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Preface

Number theory and algebra play an increasingly significant role in computing
and communications, as evidenced by the striking applications of these subjects
to such fields as cryptography and coding theory. My goal in writing this book
was to provide an introduction to number theory and algebra, with an emphasis
on algorithms and applications, that would be accessible to a broad audience.
In particular, I wanted to write a book that would be accessible to typical
graduate students in computer science who have a reasonable amount of general
mathematical experience, while not presupposing anything in particular beyond
a standard undergraduate calculus sequence.

The structure of the book is somewhat unique. All of the mathematics
required beyond a typical calculus sequence is developed “from scratch.” More-
over, the book generally alternates between “theory” and “applications”: one or
two chapters on a particular set of purely mathematical concepts are followed
by one or two chapters on algorithms and applications — the mathematics pro-
vides the theoretical underpinnings for the applications, while the applications
both motivate and illustrate the mathematics. Of course, this dichotomy be-
tween theory and applications is not perfectly maintained: the chapters that
focus mainly on applications include the development of some of the mathemat-
ics that is specialized for a particular application, and very occasionally, some
of the chapters that focus on mathematics include a discussion of related algo-
rithmic ideas as well. In developing the mathematics required to discuss certain
applications, I tried to strike a reasonable balance between, on the one hand,
presenting the absolute minimum required to understand and rigorously analyze
the applications, and on the other hand, presenting a full-blown development of
the relevant mathematics. In striking this balance, I wanted to be reasonably
economical and concise, while at the same time, I wanted to develop enough of
the theory so as to give a fairly well rounded account, giving the reader more of
a feeling for the mathematical “big picture.”

The mathematical material covered includes the basics of number theory (in-
cluding unique factorization, congruences, the distribution of primes, quadratic
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reciprocity), abstract algebra (including groups, rings, fields, and vector spaces),
as well as discrete probability theory (which is needed for the treatment of proba-
bilistic algorithms). The treatment of these topics is more or less standard, with
perhaps the exception of groups: the text only deals with abelian groups, as this
is all that is really needed for the purposes of this text, and the theory of abelian
groups is much simpler and more transparent than that of general groups. Even
though it is mathematically quite self contained, the text does presuppose that
the reader is proficient at reading and doing mathematical proofs. Admittedly,
this level of proficiency will typically only be attained by readers who have al-
ready had some exposure to some of the mathematical material covered here,
but even such readers should find it convenient and useful to have all of the
relevant mathematics conveniently available for study or review in one place.
Since the mathematical concepts and notation are fairly standard, the reader
who is already proficient in a certain area may safely skip, or quickly skim over,
the relevant chapters or sections.

The computer science prerequisites for this text are quite minimal: it is as-
sumed that the reader is proficient in programming, and has had some exposure
to the analysis of algorithms, essentially at the level of an undergraduate course
on algorithms and data structures.

The choice of topics covered in this book was motivated primarily by their
applicability to computing and communications, especially to the specific areas
of cryptography and coding theory. The book may be useful, for example, for
reference and self study by readers who want to learn about cryptography. The
book could also be used, for example, as a textbook on a course on computational
number theory and algebra, geared towards computer science students, either
upper division undergraduates, or first year graduate students.

While this is an introductory textbook, and not an encyclopedic reference
for specialists, some topics simply could not be covered. One such topic whose
exclusion will undoubtedly be lamented by some is the theory of lattices, along
with algorithms for and applications of lattice basis reduction. Another such
topic is that of fast algorithms for integer and polynomial arithmetic — although
some of the basic ideas of this topic are developed in the exercises, the main body
of the text deals only with classical, quadratic-time algorithms for integer and
polynomial arithmetic. As an introductory text, some topics just had to go;
moreover, there are more advanced texts that cover these topics perfectly well,
and these texts should be readily accessible to students who have mastered the
material in this book.

A few notes about the text:

• There are a few sections that are marked with a “♣,” indicating that the
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material covered in that section is a bit technical, and is not needed in the
sequel.

• There are a many examples in the text — these form an integral part of
the text, and should not be skipped.

• There are a number of exercises in the text that serve to reinforce — as
well as to develop important applications of — the material in the text.
In solving exercises, the reader is free to use any previously stated results
in the text, including those in previous exercises — the only exception to
this rule is that results in §3.5, §5.5, and §18.2 are not to be considered
available outside of the section in which they appear.

• There is a very brief “Preliminaries” section below, that fixes a bit of
notation and recalls a few standard facts, and which should be skimmed
over by the reader.

• There is an appendix that contains a few useful facts; where such a fact
is used in the text, there is a reference such as “see §A.n,” which refers to
item number n in Appendix A.

Status of the book: This book is (still) in BETA testing. It is essentially
complete (except that it currently lacks an index), and should be fairly well
polished. I have used an earlier version of it (BETA version 1) to teach a
course on computational number theory at NYU in the fall semester of 2003,
and that experience proved invaluable in ferreting out errors in the text, and
improving the exposition at several points. I’ve also added some new material
(a number of additional exercises, and an expanded coverage of linearly gener-
ated sequences, including Wiedemann’s sparse linear system solver). I would
appreciate any feedback, especially feedback that identifies any errors or serious
omissions. Please send your comments to shoup@cs.nyu.edu.

Acknowledgments: I’d like to thank all of the students in my computational
number theory class that I taught at NYU in the fall semester of 2003. They
provided invaluable help in improving the text. I would especially like to thank
Siddhartha Annapureddy, Carl Bosley, Nelly Fazio, and Antonio Nicolasi for
their help.

New York, December 2003 Victor Shoup



Preliminaries

We establish here a few notational conventions and mention a few simple facts
used throughout the text.

1. Logarithm notation. log x denotes the natural logarithm of x. The loga-
rithm of x to the base b is denoted logb x.

2. Power notation. We use the notation S×n to denote the cartesian product
of n copies of a set S, and for x ∈ S, x×n denotes the element of S×n

consisting of n copies of x. We reserve the notation Sn to denote the set
of all nth powers of S.

3. Functions. For any function f from a set A into a set B, if A′ ⊆ A, then
f(A′) := {f(a) ∈ B : a ∈ A′}. For b ∈ B, f−1(b) := {a ∈ A : f(a) = b},
and more generally, for B′ ⊆ B, f−1(B′) := {a ∈ A : f(a) ∈ B′}.
f is called one to one or injective if f(a) = f(b) implies a = b. f is
called onto or surjective if f(A) = B. f is called bijective if it is both
injective and surjective; in this case, f is called a bijection.

If f : A → B and g : B → C are functions, we denote by g ◦ f their
composition, i.e., the function that sends a ∈ A to g(f(a)) ∈ C.

4. Arithmetic with∞. We shall sometimes use the symbols “∞” and “−∞” in
simple arithmetic expressions involving real numbers. The interpretation
given to such expressions is the usual, natural one, e.g., for all real numbers
x, we have −∞ < x < ∞, x +∞ = ∞, x −∞ = −∞, ∞ +∞ = ∞, and
(−∞) + (−∞) = −∞. It is possible to assign meaning to other such
expressions, but we will not need to; however, some such expressions have
no sensible interpretation (e.g., ∞−∞).

5. Equivalence relations and equivalence classes. A binary relation ≡ on a
set S is called an equivalence relation if for all x, y, z ∈ S, x ≡ x, x ≡ y
implies y ≡ x, and x ≡ y and y ≡ z implies x ≡ z.
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Such a relation partitions the set S into disjoint equivalence classes: for
x ∈ S, define Sx := {y ∈ S : x ≡ y}; then every such Sx is non-empty,
and all y ∈ S lie in one and only one such Sx.
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Chapter 1

Basic Properties of the
Integers

This chapter reviews some of the basic properties of the integers, including
notions of divisibility and primality, unique factorization into primes, greatest
common divisors, and least common multiples.

1.1 Divisibility and Primality

Consider the integers Z = {. . . ,−1, 0, 1, 2, . . .}. For a, b ∈ Z, we say that b
divides a, and write b | a, if there exists c ∈ Z such that a = bc. If b | a, then b
is called a divisor of a. If b does not divide a, then we write b - a.

We first state some simple facts:

Theorem 1.1 For all a, b, c ∈ Z, we have

1. a | a, 1 | a, and a | 0;

2. 0 | a if and only if a = 0;

3. a | b and b | c implies a | c;

4. a | b implies a | bc;

5. a | b and a | c implies a | (b+ c);

6. a | b and b | a if and only if a = ±b.

1



2 Chapter 1. Basic Properties of the Integers

Proof. These properties can be easily derived from the definition using elemen-
tary facts about the integers. For example, a | a because we can write a = a · 1;
1 | a because we can write a = 1 · a; a | 0 because we can write 0 = a · 0. We
leave it as an easy exercise for the reader to verify the remaining properties. 2

We say that an integer p is prime if p > 1 and the only divisors of p are
±1 and ±p. Conversely, an integer n is called composite if n > 1 and it is not
prime. So an integer n > 1 is composite if and only if n = ab for some integers
a, b with 1 < a, b < n.

A fundamental fact is that any integer can be written as a signed product of
primes in an essentially unique way. More precisely:

Theorem 1.2 Every non-zero integer n can be expressed as

n = ±pe11 · · · perr ,

where the pi’s are distinct primes and the ei’s are positive integers. Moreover,
this expression is unique, up to a reordering of the primes.

To prove this theorem, we may clearly assume that n is positive, since oth-
erwise, we may multiply n by −1 and reduce to the case where n is positive.

The proof of the existence part of Theorem 1.2 is easy. If n is 1 or prime,
we are done; otherwise, there exist a, b ∈ Z with 1 < a, b < n and n = ab, and
we apply an inductive argument with a and b.

The proof of the uniqueness part of Theorem 1.2 is not so simple, and most
of the rest of this chapter is devoted to developing the ideas behind such a proof,
along with a number of other very important tools. The essential ingredient in
the proof is the following:

Theorem 1.3 (Division with Remainder Property) For a, b ∈ Z with b >
0, there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a−zb with z ∈ Z.
This set is clearly non-empty, and so contains a minimum. Let r = a−qb be the
smallest integer in this set. By definition, we have r ≥ 0. Also, we must have
r < b, since otherwise, we would have r− b ∈ S, contradicting the minimality of
r.

That proves the existence of r and q. For uniqueness, suppose that a = bq+r
and a = bq′ + r′, where 0 ≤ r, r′ < b. Then subtracting these two equations and
rearranging terms, we obtain

r′ − r = b(q − q′). (1.1)



1.2. Ideals and Greatest Common Divisors 3

Now observe that by assumption, the left-hand side of (1.1) is less than b in
absolute value. However, if q 6= q′, then the right-hand side of (1.1) would be at
least b in absolute value; therefore, we must have q = q′. But then by (1.1), we
must have r = r′. 2

In the above theorem, it is easy to see that q = ba/bc, where for any real
number x, bxc denotes the greatest integer less than or equal to x. We shall
write r = a rem b. For a ∈ Z and a positive integer b, it is clear that b | a if and
only if a rem b = 0.

One can generalize the notation a rem b to all integers a and b, with b 6= 0.
We simply define a rem b := a− bq, where q = ba/bc.

In addition to the “floor” function b·c, the “ceiling” function d·e is also useful:
for any real number x, dxe is defined as the smallest integer greater than or equal
to x.

Exercise 1.4 For integer n and real x, show that n ≤ x if and only if n ≤ bxc.
2

Exercise 1.5 For real x and positive integer n, show that bbxc/nc = bx/nc. In
particular, for positive integers a, b, c, bba/bc/cc = ba/(bc)c. 2

Exercise 1.6 For real x, show that 2bxc ≤ b2xc ≤ 2bxc+ 1. 2

Exercise 1.7 For positive integers m and n, show that the number of multiples
of m among 1, 2, . . . , n is bn/mc. More generally, for integer m ≥ 1 and real
x ≥ 0, show that the number of multiples of m in the interval [1, x] is bx/mc.
2

Exercise 1.8 For integers a, b with b < 0, show that b < a rem b ≤ 0. 2

1.2 Ideals and Greatest Common Divisors

To carry on with the proof of Theorem 1.2, we introduce the notion of an ideal
in Z, which is a non-empty set of integers that is closed under addition and
subtraction, and closed under multiplication by integers. That is, a non-empty
set I ⊆ Z is an ideal if and only if for all a, b ∈ I and all z ∈ Z, we have

a+ b ∈ I, a− b ∈ I, and az ∈ I.
Note that in fact closure under addition and subtraction already implies closure
under multiplication by integers, and so the definition is a bit redundant. How-
ever, we present the definition in this form, as it generalizes more nicely to other
settings.
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For a1, . . . , ak ∈ Z, define

a1Z + · · ·+ akZ := {a1z1 + · · ·+ akzk : z1, . . . , zk ∈ Z}.

We leave it to the reader to verify that a1Z+ · · ·+akZ is an ideal, and this ideal
clearly contains a1, . . . , ak. An ideal of the form aZ is called a principal ideal.

Example 1.9 Let a = 3 and consider the ideal aZ. This consists of all integer
multiples of 3; i.e., aZ = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}. 2

Example 1.10 Let a1 = 3 and a2 = 5, and consider the ideal a1Z + a2Z. This
ideal contains 2a1 − a2 = 1. Since it contains 1, it contains all integers; i.e.,
a1Z + a2Z = Z. 2

Theorem 1.11 For any ideal I ⊆ Z, there exists a unique non-negative integer
d such that I = dZ.

Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0
does the job, so let us assume that I 6= {0}. Since I contains non-zero integers,
it must contain positive integers, since if z ∈ I then so is −z. Let d be the
smallest positive integer in I. We want to show that I = dZ.

We first show that I ⊆ dZ. To this end, let c be any element in I. It
suffices to show that d | c. Using the Division with Remainder Property, write
c = qd+ r, where 0 ≤ r < d. Then by the closure properties of ideals, one sees
that r = c − qd is also an element of I, and by the minimality of the choice of
d, we must have r = 0. Thus, d | c.

We next show that dZ ⊆ I. This follows immediately from the fact that
d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note that
if dZ = d′Z, we have d | d′ and d′ | d, from which it follows that d′ = ±d. 2

For a, b ∈ Z, we call d ∈ Z a common divisor of a and b if d | a and d | b;
moreover, we call such a d the greatest common divisor of a and b if d is
non-negative and all other common divisors of a and b divide d. It is immediate
from the definition of a greatest common divisor that it is unique if it exists at
all.

Theorem 1.12 For any a, b ∈ Z, there exists a greatest common divisor d of a
and b, and moreover, aZ+ bZ = dZ; in particular, as+ bt = d for some s, t ∈ Z.
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Proof. We apply the previous theorem to the ideal I = aZ + bZ. Let d ∈ Z
with I = dZ, as in that theorem. Note that a, b, d ∈ I.

Since a ∈ I = dZ, we see that d | a; similarly, d | b. So we see that d is a
common divisor of a and b.

Since d ∈ I = aZ + bZ, there exist s, t ∈ Z such that as + bt = d. Now
suppose a = a′d′ and b = b′d′ for a′, b′, d′ ∈ Z. Then the equation as + bt = d
implies that d′(a′s + b′t) = d, which says that d′ | d. Thus, d is the greatest
common divisor of a and b. 2

For a, b ∈ Z, we denote by gcd(a, b) the greatest common divisor of a and b.
Note that as we have defined it, gcd(a, 0) = a.

We say that a and b are relatively prime if gcd(a, b) = 1. Notice that a
and b are relatively prime if and only if aZ + bZ = Z, i.e., if and only if there
exist s, t ∈ Z such that as+ bt = 1.

Theorem 1.13 For a, b, c ∈ Z such that c | ab and gcd(a, c) = 1, we have c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1, by
Theorem 1.12 we have as+ ct = 1 for some s, t ∈ Z. Multiplying this equation
by b, we obtain

abs+ cbt = b. (1.2)

Since c divides ab by hypothesis, and since c clearly divides cbt, it follows that
c divides the left-hand side of (1.2), and hence that c divides b. 2

As a consequence of this theorem, we have:

Theorem 1.14 Let p be prime, and let a, b ∈ Z. Then p | ab implies that p | a
or p | b.

Proof. Assume that p | ab. The only divisors of p are ±1 and ±p. Thus,
gcd(p, a) is either 1 or p. If p | a, we are done; otherwise, if p - a, we must have
gcd(p, a) = 1, and by the previous theorem, we conclude that p | b. 2

Theorem 1.14 is the key to proving the uniqueness part of Theorem 1.2.
Indeed, suppose we have

p1 · · · pr = p′1 · · · p′s,
where the pi and p

′
i are primes (duplicates are allowed among the pi and among

the p′i). If r = 0, we must have s = 0 and we are done. Otherwise, as p1 divides
the right-hand side, by inductively applying Theorem 1.14, one sees that p1 is
equal to some p′i. We can cancel these terms and proceed inductively (on r).
That proves the uniqueness part of Theorem 1.2.



6 Chapter 1. Basic Properties of the Integers

Exercise 1.15 For two ideals aZ and bZ, show that aZ ⊃ bZ if and only if a | b,
and that aZ = bZ if and only if a = ±b 2

Exercise 1.16 Let a, b, c be positive integers, with gcd(a, b) = 1 and c ≥ ab.
Show that there exist non-negative integers s, t such that c = as+ bt. 2

Exercise 1.17 Let p be a prime and k an integer 0 < k < p. Show that the
binomial coefficient (

p

k

)

=
p!

k!(p− k)! ,

which is an integer, of course, is divisible by p. 2

1.3 More on Unique Factorization and Greatest
Common Divisors

For a prime p, we may define the function νp, mapping non-zero integers to
non-negative integers, as follows: for integer n 6= 0, if n = pem, where p - m,
then νp(n) := e. We may then write the factorization of n into primes as

n = ±
∏

p

pνp(n),

where the product is over all primes p, with all but finitely many of the terms
in the product equal to 1.

For a prime p, it is also convenient to extend the domain of definition of νp
to include 0, defining νp(0) =∞, and interpreting p∞ as zero.

With these definitions and conventions, it is easy to see that for all integers
a, b, we have

gcd(a, b) =
∏

p

pmin(νp(a),νp(b)).

For a, b ∈ Z a common multiple of a and b is an integer m such that a | m
and b | m; moreover, such an m is the least common multiple of a and b if
m is non-negative and m divides all common multiples of a and b. In light of
Theorem 1.2, it is clear that the least common multiple exists and is unique,
and we denote the least common multiple of a and b as lcm(a, b). Note that as
we have defined it, lcm(a, 0) = 0. Also, for all integers a and b, we have

lcm(a, b) =
∏

p

pmax(νp(a),νp(b)).



1.3. More on Unique Factorization and Greatest Common Divisors 7

Moreover, for all a, b ∈ Z, we have

gcd(a, b) · lcm(a, b) = ab.

It is easy to generalize the notions of greatest common divisor and least
common multiple from two integers to many integers. For a1, . . . , ak ∈ Z, with
k ≥ 1, we call d ∈ Z a common divisor of a1, . . . , ak if d | ai for 1 ≤ i ≤ k;
moreover, we call such a d the greatest common divisor of a1, . . . , ak if d is non-
negative and all other common divisors of a1, . . . , ak divide d. It is clear that
the greatest common divisor of a1, . . . , ak exists and is unique and is given by
the formula

gcd(a1, . . . , ak) =
∏

p

pmini(νp(ai)).

Analogously, for a1, . . . , ak ∈ Z, with k ≥ 1, we call m ∈ Z a common
multiple of a1, . . . , ak if ai | m for 1 ≤ i ≤ k; moreover, such an m is called
the least common multiple of a1, . . . , ak if m divides all common multiples of
a1, . . . , ak. It is clear that the least common multiple of a1, . . . , ak exists and is
unique and is given by the formula

lcm(a1, . . . , ak) =
∏

p

pmaxi(νp(ai)).

Exercise 1.18 For a1, . . . , ak ∈ Z, with k > 2, show that

gcd(a1, . . . , ak) := gcd(gcd(a1, . . . , ak−1), ak)

and
lcm(a1, . . . , ak) := lcm(lcm(a1, . . . , ak−1), ak).

2

Exercise 1.19 Show that for any a1, . . . , ak ∈ Z, if d = gcd(a1, . . . , ak), then
dZ = a1Z + · · ·+ akZ; in particular, there exist integers s1, . . . , sk such that

d = a1s1 + · · ·+ aksk.

2

Because of the unique factorization property, given any rational number
a/b, with a, b ∈ Z and b 6= 0, if we set d := gcd(a, b), and define the integers
a′ := a/d and b′ := b/d, then we have a/b = a′/b′ and gcd(a′, b′) = 1. Moreover,
if ã/b̃ = a′/b′, then we have ãb′ = a′b̃, and so b′ | a′b̃, and since gcd(a′, b′) = 1,
we see that b′ | b̃; if b̃ = d̃b′, it follows that ã = d̃a′. Thus, we can represent
every rational number as a fraction in “lowest terms,” and this representation
is unique up to sign.



8 Chapter 1. Basic Properties of the Integers

Exercise 1.20 For a prime p, we may extend the domain of definition of νp from
the integers to the rationals: for non-zero integers a, b, let us define νp(a/b) :=
νp(a)− νp(b).

(a) Show that this definition of νp(a/b) is unambiguous, in the sense that it
does not depend on the particular choice of a and b.

(b) Show that for all rational numbers x, y, we have νp(xy) = νp(x) + νp(y).

(c) Show that for all rational numbers x, y, we have νp(x + y) ≥
min{νp(x), νp(y)}, and that if νp(x) < νp(y), then νp(x+ y) = νp(x).

2

Exercise 1.21 Let n be a positive integer, and let Cn denote the number of
pairs of integers (a, b) such that 1 ≤ a, b ≤ n and gcd(a, b) = 1, and let Fn
be the number of distinct rational numbers a/b, where 0 ≤ a < b ≤ n. Show
(a) that Fn = (Cn + 1)/2, and (b) that Cn ≥ n2/4. Hint: for (b), show that
Cn ≥ n2(1−∑d≥2 1/d

2), and then show that
∑

d≥2 1/d
2 ≤ 3/4. 2

Exercise 1.22 Show that if an integer cannot be expressed as a square of an
integer, then it cannot be expressed as a square of any rational number. 2



Chapter 2

Congruences

This chapter discusses the notion of congruences.

2.1 Definitions and Basic Properties

For positive integer n and for a, b ∈ Z, we say that a is congruent to bmodulo
n if n | (a − b), and we write a ≡ b (mod n). If n - (a − b), then we write
a 6≡ b (mod n). The number n appearing in such congruences is called the
modulus of the congruence.

A simple observation is that a ≡ b (mod n) if and only if there exists an
integer c such that a = b + cn. From this, and Theorem 1.3, the following is
immediate:

Theorem 2.1 Let n be a positive integer. For every integer a, there exists a
unique integer b such that a ≡ b (mod n) and 0 ≤ b < n, namely, b := a rem n.

Another simple observation is that if a ≡ b (mod n) and n′ | n, then a ≡
b (mod n′).

A key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:

Theorem 2.2 For all positive integers n, and all a, a′, b, b′ ∈ Z, if a ≡
a′ (mod n) and b ≡ b′ (mod n), then

a+ b ≡ a′ + b′ (mod n)

and
a · b ≡ a′ · b′ (mod n).

9
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Proof. Suppose that a ≡ a′ (mod n) and b ≡ b′ (mod n). This means that
there exist integers c and d such that a′ = a+ cn and b′ = b+ dn. Therefore,

a′ + b′ = a+ b+ (c+ d)n,

which proves the first equality of the theorem, and

a′b′ = (a+ cn)(b+ dn) = ab+ (ad+ bc+ cdn)n,

which proves the second equality. 2

2.2 Solving Linear Congruences

For a positive integer n, and a ∈ Z, we say that a is a unit modulo n if there
exists a′ ∈ Z such that aa′ ≡ 1 (mod n), in which case we say that a′ is a
multiplicative inverse of a modulo n.

Theorem 2.3 An integer a is a unit modulo n if and only if a and n are rela-
tively prime.

Proof. This follows immediately from the fact that a and n are relatively prime
if and only if there exist s, t ∈ Z such that as+ nt = 1. 2

We now prove a simple “cancellation law” for congruences:

Theorem 2.4 If a is relatively prime to n, then az ≡ az ′ (mod n) if and only
if z ≡ z′ (mod n). More generally, if d = gcd(a, n), then az ≡ az ′ (mod n) if
and only if z ≡ z′ (mod n/d).

Proof. For the first statement, assume that gcd(a, n) = 1, and let a′ be a
multiplicative inverse of a modulo n. Then, az ≡ az′ (mod n) implies a′az ≡
a′az′ (mod n), which implies z ≡ z′ (mod n), since a′a ≡ 1 (mod n). Conversely,
if z ≡ z′ (mod n), then trivially az ≡ az′ (mod n). That proves the first
statement.

For the second statement, let d = gcd(a, n). Simply from the definition of
congruences, one sees that in general, az ≡ az ′ (mod n) holds if and only if
(a/d)z ≡ (a/d)z′ (mod n/d). Moreover, since a/d and n/d are relatively prime,
the first statement of the theorem implies that (a/d)z ≡ (a/d)z ′ (mod n) holds
if and only if z ≡ z′ (mod n/d). That proves the second statement. 2

One consequence of the above theorem is that multiplicative inverses, if they
exist, are uniquely determined modulo n.

We next look at solutions z to congruences of the form az ≡ b (mod n), for
given integers n, a, b.
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Theorem 2.5 Let n be a positive integer and let a, b ∈ Z. If a is relatively
prime to n, then the congruence az ≡ b (mod n) has a solution z; moreover, any
integer z′ is a solution if and only if z ≡ z′ (mod n).

Proof. The integer z = ba′, where a′ is a multiplicative inverse of a modulo n,
is clearly a solution. For any integer z′, we have az′ ≡ b (mod n) if and only if
az′ ≡ az (mod n), which by Theorem 2.4 holds if and only if z ≡ z′ (mod n). 2

In particular, this theorem implies that multiplicative inverses are uniquely
determined modulo n.

More generally, we have:

Theorem 2.6 Let n be a positive integer and let a, b ∈ Z. Let d = gcd(a, n). If
d | b, then the congruence az ≡ b (mod n) has a solution z, and any integer z ′

is also a solution if and only if z ≡ z′ (mod n/d). If d - b, then the congruence
az ≡ b (mod n) has no solution z.

Proof. Let n, a, b, d be as defined above.
For the first statement, suppose that d | b. In this case, by Theorem 2.4,

we have az ≡ b (mod n) if and only if (a/d)z ≡ (b/d) (mod n/d), and so the
statement follows immediately from Theorem 2.5.

For the second statement, assume that az ≡ b (mod n) for some integer z.
Then since d | n, we have az ≡ b (mod d). However, az ≡ 0 (mod d), since d | a,
and hence b ≡ 0 (mod d), i.e., d | b. 2

Example 2.7 The following table illustrates what the above theorem says for
n = 15 and a = 1, 2, 3, 4, 5, 6.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2z rem 15 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13

3z rem 15 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

4z rem 15 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11

5z rem 15 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

6z rem 15 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9

In the second row, we are looking at the values 2z rem 15, and we see that
this row is just a permutation of the first row. So for every b, there exists an z
such that 2z ≡ b (mod 15). We could have inferred this fact from the theorem,
since gcd(2, 15) = 1.
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In the third row, the only numbers hit are the multiples of 3, which follows
from the fact that gcd(3, 15) = 3. Also note that the pattern in this row repeats
every five columns; that is also implied by the theorem; i.e., 3z ≡ 3z ′ (mod 15)
if and only if z ≡ z′ (mod 5).

In the fourth row, we again see a permutation of the first row, which follows
from the fact that gcd(4, 15) = 1.

In the fifth row, the only numbers hit are the multiples of 5, which follows
from the fact that gcd(5, 15) = 5. Also note that the pattern in this row repeats
every three columns; that is also implied by the theorem; i.e., 5z ≡ 5z ′ (mod 15)
if and only if z ≡ z′ (mod 3).

In the sixth row, since gcd(6, 15) = 3, we see a permutation of the third row.
The pattern repeats after five columns, although the pattern is a permutation
of the pattern in the third row. 2

Next, we consider systems of congruences with respect to moduli that are
relatively prime in pairs. The result we state here is known as the Chinese
Remainder Theorem, and is extremely useful in a number of contexts.

Theorem 2.8 (Chinese Remainder Theorem) Let k > 0, and let
a1, . . . , ak ∈ Z, and let n1, . . . , nk be positive integers such that gcd(ni, nj) = 1
for all 1 ≤ i < j ≤ k. Then there exists an integer z such that

z ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other integer z′ is also a solution of these congruences if and only
if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

Proof. Let n :=
∏k

i=1 ni, as in the statement of the theorem. Let us also define

n′i := n/ni (i = 1, . . . , k).

It is clear that gcd(ni, n
′
i) = 1 for 1 ≤ i ≤ k, and so let mi be a multiplicative

inverse of n′i modulo ni for 1 ≤ i ≤ k, and define

wi := n′imi (i = 1, . . . , k).

By construction, one sees that for 1 ≤ i ≤ k, we have

wi ≡ 1 (mod ni)

and
wi ≡ 0 (mod nj) for 1 ≤ j ≤ k with j 6= i.
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That is to say, for 1 ≤ i, j ≤ k, wi ≡ δij (mod nj), where δij := 1 for i = j and
δij := 0 for i 6= j.

Now define

z :=

k∑

i=1

wiai.

One then sees that for 1 ≤ j ≤ k,

z ≡
k∑

i=1

wiai ≡
k∑

i=1

δijai ≡ aj (mod nj).

Therefore, this z solves the given system of congruences.
Moreover, if z′ ≡ z (mod n), then since ni | n for 1 ≤ i ≤ k, we see

that z′ ≡ z ≡ ai (mod ni) for 1 ≤ i ≤ k, and so z′ also solves the system of
congruences.

Finally, if z′ solves the system of congruences, then z′ ≡ z (mod ni) for
1 ≤ i ≤ k. That is, ni | (z′ − z) for 1 ≤ i ≤ k. Since gcd(ni, nj) = 1 for i 6= j,
this implies that n | (z′ − z), i.e., z′ ≡ z (mod n). 2

Example 2.9 The following table illustrates what the above theorem says for
n1 = 3 and n2 = 5.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

z rem 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

z rem 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

We see that as z ranges from 0 to 15, the pairs (z rem 3, z rem 5) range over
all pairs (a1, a2) with 0 ≤ a1 < 3 and 0 ≤ a2 < 5, with every pair being hit
exactly once. 2

Exercise 2.10 Find an integer z such that z ≡ −1 (mod 100), z ≡ 1 (mod 33),
and z ≡ 2 (mod 7). 2

2.3 Residue Classes

It is easy to see that for a fixed value of n, the relation · ≡ · (mod n) is an
equivalence relation on the set Z. As such, this relation partitions the set Z into
equivalence classes. We denote the equivalence class containing the integer a by
[a mod n], or when n is clear from context, we may simply write [a]. Historically,
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these equivalence classes are called residue classes modulo n, and we shall
adopt this terminology here as well.

It is easy to see from the definitions that

[a mod n] = a+ nZ := {a+ nz : z ∈ Z}.

Note that a given residue class modulo n has many different “names”; e.g.,
the residue class [1] is the same as the residue class [1+n]. For any integer a in
a residue class, we call a a representative of that class.

The following is simply a restatement of Theorem 2.1:

Theorem 2.11 For a positive integer n, there are precisely n distinct residue
classes modulo n, namely, [a mod n] for 0 ≤ a < n.

Fix a positive integer n. Let us define Zn as the set of residue classes modulo
n. We can “equip” Zn with binary operators defining addition and multiplication
in a natural way as follows: for a, b ∈ Z, we define

[a] + [b] := [a+ b],

and we define
[a] · [b] := [a · b].

Of course, one has to check this definition is unambiguous, i.e., that the
addition and multiplication operators are well defined, in the sense that the
sum or product of two residue classes does not depend on which particular
representatives of the classes are chosen in the above definitions. More precisely,
one must check that if [a] = [a′] and [b] = [b′], then [a op b] = [a′ op b′], for
op ∈ {+, ·}. However, this property follows immediately from Theorem 2.2.

These definitions of addition and multiplication operators on Zn yield a very
natural algebraic structure whose salient properties are as follows:

Theorem 2.12 Let n be a positive integer, and consider the set Zn of residue
classes modulo n with addition and multiplication of residue classes as defined
above.

For all a, b, c ∈ Z, we have

1. [a] + [b] = [b] + [a] (addition is commutative),

2. ([a] + [b]) + [c] = [a] + ([b] + [c]) (addition is associative),

3. [a] + [0] = [a] (existence of additive identity),
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4. [a] + [−a] = [0] (existence of additive inverses),

5. [a] · [b] = [b] · [a] (multiplication is commutative),

6. ([a] · [b]) · [c] = [a] · ([b] · [c]) (multiplication is associative),

7. [a] · ([b] + [c]) = [a] · [b] + [a] · [c] (multiplication distributes over addition)

8. [a] · [1] = [a] (existence of multiplicative identity).

Proof. All of these properties follow trivially from the corresponding properties
for the integers, together with the definition of addition and multiplication of
residue classes. 2

An algebraic structure satisfying the conditions in the above theorem is
known more generally as a “commutative ring with unity,” a notion that we
will discuss in §9.

Note that while all elements of Zn have an additive inverses, not all elements
of Zn have a multiplicative inverse; indeed, by Theorem 2.3, [a mod n] has a
multiplicative inverse if and only if gcd(a, n) = 1. One denotes by Z∗n the set of
all residue classes [a] of Zn that have a multiplicative inverse. It is easy to see
that Z∗n is closed under multiplication; indeed, if α ∈ Z∗n has inverse α′ ∈ Z∗n,
and β ∈ Z∗n has inverse β′ ∈ Z∗n, then αβ has inverse α′β′.

Note that for α ∈ Z∗n and β, β′ ∈ Zn, if αβ = αβ′, then we may cancel α
from both sides of this equation, obtaining β = β ′ — this is just a restatement
of the first part of Theorem 2.4 in the language of residue classes. In particular,
if an element in Zn has a multiplicative inverse, then that inverse is unique.

In general, one has a choice between working with congruences modulo n, or
with the algebraic structure Zn; ultimately, the choice is one of taste and conve-
nience, and it depends on whether one prefers to treat integers and congruence
relations, or elements of Zn, as “first class objects.”

Exercise 2.13 Show that for any positive integer n, and any integer k, the
residue classes [k + a mod n], for a = 0, . . . , n − 1, are distinct and therefore
include all residue classes modulo n. 2

2.4 Euler’s φ-Function

Euler’s φ-function is defined for positive integers n as the number of elements of
Z∗n. Equivalently, φ(n) is equal to the number of integers between 0 and n − 1
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that are relatively prime to n. For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, and
φ(4) = 2.

A fact that is sometimes useful is the following:

Theorem 2.14 For any positive integer n, we have

∑

d|n
φ(d) = n,

where the sum is over all positive divisors d of n.

Proof. Consider the list of n rational numbers 0/n, 1/n, . . . , (n − 1)/n. For
any divisor d of n and for any integer a with 0 ≤ a < d and gcd(a, d) = 1, the
fraction a/d appears in the list exactly once, and moreover, every number in the
sequence, when expressed as a fraction in lowest terms, is of this form. 2

Using the Chinese Remainder Theorem, it is easy to get a nice formula for
φ(n) in terms for the prime factorization of n.

Theorem 2.15 For positive integers n,m with gcd(n,m) = 1, we have

φ(nm) = φ(n)φ(m).

Proof. Consider the map

ρ : Znm → Zn × Zm

[a mod nm] 7→ ([a mod n], [a mod m]).

First, note that the definition of ρ is unambiguous, since a ≡ a′ (mod nm)
implies a ≡ a′ (mod n) and a ≡ a′ (mod m). Second, according to the Chinese
Remainder Theorem, the map ρ is one-to-one and onto. Moreover, it is easy to
see that gcd(a, nm) = 1 if and only if gcd(a, n) = 1 and gcd(a,m) = 1 (verify).
Therefore, the map ρ carries Z∗nm injectively onto Z∗n × Z∗m. 2

Theorem 2.16 For a prime p and a positive integer e, φ(pe) = pe−1(p− 1).

Proof. The multiples of p among 0, 1, . . . , pe − 1 are

0 · p, 1 · p, . . . , (pe−1 − 1) · p,

of which there are precisely pe−1. Thus, φ(pe) = pe − pe−1 = pe−1(p− 1). 2

As an immediate consequence of the above two theorems, we have:
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Theorem 2.17 If n = pe11 · · · perr is the factorization of n into primes, then

φ(n) = pe1−11 (p1 − 1) · · · per−1r (pr − 1).

The φ function is an example of a multiplicative function: a function f
from the positive integers into the reals such that for all positive integers n,m
with gcd(n,m) = 1, we have f(nm) = f(n)f(m).

Exercise 2.18 Show that if f is a multiplicative function, and if n = pe11 · · · perr
is the prime factorization of n, then f(n) = f(pe11 ) · · · f(perr ). 2

Exercise 2.19 Let f be a polynomial with integer coefficients, and for positive
integer n define ωf (n) to be the number of integers z ∈ {0, . . . , n− 1} such that
f(z) ≡ 0 (mod n). Show that ωf is multiplicative. 2

Exercise 2.20 Show that φ(nm) = gcd(n,m) · φ(lcm(n,m)). 2

2.5 Fermat’s Little Theorem

Let n be a positive integer, and let a ∈ Z with gcd(a, n) = 1. Consider successive
powers of α := [a mod n] ∈ Z∗n. That is, consider the sequence of values αi, for
i = 0, 1, 2, . . . . Since Z∗n is closed under multiplication, each power αi is in Z∗n.
Moreover, since Z∗n has φ(n) elements, the elements

α0, α1, α2, . . . , αφ(n)

cannot all be distinct; that is, we must have two integers i, j, with 0 ≤ i < j ≤
φ(n), such that

αj = αi. (2.1)

Canceling αi from both sides of (2.1), we obtain αj−i = [1], or equivalently,
aj−i ≡ 1 (mod n).

Thus, we have shown that there exists a positive integer k, bounded from
above by φ(n), such that ak ≡ 1 (mod n). The least such positive integer k is
called the multiplicative order of a modulo n. Clearly, the multiplicative
order of a modulo n depends only on the residue class of a modulo n; that is, if
a′ ≡ a (mod n), then a′ has the same multiplicative order modulo n as does a.

Example 2.21 Let n = 7. For each value a = 1, . . . , 6, we can compute succes-
sive powers of a modulo n to determine its multiplicative order modulo n.
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i 1 2 3 4 5 6

1i rem 7 1 1 1 1 1 1

2i rem 7 2 4 1 2 4 1

3i rem 7 3 2 6 4 5 1

4i rem 7 4 2 1 4 2 1

5i rem 7 5 4 6 2 3 1

6i rem 7 6 1 6 1 6 1

So we conclude that modulo 7: 1 has order 1, 6 has order 2, 2 and 4 have
order 3, and 3 and 5 have order 6. 2

Let us continue the our discussion, with n, a, and α as above. Consider the
first place where the sequence of powers of α wraps back on itself; i.e., let j be
the smallest positive integer such that (2.1) holds for some 0 ≤ i < j. Then we
claim that i = 0. Indeed, if this were not the case, then we could cancel α from
both sides of (2.1), obtaining αj−1 = αi−1, and so contradicting the minimality
of our choice of j. Thus, we see that j = k, where k is the multiplicative order
of a modulo n.

The consequence of the observation in the previous paragraph is the follow-
ing: the first k powers of α, i.e., [1], α, . . . , αk−1, are distinct, and subsequent
powers of α simply repeat this pattern. More precisely, we have proved:

Theorem 2.22 Let n be a positive integer and a an integer relatively prime to
n. Let k be the multiplicative order of a modulo n. Then for integers 0 ≤ i ≤ j,
we have

aj ≡ ai (mod n) if and only if j ≡ i (mod n).

In particular, aj ≡ 1 (mod n) for j ≥ 0 if and only if k | j.

Now consider the map f : Z∗n → Z∗n that sends β ∈ Z∗n to αβ. Observe that f
is injective, since if αβ = αβ′, we may cancel α from both sides of this equation,
obtaining β = β′. Since f maps Z∗n injectively into itself, and since Z∗n is a finite
set, it must be the case that f is surjective as well. Therefore, we have

∏

β∈Z∗n

β =
∏

β∈Z∗n

(αβ) = αφ(n)
(
∏

β∈Z∗n

β

)

. (2.2)

Canceling the common factor
∏

β∈Z∗n

β
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from the left- and right-hand side of (2.2), we obtain

αφ(n) = [1].

We may restate this result as follows:

Theorem 2.23 For any positive integer n, and any integer a relatively prime
to n, we have aφ(n) ≡ 1 (mod n). In particular, the order of a modulo n divides
φ(n).

As a consequence of this, we obtain:

Theorem 2.24 (Fermat’s Little Theorem) For any prime p, and any inte-
ger a 6≡ 0 (mod p), we have ap−1 ≡ 1 (mod p). Moreover, for any integer a, we
have ap ≡ a (mod p).

Proof. The first statement follows from Theorem 2.23, and the fact that φ(p) =
p−1. The second statement is clearly true if a ≡ 0 (mod p), and if a 6≡ 0 (mod p),
we simply multiply both sides of the congruence ap−1 ≡ 1 (mod p) by a. 2

Exercise 2.25 Find an integer whose multiplicative order modulo 101 is 100.
2

Exercise 2.26 Prove that for any prime p and integer a, if x2 ≡ 1 (mod p)
then x ≡ 1 (mod p) or x ≡ −1 (mod p). 2

Exercise 2.27 Prove that for any prime p, we have

p! ≡ −1 (mod p).

Hint: using the result of the previous exercise, we know that the only elements
of Z∗p that act as their own multiplicative inverse are [±1]; rearrange the terms
in the product

∏

β∈Z∗p
β so that except for [±1], the terms are arranged in pairs,

where each pair consists of some β ∈ Z∗p and its inverse. 2

2.6 Other Arithmetic Functions

Let f and g be real-valued functions defined on the positive integers. The
Dirichlet product of f and g, denoted f ? g, is defined by the formula (f ?
g)(n) :=

∑
f(d1)g(d2), the sum being over all pairs (d1, d2) of positive integers
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with d1d2 = n. The product is clearly commutative (i.e., f ? g = g ? f), and is
associate as well, which one can see by checking that

(f ? (g ? h))(n) = ((f ? g) ? h)(n) =
∑

f(d1)g(d2)h(d3),

the sum being over all triples (d1, d2, d3) of positive integers with d1d2d3 = n.
We now introduce three special functions: I, J , and µ. The function I(n) is

defined to be 1 when n = 1 and 0 when n > 1. The function J(n) is defined to
be 1 for all n.

The Möbius function µ is defined for positive integers n as follows:

µ(n) :=

{
0 if n is divisible by a square other than 1;
(−1)r if n is the product of r ≥ 0 distinct primes.

Thus, if n = pe11 · · · perr is the prime factorization of n, then µ(n) = 0 if ei > 1
for some i, and otherwise, µ(n) = (−1)r. Here are some examples:

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1.

It is easy to see (verify) that for any function f , f ? I = f , and that (f ?
J)(n) =

∑

d|n f(d). Also, the functions I, J , and µ are multiplicative (verify).
A useful property of the Möbius function is the following:

Theorem 2.28 For any multiplicative function f , if n = pe11 · · · perr is the prime
factorization of n, we have

∑

d|n
µ(d)f(d) = (1− f(p1)) · · · (1− f(pr)). (2.3)

Proof. The non-zero terms in the sum on the left-hand side of (2.3) are those
corresponding to divisors d of the form pi1 · · · pi` , where pi1 , . . . , pi` are dis-
tinct; the value contributed to the sum by such a term is (−1)`f(pi1 · · · pi`) =
(−1)`f(pi1) · · · f(pi`). These are the same as the terms in the expansion of the
product on the right-hand side of (2.3). 2

For example, suppose f(d) = 1/d in the above theorem, and let n = pe11 · · · perr
be the prime factorization of n. Then we obtain:

∑

d|n
µ(d)/d = (1− 1/p1) · · · (1− 1/pr). (2.4)

As another example, suppose f = J . Then we obtain

µ ? J =
∑

d|n
µ(d) =

r∏

i=1

(1− 1),
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which is 1 if n = 1, and is zero if n > 1. Thus, we have

µ ? J = I. (2.5)

Theorem 2.29 (Möbius Inversion Formula) Let f and F be real-valued
functions on the positive integers such that F = J ? f , i.e., F (n) =

∑

d|n f(d).
Then f = µ ? F , i.e., f(n) =

∑

d|n µ(d)F (n/d).

Proof. We have F = f ? J . Thus, using the associativity property of the
Dirichlet product, along with (2.5), we have

F ? µ = (f ? J) ? µ = f ? (J ? µ) = f ? I = f,

which proves the statement. 2

As an application of the Möbius inversion formula, we can get a different
proof of Theorem 2.17, based on Theorem 2.14. From the latter theorem, we
have

∑

d|n φ(n) = n. Applying Möbius inversion to this, with F (n) = n and
f(n) = φ(n), and using (2.4), we obtain

φ(n) =
∑

d|n
µ(d)n/d = n

∑

d|n
µ(d)/d

= n(1− 1/p1) · · · (1− 1/pr) = pe1−11 (p1 − 1) · · · per−1r (pr − 1).

Exercise 2.30 Show that if f and g are multiplicative, then so is f ? g. 2

Exercise 2.31 Show that if f is multiplicative, and if n = pe11 · · · perr is the
prime factorization of n, then

∑

d|n
(µ(d))2f(d) = (1 + f(p1)) · · · (1 + f(pr)).

2

Exercise 2.32 Show that n is not divisible by a square other than 1 if and only
if
∑

d|n(µ(d))
2φ(d) = n. 2

Exercise 2.33 Define d(n) to be the number of positive divisors of n. Show
that d is a multiplicative function, and moreover, that if n = pe11 · · · perr is the
prime factorization of n, then

d(n) = (e1 + 1) · · · (er + 1).

2
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Exercise 2.34 For k ≥ 1, define σk(n) :=
∑

d|n d
k. Show that σk is a multi-

plicative function, and moreover, that if n = pe11 · · · perr is the prime factorization
of n, then

σk(n) =

r∏

i=1

p
k(ei+1)
i − 1

pki − 1
.

2



Chapter 3

Computing with Large
Integers

In this chapter, we review standard asymptotic notation, introduce the formal
computational model we shall use throughout the rest of the text, and discuss
basic algorithms for computing with large integers.

3.1 Asymptotic Notation

We review some standard notation for relating the rate of growth of functions.
Suppose that x is a variable taking positive integer or real values, and let g

denote a real-valued function that is positive for all sufficiently large x; also, let
f denote any real-valued function in x. Then

• f = O(g) means that |f(x)| ≤ cg(x) for some positive constant c and all
sufficiently large x,

• f = Ω(g) means that f(x) ≥ cg(x) for some positive constant c and all
sufficiently large x,

• f = Θ(g) means that cg(x) ≤ f(x) ≤ dg(x), for some positive constants c
and d and all sufficiently large x,

• f = o(g) means that f(x)/g(x)→ 0 as x→∞, and

• f ∼ g means that f/g → 1 as x→∞, or equivalently, f(x) = g(x)(1+ε(x))
where ε(x)→ 0 as x→∞.

One also may write O(g) in an expression to denote an anonymous function f
such that f = O(g), e.g.,

∑n
i=1 i = n2/2 + O(n). Similarly for Ω(g), Θ(g), and

23
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o(g). The expression O(1) denotes a function bounded in absolute value by a
constant, while the expression o(1) denotes a function that tends to zero in the
limit.

One may also use the same notation in a setting where x is a real variable
tending to some finite limit x0, in which case, the phrases “for all sufficiently
large x” and “as x→∞” are replaced by “for all x sufficiently close to x0” and
“as x→ x0.”

As an even further use (abuse?) of the notation, one may use the “O,”
“Ω,” and “Θ” notation for functions on an arbitrary domain, in which case the
relevant bound should hold throughout the entire domain.

Exercise 3.1 Let x be a variable tending to ∞. Order the following functions
in x so that for each adjacent pair f, g in the ordering, we have f = O(g), and
indicate if f = o(g), f ∼ g, or g = O(f):

x3, exx2, 1/x, x2(x+ 100) + 1/x, x+
√
x, log x, 2x2, x,

e−x, 2x2 − 10x+ 4, ex+
√
x, ex, x−2, x2(log x)1000.

2

Exercise 3.2 Repeat the previous exercise, but with x a real variable that tends
to 0. 2

Exercise 3.3 Give an example of two non-decreasing, functions f and g, both
mapping positive integers to positive integers, such that f 6= O(g) and g 6= O(f).
2

Exercise 3.4 Show that

(a) the relation “∼” is an equivalence relation;

(b) f1 ∼ f2 and g1 ∼ g2 implies f1 ? g1 ∼ f2 ? g2, where “?” denotes addition,
multiplication, or division;

(c) If g →∞, then f1 ∼ f2 implies f1 ◦ g ∼ f2 ◦ g, where “◦” denotes function
composition.

