
since any work arriving before −t − �B/C�, even if it finds the queue full,
must have left by time −t. In what follows we drop the �·� notation.

For fixed t, the collection
{
exp(θ ·D(N)|(−t,0])

}

is uniformly integrable, since

0 ≤ θ ·D(N)|(−t,0] ≤ max
i

|θi|A(−t−B/C, 0].

For any −t < s ≤ 0, P (D(N)
−s �= A−s) is bounded by the probability that the

queue is non-empty at either −s− 1 or −s. By Corollary 7.12 this tends to
0. So

exp
(
θ ·D(N)|(−t,0]) − exp(θ · A|(−t,0]

)→ 0 in probability.

Thus
E exp(θ ·D(N)|(−t, 0]) −E exp(θ ·X|(−t,0]) → 0

and taking logarithms gives the result. �
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At the core of the proof is the rather simple idea, that in this limiting
regime the queue is very often empty, and so most of the time the work
passes through unsmoothed.

It’s interesting to know how large N needs to be for this to be accurate.
Corollary 7.12 gives us an estimate for the probability that the queue is non-
empty: if J is the rate function for that event, then for any ε > 0 there exists
an N0 such that for N ≥ N0, P (queue non-empty) ≤ e−N(J−ε). Therefore

P
(
A(−t, 0] �= D(N)(−t, 0]) ≤ (t+ 1)e−N(J−ε).

For fixed θ and t, the difference in log moment generating functions can be
bounded similarly. So the error decays exponentially in NJ at least.

Infinite-Horizon Regularity of DL

Proving regularity over the infinite-horizon is much harder: in fact, it is
impossible. It turns out that this is not a problem. Infinite-horizon regu-
larity was just a technical condition to control the tail behaviour of A, and
there are other ways to achieve this. In fact, if we are interested in transient
behaviour rather than steady state behaviour, it is not even necessary to
worry about infinite-horizon regularity.

Specifically, with weaker conditions on the tail, we can prove a sample
path LDP for DN with is weaker, but still useful. It is weaker because it
uses a weaker topology, the weak queue topology.

Definition 7.3 (Weak queue topology) Let q be the queue-size function
for a queue with service rate C and finite buffer B. Define the weak queue
topology wq(C,B) on X by the metric

d(x, y) = |q(x) − q(y)| +
∞∑

t=0

1 ∨ |ẋ−t − ẏ−t|
2t

.

The first term in d(x, y) measures the distance between q(x) and q(y); the
second measures the distance between x and y in the topology of pointwise
convergence. We know from Chapter 5 that q is continuous on Dµ equipped
with the scaled uniform norm topology ‖ · ‖, for µ < C. Thus ‖ · ‖ is finer
than wq which is finer than pointwise convergence; yet wq is still fine enough
that q is continuous on (Dµ,wq). So if DN satisfies an LDP in (D,wq) and
has mean rate µ < C, we can still use the contraction principle to derive an
LDP for q(DN ).
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The way in which this topology is used is rather technical; full details
can be found in [100]. We will restrict ourselves to stating the conclusion:
DN satisfies an LDP in (Dµ,wq(C,B)) with exactly the same rate function
as AN , for any C > µ and B.

Decoupling and Other Extensions

Consider now a queue fed by many independent flows of different types: L
flows like A and L flows like B. Let D(N) and E(N) be typical outputs, and
let DN and EN be as before. If the total mean arrival rate is less than the
service rate, then the above proofs still work with minor modifications, and
we conclude that DN ∼ AN and EN ∼ BN (in a large deviations sense),
which tells us that D(N) ∼ A and E(N) ∼ B (in a heuristic sense). So the
marginal distributions of the flows are essentially unchanged. What about
their joint distributions? The basic fact, that the queue is frequently empty,
is still true. By considering now the log moment generating function

logE exp(θ ·D(N) + φ · E(N))

one can show that D(N) and E(N) are essentially independent (in a heuristic
sense).

It might be expected that traffic flows would influence each other. For
example, if A is very bursty and B is smooth, one might expect D(N) to be
less bursty than A and E(N) to be less smooth than B, and indeed this can
happen when the router only has a small number of inputs. But we have
seen that in the many flows scaling regime it is not the case. In other words,
D(N) and E(N) do not depend on the traffic mix at the router (so long as
the total mean input rate is less than the service rate). This is known as
decoupling.

We have only described the output of a single queue. Obviously it would
be nice to describe networks. The results can be extended to flows which
have passed through several queues (each queue empties often, so there is
a high probability that the flow passes through each queue unchanged) but
it is hard to interpret them, since it is not clear even how to formulate
sensible network limits in the many-flows regime. This regime describes
systems with many independent flows; as the number of independent flows
increases, should the network topology be scaled up too, and if so how?
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Long Range Dependence

In the early nineties, a collection of papers ([58] and references therein)
published by researchers at AT&T caused quite a stir in the world of com-
munications networking and traffic modelling. Based on a huge collection
of traffic measurements taken from broadband networks, it was claimed
that Internet traffic exhibits long range dependence (LRD). Confusion and
controversy ensued. Networking engineers, familiar with traditional Marko-
vian queueing models (which do not exhibit LRD) were worried because the
implications of this finding were unclear. The controversy arose naturally
because of deep philosophical difficulties associated with fitting models to
data which exhibits long range dependence. It was soon realised that this
was not a new dilemma. For example, a similar controversy arose in the
hydrology literature some twenty years earlier (see, for example, [57]).

In this chapter we explain the notion of LRD, its implications for queues,
how it can arise, and the philosophical issues associated with fitting LRD
models to data.

8.1 What Is Long Range Dependence?

Let (Yn, n ∈ N) be a stationary sequence of random variables, which we
assume to be bounded for simplicity, and set S(n) = Y1 + · · · + Yn. If the
Yn are independent, then VarS(n) = nVarY1. In particular, the variance of
S(n) grows linearly with n. This property holds quite generally, for Markov
chains and other weakly dependent sequences.

Long range dependence refers to when the variance grows non-linearly.

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 183–198, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The most common LRD models used for teletraffic have

VarS(n) ≈ σ2n2H for large n (8.1)

where H ∈ [12 , 1) is the Hurst parameter. (In the case of unbounded vari-
ables, for which variances may be infinite, one must be more careful.) There
is no standard definition of long range dependence; rather the term is loosely
used to cover a range of related phenomena.

One related phenomenon is self-similarity. Let S̃ be the polgonalized
version of S (see Section 5.2 for a definition of polygonalization) and define
the speeded-up version S̃�N for N ∈ R

+ by

S̃
�N (t) = S̃(Nt). (8.2)

If the sequence of scaled processes

1
NH

S
�N

converges in distribution to some non-trivial limit as N → ∞, then S is
said to be asymptotically self-similar with Hurst parameter H. If the limit
process has finite variance then S satisfies (8.1). Self-similar processes have
fluctuations at every timescale, and the Hurst parameter relates the size of
fluctuations to their timescale.

The most popular and well-known process which satisfies the above is
fractional Brownian motion. This is a continuous-time process which has
been widely adopted for its parsimonious structure—it depends on just three
parameters, drift, variance parameter, and Hurst parameter. In this chap-
ter we will focus on fractional Brownian motion, rather than working with
general long range dependent processes.

A standard fractional Brownian motion (Z(t), t ∈ R) with Hurst pa-
rameter H is characterized by the following properties:

• Z is Gaussian, i.e. its finite-dimensional distributions are multivariate
normal;

• Z(t) is normal with mean 0 and variance |t|2H ;
• Z has stationary increments, i.e. Z(u+ t) − Z(u) ∼ Z(t);
• Z(0) = 0;
• Z has continuous sample paths.

If H = 1
2 then this describes standard Brownian motion. A fractional

Brownian motion with drift µ and variance parameter σ2 can be written
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as Z ′(t) = µt + σZ(t). Fractional Brownian motion satisfies (8.1) exactly,
and is exactly self-similar, i.e.

1
aH

Z
�a ∼ Z for all a > 0. (8.3)

8.2 Implications for Queues

Consider a queue with service rate C, fed by a long-range dependent source
X, and write X(−t, 0] for the amount of work arriving in time interval
(−t, 0]. In Section 3.1 we found a large deviations principle for queue size

lim
q→∞

1
q

log P (Q > q) = −δ where δ = inf
t>0

tΛ∗(C + 1/t) (8.4)

where we assumed the existence of a sufficiently smooth limiting cumulant
generating function

Λ(θ) = lim
t→∞

1
t

logEeθX(−t,0].

If this limit exists then usually (by a Taylor expansion) VarX(−t, 0] ∼
tΛ′′(0). Thus, nothing we have presented so far applies to LRD models.

As we remarked at the end of Section 3.1, there is a variant of (8.4)
which holds when the limit

Λ(θ) = lim
t→∞

1
vt

logEeθX(−t,0]vt/t

exists and is well-behaved, for sequences vt → ∞. If the variance grows non-
linearly, we can expect (from the Taylor expansion again) that VarX(−t, 0] ∼
Λ′′(0)t2/vt. This can be used to prove an analogue of Theorem 3.1. (See
for example [33], but note that the proof given there contains a technical
gap, which has since been addressed in [34].) The bottom line, in the case
VarX(−t, 0] ∼ σ2t2H , is that the queue size does not decay exponentially.
Instead,

lim
q→∞

1
q2(1−H) log P (Q > q) = −δ where δ = inf

t>0
t2(1−H)Λ∗(C + 1/t).

It is possible to state and prove this result using techniques similar to those
presented in Chapter 3. We will not present the proof here, but instead
focus on a specific traffic model: fractional Brownian motion.
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Queues fed by fractional Brownian motion

Queues fed by fractional Brownian motion were first studied by Norros [75].
Let (X(t), t ∈ R) be a fractional Brownian motion with drift µ, variance
parameter σ2, and Hurst parameter H ∈ [12 , 1). Let Qt be the queue size at
time t in an infinite-buffer queue with service rate C > µ fed by X:

Qt = sup
s≤t

X(s, t] − C(t− s).

As usual, we are using our extended notation to describe traffic processes,
in which we write X(s, t] for X(t)−X(s); see Section 5.5 for the rest of the
extended notation. The process Qt is stationary, and can be shown to be
ergodic, with marginal distribution given by that of Q0.

The following result shows that (forH > 1
2) the queue length distribution

does not have an exponential tail. When H = 1
2 the problem reduces to the

heavy traffic model described in Example 6.6, and the tail is exponential.

Theorem 8.1

lim
q→∞

1
q2(1−H) logP (Q0 > q) = −γ2/2

where

γ =
(C − µ)H

σ
κ and κ =

1
HH(1 −H)1−H

.

Proof. We follow the proof given by Massoulie and Simonian [73].
Lower bound. Using the fact that X(−t, 0] ∼ Normal(µt, σ2t2H),

P (Q0 > q) = P
(
sup
t≥0

X(−t, 0] − Ct > q
)

(8.5)

≥ sup
t≥0

P
(
X(−t, 0] > q + Ct

)

= sup
t≥0

P
(
N(0, 1) >

q + (C − µ)t
σtH

)

which is maximized at t = H(1 −H)−1 q/(C − µ), giving

= P
(
N(0, 1) > q1−Hγ

)
.

Using the fact that

1
x2 log P (N(0, 1) > x) → 1

2
as x→ ∞
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we obtain a lower bound on lim inf P (Q0 > q). (Note that the most likely
time to overflow, the optimizing parameter in (8.5), is proportional to q.)

Upper bound. To prove the upper bound we will use Borell’s inequality,
which says the following. Let (Yt, t ∈ I) be a Gaussian process on any index
set I ⊂ [0,∞). Suppose Y is centred, i.e. EYt = 0 for all t ∈ I, and that
the sample paths of Y are (almost surely) bounded. If ρ2 = supt∈I Var Yt is
finite, then m = E supt∈I Yt is finite and

P
(
sup
t∈I

Yt > x
) ≤ 2e−(x−m)2/2ρ2

for all x > m.

Now we can estimate the probability of a large queue size:

P (Q0 > q) = P
(
sup
t≥0

X(−t, 0] − Ct > q
)

= P
(
sup
t≥0

X(−t, 0] − µt

q + (C − µ)t
> 1

)

Why did we rewrite the probability in this way? Because now we can apply
Borell’s inequality: the variance of X(−t, 0] − Ct is unbounded, whereas

ρ2 = sup
t≥0

Var
X(−t, 0] − µt

q + (C − µ)t
= sup

t≥0

σ2t2H

(q + (C − µ)t)2
= q−2(1−H)γ−2.

Moreover, the process appearing here is centred, and since C > µ it almost
surely has bounded sample paths. Thus

mq = E sup
t≥0

X(−t, 0] − µt

q + (C − µ)t

is finite; and it tends to zero as q → ∞ by monotone convergence. Applying
Borell’s inequality, for q sufficiently large,

P (Q0 > q) ≤ 2e−(1−mq)/2ρ2 ≤ 2 exp
(
−q

2(1−H)(1 −mq)γ2

2

)
.

Taking logarithms and the lim sup as q → ∞ gives the upper bound. �

8.3 Sample Path LDP
for Fractional Brownian Motion

Theorem 8.1 tells us how the tail of the queue length distribution decays,
but it doesn’t tell us about how large queue lengths occur. What is the most
likely path? Is it linear?
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In Example 6.1 we used Schilder’s theorem to analyse most likely paths of
a standard Brownian motion. That theorem says that, if B(t) is a standard
Brownian motion and we set BN (t) = B(t)/

√
N then (BN |[0,1], N ∈ R

+)
satisfies a large deviations principle in C1 with good rate function

I(x) =

{
1
2

∫ 1
0 ẋ

2
t dt if x ∈ A1

∞ otherwise.
.

Here C1 is the space of continuous functions x : [0, 1] → R with x(0) = 0,
equipped with the topology of uniform convergence.

There is a similar sample path LDP for fractional Brownian motion. If
Z is a standard fractional Brownian motion with Hurst parameter H, and
we set ZN (t) = Z(t)/

√
N then the sequence (ZN , N ∈ R+) satisfies an

LDP in C0 with good rate function

I(x) =

{
1
2‖x‖2

R if z ∈ R (defined below)
∞ otherwise.

Here C0 is the the natural extension of the space we defined in Section 5.4
to functions x : R → R, namely, the space of functions for which x(0) = 0
and

lim
t→∞

x(t)
1 + |t| = lim

t→−∞
x(t)

1 + |t| = 0

equipped with the norm

‖x‖ = sup
t∈R

x(t)
1 + |t| .

Note. In fact, this result applies to a broad class of Gaussian processes; see
Addie et al. [1]. It is an extension of a result known as the generalized form
of Schilder’s theorem; see Deuschel and Stroock [28, Theorem 3.4.5].

We need to define R, the reproducing Hilbert space for Z, and the norm
‖ · ‖R. First, let

Γ(s, t) = Cov
(
Z(s), Z(t)

)
=

1
2
(
Vs + Vt − V|t−s|

)

where Vt = VarZ(t). Write Γs(·) for Γ(s, ·). Consider the set of functions
{Γs : s ∈ R}, equipped with the inner product

〈Γs,Γt〉 = Γ(s, t).
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The space R is obtained by closing this space of functions with respect to
linear combinations, and completing with respect to the norm

‖x‖2
R = 〈x, x〉.

The sample paths in R, being composed of smooth functions Γs, are typically
smoother than the sample paths of Z.

The self-similarity property (8.3) of Z lets us write down an LDP which is
more useful for queueing applications. Recalling the definition of speed-up,
and letting N = L2(1−H), the self-similarity property says that

1
L
Z

�L ∼ 1√
N
Z

and hence L−1Z�L satisfies an LDP of the form

1
L2(1−H) logP (L−1Z�L ∈ B) ≈ − inf

z∈B
I(z).

The sense of the approximation is that the appropriate large deviations lower
and upper bounds apply for open and closed sets B. The denominator
L2(1−H) is called the speed of this large deviations principle. If X is a
fractional Brownian motion with drift µ, then L−1X�L also satisfies an
LDP at this speed, in the space Cµ.

All our results based on the contraction principle carry through. We can
find LDPs for queue size in queues with finite and infinite buffers, priority
queues, etc. etc. This approach to fractional Brownian motion has also been
taken by Majewski [64].

The answer to our initial question—do queues build up linearly?—is no.
The sample path LDP can be used to find the most likely path, which is
the approach taken by Addie et al. [1]. Another approach is to use a rep-
resentation of fractional Brownian motion as a stochastic integral against a
standard Brownian motion, then use Schilder’s theorem and the contraction
principle [79]. Yet another approach is taken by Chang et al. [14]. Also see
Example 7.7. In fact, as was pointed out to us by Peter Glynn, a direct
calculation is possible in this case:

Example 8.1
This calculation relies on the following observation. If (X,Y ) has a bivariate
normal distribution

(
X
Y

)
∼ MVN

[(
µ
ν

)
,

(
σ2 γ
γ ρ2

)]
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then conditional on Y = y, X has the distribution

X | (Y = y) ∼ Normal
(
µ+

γ(y − ν)
ρ2 , σ2 − γ2

ρ2

)
.

Furthermore, if (Xt, t ∈ [0, T ]) is a Gaussian process then so is (Xt, t ∈
[0, T ]) |Xs = ξ.

Let A be a fractional Brownian motion with drift µ, variance parameter
σ2 and Hurst parameter H. Define the scaled version

AN (−t, 0] =
1
N
A(−Nt, 0].

As we have remarked, this satisfies a sample path LDP with speed N2(1−H).
Conditional on AN (−T, 0] = ξ, what is the distribution of A?

It is easy to check that

E
(
AN (−t, 0] ∣∣ AN (−T, 0] = ξ

)
= µt+

Γ(t, T )
VT

(ξ − µT ).

Call this quantity a(t). It is also easy to check that

Var
(
AN (−t, 0] ∣∣ AN (−T, 0] = ξ

)
=

σ2

N2(1−H)

(
t2H − Γ(t, T )2

T 2H

)
.

With a little work we can apply Borell’s inequality to deduce that

lim
N→∞

P
(

sup
t∈[0,T ]

|AN (−t, 0] − a(t)| > ε
∣
∣
∣ AN (−T, 0] = ξ

)
= 0.

�

8.4 Scaling Properties

A great deal can be said about scaling properties of networks, without having
to solve variational problems arising from the contraction principle. We
discussed this approach in Section 6.10, in the context of the standard large-
buffer scaling. What about long range dependence?

A good word to use here is Hurstiness, a term introduced to us by John
Lewis. We will use it to mean the following. Given a process X, define the
scaled version

XN (−t, 0] =
1
N
X(−Nt, 0].
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Say that X has HurstinessH if the sequence (XN , N ∈ N) satisfies a sample
path LDP in Cµ (for some µ, called the mean rate) of the form

1
N2(1−H) log P (XN ∈ B) ≈ − inf

x∈B
I(x), (8.6)

where I is a good rate function, and where the only path x for which I(x) = 0
is the path with constant rate µ, and where there is some path x for which
0 < I(x) < ∞. When we write the approximation, we mean that the
standard large deviations lower and upper bounds hold for open and closed
sets, as N → ∞ in R

+. A fractional Brownian motion with Hurst parameter
H and drift µ has Hurstiness H and mean rate µ. We will see that

• if a flow has a Hurstiness, it has a unique Hurstiness;
• the Hurstiness of the arrival process determines the shape of the tail of

the queue length distribution;
• the Hurstiness of an aggregate is equal to the maximum Hurstiness of

the constituent parts;
• the Hurstiness of the departure process from a queue is equal to the

Hurstiness of the arrival process.
The second of these relies on a key scaling property of the rate function I,
implied by (8.6), made precise in the following lemma. (Recall from (8.2)
the meaning of x�1/κ.)

Lemma 8.2 If XN satisfies an LDP of the form (8.6), then the rate func-
tion I must satisfy

I(κx�1/κ) = κ2(1−H)I(x). (8.7)

Proof. Define Y N = XκN , that is,

Y N = f(XN ) where f(x) =
1
κ
x

�κ.

Each of these two representations will lead us to an LDP for Y N ; we will
then use the uniqueness of the rate function (Lemma 4.7) to obtain the
desired equality (8.7).

First, we will use the contraction principle. It is easy to verify that
‖f(x)‖ ≤ (κ−1 ∨ 1)‖x‖, and to deduce that f is continuous. Hence, by the
contraction principle, Y N satisfies an LDP of the form (8.6) with good rate
function

J(y) = inf
x:f(x)=y

I(x) = I(κy�1/κ).
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We can also obtain an LDP directly by using the scaling in (8.6):

1
N2(1−H) log P (Y N ∈ B)

=
1

N2(1−H) log P (XκN ∈ B)

= κ2(1−H) 1
(Nκ)2(1−H) log P (XκN ∈ B)

≈ −κ2(1−H) inf
x∈B

I(x) = − inf
x∈B

κ2(1−H)I(x).

where we write ≈ as before to denote the lower and upper LD bounds for
open and closed sets.

Comparing these two expressions for the rate function completes the
proof. �

Uniqueness. Suppose X has Hurstiness H, so that it satisfies an LDP of
the form

1
N2(1−H) log P (XN ∈ B) ≈ − inf

x∈B
I(x).

Can it have Hurstiness G > H? We will show that for any G > H, X
satisfies an LDP at speed G but with a trivial rate function. By uniqueness
of the rate function (Lemma 4.7), it cannot satisfy an LDP at speed G with
a non-trivial rate function. Therefore it cannot have Hurstiness G. This
establishes the uniqueness of Hurstiness.

We will argue that the LDP at speed G is of the form

1
N2(1−G) log P (XN ∈ B) ≈ − inf

x∈B
I ′(x) (8.8)

where

I ′(x) =

{
0 if I(x) = 0
∞ otherwise.

Note that I ′ is trivially a good rate function. For the large deviations upper
bound, suppose that infx∈B I(x) > 0 for some closed set, and consider

1
N2(1−G) logP (XN ∈ B) = N2(G−H) 1

N2(1−H) logP (XN ∈ B).

The lim sup of the second term is < 0, and the first term → ∞, so

lim sup
N→∞

1
N2(1−G) log P (XN ∈ B) = −∞.
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If infx∈B I(x) = 0, the bound is trivial. The lower bound for open sets
B is trivial unless infx∈B I(x) = 0, in which case it can be obtained by
considering the complement of B and using the upper bound.

Queues. Consider an infinite-buffer queue fed by a source with Hurstiness
H. As usual, we look at the queue size Q = q(X) where

q(x) = sup
t∈R+

x(−t, 0] − Ct

and C is the service rate. If the service rate is larger than the mean arrival
rate then q is continuous, and so the contraction principle applies, giving an
LDP for Q/N = q(XN ) of the form

1
N2(1−H) logP (Q/N ∈ B) ≈ − inf

q∈B
J(q)

where J is the good rate function

J(q) = inf
{
I(x) : q(x) = q

}
.

It must be that J(q) > 0 for q > 0. For suppose J(q) = 0. By goodness
of the rate function I, the optimum is attained, say at x̂; by the definition
of Hurstiness, x̂ has constant rate equal to the mean arrival rate; yet this
cannot satisfy q(x̂) = q > 0.

In fact, we can say a great deal more about the form of J , using only the
form of the rate function (8.6). Suppose that that J(q0) < ∞ for some q0,
i.e. that overflow is ‘plausible’. Let x̂ be optimal in J(q0), so that q(x̂) = q0
and J(q0) = I(x̂). Now let us seek to evaluate J(q). Consider the path y
defined by

y =
q

q0
x̂�q0/q.

This path satisfies q(y) = q(x̂)q/q0 = q, and so J(q) ≤ I(y). Furthermore,
using Lemma 8.2,

J(q) ≤ I(y) =
( q
q0

)2(1−H)
I(x̂) =

( q
q0

)2(1−H)
J(q0).

We can obtain a reverse inequality similarly. The conclusion is that

J(q) = q2(1−H)δ where δ =
J(q0)

q
2(1−H)
0

and 0 < δ <∞.
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Since the rate function J is continuous, the LD lower and upper bounds
for the event {Q/N > q} agree, and so

lim
N→∞

1
N2(1−H) logP (Q/N > q) = −δq2(1−H).

Let q = 1 and relabel N as q to see that

lim
N→∞

1
q2(1−H) log P (Q > q) = −δq2(1−H).

Thus (under the condition that overflow is plausible) the Hurstiness of the
arrival process determines the shape of the tail of the queue length distri-
bution.

Aggregates. Consider two independent flows X and Y , one with Hursti-
ness H and rate function I, the other with Hurstiness G, and rate function
J , and suppose that H < G. What is the Hurstiness of the aggregate
Z = X + Y ?

As we remarked above, X satisfies a trivial LDP of the form (8.8). Now,
consider the aggregate Z = X+Y . By the contraction principle, ZN satisfies
a large deviations principle of the form

1
N2(1−G) log P (ZN ∈ B) ≈ − inf

z∈B
K(z)

where K is the good rate function

K(z) = inf
(x,y) : x+y=z

I ′(x) + J(y).

Since I ′ is trivial,
K(z) = J(z − µ)

where by µ we mean the path with constant rate equal to the mean rate of
X. Since J is assumed to be non-trivial (from the definition of Hurstiness),
K is non-trivial. Thus the Hurstiness of the aggregate is equal to the greater
of the Hurstinesses of the two component flows.

Departures. Consider an infinite-buffer queue fed by a source with Hursti-
ness H and mean rate µ, and service rate greater than the mean rate. The
departure process D is a continuous function of the arrival process, so by
the contraction principle DN satisfies an LDP with speed N2(1−H).
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If the arrival process has constant rate µ, then the departure process
does too; and so this path has rate function 0. It is not hard to see that
this is the only path with rate function 0. Also, an arrival process with a
finite value of the rate function yields some departure process with a finite
value of the rate function; thus the rate function for the departure process
is non-trivial. So the departure process has Hurstiness H.

Networks. It seems likely that similar results apply to networks of queues.
Indeed, the argument given above for queues applies to queues anywhere
inside a network. However, it can be difficult to verify the two properties
we needed, namely

• stability, i.e. q(µ) = 0;
• non-degeneracy, i.e. there exists a path x with I(x) <∞ and q(x) > 0.