2

Exercise 3.5 Show that all of the claims in the previous exercise also hold when
the relation “∼” is replaced with the relation “· = Θ(·).” 2
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Exercise 3.6 Show that if f1 ∼ f2, then log(f1) = log(f2) + o(1), and in par-
ticular, if f1 = Ω(1), then log(f1) ∼ log(f2). 2

Exercise 3.7 Suppose that f(i) and g(i) are functions defined on the integers
k, k + 1, . . ., and that g(i) takes positive values for all sufficiently large i. For
n ≥ k, define F (n) :=

∑n
i=k f(i) andG(n) :=

∑n
i=k g(i). Show that if f = O(g)

and G(n) > 0 for all sufficiently large n, then F = O(G). 2

Exercise 3.8 Suppose that f(i) and g(i) are functions defined on the integers
k, k + 1, . . ., both of which take positive values for all sufficiently large i. For
n ≥ k, define F (n) :=

∑n
i=k f(i) and G(n) :=

∑n
i=k g(i). Show that if f ∼ g

and G(n)→∞ as n→∞, then F ∼ G. 2

The following two exercises are continuous variants of the previous two ex-
ercises. To avoid unnecessary distractions, we shall only consider functions that
are quite “well behaved.” In particular, we restrict ourselves to piece-wise con-
tinuous functions (see §A.3).

Exercise 3.9 Suppose that f(t) and g(t) are piece-wise continuous on [a,∞),
and that g(t) takes positive values for all sufficiently large t. For x ≥ a, define
F (x) :=

∫ x
a f(t)dt and G(x) :=

∫ x
a g(t)dt. Show that if f = O(g) and G(x) > 0

for all sufficiently large x, then F = O(G). 2

Exercise 3.10 Suppose that f(t) and g(t) are piece-wise continuous [a,∞),
both of which take positive values for all sufficiently large t. For x ≥ a, define
F (x) :=

∫ x
a f(t)dt and G(x) :=

∫ x
a g(t)dt. Show that if f ∼ g and G(x) → ∞

as x→∞, then F ∼ G. 2

3.2 Machine Models and Complexity Theory

When presenting an algorithm, we shall always use a high-level, and somewhat
informal, notation. However, all of our high-level descriptions can be routinely
translated into the machine-language of an actual computer. So that our theo-
rems on the running times of algorithms have a precise mathematical meaning,
we formally define an “idealized” computer: the Random Access Machine
or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2], . . .

each of which can store an arbitrary integer, together with a program. A pro-
gram consists of a finite sequence of instructions I0, I1, . . ., where each instruction
is of one of the following types:
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arithmetic This type of instruction is of the form α ← β ◦ γ, where ◦ repre-
sents one of the operations addition, subtraction, multiplication, or integer
division. The values β and γ are of the form c, m[a], or m[m[a]], and α
is of the form m[a] or m[m[a]], where c is an integer constant and a is a
nonnegative integer constant. Execution of this type of instruction causes
the value β ◦ γ to be evaluated and then stored in α.

branching This type of instruction is of the form IF β ∼ γ GOTO i, where
i is the index of an instruction, and where ∼ is one of the comparison
operators =, 6=, <,>,≤,≥, and β and γ are as above. Execution of this
type of instruction causes the “flow of control” to pass conditionally to
instruction Ii.

halt The HALT instruction halts the execution of the program.

A RAM executes by executing instruction I0, and continues to execute in-
structions, following branching instructions as appropriate, until a HALT in-
struction is executed.

We do not specify input or output instructions, and instead assume that the
input and output are to be found in memory at some prescribed location, in
some standardized format.

To determine the running time of a program on a given input, we charge 1
unit of time to each instruction executed.

This model of computation closely resembles a typical modern-day computer,
except that we have abstracted away many annoying details. However, there are
two details of real machines that cannot be ignored; namely, any real machine
has a finite number of memory cells, and each cell can store numbers only in
some fixed range.

The first limitation must be dealt with by either purchasing sufficient mem-
ory or designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform
computations with quite large integers—much larger than will fit into any single
memory cell of an actual machine. To deal with this limitation, we shall represent
such large integers as vectors of digits to some base, so that each digit is bounded
so as to fit into a memory cell. This is discussed in more detail in the next
section. Using this strategy, the only other numbers we actually need to store
in memory cells are “small” numbers representing array indices, addresses, and
the like, which hopefully will fit into the memory cells of actual machines.

Thus, whenever we speak of an algorithm, we shall mean an algorithm that
can be implemented on a RAM, such that all numbers stored in memory cells
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are “small” numbers, as discussed above. Admittedly, this is a bit imprecise.
For the reader who demands more precision, we can make a restriction, such as
the following: after the execution of m steps, all numbers stored in memory cells
are bounded by mc + d in absolute value, for constants c and d — in making
this formal requirement, we assume that the value m includes the number of
memory cells of the input.

Even with these caveats and restrictions, the running time as we have defined
it for a RAM is still only a rough predictor of performance on an actual machine.
On a real machine, different instructions may take significantly different amounts
of time to execute; for example, a division instruction may take much longer
than an addition instruction. Also, on a real machine, the behavior of the
cache may significantly affect the time it takes to load or store the operands
of an instruction. However, despite all of these problems, it still turns out that
measuring the running time on a RAM as we propose here is nevertheless a good
“first order” predictor of performance on real machines in many cases.

If we have an algorithm for solving a certain class of problems, we expect that
“larger” instances of the problem will require more time to solve than “smaller”
instances. Theoretical computer scientists sometimes equate the notion of an
“efficient” algorithm with that of a “polynomial-time” algorithm (although not
everyone takes theoretical computer scientists very seriously, especially on this
point). A polynomial-time algorithm is one whose running time on inputs of
length n is bounded by nc + d for some constants c and d (a “real” theoretical
computer scientist will write this as nO(1)). To make this notion mathematically
precise, one needs to define the length of an algorithm’s input.

To define the length of an input, one chooses a “reasonable” scheme to encode
all possible inputs as a string of symbols from some finite alphabet, and then
defines the length of an input as the number of symbols in its encoding.

We will be dealing with algorithms whose inputs consist of arbitrary integers,
or lists of such integers. We describe a possible encoding scheme using the
alphabet consisting of the six symbols ‘0’, ‘1’, ‘-’, ‘,’, ‘(’, and ‘)’. An integer is
encoded in binary, with possibly a negative sign. Thus, the length of an integer
x is approximately equal to log2 |x|. We can encode a list of integers x1, . . . , xn
of numbers as “(x̄1, . . . , x̄n)”, where x̄i is the encoding of xi. We can also encode
lists of lists, etc., in the obvious way. All of the mathematical objects we shall
wish to compute with can be encoded in this way. For example, to encode an
n×n matrix of rational numbers, we may encode each rational number as a pair
of integers (the numerator and denominator), each row of the matrix as a list
of n encodings of rational numbers, and the matrix as a list of n encodings of
rows.
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It is clear that other encoding schemes are possible, giving rise to different
definitions of input length. For example, we could encode inputs in some base
other than 2 (but not unary!) or use a different alphabet. Indeed, it is typical
to assume, for simplicity, that inputs are encoded as bit strings. However, such
an alternative encoding scheme would change the definition of input length by
at most a constant multiplicative factor, and so would not affect the notion of a
polynomial-time algorithm.

Note that algorithms may use data structures for representing mathemati-
cal objects that look quite different from whatever encoding scheme one might
choose.

Also note that in defining the notion of polynomial time on a RAM, it is
essential that we restrict the sizes of numbers that may be stored in the machine’s
memory cells, as we have done above.

3.3 Basic Integer Arithmetic

We will need algorithms to manipulate integers of arbitrary length. Since such
integers will exceed the word-size of actual machines, we represent large integers
as vectors of digits to some base B, along with a bit indicating the sign. Thus,
for x ∈ Z, we write

x = ±(
k−1∑

i=0

xiB
i) = ±(xk−1 · · ·x1x0)B,

where 0 ≤ xi < B for 0 ≤ i < k, and usually, we shall have xk−1 6= 0. The
integer x will be represented in memory as a data structure consisting of a vector
of digits and a sign-bit. For our purposes, we shall consider B to be a constant,
and moreover, a power of 2. The choice of B as a power of 2 allows us to extract
an arbitrary bit in the binary representation of a number in time O(1).

We discuss basic arithmetic algorithms for positive integers; they can be very
easily adapted to deal with signed integers. All of these algorithms can be im-
plemented directly in a programming language that provides a “built-in” signed
integer type that can represent all integers whose absolute value is less than B2,
and that provides the basic arithmetic operations (addition, subtraction, multi-
plication, integer division). So, for example, using the C programming language’s
int type on a typical 32-bit computer, we could take B = 215. The resulting
software would be reasonably efficient, but certainly not the best possible.

Suppose we have two positive integers a and b, represented with k and `
base-B digits, respectively, with k ≥ `. So we have a = (ak−1 · · · a0)B and
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b = (b`−1 · · · b0)B. We present algorithms to compute the base-B representation
of a+ b, a− b, a · b, ba/bc, and a rem b.

3.3.1 Addition

The sum c = a + b is of the form c = (ckck−1 · · · c0)B. Using the standard
“paper-and-pencil” method (adapted from base-10 to base-B, of course), we can
compute the base-B representation of a+ b in time O(k), as follows:

carry ← 0
for i← 0 to k − 1 do

if i < ` then tmp ← ai + bi + carry else tmp ← ai + carry
ci ← tmp rem B
carry ← btmp/Bc

ck ← carry

Note that in every loop iteration, the value of carry is 0 or 1, and the value
tmp lies between 0 and 2B − 1.

3.3.2 Subtraction

To compute the difference c = a− b, assuming that a ≥ b, we may use the same
algorithm as above, except replacing the expression “ai + bi” in the inner loop
by “ai− bi.” In every loop iteration, the value of carry is 0 or −1, and the value
of tmp lies between −B and B−1. Moreover, since we are assuming that a ≥ b,
we have ck = 0; that is, there is no carry out of the last loop iteration.

3.3.3 Multiplication

The product c = a · b is of the form (ck+`−1 · · · c0)B, and may be computed in
time O(k`) as follows:

for i← 0 to k + `− 1 do ci ← 0
for i← 0 to k − 1 do

carry ← 0
for j ← 0 to `− 1 do

tmp ← aibj + ci+j + carry
ci+j ← tmp rem B
carry ← btmp/Bc

ci+` ← carry
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Note that at every step in the above algorithm, the value of carry lies between
0 and B − 1, and the value of tmp lies between 0 and B2 − 1.

3.3.4 Division with remainder

We now consider the problem of computing q and r such that a = bq + r and
0 ≤ r < b. Let us assume that a ≥ b; otherwise, we can just set q = 0 and
r = a. Also, let us assume that b`−1 6= 0. The quotient q will have at most
m = k − `+ 1 base-B digits. Write q = (qm−1 · · · q0)B.

At a high level, the strategy we shall use to compute q and r is the following:

r ← a
for i← m− 1 down to 0 do

qi ← br/Bibc
r ← r −Bi · qib

One easily verifies by induction that in each loop iteration, 0 ≤ r < Bi+1b,
and hence each qi will be between 0 and B − 1, as required.

To turn the above strategy into a detailed algorithm takes a bit of work. In
particular, we want an easy way to compute br/Bibc. Now, we could in theory
just try all possible choices for qi — this would take time O(B`), and viewing B
as a constant, this is O(`). However, this is not really very desirable from either
a practical or theoretic point of view, and we can do much better with just a
little effort.

We shall first consider a special case; namely, the case where ` = 1. In this
case, the computation of br/Bibc is facilitated by the following:

Theorem 3.11 Let x ≥ 0 and y > 0 be integers such that x = x′2n+s for some
n ≥ 0 and 0 ≤ s < 2n and y = y′2n. Then bx/yc = bx′/y′c.

Proof. We have
x

y
=
x′

y′
+

s

y′2n
≥ x′

y′
.

It follows immediately that bx/yc ≥ bx′/y′c.
We also have

x

y
=
x′

y′
+

s

y′2n
<
x′

y′
+

1

y′
≤
(⌊

x′

y′

⌋

+
y′ − 1

y′

)

+
1

y′
.

Thus, we have x/y < bx′/y′c+ 1, and hence, bx/yc ≤ bx′/y′c. 2
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From this theorem, one sees that the following algorithm correctly computes
the quotient and remainder in time O(k):

carry ← 0
for i← k − 1 down to 0 do

tmp ← carry ·B + ai
qi ← btmp/b0c
carry ← tmp rem b0

output the quotient q = (qk−1 · · · q0)B and the remainder carry

Note that in every loop iteration, the value of carry lies between 0 and
b0 ≤ B − 1, and the value of tmp lies between 0 and B · b0 + (B − 1) ≤ B2 − 1.

That takes care of the special case where ` = 1. Now we turn to the general
case ` ≥ 1. In this case, we cannot so easily get the digits qi of the quotient, but
we can still fairly easily estimate these digits, using the following:

Theorem 3.12 Let x ≥ 0 and y > 0 be integers such that x = x′2n+s for some
n ≥ 0 and 0 ≤ s < 2n and y = y′2n + t for 0 ≤ t < 2n. Further suppose that
2y′ ≥ x/y. Then we have

bx/yc ≤ bx′/y′c ≤ bx/yc+ 2.

Proof. For the first inequality, note that x/y ≤ x/(y′2n), and so bx/yc ≤
bx/(y′2n)c, and by the previous theorem, bx/(y′2n)c = bx′/y′c. That proves the
first inequality.

For the second inequality, first note that from the definitions, x/y ≥ x′/(y′+
1), which is equivalent to x′y − xy′ − x ≤ 0. Now, the inequality 2y′ ≥ x/y is
equivalent to 2yy′−x ≥ 0, and combining this with the inequality x′y−xy′−x ≤
0, we obtain 2yy′ − x ≥ x′y− xy′ − x, which is equivalent to x/y ≥ x′/y′ − 2. It
follows that bx/yc ≥ bx′/y′c − 2. That proves the second inequality. 2

Based on this theorem, we first present an algorithm that works assuming
that b is appropriately “normalized,” meaning that b`−1 ≥ 2w−1, where B = 2w.

It is fairly easy to normalize b, by simply multiplying both a and b by an
appropriate value 2w

′

, where 0 ≤ w′ < w; alternatively, we can use a more
efficient, special-purpose “left shift” algorithm. Let a′ = a2w

′

and b′ = b2w
′

,
where b′ is normalized. If we compute q and r′ such that a′ = b′q + r′, then
q = ba′/b′c = ba/bc, and r′ = r2w

′

, where r = a rem b. To recover r, we simply
divide r′ by 2w

′

, which we can do either using the above “single precision”
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division algorithm, or by using a special-purpose “right shift” algorithm. All of
the normalizing and denormalizing takes time O(k + `).

So let us now assume that b is normalized. We obtain the quotient q and
remainder r as follows:

1. for i← 0 to k − 1 do ri ← ai
2. rk ← 0
3. for i← k − ` down to 0 do
4. qi ← b(ri+`B + ri+`−1)/b`−1c
5. if qi ≥ B then qi ← B − 1
6. carry ← 0
7. for j ← 0 to `− 1 do
8. tmp ← ri+j − qibj + carry
9. ri+j ← tmp rem B

10. carry ← btmp/Bc
11. ri+` ← carry
12. while ri+` < 0 do
13. (ri+` · · · ri)B ← (ri+` · · · ri)B + (b`−1 · · · b0)B
14. qi ← qi − 1
15. output the quotient q = (qk−` · · · q0)B

and the remainder r = (r`−1 · · · r0)B

Some remarks are in order:

1. In line 4, we compute qi, which by Theorem 3.12 is greater than or equal
to the true quotient digit, but exceeds this value by at most two.

2. In line 5, we reduce qi if it is obviously too big.

3. In lines 6–10, we essentially compute

(ri+` · · · ri)B ← (ri+` · · · ri)B − qib.

In each loop iteration, the value of tmp lies between −(B2−B) and B−1,
and the value carry lies between −(B − 1) and 0.

4. If the estimate qi is too large, this is manifested by a negative value of
ri+` at line 11. Lines 12–14 detect and correct this condition: the loop
body here executes at most twice; the addition step in line 13 can be
implemented using the same algorithm described above in §3.3.1, except
that we ignore the carry out of that algorithm.
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Exercise 3.13 Work out the details of an algorithm that computes the quotient
and remainder for signed integers, using an algorithm for unsigned integers as
a subroutine. Your algorithm should compute the quotient q := ba/bc and
remainder r := a− bq. 2

Exercise 3.14 Suppose that we run the above division with remainder algo-
rithm for ` > 1 without normalizing b, but instead, we compute the value qi in
line 4 as follows:

qi ← b(ri+`B2 + ri+`−1B + ri+`−2)/(b`−1B + b`−2)c.

Show that qi is either equal to the correct quotient digit, or the correct quotient
digit plus 1. Note that a limitation of this approach is that the numbers involved
in the computation are larger than B2. 2

Exercise 3.15 This exercise is for C programmers. Suppose that values of type
int are stored using a 32-bit two’s complement representation, and that all basic
arithmetic operations are computed correctly modulo 232, even if an “overflow”
happens to occur. Also assume that double precision floating point has 53 bits
of precision, and that all basic arithmetic operations give a result with a relative
error of at most 2−53. Also assume that conversion from type int to double

is exact, and that conversion from double to int truncates the fractional part.
These assumptions reflect very typical implementations, in fact.

Now, suppose we are given int variables a, b, and n, such that 1 < n < 230

and 0 ≤ a, b < n. Show that after the following code sequence is executed, the
value of r is equal to (a · b) rem n:

int q;

q = (int) ((((double) a) * ((double) b)) / ((double) n));

r = a*b - q*n;

if (r >= n)

r = r - n;

else if (r < 0)

r = r + n;

2
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3.3.5 Summary

We now summarize the above observations. For an integer n, we define len(n)
to be the number of bits in the binary representation of |n|; more precisely,

len(n) =

{
blog2 |n|c+ 1 if n 6= 0,
1 if n = 0.

Notice that for n > 0, we have log2 n < len(n) ≤ log2 n+ 1.

Theorem 3.16 Let a and b be arbitrary integers, represented using the data
structures described above.

(i) We can determine an arbitrary bit in the binary representation of |a| in
time O(1).

(ii) We can compute a± b in time O(len(a) + len(b)).

(iii) We can compute a · b in time O(len(a) len(b)).

(iv) If b > 0, we can compute q and r such that a = bq + r and 0 ≤ r < b in
time O(len(b) len(q)).

From now on, we shall not worry about the implementation details of long-
integer arithmetic, and will just refer directly this theorem.

Note the bound O(len(b) len(q)) in part (iv) of this theorem, which may be
significantly less than the bound O(len(a) len(b)).

This theorem does not refer to the base B in the underlying implementation.
The choice of B affects the values of the implied big-‘O’ constants; while in
theory, this is of no significance, it does have a significant impact in practice.

A note on notation. In expressing the running times of algorithms, we gener-
ally prefer to write, for example, O(len(a) len(b)), rather than O((log a)(log b)).
There are two reasons for this. The first is esthetic: the function “len” stresses
the fact that running times should be expressed in terms of the bit length of
the inputs. The second is technical: O-estimates involving expressions contain-
ing several independent parameters, like O(len(a) len(b)), should be valid for all
possible values of the parameters, since the notion of “sufficiently large” does
not make sense in this setting; because of this, it is very inconvenient to have
functions, like log, that vanish or are undefined on some inputs.

Exercise 3.17 Show that the product n of integers n1, . . . , nk, with each ni > 1,
can be computed in time O(len(n)2). Do not assume that k is a constant. 2
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Exercise 3.18 Show that given integers n1, . . . , nk, with each ni > 1, and an
integer 0 ≤ z < n, where n =

∏

i ni, we can compute the k integers z rem ni,
for 1 ≤ i ≤ k, in time O(len(n)2). 2

3.4 Computing in Zn

Let n > 1. For computational purposes, we may represent elements of Zn as
elements of the set {0, . . . , n− 1}.

Addition and subtraction in Zn can be performed in time O(len(n)). Mul-
tiplication can be performed in time O(len(n)2) with an ordinary integer multi-
plication, followed by a division with remainder.

A note on notation. In describing algorithms, as well as in other contexts,
if α, β are elements of Zn, we may write, e.g., γ ← α + β or γ ← αβ, and it is
understood that elements of Zn are represented as discussed above, as integers
between 0 and n− 1, and the arithmetic on the representations is done modulo
n. Thus, we have in mind a “strongly typed” language for our pseudo-code that
makes a clear distinction between integers in the set {0, . . . , n−1} and elements
of Zn. If a ∈ Z, we can convert a to an object α ∈ Zn by writing α← [a mod n],
and if a ∈ {0, . . . , n − 1}, this type conversion is purely conceptual, involving
no actual computation. Conversely, if α ∈ Zn, we can convert α to an object
a ∈ {0, . . . , n− 1}, by writing a← rep(α); again, this type conversion is purely
conceptual, and involves no actual computation.

Another interesting problem is exponentiation in Zn: given α ∈ Zn and a
non-negative integer e, compute αe ∈ Zn. Perhaps the most obvious way to do
this is to iteratively multiply by α a total of e times, requiring time O(e len(n)2).
A much faster algorithm, the repeated-squaring algorithm, computes αe

using just O(len(e)) multiplications in Zn, thus taking time O(len(e) len(n)2).
This method works as follows. Let e = (b`−1 · · · b0)2 be the binary expansion

of e (where b0 is the low-order bit). For 0 ≤ i ≤ `, define ei = be/2ic; the binary
expansion of ei is ei = (b`−1 · · · bi)2. Also define, for 0 ≤ i ≤ `, βi = αei , so
β` = 1 and β0 = αe. Then we have

ei = 2ei+1 + bi (0 ≤ i < `),

and hence
βi = β2i+1 · αbi (0 ≤ i < `).

This idea yields the following algorithm:
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β ← 1
for i← `− 1 down to 0 do

β ← β2

if bi = 1 then β ← β · α
output β

It is clear that when this algorithm terminates, β = αe, and that the running-
time estimate is as claimed above. Indeed, the algorithm uses ` squarings in Zn,
and at most ` additional multiplications in Zn.

The following exercises develop some important efficiency improvements to
the basic repeated squaring algorithm.

Exercise 3.19 By using a “2k-ary” approach, instead of a binary approach,
show how to modify the repeated squaring so as to compute αe using at most
` squarings in Zn, and an additional 2k + `/k + O(1) multiplications in Zn.
As above, α ∈ Zn and len(e) = `, while k is a parameter that we are free

to choose. Hint: first build a table of powers 1, α, . . . , α2
k−1. Also show that

by appropriately choosing the parameter k, we can bound the number of addi-
tional multiplications in Zn by O(`/ len(`)). Thus, the cost of exponentiation is
essentially the cost of ` squarings in Zn. 2

Exercise 3.20 Suppose we are given α1, . . . , αk ∈ Zn, along with non-negative
integers e1, . . . , ek, where len(ei) ≤ ` for 1 ≤ i ≤ k. Show how to compute

β := αe11 · · ·αekk
using at most ` squarings in Zn and an additional `+2k+O(1) multiplications in
Zn. Your algorithm should work in two phases: in the first phase, the algorithm
uses just the values α1, . . . , αk and ` to build a table, performing 2k + O(1)
multiplications in Zn; in the second phase, the algorithm computes β, using the
exponents e1, . . . , ek, and the table computed in the first phase. 2

Exercise 3.21 Suppose that we are to compute αe, where α ∈ Zn, for many
`-bit exponents e, but with α fixed. Show that for any positive integer param-
eter k, we can make a pre-computation, depending on α, that uses O(` + 2k)
multiplications in Zn, so that after the pre-computation, we can compute αe

for any `-bit exponent e using just O(`/k) multiplications in Zn. Hint: use the
previous exercise. 2



3.5. ♣ Faster Integer Arithmetic 37

Exercise 3.22 Let m1, . . . ,mr be integers, each greater than 1, and let m :=
m1 · · ·mr. Also, for 1 ≤ i ≤ r, define m′i := m/mi. Given α ∈ Zn, show how to
compute all of the quantities

αm
′
1 , . . . , αm

′
r

using a total of O(len(r) len(m)) multiplications in Zn. Hint: divide and conquer.
2

3.5 ♣ Faster Integer Arithmetic
The quadratic-time algorithms presented here for integer multiplication and di-
vision are by no means the fastest possible. The next exercise develops a faster
multiplication algorithm.

Exercise 3.23 Suppose we have two positive, `-bit integers a and b such that
a = a12

k + a0 and b = b12
k + b0, where 0 ≤ a0 < 2k and 0 ≤ b0 < 2k. Then

ab = a1b12
2k + (a0b1 + a1b0)2

k + a0b0.

Show how to compute the product ab in time O(`), given the products a0b0, a1b1,
and (a0 − a1)(b0 − b1). From this, design a recursive algorithm that computes
ab in time O(`log2 3), where log2 3 ≈ 1.6. 2

In the following exercises, assume that we have an algorithm that multiplies
two integers of at most ` bits in time M(`). It is convenient (and reasonable) to
assume that M is a well-behaved complexity function. By this, we mean
that M maps non-negative integers to non-negative real numbers, and

• for all non-negative integers a and b, M(a+ b) ≥M(a) +M(b), and

• for all positive integers a, there exists a positive integer b, such that for all
non-negative integers n, M(an) ≤ bM(n).

The first condition says thatM grows at least linearly in n, while the second says
that M does not grow “too fast.” The reader may verify that these conditions
imply thatM is a non-decreasing function, thatM(0) = 0, and that ifM(n) > 0
for any n, then M(n) > 0 for all n > 0.

Here are some examples of well-behaved complexity functions:

n2, nlog2 3, n len(n), n len(n) len(len(n)), n len(n)2.
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Exercise 3.24 Give an algorithm for Exercise 3.17 that runs in time
O(M(len(n)) len(k)). 2

Exercise 3.25 We can represent a “floating point” number ẑ as a pair (a, e),
where a and e are integers — the value of ẑ is the number a2e, and we call
len(a) the precision of ẑ. We say that ẑ is a k-bit approximation of a real
number z if ẑ has precision k and ẑ = z(1 + ε) for some |ε| ≤ 2−k+1. Show how
to compute — given positive integers b and k — a k-bit approximation to 1/b
in time O(M(k)). Hint: using Newton iteration, show how to go from a t-bit
approximation of 1/b to a (2t− 2)-bit approximation of 1/b, making use of just
the high-order O(t) bits of b, in time O(M(t)). 2

Exercise 3.26 Using the result of the previous exercise, given positive integers
a and b of bit length at most `, show how to compute ba/bc and a rem b in
time O(M(`)). From this, we see that up to a constant factor, division with
remainder is no harder that multiplication. 2

Exercise 3.27 Using the result of the previous exercise, give an algorithm for
Exercise 3.18 that runs in time O(M(len(n)) len(k)). 2

Exercise 3.28 Show that for integer n ≥ 0, we can compute bn1/2c in time
O(M(len(n))). Hint: Newton iteration. 2

Exercise 3.29 Suppose we have an algorithm that computes the square of an
`-bit integer in time S(`), where S is a well-behaved complexity function. Show
how to use this algorithm to compute the product of two arbitrary integers of
at most ` bits in time O(S(`)). 2

3.6 Notes

The “classical” algorithms presented here for integer multiplication and divi-
sion are by no means the best possible. The most practical algorithms take
advantage of low-level “assembly language” codes specific to a particular ma-
chine’s architecture (e.g., the GNU Multi-Precision library GMP, available at
http://www.swox.com/gmp). Moreover, there are algorithms whose running
time is asymptotically faster. We saw this in the algorithm in Exercise 3.23,
which was originally invented by Karatsuba [41] (although Karatsuba is one of
two authors on this paper, the paper gives exclusive credit for this particular
result to Karatsuba). That algorithm allows us to multiply two `-bit integers
in time O(`log2 3). If a and b are two integers whose length in bits is bounded

http://www.swox.com/gmp
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by `, then the fastest known algorithm for computing ab on a RAM runs in
time O(`). This algorithm is due to Schönhage, and actually works on a very
restricted type of RAM called a “pointer machine” (see Problem 12, Section
4.3.3 of Knuth [43]).

Another model of computation is that of boolean circuits. In this model
of computation, one considers families of boolean circuits (with, say, the usual
“and,” “or,” and “not” gates) that compute a particular function — for every
input length, there is a different circuit in the family that computes the function
on inputs of that length. One natural notion of complexity for such circuit
families is the size, i.e., number of gates and wires, of the circuit, which is
measured as a function of the input length. The smallest known boolean circuit
that multiplies two `-bit numbers has size O(` len(`) len(len(`))). This result is
due to Schönhage and Strassen [65].

It is hard to say which model of computation, the RAM or circuits, is “bet-
ter.” On the one hand, the RAM very naturally models computers as we know
them today. On the other hand, one can “cheat” a bit in the RAM model by
stuffing O(len(`))-bit integers into “words” on the RAM that would not fit into
words on a real machine. For example, even with the simple quadratic-time
algorithms discussed above, we can choose the base B to have len(`) bits, in
which case these algorithms would run in time O((`/ len(`))2).

In the remainder of this text, unless otherwise specified, we shall always use
the classical O(`2) bounds for integer multiplication and division, which have
the advantage of being both simple and reasonably reliable predictors of actual
performance for small to moderately sized inputs. For relatively large numbers,
experience shows that the classical algorithms are definitely not the best —
Karatsuba’s multiplication algorithm does significantly better than the classical
algorithms on inputs of a thousand bits or so (the exact crossover depends on
myriad implementation details). Thus, the reader should bear in mind that for
serious computations involving very large numbers, the faster algorithms are
very important, even though this text does not discuss them at great length.

For a good survey of asymptotically fast algorithms for integer arithmetic,
see Chapter 9 of Crandall and Pomerance [25], as well as Chapter 4 of Knuth
[43].



Chapter 4

Euclid’s Algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest common
divisors. It turns out that Euclid’s algorithm has a number of very nice prop-
erties, and has applications far beyond that of just computing greatest common
divisors.

4.1 The Basic Euclidean Algorithm

We consider the following problem: given two non-negative integers a and b,
compute gcd(a, b). We can do this using the well-known algorithm of Euclid,
which is described in the following theorem.

Theorem 4.1 Let a ≥ b ≥ 0, with a > 0. Define the integers r0, r1, . . . , r`+1,
and q1, . . . , q`, where ` ≥ 0, as follows:

r0 = a,

r1 = b,

r0 = r1q1 + r2 (0 < r2 < r1),

...

ri−1 = riqi + ri+1 (0 < ri+1 < ri),

...

r`−2 = r`−1q`−1 + r` (0 < r` < r`−1),

r`−1 = r`q` (r`+1 = 0).

Then r` = gcd(a, b). Moreover, if b > 0, then ` ≤ log b/ log φ + 1, where φ =
(1 +

√
5)/2 ≈ 1.62, and if b = 0, then ` = 0.

40
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Proof. For the first statement, one sees that for 1 ≤ i ≤ `, the common divisors
of ri−1 and ri are the same as the common divisors of ri and ri+1, and hence
gcd(ri−1, ri) = gcd(ri, ri+1). From this, it follows that gcd(a, b) = gcd(r0, r1) =
gcd(r`, 0) = r`.

To prove the second statement, assume that b > 0. We claim that for
0 ≤ i ≤ `− 1, r`−i ≥ φi. The statement will then follow by setting i = `− 1 and
taking logarithms.

If ` = 1, the claim is obviously true, so assume ` > 1. We have r` ≥ 1 = φ0

and r`−1 ≥ r`+1 ≥ 2 ≥ φ1. For 2 ≤ i ≤ `− 1, using induction and applying the
fact the φ2 = φ+ 1, we have

r`−i ≥ r`−(i−1) + r`−(i−2) ≥ φi−1 + φi−2 = φi−2(1 + φ) = φi,

which proves the claim. 2

Example 4.2 Suppose a = 100 and b = 35. Then the numbers appearing in
Theorem 4.1 are easily computed as follows:

i 0 1 2 3 4

ri 100 35 30 5 0

qi 2 1 6

So we have gcd(a, b) = r3 = 5. 2

We can easily turn the scheme described in Theorem 4.1 into a simple algo-
rithm, taking as input integers a, b, with a ≥ b and a > 0:

while b 6= 0 do
Compute q, r such that a = bq + r, with 0 ≤ r < b
(a, b)← (b, r)

output a

By Theorem 4.1, this algorithm, known as Euclid’s algorithm, outputs the
greatest common divisor of a and b.

Theorem 4.3 Euclid’s algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. The running time is O(τ), where τ =
∑`

i=1 len(ri) len(qi). We have

τ ≤ len(b)
∑

i

len(qi) ≤ len(b)
∑

i

(log2 qi + 1) = len(b)(`+ log2(
∏

i

qi)).
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Note that

a = r0 ≥ r1q1 ≥ r2q2q1 ≥ · · · ≥ r`q` · · · q1 ≥ q` · · · q1.

We also have ` ≤ log b/ log φ+ 1. Combining this with the above, we have

τ ≤ len(b)(log b/ log φ+ 1 + log2 a) = O(len(a) len(b)),

which proves the theorem. 2

Exercise 4.4 This exercise looks at an alternative algorithm for computing
gcd(a, b), called the binary gcd algorithm, which can be directly implemented
using just additions, subtraction, and “shift” operations, which on real-world
computers, are often very efficiently implemented. In practice, this algorithm is
usually faster than Euclid’s algorithm.

For integer n = 2em, withm odd, let EvenPart(n) := 2e and OddPart(n) :=
m. The algorithm takes positive integers a and b as input, and runs as follows:

c← min(EvenPart(a),EvenPart(b))
a← OddPart(a), b← OddPart(b)
(a, b)← (max(a, b),min(a, b))
v ← a− b
while v 6= 0 do

v ← OddPart(v)
(a, b)← (max(v, b),min(v, b))
v ← a− b

output c · a

Show that this algorithm correctly computes gcd(a, b), and runs in time
O(`2), where ` := max(len(a), len(b)). 2

4.2 The Extended Euclidean Algorithm

Let d = gcd(a, b). We know that there exist integers s and t such that as+bt = d.
The extended Euclidean algorithm allows us to compute s and t. The
following theorem describes the algorithm, and also states a number of important
facts about the relative sizes of the numbers that arise during the computation
— these size estimates will play a crucial role, both in the analysis of the running
time of the algorithm, as well as in applications of the algorithm that we will
discuss later.
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Theorem 4.5 Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theorem 4.1.
Define integers s0, s1, . . . , s`+1 and t0, t1, . . . , t`+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for 1 ≤ i ≤ `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then

(i) for 0 ≤ i ≤ `+1, we have sia+tib = ri; in particular, s`a+t`b = gcd(a, b);

(ii) for 0 ≤ i ≤ `, we have siti+1 − tisi+1 = (−1)i;

(iii) for 0 ≤ i ≤ `+ 1, we have gcd(si, ti) = 1;

(iv) we have |s`+1| ≤ b and |t`+1| ≤ a;

(v) for 0 ≤ i ≤ `, we have titi+1 ≤ 0 and |ti| ≤ |ti+1|; for 1 ≤ i ≤ `, we have
sisi+1 ≤ 0 and |si| ≤ |si+1|;

(vi) for 1 ≤ i ≤ `+1, we have |si| ≤ b, and for 0 ≤ i ≤ `+1, we have |ti| ≤ a;

(vii) for 1 ≤ i ≤ `+ 1, we have |si| ≤ b/ri−1 and |ti| ≤ a/ri−1.

Proof. (i) is easily proved by induction on i. For i = 0, 1, the statement is
clear. For 1 ≤ i ≤ `, we have

si+1a+ ti+1b = (si−1 − siqi)a+ (ti−1 − tiqi)b
= (si−1a+ ti−1b)− (sia+ tib)qi

= ri−1 − riqi (by induction)

= ri+1.

(ii) is also easily proved by induction on i. For i = 0, the statement is clear.
For 1 ≤ i ≤ `, we have

siti+1 − tisi+1 = si(ti−1 − tiqi)− ti(si−1 − siqi)
= −(si−1ti − ti−1si) (after expanding and simplifying)

= −(−1)i−1 = (−1)i (by induction).

(iii) follows directly from (ii).
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To prove (iv), note that s`+1a + t`+1b = r`+1 = 0. We have t`+1 6= 0, since
otherwise, both s`+1 and t`+1 would be zero, contradicting (iii). So (iv) follows
from the fact that the fractions −b/a and s`+1/t`+1 are equal, and the fact that,
again by (iii), the latter fraction is in lowest terms.

For (v), one can easily prove both statements about by induction on i. The
statement involving the si’s is clearly true for i = 1; for 2 ≤ i ≤ `, we have
si+1 = si−1 − siqi, and since by the induction hypothesis si−1 and si have
opposite sign and |si| ≥ |si−1|, it follows that |si+1| = |si−1| + |si|qi ≥ |si|, and
that the sign of si+1 is the opposite of that of si. The proof of the statement
involving the ti’s is the same, except that we may start the induction at i = 0.

(vi) follows immediately from (iv) and (v).
For (vii), one considers the two equations:

si−1a+ ti−1b = ri−1
sia+ tib = ri.

Subtracting ti−1 times the second equation from ti times the first, applying (ii),
and using the fact from (v) that ti and ti−1 have opposite sign, we obtain

a = |tiri−1 − ti−1ri| ≥ |ti|ri−1,

from which the bound for ti follows. The bound for si follows similarly, sub-
tracting si times the first equation from si−1 times the second. 2

Example 4.6 We continue with Example 4.2. The numbers si and ti are easily
computed from the qi:

i 0 1 2 3 4

ri 100 35 30 5 0

qi 2 1 6

si 1 0 1 -1 7

ti 0 1 -2 3 -20

2

We can easily turn the scheme described in Theorem 4.5 into a simple algo-
rithm, taking as input integers a, b, such that a ≥ b and a > 0:
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s← 1, t← 0
s′ ← 0, t′ ← 1
while b 6= 0 do

Compute q, r such that a = bq + r, with 0 ≤ r < b
(s, t, s′, t′)← (s′, t′, s− s′q, t− t′q)
(a, b)← (b, r)

output a, s, t

This algorithm outputs (d, s, t) such that d = gcd(a, b) and as+ bt = d.

Theorem 4.7 The extended Euclidean algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of computing
the sequences {si} and {ti}. Consider first the cost of computing all of the ti,
which is O(τ), where τ =

∑`
i=1 len(ti) len(qi). By Theorem 4.5 part (vi), and

arguing as in the proof of Theorem 4.3, we have

τ = len(q1) +
∑̀

i=2

len(ti) len(qi) ≤ len(q1) + len(a)(`− 1 + log2(
∏̀

i=2

qi))

= O(len(a) len(b)),

using the fact that
∏`

i=2 qi ≤ b. An analogous argument shows that one can
compute all of the si also in time O(len(a) len(b)), and in fact, in time O(len(b)2).
2

Another, instructive way to view Theorem 4.5 is as follows.
For 1 ≤ i ≤ `, we have

(
ri
ri+1

)

=

(
0 1
1 −qi

)(
ri−1
ri

)

.

Recursively expanding the right-hand side of this equation, we have for 0 ≤ i ≤ `

(
ri
ri+1

)

=Mi

(
a
b

)

,

where for 1 ≤ i ≤ `, Mi is defined as

Mi :=

(
0 1
1 −qi

)

· · ·
(

0 1
1 −q1

)

.
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If we define M0 to be the identity matrix, then it is easy to see that

Mi =

(
si ti
si+1 ti+1

)

,

for 0 ≤ i ≤ `. From this observation, part (i) of Theorem 4.5 is immediate,
and part (ii) follows from the fact that Mi is the product of i matrices, each of
determinant −1, and the determinant of Mi is evidently siti+1 − tisi+1.

Exercise 4.8 Develop an “extended” binary gcd algorithm; i.e., a variation of
the binary gcd algorithm in Exercise 4.4 that efficiently computes d = gcd(a, b),
along with integers s and t such that as+ bt = d, and which uses only addition,
subtraction, and “shift” operations. 2

4.3 Computing Modular Inverses and Chinese Re-
maindering

One application of the extended Euclidean algorithm is to the problem of com-
puting multiplicative inverses in Zn, where n > 1.

Given a ∈ {0, . . . , n− 1}, we can determine if [a mod n] has a multiplicative
inverse in Zn, and if so, determine this inverse, in time O(len(n)2), as follows.
We run the extended Euclidean algorithm on input (n, a) to determine integers
d, s, and t, such that d = gcd(n, a) and ns + at = d. If d 6= 1, then [a mod n]
is not invertible; otherwise, [a mod n] is invertible, and [t mod n] is its inverse.
In the latter case, by part (vi) of Theorem 4.5, we know that |t| ≤ n; we cannot
have t = ±n, and so either t ∈ {0, . . . , n− 1}, or t+ n ∈ {0, . . . , n− 1}.

We also observe that Theorem 2.8 (Chinese Remainder Theorem) can be
made computationally effective as well.

Theorem 4.9 Given integers n1, . . . , nk, and a1, . . . , ak, with ni > 1,
gcd(ni, nj) = 1 for i 6= j, and 0 ≤ ai < ni, we can compute z such that
0 ≤ z < n and z ≡ ai (mod ni) in time O(len(n)2), where n =

∏

i ni.

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, and see
Exercises 3.17 and 3.18). 2

Exercise 4.10 In this exercise and the next, you are to analyze an “incremen-
tal Chinese Remaindering” algorithm. Consider the following algorithm, which
takes as input integers z, n, z′, n′, where n and n′ are positive integers such that

n′ > 1, gcd(n, n′) = 1, 0 ≤ z < n, and 0 ≤ z′ < n′.
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It outputs integers z′′, n′′, such that

n′′ = nn′, 0 ≤ z′′ < n′′, z′′ ≡ z (mod n), and z′′ ≡ z′ (mod n′).

It runs as follows:

1. Compute ñ such that nñ ≡ 1 (mod n′) and 0 ≤ ñ < n′.

2. Set h← ((z′ − z)ñ) rem n′.

3. Set z′′ ← z + nh.

4. Set n′′ ← nn′.

5. Output z′′, n′′.

Show that the output z′′, n′′ of the algorithm satisfies the conditions stated
above, and estimate its running time. 2

Exercise 4.11 Using the algorithm in the previous exercise as a subroutine,
give a simple O(len(n)2) algorithm that takes as input integers n1, . . . , nk, and
a1, . . . , ak, with ni > 1, gcd(ni, nj) = 1 for i 6= j, and 0 ≤ ai < ni, and outputs
z, n such that 0 ≤ z < n, z ≡ ai (mod ni), and n =

∏

i ni. The algorithm should
be “incremental,” in that it processes the pairs (ni, ai) one at a time, using time
O(len(n) len(ni)) to process each such pair. 2

4.4 Speeding up Algorithms via Modular Computa-
tion

An important practical application of the above “computational” version (The-
orem 4.9) of the Chinese Remainder Theorem is a general algorithmic technique
that can significantly speed up certain types of computations involving long in-
tegers. Instead of trying to describe the technique in some general form, we
simply illustrate the technique by means of a specific example: integer matrix
multiplication.

Suppose we have two `×` matrices A and B whose entries are large integers,
and we want to compute the product matrix C = AB. If the entries of A are
(ars) and the entries of B are (bst), then the entries (crt) of C are given by the
usual rule for matrix multiplication:

crt =
∑̀

s=1

arsbst.
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Suppose further that M is the maximum absolute value of the entries in A and
B, so that the entries in C are bounded in absolute value by M ′ := M2`.
Then by just applying the above formula, we can compute the entries of C using
`3 multiplications of numbers of length at most len(M), and `3 additions of
numbers of length at most len(M ′), where len(M ′) ≤ 2 len(M) + len(`). This
yields a running time of

O(`3 len(M)2 + `3 len(`)). (4.1)

If the entries of A and B are large relative to `, specifically, if len(`) =
O(len(M)2), then the running time is dominated by the first term above, i.e., it
is

O(`3 len(M)2).

Using the Chinese Remainder Theorem, we can actually do much better than
this, as follows.

For any integer n > 1, and for all 1 ≤ r, t ≤ `, we have

crt ≡
∑̀

s=1

arsbst (mod n). (4.2)

Moreover, if we compute integers c′rt such that

c′rt ≡
∑̀

s=1

arsbst (mod n) (4.3)

and if we also have

− n/2 ≤ c′rt < n/2 and n > 2M ′, (4.4)

then we must have
crt = c′rt. (4.5)

To see why (4.5) follows from (4.3) and (4.4), observe that (4.2) and (4.3) imply
that crt ≡ c′rt (mod n), i.e., that n divides (crt − c′rt). Then from the bound
|crt| ≤M ′ and from (4.4), we obtain

|crt − c′rt| ≤ |crt|+ |c′rt| ≤M ′ + n/2 < n/2 + n/2 = n.

So we see that the quantity (crt− c′rt) is a multiple of n, while at the same time
this quantity is strictly less than n in absolute value; hence, this quantity must
be zero. That proves (4.5).
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So from the above discussion, to compute C, it suffices to compute the
entries of C modulo n, where we have to make sure that we compute “balanced”
remainders in the interval [−n/2, n/2), rather than the more usual “least non-
negative” remainders.

To compute C modulo n, we choose a number of small integers n1, . . . , nk,
relatively prime in pairs, and such that the product n := n1 · · ·nk is strictly
greater than 2M ′. In practice, one would choose the ni’s to be small primes, and
a table of such primes could easily be computed in advance, so that all problems
up to a given size could be handled. For example, the product of all primes of
at most 16 bits is a number that has more than 90, 000 bits. Thus, by simply
pre-computing and storing such a table of small primes, we can handle input
matrices with quite large entries (up to about 45, 000 bits).

Let us assume that we have pre-computed appropriate small primes
n1, . . . , nk. Further, we shall assume that addition and multiplication mod-
ulo any of the ni’s can be done in constant time. This is reasonable, both from
a practical and theoretical point of view, since such primes easily “fit” into a
memory cell. Finally, we assume that we do not use more ni’s than are necessary,
so that k = O(len(M ′)).

To compute C, we execute the following steps:

1. For each i = 1, . . . , k, do the following:

(a) compute â
(i)
rs ← ars rem ni for 1 ≤ r, s ≤ `,

(b) compute b̂
(i)
st ← bst rem ni for 1 ≤ s, t ≤ `,

(c) For 1 ≤ r, t ≤ `, compute

ĉ
(i)
rt ←

∑̀

s=1

â(i)rs b̂
(i)
st rem ni.

2. For each 1 ≤ r, t ≤ `, apply the Chinese Remainder Theorem to

ĉ
(1)
rt , ĉ

(2)
rt , . . . , ĉ

(k)
rt , obtaining an integer crt, which should be computed as a

balanced remainder modulo n, i.e., n/2 ≤ crt < n/2.

3. Output (crt : 1 ≤ r, t ≤ `).

Note that in Step 2, if our Chinese Remainder algorithm happens to be
implemented to return an integer z with 0 ≤ z < n, we can easily get a balanced
remainder by just subtracting n from z if z ≥ n/2.

The correctness of the above algorithm has already been established. Let
us now analyze its running time. The running time of Steps 1a and 1b is eas-
ily seen (c.f., Exercise 3.18) to be O(`2 len(M) len(M ′)). Under our assump-
tion about the cost of arithmetic modulo small primes, the cost of Step 1c is
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O(`3k), and since k = O(len(M ′)) = O(len(M) + len(`)), the cost of this step is
O(`3(len(M)+ len(`))). Finally, the cost of Step 2 is also O(`2 len(M ′)2). Thus,
the total running time of this algorithm is easily calculated (discarding terms
that are dominated by others) as

O(`2 len(M)2 + `3 len(M) + `3 len(`)).

Compared to (4.1), we have essentially replaced the term `3 len(M)2 by
`2 len(M)2 + `3 len(M). This is a significant improvement: for example, if
len(M) ≈ `, then the running time of the original algorithm is O(`5), while
the running time of the modular algorithm is O(`4).

Exercise 4.12 Apply the ideas above to the problem of computing the product
of two polynomials whose coefficients are large integers. First, determine the
running time of the “obvious” algorithm for multiplying two such polynomials,
then design and analyze a “modular” algorithm. 2

4.5 Rational Reconstruction and Applications

We next state a theorem whose immediate utility may not be entirely obvious,
but we quickly follow up with several very neat applications. The general prob-
lem we consider here, called rational reconstruction, is as follows. Suppose that
there is some rational number ŷ that we would like to get our hands on, but the
only information we have about ŷ is the following:

• First, suppose that we know that ŷ may be expressed as r/t for integers
r, t, with |r| ≤ r∗ and |t| ≤ t∗ — we do not know r, t, but we do know the
bounds r∗, t∗.

• Second, suppose that we know integers y, n such that

r ≡ ty (mod n),

where r, t are the unknown integers above.

It turns out that if n is sufficiently large relative to the bounds r∗, t∗, then we
can virtually “pluck” ŷ out of the extended Euclidean algorithm applied to n
and y.

Theorem 4.13 Let r∗, t∗, n, y be integers such that r∗ > 0, t∗ > 0, n ≥ 4r∗t∗,
and 0 ≤ y < n. Suppose we run the extended Euclidean algorithm with inputs
a := n and b := y. Then, adopting the notation of Theorem 4.5, the following
hold:
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1. There exists a unique index i, with 1 ≤ i ≤ `+1, such that ri ≤ 2r∗ < ri−1,
and for this i, ti 6= 0; let r′ := ri, s

′ := si, and t
′ := ti.

2. Furthermore, for any integers r, s, t such that

r = sn+ ty, |r| ≤ r∗, 0 < |t| ≤ t∗, (4.6)

we have
r = r′α, s = s′α, t = t′α,

for some non-zero integer α.

Proof. By hypothesis, 2r∗ < n = r0. Moreover, since r0, . . . , r`, r`+1 = 0 is
a decreasing sequence, and 1 = |t1|, |t2|, . . . , |t`+1| is a non-decreasing sequence,
the first statement of the theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let r, s, t
be as in (4.6).