One simple setting where these hold is the tandem queue. Suppose we have
two queues in tandem, and we are interested in the tail of the queue size
distribution for the downstream queue. The stability condition is satisfied
if the two service rates are greater than the mean arrival rate; and the non-
degeneracy condition is satisfied assuming that the upstream service rate
is greater than the downstream service rate and that it is plausible for the
upstream queue to overflow.

8.5 How Does Long Range Dependence Arise?

A concrete example from everyday life where LRD arises naturally is traffic
patterns on country roads. Local interactions (cars cannot overtake each
other) can give rise to long-range interactions (huge backlogs followed by
long stretches without any cars at all).

Another example from everyday life is a magnet. Microscopic local inter-
action between molecules can lead to macroscopic organisation, i.e. LRD.
In statistical physics, magnets are modelled as a Markov random field, a
higher-dimensional analogue of a Markov chain; and it can be shown that,
if the local interaction is strong enough, the system will exhibit long range
dependence. (This does not occur in one dimension, as suggested by Exer-
cise 3.2.)

What is the cause of LRD in teletraffic? A possible cause is the fact that
file sizes typically have heavy-tailed distributions. A random variable T is
said to be heavy-tailed if

lim
x→∞P

(
T > t+ x

∣∣ T > t) = 1 for all x > 0.
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There are many possible traffic models based on heavy-tailed file sizes; the
general conclusion is that the aggregate of many independent flows, each
with heavy-tailed renewal times, converges to a fractional Brownian motion
(after rescaling appropriately). See for example Willinger et al. [99].

Another construction is the following, due to Kaj [51]. Suppose there
are N sources, each an independent copy of a stationary renewal process
with inter-renewal time distributed like T . Let H ∈ (1

2 , 1) and suppose that

P (T > t) ∼ t−(3−2H)L(t)

where L is slowly varying at infinity, i.e.

lim
t→∞

L(xt)
t

= 1 for all x > 0.

Note that T has a finite mean but no variance. Let AN (−t, 0] be the total
number of arrivals (i.e. renewal events) in time (−t, 0]. One can choose
a scaling sequence vN such that v2(1−H)

N ∼ N L(vN ); for such a sequence,
define the scaled arrival process

ÃN (−t, 0] =
AN (−vN t, 0]

vN
− Nt

ET
.

This process converges in distribution to a fractional Brownian motion with
Hurst parameter H, drift µ, and variance parameter

σ2 =
1

H(2H − 1)(ET )3
.

In the context of large deviations, here is a result due to Mandjes [67]. It
concerns a queue fed by the aggregate of N independent sources. Let each
source be M/G/∞, that is, jobs arrive as a Poisson process of rate λ, and
stay active for a holding time which has distribution T , and holding times
are independent. Suppose the job generates work at unit rate while active.
Take T to be Pareto, that is,

P (T > t) = (t+ 1)−(3−2H)

for some H ∈ (0, 1). Now let A be a Gaussian approximation to this source.
A has mean arrival rate λET , and variance

VarA(−t, 0] =
λ

H(2H − 1)(2H − 2)

(
1 − (t+ 1)2H +

2H
t

)
.
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Consider a queue fed by N independent copies of A, with service rate NC
where C is greater than the mean arrival rate of a source. Let QN be the
queue size. Then QN satisfies a large deviations principle:

lim
N→∞

1
N

log P (QN > Nb) = −I(b).

The rate function I(b) has two different forms, depending on the value of
H. If H < 1

2 then I(b) ∼ κb for some constant κ; if H > 1
2 then I(b) =

O(b2(1−H)). This result links the fractional Brownian motion limit above,
with the queue size result for fractional Brownian motion in Section 8.2.

8.6 Philosophical Difficulties
with LRD Modelling

First let us suppose that we have observed a high empirical value for the
Hurst parameter associated with a particular time series. There are vari-
ous schemes for estimating Hurst parameters, but whichever one has been
adopted, a large empirical Hurst parameter indicates that there is a fluctu-
ation at the time-scale over which the data is observed. To fit a LRD model
to this data is to regard this fluctuation as random. The alternative is to
regard the data as non-stationary.

Without any further information about the data and where it came from,
the fact that there is a fluctuation at the time-scale over which the data is
observed makes prediction beyond the short term a difficult task; to hope
to say something useful about future fluctuations at the same time-scale
is somewhat optimistic. It is a sample-size problem: with one sample of
fluctuations at this time scale we don’t have very much information about
fluctuations at this time scale. (Ironically, short term prediction is often
considerably easier with such data sets because of the presence of ‘trends’.)

In general, it is impossible to distinguish between long range dependence
and non-stationarity. If there is a fluctuation at the time-scale over which
the data is observed, then either proposition is consistent with the data. For
all practical purposes they are equivalent. See [57] for an excellent discussion
on this point.

Having said that, there is a fundamental difference at the philosophical
level, similar in nature to the difference between frequentist and Bayesian
points of view. There is a sense in which to take the LRD view and regard
the single, unexplained fluctuation as random, is to be effectively Bayesian;
and the alternative viewpoint is frequentist.
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Suppose that we do have further information about the data—suppose
we have some reason to believe that the data is, in a truly statistical sense,
long-range dependent in nature. For example, suppose we know that the
data is an aggregate of many independent sources with heavy-tailed inter-
arrival times, as discussed in the previous section. Then things are somewhat
different. Modelling and prediction will be difficult, but no more difficult
than modelling heavy-tailed distributions, and as such one can hope to have
some success. Robustness is now the key issue. Domains of attraction of
heavy-tailed stable laws (or as we saw in the last section, fractional Brownian
motion) are, in a sense which is difficult to formulate precisely but which is
nevertheless meaningful, much smaller than the domain of attraction of the
usual central limit theorem (and standard Brownian motion), and for that
reason predictions based on the former are in practice more prone to error.

Note that these issues are a function of the data, not the approach. If a
time series appears non-stationary, exhibits LRD or heavy tails, there will
be difficulties with prediction no matter what approach is adopted. There
are many instances in practice where it preferable to try something, even if
confidence is limited, rather than throw our arms in the air and say ‘this is
impossible!’
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Moderate Deviations Scalings

In our discussion of long range dependence, we introduced a different style
of working with large deviations problems: by looking at the speed of the
LDP rather than calculating the exact value of a rate function, we were able
to draw robust conclusions without too much work. In this chapter we will
look at another class of LDP where such arguments are useful, the class of
moderate deviations principles. This is a large deviations analogue of heavy
traffic theory.

We will tackle moderate deviations problems using the contraction prin-
ciple. Moderate deviations have also been studied using the tools of heavy
traffic theory, by Puhalskii [85] and Majewski [62].

9.1 Motivation

Moderate deviations concerns a collection of scales between large deviations
and the central limit theorem. To be concrete, let (Yn, n ∈ N) be a collection
of i.i.d. random real-valued random variables all distributed like Y and let

Sn =
n∑

i=1

Yi.

We have worked extensively with the large deviations limit

1
n

logP
(Sn

n
∈ B

)
≈ − inf

x∈B
I(x)

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 199–209, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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(where by ≈ we mean that the large deviations bounds hold: an upper
bound on the lim sup for closed sets, and a lower bound on the lim inf for
open sets). The central limit theorem says that, if µ = EY and σ2 = Var Y ,

P

(
n1/2

(Sn

n
− µ

)
∈ B

)
≈ P

(
Normal(0, σ2) ∈ B

)
.

(where by ≈ we mean there is convergence in distribution of the random
variables). Moderate deviations concerns a range of scales in between these.
Specifically, for β ∈ (0, 1),

1
nβ

logP
(
n(1−β)/2

(Sn

n
− µ

)
∈ B

)
≈ − inf

x∈B

1
2x

2/σ2 (9.1)

(where by ≈ we mean that the large deviations upper and lower bounds
hold, and we are assuming σ2 > 0.) If this is so, we say that n−1Sn satisfies
a moderate deviations principle with mean µ at scale β. A moderate devia-
tions principle is just a large deviations principle with a particular scaling.

Theorem 9.1 If the log moment generating function of Y ,

Λ(θ) = logEeθY ,

is finite for θ in a neighbourhood of the origin then (9.1) holds.

Proof. If Λ(θ) is finite in a neighbourhood of the origin then it is infinitely
differentiable at the origin, and has a power series expansion

Λ(θ) = θµ+ 1
2σ

2θ2 +O(θ3).

Now we will simply use the generalized Cramér’s theorem. Let

Tn = n(1−β)/2(n−1Sn − µ).

This has log moment generating function

Mn(θ) = nΛ(θn−(1+β)/2) − θn(1−β)/2µ,

and so
1
nβ

Mn(θnβ) =
Λ(θδ) − θδµ

δ2

where δ = n−(1−β)/2. Note that

n−βMn(θnβ) → 1
2σ

2θ2 as n→ ∞
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by standard results for power series. So we can apply the generalized
Cramér’s theorem, Theorem 2.11, to deduce that T n satisfies a large de-
viations principle of the form

1
nβ

log P (Tn ∈ B) ≈ − inf
x∈B

I(x)

where ≈ is in the usual sense of meaning upper and lower bounds, and the
rate function is

I(x) = sup
θ
θx− 1

2σ
2θ2 = 1

2x
2/σ2.

(The statement of Cramér’s theorem in Chapter 2 only used probability
scalings of the form n−1 logP (·), but all the results apply equally to this
scaling.) �

Some remarks.
i. The moderate deviations estimate is like a mixture between the large

deviations limit and the central limit. If β is close to 0 it deals with variations
which are close to those studied by the central limit theorem; if β is close to
1 it deals with variations which are close to those studied by large deviations
theory.

ii. As with large deviations, the moderate deviations estimate is governed
by the principle of the largest term: only the most likely x̂ ∈ B contributes
to the estimate.

iii. As with the central limit theorem, the moderate deviations estimate
depends only on the variance σ2. Higher moments are not involved.

iv. Let Y ′ be a normal random variable with mean µ and variance σ2. Let
S′

n be the sum of n i.i.d. copies of Y ′. Then the large deviations estimate
for S′

n is

lim
n→∞

1
n

logP
(S′

n

n
− µ ∈ B

)
= − inf

x∈B

1
2x

2/σ2.

The rate function is just the same as for the moderate deviations estimate.
Crudely, moderate deviations is like large deviations but ignoring moments
that are higher-order than the mean and variance.

v. We assumed Λ(θ) was finite in a neighbourhood of the origin. In fact,
it is not even necessary for all moments to be finite (though the larger β
is, the more control we need on the moments). See Deo and Babu [27] for
tighter conditions.
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9.2 Traffic Processes

We will not attempt to prove here a moderate deviations principle for traffic
processes, but simply state it as an assumption. For details see [102]. We
will work in discrete time, as we did in Chapter 7—look back at Section 7.2
to remind yourself of the space D of real-valued integer-indexed processes.
Let (XN , N ∈ N) be a sequence of processes in D.

Note. The process XN could be the average of N independent copies of a
process X , in which case this definition describes a many-flows result. Or
it could be a speeded-up version of a process, XN(−t, 0] = N−1X(−t, 0], in
which case this definition describes a large-buffer result (although for large-
buffer results it is more natural to work with polygonalized processes in
continuous time). The theory in this chapter applies equally.

Definition 9.1 Say that XN , normalized, satisfies the sample path moder-
ate deviations principle with mean µ > 0 and covariance structure (γt)t≥0 if
the following four conditions hold:
i. For each β ∈ (0, 1), XN satisfies a large deviations principle of the form

1
Nβ

log P
(
N (1−β)/2(XN − µe) ∈ B

) ≈ − inf
x∈B

I(x) (9.2)

with good rate function I, in the space D given in Definition 7.1, where
e is the vector of 1s.

ii. The rate function I has the form

I(x) = sup
t∈N

sup
θ∈Rt

θ · x(−t, 0] − Λt(θ)

where Λt(θ) = 1
2θ ·Σtθ and Σt is the t× t matrix (Σt)ij = γ|i−j| for some

function γ, called the covariance function.
iii. Let Vt = e · Σte be the variance function corresponding to γ. Require

that Vt = o(t2/ log t).
iv. I(x)=0 if x �∈ Dµ.

There are many clauses to this definition, and it may not be immediately
apparent where they come from. If so, write down a moderate deviations
principle for XN (−t, 0] (where XN may come from either a many-flows
scaling or a large-buffer scaling), as described in Theorem 9.1, and see that
this is the natural extension of that result from real-valued random variables
to processes. Some more remarks on the definition:
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i. If XN is the average of N independent copies of some traffic process
X, then item (ii) just says that the rate function I is what it would be for
a Gaussian approximation to X.

ii. If XN is a time-rescaled version of a process X, then the covariance
function is typically trivial, γt = 0 for t > 0.

iii. Item (iii) is a condition on the long-timescale regularity of XN . It is
used to strengthen the topology on D from that of pointwise convergence to
that of convergence in the scaled uniform norm topology. See Example 7.1
for how this works for Gaussian processes in the many-flows limit.

iv. Item (iv) is in fact a consequence of (iii), and we only include it in the
definition for convenience.

It can be seen that the theory is all very similar to Chapter 6 and espe-
cially to Chapter 7. The only distinctive feature is in the scaling factor Nβ.
What does it mean for queueing systems?

9.3 Queue Scalings

We can straightforwardly apply the extended contraction principle. If the
sequence of arrival processes AN satisfies a sample path moderate deviations
principle, then, with some abuse of language, we can say that the queue size
q(AN ) satisfies a moderate deviations principle. The form is this:

1
Nβ

log P
[
q
(
N (1−β)/2(AN − µe)

)
∈ B

]
≈ − inf

a∈D:q(a)∈B
I(a).

The rate function can be significantly simplified. From Section 7.6, the
form of J(q) = inf{I(a) : a ∈ D, q(a) = q} is

J(q) = inf
t≥0

sup
θ∈R

θ(q + Ct)− 1
2θ

2Vt = inf
t≥0

(q + Ct)2

2Vt
. (9.3)

All the other applications of the contraction principle in Chapter 7 carry
through too. (Though results must be interpreted with care, bearing in
mind the scaling involved in the moderate deviations principle.)

To try to understand what these results mean, suppose for instance that
AN is the average of N independent copies of some arrival process A. Write
q(AN , C) for the queue size function with service rate C, because the scaling



204 Chapter 9

of service rate will turn out to be important. Then

q
(
N (1−β)/2(AN − µe), C

)

=N−(1+β)/2q
(
NAN −Nµe,N (1+β)/2C

)

=N−(1+β)/2q
(
NAN , Nµ+N (1+β)/2C

)
.

So this moderate deviations result is describing a sequence of queues, in
which the Nth queue serves N flows, and the excess service rate and queue
size scale as N (1+β)/2. The traffic intensity at the Nth queue is

ρN =
Nµ

Nµ+N (1+β)/2C

so ρN → 1 and
1 − ρN ∼ N−(1−β)/2C/µ.

It may be helpful to give a more intuitive account of the parameter β.
Recall the statement of the moderate deviations principle, (9.2), which we
will informally rewrite as

P (AN ≈ µ+N−(1−β)/2x) ≈ exp(−NβI(x)).

This expresses a relationship between the size of a deviation, of scaleN−(1−β)/2

relative to the mean, and its frequency exp(−Nβ). A random arrival process
AN will typically satisfy moderate deviations principles at all scales of size
and frequency, that is, for all β ∈ (0, 1). When the arrival process NAN

is fed into a queue with traffic intensity of scale ρ ≈ 1 − N−(1−γ)/2, there
are deviations in the queue size of scale N (1+γ)/2, caused by deviations in
the traffic of the same scale, and these deviations have frequency exp(−Nγ).
(There will of course be deviations at many scales, but large deviations tools
only tell us non-trivial things about this particular scale.)

Interpretation

The formal procedure we have described here—applying the contraction
principle and solving a variational problem to find the rate function—is
exactly the same for moderate deviations as for large deviations (be it large-
buffer, many-flows or long-range dependence). However, it will become ap-
parent in the next two sections that the results must be interpreted carefully,
because of the distinctive ‘moderately heavy traffic’ scaling. In particular,
quantities like the departure process have a very different interpretation.
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If one studies large deviations in queues fed by Gaussian traffic processes,
intending this to be a heavy traffic approximation of some non-Gaussian
sytem (rather than just a convenient and tractable mathematical object), it
is important to consider the scaling implications of the heavy traffic limit,
and to interpret any large deviations results in the light of those implications.
Crudely speaking, one can apply the large deviations techniques in Chapters
6 and 7 to heavy traffic approximations in order to study total queue size
and most likely paths to overflow, but not (unless one has good reasons for
doing so) to queueing delay, to shared buffers, or to departures. The right
way to interpret such quantities is given below.

9.4 Shared Buffers

Consider a single queue fed by two input flows AN and BN , and assume
that each, normalized, satisfies a sample path moderate deviations principle.
Suppose the work is served with a first-come–first-served discipline. How
much of the work in the queue comes from each of the two flows?

To be precise, suppose that work NȦN−t and NḂN−t arrives uniformly
spread throughout the interval (−t− 1,−t]. Let the queue have service rate
Nµ + N (1+β)/2C, where µ is the mean rate of AN + BN . Let the total
queue size be N (1+β)/2QN−t. Let the amount of work due to AN and BN be
N (1+β)/2RN−t and N (1+β)/2SN−t, defined with the usual boundary condition,
that ‘the queue was empty at time −∞’. We know that QN−t satisfies a
moderate deviations principle. We seek a moderate deviations principle for
(RN−t, S

N−t).

Theorem 9.2 Let ν be the mean rate of AN , and let

R̃N
−t =

ν

µ
QN

−t.

Then RN−t is exponentially equivalent to R̃N−t at scale β, in that

lim sup
N→∞

1
Nβ

log P
(|RN

−t − R̃N
−t| > δ

)
= −∞ for all δ > 0.

Thus RN−t satisfies a moderate deviations principle with good rate func-
tion J(qµ/ν), where J(q) is the rate function for QN−t. In Chapter 4 we
called this the approximate contraction principle.

An immediate consequence (easily proved from the definition of exponen-
tial equivalence) is that (RN−t, S

N−t) is exponentially equivalent to (ν/µ, 1 −
ν/µ)QN−t.



206 Chapter 9

The idea of the proof is to unwrap the scaling that defines RN−t. At time
−t− 1 there is an (unscaled) amount of work N (1+β)/2QN−t−1 in the system.
Over time (−t − 1,−t], some extra work arrives: that extra work is Nµ +
N (1+β)/2ẊN−t, where XN is of the same scale as QN−t. Compare the scales
N and N (1+β)/2 and observe that the vast majority of work in the queue is
due to the Nµ term. So the ratio of work due to the two flows is dominated
by their means, and so (after serving an amount Nµ+N (1+β)/2C of work)
the queue at time −t is largely made up of the two flows in proportion to
their mean rates.

Proof of Theorem 9.2 Consider how RN−t comes about. At time −t−1 there
was a certain amount of work N (1+β)/2QN

−t−1 in the queue, with work from
the two flows distributed somehow. Then NȦN−t +NḂN−t arrives, and work
from the two flows is distributed evenly. Of the total work, Nµ+N (1+β)/2

is served, the original work N (1+β)/2QN−t−1 coming first.
So either N (1+β)/2QN−t−1 is served completely, in which case

RN
−t = QN

−t

ȦN−t

ȦN−t + ḂN−t

,

or it is not, which requires

N (1+β)/2QN
−t−1 > Nµ+N (1+β)/2C.

Thus

P
(|RN

−t − R̃N
−t| > δ

)

≤ P
(
QN

−t−1 > N (1−β)/2µ+ C
)

+ P
(∣∣∣

ȦN−t

ȦN−t + ḂN−t

− ν

µ

∣
∣∣QN

−t > δ
)
. (9.4)

By the principle of the largest term, it is sufficient to show that

lim sup
N→∞

N−β log P (·) = −∞

for each of these parts.
Consider the first term in (9.4). We know thatQN−t−1 satisfies a moderate

deviations principle, say with rate function J(q) as in (9.3). Thus

lim sup
N→∞

1
Nβ

log P
(
QN

−t−1 > N (1−β)/2µ+ C
) ≤ −J(q) (9.5)
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for every q > 0. (This assumes µ > 0.) But J(q) is unbounded as q → ∞.
(This is from the assumption that Vt = o(t2/ log t), where Vt is the marginal
variance of AN +BN .) So the lim sup is equal to −∞.

Now for the second term in (9.4). Let δ1 = |ȦN−t − ν| and δ2 = |ȦN−t +
ḂN−t − µ|. If δ2 < µ then

∣∣
∣

ȦN−t

ȦN−t + ḂN−t

− ν

µ

∣∣
∣ ≤ µδ1 + νδ2

µ(µ− δ2)
.

This lets us break up the second term into separate parts:

P
(∣∣∣

ȦN−t

ȦN−t + ḂN−t

− ν

µ

∣
∣∣QN

−t > δ
)

≤ P (δ1QN
−t > δµ) + P (δ2QN

−t > δµ/ν) + P (δ2 > µ/2),

for each of which, as with (9.5), lim supN N−β log P (·) = −∞. �

This leaves us with the following picture of the evolution of the queue.
At the level of fluctuations described by moderate deviations, a total amount
of work ȧ−t + ḃ−t arrives at the queue at time −t. The queue size fluctuates
according to the standard Lindley recursion, q−t = (q−t−1 + ȧ−t + ḃ−t − c)+.
All of q−t−1 is served at time −t, and the amount of work left over in the
queue from a and b is q−tν/µ and q−t(1 − ν/µ).

Observe that the distinctive moderate deviations scaling has led us to
this result, which is completely unlike results for either large-buffer or many-
flows scaling.

Exercise 9.1
Let DN be the departure process for traffic coming from AN :

NDN (−t, 0] = NAN (−t, 0] +N (1+β)/2RN
−t −N (1+β)/2RN

0 .

Find a moderate deviations principle for DN |(−t,0] suitably normalized. �

Exercise 9.2
Prove that the process (RN−t, t ≥ 0) is exponentially equivalent to (QN−tν/µ, t ≥
0). (Challenging.) �
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9.5 Mixed Limits

Consider a queue with an infinite buffer, fed by an input flow AN . What
are statistical characteristics of the departure process? We will make this
question precise, in a novel way, using the scaling parameter β.

Let the aggregate input process beNAN , whereAN , normalized, satisfies
a sample path moderate deviations principle at all scales β ∈ (0, 1); and
suppose the service rate is scaled accordingly to be Nµ + N (1+β)/2C. Let
N (1+β)/2QN−t be the queue size at time −t. Define the departure process in
the usual way:

NDN (−t, 0] = NAN (−t, 0] +N (1+β)/2QN
−t −N (1+β)/2QN

0 .

By the contraction principle, the departure process, normalized, satisfies
some moderate deviations principle at scale β. Does it satisfy a moderate
deviations principle at other scales β′ �= β? (In the large buffer scaling and
the many flows scaling, it is not even possible to ask this question. But it
does relate very closely to the question of Hurstiness in Chapter 8.)

First, suppose β′ < β. It turns out that, at this scale, AN and DN are
exponentially equivalent: that is, for any δ > 0,

lim sup
N→∞

1
Nβ′ log P

(∥∥N (1−β′)/2(AN − µ) −N (1−β′)/2(DN − µ)
∥
∥ > δ

)
= −∞.

(9.6)
Thus at scale β′ < β, DN satisfies exactly the same moderate deviations
principle as does AN . In other words, the burstiness of the traffic at scales
β′ < β has not been affected at all. (We will not give a full proof; see [102]
for that. In a moment is a sketch proof, and a full proof of an important
step.)

What about scales β′ > β? This is harder to say. One statement though
is trivial. The queue cannot emit work at a rate greater than its service rate;
so NDN (−t, 0] ≤ Nµ+N (1+β)/2C; so if NDN were fed into a downstream
queue with service rate Nµ + N (1+β′)/2C ′, that downstream queue would
never overflow (for N sufficiently large).

Sketch proof of (9.6). Let β′ < β. Substituting into (9.6) the definition of
DN , and rescaling, we need to show

lim sup
N→∞

1
Nβ′ logP

(
sup
t>0

N (1+β)/2
∣
∣∣
QN

0
t+ 1

− QN−t

t+ 1

∣
∣∣ > δN (1+β′)/2

)
= −∞.
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Now,

sup
t>0

∣∣
∣
QN

0
t+ 1

− QN−t

t+ 1

∣∣
∣ ≤ QN

0 + sup
t>0

QN−t

t+ 1
.

The following lemma proves that

lim sup
N→∞

1
Nβ′ logP

(
N (1+β)/2QN

0 > N (1+β′)/2δ
)

= −∞.

With some harder work, using essentially the same technique, we can prove
a similar result for suptQ

N−t/(t+ 1). Hence the result. �

Lemma 9.3 If the arrival process AN , normalized, satisfies the sample
path moderate deviations principle at scale β′; and if QN

0 = q(LAN , Nµ +
N (1+β)/2C) for β′ < β and µ < C, then

lim sup
N→∞

1
Nβ′ logP

(
N (1+β)/2QN

0 > N (1+β′)/2δ
)

= −∞. (9.7)

Proof. The proof consists mostly in changing the scales of the equation, as
follows.

(9.7) = lim sup
N→∞

1
Nβ′ log P

(
q(NAN , Nµ+N−(1−β)/2C) > δN (1+β′)/2)

= lim sup
N→∞

1
Nβ′ log P

(
q(N (1−β′)/2(AN − µ), N (β−β′)/2C) > δ

)

≤ J(δ, C ′) for all C ′ > 0

where J(·, C ′) is the rate function for queue size in a queue with service rate
C ′. But we have a formula for J :

J(q, C) = inf
t≥0

(q + Ct)2

2Vt
≥ C2 inf

t≥0

t2

2Vt
.