From part (vii) of Theorem 4.5, we have

|ti| ≤
n

ri−1
<

n

2r∗
.

From the equalities ri = sin+ tiy and r = sn+ ty, we have the two congruences:

r ≡ ty (mod n),

ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti − rit; however, using the bounds |r| ≤ r∗, |ti| <
n/(2r∗), |ri| ≤ 2r∗, |t| ≤ t∗, and 4r∗t∗ ≤ n, we obtain (verify)

|rti − rit| ≤ |rti|+ |rit| < n.

Since n divides rti − rit and |rti − rit| < n, the only possibility is that

rti − rit = 0. (4.7)

Now consider the two equations:

r = sn+ ty

ri = sin+ tiy.
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Subtracting ti times the first from t times the second, and using the identity
(4.7), we obtain n(sti − sit) = 0, and hence

sti − sit = 0. (4.8)

From (4.8), we see that ti | sit, and since from part (iii) of Theorem 4.5, we
know that gcd(si, ti) = 1, we must have ti | t. So t = tiα for some α, and we
must have α 6= 0 since t 6= 0. Substituting tiα for t in equations (4.7) and (4.8)
yields r = riα and s = siα. That proves the second statement of the theorem.
2

4.5.1 Application: Chinese Remaindering with Errors

One interpretation of the Chinese Remainder Theorem is that if we “encode” an
integer z, with 0 ≤ z < n, as the sequence (a1, . . . , ak), where ai = z rem ni, then
we can efficiently recover z from this encoding. Here, of course, n = n1 · · ·nk
where the ni’s are pairwise relatively prime.

But now suppose that Alice encodes z as (a1, . . . , ak), and sends this encoding
to Bob; however, during the transmission of the encoding, some (but hopefully
not too many) of the ai’s may be corrupted. The question is, can Bob still
efficiently recover the original z from its corrupted encoding?

To make the problem more precise, suppose that the original, correct en-
coding of z is (a1, . . . , ak), and the corrupted encoding is (ã1, . . . , ãk), where we
shall assume that at most ` of the ãi’s differ from the corresponding ai’s.

Of course, if Bob hopes to recover z, we need to build some redundancy
into the system; that is, we must require that 0 ≤ z ≤ Z for some Z that
is somewhat smaller than n. Now, if Bob knew the positions where the errors
actually occurred, and if the product of the ni’s at the non-error positions exceed
Z, then Bob could simply discard the errors, and reconstruct z by applying the
Chinese Remainder Theorem to the ai’s and ni’s at the non-error positions.
However, in general, Bob will not know a priori the positions of the errors, and
so this approach will not work.

Despite these apparent difficulties, Theorem 4.13 may be used to solve the
problem quite easily, as follows. Let us suppose that n1, . . . , nk are arranged in
decreasing order, and let us set P := n1 · · ·n`; that is, P is the product of the
` largest ni’s, and in particular, any product of any ` of the ni’s is at most P .
Further, let us assume that n ≥ 4P 2Z.

Now, suppose Bob obtains the corrupted encoding (ã1, . . . , ãk). Here is what
Bob does to recover z:

1. Apply the Chinese Remainder Theorem, obtaining an integer y, with 0 ≤
y < n and y ≡ ãi (mod ni) for 1 ≤ i ≤ k.
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2. Run the extended Euclidean algorithm on a := n and b := y, and let
r′, t′ be the values obtained from Theorem 4.13 applied with r∗ := ZP
and t∗ := P .

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, assuming the number of errors
is at most `. To see this, let t be the product of the ni’s for those values of i where
an error occurred. Now, assuming at most ` errors occurred, we have 1 ≤ t ≤ P .
Also, let r := tz, and note that 0 ≤ r ≤ ZP = r∗ and 0 < t ≤ P = t∗. We
claim that

r ≡ ty (mod n). (4.9)

To show that (4.9) holds, it suffices to show that

tz ≡ ty (mod ni) (4.10)

for all 1 ≤ i ≤ k. To show this, consider first an index i at which no error
occurred, so that ai = ãi. Then tz ≡ tai (mod ni) and ty ≡ tãi ≡ tai (mod ni),
and so (4.10) holds for this i. Next, consider an index i for which an error
occurred. Then by construction, tz ≡ 0 (mod ni) and ty ≡ 0 (mod ni), and so
(4.10) holds for this i. Thus, (4.9) holds, from which it follows that the values
r′, t′ obtained from Theorem 4.13 satisfy

r′

t′
=
r

t
=
tz

t
= z.

One easily checks that both the procedures to encode and decode a value z
run in time O(len(n)2). If one wanted a practical implementation, one might
choose the ni’s to be, say, 16-bit primes, so that the encoding of a value z
consisted of a sequence of k 16-bit words.

The above scheme is an example of an error correcting code, and is actually
the integer analog of a Reed-Solomon code.

4.5.2 Application: recovering fractions from their decimal ex-
pansion

Suppose Alice knows a rational number z = s/t, where s and t are integers with
0 ≤ s < t, and tells Bob some of the high order digits in the decimal expansion
of z. Can Bob determine z? The answer is yes, provided Bob knows an upper
boundM on t, and provided Alice gives Bob enough digits. Of course, from grade
school, Bob probably remembers that the decimal expansion of z is ultimately
periodic, and that given enough digits of z so as to include the periodic part, he
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can recover z; however, this technique is quite useless in practice, as the length
of the period can be huge — Θ(M) in the worst case (see Exercises 4.16–4.18
below). The method we discuss here requires only O(len(M)) digits.

To be a bit more general, suppose that Alice gives Bob the high-order k
digits in the d-ary expansion of z, for some base d > 1. Now, we can express z
in base d as

z = z1d
−1 + z2d

−2 + z3d
−3 + · · · ,

and the sequence of digits z1, z2, z3, . . . is uniquely determined if we require that
the sequence does not terminate with an infinite run of (d− 1)-digits. Suppose
Alice gives Bob the first k digits z1, . . . , zk. Define

y := z1d
k−1 + · · ·+ zk−1d+ zk = bzdkc.

Let us also define n := dk, so that y = bznc.
Now, if n is much smaller than M 2, the number z is not even uniquely

determined by y, since there are Ω(M 2) distinct rational numbers of the form
s/t, with 0 ≤ s < t ≤ M (see Exercise 1.21). However, if n ≥ 4M 2, then not
only is z uniquely determined by y, but using Theorem 4.13, we can compute it
as follows:

1. Run the extended Euclidean algorithm on inputs a := n and b := y, and
let s′, t′ be as in Theorem 4.13, using r∗ := t∗ := M .

2. Output s′, t′.

We claim that z = −s′/t′.
To prove this, let z = s/t as above, and note that by definition

s

t
=
y

n
+ w, (4.11)

where 0 ≤ w < 1/n. Clearing denominators, we see that

sn = ty + wnt.

Thus we see that r := wnt is an integer, and moreover,

r = sn− ty and 0 ≤ r < t ≤ t∗.

It follows that the integers s′, t′ from Theorem 4.13 satisfy s = s′α and −t = t′α
for some non-zero integer α. Thus, s′/t′ = −s/t, which proves the claim.

We may further observe that since the extended Euclidean algorithm guar-
antees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z expressed
as a fraction in lowest terms.

It is clear that the running time of this algorithm is O(len(n)2).
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Example 4.14 Alice is chooses numbers 0 ≤ s < t ≤ 1000, and tells Bob the
high order 7 digits y in the decimal expansion of z := s/t, from which Bob
should be able to compute z. Suppose s = 511 and t = 710. Then s/t ≈
0.71971830985915492957, and so y = 7197183. We also have n = 107. Running
the extended Euclidean algorithm on inputs a := n and b := y, Bob obtains
the following data:

i ri qi si ti
0 10000000 1 0
1 7197183 1 0 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421

10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

The first ri which falls below the threshold 2000 is at i = 10, and we read
off s′ = 511 and t′ = −710, from which Bob obtains z = −s′/t′ = 511/710. 2

Exercise 4.15 Show that given integers s, t, k, with 0 ≤ s < t, and k >
0, we can compute the kth digit in the decimal expansion of s/t in time
O(len(k) len(t)2). 2

For the following exercises, we need a definition: a sequence S :=
(z1, z2, z3, . . .) of elements drawn from some arbitrary set is called (k, `)-periodic
for integers k ≥ 0 and ` ≥ 1 if zi = zi+` for all i > k. S is called ultimately
periodic if it is (k, `)-periodic for some (k, `).

Exercise 4.16 Show that if a sequence S is (k, `)-periodic for some (k, `), then
it is (k∗, `∗)-periodic for some uniquely determined pair (k∗, `∗) for which the
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following holds: for any pair (k′, `′) such that S is (k′, `′)-periodic, we have
k∗ ≤ k′ and `∗ ≤ `′. 2

The value `∗ in the above exercise is called the period of S, and k∗ is called
the pre-period of S. If its pre-period is zero, then S is called purely periodic.

Exercise 4.17 Let z be a real number whose base-d expansion is an ultimately
periodic sequence. Show that z is rational. 2

Exercise 4.18 Let z = s/t, where 0 ≤ s < t are relatively prime integers, and
let d > 1 be an integer.

(a) Show that there exist integers 0 ≤ k < k′ such that sdk ≡ sdk
′

(mod t).

(b) Show that for integers 0 ≤ k < k′, the base-d expansion of z is (k, k′ − k)-
periodic if and only if sdk ≡ sdk

′

(mod t).

(c) Show that if gcd(t, d) = 1, then the base-d expansion of z is purely periodic
with period equal to the multiplicative order of d modulo t.

(d) More generally, show that if k is the smallest non-negative integer such
that d and t′ := t/ gcd(dk, t) are relatively prime, then the base-d expan-
sion of z is ultimately periodic with pre-period k and period equal to the
multiplicative order of d modulo t′.

2

A famous conjecture of Artin postulates that for any integer d, not equal to
−1 or to a square, there are infinitely many primes t such that d has multiplica-
tive order t − 1 modulo t. If Artin’s conjecture is true, then by part (c) of the
previous exercise, for any d > 1 that is not a square, there are infinitely many
primes t such that the base-d expansion of s/t, for any 1 < s < t, is a purely
periodic sequence of period t − 1. In light of these observations, the “grade
school” method of computing a fraction from its decimal expansion using the
period is hopelessly impractical.

4.5.3 Applications to symbolic algebra

Rational reconstruction also has a number of applications in symbolic algebra.
Suppose, for example, that we want to find the solution v to the equation

vA = w,
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where we are given a non-singular square integer matrix A and the integer vector
w. The solution vector v will, in general, have rational entries. We stress that we
want to compute the exact solution v, and not some floating point approximation
to it. Now, we could solve for v directly using Gaussian elimination; however, the
intermediate quantities computed by that algorithm would be rational numbers
whose numerators and denominators might get quite large, leading to a rather
lengthy computation (however, it is possible to show that the overall running
time is still polynomial in the input length).

Another approach is to compute a solution vector modulo n, where n is a
power of a prime that does not divide the determinant of A. Provided n is large
enough, one can then recover the solution vector v using rational reconstruction.
With this approach, all of the computations can be carried out using arithmetic
on integers not too much larger than n, leading to a more efficient algorithm.
More of the details of this procedure are developed later, in Exercise 15.14.

4.6 Notes

The Euclidean algorithm as we have presented it here is not the fastest known
algorithm for computing greatest common divisors. The asymptotically fastest
known algorithm for computing the greatest common divisor of two numbers
of bit length at most ` runs in time O(` len(`)) on a RAM, and the smallest
boolean circuits are of size O(` len(`)2 len(len(`))). The same complexity results
also hold for the extended Euclidean algorithm, as well as Chinese remaindering
and rational reconstruction. See Chapter 9 of Crandall and Pomerance [25] (and
also the discussion in §3.6).

Experience suggests that such fast algorithms for greatest common divisors
are not of much practical value, unless the integers involved are very large — at
least several tens of thousands of bits in length. The extra “log” factor and the
rather large multiplicative constants seem to slow things down too much.

Our exposition of Theorem 4.13 is loosely based on Bach [10]. A somewhat
“tighter” result is proved, with significantly more effort, by Wang, Guy, and
Davenport [78]. However, for most practical purposes, the result proved here
is just as good. The application of Euclid’s algorithm to computing a rational
number from the first digits of its decimal expansion was observed by Blum,
Blum, and Shub [16].



Chapter 5

The Distribution of Primes

This chapter concerns itself with the question: how many primes are there? This
chapter has a bit more of an “analytical” flavor than other chapters in this text.
However, we shall not make use of any mathematics beyond that of elementary
calculus.

We first state a (truly) classical result:

Theorem 5.1 There are infinitely many primes.

Proof. Suppose that there were only finitely many primes, call them p1, . . . , pk.
Then set x = 1 +

∏k
i=1 pi, and consider any prime p that divides x. Clearly,

p cannot equal any of the pi, since if it did, we would have p | 1, which is
impossible. Therefore, the prime p is not among p1, . . . , pk, which contradicts
our assumption that these are the only primes. 2

5.1 Chebyshev’s Theorem on the Density of Primes

In addition to the fact that there are infinitely many primes, one would like
to know how “dense” prime numbers are. The natural way of measuring the
density of primes is to count the number of primes up to a bound x, where x is
a real number. For a real number x ≥ 0, the function π(x) is defined to be the
number of primes up to x. Thus, π(1) = 0, π(2) = 1, π(7.5) = 4, and so on. The
function π is an example of a “step function,” i.e., a function that changes values
only at a discrete set of points. It might seem more natural to define π only on
the integers, but it is the tradition (and there are some technical benefits) in
defining it over the real numbers.

Let us first take a look at some values of π(x). Table 5.1 shows values of π(x)
for x = 103i, for i = 1, . . . , 6. The third column of this table shows the value

58
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x π(x) x/π(x)

103 168 5.95238
106 78498 12.73918
109 50847534 19.66664
1012 37607912018 26.59015
1015 29844570422669 33.50693
1018 24739954287740860 40.42045

Table 5.1: Some values of π(x)

of x/π(x) (to five decimal places). One can see that the differences between
successive rows of this third column are roughly the same, which suggests that
the function x/π(x) grows logarithmically in x. Indeed, as log(103) ≈ 6.9, it
would not be unreasonable to guess that x/π(x) ≈ log x, i.e., π(x) ≈ x/ log x.

The following theorem is a first — and important — step towards making
the above guess-work more rigorous:

Theorem 5.2 (Chebyshev’s Theorem) We have

π(x) = Θ(x/ log x).

It is not too difficult to prove this theorem, which we now proceed to do in
several steps. Recalling that νp(n) denotes the power to which a prime p divides
an integer n, we begin with the following observation:

Theorem 5.3 Let n be a positive integer. For any prime p, we have

νp(n!) =
∑

k≥1
bn/pkc.

Proof. This follows immediately from the observation that the numbers
1, 2, . . . , n include exactly bn/pc multiplies of p, bn/p2c multiplies of p2, and
so on (see Exercise 1.7). 2

The following theorem gives a lower bound on π(x).

Theorem 5.4 π(n) ≥ (log 2/2)n/ log n for all integers n ≥ 2.

Proof. For positive integer m, let

N :=

(
2m

m

)

=
(2m)!

(m!)2
.
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Note that

N =

(
m+ 1

1

)(
m+ 2

2

)

· · ·
(
m+m

m

)

,

from which it is clear that N ≥ 2m and that N is divisible only by primes p not
exceeding 2m. Applying Theorem 5.3 to the identity N = (2m)!/(m!)2, we have

νp(N) =
∑

k≥1
(b2m/pkc − 2bm/pkc).

Each term in this sum is either 0 or 1 (see Exercise 1.6), and for k >
log(2m)/ log p, each term is zero. Thus, νp(N) ≤ log(2m)/ log p.

So we have

π(2m) log(2m) =
∑

p≤2m

log(2m)

log p
log p ≥

∑

p≤2m
νp(N) log p = logN ≥ m log 2.

Therefore,
π(2m) ≥ (log 2/2)(2m)/ log(2m).

That proves the theorem for even n. Now consider odd n ≥ 3, so n = 2m−1
for m ≥ 2. Since the function x/ log x is increasing for x ≥ 3 (verify), and since
π(2m− 1) = π(2m) for m ≥ 2, we have

π(2m− 1) = π(2m)

≥ (log 2/2)(2m)/ log(2m)

≥ (log 2/2)(2m− 1)/ log(2m− 1).

That proves the theorem for odd n. 2

To obtain a corresponding upper bound for π(x), we introduce an auxiliary
function, called Chebyshev’s ϑ-function:

ϑ(x) :=
∑

p≤x
log p,

where the sum is over all primes p up to x. The next theorem relates π(x) and
ϑ(x).

Theorem 5.5 We have:

π(x) ∼ ϑ(x)

log x
.
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Proof. On the one hand, we have

ϑ(x) =
∑

p≤x
log p ≤ log x

∑

p≤x
1 = π(x) log x.

So we have

π(x) ≥ ϑ(x)

log x
.

On the other hand, for every x > 1 and 0 < ε < 1, we have

ϑ(x) ≥
∑

x1−ε<p≤x
log p

≥ (1− ε) log x
∑

x1−ε<p≤x
1

= (1− ε) log x (π(x)− π(x1−ε))
≥ (1− ε) log x (π(x)− x1−ε).

Hence,

π(x) ≤ x1−ε +
ϑ(x)

(1− ε) log x.

Since by the previous theorem, the term x1−ε is o(π(x)), we have for all suffi-
ciently large x (depending on ε), x1−ε ≤ επ(x), and so

π(x) ≤ ϑ(x)

(1− ε)2 log x.

By making ε sufficiently small, we can make 1/(1− ε)2 arbitrarily close to 1, and
the theorem follows. 2

Theorem 5.6 ϑ(x) < 2x log 2 for all real numbers x ≥ 1.

Proof. It suffices to prove that ϑ(n) < 2n log 2 for integers n ≥ 1, since then
ϑ(x) = ϑ(bxc) < 2bxc log 2 ≤ 2x log 2.

For positive integer m, let

M :=

(
2m+ 1

m

)

=
(2m+ 1)!

m!(m+ 1)!
.

One sees that M is divisible by all primes p with m + 1 < p ≤ 2m + 1. As
M occurs twice in the binomial expansion of (1 + 1)2m+1, one sees that M <
22m+1/2 = 22m. It follows that

ϑ(2m+ 1)− ϑ(m+ 1) =
∑

m+1<p≤2m+1
log p ≤ logM < 2m log 2.
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We now prove the theorem by induction. For n = 1 and n = 2, the theorem
is trivial. Now let n > 2. If n is even, then we have

ϑ(n) = ϑ(n− 1) < 2(n− 1) log 2 < 2n log 2.

If n = 2m+ 1 is odd, then we have

ϑ(n) = ϑ(2m+ 1)− ϑ(m+ 1) + ϑ(m+ 1) < 2m log 2 + 2(m+ 1) log 2 = 2n log 2.

2

Another way of stating the above theorem is:
∏

p≤x
p < 4x.

Theorem 5.2 follows immediately from Theorems 5.4, 5.5 and 5.6. Note that
we have also proved:

Theorem 5.7 We have
ϑ(x) = Θ(x).

Exercise 5.8 If pn denotes the nth prime, show that pn = Θ(n logn). 2

Exercise 5.9 For integer n > 1, let ω(n) denote the number of distinct primes
dividing n. Show that ω(n) = O(log n/ log log n). 2

Exercise 5.10 Show that for positive integers a and b,
(
a+ b

b

)

≥ 2min(a,b).

2

5.2 Bertrand’s Postulate

Suppose we want to know how many primes there are of a given bit length,
or more generally, how many primes there are between m and 2m for a given
integer m. Neither the statement, nor the proof, of Chebyshev’s Theorem imply
that there are any primes between m and 2m, let alone a useful density estimate
of such primes.

Bertrand’s Postulate is the assertion that for all positive integers m, there
exists a prime between m and 2m. We shall in fact prove a stronger result,
namely, that not only is there one prime, but the number of primes between m
and 2m is Ω(m/ logm).
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Theorem 5.11 (Bertrand’s Postulate) For any integer m ≥ 2, we have

π(2m)− π(m) >
m

3 log(2m)
.

The proof uses Theorem 5.6, along with a more careful re-working of the
proof of Theorem 5.4. The theorem is clearly true for m = 2, so we may assume
that m ≥ 3. As in the proof of the Theorem 5.4, define N :=

(
2m
m

)
, and recall

that N is divisible only by primes strictly less than 2m, and that we have the
identity

νp(N) =
∑

k≥1
(b2m/pkc − 2bm/pkc), (5.1)

where each term in the sum is either 0 or 1. We can characterize the values
νp(N) a bit more precisely, as follows:

Lemma 5.12 With m and N as above, for all primes p, we have

pνp(N) ≤ 2m; (5.2)

if p >
√
2m, then νp(N) ≤ 1; (5.3)

if 2m/3 < p ≤ m, then νp(N) = 0; (5.4)

if m < p < 2m, then νp(N) = 1. (5.5)

Proof.
For (5.2), all terms with k > log(2m)/ log p in (5.1) vanish, and hence

νp(N) ≤ log(2m)/ log p, from which it follows that pνp(N) ≤ 2m.
(5.3) follows immediately from (5.2).
For (5.4), if 2m/3 < p ≤ m, then 2m/p < 3, and we must also have p ≥ 3,

since p = 2 implies m < 3. We have p2 > p(2m/3) = 2m(p/3) ≥ 2m, and hence
all terms with k > 1 in (5.1) vanish. The term with k = 1 also vanishes, since
1 ≤ m/p < 3/2, from which it follows that 2 ≤ 2m/p < 3, and hence bm/pc = 1
and b2m/pc = 2.

For (5.5), if m < p < 2m, it follows that 1 < 2m/p < 2, so b2m/pc = 1.
Also, m/p < 1, so bm/pc = 0. It follows that the term with k = 1 in (5.1) is 1,
and it is clear that 2m/pk < 1 for all k > 1, and so all the other terms vanish.
2

We need one more technical fact, namely, a somewhat better lower bound
on N than that used in the proof of Theorem 5.4:

Lemma 5.13 With m and N as above, we have

N > 4m/(2m). (5.6)
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Proof. We prove this for all m ≥ 2 by induction on m. One checks by direct
calculation that it holds for m = 2. For m > 2, by induction we have

(
2(m+ 1)

m+ 1

)

= 2
2m+ 1

m+ 1

(
2m

m

)

>
(2m+ 1)4m

m(m+ 1)
=

2m+ 1

2m

4m+1

2(m+ 1)
>

4m+1

2(m+ 1)
.

2

We now have the necessary technical ingredients to prove Theorem 5.11.
Define

Pm :=
∏

m<p<2m

p,

and define Qm so that
N = QmPm.

By (5.4) and (5.5), we see that

Qm =
∏

p≤2m/3
pνp(N).

Moreover, by (5.3), νp(N) > 1 for at most those p ≤
√
2m, so there are at most√

2m such primes, and by (5.2), the contribution of each such prime to the above
product is at most 2m. Combining this with Theorem 5.6, we obtain

Qm < (2m)
√
2m · 42m/3.

We now apply (5.6), obtaining

Pm = NQ−1m > 4m(2m)−1Q−1m > 4m/3(2m)−(1+
√
2m).

It follows that

π(2m)− π(m) ≥ logPm/ log(2m) >
m log 4

3 log(2m)
− (1 +

√
2m)

=
m

3 log(2m)
+
m(log 4− 1)

3 log(2m)
− (1 +

√
2m). (5.7)

Clearly, the term (m(log 4 − 1))/(3 log(2m)) in (5.7) dominates the term 1 +√
2m, and so Theorem 5.11 holds for all sufficiently large m. Indeed, a simple

calculation shows that (5.7) implies the theorem for m ≥ 13, 000, and one can
verify by brute force (with the aid of a computer) that the theorem holds for
m < 13, 000.



5.3. Mertens’ Theorem 65

5.3 Mertens’ Theorem

Our next goal is to prove the following theorem, which turns out to have a
number of applications.

Theorem 5.14 We have

∑

p≤x

1

p
= log log x+O(1).

The proof of this theorem, while not difficult, is a bit technical, and we
proceed in several steps.

Theorem 5.15 We have

∑

p≤x

log p

p
= log x+O(1).

Proof. Let n = bxc. By Theorem 5.3, we have

log(n!) =
∑

p≤n

∑

k≥1
bn/pkc log p =

∑

p≤n
bn/pc log p+

∑

k≥2

∑

p≤n
bn/pkc log p.

We next show that the last sum is O(n). We have

∑

p≤n
log p

∑

k≥2
bn/pkc ≤ n

∑

p≤n
log p

∑

k≥2
p−k

= n
∑

p≤n

log p

p2
· 1

1− 1/p
= n

∑

p≤n

log p

p(p− 1)

≤ n
∑

k≥2

log k

k(k − 1)
= O(n).

Thus, we have shown that

log(n!) =
∑

p≤n
bn/pc log p+O(n).

Further, since bn/pc = n/p+O(1), applying Theorem 5.6, we have

log(n!) =
∑

p≤n
(n/p) log p+O(

∑

p≤n
log p) +O(n) = n

∑

p≤n

log p

p
+O(n). (5.8)
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We can also estimate log(n!) using a little calculus (see §A.2). We have

log(n!) =
n∑

k=1

log k =

∫ n

1
log t dt+O(logn) = n logn− n+O(logn). (5.9)

Combining (5.8) and (5.9), and noting that log x− log n = o(1), we obtain

∑

p≤x

log p

p
= log n+O(1) = log x+O(1),

which proves the theorem. 2

We shall also need the following theorem, which is a very useful tool in its
own right:

Theorem 5.16 (Abel’s Identity) Suppose that ck, ck+1, . . . is a sequence of
numbers, that

C(t) :=
∑

k≤i≤t
ci,

and that f(t) has a continuous derivative f ′(t) on the interval [k, x]. Then

∑

k≤i≤x
cif(i) = C(x)f(x)−

∫ x

k
C(t)f ′(t) dt.

Note that since C(t) is a step function, the integrand C(t)f ′(t) is piece-wise
continuous on [k, x], and hence the integral is well defined (see §A.3).

Proof. Let n = bxc. We have

n∑

i=k

cif(i) = C(k)f(k) + [C(k + 1)− C(k)]f(k + 1) + · · ·
+ [C(n)− C(n− 1)]f(n)

= C(k)[f(k)− f(k + 1)] + · · ·+ C(n− 1)[f(n− 1)− f(n)]
+ C(n)f(n)

= C(k)[f(k)− f(k + 1)] + · · ·+ C(n− 1)[f(n− 1)− f(n)]
+ C(n)[f(n)− f(x)] + C(x)f(x).

Observe that for k ≤ i < n, we have C(t) = C(i) for i ≤ t < i+ 1, and so

C(i)[f(i)− f(i+ 1)] = −
∫ i+1

i
C(t)f ′(t) dt;
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likewise,

C(n)[f(n)− f(x)] = −
∫ x

n
C(t)f ′(t) dt,

from which the theorem directly follows. 2

Proof of Theorem 5.14. For i ≥ 2, set ci = log i/i if i is prime, and 0 otherwise.
By Theorem 5.15, we have

C(t) :=
∑

2≤i≤t
ci =

∑

p≤t

log p

p
= log t+O(1).

Applying Theorem 5.16 with f(t) = 1/ log t, we obtain

∑

p≤x

1

p
=

C(x)

log x
+

∫ x

2

C(t)

t(log t)2
dt

=

(

1 +O(1/ log x)

)

+

(∫ x

2

dt

t log t
+O(

∫ x

2

dt

t(log t)2
)

)

= 1 +O(1/ log x) + (log log x− log log 2) +O(1/ log 2− 1/ log x)

= log log x+O(1).

2

Using Theorem 5.14, we can easily show the following:

Theorem 5.17 (Mertens’ Theorem) Let U(x) :=
∏

p≤x(1−1/p), where the
product is over all primes p up to x. Then

U(x) = Θ(1/ log x).

Proof. Using parts (1) and (3) of §A.1, we have

− 1

p2
≤ 1

p
+ log(1− 1/p) ≤ 0. (5.10)

Moreover, since
∑

p≤x

1

p2
≤
∑

i≥2

1

i2
<∞,

summing the inequality (5.10) over all primes p ≤ x yields

−C ≤
∑

p≤x

1

p
+ logU(x) ≤ 0,
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From this, and from Theorem 5.14, we obtain

log log x+ logU(x) = O(1).

Now exponentiate both sides, and the theorem follows. 2

Exercise 5.18 Let ω(n) be the number of distinct prime factors of n, and define
ω(x) =

∑

n≤x ω(n), so that ω(x)/x represents the “average” value of ω. First,
show that ω(x) =

∑

p≤xbx/pc. From this, show that ω(x) ∼ x log log x. 2

Exercise 5.19 Analogously to the previous exercise, show that
∑

n≤x d(n) ∼
x log x, where d(n) is the number of divisors of n. 2

Exercise 5.20 Define the sequence of numbers n1, n2, . . ., where nk is the prod-
uct of all the primes up to k. Show that as k → ∞, φ(nk) = O(nk/ log lognk).
Hint: you will want to use Mertens’ Theorem, and also Theorem 5.7. 2

Exercise 5.21 The previous exercise showed that φ(n) could be as small as
(about) n/ log log n for infinitely many n. Show that this is the “worst case,” in
the sense that φ(n) = Ω(n/ log logn) as n→∞. 2

Exercise 5.22 Show that for any positive integer constant k,

∫ x

2

dt

(log t)k
=

x

(log x)k
+O

(
x

(log x)k+1

)

.

2

Exercise 5.23 Use Chebyshev’s Theorem and Abel’s Identity to show that

∑

p≤x

1

log p
=
π(x)

log x
+O(x/(log x)3).

2

Exercise 5.24 Use Chebyshev’s Theorem and Abel’s Identity to prove a
stronger version of Theorem 5.5:

ϑ(x) = π(x) log x+O(x/ log x).

2
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Exercise 5.25 Define

U2(x) :=
∏

2<p≤x
(1− 2/p),

where the product is over all primes between 3 and x. Show that

U2(x) = Θ(1/(log x)2).

2

Exercise 5.26 Show that if π(x) ∼ cx/ log x for some constant c, then we must
have c = 1. Hint: use either Theorem 5.14 or 5.15. 2

Exercise 5.27 Strengthen Theorem 5.14, showing that
∑

p≤x 1/p ∼ log log x+
A for some constant A. (Note: A ≈ 0.261497212847643.) 2

Exercise 5.28 Strengthen Mertens’ Theorem, showing that U(x) ∼ B1/(log x)
for some constant B1. Hint: use the result from the previous exercise. (Note:
B1 ≈ 0.561459483566885.) 2

Exercise 5.29 Strengthen the result of Exercise 5.25, showing that U2(x) ∼
B2/(log x)

2 for some constant B2. (Note: B2 ≈ 0.832429065662.) 2

5.4 The Sieve of Eratosthenes

As an application of Theorem 5.14, consider the Sieve of Eratosthenes. This is
an algorithm for generating all the primes up to a given bound k. It uses an
array A[2 . . . k], and runs as follows.

for n← 2 to k do A[n]← 1

for n← 2 to b
√
kc do

if A[n] = 1 then
i← 2n; while i ≤ k do { A[i]← 0; i← i+ n }

When the algorithm finishes, we have A[n] = 1 if and only if n is prime, for
2 ≤ n ≤ k. This can easily be proven using the fact that a composite number
n between 2 and k must be divisible by a prime that is at most

√
k, and by

proving by induction on n that at the beginning of the nth iteration of the main
loop, A[i] = 0 iff i is divisible by a prime less than n, for n ≤ i ≤ k. We leave
the details of this to the reader.
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We are more interested in the running time of the algorithm. To analyze the
running time, we assume that all arithmetic operations take constant time; this
is reasonable, since all the quantities computed in the algorithm are bounded by
k, and we need to at least be able to index all entries of the array A, which has
size k.

Every time we execute the inner loop of the algorithm, we perform O(k/n)
steps to clear the entries of A whose indices are multiples of n. Naively, we could
bound the running time by a constant times

∑

n≤
√
k

k/n,

which is O(k len(k)), where we use a little calculus (see §A.2) to derive that

∑̀

n=1

1/n =

∫ `

1

dy

y
+O(1) ∼ log `.

However, the inner loop is executed only for prime values of n; thus, the running
time is proportional to

∑

p≤
√
k

k/p,

and so by Theorem 5.14 is Θ(k len(len(k))).

Exercise 5.30 Give a detailed proof of the correctness of the above algorithm.
2

Exercise 5.31 One drawback of the above algorithm is its use of space: it
requires an array of size k. Show how to modify the algorithm, without sub-
stantially increasing its running time, so that one can enumerate all the primes
up to k, using an auxiliary array of size just O(

√
k). 2

Exercise 5.32 Design and analyze an algorithm that on input k outputs the
table of values d(n) for n = 1 . . . k, where d(n) is the number of divisors of n.
Your algorithm should run in time O(k len(k)). 2

5.5 The Prime Number Theorem . . . and Beyond

In this section, we survey a number of theorems and conjectures related to the
distribution of primes. This is a vast area of mathematical research, with a
number of very deep results. We shall be stating a number of theorems from the
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literature in this section without proof; while our intent is to keep the text as self
contained as possible, and to avoid degenerating into “mathematical tourism,” it
nevertheless is a good idea to occasionally have a somewhat broader perspective.
In the following chapters, we shall not make any critical use of the theorems in
this section.

5.5.1 The Prime Number Theorem

The main theorem in the theory of the density of primes is the following.

Theorem 5.33 (Prime Number Theorem) We have

π(x) ∼ x/ log x.

Proof. Literature — see §5.6. 2

As we saw in Exercise 5.26, if π(x)/(x/ log x) tends to a limit as x → ∞,
then the limit must be 1, so in fact the hard part of proving the Prime Number
Theorem is to show that π(x)/(x/ log x) does indeed tend to some limit.

One simple consequence of the Prime Number Theorem, together with The-
orem 5.5, is the following:

Theorem 5.34 We have
ϑ(x) ∼ x.

Exercise 5.35 Using the Prime Number Theorem, show that if pn denotes the
nth prime, then pn ∼ n logn. 2

Exercise 5.36 Show that using the Prime Number Theorem, Theorem 5.11
(Bertrand’s Postulate) can be strengthened (asymptotically) as follows: for all
ε > 0, there exist positive constants c and x0, such that for all x ≥ x0, we have

π((1 + ε)x)− π(x) ≥ c
x

log x
.

2

5.5.2 The Error Term in the Prime Number Theorem

The Prime Number Theorem says that

|π(x)− x/ log x| ≤ δ(x),

where δ(x) = o(x/ log x). A natural question is: how small is the “error term”
δ(x)? It turns out that:



72 Chapter 5. The Distribution of Primes

x π(x) li(x) x/ log x

103 168 176.6 144.8
106 78498 78626.5 72382.4
109 50847534 50849233.9 48254942.4
1012 37607912018 37607950279.8 36191206825.3
1015 29844570422669 29844571475286.5 28952965460216.8
1018 24739954287740860 24739954309690414.0 24127471216847323.8

Table 5.2: Values of π(x), li(x), and x/ log x

Theorem 5.37 We have

π(x) = x/ log x+O(x/(log x)2).

The above bound on the error term is not very impressive. The reason is
that x/ log x is not really the best “simple” function that approximates π(x).
It turns out that a better approximation to π(x) is the logarithmic integral,
defined by

li(x) :=

∫ x

2

dt

log t
.

It is not hard to show (see Exercise 5.22) that

li(x) = x/ log x+O(x/(log x)2).

Thus, li(x) ∼ x/ log x ∼ π(x). However, the error term in the approximation
of π(x) by li(x) is much better. This is illustrated numerically in Table 5.2 —
notice how much better li(x) approximates π(x) than does x/ log x; for example,
at x = 1018, li(x) approximates π(x) with a relative error just under 10−9, while
x/ log x approximates π(x) with a relative error of about 0.025.

The sharpest proven result is the following:

Theorem 5.38 Let κ(x) := (log x)3/5(log log x)−1/5. Then for some c > 0, we
have

π(x) = li(x) +O(xe−cκ(x)).

Proof. Literature — see §5.6. 2

Note that the error term xe−cκ(x) is o(x/(log x)k) for every fixed k ≥ 0.
Also note that Theorem 5.37 follows directly from the above theorem and Ex-
ercise 5.22.
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Although the above estimate on the error term in the approximation of π(x)
by li(x) is pretty good, it is conjectured that the actual error term is much
smaller:

Conjecture 5.39 For all x ≥ 2.01, we have

|π(x)− li(x)| < x1/2 log x.

Conjecture 5.39 is equivalent to a famous conjecture called the Riemann
Hypothesis, which is an assumption about the location of the zeros of a certain
function, called Riemann’s “zeta” function. We give a very brief, high-level
account of this conjecture, and its connection to the theory of the distribution
of primes.

For real s > 1, the zeta function is defined as

ζ(s) :=
∞∑

n=1

1

ns
. (5.11)

Note that because s > 1, the infinite series defining ζ(s) converges. A simple,
but important, connection between the zeta function and the theory of prime
numbers is the following:

Theorem 5.40 (Euler’s Identity) For real s > 1, we have

ζ(s) =
∏

p

(1− p−s)−1. (5.12)

Proof. The rigorous interpretation of the infinite product on the right-hand
side of (5.12) is as a limit of finite products. Thus, if p1, p2, . . . is the list of
primes, we are really proving that

ζ(s) = lim
r→∞

r∏

i=1

(1− p−si )−1.

Now, from the identity

(1− p−si )−1 =
∞∑

e=0

p−esi ,

we have

r∏

i=1

(1− p−si )−1 =

(

1 + p−s1 + p−2s1 + · · ·
)

· · ·
(

1 + p−sr + p−2sr + · · ·
)
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=
∞∑

e1=0

· · ·
∞∑

er=0

(pe11 · · · perr )s

=
∞∑

n=1

gr(n)

ns
,

where

gr(n) =

{
1 if n is divisible only by the primes p1, . . . , pr;
0 otherwise.

Here, we have made use of the fact (see §A.5) that we may sum the terms in a
nested summation of non-negative terms any way we please, without affecting
its value.

Now, for any ε > 0, there exists n0 such that
∑∞

n=n0
n−s < ε (because the

series defining ζ(s) converges). Moreover, there exists an r0 such that gr(n) = 1
for all n < n0 and r ≥ r0. Therefore, for r ≥ r0, we have

∣
∣
∣
∣

∞∑

n=1

gr(n)

ns
− ζ(s)

∣
∣
∣
∣
≤

∞∑

n=n0

n−s < ε.

It follows that

lim
r→∞

∞∑

n=1

gr(n)

ns
= ζ(s),

2

While Theorem 5.40 is nice, things become much more interesting if one
extends the domain of definition of the zeta function to the complex plane. For
the reader who is familiar with just a little complex analysis, it is easy to see
that the infinite series defining the zeta function in (5.11) converges absolutely
for complex numbers s whose real part is greater than 1, and that (5.12) holds
as well for such s. However, it is possible to define the domain of definition of ζ
even further. For example, we may define ζ(s) for all complex numbers s with
real part greater than zero by the following formula:

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

x− bxc
xs+1

dx. (5.13)

One can show that this definition of the zeta function agrees with the definition
(5.11) for those s whose real part is greater than 1, and that the zeta function
is analytic everywhere in its domain of definition, except for a simple pole at
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s = 1. It is even possible to extend the domain of definition of the zeta function
to the entire complex plane, obtaining a function that is analytic everywhere,
except for a simple pole at s = 1.

We can now state the Riemann Hypothesis:

Conjecture 5.41 (Riemann Hypothesis) The zeta function does not vanish
at any complex points of the form s = x+ yi, where 0 < x < 1 and x 6= 1/2.

A lot is known about the zeros of the zeta function in the “critical strip,”
consisting of those points s whose real part is greater than zero and less than
one: it is known that there are infinitely many of them, and there are even
good estimates about their density. It turns out that one can apply standard
tools in complex analysis, like contour integration, to the zeta function (and
functions derived from it) to answer various questions about the distribution of
primes. Indeed, such techniques may be used to prove the prime number theo-
rem. However, if one assumes Riemann Hypothesis holds, then these techniques
yield much sharper results, such as the bound in Conjecture 5.39.

5.5.3 Explicit Estimates

Sometimes, it is useful to have explicit estimates for π(x), as well as related
functions, like ϑ(x) and the nth prime function pn. The following theorem
summarizes presents a number of bounds that have been proved without relying
on any unproved conjectures.

Theorem 5.42 We have

x

log x

(

1 +
1

2 log x

)

< π(x) <
x

log x

(

1 +
3

2 log x

)

, for x ≥ 59;

n(log n+ log log n− 3/2) < pn < n(log n+ log log n− 1/2), for n ≥ 20;

x(1− 1/(2 log x)) < ϑ(x) < x(1 + 1/(2 log x)), for x ≥ 563;

log log x+A−1/(2(log x)2) <
∑

p≤x
1/p < log log x+A+1/(2(log x)2), for x ≥ 286,

where A is the constant in Exercise 5.27;

B1
log x

(

1− 1

2(log x)2

)

<
∏

p≤x

(

1− 1

p

)

<
B1
log x

(

1 +
1

2(log x)2

)

, for x ≥ 285,

where B1 is the constant in Exercise 5.28.

Proof. Literature — see §5.6. 2
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5.5.4 Primes in Arithmetic Progressions

The arithmetic progression of odd numbers 1, 3, 5, . . . contains infinitely many
primes. It is natural to ask if other arithmetic progressions do as well. An
arithmetic progression with first term a and common difference d consists of all
integers of the form

md+ a, m = 0, 1, 2, . . . .

If d and a have a common factor c > 1, then every term in the progression is
divisible by c, and so there can be no more than one prime in the progression.
So a necessary condition for the existence of infinitely many primes p with p ≡
a (mod d) is that gcd(d, a) = 1. A famous theorem due to Dirichlet states that
this is a sufficient condition as well.

Theorem 5.43 (Dirichlet’s Theorem) For any positive integer d and any
integer a relatively prime to d, there are infinitely many primes p with p ≡
a (mod d).

Proof. Literature — see §5.6. 2

We can also ask about the density of primes in arithmetic progressions.
One might expect that for a fixed value of d, the primes are distributed in
roughly equal measure among the φ(d) different residue classes [a mod d] with
gcd(a, d) = 1. This is in fact the case. To formulate such assertions, we define
π(x; d, a) to be the number of primes p up to x with p ≡ a (mod d).

Theorem 5.44 Let d > 0 be fixed, and let a be relatively prime to d. Then

π(x; d, a) ∼ x

φ(d) log x
.

Proof. Literature — see §5.6. 2

The above theorem is only applicable in the case where d is fixed and x→∞.
But what if we want an estimate on the number of primes p up to x with
p ≡ a (mod d), where x is, say, a fixed power of d? Theorem 5.44 does not help
us here. The following conjecture does, however:

Conjecture 5.45 For any x ≥ 2, d ≥ 2, and a relatively prime to d, we have

∣
∣
∣
∣
π(x; d, a)− li(x)

φ(d)

∣
∣
∣
∣
≤ x1/2(log x+ 2 log d).
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The above conjecture is in fact a consequence of a generalization of the
Riemann Hypothesis — see §5.6.

Exercise 5.46 Assuming Conjecture 5.45, show that for all 0 < α < 1/2, there
exists an x0, such that for all x > x0, for all 2 ≤ d ≤ xα, and for all a relatively
prime to d, there are at least li(x)/(2φ(d)) primes p ≤ x such that p ≡ a (mod d).
2

It is an open problem to prove an unconditional density result analogous to
Exercise 5.46 for any positive exponent α. The following, however, is known:

Theorem 5.47 There exists a constant c such that for all d ≥ 2 and a relatively
prime to d, the least prime p with p ≡ a (mod d) is at most cd11/2.

Proof. Literature — see §5.6. 2

5.5.5 Sophie Germain Primes

A Sophie Germain prime is a prime p such that 2p + 1 is also prime. Such
primes are actually useful in a number of practical applications, and so we discuss
them briefly here.

It is an open problem to prove (or disprove) that there are infinitely many
Sophie Germain primes. However, numerical evidence, and heuristic arguments,
strongly suggest not only that there are infinitely many such primes, but also a
fairly precise estimate on the density of such primes.

Let π∗(x) denote the number of Sophie Germain primes up to x.

Conjecture 5.48 We have

π∗(x) ∼ C
x

(log x)2
,

where C is the constant

C := 2
∏

q>2

q(q − 2)

(q − 1)2
≈ 1.32032,

and the product is over all primes q > 2.

The above conjecture is a special case of a more general conjecture, known
as Hypothesis H. We can formulate a special case of Hypothesis H (which
includes Conjecture 5.48), as follows:
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Conjecture 5.49 Let (a1, b1), . . . , (ak, bk) be distinct pairs of integers such that
ai > 0 and for all primes p, there exists an integer m such that

k∏

i=1

(mai + bi) 6≡ 0 (mod p).

Let P (x) be the number of integers m up to x such that mai + bi are simultane-
ously prime for 1 ≤ i ≤ k. Then

P (x) ∼ D
x

(log x)k
,

where

D :=
∏

p

{(

1− 1

p

)−k(

1− ω(p)

p

)}

,

the product being over all primes p, and ω(p) being the number of distinct solu-
tions m modulo p to the congruence

k∏

i=1

(mai + bi) ≡ 0 (mod p).

The above conjecture also includes (a strong version of) the famous twin
primes conjecture as a special case: the number of primes p up to x such
that p + 2 is also prime is ∼ Cx/(log x)2, where C is the same constant as in
Conjecture 5.48.

Exercise 5.50 Show that the constant C appearing in Conjecture 5.48 satisfies

2C = B2/B
2
1 ,

where B1 and B2 are the constants from Exercises 5.28 and 5.29. 2

Exercise 5.51 Show that the quantity D appearing in Conjecture 5.49 is well
defined, and satisfies 0 < D <∞. 2

5.6 Notes

The Prime Number Theorem was conjectured by Gauss in 1791. It was proven
independently in 1896 by Hadamard and de la Vallée Poussin. A proof of the
Prime Number theorem may be found in the book by Hardy and Wright [35].
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Theorem 5.42, as well as the estimates for the constants A, B1, and B2
mentioned in Exercises 5.27, 5.28, and 5.29, are from Rosser and Schoenfeld
[63].

Theorem 5.38 is from Walfisz [77].
Theorem 5.40, which made the first connection between the theory of prime

numbers and the zeta function, was discovered in the 18th century by Euler. The
Riemann Hypothesis was made by Riemann in 1859, and to this day, remains
one of the most vexing conjectures in mathematics. Riemann in fact showed that
his conjecture about the zeros of the zeta function is equivalent to the conjecture
that for each fixed ε > 0, π(x) = li(x) + O(x1/2+ε). This was strengthened by
Koch in 1901, who showed that the Riemann Hypothesis is true if and only
if π(x) = li(x) + O(x1/2 log x). See Chapter 1 of the book by Crandall and
Pomerance [25] for more on the connection between the Riemann Hypothesis
and the theory of prime numbers; in particular, see Exercise 1.36 in that book
for an outline of a proof that Conjecture 5.39 follows from Riemann Hypothesis.

A warning: some authors (and software packages) define the logarithmic
integral using the interval of integration (0, x), rather than (2, x), which increases
its value by a constant c ≈ 1.0452.

Theorem 5.43 was proved by Dirichlet in 1837, while Theorem 5.44 was
proved by de la Vallée Poussin in 1896. Conjecture 5.45 was proved by Oesterlé
[55] to be a consequence of an assumption about the location of the zeros of
certain generalizations of Riemann’s zeta function. Theorem 5.47 is from Heath-
Brown [36].

Hypothesis H is from Hardy and Littlewood [34].
For the reader who is interested in learning more on the topics discussed in

this chapter, we recommend the books by Apostol [7] and Hardy and Wright
[35]; indeed, many of the proofs presented in this chapter are minor variations
on proofs from these two books. See also Bach and Shallit [11] (especially
Chapter 8), Crandall and Pomerance [25] (especially Chapter 1) for a more
detailed overview of these topics.



Chapter 6

Discrete Probability
Distributions

This chapter introduces concepts from discrete probability theory. We begin
with a discussion of finite probability distributions, and then towards the end of
the chapter we discuss the more general notion of a discrete probability distri-
bution.

6.1 Finite Probability Distributions: Basic Defini-
tions

A finite probability distribution D = (U ,P) is a finite set U , together with
a function P that maps u ∈ U to 0 ≤ P[u] ≤ 1, such that

∑

u∈U
P[u] = 1. (6.1)

The set U is called the sample space and the function P is called the proba-
bility function.

Intuitively, the elements of U represent the possible outcomes of a random
experiment, where the probability of outcome u ∈ U is P[u].

Throughout this chapter, unless otherwise stated, we shall assume some par-
ticular finite probability distribution D = (U ,P) is under consideration. Also,
up until §6.9, we shall use the phrase “probability distribution” to mean “finite
probability distribution.”