Since we have assumed Vt = o(t2/ log t), J(q, C) → ∞ as C → ∞. Hence
the result. �

Exercise 9.3
Consider a priority queue. Suppose the high priority input is NAN , the sum
of N independent copies of a traffic flow A, and the low priority input is
NBN , the sum of N independent copies of a traffic flow B. Let the buffer be
infinite, and let the service rate be Nµ+N (1+β)/2 where µ is the mean rate
of AN +BN . Let QN be the total queue size at time 0, RN the high priority
queue size and SN the low priority queue size. Write down a moderate
deviations principle for N−(1+β)/2QN . Show that N−(1+β)/2(RN , SN ) is
exponentially equivalent to N−(1+β)/2(0, QN ). Recalling Chapter 7, find a
large deviations principle for N−1RN with speed N . �
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Interpretations

Readers of a practical bent will by now be bursting with the question: This
large deviations theory is all very well, but how do I actually use it?

We start in Section 10.1 by describing the theory in a more tangible way,
in terms of effective bandwidths.

One of the purposes of a limit theorem—but by no means the most
important—is to give a numerical approximation to a quantity which is
hard to calculate exactly. How numerically accurate are the different large
deviations estimates? We investigate this in Section 10.2.

Another purpose of an estimate—perhaps more important than simply
giving numerical approximations—is to tell us about the general structure
of the solution. The different large deviations principles can tell us different
things about the scaling properties of a queueing system. We address this in
Sections 10.3 and 10.4. In particular, we introduce the global approximation,
a heuristic formula which predicts the proper scaling to use for all the large
deviations results in this book.

Finally, in Section 10.5 we describe large deviations results for some
standard traffic models.

10.1 Effective Bandwidths

There is a certain transformation of the log moment generating function
which has become popular in the literature on communications networks.
It is called the effective bandwidth of a traffic flow, and it is a convenient
and intuitive descriptor of the flow’s stochastic properties, at least as far as
large deviations queueing behaviour is concerned. Effective bandwidths of

A. Ganesh, N. O’Connell, and D. Wischik: LNM 1838, pp. 211–238, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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the sort that arise from large deviations theory were introduced by Kelly
[53]; for further details see Kelly [55], Gibbens [45] and Kesidis et al. [56].

10.1.1 Effective Bandwidths for the Large-Buffer Scaling

Recall our very first result about large deviations for queues, Theorem 1.4.
Let A(s, t] be the amount of work arriving at a queue in the interval (s, t],
s < t ∈ N, and suppose that the increments Ȧt are i.i.d. (We are using the
extended notation for arrival processes described in Section 5.5. We mean
that A(s, t] = Ȧs+1 + · · ·+ Ȧt.) Let the queue have service rate C. Let Q be
the queue size at time 0 (or equivalently, the stationary queue size). Then,
if EȦ0 < C,

lim
l→∞

1
l

logP (Q/l > q) = −q sup{θ > 0 : Λ(θ) < θC}

where Λ(θ) is the log moment generating function

Λ(θ) = logEeθȦ0 .

Interpret this another way. For some given tail decay parameter γ > 0,
what service rate C do we need to ensure

P (Q > q) < e−γq ?

(In the context of telecommunications, one may wish to provide a guarantee
of this form. Such guarantees are called ‘quality of service’ guarantees, and
so γ is sometimes called a ‘quality of service’ parameter.) The answer is
approximately

C = γ−1Λ(γ)

and for this reason, the function α(θ) = θ−1Λ(θ) is known as the effective
bandwidth function of the arrival process. Note that effective bandwidth is
additive for independent sources.

The effective bandwidth function has the following property: α(θ) is
increasing in θ, and lies between the mean rate EȦ0 and the peak rate,
which is ess sup Ȧ0 = inf{x : P (Ȧ0 ≤ x) = 1}.
Exercise 10.1
Show that limθ→0 α(θ) = EȦ0. Show that α(θ) is increasing in θ. (Hint:
Use Hölder’s inequality.) Show that limθ→∞ α(θ) = ess sup Ȧ0. �
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Of course, by Theorem 3.1, the same interpretation holds when the in-
crements (Ȧt, t ∈ Z) are weakly dependent, though the interpretation of
peak rate is slightly different. In this case the effective bandwidth is

α(θ) = lim
t→∞

1
t

logEeθA(−t,0].

Effective bandwidths can also be used for ‘admission control’, in the
following sense. Suppose there are m independent copies of arrival process
A, with effective bandwidth α(θ), and n independent copies of arrival process
B, with effective bandwidth β(θ). What values of m and n can we admit
while maintaining quality of service γ? The answer is simple and linear:

{
m,n : mα(γ) + nβ(γ) < C

}
. (10.1)

The effective bandwidth functions thus measure the tradeoff between flows.
Alternatively it measures the tradeoff between mean rate and burstiness of
flows:
Exercise 10.2
Let α(θ) be the effective bandwidth of an arrival process where the arrivals
at different timesteps are independent normal random variables with mean
µ and variance σ2. Let β(θ) be the same, but with mean ν and variance ρ2.
Sketch the admission control region (10.1) for different values of γ. �

Having studied sample path large deviations for queues with large buffers
in Chapter 6, we are in a better position to understand effective bandwidths
in networks. The reason the effective bandwidth is important is because
the sequence of scaled polygonalized arrival processes ÃN (see Section 5.2
to remind yourself of the scaling) satisfies a sample path LDP in the space
of continuous processes with good rate function

I(a) =
∫ 0

−∞
Λ∗(ȧt) dt (10.2)

where ȧt is the instantaneous arrival rate at time t and Λ∗ is the convex
conjugate of θα(θ),

Λ∗(x) = sup
θ∈R

θx− θα(θ).

Consider the output of a queue with fixed service rate C. We saw in Exercise
6.7 that the sequence of scaled departure processes D̃N satisfies a sample
path LDP with good rate function

J(d) =
∫ 0

−∞
M∗(ḋt) dt
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where the rate function M∗ given by

M∗(x) =

{
Λ∗(x) if x ≤ C

∞ otherwise.

In fact, the departure process has an effective bandwidth. Since Λ∗ is convex
and lower semicontinuous, so is M∗. Now by duality of convex conjugates
(Lemma 2.5) M∗ satisfies

M∗(x) = sup
θ
θx− θδ(θ)

where δ(θ) is defined by

δ(θ) =
1
θ

(
sup

x
θx− M∗(x)

)
,

which is simply

=
1
θ

(
sup
x≤C

θx− Λ∗(x)
)
.

We may call this the effective bandwidth function of the departure process,
since it plays the same role that α(θ) does for the arrival process, that is,
it determines the integrand in the rate function. Note that by duality of
convex conjugates

α(θ) =
1
θ

(
sup

x
θx− Λ∗(x)

)
,

This implies that the effective bandwidth function for the departure process
is smaller (pointwise) than the effective bandwidth function for the arrival
process.

Note. The above is a formal way to obtain an effective bandwidth function
for the departure process. A concrete approach is as follows. By the contrac-
tion principle, as in Section 6.8, D̃N (−t, 0] satisfies an LDP with good rate
function I(x) = xM∗(x/t). By Varadhan’s Lemma (Lemma 4.11), using the
the bounded continuous function f(x) = θ(x ∧ Ct),

lim
N→∞

1
N

logEeNθD̃N (−t,0] = lim
N→∞

1
N

logEeNθ(D̃N (−t,0]∧Ct)

= sup
x∈R

θ(x ∧ Ct) − I(x)

= sup
x≤Ct

θx− tΛ∗(x/t).
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In particular, the scaled limiting log moment generating function (i.e. the
effective bandwidth) δ(θ) of the departure process is

δ(θ) =
1
θ

lim
t→∞

1
t

logEeθD(−t,0] = sup
x≤C

θx− Λ∗(x).

However, in order to apply the results of Chapter 6, it is not sufficient
to have an LDP for D̃N (−t, 0]—we need a full sample path LDP with linear
geodesics. Exercise 6.7 shows that such an LDP holds, if the service rate is
constant.

Unfortunately there is little more positive that can be said about de-
parture processes. If the service is stochastic, or if there are several input
flows, then as noted in Section 6.7 the output process may not have a rate
function of the form (10.2). Therefore, while it may be possible to find
the scaled cumulant moment generating function, it will not have the same
interpretation and it is not appropriate to call it an effective bandwidth.

10.1.2 Effective Bandwidths for the Many-Flows Scaling

Effective bandwidths of a different sort make sense in the many-flows scaling.
Recall the basic result, Theorem 1.8. Consider a single-server queue with
N identical independent arrival flows and constant service rate CN . Let
A(−t, 0] be the amount of work arriving in time interval (−t, 0] from one of
the sources, and assume the mean arrival rate is less than CN . Let QN be
the queue size at time 0 (or equivalently, the stationary queue size). Then

lim
N→∞

1
N

log P (QN > Nq) = − inf
t>0

sup
θ>0

θ(q + Ct) − Λt(θ) (10.3)

where
Λt(θ) = logEeθA(−t,0].

(Lemma 7.9 gives a rate function of this form. That lemma has t ≥ 0 and
θ ≥ 0. We can clearly replace the latter by θ > 0, and we can replace
the former by t > 0 if q > 0. The rate function is increasing, though not
necessarily continuous; we assume for convenience that it is continuous at
q, in order to obtain a limit.)

Suppose the optimum in (10.3) is attained, and the optimizing parame-
ters are θ̂ and t̂, both strictly positive. (These are referred to as the critical
spacescale and timescale.) Suppose we replace a relatively small number
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�δN� of these flows by constant-rate flows of rate (θ̂t̂)−1Λ(θ̂, t̂). The rate
function is now

Jδ(q) = inf
t>0

sup
θ>0

θ(q + Ct) − (
(1 − δ)Λ(θ, t) + δΛ(θ̂, t̂)

)
.

Locally, at (θ̂, t̂), these new flows have the same log moment generating
function as the flows they replace, so the rate function Jδ(q) is the same
as J(q) (to first order, under appropriate smoothness conditions). In other
words, a flow with log moment generating function Λt has the same effect,
at operating point (θ̂, t̂), as a flow of constant rate α(θ̂, t̂), where

α(θ, t) =
1
θt

Λt(θ).

This quantity is called the effective bandwidth of the flow. Note that effective
bandwidth is additive for independent sources.

Alternatively, think of effective bandwidths in terms of admission re-
gions. Suppose there are �mN� flows with effective bandwidth α(θ, t), and
�nN� flows with effective bandwidth β(θ, t). For what values of m and n
does the system meet the quality of service constraint

P (QN > Nq) < e−γN ?

The admissible region is

⋂

t>0

{
m,n : ∃ θ > 0 : mα(θ, t) + nβ(θ, t) < C +

q

t
− γ

θt

}
.

So the effective bandwidth gives the tradeoff between flows of different types.
Note that the queue looks like an infinite collection of logical resources, one
for each t, and the pair (m,n) is admissible if it is admissible at each of the
logical resources.

Rabinovitch [86] has investigated statistical estimation of effective band-
width, and Courcoubetis et al. [20] have investigated ways to estimate over-
flow probability and admission control regions without explicitly estimating
the effective bandwidth.

Effective bandwidths characterize the queue size distribution, in a large
deviations sense. Note however that they do not characterize the sample
path large deviations of a flow, as the following example (prompted by Frank
Kelly) shows.
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Example 10.3
We will construct two arrival processes X and Y with stationary increments,
with identical distributions for X(−t, 0] and Y (−t, 0].

Let U be a random variable with the uniform distribution on {0, 1, 2}.
Let X(−t, 0] = Ẋ−t+1 + · · · + Ẋ0 where the Ẋ t are independent and dis-
tributed like U .

Let Y be

(. . . , Ẏ −3, Ẏ −2, Ẏ −1, Ẏ 0) =

{
(. . . , P1, Q1, P0, Q0) with probability 1

2

(. . . , Q2, P1, Q1, P0) with probability 1
2

where the pairs (Pi, Qi) are independent and identically distributed, Pi is
distributed like U , and Qi = f(Pi, Zi), where the Zi are independent and
distributed like U , and

f(i, j) =

{
j + 1 if j = i+ 1
j otherwise.

Then Qi is also distributed like U , and, by simple counting of probabili-
ties, Pi +Qi has the same distribution as the sum of two independent copies
of U . The regenerative structure of Y ensures that Y (−t, 0] has the same
distribution as X(−t, 0] for all t. Thus the two processes have the same
effective bandwidth function, even though they have different distributions
(and their typical paths to overflow are also different). �

What about the effective bandwidth of the departure process? Let DN

be the aggregate departure process. As in the large buffer case, we know that
DN satisfies a large deviations principle, and in particular that DN (−t, 0]
satisfies a large deviations principle, which lets us compute a log moment
generating function Mt(θ) for departures over (−t, 0]. However, it is not
known whether the rate function for the departure process is convex, which
means it is not known whether Lemma 7.8 is satisfied, which means that
Theorem 7.7 might not apply, which means it is not known whether the rate
function for overflow at a downstream queue has the form (10.3) (though
that equation will still hold as a conservative bound). Thus we do not know
if the scaled cumulant moment generating function of the departure process
deserves to be called an effective bandwidth.

Section 7.11 describes another way of thinking about networks in which
flows follow diverse routes. In that setup, it make sense to talk about the
effective bandwidth of a single departure flow, and that effective bandwidth
is exactly the same as that of the corresponding arrival flow.
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10.2 Numerical Estimates

The large deviations results in the preceding chapters concern limiting re-
sults; in this section we turn them into numerical estimates. We have looked
at several different scaling regimes. Which is most useful? The answer is
trite: it depends on what question we are trying to answer. We seek, then,
to give some guidance about the strengths and weaknesses of the different
approaches.