Example 6.1 If we think of rolling a fair die, then U = {1, 2, 3, 4, 5, 6}, and
P[u] = 1/6 for all u ∈ U gives a probability distribution describing the possible
outcomes of the experiment. 2

80
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Example 6.2 More generally, if U is a finite set, and P[u] = 1/|U| for all u ∈ U ,
then D is called the uniform distribution on U . 2

Example 6.3 A coin flip is an example of aBernoulli trial, which is in general
an experiment with only two possible outcomes: success, which occurs with
probability p, and failure, which occurs with probability q = 1− p. 2

Example 6.4 Suppose we perform an experiment by executing n Bernoulli tri-
als, where each trial succeeds with the same probability p, independently of the
outcomes of all of the other trials. Let the outcome u of the experiment denote
the total number of successes among the n trials. To model this as a probability
distribution, we set U = {0, . . . , n}, and for each 0 ≤ u ≤ n, we associate the
probability

P[u] =

(
n

u

)

puqn−u,

where q = 1 − p, since there are n choose u ways to pick which of the n trials
succeeds. Such a distribution is called a binomial distribution. The reader
may verify that the probabilities sum to one. 2

An event is a subset A of U , and the probability of A is defined to be

P[A] :=
∑

u∈A
P[u]. (6.2)

Thus, we extend the domain of definition of P from U to the set of all subsets
of U .

For an event A, let A denote the complement of A in U . We have P[∅] = 0,
P[U ] = 1, P[A] = 1− P[A].

For any events A,B, if A ⊆ B, then P[A] ≤ P[B]. Also, for any events A,B,
we have

P[A ∪ B] = P[A] + P[B]− P[A ∩ B] ≤ P[A] + P[B]; (6.3)

in particular, if A and B are disjoint,

P[A ∪ B] = P[A] + P[B]. (6.4)

More generally, for any events A1, . . . ,An we have

Pr[A1 ∪ · · · ∪ An] ≤ P[A1] + · · ·+ P[An], (6.5)

and if the Ai’s are pairwise disjoint, then

P[A1 ∪ · · · ∪ An] = P[A1] + · · ·+ P[An]. (6.6)
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IfD1 = (U1,P1) andD2 = (U2,P2) are probability distributions, we can form
the product distribution D = (U ,P), where U := U1×U2, and P[(u1, u2)] :=
P1[u1]P2[u2]. It is easy to verify that the product distribution is also a probability
distribution.

Intuitively, the elements (u1, u2) of U1 × U2 denote the possible outcomes of
two separate experiments.

More generally, if Di = (Ui,Pi) for 1 ≤ i ≤ n, we can define the product
distribution D = (U ,P), where U := U1 × · · · × Un, and P[(u1, . . . , un)] :=
P[u1] . . .P[un].

Example 6.5 Continuing with Example 6.1, the probability of an “odd roll”
A = {1, 3, 5} is 1/2. 2

Example 6.6 More generally, if D is the uniform distribution of a set U of
cardinality n, and A is a subset of U of cardinality k, then P[A] = k/n. 2

Example 6.7 Alice rolls two dice, and asks Bob (without looking) to guess
a value that appears on either of the two dice. Let us model this situation
by considering the uniform distribution on {(x, y) : 1 ≤ x, y ≤ 6}, where x
represents the value of the first die, and y the value of the second, which is the
product distribution of two copies of the distribution from Example 6.1.

For 1 ≤ x ≤ 6, let Ax be the event that the first die is x, and Bx the event
that the second die is x, Let Cx = Ax∪Bx be the event that x appears on either
of the two dice. No matter what value 1 ≤ x ≤ 6 Bob chooses, the probability
that this choice is correct is

P[Cx] = P[Ax ∪ Bx] = P[Ax] + P[Bx]− P[Ax ∩ Bx] = 1/6 + 1/6− 1/36 = 11/36.

2

Exercise 6.8 Using Equation 6.3, prove the inclusion/exclusion principle: for
events A1, . . . ,An,

P[A1 ∪ · · · ∪ An] =
n∑

`=1

(−1)`−1
∑

i1,...,i`

P[Ai1 ∩ · · · ∩ Ai` ],

where the inner sum is over all subsets of ` distinct indices between 1 and n. 2
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6.2 Conditional Probability and Independence

For events A and B with P[B] 6= 0, the conditional probability of A given
B is defined as

P[A | B] := P[A ∩ B]/P[B].
Intuitively, P[A | B] is the probability that event A occurred, given that event
B occurred; that is, if a random experiment produces an outcome according to
the given probability distribution D, and we know that the outcome lies in B —
but nothing more about the outcome — then P[A | B] represents the probability
that the outcome lies in A, given this partial knowledge about the outcome.

The function P[· | B] defines another probability distribution on U , namely,
DB = (U ,P[· | B]), called the conditional distribution given by B.

For events A and B, if P[A ∩ B] = P[A] · P[B], then A and B are called
independent events. If P[B] 6= 0, a simple calculation shows that A and B are
independent if and only if P[A | B] = P[A].

A collection A1, . . . ,An of events is called pairwise independent of P[Ai∩
Aj ] = P[Ai]P[Aj ] for all i 6= j, and is called mutually independent if every
subset Ai1 , . . . ,Aik of the collection satisfies

P[Ai1 ∩ · · · ∩ Aik ] = P[Ai1 ] · · ·P[Aik ].

Example 6.9 In Example 6.7, suppose that Alice tells Bob the sum of the
two dice before Bob makes his guess. For example, suppose Alice tells Bob the
sum is 4. Then what is Bob’s best strategy in this case? Let Sz be the event
that the sum is z, for 2 ≤ z ≤ 12, and consider the conditional probability
distribution determined by S4. This is the uniform distribution on the three
pairs (1, 3), (2, 2), (3, 1). The numbers 1 and 3 both appear in two pairs, while
the number 2 appears in just one pair. Therefore,

P[C1 | S4] = P[C3 | S4] = 2/3,

while
P[C2 | S4] = 1/3

and
P[C4 | S4] = P[C5 | S4] = P[C6 | S4] = 0.

Thus, if the sum is 4, Bob’s best strategy is to guess either 1 or 3.
Note that the events A1 and B2 are independent, while the events A1 and

S4 are not. 2
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Example 6.10 Suppose we toss three fair coins. Let A1 be the event that the
first coin is “heads,” let A2 be the event that the second coin is “heads,” and
let A3 be the event that the third coin is “heads.” Then the collection of events
{A1,A2,A3} is mutually independent.

Now let B12 be the event that the first and second coins agree (i.e., both
“heads” or both “tails”), let B13 be the event that the first and third coins
agree, and let B23 be the event that the second and third coins agree. Then the
collection of events {B12,B13,B23} is pairwise independent, but not mutually
independent. Indeed, the probability that any one of the events occurs is 1/2,
and the probability that any two of the three events occurs is 1/4; however, the
probability that all three occurs is also 1/4, since if any two events occur, then
so does the third. 2

Suppose we have a collection B1, . . . ,Bn of events that partitions U (i.e., the
Bi are non-empty, pairwise disjoint, and their union is U), such that each event
Bi occurs with non-zero probability. Then it is easy to see that for any event A,

P[A] =
n∑

i=1

P[A ∩ Bi] =
n∑

i=1

P[A | Bi] · P[Bi]. (6.7)

Furthermore, if P[A] 6= 0, then for any 1 ≤ j ≤ n, we have

P[Bj | A] =
P[A ∩ Bj ]

P[A] =
P[A | Bj ]P[Bj ]

∑n
i=1 P[A | Bi]P[Bi]

. (6.8)

This equality, known as Bayes’ Theorem, allows us to compute the conditional
probability P[Bj | A] in terms of the conditional probabilities P[A | Bi].

The equation (6.7) is useful for computing or estimating probabilities by
conditioning on specific events Bi in such a way that the conditional probabilities
P[A | Bi] are easy to compute or estimate. Also, if we want to compute a
conditional probability P[A | C], we can do so by partitioning C into events
B1, . . . ,Bn, where each Bi occurs with non-zero probability, and use the following
simple fact:

P[A | C] =
n∑

i=1

P[A | Bi]P[Bi]/P[C]. (6.9)

Example 6.11 This example is based on the TV game show “Let’s make a
deal,” which was popular in the 1970’s. In this game, a contestant chooses one
of three doors. Behind two doors is a “zonk,” e.g., something of little or no
value, and behind one of the doors is a “grand prize,” e.g., a car or vacation
package. We may assume that the door behind which the grand prize is placed
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is chosen at random from among the three doors, with equal probability. After
the contestant chooses a door, the host of the show, Monty Hall, always reveals a
zonk behind one of the two doors not chosen by the contestant. The contestant
is then given a choice: either stay with his initial choice of door, or switch to
the other unopened door. After the contestant finalizes his decision on which
door to choose, that door is opened and he wins whatever is behind the chosen
door. The question is, which strategy is better for the contestant: to stay or to
switch?

Let us evaluate the two strategies. If the contestant always stays with his
initial selection, then it is clear that his probability of success is exactly 1/3.

Now consider the strategy of always switching. Let B be the event that the
contestant’s initial choice was correct, and let A be the event that the contestant
wins the grand prize. On the one hand, if the contestant’s initial choice was
correct, then switching will certainly lead to failure. That is, P[A | B] = 0. On
the other hand, suppose that the contestant’s initial choice was incorrect, so that
one of the zonks is behind the initially chosen door. Since Monty reveals the
other zonk, switching will lead with certainty to success. That is, P[A | B] = 1.
Furthermore, it is clear that P[B] = 1/3. So we compute

P[A] = P[A | B]P[B] + P[A | B]P[B] = 0 · (1/3) + 1 · (2/3) = 2/3.

Thus, the “stay” strategy has a success probability of 1/3, while the “switch”
strategy has a success probability of 2/3. So it is better to switch than to stay.

Of course, real life is a bit more complicated. Monty did not always reveal a
zonk and offer a choice to switch. Indeed, if Monty only revealed a zonk when
the contestant had chosen the correct door, then switching would certainly be
the wrong strategy. However, if Monty’s choice itself was a random decision
made independent of the contestant’s initial choice, then switching is again the
preferred strategy. 2

Example 6.12 Suppose that the rate of incidence of disease X in the overall
population is 1%. Also suppose that there is a test for disease X; however, the
test is not perfect: it has a 5% false positive rate, and a 2% false negative rate.
A doctor gives the test to a patient and it comes out positive. How should the
doctor advise his patient? In particular, what is the probability that the patient
actually has disease X, given a positive test result?

Amazingly, many trained doctors will say the probability is 95%, since the
test has a false positive rate of 5%. However, this conclusion is completely
wrong.

Let A be the event that the test is positive and let B be the event that
the patient has disease X. The relevant quantity that we need to estimate is
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P[B | A]; that is, the probability that the patient has disease X, given a positive
test result. We use Bayes’ Theorem to do this:

P[B | A] = P[A | B]P[B]
P[A | B]P[B] + P[A | B]P[B]

=
0.98 · 0.01

0.98 · 0.01 + 0.05 · 0.99 ≈ 0.17.

Thus, the chances that the patient has disease X given a positive test result is
just 17%. The correct intuition here is that it is much more likely to get a false
positive than it is to actually have the disease.

Of course, the real world is a bit more complicated than this example sug-
gests: the doctor may be giving the patient the test because other risk factors or
symptoms may suggest that the patient is more likely to have the disease than
a random member of the population, in which case the above analysis does not
apply. 2

Exercise 6.13 Show that if two events A and B are independent, then so are
A and B. 2

Exercise 6.14 Suppose we roll two dice, and let (x, y) denote the outcome (as
in Example 6.7). For each of the following pairs of events A and B, determine
if they are independent or not:

• A: x = y; B: y = 1.

• A: x ≥ y; B: y = 1.

• A: x ≥ y; B: y2 = 7y − 6.

• A: xy = 6; B: y = 3.

2

6.3 Random Variables

Let D = (U ,P) be a probability distribution. It is sometimes convenient to
associate a real number, or other mathematical object, with each outcome u ∈ U .
Such an association is called a random variable; more formally, a random
variable X is a function from U into a set X . If X is a subset of the real
numbers, then X is called a real random variable. For a random variable
X : U → X , we define im(X) := X(U) = {X(u) : u ∈ U}.

One may define any number of random variables on a given probability
distribution. If X : U → X is a random variable, and f : X → Y is a function,
then f(X) := f ◦X is also a random variable.
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Example 6.15 Suppose we flip n fair coins. Then we may define a random
variable X that maps each outcome to a bit string of length n, where a “head”
is encoded as a 1-bit, and a “tail” is encoded as a 0-bit. We may define another
random variable Y that is the number of “heads.” The variable Y is a real
random variable. 2

Let X : U → X be a random variable. For x ∈ X , we write “X = x”
as shorthand for the event {u ∈ U : X(u) = x}. More generally, for and any
predicate φ, we may write “φ(X)” as shorthand for the event {u ∈ U : φ(X(u))}.

A random variable X defines a probability distribution on im(X), where the
probability associated with x ∈ im(X) is P[X = x]. We call this the distribu-
tion of X. For two random variables X,Y defined on a probability distribution,
Z = (X,Y ) is also a random variable whose distribution is called the joint dis-
tribution of X and Y .

If X is a random variable, and A is an event with non-zero probability, then
the conditional distribution of X given by A is the probability distribution
on im(X), where the probability associated with x ∈ im(X) is P[X = x | A].

We say two random variables X,Y are independent if for all x ∈ im(X)
and y ∈ im(Y ), the events X = x and Y = y are independent, i.e.,

P[X = x ∧ Y = y] = P[X = x]P[Y = y].

Equivalently, X and Y are independent if and only if their joint distribution
is equal to the product of their individual distributions. Alternatively, X and
Y are independent if and only if for all values x taken by X with non-zero
probability, the conditional distribution of Y given by the event X = x is the
same as the distribution of Y .

A collection X1, . . . , Xn of random variables is called pairwise indepen-
dent if for all 1 ≤ i < j ≤ n, Xi and Xj are independent. We say that
X1, . . . , Xn are mutually independent if for all x1 ∈ im(X1), . . . , xn ∈
im(Xn), we have

P[X1 = xn ∧ · · · ∧Xn = xn] = P[X1 = x1] · · ·P[Xn = xn].

More generally, for 2 ≤ k ≤ n, we say that the random variables X1, . . . , Xn are
k-wise independent if any k of them are mutually independent.

Example 6.16 We toss 3 coins, and set Xi = 0 if the ith coin is “tails,” and
Xi = 1 otherwise. The variables X1, X2, X3 are mutually independent. Let us
set Y12 = X1 ⊕ X2, Y13 = X1 ⊕ X3, and Y23 = X2 ⊕ X3, where “⊕” denotes
“exclusive or,” i.e., addition modulo 2. Then the variables Y12, Y13, Y23 are
pairwise independent, but not mutually independent — observe that Y12⊕Y13 =
Y23. 2
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The following is a simple but useful fact:

Theorem 6.17 Let Xi : U → Xi, for 1 ≤ i ≤ n, be random variables, and
suppose that there exist functions fi : Xi → [0, 1], for 1 ≤ i ≤ n, such that

∑

xi∈Xi

fi(xi) = 1 (i = 1 . . . n),

and

P[X1 = x1 ∧ · · · ∧Xn = xn] = f1(x1) · · · fn(xn) (for all x1 ∈ X1, . . . , xn ∈ Xn).

Then for any subset of indices 1 ≤ i1 < i2 < · · · < i` ≤ n, we have

P[Xi1 = xi1∧· · ·∧Xi` = xi` ] = f(xi1) · · · f(i`) (for all xi1 ∈ Xi1 , . . . , xi` ∈ Xi`).

Proof. We may assume that {i1, . . . , i`} = {1, . . . , `} — otherwise, just reorder
the Xi’s. Now fix x1, . . . , x`. We have

P[X1 = x1 ∧ · · · ∧X` = x`]

=
∑

x`+1

· · ·
∑

xn

P[X1 = x1 ∧ · · · ∧X` = x` ∧X`+1 = x`+1 ∧ · · · ∧Xn = xn]

=
∑

x`+1

· · ·
∑

xn

f1(x1) · · · f(x`)f(x`+1) · · · f(xn)

= f(x1) · · · f(x`)
(
∑

x`+1

f(x`+1)

)

· · ·
(
∑

xn

f(xn)

)

= f(x1) · · · f(x`).

2

The following three theorems are immediate consequences of the above the-
orem:

Theorem 6.18 Let Xi : U → Xi, for 1 ≤ i ≤ n, be random variables such that

P[X1 = x1 ∧ · · · ∧Xn = xn] =
1

|X1|
· · · 1

|Xn|
(for all x1 ∈ X1, . . . , xn ∈ Xn).

Then the Xi’s are mutually independent with each Xi uniformly distributed over
Xi.

Theorem 6.19 If X1, . . . , Xn are mutually independent random variables, then
they are k-wise independent for all 2 ≤ k ≤ n.
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Theorem 6.20 If Di = (Ui,Pi) are probability distributions for 1 ≤ i ≤ n, then
the projection functions πi : U1 × · · · × Un → Ui, where πi(u1, . . . , un) = ui, are
mutually independent random variables on the product distribution D1×· · ·×Dn.

We also have:

Theorem 6.21 If X1, . . . , Xn are mutually independent random variables, and
g1, . . . , gn are functions, then g1(X1), . . . , gn(Xn) are also mutually independent
random variables.

Proof. Exercise. 2

Example 6.22 If we toss n dice, and let Xi denote the value of the ith die for
1 ≤ i ≤ n, then the Xi’s are mutually independent random variables. If we set
Yi = X2

i for 1 ≤ i ≤ n, then the Yi’s are also mutually independent random
variables. 2

Example 6.23 This example again illustrates the notion of pairwise indepen-
dence. Let X and Y be independent and uniformly distributed over Zp, where
p is a prime. For a ∈ Zp, let Za := aX + Y . Then we claim that each Za
is uniformly distributed over Zp, and that the collection of random variables
{Za : a ∈ Zp} is pairwise independent.

To prove this claim, let a, b ∈ Zp with a 6= b, and consider the map fa,b :
Zp×Zp → Zp×Zp that sends (x, y) to (ax+y, bx+y). It is easy to see that fa,b
is injective; indeed, if ax+ y = ax′ + y′ and bx+ y = bx′ + y′, then subtracting
these two equations, we obtain (a− b)x = (a− b)x′, and since a− b 6= [0 mod p],
it follows that x = x′, which also implies y = y′. Since fa,b is injective, it must be
a bijection from Zp×Zp onto itself. Thus, since (X,Y ) is uniformly distributed
over Zp × Zp, so is (Za, Zb) = (aX + Y, bX + Y ). So for all z, z′ ∈ Zp, we have

P[Za = z ∧ Zb = z′] = 1/p2,

and so the claim follows from Theorem 6.18.
Note that the Za’s are not 3-wise independent, since the value of any two

determines the value of all the rest (verify). 2

Example 6.24 We can generalize the previous example as follows. Let
X1, . . . , Xt, Y be mutually independent and uniformly distributed over Zp, where
p is prime, and for a1, . . . , at ∈ Zp, let Za1,...,at := a1X1 + · · · + atXt + Y . We
leave it to the reader to verify that each Za1,...,at is uniformly distributed over
Zp, and that the collection of all such Za1,...,at is pairwise independent. 2
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Example 6.25 LetW,X, Y be mutually independent and uniformly distributed
over Zp, where p is prime. For any a ∈ Zp, let Za = a2W + aX +Y . We leave it
to the reader to verify that each Za is uniformly distributed over Zp, and that
the collection of all Za’s is 3-wise independent. 2

Using other algebraic techniques, there are many ways to construct families
of pairwise and k-wise independent random variables. Such families play an
important role in many areas of computer science.

6.4 Expectation and Variance

If X is a real random variable, then its expected value or mean is

E[X] :=
∑

u∈U
X(u) · P[u],

or equivalently,

E[X] =
∑

x∈im(X)

∑

u∈X−1(x)

xP[u] =
∑

x∈im(X)
x · P[X = x]. (6.10)

By a similar calculation, one sees that if X is a random variable, and f is a
real-valued function on im(X), then

E[f(X)] =
∑

x∈im(X)
f(x)P[X = x]. (6.11)

Theorem 6.26 For real random variables X,Y , and real numbers a, b, we have
E[aX + bY ] = aE[X] + bE[Y ].

Proof. Exercise. 2

So we see that expectation is linear; however, expectation is not in general
multiplicative, except in the case of independent random variables:

Theorem 6.27 If X and Y are independent real random variables, then
E[XY ] = E[X]E[Y ].

Proof. We have

E[XY ] =
∑

x∈im(X)

∑

y∈im(Y )
xyP[X = x ∧ Y = y]
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=
∑

x∈im(X)

∑

y∈im(Y )
xyP[X = x]P[Y = y]

=

(
∑

x∈im(X)
xP[X = x]

)(
∑

y∈im(Y )
yP[Y = y]

)

= E[X] · E[Y ].

2

More generally, the above theorem implies (using a simple induction argu-
ment) that ifX1, . . . , Xn are mutually independent, then E[X] = E[X1] · · ·E[Xn].

Exercise 6.28 A casino offers you the following four dice games. In each game,
you pay 15 dollars to play, and two dice are rolled. In the first game, the house
pays out four times the value of the first die (in dollars). In the second, the
house pays out twice the sum of the two die. In the third, the house pays the
square of the first. In the fourth, the house pays the product of the two dice.
Which game should you play? That is, which game maximizes your expected
winnings? 2

The following fact is sometimes quite useful:

Theorem 6.29 If X is a random variable that takes values in a set {0, 1, . . . , n},
then

E[X] =
n∑

i=1

P[X ≥ i].

Proof. For 1 ≤ i ≤ n, set define the random variable Xi so that Xi = 1 if X ≥ i
and Xi = 0 if X < i. Observe that E[Xi] = 1 ·P[X ≥ i]+0 ·P[X < i] = P[X ≥ i].
Moreover, X = X1 + · · ·+Xn, and hence

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

P[X ≥ i].

2

The variance of a real random variable X is Var[X] := E[(X − E[X])2].
The variance provides a measure of the spread or dispersion of the distribution
of X around its mean E[X]. Note that since (X−E[X])2 is always non-negative,
variance is always non-negative.

Theorem 6.30 We have Var[X] = E[X2] − (E[X])2, and for any real numbers
a and b, Var[aX + b] = a2Var[X].
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Proof. Exercise. 2

Example 6.31 IfX denotes the value of a die toss, then Var[X] = 91/6−3.52 ≈
2.9167. 2

Theorem 6.32 If X1, . . . , Xn is a collection of pairwise independent random
variables, then

Var

[ n∑

i=1

Xi

]

=
n∑

i=1

Var[Xi].

Proof. We have

Var

[
∑

i

Xi

]

= E

[

(
∑

i

Xi)
2

]

−
(

E[
∑

i

Xi]

)2

=
∑

i

E[X2
i ] + 2

∑

i

∑

j<i

(E[XiXj ]− E[Xi]E[Xj ])−
∑

i

E[Xi]
2

(by Theorem 6.26 and rearranging terms)

=
∑

i

E[X2
i ]−

∑

i

E[Xi]
2

(by pairwise independence and Theorem 6.27)

=
∑

i

Var[Xi].

2

For any random variable X and event B, with P[B] 6= 0, we can define
the conditional expectation E[X | B] to be the expected value of X in the
conditional probability distribution given by B. We have

E[X | B] =
∑

u∈U
X(u) · P[u | B] =

∑

x∈im(X)
xP[X = x | B]. (6.12)

If B1, . . . ,Bn is a collection of events that partitions U , where each Bi occurs
with non-zero probability, then it follows from the definitions that

E[X] =
n∑

i=1

E[X | Bi]P[Bi]. (6.13)
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6.5 Some Useful Bounds

In this section, we present several theorems that can be used to bound the
probability that a random variable deviates from its mean by some specified
amount.

Theorem 6.33 (Markov’s Inequality) Let X be a random variable that
takes only non-negative real values. Then for any t > 0, we have

P[X ≥ t] ≤ E[X]/t.

Proof. We have

E[X] =
∑

x

xP[X = x] =
∑

x<t

xP[X = x] +
∑

x≥t
xP[X = x].

Since X takes only non-negative values, all of the terms in the summation are
non-negative. Therefore,

E[X] ≥
∑

x≥t
xP[X = x] ≥

∑

x≥t
tP[X = x] = tP[X ≥ t].

2

Markov’s Inequality may be the only game in town when nothing more about
the distribution of X is known besides its mean. However, if the variance of X
is also known, then one can get a better bound.

Theorem 6.34 (Chebyshev’s Inequality) Let X be a real random variable.
Then for any t > 0, we have

P[|X − E[X]| ≥ t] ≤ Var[X]/t2.

Proof. Let Y = (X − E[X])2. Then Y is always non-negative, and E[Y ] =
Var[X]. Applying Markov’s Inequality to Y , we have

Pr[|X − E[X]| ≥ t] = P[Y ≥ t2] ≤ Var[X]/t2.

2

An important special case is the following.
Suppose that X1, . . . , Xn are random variables, such that Xi is 1 with prob-

ability pi, and 0 with probability qi = 1 − pi. Further, consider the sum
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X =
∑n

i=1Xi. Thus, X represents the number of successes among n (not
necessarily independent) Bernoulli trials.

For each i, we have

E[Xi] = E[X2
i ] = 1 · pi + 0 · qi = pi,

and
Var[Xi] = E[X2

i ]− (E[Xi])
2 = pi − p2i = piqi.

By the linearity of expectation, we have

E[X] =
n∑

i=1

pi.

If the collection of Xi’s is pairwise independent, then by Theorem 6.32, we have

Var[X] =
n∑

i=1

piqi.

Applying Chebyshev’s inequality, we obtain the following:

Theorem 6.35 Let X1, . . . , Xn be pairwise independent random variables, such
that Xi is 1 with probability pi and 0 with probability qi = 1 − pi, and let µ :=
∑n

i=1 pi and ν :=
∑n

i=1 piqi. Then for any t > 0, we have

P[|X − µ| ≥ t] ≤ ν

t2
.

If the Xi’s are mutually independent, then stronger bounds can be obtained.
Note that if the probabilities pi are all equal, the variable X has a binomial
distribution.

Theorem 6.36 (Chernoff Bound) Let X1, . . . , Xn be mutually independent
random variables, such that Xi is 1 with probability pi and 0 with probability
qi = 1− pi, and let µ :=

∑n
i=1 pi. Then for any t > 0, we have

P[X − µ ≥ t] ≤ e−t
2/2n.

Proof. Let α > 0 be a parameter whose value will be fixed below. Define the
random variable Z := eα(X−µ). Since the function x 7→ eαx is strictly increasing,
and by Markov’s Inequality, we have

P[X − µ ≥ t] = P[Z ≥ eαt] ≤ E[Z]e−αt.
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So we wish to bound E[Z] from above.
For 1 ≤ i ≤ n, define the random variable Zi := eαXi−pi . Note that Z =

∏n
i=1 Zi, that the Zi’s are mutually independent random variables, and that

E[Zi] = eα(1−pi)pi + eα(0−pi)qi = pie
αqi + qie

−αpi .

It follows that

E[Z] = E[
∏

i

Zi] =
∏

i

E[Zi] =
∏

i

(pie
αqi + qie

−αpi).

We will prove below that the inequality

pie
αqi + qie

−αpi ≤ eα
2/2 (6.14)

holds for all 1 ≤ i ≤ n. From this, it follows that

E[Z] ≤ enα
2/2.

Thus we have
P[X − µ ≥ t] ≤ enα

2/2−αt.

It is a simple matter to show that for fixed a, b > 0, the function f(s) = as2− bs
is minimized at s = b/2a. So we set α = t/n, and calculate

P[X − µ ≥ t] ≤ e−t
2/2n.

To finish the proof of the theorem, it remains to prove the inequality (6.14).
To this end, fix an index i, and let p := pi and q := qi. Let

T := peαq + qe−αp.

We want to show that T ≤ eα
2/2, or equivalently, that log T ≤ α2/2. We have

T = eαq(p+ qe−α) = eαq(1− q(1− e−α)),

and taking logarithms and applying part (1) of §A.1, we obtain

log T = αq + log(1− q(1− e−α)) ≤ αq − q(1− e−α) = q(e−α + α− 1).

Now from part (2) of §A.1, we see that

0 ≤ e−α + α− 1 ≤ α2/2,

and this, together with the fact that q ≤ 1, implies that log T ≤ α2/2. This
establishes (6.14) and completes the proof of the theorem. 2

One can also obtain the “mirror image” bound:
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Theorem 6.37 Let X1, . . . , Xn be mutually independent random variables, such
that Xi is 1 with probability pi and 0 with probability qi = 1 − pi, and let µ :=
∑n

i=1 pi. Then for any t > 0, we have

P[µ−X ≥ t] ≤ e−t
2/2n.

Proof. Let Yi := 1−Xi and Y :=
∑n

i=1 Yi = n−X. Then

µ−X = µ− n+ n−X = Y − E[Y ],

and so result follows from the previous theorem, applied to the Yi’s. 2

Example 6.38 Suppose we toss 10,000 coins. The expected number of heads
is 5,000. What is an upper bound on the probability p that we get 6,000 or
more heads? Using Markov’s Inequality, we get p ≤ 5/6. Using Chebyshev’s
Inequality (actually, Theorem 6.35), we get

p ≤ 104/4

106
=

1

400
.

Finally, using the Chernoff Bound, we obtain

p ≤ e−10
6/2·104 = e−50 ≈ 10−21.7.

2

6.6 The Birthday Paradox

This section discusses a number of problems related to the following question:
how many people must be in a room before there is a good chance that two of
them were born on the same day of the year? The answer is surprisingly few.
The “paradox” is that it is in fact far fewer than the number of days in the year,
as we shall see.

To answer this question, we index the people in the room with integers
1, . . . , k, where k is the number of people in the room. We abstract the problem
a bit, and assume that all years have the same number of days, say n — setting
n = 365 corresponds to the original problem, except that leap years are not
handled correctly, but we shall ignore this detail. For 1 ≤ i ≤ k, let Xi denote
the day of the year on which i’s birthday falls. Let us assume that birthdays
are uniformly distributed over {0, . . . , n − 1}; this assumption is actually not
entirely realistic, as it is well known that people are somewhat more likely to be
born in some months than in others.



6.6. The Birthday Paradox 97

So for any 1 ≤ i ≤ k and 0 ≤ x ≤ n− 1, we have P[Xi = x] = 1/n.
Let α be the probability that no two persons share the same birthday, so

that 1 − α is the probability that there is a pair of matching birthdays. We
would like to know, how big k must be relative to n so that α is not too large,
say, at most 1/2.

We can compute α as follows, assuming the Xi’s are mutually independent.
There are a total of nk sequences of integers (x1, . . . , xk), where each xi ∈

{0, . . . , n − 1}. Among these, there are a total of n(n − 1) · · · (n − k + 1) that
contain no repetitions: there are n choices for x1, and for any fixed value of x1,
there are n− 1 choices for x2, etc. Therefore

α = n(n− 1) · · · (n− k + 1)/nn =

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)

. (6.15)

Using the part (1) of §A.1, we obtain

α ≤ e−
Pk−1

i=1 i/n = e−k(k−1)/2n.

So if k(k − 1) ≥ (2 log 2)n, we have α ≤ 1/2. Thus, when k is at least a small
constant times n1/2, we have α ≤ 1/2, so the probability that two people share
the same birthday is at least 1/2. For n = 365, k ≥ 23 suffices. Indeed, one
can simply calculate α in this case numerically from equation (6.15), obtaining
α ≈ 0.493. Thus, if there are 23 people in the room, there is about a 50-50
chance that two people have the same birthday.

The above analysis assumed the Xi’s are mutually independent. However,
we can still obtain useful upper bounds for α under much weaker independence
assumptions.

For 1 ≤ i < j ≤ k, let us define the random variable Wij = 1 if Xi = Xj ,
and Wij = 0 if Xi 6= Xj . If we assume that the Xi’s are pairwise independent,
then

P[Wij ] = P[Xi = Xj ] =
n−1∑

x=0

P[Xi = x ∧Xj = x]

=
n−1∑

x=0

P[Xi = x]P[Xj = x] =
n−1∑

x=0

1/n2 = 1/n.

We can compute the expectation and variance:

E[Wij ] =
1

n
, Var[Wij ] =

1

n
(1− 1

n
).
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Now consider the random variable

W =
k∑

i=1

k∑

j=i+1

Wij ,

which represents the number of distinct pairs of people with the same birthday.
There are k(k − 1)/2 terms in this sum, so by the linearity of expectation, we
have

E[W ] =
k(k − 1)

2n
.

Thus, for k(k−1) ≥ 2n, we “expect” there to be at least one pair of matching
birthdays. However, this does not guarantee that the probability of a matching
pair of birthdays is very high, assuming just pairwise independence of the Xi’s.
For example, suppose that n is prime and the Xi’s are a subset of the family of
pairwise independent random variables defined in Example 6.23. That is, each
Xi is of the form aiX + Y , where X and Y are uniformly and independently
distributed modulo n. Then in fact, either all the Xi’s are distinct, or they are
all equal, where the latter event occurs exactly when X = [0 mod n], and so
with probability 1/n — “‘when it rains, it pours.”

To get a useful upper bound on α that there are no matching birthdays,
it suffices to assume that the Xi’s are 4-wise independent. In this case, it is
easy to verify that the variables Wij are pairwise independent, since any two of
the Wij ’s are determined by at most 4 of the Xi’s. Therefore, in this case, the
variance of the sum is equal to the sum of the variances, and so

Var[W ] =
k(k − 1)

2n
(1− 1

n
) ≤ E[W ].

Furthermore, by Chebyshev’s Inequality,

α = P[W = 0] ≤ P[|W −E[W ]| ≥ E[W ]] ≤ Var[W ]/E[W ]2 ≤ 1/E[W ] =
2n

k(k − 1)
.

Thus, if k(k − 1) ≥ 4n, then α ≤ 1/2.

In many practical applications, it is more important to bound α from below,
rather than from above; that is, to bound from above the probability 1−α that
there are any collisions. For this, pairwise independence of the Xi’s suffices,
since Markov’s inequality implies that

1− α = P[W ≥ 1] ≤ E[W ] =
k(k − 1)

2n
,

which is at most 1/2 provided k(k − 1) ≤ n.
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Hash functions

The above considerations have numerous applications in computer science. One
particularly important application is to the theory and practice of hashing.

The scenario is as follows. We have finite sets A and Z, with |A| = k and
|Z| = n, and a finite set H of “hash functions” which map elements of A into Z.
More precisely, each h ∈ H defines a function that maps a ∈ A to an element
z ∈ Z, and we write z = h(a). Note that two distinct elements of H may happen
to define the same function. Let H be a random variable whose distribution is
uniform on H. For any a ∈ A, H(a) denotes the random variable whose value
is z = h(a) when H = h.

For any 1 ≤ ` ≤ k, we say that H is a `-wise independent family of hash
functions (from A to Z) if each H(a) is uniformly distributed over Z, and the
collection of all H(a) is `-wise independent; in case ` = 2, we say that H is a
pairwise independent family of hash functions. Pairwise independence is
equivalent to saying that for all a, a′ ∈ A, with a 6= a′, and all z, z′ ∈ Z,

P[H(a) = z ∧H(a′) = z′] = 1/n2.

Example 6.39 Examples 6.23 and 6.24 provide explicit constructions for pair-
wise independent families of hash functions. In particular, from the discussion
in Example 6.23, if n is prime, and we take A = Z = Zn, and H = Zn × Zn,
and for h = (x, y) ∈ H and a ∈ A we define h(a) = ax+ y, then H is a pairwise
independent family of hash functions from Zn to Zn. Similarly, Example 6.24
yields a pairwise independent family of hash functions from Z×tn to Zn, with

H = Z
×(t+1)
n . In practice, the inputs to such a hash function may be long bit

strings, which we chop into small pieces so that each piece can be viewed as an
element of Zn. 2

Families of hash functions such as this may be used to implement “hash
tables,” which are a data structure used to implement “dictionaries.” A random
hash function is chosen, and elements of A are stored in a “bin” indexed by its
hash value; likewise, to see if a particular value is stored in the table, one must
search in the corresponding bin.

We do not discuss any more detailed implementation issues here. However,
one typically wants the number of bins (namely, n) to not be excessively large,
while at the same time, one wants the number of elements stored in any bin to
not be too large either.

If H is a pairwise independent family, then one can easily derive some useful
results from the above discussion of birthdays.
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• For example, if the hash table actually stores some number k′ ≤ k of
values, then for any a ∈ A, the expected number of values that are in the
bin indexed by a’s hash value is 1 + (k′ − 1)/n if a is already in the hash
table, and k′/n if it is not in the table. This result bounds the expected
amount of “work” we have to do to search for a value in its corresponding
bin. In particular, if k′ = O(n), then the expected amount of work is
constant.

• If k′(k′ − 1) ≤ n, then with probability at least 1/2, a randomly chosen
hash function assigns each of k′ distinct values to distinct bins. This result
is useful if one wants to find a “perfect” hash function that hashes k′ fixed
values to distinct bins: if n is sufficiently large, we can just choose hash
functions at random until we find one that works.

We leave it as an exercise for the reader to verify the above claims.
There are numerous other interesting questions regarding pairwise indepen-

dent hash functions and hash tables, but we shall not pursue this matter any
further. However, results such as the ones mentioned above, and others, can be
obtained using a broader notion of hashing called universal hashing. We call
H a universal family of hash functions (from A to Z) if for all a, a′ ∈ A,
with a 6= a′,

P[H(a) = H(a′)] = 1/n.

Note that the pairwise independence property implies the universal property.
There are even weaker notions that are relevant in practice; for example, one
could just require that P[H(a) = H(a′)] ≤ cn for some constant n.

Example 6.40 If we drop the y-value from the first family of hash functions
discussed in Example 6.39 so that H = Zn, and x ∈ Zn defines the function that
sends a ∈ Zn to ax ∈ Zn, then we get a universal family of hash functions that is
not pairwise independent. The second family of hash functions can be similarly
modified to get a universal family of hash functions from Z×tn to Zn that is not
pairwise independent. 2

6.7 Statistical Distance

Let X and Y be random variables which both take values on a (finite) set V.
We define the statistical distance between X and Y as

∆[X;Y ] :=
1

2

∑

v∈V
|P[X = v]− P[Y = v]|.
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The statistical distance is a useful measure of how similar or dissimilar the
distributions of X and Y are.

Theorem 6.41 For random variables X,Y, Z, we have

1. 0 ≤ ∆[X;Y ] ≤ 1,

2. ∆[X;X] = 0,

3. ∆[X;Y ] = ∆[Y ;X], and

4. ∆[X;Z] ≤ ∆[X;Y ] + ∆[Y ;Z].

Proof. Exercise. 2

Note that ∆[X;Y ] depends only on the individual distributions of X and Y ,
and not on the joint distribution of X and Y . As such, one may speak of the
statistical distance between two distributions, rather than between two random
variables.

Example 6.42 Suppose X has the uniform distribution on {1, . . . , n}, and Y
has the uniform distribution on {1, . . . , n − k}, where 0 ≤ k ≤ n − 1. Let us
compute ∆[X;Y ]. We could apply the definition directly; however, consider the
following graph of the distributions of X and Y :

B

A

C

0 n − k n

1/n

1/(n− k)

The statistical distance between X and Y is just 1/2 times the area of regions
A and C in the diagram. Moreover, because probability distributions sum to 1,
it must be the case the areas of region A and region C are the same. Therefore,

∆[X;Y ] = area of A = area of C = k/n

2
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The following characterization of statistical distance is quite useful:

Theorem 6.43 Let X and Y be random variables taking values on a set V. For
any W ⊆ V, we have

∆[X;Y ] ≥ |P[X ∈ W]− P[Y ∈ W]|,

and equality holds if W is either the set of all v ∈ V such that P[X = v] < P[Y =
v], or the compliment of this set.

Proof. Suppose we partition the set V into two sets: the set V0 consisting of
those v ∈ V such that P[X = v] < P[Y = v], and the set V1 consisting of those
v ∈ V such that P[X = v] ≥ P[Y = v]. Consider the following rough graph
of the distributions of X and Y , where X is shaded with vertical lines, Y is
shaded with horizontal lines, and the elements of V0 are placed to the left of the
elements of V1:

B

A

C

¾ -V0
¾ -V1

Now, as in Example 6.42,

∆[X;Y ] = area of A = area of C.

Further, consider any subset W of V. The quantity |P[X ∈ W] − P[Y ∈ W]| is
equal to the absolute value of the difference of the area of the sub-region of A
that lies above W and the are of the sub-region of C that lies above W. This
quantity is maximized when W = V0 or W = V1, in which case it is equal to
∆[X;Y ]. 2

This theorem says that when ∆[X;Y ] is very small, for any predicate φ, the
events φ(X) and φ(Y ) occur with almost the same probability. Put another way,
there is no “statistical test” that can effectively distinguish between the distri-
butions of X and Y . For many applications, this means that the distribution of
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X is “for all practical purposes” equivalent to that of Y , and hence in analyzing
the behavior of X, we can instead analyze the behavior of Y , if that is more
convenient.

Theorem 6.44 Let X,Y be random variables taking values on a set V, and let
f be a function from V into a set W. Then ∆[f(X); f(Y )] ≤ ∆[X;Y ].

Proof. By Theorem 6.43, for any subset W ′ of W, we have

|P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]| =
|P[X ∈ f−1(W ′)]− P[Y ∈ f−1(W ′)]| ≤ ∆[X;Y ].

In particular, again by Theorem 6.43,

∆[f(X); f(Y )] = |P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]|

for some W ′. 2

Example 6.45 Let X be uniformly distributed on the set {0, . . . , n − 1}, and
let Y be uniformly distributed on the set {0, . . . ,m − 1}, for m ≥ n. Let
f(y) = y rem n. We want to compute an upper bound on the statistical distance
between X and f(Y ). We can do this as follows. Let m = qn − r, where
0 ≤ r < n, so that q = dm/ne. Also, let Z be uniformly distributed over
{0, . . . , qn − 1}. Then f(Z) is uniformly distributed over {0, . . . , n − 1}, since
every element of {0, . . . , n− 1} has the same number (namely, q) of pre-images
under f which lie in the set {0, . . . , qn−1}. Therefore, by the previous theorem,

∆[X; f(Y )] = ∆[f(Z); f(Y )] ≤ ∆[Z;Y ],

and as we saw in Example 6.42,

∆[Z;Y ] = r/qn < 1/q ≤ n/m.

Therefore,
∆[X; f(Y )] < n/m.

2

Another useful fact is the following:

Theorem 6.46 Let X,Y be random variables taking values on a set V, and let
W be a random variable taking values on a set W. Further, suppose that X,W
are independent and Y,W are independent. Then

∆[X,W ;Y,W ] = ∆[X,Y ].
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Proof. From the definition of statistical distance,

2∆[X,W ;Y,W ] =
∑

v,w

|P[X = v ∧W = w]− P[Y = v ∧W = w]|

=
∑

v,w

|P[X = v]P[W = w]− P[Y = v]P[W = w]|

(by independence)

=
∑

v,w

P[W = w]|P[X = v]− P[Y = v]|

= (
∑

w

P[W = w])(
∑

v

|P[X = v]− P[Y = v]|)

= 1 · 2∆[X;Y ].

2

Exercise 6.47 Let X, Y , and Z be uniformly and independently distributed
over Zp, where p is prime. Calculate ∆[X,Z;X,XY ]. 2

Exercise 6.48 Let X,Y be random variables on a probability distribution, and
let B1, . . . ,Bn be events that partition of the underlying sample space, where
each Bi occurs with non-zero probability. For 1 ≤ i ≤ n, let Xi, Yi denote the
random variables X,Y in the conditional probability distribution given by Bi;
that is, P[Xi = v] = P[X = v | Bi], and similarly for Yi. Show that

∆[X;Y ] ≤
n∑

i=1

∆[Xi;Yi]P[Bi].

2

Exercise 6.49 Consider two random experiments. In the first, we generate a
random integer n between 3 and M , and then a random integer w between 1
and n. In the second, we generate a random integer n between 2 and M , and
then a random integer w between 2 and n − 1. Let X denote the outcome
(n,w) of the first experiment, and Y the outcome of the second. Show that
∆[X;Y ] = O(logM/M). 2

6.8 ♣ Measures of Randomness and the Leftover
Hash Lemma

In this section, we discuss different ways to measure “how random” a probability
distribution is, and relations among them. Consider a distribution defined on
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a finite sample space V. In some sense, the “most random” distribution on V
is the uniform distribution, while the least random would be a “point mass”
distribution, i.e., a distribution where one point v ∈ V in the sample space has
probability 1, and all other points have probability 0.

We define three measures of randomness. Let X be a random variable taking
values on a set V of size N .

1. We say X is δ-uniform on V if the statistical distance between X and
the uniform distribution on V is equal to δ, i.e.,

δ =
1

2

∑

v∈V
|P[X = v]− 1/N |.

2. The guessing probability γ(X) of X is defined to be

γ(X) := max{P[X = v] : v ∈ V}.

3. The collision probability κ(X) of X is defined to be

κ(X) :=
∑

v∈V
P[X = v]2.

Observe that if X is uniformly distributed on V, then it is 0-uniform on V,
and γ(X) = κ(X) = 1/N. Also, if X has a point mass distribution, then it is
(1 − 1/N)-uniform on V, and γ(X) = κ(X) = 1. The quantity log2(1/γ(X))
is sometimes called the min entropy of X, and the quantity log2(1/κ(X)) is
sometimes called the Renyi entropy of X. The collision probability κ(X) has
the following interpretation: if X and X ′ are identically distributed independent
random variables, then κ(X) = P[X = X ′].

Before going further, we need the following technical fact:

Theorem 6.50 If x1, . . . , xN are real numbers with
∑N

i=1 xi = 1, then

0 ≤
N∑

i=1

(xi − 1/N)2 =
N∑

i=1

x2i − 1/N.

In particular,
N∑

i=1

x2i ≥ 1/N.
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Proof. This follows from a simple calculation:

0 ≤
∑

i

(xi − 1/N)2 =
∑

i

(x2i − 2xi/N + 1/N2)

=
∑

i

x2i − (2/N)(
∑

i

xi) +
∑

i

1/N2

=
∑

i

x2i − 2/N + 1/N =
∑

i

x2i − 1/N.

2

We now state some easy inequalities:

Theorem 6.51 Let X be a random variable taking values on a set V of size N ,
such that X is δ-uniform on V, γ = γ(X), and κ = κ(X). Then we have

1. κ ≥ 1/N ,

2. γ2 ≤ κ ≤ γ ≤ 1/N + δ.

Proof. Part (1) is immediate from Theorem 6.50. The proof of part (2) is left
as an easy exercise. 2

This theorem implies that the collision and guessing probabilities are minimal
for the uniform distribution, which perhaps agrees with ones intuition.

While the above theorem implies that γ and κ are close to 1/N when δ is
small, the following theorem provides a converse of sorts:

Theorem 6.52 If X is δ-uniform on V, where |V| = N , and if κ = κ(X), then

κ ≥ 1 + 4δ2

N
.

Proof. We may assume that δ > 0, since otherwise the theorem is already true,
simply from the fact that κ ≥ 1/N .

For v ∈ V, let pv := P[X = v]. We have δ = 1
2

∑

v |pv − 1/N |, and hence
1 =

∑

v qv, where qv := |pv − 1/N |/(2δ). So we have

1

N
≤

∑

v

q2v (by Theorem 6.50)

=
1

4δ2

∑

v

(pv − 1/N)2

=
1

4δ2
(
∑

v

p2v − 1/N) (again by Theorem 6.50)

=
1

4δ2
(κ− 1/N),
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from which the theorem follows immediately. 2

Theorem 6.53 (Leftover Hash lemma) Let H be a universal family of hash
functions from A to Z, where Z is of size n. Let H denote a random variable
with the uniform distribution of H, and let A denote a random variable taking
values in A, with κ = κ(A), and with H,A independent. Then (H,H(A)) is
δ-uniform on H×Z, where

δ ≤ √nκ/2.

In the statement of this theorem, H(A) denotes the random variable whose
value is h(a) when H = h and A = a.

Proof. Let Z denote a random variable uniformly distributed on Z, with
H,A,Z mutually independent. Let m = |H| and δ = ∆[H,H(A);H,Z].

Let us compute the collision probability κ(H,H(A)). Let H ′ have the same
distribution as H and A′ have the same distribution as A, with H,H ′, A,A′

mutually independent. Then

κ(H,H(A)) = P[H = H ′ ∧H(A) = H ′(A′)]

= P[H = H ′]P[H(A) = H(A′)]

=
1

m

(

P[H(A) = H(A′) | A = A′]P[A = A′] +

P[H(A) = H(A′) | A 6= A′]P[A 6= A′]

)

≤ 1

m
(P[A = A′] + P[H(A) = H(A′) | A 6= A′])

=
1

m
(κ+ 1/n)

=
1

mn
(nκ+ 1).

Applying Theorem 6.52 to the random variable (H,H(A)), which takes val-
ues on the set H×Z of size N = mn, we see that 4δ2 ≤ nκ. 2

Example 6.54 The Leftover Hash Lemma allows one to convert “low quality”
sources of randomness into “high quality” sources of randomness. Suppose that
to conduct an experiment, we need to sample a random variable Z whose distri-
bution is uniform on a set Z of size n, or at least δ-uniform for a small value of δ.
However, we may not have direct access to a source of “real” randomness whose
distribution looks anything like that of the desired uniform distribution, but
rather, only to a “low quality” source of randomness. For example, one could
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model various characteristics of a person’s typing at the keyboard, or perhaps
various characteristics of the internal state of a computer (both its software and
hardware) as a random process. We cannot say very much about the probability
distributions associated with such processes, but perhaps we can conservatively
estimate the collision or guessing probability associated with these distributions.
Using the Leftover Hash Lemma, we can hash the output of this random process,
using a suitably generated random hash function. The hash function acts like a
“magnifying glass”: it “focuses” the randomness inherent in the “low quality”
source distribution onto the set Z, obtaining a “high quality,” nearly uniform,
distribution on Z.

Of course, this approach requires a random hash function, which may be just
as difficult to generate as a random element of Z. The following theorem shows,
however, that we can at least use the same “magnifying glass” many times over,
with the statistical distance from uniform of the output distribution increasing
linearly in the number of applications of the hash function. 2

Theorem 6.55 Let H be a universal family of hash functions from A to Z,
where Z is of size n. Let H denote a random variable with the uniform distribu-
tion of H, and let A1, . . . , A` denote random variables taking values in A, with
κ = κ(Ai) for 1 ≤ i ≤ `, and with H,A1, . . . , A` mutually independent. Then
(H,H(A1), . . . , H(A`)) is δ̃-uniform on H×Z×`, where

δ̃ ≤ `
√
nκ/2.

Proof. Let Z1, . . . , Z` denote random variables with the uniform distribution
on Z, with H,A1, . . . , A`, Z1, . . . , Z` mutually independent. We define random
variables W0,W1, . . . ,W` as follows: We let

W0 := (H,H(A1), . . . , H(A`)),

Wi := (H,Z1, . . . , Zi, H(Ai+1), . . . , H(A`)) for 0 < i < `, and

W` := (H,Z1, . . . , Z`).

We have

δ̃ = ∆[W0;W`]

≤
∑̀

i=1

∆[Wi−1;Wi] (by part 4 of Theorem 6.41)

≤
∑̀

i=1

∆[H,Z1, . . . , Zi−1, H(Ai), Ai+1, . . . , A`;

H,Z1, . . . , Zi−1, Zi, Ai+1, . . . , A`]
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(by Theorem 6.44)

=
∑̀

i=1

∆[H,H(Ai);H,Zi] (by Theorem 6.46)

≤ `
√
nκ/2 (by Theorem 6.53).

2

The above proof is sometimes called a “hybrid argument,” as we consider
the sequence of “hybrid” variables W0,W1, . . . ,W`, and show that the distance
between each consecutive pair of variables is small.

Example 6.56 Another source of “low quality” randomness arises in certain
cryptographic applications, where we have a “secret” random variable A that is
distributed uniformly over a large subset of Zp, but we want to extract from A
a “secret key” whose distribution is close to that of the uniform distribution on
a specified “key space” Z. The Leftover Hash Lemma allows us to do this, and
in fact, it allows us to use a “public” hash function H — generated at random
once and for all, and published for all to see. 2

Exercise 6.57 Consider again the situation in Theorem 6.53. Suppose that
Z = {0, . . . , n−1}, but that we would rather have an almost-uniform distribution
over Z ′ = {0, . . . , t − 1}, for some t < n. For example, the construction of the
universal family of hash functions may require than n is prime, but we would
rather have t be, say, a power of 2, or some other value. While it may be possible
to work with a different family of hash functions, we do not have to if n is large
enough with respect to t, in which case we can just use the value H(A) rem t.
If Z ′ is uniformly distributed over Z ′, show that

∆[H,H(A) rem t;H,Z ′] ≤ √nκ/2 + t/n.

Hint: use a hybrid argument. 2

6.9 Discrete Probability Distributions

In addition to working with probability distributions over finite sample spaces,
one can also work with distributions over infinite sample spaces. If the sample
space is countable, i.e., either finite or countably infinite, then the distribution is
called a discrete probability distribution. We shall not consider any other
types of probability distributions in this text. The theory developed in §6.1
through §6.7 extends fairly easily to the countably infinite setting, and in this
section, we discuss how this is done.
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6.9.1 Basic definitions

To say that the sample space U is countably infinite simply means that there is
a bijection f from the set of positive integers onto U ; thus, we can enumerate
the elements of U as u1, u2, u3, etc., where ui = f(i).

As in the finite case, the probability function assigns to each u ∈ U a value
0 ≤ P[u] ≤ 1. The basic requirement that the probabilities sum to one (equation
(6.1)) is the requirement that the infinite series

∑∞
i=1 P[ui] converges to one.

Luckily, the convergence properties of an infinite series whose terms are all non-
negative is invariant under a re-ordering of terms (see §A.4), so it does not
matter how we enumerate the elements of U .

Example 6.58 Suppose we flip a fair coin repeatedly until it comes up “heads,”
and let the outcome u of the experiment denote the number of coins flipped. We
can model this experiment as a discrete probability distribution D = (U ,P),
where U consists of the set of all positive integers, and where for u ∈ U , we set
P[u] = 2−u. We can check that indeed

∑∞
u=1 2

−u = 1, as required.
One may be tempted to model this experiment by setting up a probability

distribution on the sample space of infinite sequences of coin tosses; however,
this sample space is not countably infinite, and so we cannot construct a discrete
probability distribution on this space. While it is possible to extend the notion
a probability distribution to such spaces, this would take us too far afield. 2

Example 6.59 More generally, suppose we repeatedly execute a Bernoulli trial
until it succeeds, where each execution succeeds with probability p independently
of the previous trials, and let the outcome u of the experiment denote the number
of trials executed. Then we associate the probability P[u] = qu−1p with each
positive integer u, where q = p − 1, since we have u − 1 failures before the one
success. Such a distribution is called a geometric distribution. 2

Example 6.60 The series
∑∞

i=1 1/i
3 converges to some positive number c.

Therefore, we can define a probability distribution on the set of positive in-
tegers, where we associate with each i ≥ 1 the probability 1/ci3. 2

Example 6.61 More generally, if xi, i = 1, 2, . . . , are non-negative numbers,
and 0 < c =

∑∞
i=1 xi <∞, then we can define a probability distribution on the

set of positive integers, assigning the probability xi/c to i. 2

As in the finite case, an event is an arbitrary subset A of U . The probability
P[A] of A is defined as the sum of the probabilities associated with the elements
of A — in the definition (6.2), the sum is treated as an infinite series when A
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is infinite. This series is guaranteed to converge, and its value does not depend
on the particular enumeration of the elements of A.

Example 6.62 Consider the geometric distribution discussed in Example 6.59,
where p is the success probability of each Bernoulli trial, and q = 1 − p. For
j ≥ 1, consider the event A that the number of trials executed is at least j.
Formally, A is the set of all integers greater than or equal to j. Intuitively, P[A]
should be qj−1, since we perform at least j trials if and only if the first j − 1
trials fail. Just to be sure, we can compute

P[A] =
∑

u≥j
P[u] =

∑

u≥j
qu−1p = qj−1p

∑

u≥0
qu = qj−1p · 1

1− q = qj−1.

2

It is an easy matter to check that all the statements made in §6.1 carry
over verbatim to the case of countably infinite sample spaces. Moreover, it also
makes sense in the countably infinite case to consider events that are a union or
intersection of a countably infinite number of events:

Theorem 6.63 Let A1,A2, . . . be an infinite sequence of events.

1. If Ai ⊆ Ai+1 for all i ≥ 1, then P[
⋃

i≥1Ai] = limi→∞ P[Ai].

2. In general, we have P[
⋃

i≥1Ai] ≤
∑

i≥1 P[Ai].

3. If the Ai’s are pairwise disjoint, then P[
⋃

i≥1Ai] =
∑

i≥1 P[Ai].

4. If Ai ⊃ Ai+1 for all i ≥ 1, then P[
⋂

i≥1Ai] = limi→∞ P[Ai].

Proof. For (1), let A = ∪i≥1Ai, and let a1, a2, . . . be an enumeration of the
elements ofA. For any ε > 0, there exists a value k0 such that

∑k0
i=1 ai > P[A]−ε.

Also, there is some k1 such that {a1, . . . , ak0} ⊆ Ak1 . Therefore, for any k ≥ k1,
we have P[A]− ε < P[Ak] ≤ P[A].

(2) and (3) follow by applying (1) to the sequence {⋃i
j=1Aj}i, and making

use of (6.5) and (6.6), respectively.
(4) follows by applying (1) to the sequence {Ai}, using de Morgen’s law. 2

6.9.2 Conditional Probability and Independence

All of the definitions and results in §6.2 carry over verbatim to the countably infi-
nite case. Equation (6.7) as well as Bayes’ Theorem (equation 6.8) and equation
(6.9) extend mutatis mutandus to the case of an infinite partition B1,B2, . . . .
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6.9.3 Random variables

All of the definitions and results in §6.3 carry over verbatim to the countably
infinite case (except Theorem 6.18, which of course only makes sense in the finite
setting).

6.9.4 Expectation and variance

We define the expected value of a real random variable X exactly as before:

E[X] :=
∑

u∈U
X(u) · P[u],

where, of course, the sum is an infinite series. However, if X may take negative
values, then we require that the series converges absolutely ; i.e., we require that
∑

u∈U |X(u)| · P[u] <∞ (see §A.4). Otherwise, we say the expected value of X
does not exist. Recall from calculus that a series that converges absolutely will
itself converge, and will converge to the same value under a re-ordering of terms.
Thus, if the expectation exists at all, its value is independent of the ordering on
U . For a non-negative random variable X, if its expectation does not exist, one
may express this as “E[X] =∞.”

All of the results in §6.4 carry over essentially unchanged, except that one
must pay some attention to “convergence issues.”

Equations (6.10) and (6.11) hold, but with the following caveats (verify):

• If X is a real random variable, then its expected value E[X] exists if and
only if the series

∑

x∈im(X) xP[X = x] converges absolutely, in which case
E[X] is equal to the value of the latter series.

• If X is a random variable and f a real-valued function on im(X), then
E[f(X)] exists if and only if the series

∑

x∈im(X) f(x)P[X = x] converges
absolutely, in which case E[f(X)] is equal to the value of the latter series.

Example 6.64 Let X be a random variable whose distribution is as in Exam-
ple 6.60. Since the series

∑
1/n2 converges and the series

∑
1/n diverges, the

expectation E[X] exists, while E[X2] does not. 2

Theorems 6.26 and 6.27 hold under the additional hypothesis that E[X] and
E[Y ] exist.

If X1, X2, . . . is an infinite sequence of random variables, then the random
variable X =

∑∞
i=1Xi is well defined provided the series

∑∞
i=1Xi(u) converges

for all u ∈ U . One might hope that E[X] =
∑∞

i=1 E[Xi]; however, this is not
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in general true, even if the individual expectations E[Xi] are non-negative, and
even if the series defining X converges absolutely for all u; nevertheless, it is
true when the Xi are non-negative:

Theorem 6.65 Let X =
∑

i≥1Xi, where and each Xi takes non-negative values
only. Then,

E[X] =
∑

i≥1
E[Xi].

Proof. We have

∑

i≥1
E[Xi] =

∑

i≥1

∑

u∈U
Xi(u)P[u] =

∑

u∈U

∑

i≥1
Xi(u)P[u] =

∑

u∈U
P[u]

∑

i≥1
Xi(u) = E[X],

where we use the fact that we may reverse the order of summation in an infinite
double summation of non-negative terms (see §A.5). 2

Using this theorem, one can prove the analog of Theorem 6.29 for countably
infinite sample spaces, using exactly the same argument.

Theorem 6.66 If X is a random variable that takes non-negative integer val-
ues, then

E[X] =
∞∑

i=1

P[X ≥ i].

Example 6.67 To illustrate that Theorem 6.65 does not hold in general, con-
sider the geometric distribution on the positive integers, where P[j] = 2−j

for j ≥ 1. For i ≥ 1, define the random variable Xi so that Xi(i) = 2i,
Xi(i + 1) = −2i+1, and Xi(j) = 0 for all j /∈ {i, i + 1}. Then E[Xi] = 0
for all i ≥ 1, and so

∑

i≥1 E[Xi] = 0. Now define X =
∑

i≥1Xi. This is well
defined, and in fact X(1) = 2, while X(j) = 0 for all j > 1. Hence E[X] = 1. 2

The variance Var[X] of X exists if and only if E[X] and E[(X−E[X])2] exist,
which holds if and only if E[X] and E[X2] exist.

Theorem 6.30 holds under the additional hypothesis that E[X] and E[X2]
exist. Similarly, Theorem 6.32 holds under the additional hypothesis that E[Xi]
and E[X2

i ] exist for each i.
The definition of conditional expectation carries over verbatim, as do equa-

tions (6.12) and (6.13). The analog of (6.13) for infinite partitions B1,B2, . . .
does not hold in general, but does hold if X is always non-negative.



114 Chapter 6. Discrete Probability Distributions

6.9.5 Some useful bounds

Both Theorems 6.33 and 6.34 (Markov’s and Chebyshev’s Inequalities) hold,
under the additional hypothesis that the relevant expectations and variances
exists.

6.9.6 Statistical Distance

The definitions and results in §6.7 carry over verbatim. The notions and results
discussed in §6.8 do not have meaningful analogs in the infinite setting.

6.10 Notes

Theorem 6.36 (Chernoff Bound) appears in the literature in a number of different
forms. The statement and proof of the theorem given here follows that given in
Cormen, Leiserson, Rivest, and Stein [24]. Our proof of Theorem 6.53 (Leftover
Hash Lemma), is loosely based on Impagliazzo and Zuckermann [38]. That paper
also presents further applications of the leftover Hash Lemma. A very important
application of the Leftover Hash Lemma to cryptographic theory may be found
in Impagliazzo, Levin, and Luby [37].



Chapter 7

Probabilistic Algorithms

It is sometimes useful to endow our algorithms with the ability to generate
random numbers. To simplify matters, we only consider algorithms that generate
random bits. Where such random bits actually come from will not be of great
concern to us here. In a practical implementation, one would use a pseudo-
random bit generator, which should produce bits that “for all practical purposes”
are “as good as random.” While there is a well-developed theory of pseudo-
random bit generation (some of which builds on the ideas in §6.8), we will
not delve into this here. Moreover, the pseudo-random bit generators used in
practice are not based on this general theory, and are much more ad hoc in
design. So, although we will present a rigorous formal theory of probabilistic
algorithms, the application of this theory to practice is ultimately a bit heuristic.

7.1 Basic Definitions

Formally speaking, we will add a new type of instruction to our Random Access
Machine described in §3.2:

random bit This type of instruction is of the form α ← RANDOM, where α
takes the same form as in arithmetic instructions. Execution of this type
of instruction assigns to α a value sampled from the uniform distribution
on {0, 1}, and independently from the execution of all other random-bit
instructions.

In describing algorithms at a high level, we shall write “b ←R {0, 1}” to
denote the assignment of a random bit to the variable b, and “s ←R {0, 1}×`”
to denote the assignment of a random bit string of length ` to the variable s.

115
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In describing the behavior of such a probabilistic or randomized algo-
rithm A, for any input x, we view its running time and output as random
variables, denoted TA(x) and A(x), respectively.

Defining the distributions of TA(x) and A(x) is a bit tricky. If A on input
x always halts after a finite number of steps, regardless of the outcomes of
its random choices, then we can naturally view TA(x) and A(x) as random
variables on a uniform distribution over bit strings of some particular length.
However, there may be no a priori bound on the number of steps: think of an
algorithm that generates random bits until it generates, say, a 0-bit — just as
in Example 6.58, we do not attempt to model this as a probability distribution
on the uncountable set of infinite bit strings, but rather, we directly define an
appropriate discrete probability distribution that models the execution of A on
input x.

To motivate our definition, which may at first seem a bit strange, consider
again Example 6.58. We could view the sample space in that example to be
the set of all bit strings consisting of zero or more “zero” bits, followed by a
single “one” bit, and to each such bit string σ of this special form, we assign
the probability 2−|σ|. The “experiment” we have in mind is to generate random
bits until one of these special “halting” strings is generated. In developing the
definition of the probability distribution for a probabilistic algorithm, we simply
consider more general sets of “halting” strings, defined by the algorithm and its
input.

To simplify matters just a bit, we assume that the machine produces a stream
of random bits, one with every instruction executed, and if the instruction hap-
pens to be a random-bit instruction, then this is the bit used by that instruction.
For any bit string σ, we can run A on input x for up to |σ| steps (where |σ|
denotes the length of σ), using σ for the stream of random bits, and observe the
behavior of the algorithm. In this context, we call σ an execution path. Some
further terminology will be helpful:

• If A halts within |σ| steps, then we call σ a complete execution path;

• if A halts in exactly |σ| steps, then we call σ an exact execution path;

• if A does not halt within |σ| steps, then we call σ an incomplete execu-
tion path;

• if σ is an exact or incomplete execution path, then we may also call it a
partial execution path.

The sample space S of the probability distribution associated with A on
input x consists of all exact execution paths. Clearly, S is prefix free, i.e., no
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string in S is a proper prefix of another.

Theorem 7.1 If S is a prefix-free set of bit strings, then
∑

σ∈S 2
−|σ| ≤ 1.

Proof. We first claim that the theorem holds for any finite prefix-free set S. We
may assume that S is non-empty, since otherwise, the claim is trivial. We prove
the claim by induction on the sum of the lengths of the elements of S. The base
case is when S contains just the empty string, in which case the claim is clear.
If S contains non-empty strings, let τ be a string in S of maximal length, and
let τ ′ be the prefix of length |τ | − 1 of τ . Now remove from S all strings which
have τ ′ as a prefix (there are either one or two such strings), and add to S the
string τ ′. It is easy to see (verify) that the resulting set S ′ is also prefix-free,
and that ∑

σ∈S
2−|σ| ≤

∑

σ∈S′
2−|σ|.

The claim now follows by induction.
For the general case, let σ1, σ2, . . . be a particular enumeration of S, and con-

sider the partial sums Si =
∑i

j=1 2
−|σj | for i = 1, 2, . . .. From the above claim,

each of these partial sums is at most 1, from which it follows that limi→∞ Si ≤ 1.
2

From the above theorem, if S is the sample space associated with algorithm
A on input x, we have

S :=
∑

σ∈S
2−|σ| ≤ 1.

If S = 1, the we say that A halts with probability 1 on input x, and we
define the distribution DA,x associated with A on input x to be the distribution
on S that assigns the probability 2−|σ| to the bit string σ ∈ S.

We shall confine ourselves to algorithms that halt with probability 1 on all
inputs. However, to analyze a given algorithm, we still have to prove that it
halts with probability 1 on all inputs before we can bring to bear all the tools
of discrete probability theory.

A simple necessary condition for halting with probability 1 on a given input
is that for all incomplete execution paths, there exists some extension that is a
complete execution path; indeed, if this does not hold, then with some non-zero
probability, the algorithm falls into an infinite loop. This is not, however, a
sufficient condition for halting with probability 1. A simple sufficient condition
is the following: there exists a bound ` (possibly depending on the input) such
that for every partial execution path σ, there exists a complete execution path of
length at most |σ|+ ` that has σ as a prefix. It is usually fairly straightforward
to verify this property for a particular algorithm “by inspection.”
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Example 7.2 Consider the following algorithm:

repeat
b←R {0, 1}

until b = 1

Since every loop is only a constant number of instructions, and since there
is one chance to terminate with every loop iteration, the algorithm halts with
probability 1. 2

Example 7.3 Consider the following algorithm:

i← 0
repeat

i← i+ 1
s←R {0, 1}×i

until s = 0×i

The probability of executing at least n loop iterations is

n−1∏

i=1

(1− 2−i) ≥
n−1∏

i=1

e−2
−i+1

= e−
Pn−2

i=0 2−i ≥ e−2,

where we have made use of the estimate (3) in §A.1. As this probability does
not tend to zero, the algorithm does not halt with probability 1.

Note that every incomplete execution path can be extended to a complete
execution path, but the length of the extension is not a priori bounded. 2

Having defined a probability distribution, we can define TA(x) and A(x) as
random variables on the distribution in the obvious way.

We say that a probabilistic algorithm A runs in expected polynomial
time if there exist constants c, d such that for all n ≥ 0 and all inputs x of
length n, we have E[TA(x)] ≤ nc+d. We say that A runs in strict polynomial
time if there exist constants c, d such that for all n and all inputs x of length
n, P[TA(x) ≤ nc + d] = 1, i.e., it always halts in a polynomial number of steps,
regardless of its random choices.

Note that in defining expected polynomial time, we are not considering the
input to be drawn from some probability distribution. One could, of course,
define such a notion; however, it is not always easy to come up with a distribution
on the input space that reasonably models a particular real-world situation. We
do not pursue this issue any more here.
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Exercise 7.4 Let S be a prefix-free set of bit strings with
∑

σ∈S 2
−|σ| = 1, and

let τ be a bit string that is a prefix of some σ ∈ S. Show that if S ′ is the subset
of strings in S which have τ as a prefix, then

∑

σ∈S′ 2
−|σ| = 2−|τ |. 2

Exercise 7.5 Suppose algorithm A calls algorithm B as a subroutine. In the
probability distribution DA,x, consider a particular partial execution path τ
that drives A to a point where A invokes algorithm B with a particular input
y (determined by x and τ). Consider the conditional probability distribution
given by the event that τ is a prefix of A’s actual execution path. We can define
a random variable X on this conditional distribution whose value is the sub-path
traced out by the invocation of subroutine B. Show that the distribution of X
is the same as DB,y. Hint: use the previous exercise. 2

Exercise 7.6 Let A be a probabilistic algorithm, and for an input x and integer
k ≥ 1, consider the experiment in which we choose a random execution path of
length k, and run A on input x for up to k steps using the selected execution
path. If A halts within k steps, we define Ak(x) to be the output produced by
A, and TAk

(x) to be the actual number of steps executed by A; otherwise, we
define Ak(x) to be the distinguished value “⊥” and TAk

(x) to be k.

(a) Show that A halts with probability 1 on input x if and only if

lim
k→∞

P[Ak(x) = ⊥] = 0.

(b) Show that if A halts with probability 1 on input x, then for all possible
outputs y,

P[A(x) = y] = lim
k→∞

P[Ak(x) = y].

(c) Show that if A halts with probability 1 on input x, then

E[TA(x)] = lim
k→∞

E[TAk
(x)].

2

Note that one could simply define the output distribution and expected
running time of a probabilistic algorithm using the identities of parts (b) and
(c) of the above exercise, and thus avoid the construction of an underlying
probability distribution. However, without such a probability distribution, we
would have very few tools at our disposal to analyze the output distribution and
running time of particular algorithms.
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To rigorously analyze the running time and output distributions (or other
characteristics) of a probabilistic algorithm in complete detail, one can typically
reduce the analysis of some particular infinite event A ⊆ S to the analysis of
a countably infinite number of events B, each of which is either finite, or more
generally, finitely determined, meaning that there exists a k ≥ 0 such that for
any two strings τ, τ ′ ∈ S that agree in the first k bit positions, either both are
in B or neither is in B. This means that the event B is completely determined
by the first k bits of the execution path. The reader may easily verify (using
Exercise 7.4) the following: the probability of B is equal to the probability that
a randomly selected k-bit string τ agrees with the first min{k, |σ|} bits of σ for
some σ ∈ B. Thus, the probability of such a finitely determined event may be
determined by analyzing a certain event in a finite probability distribution, i.e.,
by observing the behavior of the algorithm on a random k-bit execution path.
Another tool that we can use to analyze probabilistic algorithms is the result of
Exercise 7.5, which allows us to analyze the behavior of an algorithm in terms
of the behavior of its subroutines.

Exercise 7.7 One can generalize the notion of a discrete, probabilistic process,
as follows. Let Γ be a finite or countably infinite set. Let f be a function
mapping sequences of one or more elements of Γ to [0, 1], such that the following
property holds:

for all finite sequences (γ1, . . . , γi−1), where i ≥ 1, f(γ1, . . . , γi−1, γ)
is non-zero for at most a finite number of γ ∈ Γ, and

∑

γ∈Γ
f(γ1, . . . , γi−1, γ) = 1.

Now consider any prefix-free set S of finite sequences of elements of Γ. For
σ = (γ1, . . . , γn) ∈ S, define

P[σ] :=
n∏

i=1

f(γ1, . . . , γi).

Show that
∑

σ∈S P[σ] ≤ 1, and hence we may define a probability distribution
on S using the probability function P[·] if this sum is 1.

The intuition is that we are modeling a process in which we start out in the
“empty” configuration; at each step, if we are in configuration (γ1, . . . , γi−1), we
halt if this is a “halting” configuration, i.e., an element of S, and otherwise, we
move to configuration (γ1, . . . , γi−1, γ) with probability f(γ1, . . . , γi−1, γ). 2
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7.2 Approximation of Functions

Suppose f is a function mapping bit strings to bit strings. We may have an
algorithm that approximately computes f in the following sense: there exists
a constant 0 ≤ ε < 1/2, such that for all inputs x, P[A(x) = f(x)] ≥ 1− ε. The
value ε is a bound on the error probability, which is defined as P[A(x) 6= f(x)].
There is a standard “trick” by which one can make the error probability very
small; namely, run A on input x some number of times, say t times, and take the
majority output as the answer. Using Theorem 6.36 (Chernoff Bound), the error
probability for the iterated version of A is bounded by exp[−(1/2− ε)2t/2], and
so the error probability decreases exponentially with the number of iterations.

If we have an algorithm that runs in expected polynomial time, and which
approximately computes a function f , then we can easily turn it into an algo-
rithm that runs in strict polynomial time, and also approximates f , as follows.
Suppose that ε < 1/2 is a bound on the error probability, and T (n) is a poly-
nomial bound on the expected running time for inputs of length n. The new
algorithm simply runs the original algorithm for at most tT (n) steps, where t is
any constant chosen so that ε+ 1/t < 1/2 — if the original algorithm does not
halt within this time bound, the new algorithm simply halts with an arbitrary
output. The probability that the new algorithm errs is at most the probability
that the original algorithm errs plus the probability that the original algorithm
runs for more than tT (n) steps. By Theorem 6.33 (Markov’s inequality), the
latter probability is at most 1/t, and hence the new algorithm approximates f
as well.

An important special case of the above is when the output of the function f
is either 0 or 1 (or equivalently, false or true). In this case, f may be viewed as
the characteristic function of the language L := {x : f(x) = 1}. There are sev-
eral “flavors” of probabilistic algorithms for computing f that are traditionally
considered:

• We call a probabilistic, expected polynomial time algorithm an Atlantic
City algorithm for recognizing L if it approximately computes f with error
probability bounded by a constant ε < 1/2.

• We call a probabilistic, strictly polynomial time algorithm A a Monte
Carlo algorithm for recognizing L if for some constant ε > 0, we have:

– for any x ∈ L, we have P[A(x) = 1] ≥ ε, and

– for any x /∈ L, we have P[A(x) = 1] = 0.
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• We call a probabilistic, expected polynomial time algorithm a Las Vegas
algorithm for recognizing L if it computes f correctly on all inputs x.

One also says an Atlantic City algorithm has two-sided error, a Monte
Carlo algorithm has one-sided error, and a Las Vegas algorithm has zero-
sided error.

Exercise 7.8 Show that any language recognized by a Las Vegas algorithm is
also recognized by a Monte Carlo algorithm, and that any language recognized
by a Monte Carlo algorithm is also recognized by an Atlantic City algorithm.
2

Exercise 7.9 Show that if L has a Monte Carlo algorithm, then it also has a
Monte Carlo algorithm A such that P[A(x) = 1] ≥ 1− 2−n for all inputs x ∈ L
of length n. 2

Exercise 7.10 Show that a language is recognized by a Las Vegas algorithm iff
the language and its compliment are recognized by Monte Carlo algorithms. 2

7.3 Flipping a Coin until a Head Appears

In this and subsequent sections of this chapter, we discuss a number of specific
probabilistic algorithms, starting with the algorithm in Example 7.2 (which takes
no input). We have already established that it halts with probability 1.

Let X be a random variable that represents the number of loop iterations
made by the algorithm. Further, define random variables B1, B2, . . . , where Bi

represents the value of the bit assigned to b in the ith loop iteration, if X ≥ i,
and 0 otherwise. Clearly, exactly one Bi will take the value 1, and all others the
value 0, in which case X takes the value i.

It need not be the case that the values of the Bi’s are located at pre-
determined positions of the execution path. Perhaps for this particular algo-
rithm, one could carefully program the algorithm so that this were the case,
but we do not want to make such assumptions in general. Nevertheless, for any
i ≥ 1, if we condition on any particular partial execution path τ that drives the
algorithm to the point where it is just about to sample the bit Bi, then in this
conditional probability distribution, Bi is uniformly distributed over {0, 1}. To
prove this rigorously in our formal framework, define the event Aτ to be the
event that τ is a prefix of the execution path. If |τ | = `, then the events Aτ ,
Aτ ∧ (Bi = 0), and Aτ ∧ (Bi = 1) are all finitely determined, and in particular,
are determined by the first ` + 1 bits of the execution path. We can then con-
sider corresponding events in a probabilistic experiment wherein we observe the
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behavior of the algorithm on a random (`+ 1)-bit execution path. In the latter
experiment, it is clear that the conditional probability distribution of Bi, given
that the first ` bits of the actual execution path σ agree with τ , is uniform over
{0, 1}, and thus, the same holds in the original probability distribution. Since
this holds for all relevant τ , it follows that it holds conditioned on X ≥ i.

From the above discussion, it follows that P[B1 = 1] = 1/2, P[B2 = 1] =
P[B2 = 1 | B1 = 0]P[B1 = 0] = 1/4, and in general, P[Bi = 1] = 2−i, for
i = 1, 2, . . . . Thus, X has a geometric distribution, with P[X = i] = 2−i for
i = 1, 2, . . . .

Let Y denote the total running time of the algorithm. Then Y ≤ cX + d for
some constants c and d, and hence

E[Y ] ≤ cE[X] + d = 2c+ d,

and we conclude that the expected running time of the algorithm is a constant,
the exact value of which depends on the details of the implementation.

All of these conclusions were perhaps obvious, but the main point was to
illustrate how we can rigorously prove such statements in our formal model by
reducing the analysis from the infinite setting to the finite setting.

7.4 Generating a Random Number from a Given In-
terval

Suppose we want to generate a number n uniformly at random from the interval
{0, . . . ,M − 1}, for a given value of M ≥ 1.

If M is a power of 2, say M = 2k, then we can do this directly as follows:
generate a random k-bit string s, and convert s to the integer I(s) whose base-2
representation is s, i.e., if s = bk−1bk−2 · · · b0, where the bi’s are bits, then

I(s) :=
k−1∑

i=0

bi2
i.

In the general case, we do not have a direct way to do this, since we can only
directly generate random bits. However, suppose that M is a k-bit number, so
that 2k−1 ≤M < 2k. Then the following algorithm does the job:
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Algorithm RN:

repeat
s←R {0, 1}×k
n← I(s)

until n < M
output n

In every loop iteration, n is uniformly distributed over {0, . . . , 2k − 1}, and
the event n < M occurs with probability M/2k ≥ 1/2; moreover, conditioning
on the latter event, n is uniformly distributed over {0, . . . ,M − 1}. Therefore,
if X denotes the number of iterations of the main loop, and if N denotes the
output of the algorithm, we conclude that X has a geometric distribution with
an associated success probability of M/2k ≥ 1/2, that N has the uniform dis-
tribution over {0, . . . ,M − 1}, and that X and N are independent. Further, if
Y denotes the running time of the algorithm, then we also may conclude that
E[X] = O(1) and E[Y ] = O(k).

In the above analysis, we have not gone into all the details as we did in §7.3.
Similarly as to what was done there, one would define random variables Ni rep-
resenting the value of n in the ith loop iteration. Then, one would consider
various conditional distributions, conditioning on particular partial execution
paths τ that bring the computation just to the beginning of the ith loop itera-
tion; for any particular such τ , the ith loop iteration will terminate in at most
` := |τ |+ c steps, for some constant c (which depends on k, but not τ). There-
fore, the conditional distribution of Ni, given the partial execution path τ , can
be analyzed by considering the execution of the algorithm on a random `-bit
execution path. It is then clear that the conditional distribution of Ni given the
partial execution path τ is uniform over {0, . . . , 2k − 1}, and since this holds
for all relevant τ , it follows that the conditional distribution of Ni, given that
the ith loop is entered, is uniform over {0, . . . , 2k − 1}. The output distribution
is the same as the conditional distribution of Ni, given that X = i, which is
precisely the uniform distribution on {0, . . . ,M − 1}.

This sketch of the details again shows how one can formally reduce questions
regarding the discrete distribution to questions regarding appropriate finite dis-
tributions.

Of course, by adding an appropriate value to the output, we can generate
random numbers uniformly in an interval {A, . . . , B}, for given A and B. In
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what follows, we shall denote the execution of this algorithm as

n←R {A, . . . , B}.

We also mention the following alternative approach to generating a random
number from an interval. Given a positive k-bit integer M , and a parameter
t > 0, we do the following:

Algorithm RN′:

s←R {0, 1}×(k+t)
n← I(s) remM
output n

Compared with algorithm RN, algorithm RN′ has the advantage that there
are no loops — it halts in an a priori bounded number of steps; however, it has
the disadvantage that its output is not uniformly distributed over the interval
{0, . . . ,M−1}. However, the statistical distance between its output distribution
and the uniform distribution on {0, . . . ,M−1} is at most 2−t (see Example 6.45
in §6.7). Thus, by choosing t suitably large, we can make the output distribution
“as good as uniform” for most practical purposes.

Exercise 7.11 Prove that no probabilistic algorithm that always halts in a
bounded number of steps can have an output distribution that is uniform on
{0, . . . ,M − 1}, unless M is a power of 2. 2

Exercise 7.12 Design and analyze an efficient probabilistic algorithm that
takes as input an integer M ≥ 2, and outputs a random element of Z∗M . 2

7.5 Generating a Random Prime

Suppose we are given an integer M ≥ 2, and want to generate a random prime
between 1 and M . One way to proceed is simply to generate random numbers
until we get a prime. This idea will work, assuming the existence of an efficient
algorithm IsPrime(·) that determines whether or not its input is prime.

Now, the most naive method of testing if a number n is prime is to see if
any of the numbers between 2 and n−1 divide n. Of course, one can be slightly
more clever, and only perform this divisibility check for prime numbers between
2 and

√
n. Nevertheless, such an approach does not give rise to a polynomial-

time algorithm. Indeed, the design and analysis of efficient primality tests has
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been an active research area for many years. There is, in fact, a deterministic,
polynomial-time algorithm for testing primality, which we shall discuss in a later
chapter. For the moment, we shall just assume we have such an algorithm, and
use it as a “black box.”

Our algorithm to generate a random prime between 1 andM runs as follows:

Algorithm RP:

repeat
n←R {1, . . . ,M}

until IsPrime(n)
output n

Consider a single loop iteration of algorithm RP, viewed as a stand-alone
probabilistic experiment. For any fixed prime p between 1 and M , the proba-
bility that the variable n takes the value p is precisely 1/M . Thus, every prime
is equally likely, and the probability that n is a prime is precisely π(M)/M .

Let us also consider the expected running time µ of a single loop iteration.
To this end, define Wn to be the running time of algorithm IsPrime on input n.
Also, define

W ′
M :=

1

M

M∑

n=1

Wn.

That is, W ′
M is the average value of Wn, for a random choice of n ∈ {1, . . . ,M}.

Thus, µ is equal to W ′
M plus the expected running time of algorithm RN, which

is O(k), plus any other small overhead, which is also O(k). So we have µ ≤
W ′

M + O(k), and assuming that W ′
M = Ω(k), which is perfectly reasonable, we

have µ = O(W ′
M ).

Now let us consider the behavior of algorithm RP as a whole. From the
above discussion, it follows that when this algorithm terminates, its output will
be uniformly distributed over the set of all primes between 1 andM . If T denotes
the number of loop iterations performed by the algorithm, then E[T ] =M/π(M),
which by Theorem 5.2 (Chebyshev’s Theorem), is Θ(k), where k := len(M).

So we have bounded the expected number of loop iterations. We now want to
bound the expected overall running time. For i ≥ 1, let Xi denote the amount
of time (if any) spent during the ith loop iteration of the algorithm, so that
X =

∑

i≥1Xi is the total running time of algorithm RP. Note that

E[Xi] = E[Xi | T ≥ i]P[T ≥ i] + E[Xi | T < i]P[T < i]

= E[Xi | T ≥ i]P[T ≥ i]
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= µP[T ≥ i],

because Xi = 0 when T < i and E[Xi | T ≥ i] is by definition equal to µ. Then
we have

E[X] =
∑

i≥1
E[Xi] = µ

∑

i≥1
P[T ≥ i] = µE[T ] = O(kW ′

M ).

Instead of generating a random prime between 1 and M , we may instead
want to generate a random k-bit prime, i.e., a prime between 2k−1 and 2k − 1.
Theorem 5.11 (Bertrand’s Postulate) tells us that there exist such primes for
every k, and that in fact, there are Ω(2k/k) such primes. Because of this, it is
trivial to modify algorithm RP to generate a random k-bit prime. We leave the
details of this to the reader.

7.5.1 Using a probabilistic primality test

In the above analysis, we assumed that IsPrime was a deterministic, polynomial
time algorithm. While such an algorithm exists, there are in fact simpler and
more efficient algorithms that are probabilistic. We shall discuss such algorithms
in greater depth later. A number of these algorithms have one-sided error in the
following sense: if the input n is a prime, the output is certainly “true”; however,
if the input n is composite, the output will be “false” with high probability, but
may be “true” with some small error probability bounded by ε. The value of
ε may be easily “tuned” by adjusting a parameter of the algorithm — indeed,
it will turn out that we can make ε essentially as small as we like, without too
much extra computational effort.

Let us analyze the behavior of algorithm RP under the assumption that
IsPrime is implemented by a probabilistic algorithm as described in the previous
paragraph, with an error probability for composite inputs bounded by ε. Let
us define Wn to be the expected running time of IsPrime on input n, and as
before, we define

W ′
M :=

1

M

M∑

n=1

Wn.

Thus,W ′
M is the expected running time of algorithm IsPrime, where the average

is taken with respect to randomly chosen n and the random choices of the
algorithm itself.

Consider a single loop iteration of algorithm RP. For any fixed prime p
between 1 and M , the probability that n takes the value p is 1/M . Thus, if the
algorithm halts with a prime, every prime is equally likely, and the probability
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that it halts at all is at least π(M)/M — the algorithm may also halt with
a composite value of n if the primality test makes a mistake. So we see that
the expected number of loop iterations should be no more than in the case
where we use a deterministic primality test. Using the same argument as was
used before to estimate the expected total running time of algorithm RP, we
find that this is O(kW ′

M ), where k := len(M). As for the probability that
algorithm RP mistakenly outputs a composite, one might be tempted to say
that this probability is at most ε, the probability that IsPrime makes a mistake.
However, drawing such a conclusion, we would be committing the fallacy of
Example 6.12.

Let us be a bit more precise. Again, consider the probability distribution
defined by a single loop iteration, and let A be the event that IsPrime outputs
true, and B the event that n is composite. Let β := P[B] and α := P[A | B].
First, observe that α ≤ ε. Now, the probability δ that the algorithm halts and
outputs a composite in this loop iteration is

δ = P[A ∧ B] = αβ.

The probability δ′ that the algorithm halts and outputs either a prime or com-
posite is

δ′ = P[A] = P[A ∧ B] + P[A ∧ B] = P[A ∧ B] + P[B] = αβ + (1− β).

It follows that, with T being the number of loop iterations as before,

E[T ] =
1

δ′
=

1

αβ + (1− β) , (7.1)

and hence

E[T ] ≤ 1

(1− β) =
M

π(M)
= O(k).

Let us now consider the probability γ that the output of algorithm RP is
composite. For i ≥ 1, let Ci be the event that the algorithm halts and outputs
a composite number in the ith loop iteration. The different Ci’s are mutually
disjoint events, and moreover,

P[Ci] = P[Ci ∧ T ≥ i] = P[Ci | T ≥ i]P[T ≥ i] = δP[T ≥ i].

So we have

γ =
∑

i≥1
P[Ci] =

∑

i≥1
δP[T ≥ i] = δE[T ] =

αβ

αβ + (1− β) , (7.2)
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and hence

γ ≤ α

(1− β) ≤
ε

(1− β) = ε
M

π(M)
= O(kε).

Another way of analyzing the output distribution of algorithm RP is to
consider its statistical distance ∆ from the uniform distribution on the set of
primes between 1 and M . As we have already argued, every prime between 1
and M is equally likely to be output, and in particular, any fixed prime p is
output with probability at most 1/π(M). It follows from Theorem 6.43 that
∆ = γ.

Exercise 7.13 Analyze algorithm RP assuming that the primality test is im-
plemented by an “Atlantic City” algorithm with error probability at most ε.
2

Exercise 7.14 Consider the following probabilistic algorithm that takes as in-
put a positive integer M :

S ← { }
repeat

n←R {1, . . . ,M}
S ← S ∪ {n}

until |S| =M

Show that the expected number of iterations of the main loop is ∼M logM .
2

7.6 Generating a Random Non-Increasing Sequence

The following algorithm will be used below as a fundamental subroutine in
a beautiful algorithm that generates random numbers in factored form. The
algorithm takes as input an integer M ≥ 2, and runs as follows:
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Algorithm RS:

n0 ←M
i← 0
repeat

i← i+ 1
ni ←R {1, . . . , ni−1}

until ni = 1
t← i
Output (n1, . . . , nt)

That the algorithm halts with probability 1 is clear, since in every loop itera-
tion, the algorithm picks ni = 1 with probability at least 1/M , and immediately
terminates.

We analyze first the output distribution, and then the running time.

7.6.1 Analysis of the output distribution

Let N1, N2, . . . be random variables denoting the choices of ni’s (for complete-
ness, define Ni := 1 if loop i is never entered).

A particular output of the algorithm is a non-increasing chain (n1, . . . , nt),
where n1 ≥ n2 ≥ · · · ≥ nt−1 > nt = 1. For any such chain, we have

P[N1 = n1 ∧ · · · ∧Nt = nt] = P[N1 = n1]P[N2 = n2 | N1 = n1] · · ·
P[Nt = nt | N1 = n1 ∧ · · · ∧Nt−1 = nt−1]

=
1

M
· 1

n1
· · · · · 1

nt−1
. (7.3)

This completely describes the output distribution, in the sense that we have
determined the probability with which each non-increasing chain appears as an
output. However, there is another way to characterize the output distribution
that is significantly more useful. For 2 ≤ j ≤ M , define the random variable
Ej to be the number of occurrences of j among the Ni’s. The Ej ’s determine
the Ni’s, and vice versa. Indeed, EM = eM , . . . , E2 = e2 iff the output of the
algorithm is the non-increasing chain

(M, . . . ,M
︸ ︷︷ ︸

eM times

,M − 1, . . . ,M − 1
︸ ︷︷ ︸

eM−1 times

, . . . , 2, . . . , 2
︸ ︷︷ ︸

e2 times

, 1).
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From (7.3), we can therefore directly compute

P[EM = eM ∧ . . . ∧ E2 = e2] =
1

M

M∏

j=2

1

jej
. (7.4)

Notice that we can write 1/M as a telescoping product:

1

M
=
M − 1

M
· M − 2

M − 1
· · · · · 2

3
· 1
2
=

M∏

j=2

(1− 1/j),

so we can re-write (7.4) as

P[EM = eM ∧ . . . ∧ E2 = e2] =
M∏

j=2

j−ej (1− 1/j). (7.5)

Notice that for 2 ≤ j ≤M ,

∑

ej≥0
j−ej (1− 1/j) = 1,

and so by the discrete version of Theorem 6.17, the Ej ’s are mutually indepen-
dent, and for any 2 ≤ j ≤M and ej ≥ 0, we have

P[Ej = ej ] = j−ej (1− 1/j), (7.6)

In summary, we have shown that the Ej ’s are mutually independent vari-
ables, where for 2 ≤ j ≤ M , the variable Ej + 1 has a geometric distribution
with an associated success probability of 1− 1/j.

Another, perhaps more intuitive, analysis of the joint distribution of the
Ej ’s runs as follows. Conditioning on the event EM = eM , . . . , Ej+1 = ej+1,
one sees that the value of Ej is the number of times the value j appears in
the sequence Ni, Ni+1, . . . , where i = eM + · · · + ej+1 + 1; moreover, in this
conditional probability distribution, it is not too hard to convince oneself that
Ni is uniformly distributed over {1, . . . , j}. Hence the probability that Ej = ej
in this conditional probability distribution is the probability of getting a run
of exactly ej copies of the value j in an experiment in which we successively
choose numbers between 1 and j at random, and this latter probability is clearly
j−ej (1− 1/j).
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7.6.2 Analysis of the running time

Let T be the random variable that takes the value t when the output is
(n1, . . . , nt). Clearly, it is the value of T that essentially determines the run-
ning time of the algorithm.

With the random variables Ej defined as above, we see that T = 1+
∑M

j=2Ej .
Moreover, for each j, Ej+1 has a geometric distribution with associated success
probability 1− 1/j, and hence

E[Ej ] =
1

1− 1/j
− 1 =

1

j − 1
.

Thus,

E[T ] = 1 +
M∑

j=2

E[Ej ] = 1 +
M−1∑

j=1

1

j
=

∫ M

1

dy

y
+O(1) ∼ logM.

Intuitively, this is roughly as we would expect, since with probability 1/2
each successive ni is at most one half as large as its predecessor, and so after
O(len(M)) steps, we expect to reach 1.

To complete the running time analysis, let us consider the total number of
times X that the main loop of algorithm RN in §7.4 is executed. For i = 1, 2, . . . ,
let Xi denote the number of times that loop is executed in the ith loop of
algorithm RS, defining this to be zero if the ith loop is never reached. So
X =

∑∞
i=1Xi. Arguing just as in §7.5, we have

E[X] =
∑

i≥1
E[Xi] ≤ 2

∑

i≥1
P[T ≥ i] = 2E[T ] ∼ 2 logM.

To finish, if Y denotes the running time of algorithm RS on inputM , then we
have Y ≤ c len(M)(X + 1) for some constant c, and hence E[Y ] = O(len(M)2).

Exercise 7.15 Show that when algorithm RS runs on input M , the expected
number of (not necessarily distinct) primes in the output sequence is∼ log logM .
2

Exercise 7.16 For 2 ≤ j ≤M , let Fj = 1 if j appears in the output of algorithm
RS on input M , and 0 otherwise. Determine the joint distribution of the Fj ’s.
Using this, show that the expected number of distinct primes appearing in the
output sequence is ∼ log logM . 2

Exercise 7.17 Design and analyze a simple probabilistic algorithm that runs
in expected constant time, and whose output distribution is a random variable
X taking integer values M = 1, 2, . . . such that P[X =M ] = Θ(1/M 3). 2



7.7. Generating a Random Factored Number 133

7.7 Generating a Random Factored Number

We now present an efficient algorithm that generates a random factored num-
ber. That is, on input M ≥ 2, the algorithm generates a number r uniformly
distributed over the interval {1, . . . ,M}, but instead of the usual output format
for such a number r, the output consists of the prime factorization of r.

As far as anyone knows, there are no efficient algorithms for factoring large
numbers, despite years of active research in search of such an algorithm. So our
algorithm to generate a random factored number will not work by generating a
random number and then factoring it.

Our algorithm will use algorithm RS in §7.6 as a subroutine. In addition, as
we did in §7.5, we shall assume the existence of an deterministic, polynomial-
time primality test IsPrime(·). We denote its running time on input n by Wn,
and set W ∗

M := max{Wn : 2 ≤ n ≤M}.
In the analysis of the algorithm, we shall make use of Mertens’ Theorem,

which we proved in §5 (Theorem 5.17).
On input M ≥ 2, the algorithm to generate a random factored number

r ∈ {1, . . . ,M} runs as follows:

Algorithm RFN:

repeat
Run algorithm RS on input M , obtaining (n1, . . . , nt)

(*) Let ni1 , . . . , ni` be the primes among n1, . . . , nt, including duplicates

(**) Set r ←∏`
j=1 nij

If r ≤M then
s←R {1, . . . ,M}
if s ≤ r then output ni1 , . . . , ni` and halt

forever

(*) Each ni is tested for primality in turn using algorithm IsPrime(·).

(**) We assume that the product is computed by a simple iterative procedure
that halts as soon as the partial product exceeds M . This ensures that
the time spent forming the product is always O(len(M)2), which simplifies
the analysis.

Now, let 1 ≤ n ≤ M be a fixed integer, and let us calculate the probability
that the variable r takes the particular value n in any one loop iteration. Let
n =

∏

p≤M pep be the prime factorization of n. Then r takes the value n iff
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Ep = ep for all primes p ≤ M , which by the analysis in §7.6, happens with
probability precisely

∏

p≤M
p−ep(1− 1/p) =

U(M)

n
,

where
U(M) :=

∏

p≤M
(1− 1/p).

Now, the probability that any one loop iteration produces n as output is equal
to the probability that r takes the value n and s ≤ n, which is

U(M)

n
· n
M

=
U(M)

M
.

Thus, every n is equally likely, and summing over all n ∈ {1, . . . ,M}, we see that
the probability that any one loop iteration succeeds in producing some output
is U(M).

It follows from the above that the output distribution is as required, and if
H denotes the number of loop iterations of the algorithm, then E[H] = U(M)−1,
which by Theorem 5.17 is O(k), where k = len(M).

To finish the running time analysis, consider the expected running time of
the loop body. From the analysis in §7.6, it is easy to see that this is O(kW ∗

M ).
It follows that the expected total running time is O(k2W ∗

M ).

7.7.1 Using a probabilistic primality test

Analogous to the discussion in §7.5.1, we can analyze the behavior of algorithm
RFN under the assumption that IsPrime is a probabilistic algorithm which
may erroneously indicate that a composite number is prime with probability
bounded by ε. Here, we assume that Wn denotes the expected running time of
the primality test on input n, and set W ∗

M := max{Wn : 2 ≤ n ≤M}.
The situation here is a bit more complicated than in the case of algorithm

RP, since an erroneous output of the primality test in algorithm RFN could lead
either to the algorithm halting prematurely (with a wrong output), or to the
algorithm being delayed (because an opportunity to halt may be missed).