10.2.1 From Limits to Estimates

Consider, for example, the limit theorem for the many-flows scaling. Let
QN be the steady-state queue size in a single-server queue with N identical
independent arrival flows, constant service rate CN and finite buffer Nq.
Let A(−t, 0] be the amount of work arriving in time interval (−t, 0] from
one of the sources, and assume the total mean arrival rate is less than CN .
Then

lim
N→∞

1
N

log P (QN = Nq) = −I(q)
where

I(q) = inf
t>0

sup
θ>0

θ(q + Ct) − Λt(θ)

Λt(θ) = logEeθA(−t,0].

Note that this event corresponds to overflow—if {QN
t = Nq} then an amount

of work QN
t−1 + ȦN

t −NC −Nq is lost at time t.
(Technically, this is a large deviations upper bound. If the rate function

for overflow I(q) is continuous at q, then the limit holds. The same limit
holds for the probability that the queue size in an infinite buffer exceeds
Nq.)

Take this as a naive estimate: log P (overflow) ≈ −NI: and rewrite it in
terms of the actual parameters of the system

Q̃ = QN

C̃ = NC

q̃ = Nq

Λ̃t(θ) = logEeθNAN (−t,0],

Ĩ = inf
t>0

sup
θ>0

θ(q̃ + C̃t) − Λ̃t(θ),
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where NAN (−t, 0] is the total amount of work arriving at the queue in
interval (−t, 0], to get

log P (Q̃ = q̃) ≈ −Ĩ.
Notice that N has cancelled out. In other words, to apply the many-flows
estimate, we don’t actually need to know how many flows are present! Notice
also that (formally) this estimate can be obtained by simply setting N = 1.
The same happens in all the other scalings we have studied in this book.

10.2.2 Common Form of Estimates

In fact, all the estimates from the different scaling regimes have a common
form. Consider a queue with service rate C and buffer size q. (We have
dropped the ∼ notation, but we still mean that these are the actual service
rate and buffer size.) This common form is

log P (overflow) ≈ −I(q)

where
I(q) = inf

t>0
sup
θ>0

θ(q + Ct) − Mt(θ). (10.4)

The different scaling regimes correspond to different expressions for Mt(θ),
given in Table 10.1. These expressions are given in terms of Λt(θ),

Λt(θ) = logEeθA(−t,0],

where A(−t, 0] is the total amount of work arriving in an interval of length
t. The table refers to the large-buffer scaling (LDLB), the many-flows scal-
ing (LDMF), the large-buffer scaling for traffic with long range dependence
(LDLBH), and also moderate deviations versions of the large-buffer (MDLB)
and many-flows (MDMF) scalings.

In LDLB, the rate function simplifies to I(q) = qI(1), as shown in Lemma
3.4. In the moderate deviations scalings, Mt(θ) is quadratic in θ, so I(q)
simplifies. In MDLB, Mt(θ) is linear in t, so I(q) is very simple indeed.

10.2.3 Refined Estimates

Some of these estimates can be improved upon, although this requires further
assumptions. In the many-flows limit, Likhanov and Mazumdar [59] have
used the Bahadur-Rao theorem, details of which are given by Dembo and
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Scaling Mt(θ)

LDLB §3.1 Mt(θ) = tΛ∞(θ),
where Λ∞(θ) = limt→∞ t−1Λt(θ)

LDMF §1.4 Mt(θ) = Λt(θ)

LDLBH §8.2 Mt(θ) = t2(1−H)Λ∞(H)(θt2H−1),
where Λ∞(H)(θ) = limt→∞ t−2(1−H)Λt(t−(2H−1)θ)

MDMF §9.3 Mt(θ) = θµt+ 1
2θ

2σ2
t

where µt = EA(−t, 0] = Λ′
t(0)

and σ2
t = VarA(−t, 0] = Λ′′

t (0)

MDLB §9.3 Mt(θ) = θµt+ 1
2θ

2tσ2

where σ2 = limt→∞ t−1σ2
t = Λ′′∞(0)

Table 10.1: The log moment generating function Mt(θ) appearing
in the rate function (10.4), for various different scaling regimes.

Zeitouni [25, Theorem 3.7.4], to find conditions under which they can obtain
a tighter limit on the probability of overflow in a queue

P (QN = Nq) =
1

θ̂

√
2πNσ2(t̂, θ̂)

e−NI(q)
(
1 +O(N−1)

)
(10.5)

and on LN , the expected amount of work that is lost each timestep,

LN =
1

θ̂2
√

2πNσ2(t̂, θ̂)
e−NI(q)

(
1 +O(N−1)

)
.

Here, t̂ and θ̂ are the optimizing parameters in I(q), µ is the mean arrival
rate of a single flow, and σ2(t̂, θ̂) is the ‘tilted variance’

σ2(t, θ) =
d2

dθ2 Λt(θ).

Again, the same expression (10.5) holds for the probability that the queue
size exceeds Nq in a queue with an infinite buffer.

To turn these limit theorems into estimates, simply set N = 1 and
write I(q) in terms of the actual parameters, namely the total buffer size
and service rate, and aggregate arrival process. Kelly [55] recounts similar
results for bufferless resources shared by many flows.



Interpretations 221

In the large-buffer scaling, Choudhury et al. [18] explain that it is often
possible to show that, for a queue with service rate C and buffer size q,

P (overflow) ∼ ae−I(q) as q → ∞ (10.6)

for some constant a, where I(q) is given by (10.4) using the large-buffer
version of Mt. They remark that a is often close to 1 when the queue is fed
by a single source. When the queue is fed by many sources, a can be far
from 1, and so large-buffer approximation is unsuitable.

We conjecture that these refined approximations also apply to the moderate-
deviations scalings, with Λt(θ) replaced by Mt(θ) as specified in Table 10.1.

When the input traffic is Gaussian, one can say more. Choe and Shroff
[16] have found a tight upper bound for the constant a in (10.6), when the
input is not long-range dependent. They go on to show in [17] that for a
wider class of Gaussian processes, including long-range dependent processes,

P (Q > q) ≤ e−I(q)qK+o(1) as q → ∞
for some constant K, where I(q) is given by (10.4) with the many-flows
version of Mt. This result is intriguing, because it involves the many-flows
rate function yet describes a large-buffer limit.

10.2.4 Numerical Comparison

Now we are ready to numerically compare these different estimates. Figure
10.1 is a watermark plot of queue length. What this means is that we run a
simulation of the queue with an infinite buffer, and count the proportion of
time P (b) that it spends with buffer size greater than b; we then plot logP (b)
against b. This sort of plot emphasizes the behaviour of the queue for large
buffer sizes: the limiting slope of − log P (b) is the LDLB rate function I(b),
and the vertical intercept tells us about the prefactor a in (10.6).

The parameters for Figure 10.1 are as follows. The queue has service
rate 1. The traffic is generated by a Markov on/off source with peak rate 2,
which jumps from off to on with probability 2/15 and from off to on with
probability 3/15, so that the mean arrival rate is 4/5. Theory says that
the LDLB estimate has the right limiting slope; the plot shows that it has
nearly the right prefactor.

The simulated watermark curves are typical. When b is small, the prob-
ability of {Q > b} is reasonably large, so − log P (Q > b) is easy to estimate
and the watermark curves are close to the truth. When b is large the proba-
bility is small, and many simulation runs do not even reach {Q > b}, so the
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Figure 10.1: Watermark plot of logP (Q > b) against b, for a
Markov on/off source. The dotted lines are from simulation, the
black line is the true value (which in this case we can calculate
exactly), and the dashed line is the LDLB estimate. This estimate
clearly has the right slope.

watermark curves tail off. A small number of simulation runs reach {Q > b},
and on reaching {Q > b} they are reasonably likely to go on a spree and
reach higher values, leading to a small number of watermark curves with
inflated estimates for the probability.

The next example illustrates the difference between the LDLB and LDMF
estimates. In Figure 10.2 the traffic is generated by a Gaussian autoregres-
sive source:

At = µ+ a(At−1 − µ) +
√

1 − a2σεt

where the εt are independent standard normal random variables. With
this choice of parameters, At ∼ Normal(µ, σ2). In (a) a = 0.8 and in (b)
a = −0.6. The other parameters are the same: the mean rate is µ = 0.8
and the marginal variance is σ2 = 0.2; and the service rate of the queue is
1. In (b), over the range of buffer sizes plotted, the most likely number of
timesteps until overflow is small (and odd); so the LDLB estimate, which is
only concerned with long-timescale correlations, is not accurate. For larger
buffer sizes it takes a long time for the buffer to fill, and LDLB is relatively
more accurate. Note the different scales of buffer size in the two plots—
queues fed by negatively-correlated traffic are much less likely to overflow
than queues fed by positively correlated traffic.
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Figure 10.2: Watermark plots of logP (Q > b) against b, for a
Gaussian autoregressive source which is (a) positively correlated
and (b) negatively correlated. In (a), the estimates LDLB and
LDMF are in good agreement; in (b) they are not. Both have the
correct asymptotic slope.
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Figure 10.3: Watermark plots for real data. The data is an hour-
long trace of TCP traffic. Figure (a) shows ten watermark plots for
ten intervals of 42 seconds each, taken throughout the hour. Figure
(b) shows the watermark plots for the six of these intervals that
occur between 22 and 52 minutes. The scales are very different!
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Figure 10.3 shows what a watermark plot looks like for real data. The
data comes from Lawrence Berkeley Laboratory, and consists of an hour’s
worth of TCP packets between the laboratory and the rest of the world
[82]. This traffic trace was fed into a simulated queue with service rate
400 kbytes/second (bearing in mind a 40 byte TCP/IP overhead for each
packet, running the queue in continuous time, sampling the queue size at
period intervals, measuring the total number of bytes in the queue rather
than the number of packets, and supposing that bytes are drained from the
queue at a constant rate). Rather than creating a single watermark plot of
the queue length distribution over the entire hour, we took 10 intervals of 42
seconds each, and plotted 10 different watermark plots. The mean arrival
rates over those 10 slices were

83.5 31.8 37.9 44.2b 47.6b 34.8b 45.5b 41.5b 36.1b 27.4

kbytes/second. The slices marked with a superscript are plotted on their
own in Figure 10.3(b). For these parts of the hour, the queue size seems
to have a reasonably well-behaved exponential tail, whereas for the other
parts it seems worse than exponential. Is this a consequence of long range
dependence, or does it indicate that traffic over the course of the hour was
non-stationary? This is a philosophical issue, discussed in Section 8.6.

The next example looks at the many flows limit. In Figure 10.4 we let
the queue be fed by N copies of an autoregressive Gaussian source (each
with mean rate µ = 0.9, autocorrelation parameter a = 0.6, and marginal
variance σ2 = 0.5), and let the queue have service rate N and buffer thresh-
old N . (For Gaussian sources it is reasonable to imagine N to be fractional.)
Both the crude and refined LDMF estimates leave something to be desired;
and the LDLB estimate doesn’t even have the right slope.

Our last example looks at moderate deviations estimates. Figure 10.5
plots overflow probability as a function of traffic intensity ρ. The queue has
buffer size 1 and service rate 1. In (a) the traffic has independent increments:
At ∼ Bin(2, ρ/2). In (b) the traffic has a correlation structure: it is a Markov
on/off source with peak rate 2, which jumps from off to on with probability
0.1ρ/(2 − ρ) and from on to off with probability 0.1.

In (a), the traffic has independent increments, so the LDLB and LDMF
estimates agree, and are in fact exact. (The figure plots the LDMF refined
estimate, which is actually worse!) In (b) the traffic has significant correla-
tions, and the LDLB estimate is so poor we haven’t plotted it—it estimates
log P (Qρ > b) > −0.1 for the full range of ρ plotted.

In (a) we plot another estimate, PLT. This estimate comes from the
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Figure 10.4: Plot of logP (QN > Nb) against N , where QN is fed
by N independent flows and has service rate NC. The dots are
simulated values. Theory says that logP (QN > Nb) is linear in
N , and that both LDMF estimates have the correct limiting slope,
though it is hard to see this from the plot!
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Figure 10.5: logP (Qρ > b) as a function of traffic intensity ρ.
The queue parameters are fixed, and the parameters of the traf-
fic process are changed to give intensity ρ. In (a) the traffic has
independent increments; in (b) there are significant correlations.
The moderate deviations estimate is reasonable at high traffic in-
tensities, when overflow is governed by first and second moments;
it is poor at low traffic intensities, when higher order moments are
more important.
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principle of the largest term, which says

P (Q > b) = P (sup
t
A(−t, 0] > b+Ct) ≈ sup

t
P (A(−t, 0] > b+ Ct).

The plot shows that this estimate is good for small ρ, and worse for large ρ.
The LDMF estimate is an approximation to PLT—it further approximates

logP
(
A(−t, 0] > b+ Ct

) ≈ − sup
θ
θ(b+ Ct) − logEeθA(−t,0].

So the inaccuracy of LDMF arises in two ways, and we can see from the plot
that the relative contribution of the two errors varies as ρ increases.