Let us first analyze in detail the behavior of a single loop iteration of algo-
rithm RFN. Let A denote the event that the primality test makes a mistake in
this loop iteration, and let δ := P[A]. If T is the number of loop iterations in a
given run of algorithm RS, it is easy to see that

δ ≤ εE[T ] = ε `(M),
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where

`(M) := 1 +
M−1∑

j=1

1

j
≤ 2 + logM.

Now, let 1 ≤ n ≤ M be a fixed integer, and let us calculate the probability αn
that the correct prime factorization of n is output in this loop iteration. Let Bn
be the event that the primes among the output of algorithm RS multiply out to
n. Then αn = P[Bn ∧A](n/M). Moreover, because of the mutual independence
of the Ej ’s, not only does it follow that P[Bn] = U(M)/n, but it also follows that
Bn and A are independent events: to see this, note that Bn is determined by the
variables {Ej : j prime}, andA is determined by the variables {Ej : j composite}
and the random choices of primality test. Hence,

αn =
U(M)

M
(1− δ).

Thus, every n is equally likely to be output. If C is the event that the algorithm
halts with some output (correct or not) in this loop iteration, then

P[C] ≥ U(M)(1− δ), (7.7)

and

P[C ∨ A] = U(M)(1− δ) + δ = U(M)− δU(M) + δ ≥ U(M). (7.8)

The expected running time of a single loop iteration of algorithm RFN is also
easily seen to be O(kW ∗

M ). That completes the analysis of a single loop iteration.
We next analyze the total running time of algorithm RFN. IfH is the number

of loop iterations of algorithm RFN, it follows from (7.7) that

E[H] ≤ 1

U(M)(1− δ) ,

and assuming that ε`(M) ≤ 1/2, it follows that the expected running time of
algorithm RFN is O(k2W ∗

M ).
Finally, we analyze the statistical distance ∆ between the output distribution

of algorithm RFN and the uniform distribution on the numbers 1 to M , in
correct factored form. Let H ′ denote the first loop iteration i for which the
event C ∨ A occurs, i.e., the algorithm either halts or the primality test makes
a mistake. Then, by (7.8), H ′ has a geometric distribution with an associated
success probability of at least U(M). If A∗ is the event that the primality test
makes a mistake in any loop iteration, then

P[A∗] =
∑

i≥1
δP[H ′ ≥ i] = δE[H ′] ≤ δU(M).
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Now, if γ is the probability that the output of algorithm RFN is not in correct
factored form, then

γ ≤ P[A∗] = δU(M) = O(k2ε).

We have already argued that each value n between 1 and M , in correct factored
form, is equally likely to be output, and in particular, each such value occurs
with probability at most 1/M . It follows from Theorem 6.43 that ∆ = γ (verify).

Exercise 7.18 To simplify the analysis, we analyzed algorithm RFN using the
worst-case estimate W ∗

M on the expected running time of the primality test.
Define

W+
M :=

M∑

j=2

Wj

j − 1
,

where Wn denotes the expected running time of a probabilistic implementation
of IsPrime on input n. Show that the expected running time of algorithm RFN
is O(kW+

M ), assuming ε`(M) ≤ 1/2. 2

Exercise 7.19 Analyze algorithm RFN assuming that the primality test is im-
plemented by an “Atlantic City” algorithm with error probability at most ε.
2

7.8 Notes

See Luby [47] for an exposition of the theory of pseudo-random bit generation.
The algorithm presented here for generating a random factored number is

due to Kalai [39]. Kalai’s algorithm is significantly simpler, though less efficient
than, an earlier algorithm due to Bach [8], which uses an expected number of
O(k) primality tests.



Chapter 8

Abelian Groups

This chapter introduces the notion of an abelian group. This is an abstraction
that models many different algebraic structures, and yet despite the level of
generality, a number of very useful results can be easily obtained.

8.1 Definitions, Basic Properties, and Some Exam-
ples

A binary operation ? on a set S is a function mapping pairs of elements of S
into S; the value of the function on the pair (a, b) is denoted a ? b.

Definition 8.1 An abelian group is a set G together with a binary operation
? on G such that

1. for all a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c (associativity property),

2. there exists e ∈ G (called the identity element) such that for all a ∈ G,
a ? e = a = e ? a (identity property),

3. for all a ∈ G there exists a′ ∈ G such that a ? a′ = e = a′ ? a (inverse
property),

4. for all a, b ∈ G, a ? b = b ? a (commutativity property).

Before looking at examples, let us state some very basic properties of abelian
groups that follow directly from the definition.

Theorem 8.2 Let G be an abelian group with operator ?. Then we have

137
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1. the identity element is unique, i.e., there is only one element e ∈ G such
that a ? e = a for all a ∈ G;

2. inverses are unique, i.e., for all a ∈ G, there is only one element a′ ∈ G
such that a ? a′ is the identity.

Proof. Suppose e, e′ are both identities. Then we have

e = e ? e′ = e′ ? e = e′,

where we have used part (2) of the definition, once with e′ as the identity, and
once with e as the identity.

Now let a ∈ G, and suppose that a has two inverses, a′ and a′′, so that
a′ ? a = e and a ? a′′ = e. Then we have

a′ = a′ ? e = a′ ? (a ? a′′) = (a′ ? a) ? a′′ = e ? a′′ = a′′,

where we have used part (2) of the definition, the identity a ? a′′ = e, part (1) of
the definition, the identity a′ ?a = e, and part (2) of the definition. That proves
a has only one inverse. 2

Abelian groups are lurking everywhere, as the following examples illustrate.

Example 8.3 The set of integers Z under addition forms an abelian group,
with 0 being the identity, and −a being the inverse of a ∈ Z. 2

Example 8.4 For integer n, the set nZ := {nz : z ∈ Z} under addition forms
an abelian group, again, with 0 being the identity, and n(−z) being the inverse
of nz. 2

Example 8.5 The set of non-negative integers under addition does not form an
abelian group, since inverses do not exist for non-negative integers other than
0. 2

Example 8.6 The set of integers under multiplication does not form an abelian
group, since inverses do not exist for integers other than ±1. 2

Example 8.7 The set of integers {±1} under multiplication forms an abelian
group, with 1 being the identity, and −1 its own inverse. 2

Example 8.8 The set of rational numbers Q = {a/b : a, b ∈ Z, b 6= 0} under
addition forms an abelian group, with 0 being the identity, and (−a)/b being
the inverse of a/b. 2
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Example 8.9 The set of non-zero rational numbers Q∗ under multiplication
forms an abelian group, with 1 being the identity, and b/a being the inverse of
a/b. 2

Example 8.10 The set Zn under addition forms an abelian group, where
[0 mod n] is the identity, and where [−a mod n] is the inverse of [a mod n]. 2

Example 8.11 The set Z∗n of residue classes [a mod n] with gcd(a, n) = 1 un-
der multiplication forms an abelian group, where [1 mod n] is the identity, and
if as + nt = 1, then [s mod n] is the inverse of [a mod n]. Z∗n is called the
multiplicative group of units modulo n. 2

Example 8.12 Continuing the previous example, let us set n = 15, and enu-
merate the elements of Z∗15. They are

[1], [2], [4], [7], [8], [11], [13], [14].

An alternative enumeration is

[±1], [±2], [±4], [±7].

2

Example 8.13 As another special case, consider Z∗5. We can enumerate the
elements of this groups as

[1], [2], [3], [4]

or alternatively as
[±1], [±2].

2

Example 8.14 For any positive integer n, the set of n-bit strings under the
“exclusive or” operator forms an abelian group, where the “all zero” bit string
is the identity, and every bit string is its own inverse. 2

From the above examples, one can see that a group may be infinite or finite.
If the group is finite, we define its order to be the number of elements in the
underlying set G; otherwise, we say that the group has infinite order.

Example 8.15 The order of Zn is n. 2

Example 8.16 The order of Z∗n is φ(n), where φ is Euler’s function, defined in
§2.4. 2
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Note that in specifying a group, one must specify both the underlying set
G as well as the binary operation; however, in practice, the binary operation
is often implicit from context, and by abuse of notation, one often refers to G
itself as the group.

Usually, instead of using a special symbol like ? for an abelian group operator,
one uses the usual addition (“+”) or multiplication (“·”) operators.

If an abelian group G is written additively, then the identity element is
denoted by 0G (or just 0 if G is clear from context), and the inverse of an
element a ∈ G is denoted by −a. For a, b ∈ G, a− b denotes a+ (−b). If n is a
positive integer, then n · a denotes a + a + · · · + a, where there are n terms in
the sum. Moreover, if n = 0, then n · a denotes 0, and if n is a negative integer
then n · a denotes −((−n) · a).

If an abelian group G is written multiplicatively, then the identity element
is denoted by 1G (or just 1 if G is clear from context), and the inverse of an
element a ∈ G is denoted by a−1 or 1/a. As usual, one may write ab in place of
a · b. For a, b ∈ G, a/b denotes a · b−1. If n is a positive integer, then an denotes
a · a · · · · · a, where there are n terms in the product. Moreover, if n = 0, then
an denotes 1, and if n is a negative integer, then an denotes (a−n)−1.

For any particular, concrete abelian group, the most natural choice of no-
tation is clear; however, for a “generic” group, the choice is largely a matter of
taste. By convention, whenever we consider a “generic” abelian group, we shall
use additive notation for the group operation, unless otherwise specified.

We now record a few simple but useful properties of abelian groups.

Theorem 8.17 Let G be an abelian group. Then for all a, b, c ∈ G and n,m ∈
Z, we have:

1. if a+ b = a+ c, then b = c;

2. the equation a+ x = b in x has a unique solution in G;

3. −(a+ b) = (−a) + (−b);

4. −(−a) = a;

5. (−n)a = −(na) = n(−a);

6. (n+m)a = na+ma;

7. n(ma) = (nm)a = m(na);

8. n(a+ b) = na+ nb.
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Proof. Exercise. 2

If G1, . . . , Gk are abelian groups, we can form the direct product G1 ×
· · · × Gk, which consists of all k-tuples (a1, . . . , ak) with a1 ∈ G1, . . . , ak ∈ Gk.
We can view G1×· · ·×Gk in a natural way as an abelian group if we define the
group operation “component wise”:

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk).

Of course, the groups G1, . . . , Gk may be different, and the group operation
applied in the ith component corresponds to the group operation associated
with Gi. We leave it to the reader to verify that G1 × · · · × Gk is in fact an
abelian group.

In this text, we have chosen only to discuss the notion of an abelian group.
There is a more general notion of a group, which may be defined simply by
dropping the commutativity property in Definition 8.1, but we shall not need
this notion in this text, and restricting to abelian groups helps to simplify the
discussion significantly. Nevertheless, many of the notions and results we discuss
here regarding abelian groups extend (sometimes with slight modification) to
general groups. For example, we never used the commutativity property in the
proof of Theorem 8.2.

Example 8.18 The set of 2 × 2 integer matrices with determinant ±1 with
respect to matrix multiplication forms a group, but not an abelian group. 2

8.2 Subgroups

We next introduce the notion of a subgroup.

Definition 8.19 Let G be an abelian group, and let H be a non-empty subset
of G such that

• for all a, b ∈ H, a+ b ∈ H, and

• for all a ∈ H, −a ∈ H.

Then H is called a subgroup of G.

Multiplicative notation: if the abelian group G in the above definition is
written using multiplicative notation, then H is a subgroup if ab ∈ H and
a−1 ∈ H for all a, b ∈ H.
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Theorem 8.20 If G is an abelian group, and H is a subgroup, then the binary
operation of G defines a binary operation on H, and with respect to this binary
operation, H forms an abelian group whose identity is the same as that of G.

Proof. First, note that by the first property of the definition of a subgroup, H
is closed under addition, which means that the restriction of the binary operator
“+” on G to H is a well defined binary operator on H. So now it suffices to show
that H, together with this operator, satisfy the defining properties of an abelian
group. Associativity and commutativity follow directly from the corresponding
properties for G. As for the identity element, if we choose any a ∈ H, then using
both properties of the definition of a subgroup, we see that 0G = a+ (−a) ∈ H.
Since 0G acts as the identity on G, it does so on H as well. Finally, the second
property of the definition of a subgroup guarantees that every element a ∈ H
has an inverse in H, namely, −a. 2

Clearly, for an abelian group G, the subsets G and {0G} are subgroups.
These are not very interesting subgroups. An easy way to sometimes find other,
more interesting, subgroups within an abelian group is by using the following
two theorems:

Theorem 8.21 Let G be an abelian group, and let m be an integer. Then
mG := {ma : a ∈ G} is a subgroup of G.

Proof. For ma,mb ∈ mG, we have ma+mb = m(a+ b) ∈ mG, and −(ma) =
m(−a) ∈ mG. 2

Theorem 8.22 Let G be an abelian group, and let m be an integer. Then
G{m} := {a ∈ G : ma = 0G} is a subgroup of G.

Proof. If ma = 0G and mb = 0G, then m(a + b) = ma +mb = 0G + 0G = 0G
and m(−a) = −(ma) = −0G = 0G. 2

Multiplicative notation: if the abelian group G in the above two theorems
is written using multiplicative notation, then we write the subgroup of the first
theorem as Gm := {am : a ∈ G}. The subgroup in the second theorem is
denoted in the same way: G{m} := {a ∈ G : am = 1G}.

Example 8.23 For every integer m, the set mZ is the subgroup of Z consisting
of all integer multiples of m. Two such subgroups mZ and m′Z are equal if and
only if m = ±m′. The subgroup Z{m} is equal to Z if m = 0, and is equal to
{0} otherwise. 2
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Example 8.24 Let n be a positive integer, and let m ∈ Z, and consider the
subgroup mZn of Zn. Now, [b mod n] ∈ mZn if and only if there exists x ∈ Z
such that mx ≡ b (mod n). By Theorem 2.6, such an x exists if and only if d | b,
where d = gcd(m,n). Thus, mZn consists precisely of the n/d distinct residue
classes

[i · d mod n] (i = 0, . . . , n/d− 1),

and in particular, mZn = dZn.
Now consider the subgroup Zn{m}. The residue class [x mod n] is in Zn{m}

if and only if mx ≡ 0 (mod n). By Theorem 2.6, this happens if and only if
x ≡ 0 (mod n/d), where d = gcd(m,n) as above. Thus, Zn{m} consists precisely
of the d residue classes

[i · n/d mod n] (i = 0, . . . , d− 1),

and in particular, Zn{m} = Zn{d} = (n/d)Zn. 2

Example 8.25 For n = 15, consider again the table in Example 2.7. For m =
1, 2, 3, 4, 5, 6, the elements appearing in the mth row of that table form the
subgroup mZn, and also the subgroup Zn{n/d}, where d = gcd(m,n). 2

Because the abelian groups Z and Zn are of such importance, it is a good
idea to completely characterize all subgroups of these abelian groups. As the
following two theorems show, the subgroups in the above examples are the only
subgroups of these groups.

Theorem 8.26 If G is a subgroup of Z, then there exists a unique non-negative
integer m such that G = mZ.

Proof. Actually, we have already proven this. One only needs to observe that
a subset G is a subgroup if and only if it is an ideal (as defined in §1.2), and
then apply Theorem 1.11. 2

Theorem 8.27 If G is a subgroup of Zn, then there exists a unique positive
integer m dividing n such that G = mZn.

Proof. Let G be a subgroup of Zn. Define G′ := {a ∈ Z : [a] ∈ G}. It is easy
to see that G = {[a] : a ∈ G′}.

First, we claim that G′ is a subgroup of Z. Suppose that a, b ∈ G′. This
means that [a] ∈ G and [b] ∈ G, which implies that [a + b] = [a] + [b] ∈ G,
and hence a + b ∈ G′. Similarly, if [a] ∈ G, then [−a] = −[a] ∈ G, and hence
−a ∈ G′.
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By the previous theorem, it follows that G′ is of the form mZ for some non-
negative integer m. Moreover, note that n ∈ G′, since [n] = [0] is the identity
element of Zn, and hence belongs to G. Therefore, m | n.

So we have G = {[a] : a ∈ mZ} = mZn.
From the observations in Example 8.24, the uniqueness of m is clear. 2

Of course, not all abelian groups have such a simple subgroup structure.

Example 8.28 Consider the group G = Z2 × Z2. For any non-zero α ∈ G,
α+ α = 0G. From this, it is easy to see that the set H = {0G, α} is a subgroup
of G. However, for any integer m, mG = G if m is odd, and mG = {0G} if m is
even. Thus, the subgroup H is not of the form mG for any m. 2

Example 8.29 Consider the group Z∗n discussed in Example 8.11. The sub-
group (Z∗n)

2 plays an important role in some situations. Integers a such that
[a] ∈ (Z∗n)

2 are called quadratic residues modulo n. 2

Example 8.30 Consider again the group Z∗n, for n = 15, discussed in Exam-
ple 8.12. As discussed there, we have Z∗15 = {[±1], [±2], [±4], [±7]}. Therefore,
the elements of (Z∗15)

2 are

[1]2 = [1], [2]2 = [4], [4]2 = [16] = [1], [7]2 = [49] = [4];

thus, (Z∗15)
2 has order 2, consisting as it does of the two distinct elements [1]

and [4].
Going further, one sees that (Z∗15)

4 = {[1]}. Thus, α4 = [1] for all α ∈ Z∗15.
By direct calculation, one can determine that (Z∗15)

3 = Z∗15; that is, cubing
simply permutes Z∗15.

For any integer m, write m = 4q+r, where 0 ≤ r < 4. Then for any α ∈ Z∗15,
we have αm = α4q+r = α4qαr = αr. Thus, (Z∗15)

m is either Z∗15, (Z
∗
15)

2, or {[1]}.
However, there are certainly other subgroups of Z∗15 — for example, the

subgroup {[±1]}. 2

Example 8.31 Consider again the group Z∗5 from Example 8.13. As discussed
there, Z∗5 = {[±1], [±2]}. Therefore, the elements of (Z∗5)

2 are

[1]2 = [1], [2]2 = [4] = [−1];

thus, (Z∗5)
2 = {[±1]} and has order 2.

There are in fact no other subgroups of Z∗5 besides Z∗5, {[±1]}, and {[1]}.
Indeed, if H is a subgroup containing [2], then we must have H = Z∗5: [2] ∈ H
implies [2]2 = [4] = [−1] ∈ H, which implies [−2] ∈ H as well. The same holds
if H is a subgroup containing [−2]. 2
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We next state a simple theorem that may simplify verifying that something
is a subgroup.

Theorem 8.32 If G is an abelian group, and H is a non-empty subset of G
such that a− b ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. Since H is non-empty, let c be an arbitrary element of H. Then
0G = c − c ∈ H. It follows that for all a ∈ H, we have −a = 0G − a ∈ H, and
for all a, b ∈ H, we have a+ b = a− (−b) ∈ H. 2

The next theorem simplifies verifying that something is a subgroup when it
is finite.

Theorem 8.33 If G is an abelian group, and H is a non-empty, finite subset
of G such that a+ b ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. We only need to show that −a ∈ H for all a ∈ H. Let a ∈ H be given.
If a = 0, then clearly −a = 0 ∈ H, so assume that a 6= 0, and consider the set
S of all elements of G of the form ma, for m = 1, 2, . . . . Since H is closed under
addition, it follows that S ⊆ H. Moreover, since H is finite, S must be finite,
and hence there must exist positive integers m1,m2, such that m1a = m2a,
but m1 6= m2. We may assume that m1 > m2. We may further assume that
m1 −m2 > 1, since otherwise a = (m1 −m2)a = 0, and we are assuming that
a 6= 0. It follows that −a = (m1 −m2 − 1)a ∈ S. 2

If G is an abelian group, and H1 and H2 are subgroups, we define H1+H2 :=
{h1 + h2 : h1 ∈ H1, h2 ∈ H2}. Note that H1 +H2 contains H1 ∪H2.

Multiplicative notation: if G is written multiplicatively, then we write H1 ·
H2 := {h1h2 : h1 ∈ H1, h2 ∈ H2}.

Exercise 8.34 Show that if H1 and H2 are subgroups of an abelian group G,
then so is H1 + H2. Moreover, show that any subgroup H of G that contains
H1 ∪H2 contains H1 +H2, and H1 ⊆ H2 if and only if H1 +H2 = H2. 2

Exercise 8.35 Show that if H1 and H2 are subgroups of an abelian group G,
then so is H1 ∩H2. 2

Exercise 8.36 Show that if H ′ is a subgroup of an abelian group G, then a set
H ⊆ H ′ is a subgroup of G if and only if H is a subgroup of H ′. 2
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8.3 Cosets and Quotient Groups

We now generalize the notion of a congruence relation.
Let G be an abelian group, and let H be a subgroup. For a, b ∈ G, we write

a ≡ b (mod H) if a− b ∈ H.
It is easy to verify that the relation · ≡ · (mod H) is an equivalence relation.

Therefore, this relation partitions G into equivalence classes. It is easy to see
that for any a ∈ G, the equivalence class containing a is precisely a + H :=
{a+ h : h ∈ H}; indeed, a ≡ b (mod H) ⇐⇒ b− a = h for some h ∈ H ⇐⇒
b = a+h for some h ∈ H ⇐⇒ b ∈ a+H. The equivalence class a+H is called
the coset of H in G containing a, and an element of such a coset is called a
representative of the coset.

Multiplicative notation: if G is written multiplicatively, then a ≡ b (mod H)
means a/b ∈ H, and the coset of H in G containing a is aH := {ah : h ∈ H}.

Example 8.37 Let G = Z and H = nZ for some positive integer n. Then
a ≡ b (mod H) if and only if a ≡ b (mod n). The coset a + H is exactly the
same thing as the residue class [a mod n]. 2

Example 8.38 Let G = Z4 and let H be the subgroup 2Z4 = {[0], [2]}. The
coset of H containing [1] is {[1], [3]}. These are all the cosets of H in G. 2

Theorem 8.39 Any two cosets of a subgroup H in an abelian group G have
equal cardinality; i.e., there is a bijective map from one coset to the other.

Proof. Let a +H and b +H be two cosets, and consider the map f : G → G
that sends x ∈ G to x − a + b ∈ G. The reader may verify that f is injective
and carries a+H onto b+H. 2

An incredibly useful consequence of the above theorem is:

Theorem 8.40 If G is a finite abelian group, and H is a subgroup of G, then
the order of H divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and the fact
that the cosets of H in G partition G. 2

Analogous to Theorem 2.2, we have:

Theorem 8.41 Let G be an abelian group and H a subgroup. For a, a′, b, b′ ∈ G,
if a ≡ a′ (mod H) and b ≡ b′ (mod H), then a+ b ≡ a′ + b′ (mod H).
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Proof. Now, a ≡ a′ (mod H) and b ≡ b′ (mod H) means that a′ = a + h1
and b′ = b + h2 for h1, h2 ∈ H. Therefore, a′ + b′ = (a + h1) + (b + h2) =
(a+b)+(h1+h2), and since h1+h2 ∈ H, this means that a+b ≡ a′+b′ (mod H).
2

Let G be an abelian group and H a subgroup. Theorem 8.41 allows us to
define a group operation on the collection of cosets of H in G in the following
natural way: for a, b ∈ G, define

(a+H) + (b+H) := (a+ b) +H.

The fact that this definition is unambiguous follows immediately from Theo-
rem 8.41. Also, one can easily verify that this operation defines an abelian
group, where H acts as the identity element. The resulting group is called the
quotient group of G modulo H, and is denoted G/H.

The order of the group G/H is sometimes denoted [G : H] and is called the
index of H in G. If G is of finite order, then by Theorem 8.39, [G : H] =
|G|/|H|. Moreover, if H and H ′ are subgroups of G with H ⊆ H ′, then H is a
subgroup of H ′, and we have

[G : H ′] =
|G|
|H ′| =

|G|/|H|
|H ′|/|H| =

[G : H]

[H ′ : H]
,

and we conclude that
[G : H] = [G : H ′][H ′ : H].

Multiplicative notation: if G is written multiplicatively, then the definition
of the group operation of G/H is expressed

(aH) · (bH) := (ab)H.

Example 8.42 For the additive group of integers Z and the subgroup nZ for
n > 0, the quotient group Z/nZ is precisely the same as the additive group Zn

that we have already defined. For n = 0, Z/nZ is essentially just a “renaming”
of Z. 2

Example 8.43 Let G := Z6 and H = 3G be the subgroup of G consisting
of the two elements {[0], [3]}. The cosets of H in G are α := H = {[0], [3]},
β := [1] + H = {[1], [4]}, and γ := [2] + H = {[2], [5]}. If we write out an
addition table for G, grouping together elements in cosets of H in G, then we
also get an addition table for the quotient group G/H:
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0 3 1 4 2 5

0 0 3 1 4 2 5
3 3 0 4 1 5 2

1 1 4 2 5 3 0
4 4 1 5 2 0 3

2 2 5 3 0 4 1
5 5 2 0 3 1 4

This table illustrates quite graphically the point of Theorem 8.41: for any
two cosets, if we take any element from the first and add it to any element of
the second, we always end up in the same coset.

We can also write down just the addition table for G/H:

α β γ

α α β γ
β β γ α
γ γ α β

2

Example 8.44 Let us return to Example 8.30. The multiplicative group Z∗15, as
we saw, is of order 8. The subgroup (Z∗15)

2 has order 2. Therefore, the quotient
group has order 4. Indeed, the cosets are α00 = {[1], [4]}, α01 = {[−1], [−4]},
α10 = {[2], [−7]}, and α11 = {[7], [−2]}. In the group Z∗15/(Z

∗
15)

2, α00 is the
identity; moreover, we have

α201 = α210 = α211 = α00

and
α01α10 = α11, α10α11 = α01, α01α11 = α10.

This completely describes the behavior of the group operation of the quotient
group. Note that this group is essentially just a “renaming” of the group Z2×Z2.
2

Example 8.45 As we saw in Example 8.31, (Z∗5)
2 = {[±1]}. Therefore, the

quotient group Z∗5/(Z
∗
5)
2 has order 2. The cosets of (Z∗5)

2 in Z∗5 are α0 = {[±1]}
and α1 = {[±2]}. In the group Z∗5/(Z

∗
5)
2, α0 is the identity, and α1 is its own

inverse, and we see that this group is essentially just a “renaming” of Z2. 2
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8.4 Group Homomorphisms and Isomorphisms

Definition 8.46 A group homomorphism is a function ρ from an abelian
group G to an abelian group G′ such that ρ(a+ b) = ρ(a) + ρ(b) for all a, b ∈ G.

The set ρ−1(0G′) is called the kernel of ρ, and is denoted ker(ρ). The set
ρ(G) is called the image of ρ, and may be denoted im(ρ).

If ρ is bijective, then ρ is called a group isomorphism of G with G′, and
moreover, if G = G′, then ρ is called a group automorphism on G.

It is easy to see that if ρ : G → G′ and ρ′ : G′ → G′′ are group homomor-
phisms, then so is their composition ρ′ ◦ ρ : G → G′′; indeed, for a, b ∈ G, we
have ρ′(ρ(a+ b)) = ρ′(ρ(a) + ρ(b)) = ρ′(ρ(a)) + ρ′(ρ(b)).

It is also easy to see that if ρ is an isomorphism of G with G′, then the
inverse function ρ−1 is an isomorphism of G′ with G, since

ρ(ρ−1(a′) + ρ−1(b′)) = ρ(ρ−1(a′)) + ρ(ρ−1(b′)) = a′ + b′,

and hence ρ−1(a′) + ρ−1(b′) = ρ−1(a′ + b′). If such a group isomorphism exists,
we say that G and G′ are isomorphic, and write G ∼= G′. We stress that an
isomorphism of G with G′ is essentially just a “renaming” of the group elements
— all structural properties of the group are preserved.

Example 8.47 For any abelian group G and any integerm, the map that sends
a ∈ G to ma ∈ G is clearly a group homomorphism from G into G. The image
of this homomorphism is mG and the kernel is G{m}. We call this map the
m-multiplication map on G. If G is written multiplicatively, we call this the
m-power map on G, and its image is Gm. 2

Example 8.48 Consider the m-multiplication map on Zn. The image of this
map is mZn, which as we saw above in Example 8.24 is a subgroup of Zn of
order n/d, where d = gcd(n,m). Thus, this map is bijective if and only if d = 1,
in which case it is a group automorphism on Zn. 2

Example 8.49 For n > 0, we have defined Zn so that it is literally the same as
Z/nZ. A more “low tech” approach is to define the group Cn which consists of
the set of integers {0, 1, . . . , n − 1}, with the group operation that sends i, j to
(i+ j) rem n. It is easy to verify that Zn is isomorphic to Cn. For n = 0, as we
said in Example 8.42, the group Z/nZ is isomorphic to Z. 2

Example 8.50 As was shown in Example 8.44, the quotient group Z∗15/(Z
∗
15)

2

is isomorphic to Z2×Z2, and as was shown in Example 8.45, the quotient group
Z∗5/(Z

∗
5)
2 is isomorphic to Z2. 2
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Example 8.51 For any abelian groups G,H, the function ρ that sends (g, h) ∈
G×H to g ∈ G is a group homomorphism from G×H into G. The image of ρ
is G, and the kernel of ρ is {0G} ×H. 2

Example 8.52 Let G be an abelian group with subgroups H1, H2. Consider
the map ρ : H1 ×H2 → H1 +H2 that sends (h1, h2) ∈ H1 ×H2 to h1 + h2. We
verify that ρ is a group homomorphsim: for h1, h

′
1 ∈ H1 and h2, h

′
2 ∈ H2, we

have

ρ(h1 + h′1, h2 + h′2) = (h1 + h′1) + (h2 + h′2)

= (h1 + h2) + (h′1 + h′2)

= ρ(h1, h2) + ρ(h′1, ρ
′
2).

Moreover, from the definition of H1 +H2, we see that ρ is in fact surjective. 2

The following theorem summarizes some of the most important properties
of group homomorphisms.

Theorem 8.53 Let ρ be a group homomorphism from G to G′.

1. ρ(0G) = 0G′.

2. ρ(−a) = −ρ(a) for all a ∈ G.

3. ρ(na) = nρ(a) for all n ∈ Z and a ∈ G.

4. For any subgroup H of G, ρ(H) is a subgroup of G′.

5. ker(ρ) is a subgroup of G.

6. For all a, b ∈ G, ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)).

7. ρ is injective if and only if ker(ρ) = {0G}.

8. For any subgroup H ′ of G′, ρ−1(H ′) is a subgroup of G containing ker(ρ).

Proof.

1. We have

0G′ + ρ(0G) = ρ(0G) = ρ(0G + 0G) = ρ(0G) + ρ(0G).

Now cancel ρ(0G) from both sides (using part (1) of Theorem 8.17).
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2. We have
0G′ = ρ(0G) = ρ(a+ (−a)) = ρ(a) + ρ(−a),

and hence ρ(−a) is the inverse of ρ(a).

3. For non-negative n, this follows by induction from the definitions, and for
negative n, this follows from the positive case and part (5) of Theorem 8.17.

4. For any a, b ∈ H, we have a + b ∈ H and −a ∈ H; hence, ρ(H) contains
ρ(a+ b) = ρ(a) + ρ(b) and ρ(−a) = −ρ(a).

5. If ρ(a) = 0G′ and ρ(b) = 0G′ , then ρ(a+b) = ρ(a)+ρ(b) = 0G′+0G′ = 0G′ ,
and ρ(−a) = −ρ(a) = −0G′ = 0G′ .

6. ρ(a) = ρ(b) iff ρ(a) − ρ(b) = 0G′ iff ρ(a − b) = 0G′ iff a − b ∈ ker(ρ) iff
a ≡ b (mod ker(ρ)).

7. If ρ is injective, then in particular, ρ−1(0G′) cannot contain any other
element besides 0G. If ρ is not injective, then there exist two distinct
elements a, b ∈ G with ρ(a) = ρ(b), and by part (6), ker(ρ) contains the
element a− b, which is non-zero.

8. This is very similar to part (5). If ρ(a) ∈ H ′ and ρ(b) ∈ H ′, then ρ(a+b) =
ρ(a) + ρ(b) ∈ H ′, and ρ(−a) = −ρ(a) ∈ H ′. Moreover, since H ′ contains
0G′ , we must have ρ−1(H ′) ⊃ ρ−1(0G′) = ker(ρ).

2

Part (7) of the above theorem is particular useful: to check that a group
homomorphism is injective, it suffices to determine if ker(ρ) = {0G}.

Theorem 8.54 If H is a subgroup of an abelian group G, then the map ρ : G→
G/H given by ρ(a) = a +H is a surjective group homomorphism whose kernel
is H. This is sometimes called the “natural” map from G to G/H.

Proof. This really just follows from the definition of the quotient group. To
verify that ρ is a group homomorphism, note that

ρ(a+ b) = (a+ b) +H = (a+H) + (b+H) = ρ(a) + ρ(b).

Surjectivity follows from the fact that every coset is of the form a+H for some
a ∈ G. 2
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Theorem 8.55 Let ρ be a group homomorphism from G into G′. Then the
map ρ̄ : G/ ker(ρ) → im(ρ) that sends the coset a + ker(ρ) for a ∈ G to ρ(a) is
unambiguously defined and is a group isomorphism of G/ ker(ρ) with im(ρ).

Proof. To see that the definition ρ̄ is unambiguous, note that if a ≡ a′ mod
ker(ρ), then by part (6) of Theorem 8.53, ρ(a) = ρ(a′). To see that ρ̄ is a group
homomorphism, note that

ρ̄((a+ ker(ρ)) + (b+ ker(ρ))) = ρ̄((a+ b) + ker(ρ)) = ρ(a+ b) = ρ(a) + ρ(b)

= ρ̄(a+ ker(ρ)) + ρ̄(b+ ker(ρ)).

It is clear that ρ̄ maps onto im(ρ), since any element of im(ρ) is of the form ρ(a)
for some a ∈ G, and the map ρ̄ sends a + ker(ρ) to ρ(a). Finally, to see that ρ̄
is injective, note that ρ̄(a+ker(ρ)) = 0G′ implies that ρ(a) = 0G′ , which implies
that a ∈ ker(ρ), which implies that the coset a+ker(ρ) is equal to ker(ρ), which is
the zero element of G/ ker(ρ). Injectivity follows from part (7) of Theorem 8.53.
2

The following theorem is an easy generalization of the previous one.

Theorem 8.56 Let ρ be a group homomorphism from G into G′. Then for any
subgroup H contained in ker(ρ), the map ρ̄ : G/H → im(ρ) that sends the coset
a+H for a ∈ G to ρ(a) is unambiguously defined and is a group homomorphism
from G/H onto im(ρ) with kernel ker(ρ)/H.

Proof. Exercise — just mimic the proof of the previous theorem. 2

Theorem 8.57 Let G be an abelian group with subgroups H1, H2 such that H1∩
H2 = {0G}. Then the map that sends (h1, h2) ∈ H1 ×H2 to h1 + h2 ∈ H1 +H2

is a group isomorphism of H1 ×H2 with H1 +H2.

Proof. Let ρ be the map defined above. We already saw in Example 8.52 that
ρ is a surjective group homomorphism. To see that ρ is injective, it suffices to
show that ker(ρ) is trivial, i.e., that for all h1 ∈ H1 and h2 ∈ H2, h1 + h2 = 0
implies h1 = 0 and h2 = 0. But h1 + h2 = 0 implies h1 = −h2 ∈ H2, and hence
h1 ∈ H1 ∩H2 = {0}, and so h1 = 0. Similarly, one shows that h2 = 0, and that
finishes the proof. 2

The last theorem says that whenH1∩H2 = {0}, every element ofH1+H2 can
be expressed uniquely as h1 + h2, with h1 ∈ H1 and h2 ∈ H2. In this situation,
one calls H1 + H2 the internal direct sum of H1 and H2 (or the internal
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direct product if the group is written multiplicatively). More generally, if
H1, . . . , Hn are subgroups of G such that every element of H1+ · · ·+Hn can be
expressed uniquely as h1+ · · ·+hn for h1 ∈ H1, . . . , hn ∈ Hn, then H1+ · · ·+Hn

is called the internal direct sum of H1, . . . , Hn, and is isomorphic to the direct
product H1 × · · · ×Hn.

Example 8.58 For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z to
the residue class [a mod n]. This map is a surjective group homomorphism with
kernel nZ. 2

Example 8.59 We may restate Theorem 2.8 (Chinese Remainder Theorem) in
more algebraic terms. Let n1, . . . , nk be positive integers, such that gcd(ni, nj) =
1 for all 1 ≤ i < j ≤ k. Consider the group homomorphism from the group Z to
the group Zn1×· · ·×Znk that sends x ∈ Z to ([x mod n1], . . . , [x mod nk]). In our
new language, Theorem 2.8 says that this group homomorphism is surjective and
the kernel is nZ, where n =

∏k
i=1 ni. Therefore, by Theorem 8.55, the map that

sends [x mod n] ∈ Zn to ([x mod n1], . . . , [x mod nk]) is a group isomorphism of
the group Zn with the group Zn1 × · · · × Znk . 2

Example 8.60 Let n1, n2 be positive integers with n1 > 1 and n1 | n2. Then
the map ρ̄ : Zn2 → Zn1 that sends [a mod n2] to [a mod n1] is a surjective group
homomorphism, and [a mod n2] ∈ ker(ρ) if and only if n1 | a, i.e., ker(ρ) =
n1Zn2 . The map ρ̄ can also be viewed as the map obtained from Theorem 8.56
applied to the natural map ρ from Z to Zn1 and the subgroup n2Z of Z, which
is contained in ker(ρ) = n1Z. 2

Exercise 8.61 Let ρ be a group homomorphism from G into G′. Show that for
any subgroup H of G, we have ρ−1(ρ(H)) = H + ker(ρ). 2

Exercise 8.62 Let ρ be a group homomorphism from G into G′. Show that
the subgroups of G containing ker(ρ) are in one-to-one correspondence with the
subgroups of im(ρ), where the subgroup H in G containing ker(ρ) corresponds
to the subgroup ρ(H) in im(ρ). 2

Exercise 8.63 Show that if H ⊆ H ′ are subgroups of an abelian group G, then
we have a group isomorphism

G/H ′ ∼= G/H

H ′/H
.

In particular, show that if [G : H] is finite, then [G : H] = [G : H ′] · [H ′ : H]. 2
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Exercise 8.64 Sow that if G = G1 × G2 for abelian groups G1 and G2, and
H1 is a subgroup of G1 and H2 is a subgroup of G2, then H := H1 ×H2 is a
subgroup of G, and G/H ∼= G1/H1 ×G2/H2. 2

Exercise 8.65 Let ρ1 and ρ2 be group homomorphisms from G into G′. Show
that the map ρ : G→ G′ that sends a ∈ G to ρ1(a) + ρ2(a) ∈ G′ is also a group
homomorphism. 2

Exercise 8.66 Let ρi : G → Gi, for i = 1, . . . , n, be group homomorphisms.
Show that the map ρ : G→ G1×· · ·×Gn that sends a ∈ G to (ρ1(a), . . . , ρn(a))
is also a group homomorphism, and show that ker(ρ) = ker(ρ1) ∩ · · · ∩ ker(ρn).
2

Exercise 8.67 This exercise develops an alternative, “quick and dirty” proof of
Theorem 2.8 (Chinese Remainder Theorem). Let n1, . . . , nk be positive integers,
such that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k, and let n := n1 · · ·nk. Consider
the group homomorphism ρ : Z→ Zn1 × · · · × Znk that sends x ∈ Z to ([x mod
n1], . . . , [x mod nk]).

(a) Using the result of the previous exercise, give a direct proof that ker(ρ) =
nZ.

(b) Using Theorem 8.55, conclude that the map ρ̄ given by that theorem,
which sends [x mod n] to ([x mod n1], . . . , [x mod nk]) is an injective group
homomorphism from Zn into Zn1 × · · · × Znk .

(c) Since |Zn| = n = |Zn1 × · · · × Znk |, conclude that the map ρ̄ is surjective,
and thus, it is an isomorphism between Zn and Zn1 × · · · × Znk .

2

Exercise 8.68 This exercise develops some simple — but extremely useful —
connections between group theory and probability theory. Let ρ : G→ G′ be a
group homomorphism, where G is a finite abelian group.

(a) Show that if g is a random variable with the uniform distribution on G,
then ρ(g) is a random variable with the uniform distribution on im(ρ).

(b) Show that if g is a random variable with the uniform distribution on G,
and g′ is a fixed element in im(ρ), then the conditional distribution of g,
given by the event ρ(g) = g′, is the uniform distribution on ρ−1(g′).
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(c) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed over
ρ−1(g′1), g

′
2 is a fixed element of G′, and g2 is a fixed element of ρ−1(g′2),

then g1 + g2 is uniformly distributed over ρ−1(g′1 + g′2).

(d) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed over
ρ−1(g′1), g

′
2 is a fixed element ofG′, g2 is uniformly distributed over ρ−1(g′2),

and g1 and g2 are independent, then g1 + g2 is uniformly distributed over
ρ−1(g′1 + g′2).

2

8.5 Cyclic Groups

Let G be an abelian group. For a ∈ G, define 〈a〉 := {za : z ∈ Z}. It is clear that
〈a〉 is a subgroup of G, and moreover, that any subgroup H of G that contains
a must also contain 〈a〉. The subgroup 〈a〉 is called the subgroup generated
by a. Also, one defines the order of a to be the order of the subgroup 〈a〉,
which is denoted ord(a).

More generally, for a1, . . . , ak ∈ G, we define 〈a1, . . . , ak〉 := {z1a1 + · · · +
zkak : z1, . . . , zk ∈ Z}. One also verifies that 〈a1, . . . , ak〉 is a subgroup of G, and
that any subgroup H of G that contains a1, . . . , ak must contain 〈a1, . . . , ak〉.
The subgroup 〈a1, . . . , ak〉 is called the subgroup generated by a1, . . . , ak.

An abelian group G is called a cyclic group if G = 〈a〉 for some a ∈ G, in
which case, a is called a generator for G.

Multiplicative notation: if G is written multiplicatively, then 〈a〉 := {az :
z ∈ Z}, and 〈a1, . . . , ak〉 := {az11 · · · azkk : z1, . . . , zk ∈ Z}.

We can very quickly characterize all cyclic groups, up to isomorphism. Sup-
pose that G is a cyclic group with generator a. Consider the map ρ : Z→ G that
sends z ∈ Z to za ∈ G. This map is clearly a surjective group homomorphism.
Now, ker(ρ) is a subgroup of Z, and by Theorem 8.26, it must be of the form nZ
for some non-negative integer n. Also, by Theorem 8.55, we have Z/nZ ∼= G.

Case 1: n = 0. In this case, Z/nZ ∼= Z, and so we see that G ∼= Z. Moreover,
by Theorem 8.53, the only integer z such that za = 0G is the integer 0,
and more generally, z1a = z2a if and only if z1 = z2.

Case 2: n > 0. In this case, Z/nZ = Zn, and so we see that G ∼= Zn. Moreover,
by Theorem 8.53, za = 0G if and only if n | z, and more generally, z1a =
z2a if and only if z1 ≡ z2 (mod n). The order of G is evidently n, and G
consists of the distinct elements

0 · a, 1 · a, . . . , (n− 1) · a.
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From this characterization, we immediately have:

Theorem 8.69 Let G be an abelian group and let a ∈ G. If there exists a
positive integer m such that ma = 0G, then the least such integer is the order
of a, and more generally, for any integer m′, we have m′a = 0 if and only if
ord(a) | m′. Moreover, if G is of finite order n, then ord(a) | n, and na = 0G.

Proof. The first statement follows from the above characterization. The second
statement follows from the first, along with Theorem 8.40, since 〈a〉 is a subgroup
of G. 2

Example 8.70 Z is a cyclic group generated by 1. The only other generator is
−1. More generally, 〈m〉 = mZ. 2

Example 8.71 Zn is a cyclic group generated by [1 mod n]. More generally,
〈[m mod n]〉 = mZn, and so as we saw in Example 8.24, the order of mZn is
n/d, where d = gcd(m,n). Therefore, the number of generators of Zn is φ(n).
2

Example 8.72 Consider the group Zn1 × Zn2 . For m ∈ Z, then the element
m([1 mod n1], [1 mod n2]) = ([0 mod n1], [0 mod n2]) if and only if n1 | m and
n2 | m. This implies that ([1 mod n1], [1 mod n2]) has order lcm(n1, n2). In
particular, if gcd(n1, n2) = 1, then Zn1 × Zn2 is cyclic of order n1n2. Moreover,
if gcd(n1, n2) = d > 1, then all elements of Zn1×Zn2 have order dividing n1n2/d,
and so Zn1 × Zn2 cannot be cyclic. 2

Example 8.73 For any positive integer n, and a ∈ Z relatively prime to n,
the order of [a mod n] ∈ Z∗n is nothing more than the multiplicative order of a
modulo n, as we defined it in §2.5. Indeed, Theorem 2.23 is just a special case
of Theorem 8.69. 2

Example 8.74 As we saw in Example 8.30, all elements of Z∗15 have order
dividing 4, and since Z∗15 has order 8, we conclude that Z∗15 is not cyclic. 2

Example 8.75 The group Z∗5 is cyclic, with [2] being a generator:

[2]2 = [4] = [−1], [2]3 = [−2], [2]4 = [1].

2

Example 8.76 Based on the calculations in Example 2.21, we may conclude
that Z∗7 is cyclic, with both [3] and [5] being generators. 2
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The following two theorems completely characterize the subgroup structure
of cyclic groups:

Theorem 8.77 Let G be a cyclic group of infinite order.

1. G is isomorphic to Z.

2. The subgroups of G are in one-to-one correspondence with the non-negative
integers m, where each such integer corresponds to the cyclic group mG.

3. For any two non-negative integers m,m′, mG ⊆ m′G if and only if m′ | m.

Proof. That G ∼= Z was established in the above characterization of cyclic
groups, and so it suffices to prove the other statements of the theorem for G = Z.
The second statement was already established in Theorem 8.26. For the third
statement, if mZ ⊆ m′Z, the in particular, m ∈ m′Z, which means that m′ | m;
conversely, if m′ | m, so that m = m′d, then for any mz ∈ mZ, we have
mz = m′(dz) ∈ m′Z. 2

Theorem 8.78 Let G be a cyclic group of finite order n.

1. G is isomorphic to Zn.

2. The subgroups of G are in one-to-one correspondence with the positive
divisors of n, where each such divisor d corresponds to the subgroup G{d},
which is a cyclic subgroup of order d and contains precisely those elements
of G whose order divides d.

3. For each d | n, G{d} = (n/d)G; that is, G{d} is the image of the (n/d)-
multiplication map.

4. For any two divisors d, d′ of n, G{d} ⊃ G{d′} if and only if d′ | d.

5. For any d | n, the number of elements of order d in G is precisely φ(d).

6. For any integer m, we have mG = dG and G{m} = G{d}, where d =
gcd(m,n).

Proof. That G ∼= Zn was established in the above characterization of cyclic
groups, and so it suffices to prove the other statements of the theorem for G =
Zn. By Theorem 8.27, any subgroup of Zn is of the form dZn for a uniquely
determined divisor d of n, and as we saw in Example 8.24, dZn = Zn{d′}, where
d′ = n/d, and the order of this group is d′. That proves statements (2) and (3)
of the theorem.
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For the fourth statement, if Zn{d} ⊃ Zn{d′}, then Zn{d′} is a subgroup
of Zn{d}, and so the order d′ of Zn{d′} must divide the order d of Zn{d}.
Conversely, suppose d′ | d. From statement (2), we know that Zn{d} contains
all those elements in Zn whose order divides d, and so in particular, all those
elements whose order divides d′, and so contains Zn{d′}.

For the fifth statement, the elements of order d in Zn are all contained in
Zn{d}, and so the number of such elements is equal to the number of generators
of Zn{d}. The group Zn{d} is cyclic of order d, and so is isomorphic to Zd, and
as we saw in Example 8.71, this group has φ(d) generators.

The last statement follows from the discussion in Example 8.24. 2

We continue to develop the theory of cyclic groups in the following sequence
of theorems.

Theorem 8.79 If G is a cyclic group, and ρ : G → G′ is a group homomor-
phism from G into G′, then im(ρ) is cyclic.

Proof. If a is a generator for G, then it is clear that ρ(a) generates im(ρ). 2

Theorem 8.80 If G is a finite abelian group of order n, and m is an integer
relatively prime to n, then mG = G.

Proof. Consider the m-multiplication map on G.
We claim that the kernel of this map is {0G}. Indeed, ma = 0G, implies

ord(a) divides m, and since ord(a) also divides n and gcd(m,n) = 1, we must
have ord(a) = 1, i.e., a = 0G. That proves the claim.

Thus, the m-multiplication map is injective, and because G is finite, it must
be surjective as well. 2

Theorem 8.81 If G is an abelian group of prime order, then G is cyclic.

Proof. Let |G| = p. Let a ∈ G with a 6= 0G. Since ord(a) | p, we have
ord(a) = 1 or ord(a) = p. Since a 6= 0G, we must have ord(a) 6= 1, and so
ord(a) = p, which implies a generates G. 2

Theorem 8.82 Suppose that a is an element of an abelian group, and for some
prime p and integer e ≥ 1, we have pea = 0G and pe−1a 6= 0G. Then a has order
pe.

Proof. If m is the order of a, then since pea = 0G, we have m | pe. So m = pf

for some 0 ≤ f ≤ e. If f < e, then pe−1a = 0G, contradicting the assumption
that pe−1a 6= 0G. 2
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Theorem 8.83 Suppose G is an abelian group with a1, a2 ∈ G such that a1 is
of finite order n1, a2 is of finite order n2, and gcd(n1, n2) = 1. Then the order
of a1 + a2 is n1n2.

Proof. Consider the subgroup H1 of G generated by a1, and the subgroup H2 of
G generated by a2. We claim that H1×H2 is generated by (a1, a2). The reason
is essentially the same as that in Example 8.72: if m is the order of (a1, a2), then
we must have n1 | m and n2 | m, but since n1 and n2 are relatively prime, we
must have n1n2 | m. Moreover, H1 ∩H2 is a subgroup of both H1 and of H2,
and hence the order of H1∩H2 must divide both n1 and n2; again, since n1 and
n2 are relatively prime, we must have that H1 ∩H2 = {0G}. By Theorem 8.57,
the map that sends (h1, h2) ∈ H1 ×H2 to h1 + h2 ∈ H1 +H2 is an isomorphism
of groups; in particular, since (a1, a2) ∈ H1 × H2 has order n1n2, so must its
image a1 + a2 ∈ H1 +H2. 2

For an abelian group G, we say that an integer k kills G if kG = {0G}.
Consider the set KG of integers that kill G. Evidently, KG is a subgroup of Z,
and hence of the form mZ for a uniquely determined non-negative integer m.
This integer m is called the exponent of G. If m 6= 0, then we see that m is
the least positive integer that kills G.

We first state some basic properties.

Theorem 8.84 Let G be an abelian group of exponent m.

1. For any integer k such that kG = {0G}, we have m | k.

2. If G has finite order, then m divides |G|.

3. If m 6= 0, for any a ∈ G, the order of a is finite, and ord(a) | m.

Proof. Exercise. 2

Theorem 8.85 For finite abelian groups G1, G2 whose exponents are m1 and
m2, the exponent of G1 ×G2 is lcm(m1,m2).

Proof. Exercise. 2

Theorem 8.86 If a finite abelian group G has exponent m, then G contains an
element of order m. In particular, a finite abelian group is cyclic if and only if
its order equals its exponent.
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Proof. The second statement follows immediately from the first. For the first
statement, assume that m > 1, and let m =

∏r
i=1 p

ei
i be the prime factorization

of m.
First, we claim that for each 1 ≤ i ≤ r, there exists ai ∈ G such that

(m/pi)ai 6= 0G. Suppose the claim were false: then for some i, (m/pi)a = 0G for
all a ∈ G; however, this contradicts the minimality property in the definition of
the exponent m. That proves the claim.

Let a1, . . . , ar be as in the above claim. Then by Theorem 8.82, (m/peii )ai
has order peii for each 1 ≤ i ≤ r. Finally, by Theorem 8.83, the group element

(m/pe11 )a1 + · · ·+ (m/perr )ar

has order m. 2

Theorem 8.87 If G is a finite abelian group of order n, and p is a prime
dividing n, then G contains an element of order p.

Proof. First, note that if G contains an element whose order is divisible by p,
then it contains an element of order p; indeed, if a has order mp, then ma has
order p.

Let a1, . . . , an be an enumeration of all the elements of G, and consider the
“tower” of subgroups

H0 := {0G}, Hi := 〈a1, . . . , ai〉 (i = 1, . . . , n).

We have

n = |Hn|/|H0| =
n∏

i=1

|Hi|/|Hi−1| =
n∏

i=1

|Hi/Hi−1|,

and therefore, for some 1 ≤ i ≤ n, p | |Hi/Hi−1|. Let k = |Hi/Hi−1|. Now, the
quotient group Hi/Hi−1 is clearly cyclic and is generated by the coset ai+Hi−1.
Let k′ = ord(ai). Then k′(ai + Hi−1) = k′ai + Hi−1 = 0G + Hi−1. Therefore,
k | k′. That proves that p | ord(ai), so we are done. 2

With this last theorem, we can prove the converse of Theorem 8.80.

Theorem 8.88 If G is a finite abelian group of order n, and mG = G, then m
is relatively prime to n.

Proof. To the contrary, suppose that p is a prime dividing m and n. Then
G contains an element of order p by Theorem 8.87, and this element is in the
kernel of the m-multiplication map. Therefore, this map is not injective, and
hence not surjective since G is finite. Thus, mG 6= G, a contradiction. 2

We also have:
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Theorem 8.89 Let G be a finite abelian group. Then the primes dividing the
exponent of G are the same as the primes dividing its order.

Proof. Since the exponent divides the order, any prime dividing the exponent
must divide the order. Conversely, if a prime p divides the order, then since
there is an element of order p in the group, the exponent must be divisible by
p. 2

Exercise 8.90 Let G be an abelian group of order mm′, where gcd(m,m′) = 1.
Consider the map ρ : mG×m′G to G that sends (a, b) to a+ b. Show that ρ is
a group isomorphism. 2

8.6 ♣ The Structure of Finite Abelian Groups
We next state a theorem that characterizes all finite abelian groups up to iso-
morphism.

Theorem 8.91 (Fundamental Theorem of Finite Abelian Groups)
A finite abelian group (with more than one element) is isomorphic to a direct
product of cyclic groups

Zp
e1
1
× · · · × Zperr ,

where the pi are primes (not necessarily distinct) and the ei are positive integers.
This direct product of cyclic groups is unique up to the order of the factors.

An alternative characterization of this theorem is the following:

Theorem 8.92 A finite abelian group (with more than one element) is isomor-
phic to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where all mi > 1 and m1 | m2 | · · · | mt. Moreover, the integers m1, . . . ,mt are
unique, and mt is the exponent of the group.

Exercise 8.93 Show that the above two theorems are equivalent, i.e., that each
one implies the other. To do this, give a natural one-to-one correspondence be-
tween sequences of prime powers (as in Theorem 8.91) and sequences of integers
m1, . . . ,mt (as in Theorem 8.92), and also make use of Example 8.72. 2

Exercise 8.94 Using the Fundamental Theorem of Finite Abelian Groups (ei-
ther form), give short and simple proofs of Theorems 8.86 and 8.87. 2
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We now prove Theorem 8.92, which we break into two lemmas, the first of
which proves the existence part of the theorem, and the second of which proves
the uniqueness part.

Lemma 8.95 A finite abelian group (with more than one element) is isomorphic
to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where all mi > 1 and m1 | m2 | · · · | mt, and mt is the exponent of the group.

Proof. Let G be a finite abelian group with more than one element, and let
m be the exponent of G. By Theorem 8.86, there exists an element a ∈ G of
order m. Let A = 〈a〉. Then A ∼= Zm. Now, if A = G, the lemma is proved. So
assume that A ( G.

We will show that there exists a subgroup B of G such that G = A + B
and A ∩B = {0}. From this, Theorem 8.57 gives us an isomorphism of G with
A×B. Moreover, the exponent of B is clearly a divisor of m, and so the lemma
will follow by induction (on the order of the group).

So it suffices to show the existence of a subgroup B as above. We prove
this by contradiction. Suppose that there is no such subgroup, and among all
subgroups B such that A ∩ B = {0}, assume that B is maximal, i.e., there is
no subgroup B′ of G such that B ( B′ and A ∩ B′ = {0}. By assumption
C := A+B ( G.

Let p be any prime divisor of |G/C|. By Theorem 8.87, there exists an
element d + C of order p in G/C. We shall define a group element d′ with
slightly nicer properties than d, as follows. Since pd ∈ C, we have pd = sa + b
for some s ∈ Z and b ∈ B. We claim that p | s. To see this, first note that p | m.
So we have 0 = md = (m/p)pd = (m/p)sa+ (m/p)b, and since A∩B = {0}, we
have (m/p)sa = 0, which can only happen if p | s. That proves the claim. This
allows us to define d′ := d− (s/p)a. Since d ≡ d′ (mod C), we see that d′ + C
also has order p in G/C, but also that pd′ ∈ B.

We next show that A ∩ (B + 〈d′〉) = {0}, which will yield the contradiction
we seek, and thus prove the lemma. To this end, it will suffice to show that
A∩ (B + 〈d′〉) ⊆ B. Now, suppose we have a group element xd′ + b′ ∈ A, where
x ∈ Z and b′ ∈ B. Then in particular, xd′ ∈ C, and so p | x, since d′ + C has
order p in G/C. Further, since pd′ ∈ B, we have xd′ ∈ B, whence xd′ + b′ ∈ B.
2

Lemma 8.96 Suppose that G := Zm1 × · · · × Zmt and H := Zn1 × · · · × Znt

are isomorphic, where the mi’s and ni’s are positive integers (possibly 1) such
that m1 | · · · | mt and n1 | · · · | nt. Then mi = ni for 1 ≤ i ≤ t.
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Proof. Clearly,
∏

imi = |G| = |H| =
∏

i ni. We prove the lemma by induction
on the order of the group. If the group order is 1, then clearly all mi and ni
must be 1, and we are done. Otherwise, let p be a prime dividing the group
order. Now, suppose that p divides mr, . . . ,mt (but not m1, . . . ,mr−1) and that
p divides ns, . . . , nt (but not n1, . . . , ns−1), where r ≤ t and s ≤ t. Evidently,
the groups pG and pH are isomorphic. Moreover,

pG ∼= Zm1 × · · · × Zmr−1 × Zmr/p × · · · × Zmt/p,

and
pH ∼= Zn1 × · · · × Zns−1 × Zns/p × · · · × Znt/p.

Thus, we see that |pG| = |G|/pt−r+1 and |pH| = |H|/pt−s+1, from which it
follows that r = s, and the lemma then follows by induction. 2



Chapter 9

Rings

This chapter reviews the notion of a ring, more specifically, a commutative ring
with unity.

9.1 Definitions, Basic Properties, and Examples

Definition 9.1 A commutative ring with unity is a set R together with
addition and multiplication operators on R, such that

1. the set R under addition forms an abelian group, and we denote the addi-
tive identity by 0R;

2. multiplication is associative, i.e., for all a, b, c ∈ R, we have a(bc) = (ab)c;

3. multiplication distributes over addition, i.e., for all a, b, c ∈ R, a(b+ c) =
ab+ ac and (b+ c)a = ba+ ca;

4. there exists a multiplicative identity, i.e., there exists an element 1R ∈ R,
such that 1R · a = a = a · 1R for all a ∈ R;

5. multiplication is commutative, i.e., for all a, b ∈ R, we have ab = ba.

There are other, more general (and less convenient) types of rings — one
can drop properties (4) and (5), and still have what is called a ring. We shall
not, however, be working with such general rings in this text. Therefore, to
simplify terminology, from now on, by a “ring,” we shall always mean a
commutative ring with unity.

Let R be a ring. Notice that for any fixed a ∈ R, the map from R to R that
sends b ∈ R to ab ∈ R is a group homomorphism with respect to the underlying
additive group of R. We call this the a-multiplication map.

164
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We first state some simple facts:

Theorem 9.2 Let R be a ring. Then

1. the multiplicative identity 1R is unique;

2. 0R · a = 0R for all a ∈ R;

3. (−a)b = a(−b) = −(ab) for all a, b ∈ R;

4. (−a)(−b) = ab for all a, b ∈ R;

5. (na)b = a(nb) = n(ab) for all n ∈ Z and a, b ∈ R;

Proof. Part (1) may be proved using the same argument as was used to prove
part (1) of theorem 8.2. Parts (2), (3), and (5) follow directly from parts (1),
(2), and (3) of Theorem 8.53, using appropriate multiplication maps, discussed
above. Part (4) follows from part (3) and part (4) of Theorem 8.17. 2

Example 9.3 The set Z under the usual rules of multiplication and addition
forms a ring. 2

Example 9.4 For n ≥ 1, the set Zn under the rules of multiplication and
addition defined in §2.3 forms a ring. 2

Example 9.5 The set Q of rational numbers under the usual rules of multipli-
cation and addition forms a ring. 2

Example 9.6 The set R of real numbers under the usual rules of multiplication
and addition forms a ring. 2

Example 9.7 The set C of complex numbers under the usual rules of multi-
plication and addition forms a ring. Recall that any complex number z may
be written z = a + bi, for a, b ∈ R. For z := a + bi ∈ C and z ′ := a′ + b′i,
we have z + z′ := (a + a′) + (b + b′)i and zz′ := (aa′ − bb′) + (ab′ + a′b)i. In
particular, note that i2 = −1. The fact that C is a ring can be derived, by direct
calculation, from the fact that R is a ring, and the above definitions of addition
and multiplication in C; however, we shall see later that this follows more easily
from more general considerations.

Recall the complex conjugation operation, that sends z := a+ bi ∈ C to
z̄ := a−bi. One can verify by direct calculation that complex conjugation is both
additive and multiplicative; that is, for all z, z′ ∈ C, we have (1) z + z′ = z̄+ z̄′,
and (2) z · z′ = z̄ · z̄′.
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For z ∈ C, the norm of z is N(z) := zz̄. If z := a+bi, then N(z) = a2+b2,
and so we see that N(z) is a non-negative real number, and is zero iff z = 0.
Moreover, from the multiplicativity of complex conjugation, it is easy to see that
the norm is multiplicative as well: N(zz′) = zz′zz′ = zz′z̄z̄′ = N(z)N(z′). 2

Note that in a ring R, if 1R = 0R, then for all a ∈ R, a = 1R ·a = 0R ·a = 0R,
and hence the ring R is trivial, in the sense that it consists of the single element
0R, with 0R + 0R = 0R and 0R · 0R = 0R. If 1R 6= 0R, we say that R is non-
trivial. We shall rarely be concerned with trivial rings for their own sake;
however, they do sometimes arise in certain constructions.

If R1, . . . , Rk are rings, then the set of all k-tuples (a1, . . . , ak) with ai ∈ Ri

for 1 ≤ i ≤ k, with addition and multiplication defined component-wise, forms
a ring. The ring is denoted R1 × · · · ×Rk, and is called the direct product of
R1, . . . , Rk.

The characteristic of a ring R is defined as the exponent of the underlying
additive group (see §8.5). Equivalently, the characteristic is the least positive
integer m such that m · 1R = 0R, if such an m exists, and is zero otherwise.

Example 9.8 The ring Z has characteristic zero, Zn has characteristic n, and
Zn1 × Zn2 has characteristic lcm(n1, n2). 2

For elements a, b in a ring R, we say that b divides a, written b | a, if there
exists c ∈ R such that a = bc, in which case we say that b is a divisor of a.

Note that parts 1-5 of Theorem 1.1 holds for an arbitrary ring.

When there is no possibility for confusion, one may write “0” instead of “0R”
and “1” instead of “1R.” Also, one may also write, e.g., 2R to denote 2 · 1R, 3R
to denote 3 · 1R, etc., and where the context is clear, one may use an implicit
“type cast,” so that m ∈ Z really means m · 1R.

Exercise 9.9 Show that the familiar “binomial theorem” holds in an arbitrary
ring R; i.e., for a, b ∈ R and positive integer n, we have

(a+ b)n =

n∑

i=0

(
n

i

)

an−ibi.

2

9.1.1 Units and Fields

Let R be a ring. We call u ∈ R a unit if it has a multiplicative inverse, i.e., if
uu′ = 1R for some u′ ∈ R. It is easy to see that the multiplicative inverse of u,
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if its exists, is unique, and we denote it by u−1; also, for a ∈ R, we may write
a/u to denote au−1. It is clear that a unit u divides every a ∈ R.

We denote the set of units R∗. It is easy to verify that the set R∗ is closed
under multiplication, from which it follows that R∗ is an abelian group, called
the multiplicative group of units of R.

If R is non-trivial and R∗ contains all non-zero elements of R, i.e., every
non-zero element of R has a multiplicative inverse, then R is called a field.

Example 9.10 The only units in the ring Z are ±1. Hence, Z is not a field. 2

Example 9.11 For n > 1, the units in Zn are the residue classes [a mod n]
with gcd(a, n) = 1. In particular, if n is prime, all non-zero residue classes are
units, and conversely, if n is composite, some non-zero residue classes are not
units. Hence, Zn is a field if and only if n is prime. 2

Example 9.12 Every non-zero element of Q is a unit. Hence, Q is a field. 2

Example 9.13 Every non-zero element of R is a unit. Hence, R is a field. 2

Example 9.14 For non-zero z := a+bi ∈ C, we have c := N(z) = a2+b2 > 0.
It follows that the complex number z̄c−1 = (ac−1)+(−bc−1)i is the multiplicative
inverse of z. Hence, every non-zero element of C is a unit, and so, C is a field.
2

Example 9.15 In this example, we present a specific field F of size 4. We write
the elements of F as pairs of bits: 00, 01, 10, 11. Addition is bit-wise exclusive-
or, so that 00 is the additive identity. Multiplication in F is defined by the
following table:

00 01 10 11

00 00 00 00 00

01 00 01 10 11

10 00 10 11 01

11 00 11 01 10

Observe that 01 acts as the multiplicative identity. The reader may verify by
inspection that this indeed defines a field. The non-zero elements F ∗ form
a group under multiplication, and in fact it is a cyclic group; the reader may
check that both 10 and 11 are generators. Thus, F ∗ is isomorphic to the additive
group Z3.

As we shall see later, any finite field must be of size pw for some prime p
and positive integer w, and moreover, for every such p and w, there exists an
essentially unique field of size pw. 2
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Example 9.16 For two rings R1, R2, the group of units of R1×R2 is R∗1 ×R∗2.
In particular, a direct product of non-trivial rings cannot be a field. 2

9.1.2 Zero divisors and Integral Domains

Let R be a ring. An element a ∈ R is called a zero divisor if a 6= 0R and there
exists non-zero b ∈ R such that ab = 0R.

If R is non-trivial and has no zero divisors, then it is called an integral
domain. Put another way, a non-trivial ring R is an integral domain if and
only if ab = 0R implies a = 0R or b = 0R for all a, b ∈ R.

Note that if u is a unit in R, it cannot be a zero divisor (if ub = 0R, then
multiplying both sides of this equation by u−1 yields b = 0R). In particular, it
follows that any field is an integral domain.

Example 9.17 Z is an integral domain. 2

Example 9.18 For n > 1, Zn is an integral domain if and only if n is prime.
In particular, if n is composite, so n = n1n2 with 1 < n1, n2 < n, then [n1] and
[n2] are zero divisors: [n1][n2] = [0], but [n1] 6= [0] and [n2] 6= [0]. 2

Example 9.19 Q, R, and C are fields, and hence, are also integral domains. 2

Example 9.20 For two rings R1, R2, an element (a1, a2) ∈ R1 × R2 is a zero
divisor if and only if a1 is a zero divisor, a2 is a zero divisor, or exactly one of a1
or a2 is zero. In particular, a direct product ring cannot be an integral domain.
2

We have the following “cancellation law”:

Theorem 9.21 If R is a ring, and a, b, c ∈ R such that a 6= 0R and a is not a
zero divisor, then ab = ac implies b = c.

Proof. ab = bc implies a(b − c) = 0R. The fact that a 6= 0 and a is not a zero
divisor implies that we must have b− c = 0R, i.e., b = c. 2

Theorem 9.22 If D is an integral domain, then

1. for all a, b, c ∈ D, a 6= 0D and ab = ac implies b = c;

2. for all a, b ∈ D, a | b and b | a if and only if a = bc for c ∈ D∗.

3. for all a, b ∈ D with b 6= 0D and b | a, then there is a unique c ∈ D such
that a = bc, which we may denote as a/b.
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Proof. The first statement follows immediately from the previous theorem and
the definition of an integral domain.

For the second statement, if a = bc for c ∈ D∗, then we also have b = ac−1;
thus, b | a and a | b. Conversely, a | b implies b = ax for x ∈ D, and b | a implies
a = by for y ∈ D, and hence b = bxy. If b = 0R, then the equation a = by
implies a = 0R, and so the statement holds for any c; otherwise, cancel b, we
have 1D = xy, and so x and y are units.

For the third statement, if a = bc and a = bc′, then bc = bc′, and cancel b.
2

Theorem 9.23 Any finite integral domain is a field.

Proof. Let D be a finite integral domain, and let a be any non-zero element
of D. Consider the a-multiplication map that sends b ∈ D to ab, which is a
group homomorphism on the additive group of D. Since a is not a zero-divisor,
it follows that the kernel of the a-multiplication map is {0D}, hence the map
is injective, and by finiteness, it must be surjective as well. In particular, there
must be an element b ∈ D such that ab = 1D. 2

9.1.3 Subrings

A subset R′ of a ring R is called a subring if

• R′ is an additive subgroup of R,

• R′ is closed under multiplication, and

• 1R ∈ R′.

It is clear that the operations of addition and multiplication on R make R′

itself into a ring, where 0R is the additive identity of R′ and 1R is the multi-
plicative identity of R′. One may also call R an extension ring of R′.

Some texts do not require that 1R belongs to R′, and instead require only
that R′ contains a multiplicative identity, which may be different than that of
R. This is perfectly reasonable, but for simplicity, we restrict ourselves to the
case when 1R ∈ R′.

To verify that a subset R′ ⊆ R is a subring, it actually suffices to simply
check that 1R ∈ R′ and that R′ is closed under addition and multiplication (see
Exercise 9.33 below).

Example 9.24 Z is a subring of Q. 2
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Example 9.25 Q is a subring of R. 2

Example 9.26 R is a subring of C, where we identify a ∈ R with the complex
number a+ 0i. Note that for z := a+ bi ∈ C, we have z̄ = z iff a+ bi = a− bi
iff b = 0. That is, z̄ = z iff z ∈ R. 2

Example 9.27 The set Z[i] of complex numbers of the form a+bi, with a, b ∈ Z,
is a subring of C. It is called the ring of Gaussian integers. Since C is a field,
it contains no zero divisors, and hence Z[i] contains no zero divisors. Hence, Z[i]
is an integral domain.

Let us determine the units of Z[i]. If z ∈ Z[i] is a unit, then there exists
z′ ∈ Z[i] such that zz′ = 1. Taking norms, we obtain

1 = N(1) = N(zz′) = N(z)N(z′).

Clearly, the norm of a Gaussian integer is a non-negative integer, and so
N(z)N(z′) = 1 implies N(z) = 1. Now, if z := a+ bi, then N(z) = a2+ b2, and
so N(z) = 1 implies z = ±1 or z = ±i. Conversely, it is clear that ±1 and ±i
are indeed units, and so these are the only units in Z[i]. 2

Example 9.28 Consider the field F defined in Example 9.15. The subset F ′ :=
{00, 01} is a subring of F , and is in fact a field. 2

Example 9.29 Let m be a positive integer, and let Q(m) be the set of rational
numbers of the form a/b, where a and b are integers, and b is relatively prime to
m. Then Q(m) is a subring of Q, since for any a, b, c, d ∈ Z with gcd(b,m) = 1
and gcd(d,m) = 1, we have

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d
=
ac

bd
,

and since gcd(bd,m) = 1, it follows that the sum and product of any two element
of Q(m) is in Q(m). Clearly, 1 ∈ Q(m), and so it follows that Q(m) is a subring
of Q. The units of Q(m) are precisely those elements of the form a/b, where
gcd(a,m) = gcd(b,m) = 1. 2

Example 9.30 If R and S are rings, then R′ := R × {0S} is not a subring of
R × S: it satisfies the first two requirements of the definition of a subring, but
it does not satisfy the third. However, R′ does contain an element that acts as
a multiplicative identity of R′, namely (1R, 0S), and hence could be viewed as a
subring of R× S under a more liberal definition. 2
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Theorem 9.31 Any subring of an integral domain is also an integral domain.

Proof. If D′ is a subring of the integral domain D, then any zero divisor in D′

would itself be a zero divisor in D. 2

Note that it is not the case that a subring of a field is always a field: the
subring Z of Q is a counter-example. If F ′ is a subring of a field F , and F ′ is
itself a field, then we say that F ′ is a subfield of F , and that F is an extension
field of F ′.

Example 9.32 Q is a subfield of R, which in turn is a subfield of C. 2

Exercise 9.33 Show that if R is a ring, and R′ is a subset of R containing 1R,
and is closed under addition and multiplication, then R′ is a subring of R. 2

Exercise 9.34 Show that the set Q[i] of complex numbers of the form a + bi,
with a, b ∈ Q, is a subfield of C. 2

Exercise 9.35 Show that if R′ and R′′ are subrings of R, then so is R′ ∩ R′′.
2

9.2 Polynomial rings

If R is a ring, then we can form the ring of polynomials R[X], consisting
of all polynomials

∑k
i=0 aiX

i in the indeterminate, or “formal” variable, X, with
coefficients in R, with addition and multiplication being defined in the usual way.
To state the rules precisely but simply, we temporarily consider “polynomials”
with terms involving arbitrary powers i of X, both positive and negative, where
it is understood that all coefficients are zero, except for a finite number of non-
negative values of i. With this convention, if

a =
∞∑

i=−∞
aiX

i and b =
∞∑

i=−∞
biX

i,

then

a+ b :=

−∞∑

i=−∞
(ai + bi)X

i, (9.1)

and

a · b :=

−∞∑

i=−∞

(
∑

j+k=i

ajbk

)

Xi, (9.2)
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where the inner sum is over all pairs of indices j, k such that j+k = i; note that
there are only a finite number of non-zero terms in this sum.

For a =
∑k

i=0 aiX
i ∈ R[X], if k = 0, we call a a constant polynomial, and if

k > 0 and ak 6= 0R, we call a a non-constant polynomial.
Clearly, R is a subring of R[X], and consists precisely of the constant poly-

nomials of R[X]. In particular, 0R is the additive identity of R[X], and 1R is the
multiplicative identity of R[X]. Note that if R is the trivial ring, then so is R[X].
In addition, if R is a subring of S, then R[X] is clearly a subring of S[X].

9.2.1 Polynomials versus polynomial functions

Of course, a polynomial a =
∑k

i=0 aiX
i defines a polynomial function on R that

sends x ∈ R to
∑k

i=0 aix
i, and we denote the value of this function as a(x).

However, it is important to regard polynomials over R as formal expressions,
and not to identify them with their corresponding functions. In particular, a
polynomial a =

∑k
i=0 aiX

i is zero if and only if ai = 0R for 0 ≤ i ≤ k, and two
polynomials are equal if and only if their difference is zero. This distinction is
important, since there are rings R over which two different polynomials define
the same function. One can of course define the ring of polynomial functions on
R, but in general, that ring has a different structure from the ring of polynomials
over R.

Example 9.36 In the ring Zp, for prime p, by Theorem 2.24 (Fermat’s Little
Theorem), we have xp − x = [0] for all x ∈ Zp. But consider the polynomial
a = Xp − X ∈ Zp[X]. We have a(x) = 0R for all x ∈ R, and hence the function
defined by a is the zero function, yet a is definitely not the zero polynomial. 2

More generally, if R is a subring of a ring S, a polynomial a =
∑k

i=0 aiX
i ∈

R[X] defines a polynomial function from S to S that sends x ∈ S to
∑k

i=0 aix
i ∈

S, and the value of this function is denoted a(x). Strictly speaking, this gener-
alization is not really necessary, since any element of R[X] can be viewed as an
element of S[X], and therefore, this situation has really already been dealt with
above.

A simple, but important, fact is the following:

Theorem 9.37 Let R be a subring of a ring S. Then for a, b ∈ R[X] and x ∈ S,
we have (ab)(x) = a(x)b(x) and (a+ b)(x) = a(x) + b(x).

Proof. Exercise. 2

Note that the syntax for evaluating polynomial functions creates some am-
biguities: for a, b, c ∈ R[X], one could interpret a(b + c) as either a times b + c,
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or a evaluated at b+ c; to avoid such ambiguities, if the intended meaning is the
former, one should write this as, say, a · (b+ c) or (b+ c)a.

So as to keep the distinction between ring elements and indeterminates clear,
we shall use the symbol “X” only to denote the latter. Also, for a polynomial
a ∈ R[X], we shall in general not write this as “a(X),” but simply as “a.” Of
course, the choice of the symbol “X” is arbitrary; occasionally, we may use other
symbols, such as “Y,” as alternatives.

9.2.2 Basic properties of polynomial rings

Let R be a ring.
For non-zero a ∈ R[X], if a =

∑k
i=0 aiX

i with ak 6= 0R, we call k the degree
of a, denoted deg(a), and we call ak the leading coefficient of a, denoted lc(a),
and we call a0 the constant term of a. If lc(a) = 1R, then a is called monic.

Note that if a, b are in R[X], both are non-zero, and their leading co-
efficients are not both zero divisors, then the product ab is non-zero and
deg(ab) = deg(a) + deg(b). However, if the leading coefficients of a and b are
both zero divisors, then we could get some “collapsing”: we could have ab = 0R,
or ab 6= 0R but deg(ab) < deg(a) + deg(b).

For the zero polynomial, we establish the following conventions: its leading
coefficient and constant term are defined to be 0R, and its degree is defined to
be −∞.

This notion of “negative infinity” should not be construed as a particularly
meaningful algebraic notion — it is simply a convenience of notation; for exam-
ple, it allows us to succinctly state that

for all a, b ∈ R[X], deg(ab) ≤ deg(a) + deg(b), with equality guaran-
teed to hold unless the leading coefficients of both a and b are zero
divisors.

Theorem 9.38 Let D be an integral domain. Then

1. for all a, b ∈ D[X], deg(ab) = deg(a) + deg(b);

2. D[X] is an integral domain;

3. (D[X])∗ = D∗.

Proof. Exercise. 2
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9.2.3 Division with remainder

An extremely important property of polynomials is a division with remainder
property, analogous to that for the integers:

Theorem 9.39 (Division with Remainder Property) Let R be a non-
trivial ring. For a, b ∈ R[X] with lc(b) ∈ R∗, there exist unique q, r ∈ R[X] such
that a = bq + r and deg(r) < deg(b).

Proof. Consider the set S of polynomials of the form a− zb with z ∈ R[X]. Let
r = a−qb be an element of S of minimum degree. We must have deg(r) < deg(b),
since otherwise, we would have r′ := r− (lc(r) lc(b)−1Xdeg(r)−deg(b)) · b ∈ S, and
deg(r′) < deg(r), contradicting the minimality of deg(r).

That proves the existence of r and q. For uniqueness, suppose that a = bq+r
and a = bq′ + r′, where deg(r) < deg(b) and deg(r′) < deg(b). This implies
r′ − r = b(q − q′). However, if q 6= q′, then

deg(b) > deg(r′ − r) = deg(b(q − q′)) = deg(b) + deg(q − q′) ≥ deg(b),

which is impossible. Therefore, we must have q = q′, and hence r = r′. 2

If a = bq + r as in the above theorem, we define a rem b := r. Clearly, b | a
if and only if a rem b = 0.

As a special case of the above theorem, we have:

Theorem 9.40 If F is field, then for a, b ∈ F [X] with b 6= 0F , there exist unique
q, r ∈ F [X] such that a = bq + r and deg(r) < deg(b).

Theorem 9.41 For a non-trivial ring R and a ∈ R[X] and x ∈ R, a(x) = 0R if
and only if (X− x) divides a.

Proof. Let us write a = (X − x)q + r, with q, r ∈ R[X] and deg(r) < 1, which
means that r ∈ R. Then we have a(x) = (x− x)q(x) + r = r. Thus, a(x) = 0 if
and only if X− x divides a. 2

WithR, a, x as in the above theorem, we say that x is a root of a if a(x) = 0R.

Theorem 9.42 Let D be an integral domain, and let a ∈ D[X], with deg(a) =
k ≥ 0. Then a has at most k roots.
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Proof. We can prove this by induction. If k = 0, this means that a is a non-zero
element of D, and so it clearly has no roots.

Now suppose that k > 0. If a has no roots, we are done, so suppose that a
has a root x. Then we can write a = (X− x)q, where deg(q) = k − 1. Now, for
any root y of a with y 6= x, we have 0D = a(y) = (y−x)q(y), and using the fact
that D is an integral domain, we must have q(y) = 0. Thus, the only roots of a
are x and the roots of q. By induction, q has at most k − 1 roots, and hence a
has at most k roots. 2

Example 9.43 It is perhaps worth pointing out that the result of Exercise 2.26
is just a special case of Theorem 9.42. Indeed, for an odd prime p, the polynomial
X2 − 1 ∈ Zp[X] has two distinct roots, 1 and −1, and hence can have no other
roots. For p = 2, the statement of that exercise follows from the fact that 0 is
not a root of X2 − 1 ∈ Z2[X]. 2

Theorem 9.44 Let D be an infinite integral domain, and let a ∈ D[X]. If
a(x) = 0D for all x ∈ D, then a = 0D.

Proof. Exercise. 2

With this last theorem, one sees that for an infinite integral domain D, there
is a one-to-one correspondence between polynomials over D and polynomial
functions on D.

Exercise 9.45 Let F be a field of characteristic other than 2, so that the 2F 6=
0F . Show that the familiar “quadratic formula” holds for F . That is, for a, b, c ∈
F with a 6= 0F , the polynomial f := aX2 + bX+ c ∈ F [X] has a root if and only
if there exists z ∈ F such that z2 = d, where d is the discriminant of f , i.e.,
d := b2 − 4ac, in which case the roots of f are

−b± z
2a

.

2

9.2.4 Multi-variate polynomials

Consider the ring R[X] of polynomials over a ring R. If Y is another indeter-
minate, we can form the ring R[X][Y] of polynomials in Y whose coefficients are
themselves polynomials in X over the ring R. We can write R[X, Y] instead of
R[X][Y]. Any element of R[X, Y] is called a bivariate polynomial, and can be
expressed uniquely as a sum of monomials, where each monomial is of the
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form cXiYj for non-zero c ∈ R and non-negative integers i and j. The degree
of such a monomial cXiYj is defined to be i + j, and for non-zero a ∈ R[X, Y],
the degree of a, denoted deg(a), is the maximum degree of the monomials of a.
As for ordinary (univariate) polynomials, the degree of 0 is defined to be −∞.
In general, for a, b ∈ R[X, Y], we have deg(ab) ≤ deg(a) + deg(b), while equality
holds if R is an integral domain.

More generally, if X1, . . . , Xn are indeterminates, we can form the ring
R[X1, . . . , Xn] of multi-variate polynomials in n variables over R. Formally,
we can think of this ring as R[X1][X2] · · · [Xn]. Any multi-variate polynomial can
be expressed uniquely as the sum of monomials of the form cXe11 · · · Xenn for non-
zero c ∈ R and non-negative integers e1, . . . , en; the degree of such a monomial
is defined to be

∑

i ei, and the degree of a multi-variate polynomial is defined to
be the maximum degree of its monomials. As above, for a, b ∈ R[X1, . . . , Xn], we
have deg(ab) ≤ deg(a) + deg(b), while equality always holds if R is an integral
domain.

For a ∈ R[X1, . . . , Xn] and x = (x1, . . . , xn) ∈ R×n, we define a(x) to be the
element of R obtained by evaluating the expression obtained by substituting xi
for Xi in a.

Exercise 9.46 This exercise generalizes Theorem 9.42. Let D be an integral
domain, and let a ∈ D[X1, . . . , Xn], with deg(a) = k ≥ 0. Let S be a finite subset
of D. Show that the number of elements x ∈ S×n such that a(x) = 0 is at most
k|S|n−1. 2

9.3 Ideals and Quotient Rings

Throughout this section, let R denote a ring.

Definition 9.47 An ideal of R is an additive subgroup I of R that is closed
under multiplication by elements of R, that is, for all z ∈ I and a ∈ R, za ∈ I.

Clearly, {0} and R are ideals of R. From the fact that an ideal I is closed
under multiplication by elements of R, it is easy to see that I = R if and only
if 1R ∈ I.

Example 9.48 For m ∈ Z, the set mZ is not only an additive subgroup of Z,
it is also an ideal of the ring Z. 2

Example 9.49 For m ∈ Z, the set mZn is not only an additive subgroup of Zn,
it is also an ideal of the ring Zn. 2
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If d1, . . . , dk ∈ R, then the set

d1R1 + · · ·+ dkR := {d1a1 + · · ·+ dkak : a1, . . . , ak ∈ R}

is clearly an ideal, and contains d1, . . . , dk. It is called the ideal generated
by d1, . . . , dk. Clearly, any ideal I that contains d1, . . . , dk must contain d1R1+
· · ·+ dkR. An alternative notation that is often used is to write (d1, . . . , dk) to
denote the ideal generated by d1, . . . , dk, when the ring R is clear from context.
If an ideal I is equal to dR for some d ∈ R, then we say that I is a principal
ideal.

Note that if I and J are ideals, then so are I + J := {x+ y : x ∈ I, y ∈ J}
and I ∩ J .

Throughout the rest of this section, I denotes an ideal of R.
Since I is an additive subgroup, we may adopt the congruence notation in

§8.3, writing a ≡ b (mod I) if and only if a− b ∈ I.
Note that if I = dR, then a ≡ b (mod I) if and only if d | (a − b), and as

a matter of notation, one may simply write this congruence as a ≡ b (mod d).
More generally, if I = (d1, . . . , dk), one may write a ≡ b (mod d1, . . . , dk).

If we just consider R as an additive group, then as we saw in §8.3, we can
form the additive group R/I of cosets, where (a + I) + (b + I) := (a + b) + I.
By considering also the multiplicative structure of R, we can also view R/I as
a ring. To do this, we need the following fact.

Theorem 9.50 If a ≡ a′ (mod I) and b ≡ b′ (mod I), then ab ≡ a′b′ (mod I).

Proof. If a′ = a+x for x ∈ I and b′ = b+y for y ∈ I, then a′b′ = ab+ay+bx+xy.
Since I is closed under multiplication by elements of R, we see that ay, bx, xy ∈ I,
and since it is closed under addition, ay + bx+ xy ∈ I. Hence, a′b′ − ab ∈ I. 2

This theorem is perhaps one of the main motivations for the definition of an
ideal. It allows us to define multiplication on R/I as follows: for a, b ∈ R,

(a+ I) · (b+ I) := ab+ I.

The above theorem is required to show that this definition is unambiguous. It
is trivial to show that R/I satisfies the properties defining a ring, using the
corresponding properties for R.

This ring is called the quotient ring or residue class ring of R modulo
I.

As a matter of notation, for a ∈ R, we define [a mod I] := a + I, and if
I = dR, we may write this simply as [a mod d]. If I is clear from context, we
may also just write [a].



178 Chapter 9. Rings

Example 9.51 For n ≥ 1, the ring Zn as we have defined it is precisely the
quotient ring Z/nZ. 2

Example 9.52 Let f be a monic polynomial over R with deg(f) = ` > 0, and
consider the quotient ring S = R[X]/(f). Every element of S can be written
uniquely as [a mod f ], where a is a polynomial over R of degree less than `.

This follows from the division with remainder property for polynomials. In-
deed, for every b ∈ R[X], there exist polynomials q, a ∈ R[X] with deg(a) < `
and b = fq + a. Since b − a = fq, we have b ≡ a (mod f). Moreover, there
cannot be two distinct polynomials a, a′ ∈ R[X], both of degree less than `, such
that a ≡ a′ (mod f), as this would imply a− a′ = fg for some non-zero polyno-
mial g ∈ R[X], and this would imply ` > deg(a − a′) = deg(f) + deg(g) ≥ `, a
contradiction. 2

Exercise 9.53 Let p be a prime, and consider the ring Q(p) (see Example 9.29).
Show that any non-zero ideal in Q(p) is of the form (pi), for some uniquely
determined integer i ≥ 0. 2

Exercise 9.54 Show that if I is a non-empty subset of R[X] that is closed under
addition, multiplication by elements of R, and multiplication by X, then I is an
ideal of R[X]. 2

Exercise 9.55 An ideal I of R is called proper if I ( R. A proper ideal I of R
is called prime if for all a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I. A proper ideal
I of R is called maximal if there are no proper ideals of J such that I ( J .

(a) Show that a proper ideal I is prime if and only if R/I is an integral domain.

(b) Show that a proper ideal I is maximal if and only if R/I is a field.

2

Exercise 9.56 Let R be a ring, and S a subset (possibly infinite) of R. Define
the set S ·R to be the set of all finite sums of the form

x1r1 + · · ·+ x`r` (with xk ∈ S, rk ∈ R for k = 1, . . . , `, for some ` ≥ 0).

Show that S ·R is an ideal in R, and is the smallest ideal of R containing S. 2

Exercise 9.57 Let I and J be two ideals in a ring R. We define the product
I · J of I and J as the set containing all finite sums of the form

x1y1 + · · ·+ x`y` (with xk ∈ I, yk ∈ J for k = 1, . . . , `, for some ` ≥ 0).
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(a) Show that I · J is an ideal.

(b) Show that if I and J are principal ideals, with I = aR and J = bR, then
I · J = abR, and so is also a principal ideal.

(c) Show that I · J ⊆ I ∩ J .

(d) Show that if I + J = R, then I · J = I ∩ J .
2

Exercise 9.58 Suppose S is a subring of R, and I is an ideal of R. Show that
I ∩ S is an ideal of S. 2

9.4 Ring Homomorphisms and Isomorphisms

Throughout this section, R and R′ denote rings.

Definition 9.59 A function ρ from R to R′ is called a ring homomorphism
if it is a group homomorphism with respect to the underlying additive groups of
R and R′, and if in addition,

1. ρ(ab) = ρ(a)ρ(b) for all a, b ∈ R, and

2. ρ(1R) = 1R′ .

Moreover, if ρ is a bijection, then it is called a ring isomorphism of R with
R′, and if in addition, R = R′, then it is called a ring automorphism on R.

Note that some texts do not require that ρ(1R) = 1R′ .
It is easy to see (verify) that if ρ : R → R′ and ρ′ : R′ → R′′ are ring

homomorphisms, then so is their composition ρ′ ◦ ρ : R→ R′′.
It is also easy to see (verify) that if ρ is a ring isomorphism of R with R′,

then the inverse function ρ−1 is a ring isomorphism of R′ with R. If such an
isomorphism exists, we say that R is isomorphic to R′, and write R ∼= R′.
We stress that an isomorphism of R with R′ is essentially just a “renaming”
of elements; in particular, units map to units and zero divisors map to zero
divisors.

A ring homomorphism ρ from R to R′ is also a group homomorphism from
the additive group of R to the additive group of R′. We may therefore adopt
the terminology of kernel and image, as defined in §8.4, and note that all the
results of Theorem 8.53 apply as well here. In particular, ρ(a) = ρ(b) if and only
if a ≡ b (mod ker(ρ)), and ρ is injective if and only if ker(ρ) = {0R}. However,
we may strengthen Theorem 8.53 as follows:
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Theorem 9.60 Let ρ : R→ R′ be a ring homomorphism.

1. For any subring S of R, ρ(S) is a subring of R′.

2. For any ideal I of R, ρ(I) is an ideal of im(ρ).

3. ker(ρ) is an ideal of R.

4. For any ideal I ′ of R′, ρ−1(I ′) is an ideal of R (and contains ker(ρ)).

Proof. Exercise. 2

An injective ring homomorphism ρ : R → R′ is called an embedding of R
in R′. In this case, im(ρ) is a subring of R′ and R ∼= im(ρ). As a slight abuse
of terminology, we shall often say that “R is a subring of R′” in this case, if the
particular “canonical” embedding is clear from context.

Theorems 8.54, 8.55, and 8.56 also have natural analogs; to prove these
theorems, all one has to show is that the homomorphisms on the underlying
additive groups in those theorems are also ring homomorphisms.

Theorem 9.61 If I is an ideal of R, then the map ρ : R → R/I given by
ρ(a) = a + I is a surjective ring homomorphism whose kernel is I. This is
sometimes called the “natural” map from R to R/I.

Proof. Exercise. 2

Theorem 9.62 Let ρ be a ring homomorphism from R into R′. Then the map
ρ̄ : R/ ker(ρ) → im(ρ) that sends the coset a + ker(ρ) for a ∈ R to ρ(a) is
unambiguously defined and is a ring isomorphism of R/ ker(ρ) with im(ρ).

Proof. Exercise. 2

Theorem 9.63 Let ρ be a ring homomorphism from R into R′. Then for any
ideal I contained in ker(ρ), the map ρ̄ : R/I → im(ρ) that sends the coset a+ I
for a ∈ R to ρ(a) is unambiguously defined and is a ring homomorphism from
R/I onto im(ρ) with kernel ker(ρ)/I.

Proof. Exercise. 2

Example 9.64 For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z to the
residue class [a mod n]. In Example 8.58 we noted that this is a surjective group
homomorphism on the underlying additive groups, with kernel nZ; however, this
map is also a ring homomorphism. 2



9.4. Ring Homomorphisms and Isomorphisms 181

Example 9.65 As we saw in Example 8.59, if n1, . . . , nk are integers, all greater
than 1, such that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k, then the map from Z to
Zn1 × · · · × Znk that sends x ∈ Z to ([x mod n1], . . . , [x mod nk]) is a surjective
group homomorphism on the underlying additive groups, with kernel nZ, where
n =

∏k
i=1 ni. However, this map is also a ring homomorphism. Therefore, by

Theorem 9.62, the map that sends [x mod n] ∈ Zn to ([x mod n1], . . . , [x mod
nk]) is a ring isomorphism of the ring Zn with the ring Zn1 × · · · × Znk . It
follows that the restriction of this map to Z∗n yields a group isomorphism of the
multiplicative groups Z∗n and Z∗n1

× · · · × Z∗nk . 2

Example 9.66 As we saw in Example 8.60, if n1, n2 are positive integers with
n1 > 1 and n1 | n2, then the map ρ̄ : Zn2 → Zn1 that sends [a mod n2] to [a mod
n1] is a surjective group homomorphism on the underlying additive groups with
kernel n1Zn2 . This map is also a ring homomorphism. The map ρ̄ can also be
viewed as the map obtained from Theorem 9.63 applied to the natural map ρ
from Z to Zn1 and the ideal n2Z of Z, which is contained in ker(ρ) = n1Z. 2

Example 9.67 Let R be a subring of S, and fix α ∈ S. The “polynomial
evaluation map” ρ that sends a ∈ R[X] to a(α) ∈ S is a ring homomorphism
from R[X] into S (see Theorem 9.37). The image of ρ consists of all polynomial
expressions in α with coefficients in R, and is denoted R[α]. Note that R[α] is
a subring of S containing R ∪ {α}, and is the smallest such subring of S. 2

Example 9.68 We can generalize the previous example to multi-variate polyno-
mials. IfR is a subring of S and α1, . . . , αn ∈ S, then the map ρ : R[X1, . . . , Xn]→
S that sends a ∈ R[X1, . . . , Xn] to a(α1, . . . , αn) is a ring homomorphism. Its im-
age consists of all polynomial expressions in α1, . . . , αn with coefficients in R,
and is denoted R[α1, . . . , αn]. Moreover, this image is a subring of S containing
R ∪ {α1, . . . , αn}, and is the smallest such subring of S. 2

Example 9.69 As in Example 9.52, let f be a monic polynomial over R with
deg(f) = ` > 0, and consider the natural map ρ from R[X] to S = R[X]/(f)
that sends a ∈ R[X] to [a mod f ]. If we restrict ρ to the subring R of R[X],
we obtain an embedding of R into S. Since this is a very natural embedding,
one usually simply regards R as a subring of S in this case, and so the map ρ
may be viewed as the polynomial evaluation map, as in the previous example,
that sends a ∈ R[X] to a(η) ∈ S, where η = [X mod f ]. Note that we have
S = R[η]; moreover, every element of S can be expressed uniquely as a(η) for
some a ∈ R[X] of degree less than `, and more generally, for arbitrary a, b ∈ R[X],
we have a(η) = b(η) if and only if a ≡ b mod f . 2
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Example 9.70 If ρ : R → R′ is a ring homomorphism, then we can extend
ρ in a natural way to a ring homomorphism from R[X] to R′[X], by defining
ρ(
∑

i aiX
i) :=

∑

i ρ(ai)X
i. We leave it to the reader to verify that this indeed

is a ring homomorphism. As concrete examples, this yields natural ring homo-
morphisms from Z[X] to Zn[X] for any n ≥ 1, and for positive integers n1 | n2,
we obtain a natural ring homomorphism from Zn2 [X] to Zn1 [X]. 2

Example 9.71 Let ρ : R → R′ be a ring homomorphism, extended to a ring
homomorphism from R[X] to R′[X] as in the previous example. Let f ∈ R[x]
be a monic polynomial, and let f ′ denote the image of f in R′[X] under ρ.
Then we get a natural ring homomorphism σ from R[X] to R′[X]/(f ′), sending
a ∈ R[X] to [ρ(a) mod f ′]. Moreover, since f ∈ ker(σ), by Theorem 9.63, we get
a natural ring homomorphism σ̄ from R[X]/(f) to R′[X]/(f ′), sending [a mod f ]
to [ρ(a) mod f ′]. 2

Example 9.72 Let f := X2+1 ∈ R[X], and consider the quotient ring R[X]/(f).
If we set i := [X mod f ] ∈ R[X]/(f), then every element of R[X]/(f) can be
expressed uniquely as a + bi, where a, b ∈ R. Moreover, we have i2 = −1, and
more generally, for a, b, a′, b′ ∈ R, we have

(a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

and
(a+ bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Thus, the rules for arithmetic in R[X]/(f) are precisely the familiar rules of
complex arithmetic, and so C and R[X]/(f) are essentially the same, as rings.
Indeed, the “algebraically correct” way of defining the complex numbers C is
simply to define them to be the quotient ring R[X]/(f) in the first place. This
will be our point of view from now on.