The moderate deviations estimate MDMF makes an additional approx-
imation:

logEeA(−t,0] ≈ θEA(−t, 0] + 1
2θ

2 Var(A(−t, 0]),
i.e. it uses a normal approximation to A(−t, 0]. This is reasonable at high
traffic intensities, when the optimizing θ is small and the LDMF estimate is
governed by first and second moments; it is poor at low traffic intensities,
when the optimizing θ is large, meaning that higher order moments are more
important.

10.3 A Global Approximation

The last section addressed the question: how accurate an estimate can we
find? A more interesting question is: how much information can we throw
away, and still have a reasonable estimate? By choosing a scaling regime we
are, in effect, choosing what sort of information to throw away.

Consider as usual a single-server queue with service rate C and an infinite
buffer, to which an amount of work A(−t, 0] arrives in the time interval
(−t, 0]. Consider the following approximation (forgetting its relationship to
the many-flows rate function):

logP (Q > q)
= logP

(
sup
t≥0

A(−t, 0] − Ct > q
)

≈ sup
t≥0

logP
(
A(−t, 0] > q +Ct

)
(principle of the largest term)

≈ sup
t≥0

inf
θ≥0

logEeθA(−t,0]−θ(q+Ct) (Chernoff estimate)

= − inf
t≥0

sup
θ≥0

θ(q + Ct) − Λt(θ) (10.7)
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where

Λt(θ) = logEeθA(−t,0].

The two approximation steps are likely to be valid in nearly any large devi-
ations limit.

This turns out to be a global approximation, in the sense that Ward and
Glynn [96] use the term, namely that it can be used to motivate all the
different limit results we have come across.

Large buffers. Take the large-buffer scaling. Let N be large, let t = Ns,
and rewrite (10.7):

logP (Q > Nq) ≈ − inf
s≥0

sup
θ≥0

θ(Nq + CNs) −Ns
1
Ns

ΛNs(θ).

If the scaled log moment generating functions converge, say t−1Λt(θ) →
Λ∞(θ), then approximating further

1
N

log P (Q/N > q) ≈ − inf
s≥0

sup
θ≥0

θ(q + Cs) − sΛ∞(θ), (10.8)

precisely the form of the large deviations principle in Chapter 6.

Long range dependence. Or take the large-buffer scaling for flows with
long-range dependence, where

1
t2(1−H) Λt(t−(2H−1)θ) → Λ∞(H)(θ).

Note that then

1
N2(1−H) ΛNs(N1−2Hθ) → Mt(θ) = t2(1−H)Λ∞(H)(θt

2H−1). (10.9)

Again, by reparameterizing carefully, this time in terms of t = Ns and
θ = N1−2Hφ,

logP (Q > Nq) ≈
− inf

s≥0
sup
φ≥0

φN1−2H(Nq + CNs)−N2(1−H) 1
N2(1−H) ΛNs(N1−2Hφ),
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thus
1

N2(1−H) logP (Q/N > q) ≈ − inf
s≥0

sup
φ≥0

φ(q + Cs) − Ms(φ)

which corresponds to the large deviations principle in Chapter 8. The pa-
rameter scalings (Nq, Ns and N1−2Hφ) are as they are in order to fit in
with (10.9).

Many flows. Or take the many-flows scaling. Let QN be a queue with
service rate NC, fed by AN , the aggregate of N independent copies of A.
Let Λt(θ) be the log moment generating function for a single copy of A, so
that the log moment generating function for the aggregate input is

logEeθAN (−t,0] = NΛt(θ).

Then

logP (QN > Nq) ≈ − inf
t≥0

sup
θ≥0

θ(Nq +NCt) −NΛt(θ)

and

1
N

log P (QN/N > q) ≈ − inf
t≥0

sup
θ≥0

θ(q + Ct) − Λt(θ),

the form of the large deviations principle in Chapter 7.

Moderate deviations. The global approximation also suggests the form
of the moderate deviations principle. This is a more involved calculation.
If Λt(θ) is finite in a neighbourhood of the origin, it has a power series
expansion:

Λt(θ) = θµt+ 1
2θ

2σ2
t +O(θ3)

where µt = EA(−t, 0] and σ2
t = VarA(−t, 0]. Thus

N2γ
(
Λt(φN−γ) − φµtN−γ

)
= 1

2σ
2
t φ

2 +O(N−γ) (10.10)

as N → ∞, for γ > 0. Let

Mt(θ) = 1
2σ

2
t θ

2 :

this is the log moment generating function of a normal random variable with
mean 0 and variance σ2

t . Let QN be the steady state queue size in a queue fed
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by N independent copies of A, and let Λt(θ) be the log moment generating
function for a single copy. How should we scale the buffer size and service
rate to bring out the approximation (10.10)? It isn’t immediately clear, so
just let the buffer size be qN and the service rate CN . Then

logP (QN > qN )

≈ − inf
t≥0

sup
θ≥0

θ(qN +CN t) −NΛt(θ)

≈ − inf
t≥0

sup
φ≥0

φN−γ(qN + CN t)

−N
(
φN−γµt+ 1

2φ
2N−2γσ2

t +O(N−3γ)
)

≈ − inf
t≥0

sup
φ≥0

φ
(
N−γqN + (N−γCN −N1−γµ)t

)

−N1−2γMt(φ) +O(N1−3γ)

so

1
N1−2γ

logP (QN > qN )

≈ − inf
t≥0

sup
φ≥0

φ
(
N−(1−γ)qN + (N−(1−γ)CN −Nγµ)t

)

− Mt(φ) +O(N−γ).

If we scale the system according to q = N−(1−γ)qN and C = N−(1−γ)CN −
Nγµ, then

1
N1−2γ

logP (QN > N1−γq) ≈ − inf
t≥0

sup
φ≥0

φ(q + Ct) − Mt(φ).

We can equivalently describe QN as the steady state queue size in a queue
fed by N independent copies of A and served at rate Nµ + N1−γC. We
prefer to write it in terms of β = 1 − 2γ:

1
Nβ

log P (QN > N (1+β)/2q) ≈ − inf
t≥0

sup
φ≥0

φ(q + Ct)− Mt(φ) (10.11)

where QN is the steady-state queue size in a queue fed by N independent
copies of A and served at rateNµ+N (1+β)/2C, and thus with traffic intensity
roughly 1 −N−(1−β)/2C/µ. We need β < 1 for the approximation of Λt to
work. And we need β > 0 for this to be a rare event, a suitable limit to
study using large deviations techniques.
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Conclusion. So the different scaling regimes are, in effect, taking the
global approximation (10.7) and approximating the log moment generat-
ing function in different ways. They approximate Λt(θ) ≈ Mt(θ), where
Mt(θ) is as in the table on page 220.

Take, for example, the LDLB approximation Λt(θ) ≈ tM(θ). The large-
buffer estimate of the probability of overflow (10.8) will be good if this
approximation is valid at the timescale of interest. In this case the timescale
of interest is t = ŝN , where ŝ is the optimizing parameter in (10.8) and N
is the scale factor for the queue size Nq.

Or we can say the same thing the other way round. If the LDLB ap-
proximation to Λt is good for t in a certain range, we can find the range of
system parameters (buffer size and service rate) for which the large-buffer
probability estimate is good: namely those system parameters which lead
to t = ŝN in that good range.

Exercise 10.4
For the moderate deviations large-buffer scaling (MDLB), we approximate

Λt(θ) ≈ θµt+ 1
2θ

2σ2t.

Find the parameter scaling under which this is a good approximation. �

Exercise 10.5
Let Q be the queue size in a queue fed by a single source. The LDLB limit
concerns a large deviations principle for Q/N as N → ∞. Use the global
approximation to guess an LDP for Q/Nγ , where γ ∈ (0, 1). �

10.4 Scaling Laws

So far in this chapter, and indeed in most of this book, we have been missing
the wood for the trees—the wood being the scaling law, the trees being the
rate function. In all our results, there are four quantities that are scaled: the
number of flows, the buffer threshold, the service rate, and the probability
that the queue size exceeds the threshold. Each limiting regime describes a
different relationship between these quantities.

For example, in a large-buffer large-deviations statement like

log P (queue length exceeds q) ≈ −q sup{θ : Λ(θ) < θC} for large q

we hold the number of flows and the service rate fixed, and consider the
relationship between threshold q and probability of exceeding that threshold.
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The most important part of the statement is that the queue length has an
exponential tail; the value of the decay rate is subsidiary to this.

We remarked in Section 6.10 on the wide applicability of this idea. If
the queue size at any point in the network can be written as a continuous
function of the collection of all input and service processes, then that queue
size should have an exponential tail. Even though the rate function is un-
workably complicated, we can still say something useful about the scaling
law.

This sort of result applies to the other scalings we have considered. The
LRD result says that for a queue fed by a single source with Hurst parameter
H, the probability of overflow decays like exp(−q2(1−H)I); if all inputs to
a network have the same Hurst parameter, then all queues in the network
should have the same decay rate. (In Chapter 8 we saw that if the inputs
have different Hurst parameters then it is the largest Hurst parameter that
dominates.)

The many-flows result says that if buffer size and service rate are scaled
up in proportion to the number of independent arrival processes N , then the
probability of overflow decays like exp(−NI). This is also true in a network,
as long as the buffer sizes and service rates and levels of multiplexing are
scaled up in proportion everywhere.

Putting these together, a very rough heuristic is that the probability of
overflow decays like exp(−Nq2(1−H)I) (where q is now the buffer per flow).

Another way to use scaling laws is in the setting of moderate deviations.
A typical traffic process has fluctuations of many sizes, and larger fluctua-
tions have lower frequency. In moderate deviations theory, the relationship
between size and frequency is codified by a parameter β ∈ (0, 1). In Chapter
9 we considered systems whose various parameters were scaled by different
β, and this led to strikingly simple results.

Estimation. A further application of scaling laws was mentioned in Sec-
tion 1.1. If the queue length distribution has an exponential tail, we can
plot the distribution for small values of q and exponentially extrapolate to
find the probability of large values of q. Or we could run a ‘shadow’ system
with a fraction α of the input flows, service rate and buffer size, measure
the shadow probability of overflow, and exponentially extrapolate to find
the true (hopefully small) probability of overflow.

Here is a more involved example, worked out in detail.

Example 10.6
In the moderate-deviations many-flows scaling, the basic large deviations
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result is that
1
Nβ

logP (QN > N (1+β)/2q) → −I
where QN is the queue size in a queue fed by N independent identically
distributed sources, with total mean arrival rate Nµ and service rate Nµ+
N (1+β)/2C. The value of I will depend on the parameters q and C (and of
course on the distribution of the arrival process). Let p be the probability
in question.

Now consider a rescaled system, in which N is replaced by kN : the
number of sources is multiplied by k, and the excess service rate by k(1+β)/2;
and we are interested in p′, the probability that the queue length exceeds a
level which is k(1+β)/2 times larger than before. Then

p′ ≈ p−kβ
.

This could be used as a basis for estimating the probability of overflow in a
larger system. Note that this calculation does not involve the form of the
rate function I. �

10.5 Types of Traffic

We will now describe some popular traffic models that have been studied
using large deviations theory, paying particular attention to the form of the
global approximation

I(q) = inf
t≥0

sup
θ≥0

θ(q + Ct) − logEeθA(−t,0].

There is a vast literature on traffic modelling, and this is only a tiny smat-
tering.

10.5.1 Markov Jump Processes

The simplest Markov jump process is a Poisson process. If A is a Poisson
process of rate λ, and AN is defined by

AN (−t, 0] =
1
N
A(−Nt, 0]

(or equivalently AN is the average of N independent copies of A), then AN

satisfies a sample path LDP with linear geodesics, with good rate function

I(a) =

{∫ 0
t=−∞ Λ∗(ȧt) dt if a is absolutely continuous
∞ otherwise
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where the instantaneous rate function Λ∗ is

Λ∗(x) = sup
θ∈R

θx− λ(eθ − 1).

The global approximation is

I(q) = q sup{θ > 0 : λ(eθ − 1) < θC}
= q

(−ρ− plog(−ρe−ρ)
)

where ρ = λ/C.

The first expression comes from a simplification of I which holds whenever A
has independent increments, and which was proved in Lemma 3.4. The sec-
ond expression involves the product logarithm function plog(x), the solution
to ξ exp(ξ) = x. (In fact, if x < −1/e there are no solutions; if −1/e < x < 0
there are two solutions, of which we want the smaller; if x > 0 there is one
solution.)

In higher dimensions, one may want to work with

A(−t, 0] =
n∑

i=1

Ni(−t, 0]ri

where the ri are vectors in Z
d and the Ni are Poisson processes with rates

λi. The instantaneous rate function is now

Λ∗(x) = sup
θ∈Rd

θ · x−
n∑

i=1

λi(eθ·ri − 1).

A natural generalization is to allow the rates λi to depend on the state of
the system. For example, qt might represent the current queue size, and the
service process might be a Poisson process with a rate which depends on qt.
The instantaneous rate function is then

Λ∗(x; q) = sup
θ∈Rd

θ · x−
n∑

i=1

λi(q)(eθ·ri − 1)

and the sample path rate function (for absolutely continuous a) is

I(a) =
∫ 0

t=−∞
Λ∗(ȧt; qt(a)

)
dt.

There are very many interesting systems which can be modelled in this way,
such as circuit-switched networks. The book of Shwartz and Weiss [91] gives
many applications, and this is also the setting of work by Dupuis and Ellis
[35, 36].
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10.5.2 Markov Additive Sources

Let Xt be an irreducible aperiodic Markov chain on a finite state space (with
t ∈ Z). Let Yt = f(Xt) for some function f , and let A(−t, 0] = Y1 + · · ·+Yt.
This is a Markov additive source. The continuous-time analogue is called a
Markov modulated fluid source.

Botvich and Duffield [9] show that, in general and not just for Markov
additive sources, if the limit

α = − lim
t→∞Λt(β) − βCt

exists and is finite, and certain technical conditions are also satisfied, then
the rate function for a queue with service rate C has the form, for large q,

I(q) = α+ βq + o(1).

They show that Markov additive sources satisfy these conditions.
Of course the limit α can only exist if

Λ(θ) = lim
t→∞

1
t
Λt(θ).

Then it can be shown that β must be equal to

inf
t>0

tΛ∗(c+ 1/t).

Compare this result to the large-buffer limit in Theorem 3.1.

10.5.3 On-off Sources

An on/off source alternates between the active state and the silent state.
While active, it produces work at constant rate p. While silent, it produces
no work. It remains active for a duration distributed like T and silent for a
duration distributed like U , and all durations are independent. The mean
arrival rate is

ρ = p
ET

ET + EU

In order that I(q) not be trivial, suppose the service rate C lies in (ρ, p).
Mandjes and Kim [69] have found the form of I(q) for small q. Assume

that ET and EU are finite, and that T + U is non-lattice. They show that

I(q) = α+ β
√
q +O(q) (10.12)
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where α and β depend only on the peak rate, the service rate, and ET and
EU , but not on the distribution of T or U .

They also show that this result extends to source models which have
more than two states, where the durations in each state are independent
and generally distributed, and the transitions are Markov.

Mandjes and Borst [68] have found the form of I(q) for large q. Assume
that EU and ET 1+ε > 0 are finite, for some ε > 0, and that T + U is
non-lattice. Let T ∗ be the residual active-time,

P (T ∗ > t) =
1
ET

∫ ∞

u=x
P (T > u)du

and let vt = − log P (T ∗ > t). If T ∗ is subexponential and subexponen-
tially varying of index h ∈ [0, 1) (see the reference for a definition of these
two terms; also note that this class includes Pareto, lognormal and Weibull
distributions) they show

I(q) = αvq

(
1 + o(1)

)
(10.13)

where α depends only on the peak rate, the service rate, ET and EU , and
h, but not otherwise on the distribution of T or U .

The scaling function vt is important in proving this result. They use the
transformation

I(q) = inf
t
vtΛ̃∗

t (q/t+ c)

where Λ̃∗
t is the convex conjugate of Λ̃t,

Λ̃t(θ) =
1
vt

logEeθA(−t,0]vt/t

(Compare to Theorem 3.5 and Definition 7.2.) Their proof hinges on a limit
result expressed by the approximation

EeθA(−t,0]vt/t ≈ P (A∗ > t)eθrvt +
(
1 − P (A∗ > t)

)
eθρvt

≈ exp
[
vt

(
θρ ∨ (θp− 1)

)]

which has the interpretation that, over an interval of length t, either the
source is always on, or it is sending at the mean rate.

10.5.4 M/G/∞ Models

In the M/G/∞ model, calls arrive as a Poisson process, remain active for
some duration T , and then depart. While active they produce work at
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constant rate p. This is closely related to the on-off model. Indeed, Mandjes
and Kim [69] show that (10.12) is still true, though the constants are of
course different; and Duffield [31] shows that (10.13) is true.

See also the example in Section 8.5 of a Gaussian approximation to the
M/G/∞ system, due to Mandjes [67].

10.5.5 Cell-Burst Sources

A periodic source emits one unit of work every time unit, so that the amount
of work generated in an interval [0, t] is

�t� + 1t−�t>P

where P is the phase, a uniform random variable in [0, 1]. A cell-burst source
is like an on-off source, except that while in the active state it behaves like a
periodic source (the phase being constant from one active period to another).
Let T and U be as before, except that now we will take them to be integer.
Assume that they have finite expectation, and let ρ = ET/(ET + EU).
This has been used as a model for digital voice transmission: while a person
is speaking (the burst), his voice is digitized and sent in periodic packets
(cells).

Mandjes and Kim [65] have investigated the form of I(q) for this source
model. They show that, for service rate c > ρ, there exists a critical queue
size qcrit such that for q < qcrit, I(q) is exactly equal to the rate function for
queue size in a queue fed by a pure periodic source and served at rate c/ρ.
Furthermore, the most likely time to overflow is less than 1

2 . They show
that for small q,

I(q) = αq +O(q2)

where α depends only on c and ρ.
They also find asymptotics for large q, in the case where T and U are

geometric. Then
I(q) = α+ βq + o(1)

for certain constants α and β.

10.5.6 Gaussian Sources

If the arrival process is Gaussian with mean EA(−t, 0] = µt and variance
VarA(−t, 0] = Vt then the global approximation I(q) simplifies:

I(q) = inf
t

(q + (C − µ)t)2

2Vt
.
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This makes it very simple to estimate the probability of overflow. (There
are, however, pitfalls in using large deviations to study other quantities—
like the departure process—in queues fed by Gaussian processes, if these are
intended as heavy traffic approximations to non-Gaussian processes. See the
note at the end of Section 9.3.)

Fractional Brownian motion. The archetypal Gaussian source is frac-
tional Brownian motion. Let A(−t, 0] = µt + σZt, where Zt is a standard
fractional Brownian motion with Hurst parameter H ∈ (0, 1). Then

A(−t, 0] ∼ Normal(µt, σ2t2H)

and

I(q) =
(C − µ)2Hq2(1−H)

2σ2
1

H2H(1 −H)2(1−H)

and the most likely time to overflow is

t =
q

c− µ

H

1 −H
.

Compare to Theorem 8.1. As Addie et al. [1] point out, the approximation
this leads to is exact for Brownian motion (H = 1

2) and reasonably good
otherwise.

For fractional Brownian motion traffic, the many-flows limit and the
large-buffer limit are related. This is because of the self-similarity relation-
ship

Z ∼ 1
a2H

Z
�a

where Z�a denotes the speeded-up process Z�a
t = Zat. Thus if AN is the

average of N independent copies of A,

AN |(−t,0] ∼
1

N1/(2−2H)A|(−N1/(2−2H)t,0],

Purely from the definition of the queue size function

Q(A) = sup
t≥0

A(−t, 0] − Ct

we obtain
P (Q(AN ) > q) = P (Q(A) > N1/(2−2H)q).

In this way, the many-flows LDP is equivalent to the large-buffer LDP in
the case of self-similar traffic.
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Brownian bridge. The Brownian bridge (defined in Example 6.1) is use-
ful in constructing a Gaussian approximation to a periodic source. A peri-
odic source generates an amount of work

A(0, t] = �t� + 1t−�t>P

in the time interval (0, t], where P is the phase, a random variable uniformly
distributed on [0, 1]. This has EA(0, t] = t and variance VarA(0, t] = (t −
�t�)(�t−t). This is exactly the same mean and variance as for the Gaussian
process Z(t) = t+X(t) where X is a Brownian bridge. For the source Z,

I(q) = 2q(q + c− 1),

the infimum in the definition of I(q) being attained at

t =
q

2q + c− 1
<

1
2
.

Addie et al. [1] point out that the approximation this leads to is in fact
exact.

A scaling relationship. Let AN be the average of N copies of A. This
has variance function VarAN (−t, 0] = Vt/N . Equivalently, the process Aε

with variance VarAε(−t, 0] = εVt can be represented as the average of 1/ε
copies of A. This means that the many-flows limit results can equally be
seen as small-variance limit results.

Other Gaussian models. Further examples are given by Botvich and
Duffield [9], Addie et al. [1] and Mannersalo and Norros [71]. Mandjes [67]
gives more examples, and shows that (under certain conditions) the rate
function I(q) is convex at q if and only if there are negative correlations at
the critical timescale for q. See also Example 3.1, a Gaussian autoregressive
source.
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effective domain, 27
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epigraph, 30
essential smoothness, 42
exponential equivalence, 68
exponential tightness, 69
exponential tilting, see tilted dis-

tribution
extended notation, 83–84
extended real numbers, 7, 27

Fenchel-Legendre transform, see con-
vex conjugate

finer topology, 58, 70
finite buffer, 6
finite-buffer queue size, 88

continuity, 92
definition, 88, 89, 92
LDP, 125, 170, 173

fluid equations, 97, 103
fractional Brownian motion, 54, 184,

237
LDP for queue size, 166, 186
origin of, 195
path to overflow, 174, 189
sample path LDP, 163, 187

Gärtner-Ellis theorem, see Cramér’s
theorem, generalized

Gaussian process
as an approximation, 196, 203,

205
examples, 236, see also Brow-

nian motion, fractional Brow-
nian motion, etc.

path to overflow, 174
refined estimates, 187, 221
sample path LDP, 162, 188
with independent increments,

123
generalized Cramér’s theorem, see

Cramér’s theorem, gener-
alized

global approximation, 226
good rate function, 27, 59

Hausdorff topological space, 58
heavy tails, 10, 195
heavy traffic, 124, 199, 205
horizon, 103, 104
Hurst parameter, see also Hursti-

ness, 184
Hurstiness, 190

LDP for queue size, 193

independent increments process
sample path LDP, 164

induced topology, 58
inference, 6, 146–150, 216, 231
instantaneous rate function, 107
interior, 58
inverse contraction principle, 70

Kullback-Leibler divergence, see rel-
ative entropy

large buffer limit, 9, 47, 105–150,
227

effective bandwidth, 212
large deviations principle, 27, 59

useful tools, 32, 63, 67–76
LDLB, 219
LDLBH, 219
LDMF, 219
LDP, see large deviations principle
Legendre transform, see convex con-

jugate
level set, 59
Lindley recursion, 2
linear geodesics, see sample path

LDP with linear geodesics,
117
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log moment generating function,
see cumulant generating func-
tion

long range dependence, 52, 55, 183–
198

causes of, 195
in traffic traces, 224
LDP for queue size, 185, 227
scaling properties, 190

lost work, 173, 220
lower semicontinuous, 27, 59
Loynes construction, 4
LRD, see long range dependence

many flows limit, 15, 52, 151–181,
228

effective bandwidth, 215
Markov jump process, 232
Markov modulated process, 5, 21,

43, 45, 71, 163, 175, 183,
222, 224, 234

MDLB, 219
MDMF, 219
MDP, see moderate deviations prin-

ciple
mean arrival rate, 81
mean service rate, 81
metric, 57
M/G/∞ queue, 196, 235
M/M/1 queue, 5
moderate deviations limit, 199–209,

228
moderate deviations principle, 200,

202
most likely way, 61, 65

neighbourhood, 58
networks, 144, 177, 195, 231, see

also departures

on-off process, 5, 21, 51, 71, 163,
175, 222, 224, 234, see also
Markov modulated process

open cover, 58
open neighbourhood, 58
open set, 57
overflow, 6

packet loss, see lost work
path to overflow, 80, 123, 173
Polish space, 58, 82, 155
polygonalization, 78, 106
power law scaling, 52, see also long

range dependence
principle of the largest term, 19,

25
priority queue, 94, 176, 209
processor sharing, 95
projective limit, see Dawson-Gärtner

theorem

quasi-reversibility, 137
queue size

MDP, 203
queue size (infinite buffer)

continuity, 84
definition, 4, 79
LDP, 10, 16, 47, 52, 120, 166

rate function, 27, 59
refined estimates, 219

for Gaussian processes, 221
regular over finite horizons, 155
regular over infinite horizon, 156
regular topological space, 58
relative entropy, 24, 38, 149
reproducing Hilbert space, 188
risk adjustment coefficient, 146

sample path LDP, 60
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examples, see under Gaussian,
Markov, etc.

for many flows limit, 156, 162
for partial sums process, 109
with linear geodesics, 107

sample path MDP, 202
Sanov’s theorem, 38, 71
scaled uniform norm, 81

extended, 154
scaling function, 52, 156
scaling properties, 144, 190, 230
Schilder’s theorem, 63

generalized, see Gaussian pro-
cess, sample path LDP

self similarity, 184, 237
separable, 58
sequentially compact, 59
Skorohod problem, 98
speed of LDP, 189
stationary increments, 54, 156
steady state, 4, 104
steep, 42
Stirling’s formula, 24
strengthen an LDP, 70
supremum norm, 82

tilted distribution, 32, 35
tilting, see tilted distribution
time to overflow, 14, 21, 123, 167,

187
time-change formula, 51
timescale, critical, see time to over-

flow
topological space, 57
topology, 57
traffic models, 232
transient analysis, 104

uniform convergence, 82
uniqueness of rate function, 68

Varadhan’s lemma, 70, 71

Wald’s approximation, 149
watermark plot, 221
weak queue topology, 180