Consider the polynomial evaluation map ρ : R[X] → C that sends g ∈ R[X]
to g(−i). This is a ring homomorphism, and f is clearly in the kernel of ρ, since
(−i)2 + 1 = 0. By Theorem 9.63, the map ρ̄ that sends [g mod f ] to g(−i) is a
well-defined ring homomorphism. Note that ρ̄(a+bi) = a−bi, for a, b ∈ R. Thus,
it is clear that ρ̄ is both injective and surjective, and indeed, it is none other
than the complex conjugation map. Indeed, this is the “algebraically correct”
way of defining complex conjugation in the first place. 2

Example 9.73 We defined the ring Z[i] of Gaussian integers (see Example 9.27)
as a subring of C; however, it can also be constructed directly as Z[X]/(X2 + 1).
Indeed, the map ρ : Z[X]→ C := R[X]/(X2 + 1) that sends a ∈ Z[X] to a+ (X2 +
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1)R[X] is a ring homomorphism whose kernel is evidently the ideal generated by
X2+1. Therefore, the image of ρ, which is clearly equal to Z[i], is isomorphic to
Z[X]/(X2 + 1).

Likewise the field Q[i] (see Exercise 9.34) can be constructed directly as
Q[X]/(X2 + 1). Such direct constructions are appealing in that they are purely
“elementary,” as they do not appeal to anything so “sophisticated” as the real
numbers. 2

Example 9.74 Consider the field F of 4 elements defined in Example 9.15. The
reader may verify that F is isomorphic (as a ring) to Z2[X]/(X

2+X+1) via the map
that sends the bit pair (a, b) ∈ F to [aX+ b mod X2+ X+1] ∈ Z2[X]/(X

2+ X+1).
It should also be pointed out that even though F and Z4 are both rings with 4
elements, they are by no means isomorphic as rings — indeed, Z4 is not a field.
2

Example 9.75 For any ring R, consider the map ρ : Z→ R that sends m ∈ Z
to m · 1R in R. This is clearly a ring homomorphism (verify). If ker(ρ) = {0},
then im(ρ) ∼= Z, and so the ring Z is embedded in R, and R has characteristic
zero. If ker(ρ) = nZ for n > 0, then im(ρ) ∼= Zn, and so the ring Zn is embedded
in R, and R has characteristic n. Note that we have n = 1 if and only if R is
trivial.

Note that im(ρ) is the smallest subring of R; indeed, since any subring of R
must contain 1R and be closed under addition, it must contain im(ρ).

Now suppose that R is an integral domain of non-zero characteristic n. Then
n > 1 and R contains an isomorphic copy of Zn. Since any subring of an integral
domain must itself be an integral domain, it follows that n must be prime. We
conclude: the characteristic of an integral domain is either zero or prime. 2

Example 9.76 Let R be a ring of prime characteristic p. For any a, b ∈ R, we
have (c.f., Exercise 9.9)

(a+ b)p =

p
∑

k=0

(
p

k

)

ap−kbk.

However, by Exercise 1.17, all of the binomial coefficients are multiples of p,
except for k = 0 and k = p, and hence in the ring R, all of these terms vanish,
leaving us with

(a+ b)p = ap + bp.

This result is often jokingly referred to as the “freshman’s dream,” for somewhat
obvious reasons.
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Of course, as always, we have

(ab)p = apbp and 1pR = 1R,

and so it follows that the map ρ : R → R that sends a ∈ R to ap is a ring
homomorphism. It also immediately follows that for any integer e ≥ 1, the map
ρe : R→ R that sends a ∈ R to ap

e
is also a ring homomorphism.

2

Example 9.77 For the more formalistically minded, one can make our con-
struction of the ring R[X] of polynomials over a ring R more rigorous as follows.
One defines R[X] to be the set of all infinite sequences (a0, a1, a2, . . .) of elements
of R, where only finitely many of the ai’s may be non-zero. The interpretation
is that such a sequence represents the polynomial

∑

i aiX
i, and the rules for

arithmetic are defined on these sequences so as to be consistent with this inter-
pretation. Under this interpretation, the indeterminate X is simply the special
sequence (0R, 1R, 0R, 0R, . . .). Also, we have a natural embedding ρ : R → R[X]
that sends a ∈ R to the sequence (a, 0R, 0R, . . .). Thus, strictly speaking, R is
not a subring of R[X], but rather, is embedded in R[X] via the map ρ. 2

Exercise 9.78 Let ρ be a ring homomorphism from R into R′. Show that the
ideals of R containing ker(ρ) are in one-to-one correspondence with the ideals
of im(ρ), where the ideal I in R containing ker(ρ) corresponds to the ideal ρ(I)
in im(ρ). 2

Exercise 9.79 Let ρi : R → Ri, for i = 1, . . . , n, be ring homomorphisms.
Show that the map ρ : R→ R1×· · ·×Rn that sends a ∈ R to (ρ1(a), . . . , ρn(a))
is also a ring homomorphism. 2

Exercise 9.80 Show that if F is a field, then the only ideals in F are {0F } and
F . From this, conclude the following: if ρ : F → R is a ring homomorphism
from F into a non-trivial ring R, then ρ must be an embedding. 2

Exercise 9.81 Suppose I and J are two ideals in a ring R such that I+J = R.
Show that the map ρ : R→ R/I ×R/J that sends a ∈ R to ([a mod I], [a mod
J ]) is a surjective ring homomorphism with kernel I ·J . Conclude that R/(I ·J)
is isomorphic to R/I ×R/J . 2

Exercise 9.82 Let F be a field and let d be an element of F that is not a perfect
square (i.e., there does not exist e ∈ F such that e2 = d). Let E := F [X]/(X2−d),
and let η := [X mod (X2 − d)], so that E = F [η] = {a+ bη : a, b ∈ F}.
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(a) Show that the quotient ring E is a field, and write down the formula for
the inverse of a+ bη ∈ E.

(b) Show that the map that sends a+bη ∈ E to a−bη is a ring automorphism
on E.

2

Exercise 9.83 Let Q(m) be the subring of Q defined in Example 9.29. Let us
define the map ρ : Q(m) → Zm as follows. For a/b ∈ Q with b relatively prime
to m, ρ(a/b) := [a mod m][b mod m]−1. Show that ρ is unambiguously defined,
and is a surjective ring homomorphism. 2



Chapter 10

Probabilistic Primality Testing

In this chapter, we discuss some simple and efficient probabilistic tests for pri-
mality.

10.1 Trial Division

Suppose we are given a number n, and we want to determine whether n is
prime or composite. The simplest algorithm to describe and to program is trial
division. We simply divide n by 2, 3, and so on, testing if any of these numbers
evenly divide n. Of course, we don’t need to go any farther than

√
n, since if n

has any nontrivial factors, it must have one that is no greater than
√
n. Not only

does this algorithm determine whether n is prime or composite, it also produces
the complete prime factorization of n.

Of course, the drawback of this algorithm is that it is terribly inefficient: it
requires O(

√
n) arithmetic operations, which is exponential in the binary length

of n. Thus, for practical purposes, this algorithm is limited to quite small n.
Suppose, for example, that n has 100 decimal digits, and that a computer can
perform 1 billion divisions per second (this is much faster than any computer
existing today). Then it would take 3× 1035 years to perform

√
n divisions.

In this chapter, we discuss a much faster primality test that allows 100 dec-
imal digit numbers to be tested for primality in less than a second. Unlike the
above test, however, this test does not find a factor of n when n is composite.
Moreover, the algorithm is probabilistic, and may in fact make a mistake. How-
ever, the probability that it makes a mistake can be made so small as to be
irrelevant for all practical purposes. Indeed, we can easily make the probability
of error as small as 2−100 — should one really care about an event that happens
with such a miniscule probability?

186
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10.2 The Structure of Z∗
n

Before going any further, we have to have a firm understanding of the group
Z∗n. As we know, Z∗n consists of those elements [a mod n] ∈ Zn such that a is
an integer relatively prime to n. Suppose n = pe11 · · · perr is the factorization of n
into primes. By the Chinese Remainder Theorem, we have the ring isomorphism

Zn
∼= Zp

e1
1
× · · · × Zperr

which induces a group isomorphism

Z∗n ∼= Z∗
p
e1
1
× · · · × Z∗perr .

Thus, to determine the structure of the group Z∗n for general n, it suffices
to determine the structure for n = pe, where p is prime. By Theorem 2.16, we
already know the order of the group Z∗pe , namely, φ(pe) = pe−1(p− 1).

The main result of this section is the following:

Theorem 10.1 If p is an odd prime, then for any positive integer e, the group
Z∗pe is cyclic. The group Z∗2e is cyclic for e = 1 or 2, but not for e ≥ 3. For
e ≥ 3, Z∗2e is isomorphic to the group Z2 × Z2e−2 .

In the case where e = 1, this theorem is a special case of the following
theorem:

Theorem 10.2 Let F be a field and G a subgroup of F ∗ of finite order. Then
G is cyclic.

Proof. Let n be the order of G, and suppose G is not cyclic. Then by Theo-
rem 8.86, we have that the exponent m of G is strictly less than n. It follows
that αm = 1F for all α ∈ G. That is, all the elements of G are roots of the
polynomial Xm− 1F ∈ F [X]. But since a polynomial of degree m over a field has
at most m roots, this contradicts the fact that m < n. 2

To deal with the case e > 1, we need a few simple facts.

Theorem 10.3 For e ≥ 1, if a ≡ b (mod pe), then ap ≡ bp (mod pe+1).

Proof. We have a = b + cpe for some c ∈ Z. Thus, ap = bp + pbp−1cpe + dp2e

for an integer d. It follows that ap ≡ bp (mod pe+1). 2

Theorem 10.4 Let e ≥ 1 and assume pe > 2. If a ≡ 1 + pe (mod pe+1), then
ap ≡ 1 + pe+1 (mod pe+2).
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Proof. By Theorem 10.3, ap ≡ (1 + pe)p (mod pe+2). Expanding (1 + pe)p, we
have

(1 + pe)p = 1 + p · pe +
p−1
∑

k=2

(
p

k

)

pek + pep.

By Exercise 1.17, all of the terms in the sum on k are divisible by p1+2e, and
1+2e ≥ e+2 for all e ≥ 1. For the term pep, the assumption that pe > 2 means
that either p ≥ 3 or e ≥ 2, which implies ep ≥ e+ 2. 2

Now consider Theorem 10.1 in the case where p is odd. We have already
proven that Z∗p is cyclic, so we may assume e > 1. Let x ∈ Z be chosen so that
[x mod p] generates Z∗p. Suppose the order of [x mod pe] ∈ Z∗pe is m. Then as
xm ≡ 1 (mod pe) implies xm ≡ 1 (mod p), it must be the case that p− 1 divides
m, and so [xm/(p−1) mod pe] has order exactly p − 1. By Theorem 8.83, if we
find an integer y such that [y mod pe] has order pe−1, then [xm/(p−1)y mod pe]
has order (p− 1)pe−1, and we are done. We claim that y = 1 + p does the job.
Any integer between 0 and pe− 1 can be expressed as an e-digit number in base
p; for example, y = (0 · · · 0 1 1)p. If we compute successive p-th powers of y
modulo pe, then by Theorem 10.4 we have:

y rem pe = (0 · · · 0 1 1)p
yp rem pe = (∗ · · · ∗ 1 0 1)p
yp

2
rem pe = (∗ · · · ∗ 1 0 0 1)p

...

yp
e−2

rem pe = (1 0 · · · 0 1)p
yp

e−1
rem pe = (0 · · · 0 1)p

Here, “∗” indicates an arbitrary digit. From this table of values, it is clear (c.f.,
Theorem 8.82) that [y mod pe] has order pe−1. That proves Theorem 10.1 for
odd p.

We now prove Theorem 10.1 in the case p = 2. For e = 1 and e = 2, the
theorem is clear. Suppose e ≥ 3. Consider the subgroup G ⊆ Z∗2e generated by
[5 mod 2e]. Expressing integers between 0 and 2e− 1 as e-digit binary numbers,
and applying Theorem 10.4, we have:

5 rem 2e = (0 · · · 0 1 0 1)2
52 rem 2e = (∗ · · · ∗ 1 0 0 1)2

...

52
e−3

rem 2e = (1 0 · · · 0 1)2
52

e−2
rem 2e = (0 · · · 0 1)2
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So it is clear (c.f., Theorem 8.82) that [5 mod 2e] has order 2e−2. We claim that
[−1 mod 2e] /∈ G. If it were, then since it has order 2, and since any cyclic group
of even order has precisely one element of order 2 (c.f., Theorem 8.78), it must
be equal to [52

e−3
mod 2e]; however, it is clear from the above calculation that

52
e−3 6≡ −1 (mod 2e). Let H ⊆ Z∗2e be the subgroup generated by [−1 mod 2e].

Then from the above, G∩H = {[1 mod 2e]}, and hence by Theorem 8.57, G×H
is isomorphic to the subgroup G ·H of Z∗2e . But since the orders of G×H and
Z∗2e are equal, we must have G ·H = Z∗2e . That proves the theorem.

Exercise 10.5 This exercise develops an alternative proof of Theorem 10.2. Let
n be the order of the group. Using Theorem 9.42, show that for all d | n, there
are at most d elements in the group whose order divides d. From this, deduce
that for all d | n, the number of elements of order d is either 0 or φ(d). Now
use Theorem 2.14 to deduce that for all d | n (and in particular, for d = n), the
number of elements of order d is equal to φ(d). 2

Exercise 10.6 Let n = pq, where p and q are distinct primes such that p =
2p′ + 1 and q = 2q′ + 1, where p′ and q′ are themselves prime. Show that Z∗n
is not a cyclic group, while the subgroup (Z∗n)

2 of squares is a cyclic group of
order p′q′. 2

Exercise 10.7 Let n = pq, where p and q are distinct primes such that p - (q−1)
and q - (p− 1). Show that the map that sends [a mod n] ∈ Z∗n to [an mod n2] ∈
(Z∗n2)

n is a group isomorphism. Consider the element α = [1 + n mod n2] ∈
Z∗n2 ; show that for any non-negative integer k, αk = [1 + kn mod n2], and
conclude that α has order n. Show that the map from Zn × Z∗n to Z∗n2 that
sends ([k mod n], [a mod n]) to [(1 + kn)an mod n2] is a group isomorphism. 2

10.3 The Miller-Rabin Test

We describe in this section a fast (polynomial time) test for primality, known
as the Miller-Rabin algorithm. The algorithm, however, is probabilistic, and
may (with small probability) make a mistake.

We assume for the remainder of this section that the number n we are testing
for primality is odd.

Several probabilistic primality tests, including the Miller-Rabin algorithm,
have the following general structure. Define Z 6=n to be the set of non-zero elements
of Zn; thus, |Z 6=n | = n − 1 and if n is prime, Z 6=n = Z∗n. Suppose also that we

define a set Ln ⊆ Z 6=n such that
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• there is an efficient algorithm that on input n and α ∈ Z 6=n , determines if
α ∈ Ln;

• if n is prime, then Ln = Z∗n;

• if n is composite, |Ln| ≤ c(n− 1) for some constant c < 1.

To test n for primality, we set an “error parameter” t, and choose random
elements α1, . . . , αt ∈ Z 6=n . If αi ∈ Ln for all 1 ≤ i ≤ t, then we output true;
otherwise, we output false.

It is easy to see that if n is prime, this algorithm always outputs true, and
if n is composite this algorithm outputs true with probability at most ct. If
c = 1/2 and t is chosen large enough, say t = 100, then the probability that the
output is wrong is so small that for all practical purposes, it is “just as good as
zero.”

We now make a first attempt at defining a suitable set Ln. Let us define
Ln = {α ∈ Z 6=n : αn−1 = 1}. Note that Ln ⊆ Z∗n, since if αn−1 = 1, then α has a
multiplicative inverse, namely, αn−2. Using a repeated-squaring algorithm, we
can test if α ∈ Ln in time O(len(n)3).

Theorem 10.8 If n is prime, then Ln = Z∗n. If n is composite and Ln ( Z∗n,
then |Ln| ≤ (n− 1)/2.

Proof. Note that Ln is the kernel of the (n− 1)-power map on Z∗n, and hence
is a subgroup of Z∗n.

If n is prime, then we know that Z∗n is a group of order n−1. Hence, αn−1 = 1
for all α ∈ Z∗n. That is, Ln = Z∗n.

Suppose that n is composite and Ln ( Z∗n. Since the order of a subgroup
divides the order of the group, we have |Z∗n| = m|Ln| for some integer m > 1.
From this, we conclude that

|Ln| =
1

m
|Z∗n| ≤

1

2
|Z∗n| ≤

n− 1

2
.

2

Unfortunately, there are odd composite numbers n such that Ln = Z∗n. The
smallest such number is

561 = 3 · 11 · 17.
Such numbers are called Carmichael numbers. They are extremely rare, but
it is known that there are infinitely many of them, so we can not ignore them.
The following theorem puts some constraints on such numbers.
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Theorem 10.9 A Carmichael number n is of the form n = p1 · · · pr, where the
pi’s are distinct primes, r ≥ 3, and (pi − 1) | (n− 1) for 1 ≤ i ≤ r.

Proof. Let n = pe11 · · · perr be a Carmichael number. By the Chinese Remainder
Theorem, we have an isomorphism of Z∗n with the group

Z∗
p
e1
1
× · · · × Z∗perr ,

and we know that each group Z∗
p
ei
i

is cyclic of order pei−1i (pi−1). Thus, the power
n− 1 kills the group Z∗n if and only if it kills all the groups Z∗

p
ei
i

, which happens

if and only if pei−1i (pi − 1) | (n − 1). Now, on the one hand, n ≡ 0 (mod pi).
On the other hand, if ei > 1, we would have n ≡ 1 (mod pi), which is clearly
impossible. Thus, we must have ei = 1.

It remains to show that r ≥ 3. Suppose r = 2, so that n = p1p2. We have

n− 1 = p1p2 − 1 = (p1 − 1)p2 + (p2 − 1).

Since (p1 − 1) | (n − 1), we must have (p1 − 1) | (p2 − 1). By a symmetric
argument, (p2 − 1) | (p1 − 1). Hence, p1 = p2, a contradiction. 2

To obtain a good primality test, we need to define a different set L′n, which
we do as follows. Let n − 1 = 2hm, where m is odd (and h ≥ 1 since n

is assumed odd). To determine if a given α ∈ Z 6=n is in L′n, we consider the
following sequence:

αm2
j

(j = 0, . . . , h).

Membership of α in L′n is determined by the following rules:

1. If αm2
h 6= 1, then α is not in L′n;

2. otherwise, if αm2
j
= 1 for all 0 ≤ j ≤ h, then α is in L′n;

3. otherwise, consider the greatest index j such that αm2
j 6= 1; if αm2

j
= −1,

then α is in L′n;

4. otherwise, α is not in L′n.

The Miller-Rabin algorithm uses this set L′n, in place of the set Ln defined
above. It is clear that membership in L′n can be determined in time O(len(n)3)
using a repeated-squaring algorithm.

Note that L′n is a subset of Ln: if α
m = 1, then certainly αn−1 = (αm)2

h
= 1,

and if αm2
j
= −1 for some 0 ≤ j < h, then αn−1 = (αm2

j
)2

h−j
= 1.



192 Chapter 10. Probabilistic Primality Testing

Theorem 10.10 If n is prime, then L′n = Z∗n. If n is composite, then |L′n| ≤
(n− 1)/4.

The rest of this section is devoted to a proof of this theorem.
Let n− 1 = m2h, where m is odd.
First, suppose n is prime. By Fermat’s Little Theorem, for α ∈ Z∗n, we know

that αm2
h
= αn−1 = 1. Moreover, for β := αm2

j
, if β2 = αm2

j+1
= 1, then the

only possible choices for β are ±1 — this is because Z∗n is cyclic of even order
and so there are exactly 2 elements whose order divides 2, namely [±1 mod n].
From this, it follows from the definition that α ∈ L′n.

Now suppose that n is an odd composite.
Our strategy will be to first show that L′n is contained in a particular sub-

group G of Z∗n. We will then show that the order of G is suitably small.
Let

n = pe11 · · · perr
be the prime factorization of n. Further, let

ρ : Z∗
p
e1
1
× · · · × Z∗perr → Z∗n

be the isomorphism provided by the Chinese Remainder Theorem. Also, let
φ(peii ) = mi2

hi , with mi odd, for 1 ≤ i ≤ r, and let ` := min{h, h1, . . . , hr}.
Let α ∈ L′n be given. We have already argued that α ∈ Z∗n, so let α =

ρ(α1, . . . , αr).

Claim 1: We have
αm2

`
= 1.

Proof of claim. The claim may be restated as

αm2
j
= 1 (j = `, . . . , h).

The claim is clearly true by the definition of L′n for j = h. If ` = h, there is
nothing more to prove, so assume that ` < h, and in particular, that ` = hi for
some 1 ≤ i ≤ r. We may then prove the claim by induction, assuming that it is
true for some j, with `+ 1 ≤ j ≤ h, and proving it for j − 1. Since α ∈ L′n and
αm2

j
= 1, we must have αm2

j−1
= ±1. Suppose, by way of contradiction, that

αm2
j−1

= −1. Since −1 = ρ(−1, . . . ,−1), we must have αm2
j−1

i = −1. To derive

a contradiction, we shall now show that αm2
j−1

i = 1. To see this, observe that

since αm2
j

i = 1, we must have ord(αi) | m2j ; further, since αi is an element of a
group of order mi2

hi , we must have ord(αi) | mi2
hi . We may therefore conclude

that ord(αi) | m2hi , and since hi = ` ≤ j − 1, we have ord(αi) | m2j−1, and so
αm2

j−1

i = 1. That proves Claim 1.
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So we have shown that

L′n ⊆ G := {α ∈ Z∗n : αm2
`−1

= ±1} ⊆ Z∗n{m2`} ⊆ Z∗n{m2h} ⊆ Z∗n,

where G is clearly a subgroup of Z∗n, as it is the pre-image of the subgroup {±1}
of Z∗n under the (m2`−1)-power map. Recall that for any group H, written
multiplicatively, and any integer k, H{k} denotes the kernel of the k-power map
on H.

Claim 2: We have
[Z∗n{m2`} : G] = 2r−1. (10.1)

Proof of claim. To prove this claim, we consider the tower of subgroups

Z∗n{m2`−1} ⊆ G ⊆ Z∗n{m2`}.

The claim will follow immediately from the following two facts:

[Z∗n{m2`} : Z∗n{m2`−1}] = 2r, (10.2)

and
[G : Z∗n{m2`−1}] = 2. (10.3)

Let us first prove (10.2). From the Chinese remainder Theorem, it is evident
that

[Z∗n{m2`} : Z∗n{m2`−1}] =
r∏

i=1

[Z∗
p
ei
i
{m2`} : Z∗

p
ei
i
{m2`−1}],

and so it suffices to show that for each index 1 ≤ i ≤ r, we have

[Z∗
p
ei
i
{m2`} : Z∗

p
ei
i
{m2`−1}] = 2. (10.4)

To prove (10.4), consider any such index i. Since Z∗
p
ei
i

is a cyclic group of order

mi2
hi , we have (c.f., Theorem 8.78)

|Z∗
p
ei
i
{m2`}| = gcd(m2`,mi2

hi),

and
|Z∗

p
ei
i
{m2`−1}| = gcd(m2`−1,mi2

hi).

Moreover, since ` ≤ hi, we have

gcd(m2`,mi2
hi) = 2 gcd(m2`−1,mi2

hi).
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We conclude that
|Z∗

p
ei
i
{m2`}| = 2|Z∗

p
ei
i
{m2`−1}|,

which proves (10.4), and hence (10.2).
We next prove (10.3). Let σ denote the (m2`−1)-power map on G. By the

definition of G, im(σ) ⊆ {±1}, and ker(σ) = Z∗n{m2`−1}. If we show that
−1 ∈ im(σ), then it will follow (see Theorem 8.55) that

G/(Z∗n{m2`−1}) = G/ ker(σ) ∼= im(σ) = {±1},

which will establish (10.3). So it only remains to show that −1 ∈ im(σ), i.e.,

that there exists β ∈ Z∗n such that βm2
`−1

= −1. To prove this, it will suffice

to show that for each 1 ≤ i ≤ r, there exists βi ∈ Z∗
p
ei
i

such that βm2
`−1

i = −1,
and then set β := ρ(β1, . . . , βr). So consider any 1 ≤ i ≤ r, and observe that
since ` ≤ hi and since Z∗

p
ei
i

is cyclic of order mi2
hi , there must be an element

βi ∈ Z∗
p
ei
i

of order 2`, so that βm2
`−1

i has order 2, and hence βm2
`−1

i = −1, as
required. Thus, we have proved the existence of the βi’s of the required form,
which concludes the proof of (10.3).

That finishes the proof of Claim 2.

Now we are almost done with the proof of the theorem. There are four cases
to consider. In the first three cases, we show that [Z∗n : G] ≥ 4, from which it

follows that |L′n|/|Z 6=n | ≤ 1/4.

Case 1: r ≥ 3. In this case, we have

[Z∗n : G] = [Z∗n : Z∗n{m2`}] [Z∗n{m2`} : G] ≥ 1 · 2r−1 ≥ 4.

Case 2: r = 2. In this case, we know by Theorem 10.9 that n is not a Carmichael
number, and hence [Z∗n : Z∗n{m2h}] ≥ 2. Hence

[Z∗n : G] = [Z∗n : Z∗n{m2h}] [Z∗n{m2h} : Z∗n{m2`}] [Z∗n{m2`} : G] ≥ 2 · 1 · 2 = 4.

Case 3: r = 1 and n 6= 9. In this case, we have n = pe with e > 1, and
|Z∗n{n− 1}| = gcd(pe − 1, pe−1(p− 1)) = p− 1. Hence, [Z∗n : Z∗n{m2h}] = pe−1,
and so

[Z∗n : G] = [Z∗n : Z∗n{m2h}] [Z∗n{m2h} : G] ≥ pe−1 · 1 = pe−1 ≥ 5,

since our assumptions imply that either p > 3 or e ≥ 2.

Case 4: n = 9. In this case, one can check that L′9 = {±1}, and so |L′9|/|Z 6=9 | =
2/8 = 1/4.
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That completes the proof of Theorem 10.10

Exercise 10.11 Show that an integer n > 1 is prime if and only if there exists
an element in Z∗n of order n− 1. 2

Exercise 10.12 Let p be a prime. Show that n := 2p + 1 is a prime if and
only if 2n−1 ≡ 1 (mod n). 2

Exercise 10.13 Here is another primality test that takes as input a positive,
odd integer n, and a positive integer parameter t. The algorithm chooses
α1, . . . , αt ∈ Z 6=n at random, and computes

βi := α
(n−1)/2
i (i = 1, . . . , t).

If (β1, . . . , βt) is of the form ([±1], [±1], . . . , [±1]), and is not equal to
([u], [u], . . . , [u]) for u ∈ {±1}, the algorithm outputs true; otherwise, the al-
gorithm outputs false. Show that if n is prime, then the algorithm outputs false
with probability at most 2−t, and if n is composite, the algorithm outputs true
with probability at most 2−t. 2

In the terminology of §7.2, the algorithm in the above exercise is an example
of an “Atlantic City” algorithm for the language of prime numbers (or equiva-
lently, the language of composite numbers), while the Miller-Rabin algorithm is
an example of a “Monte Carlo” algorithm for the language of composite numbers.

10.4 Generating Random Primes using the Miller-
Rabin Test

The Miller-Rabin test is the most practical test known for testing primality, and
because of this, it is widely used in many applications, especially cryptographic
applications where one needs to generate large, random primes. In this section,
we discuss how one uses the Miller-Rabin test in several practically relevant
scenarios where one must generate large primes.

10.4.1 Generating a random prime between 1 and M

Suppose one is given an integer M ≥ 2, and wants to generate a random prime
between 1 and M . We can do this by simply picking numbers at random until
one of them passes a primality test. We discussed this problem in some detail
in §7.5, where we assumed that we had a primality test IsPrime. The reader
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should review §7.5, and §7.5.1 in particular. In this section, we discuss aspects
of this problem that are specific to the situation where the Miller-Rabin test is
used to implement IsPrime.

To be more precise, let us define the following algorithm MR(n, t), which
takes as input positive integers n and t, and runs as follows:

if n = 1 then return false
if n = 2 then return true
if n is even then return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

So we shall implement IsPrime(·) as MR(·, t), where t is an auxiliary param-
eter. By Theorem 10.10, if n is prime, the output of MR(n, t) is always true,
while if n is composite, the output is true with probability at most 4−t. Thus,
this implementation of IsPrime satisfies the assumptions in §7.5.1, with ε = 4−t,

Let γ(M, t) be the probability that the output of algorithm RP in §7.5 —
using this implementation of IsPrime — is composite. Then as we discussed in
§7.5.1,

γ(M, t) ≤ 4−t
M

π(M)
= O(4−tk), (10.5)

where k = len(M). Furthermore, if the output of algorithm RP is prime, then
every prime is equally likely; i.e., conditioning on the event that the output is
prime, the conditional output distribution is uniform over all primes.

Let us now consider the expected running time of algorithm RP. As was
shown in §7.5.1, this is O(kW ′

M ), where W ′
M is the expected running time of

IsPrime where the average is taken with respect to the random choice of input
n ∈ {1, . . . ,M} and the random choices of the primality test itself. Clearly, we
have W ′

M = O(tk3), since MR executes at most t iterations of the Miller-Rabin
test, and each such test takes time O(k3). This leads to a expected total running
time bound of O(tk4). However, this estimate for W ′

M is overly pessimistic.
Intuitively, this is because when n is composite, we expect to perform very
few Miller-Rabin tests — only when n is prime do we actually perform all t
of them. To make a rigorous argument, consider the experiment in which n is
chosen at random from {1, . . . ,M}, and MR(n, t) is executed. Let Y be the
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number of times the basic Miller-Rabin test is actually executed. Conditioned
on any fixed, prime value of n, the value of Y is always t. Conditioned on any
fixed, composite value of n, the distribution of Y is geometric with an associated
success probability of at least 3/4; thus, the conditional expectation of Y is at
most 4/3 in this case. Thus, we have

E[Y ] = E[Y | n prime]P[n prime] + E[Y | n not prime]P[n not prime]

≤ tπ(M)/M + 4/3.

Thus, E[Y ] ≤ 4/3 +O(t/k), from which it follows that W ′
M = O(k3 + tk2), and

hence the expected total running time of algorithm RP is actually O(k4 + tk3).

Note that the above estimate (10.5) for γ(M, t) is actually quite pessimistic.
This is because the error probability 4−t is a worst-case estimate; in fact, for
“most” composite integers n, the probability that MR(n, t) outputs true is much
smaller than this. In fact, γ(M, 1) is very small for large M . For example, the
following is known:

Theorem 10.14 We have

γ(M, 1) ≤ exp[−(1 + o(1)) log(M) log(log(log(M)))/ log(log(M))].

Proof. Literature — see §10.8. 2

The bound in the above theorem goes to zero quite quickly — faster than
(logM)−c for any positive constant c. While the above theorem is asymptotically
very good, in practice, one needs explicit bounds. For example, the following
lower bounds for − log2(γ(2

k, 1)) are known:

k 200 300 400 500 600

3 19 37 55 74

Given an upper bound on γ(M, 1), we can bound γ(M, t) for t ≥ 2 using the
following inequality:

γ(M, t) ≤ γ(M, 1)

1− γ(M, 1)
4−t+1. (10.6)

To prove (10.6), it is not hard to see that on input M , the output distribution
of algorithm RP is the same as that of the following algorithm:
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repeat
repeat

n←R {1, . . . ,M}
until MR(n, 1)
n1 ← n

until MR(n1, t− 1)
output n1

Consider for a moment a single execution of the outer loop of the above
algorithm. Let β be the probability that n1 is composite, and let α be the con-
ditional probability that MR(n1, t− 1) outputs true, given that n1 is composite.
Evidently, β = γ(M, 1) and α ≤ 4−t+1.

Now, using exactly the same reasoning as was used to derive equation (7.2)
in §7.5.1, we find that

γ(M, t) =
αβ

αβ + (1− β) ≤
αβ

1− β ≤
4−t+1γ(M, 1)

1− γ(M, 1)
,

which proves (10.6).

Given that γ(M, 1) is so small, for large M , algorithm RP actually exhibits
the following behavior in practice: it generates a random value n ∈ {1, . . . ,M};
if n is odd and composite, then the very first iteration of the Miller-Rabin test
will detect this with overwhelming probability, and no more iterations of the
test are performed on this n; otherwise, if n is prime, the algorithm will perform
t− 1 more iterations of the Miller-Rabin test, “just to make sure.”

Exercise 10.15 Consider the problem of generating a random Sophie Germain
prime between 1 and M (see §5.5.5). One algorithm to do this is as follows:

repeat
n←R {1, . . . ,M}
if MR(n, t) then

if MR(2n+ 1, t) then
output n and halt

forever

Assuming Conjecture 5.48, show that this algorithm runs in expected time
O(k5 + tk4), and outputs a number that is not a Sophie Germain prime with
probability O(4−tk2). As usual, k := len(M). 2
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Exercise 10.16 Improve the algorithm in the previous exercise, so that under
the same assumptions, it runs in expected time O(k5+ tk3), and outputs a num-
ber that is not a Sophie Germain prime with probability O(4−tk2), or even bet-
ter, show that this probability is at most γ(M, t)π∗(M)/π(M) = O(γ(M, t)k),
where π∗(M) is defined as in §5.5.5. 2

Exercise 10.17 Suppose in algorithm RFN in §7.7 we implement algorithm
IsPrime(·) as MR(·, t), where t is a parameter satisfying 4−t(2 + logM) ≤ 1/2,
if M is the input to RFN. Show that the expected running time of algorithm
RFN in this case is O(k5 + tk4 len(k)). Hint: use Exercise 7.15. 2

10.4.2 Sieving up to a small bound

In generating a random prime, most candidates n will in fact be composite, and
so it makes sense to cast these out as quickly as possible. Significant efficiency
gains can be achieved by testing if a given integer n is divisible by any small
primes up to a given bound s, before we subject n to a Miller-Rabin test. This
strategy makes sense, since for a small, “single precision” prime p, we can test
if p | n in time O(len(n)), while a single iteration of the Miller-Rabin test takes
time O(len(n)3) steps.

To be more precise, let us define the following algorithm MRS (n, t, s), which
takes as input positive integers n, t, and s, where s ≥ 2, and runs as follows:

if n = 1 then return false
for each prime p ≤ s do

if p | n then
if p = n then return true else return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

In an implementation of the above algorithm, one would most likely use the
Sieve of Eratosthenes (see §5.4) to generate the small primes.

Note that MRS (·, ·, 2) is equivalent to MR(·, ·). Also, it is clear that the
probability that MRS makes a mistake on a given n is no more than the prob-
ability that MR makes a mistake. Therefore, using MRS in place of MR will
not increase the probability that the output of algorithm RP is a composite —
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indeed, it is likely that this probability decreases significantly.
Let us now analyze the impact on the running time. To do this, we need to

estimate the probability τ(M, s) that a randomly chosen number between 1 and
M is not divisible by any primes up to s. If M is sufficiently large with respect
to s, the following heuristic argument can be made rigorous, as we will discuss
below. The probability that a random number is divisible by a prime p is about
1/p, so the probability that it is not divisible by p is about 1 − 1/p. Assuming
that these events are essentially independent for different values of p (this is the
heuristic part), we estimate

τ(M, s) ≈
∏

p≤s
(1− 1/p) ∼ B1/ log s,

where B1 ≈ 0.56146 is the constant from Exercise 5.28 (see also Theorem 5.42).
Of course, performing the trial division takes some time, so let us also esti-

mate the expected number κ(M, s) of trial divisions performed. If p1, p2, . . . , pr
are the primes up to s, then for 1 ≤ i ≤ r, the probability that we perform at
least i trial divisions is precisely τ(M,pi − 1). From this, it follows that

κ(M, s) =
∑

p≤s
τ(M,p− 1) ≈

∑

p≤s
B1/ log s.

Using Exercise 5.23 and the Prime Number Theorem, we obtain

κ(M, s) ≈
∑

p≤s
B1/ log s ∼ B1π(s)/ log s ∼ B1s/(log s)

2.

If k = len(M), the expected amount of time spent within MRS performing
the Miller-Rabin test is now Θ(k3/ len(s) + tk2). The expected running time of
trial division up to s is O(ks/ len(s)2). This estimate does not take into account
the time to generate the small primes using the Sieve of Eratosthenes. These
values might be pre-computed, in which case this time is zero, but even if we
compute them on the fly, this takes time O(s len(len(s))), which is dominated
by O(ks/ len(s)2)) for any reasonable value of s (in particular, for s ≤ kO(1)).

So provided s = o(k2 len(k)), the running time of MRS will be dominated by
the Miller-Rabin test, which is what we want, of course — if we spend as much
time sieving as the time it would take to perform a Miller-Rabin test, we might
as well just perform the Miller-Rabin test. In practice, one would use a very
conservative bound for s, probably no more than k2, since getting s arbitrarily
close to optimal does not really provide that much benefit, while if we choose s
too large, it can actually do significant harm.
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From the above estimates, we can conclude that with k ≤ s ≤ k2, the
expected running time W ′

M of MRS (n, t, s), with respect to a randomly chosen
n between 1 and M , is

W ′
M = O(k3/ len(k) + tk2). (10.7)

From this, it follows that the expected running time of algorithm RP on input
M is O(k4/ len(k) + tk3). Thus, we effectively reduce the running time by a
factor of len(k), which is a very real and noticeable improvement in practice.

As we already mentioned, the above analysis is heuristic, but the results
are correct. To make the analysis rigorous, we need prove that the estimate
τ(M, s) ≈ ∏p≤s(1 − 1/p) is indeed accurate. Proving such estimates takes us
into the realm of “sieve theory.” The larger M is with respect to s, the easier
it is to prove such estimates. We shall prove only the simplest and most naive
such estimates, but it is still good enough for our purposes, if we do not care
too much about hidden ‘O’-constants.

Before stating any results, let us restate the problem slightly. For real y ≥ 0,
let us call a positive integer “y-rough” it is not divisible by any primes p up to
y. For real x ≥ 0, let us define R(x, y) to be the number of y-rough integers up
to x. Thus, τ(M, s) = R(M, s)/M .

Theorem 10.18 For any real x ≥ 0 and y ≥ 0, we have

∣
∣
∣
∣
R(x, y)− x

∏

p≤y
(1− 1/p)

∣
∣
∣
∣
≤ 2π(y).

Proof. To simplify the notation, we shall use the Möbius function µ (see §2.6).
Also, for a real number u, let us write u = buc + {u}, where 0 ≤ {u} < 1. Let
P be the product of the primes up to the bound y.

Now, there are bxc positive integers up to x, and of these, for each prime p
dividing P , precisely bx/pc are divisible by p, for each pair p, p′ of distinct primes
dividing P , precisely bx/pp′c are divisible by pp′, etc. By inclusion/exclusion,
we have

R(x, y) =
∑

d|P
µ(d)bx/dc =

∑

d|P
µ(d)(x/d)−

∑

d|P
µ(d){x/d}.

Moreover,
∑

d|P
µ(d)(x/d) = x

∑

d|P
µ(d)/d = x

∏

p≤y
(1− 1/p),
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and
|
∑

d|P
µ(d){x/d}| ≤

∑

d|P
1 = 2π(y).

That proves the theorem. 2

This theorem only says something non-trivial when y is quite small. Nev-
ertheless, using Chebyshev’s Theorem on the density of primes, along with
Mertens’ Theorem, it is not hard to see that this theorem implies that τ(M, s) =
O(1/ log s) when s = O(logM log logM), which implies the estimate (10.7)
above. We leave the details as an exercise for the reader.

Exercise 10.19 Prove the claim made above that τ(M, s) = O(1/ log s) when
s = O(logM log logM). More precisely, show that there exist constants c, d,
and s0, such that for all M and d satisfying s0 ≤ s ≤ c logM log logM , we have
τ(M, s) ≤ d/ log s. From this, derive the estimate (10.7) above. 2

Exercise 10.20 Let f be a polynomial with integer coefficients. For real x ≥ 0
and y ≥ 0, define Rf (x, y) to be the number of integers m up to x such that
f(m) is y-rough. For positive integer M , define ωf (M) to be the number of
integers m ∈ {0, . . . ,M − 1} such that f(m) ≡ 0 (modM). Show that

∣
∣
∣
∣
Rf (x, y)− x

∏

p≤y
(1− ωf (p)/p)

∣
∣
∣
∣
≤
∏

p≤y
(1 + ωf (p)).

2

Exercise 10.21 Consider again the problem of generating a random Sophie
Germain prime, as discussed in Exercise 10.16. A useful idea is to first test if
either n or 2n+1 are divisible by any small primes up to some bound B, before
performing any more expensive tests. Using this idea, design and analyze an
algorithm that improves the running time of the algorithm in Exercise 10.16 to
O(k5/ len(k)2 + tk3) — under the same assumptions, and achieving the same
error probability bound as in that exercise. Hint: first show that the previous
exercise implies that the number of positive integers m up to x such that both
m and 2m+ 1 are y-rough is at most

x · 1
2

∏

2<p≤y
(1− 2/p) + 3π(y).

2
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Exercise 10.22 Design an algorithm that takes as input a prime q and a bound
M , and outputs a random prime p between 1 and M such that p ≡ 1 (mod q).
Clearly, we need to assume thatM is sufficiently large with respect to q. Analyze
your algorithm assuming Conjecture 5.45. State how large M must be with
respect to q, and under these assumptions, show that your algorithm runs in time
O(k4/ len(k) + tk3), and that its output is incorrect with probability O(4−tk).
As usual, k := len(M). 2

10.4.3 Generating a random k-bit prime

In some applications, we want to generate a random prime of fixed size, e.g., a
random 1024-bit prime. More generally, let us consider the following problem:
given integer k ≥ 3, generate a random k-bit prime, i.e., a prime in the interval
[2k−1, 2k).

Theorem 5.11 (Bertrand’s Postulate) implies that there exists a constant
c > 0 such that π(2k)− π(2k−1) ≥ c2k−1/k for all k ≥ 3.

Now let us modify algorithm RP so that it takes as input integer k ≥ 3,
and repeatedly generates a random n in the interval {2k−1, . . . , 2k − 1} until
IsPrime(n) returns true. Let us call this variant algorithm RP′. Further, let
us implement IsPrime(·) as MR(·, t), for some auxiliary parameter t, and define
γ′(k, t) to be the probability that the output of algorithm RP′ — with this
implementation of IsPrime — is composite.

Then using exactly the same reasoning as above,

γ′(k, t) ≤ 4−t
2k−1

π(2k)− π(2k−1) = O(4−tk).

As before, if the output of algorithm RP′ is prime, then every k-bit prime is
equally likely, and the expected running time is O(k4 + tk3). By using a sieve
as in the previous section, this can be reduced to O(k4/ len(k) + tk3).

The function γ′(k, t) has been studied a good deal; for example, the following
is known:

Theorem 10.23 For all k ≥ 3, we have

γ′(k, 1) ≤ k242−
√
k.

Proof. Literature — see §10.8. 2

Upper bounds for γ ′(k, t) for specific values of k and t have been computed.
The following table lists some known lower bounds for − log2(γ

′(k, t)) for various
values of k and t:
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t\k 200 300 400 500 600

1 11 19 37 56 75
2 25 33 46 63 82
3 34 44 55 70 88
4 41 53 63 78 95
5 47 60 72 85 102

Using exactly the same reasoning as the derivation of (10.6), one sees that

γ′(k, t) ≤ γ′(k, 1)
1− γ′(k, 1)4

−t+1.

10.5 Perfect Power Testing and Prime Power Factor-
ing

Consider the following problem: we are given a integer n ≥ 2, and want to
determine if n is a perfect power, i.e., if n = de for integers d and e, both
greater than 1. Certainly, if such d and e exist, then we must be the case that
2e ≤ n, so we can try all possible candidate values of e, running from 2 to
blog2 nc. For each such candidate value of e, we can test if n = de for some d
as follows. Suppose n is a k-bit number, i.e., 2k−1 ≤ n < 2k. Then 2(k−1)/e ≤
n1/e < 2k/e. So any integer eth root of n must lie in the set {u, . . . , v−1}, where
u = 2b(k−1)/ec and v = 2dk/ee. Using u and v as starting values, we can perform
a binary search:

1. if u ≥ v, declare that n is not a perfect eth power;

2. set w ← b(u+ v)/2c;

3. set z ← we;

4. (a) if z = n, then declare than n = we is an a perfect eth power;

(b) otherwise, if z < n, recursively apply binary search using (w + 1, v)
in place of (u, v);

(c) otherwise, if z > n, recursively apply binary search using (u,w) in
place of (u, v).

If n = de for some integer d, then the following invariant holds (verify): at
the beginning of each recursive step, we have u ≤ d < v. Thus, if n is a perfect
eth power, this will be discovered. That proves the correctness of the algorithm.

As to its running time, note that with each recursive step, the length v − u
of the search interval decreases by a factor of at least 2 (verify). Therefore, after
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t steps the interval will be of length at most 2k/e+1/2t, so after at most k/e+ 2
steps, the interval will be of length less than 1, and hence of length zero, and
the algorithm will halt. So the number of recursive steps is O(k/e). The power
we computed in each step is no more than 2(k/e+1)e = 2k+e ≤ 22k, and hence
can be computed in time O(k2) (see Exercise 3.17). Hence the overall cost of
testing if n is an eth power using this algorithm is O(k3/e).

Trying all candidate values of e from 1 to blog2 nc yields an overall running
time for perfect power testing of O(

∑

e k
3/e) = O(k3 len(k)). To find the largest

possible value of e for which n is an eth power, we should examine the candidates
from highest to lowest.

Using the above algorithm for perfect power testing and an efficient primality
test, we can determine if an integer n is a prime power pe, and if so, compute
p and e: we find the largest positive integer e (possibly 1) such that n = de for
integer d, and test if d is a prime using an efficient primality test.

10.6 Factoring and Computing Euler’s φ-Function

In this section, we use some of the ideas developed to analyze the Miller-Rabin
test to prove that the problem of factoring n and the problem of computing φ(n)
are equivalent. By equivalent, we mean that given an efficient algorithm to solve
one problem, we can efficiently solve the other, and vice versa.

Clearly, one direction is easy: if we can factor n into primes, so

n = pe11 · · · perr , (10.8)

then we can simply compute φ(n) using the formula

φ(n) = pe1−11 (p1 − 1) · · · per−1r (pr − 1).

For the other direction, first consider the special case where n = pq, for
distinct primes p and q. Suppose we are given n and φ(n), so that we have two
equations in the unknowns p and q:

n = pq and φ(n) = (p− 1)(q − 1).

Substituting q := n/p into the second equation, and simplifying, we obtain

p2 + (φ(n)− n− 1)p+ n,

which can be solved using the quadratic formula.
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For the general case, it is just as easy to prove a stronger result: given any
non-zero multiple of the exponent of Z∗n, we can efficiently factor n. In particular,
this will show that we can efficiently factor Carmichael numbers.

Before stating the algorithm in its full generality, we can convey the main
idea by considering the special case where n = pq, where p and q are distinct
primes, with p ≡ q ≡ 3 (mod 4). Suppose we are given such an n, along with
f 6= 0 that is a common multiple of p − 1 and q − 1. The algorithm works as
follows: let f = 2hm, where m is odd; choose a random, non-zero element α
of Zn; test if either gcd(rep(α), n) or gcd(rep(αm) + 1, n) splits n (recall the
notation “rep(·)” from §3.4).

Because p ≡ 3 (mod 4) and f is a multiple of p−1, it follows that gcd(m, p−
1) = (p − 1)/2, and hence the image of Z∗p under the m-power map is [±1].
Likewise, the image of Z∗q under the m-power map is [±1]. Let ρ : Z∗p×Z∗q → Z∗n
is the group isomorphism from the Chinese Remainder Theorem. Now, if α in
the above algorithm does not lie in Z∗n, then certainly gcd(rep(α), n) splits n.
Otherwise, condition on the event that α ∈ Z∗n. In this conditional probability
space, α is uniformly distributed over Z∗n, and β := αm is uniformly distributed
over ρ(±1,±1); if β = ρ(−1, 1) or β = ρ(1,−1), which happens with probability
1/2, then gcd(rep(β) + 1, n) splits n. Thus, the overall probability that we split
n is at least 1/2.

We now present the algorithm in its full generality. We first introduce some
notation; namely, let λ(n) denote the exponent of Z∗n. If the prime factorization
of n is as in (10.8), then by the Chinese Remainder Theorem, we have

λ(n) = lcm(λ(pe11 ), . . . , λ(perr )).

Moreover, for any prime power pe, by Theorem 10.1, we have

λ(pe) =

{
pe−1(p− 1) if p 6= 2 or e ≤ 2,
2e−2 if p = 2 and e ≥ 3.

In particular, if m | n, then λ(m) | λ(n).
Now, returning to our factorization problem, we are given n and a non-zero

multiple f of λ(n), and want to factor n. We may as will assume that n is odd;
otherwise, we can pull out all the factors of 2, obtaining n′ such that n = 2en′,
where n′ is odd and f is a multiple of λ(n′), thus, reducing to the odd case.

So now, assume n is odd and f is a multiple of λ(n). Assume that f is of
the form f = 2hm, where m is odd. Our factoring algorithm, which we describe
recursively, runs as follows.
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if n is a prime power pe then
output e copies of p and return

generate a random, nonzero element α of Zn

d1 ← gcd(rep(α), n)
if d1 6= 1, then recursively factor d1 and n/d1 (using the same f),

and return
α← αm

for j ← 0 to h− 1 do
d2 ← gcd(rep(α) + 1, n)
if d2 /∈ {1, n}, then recursively factor d2 and n/d2

(using the same f), and return
α← α2

recursively factor n (using the same f)

It is clear that when the algorithm terminates, its output consists of the list
of all primes (including duplicates) dividing n, assuming the primality test does
not make a mistake.

To analyze the running time of the algorithm, assume that the prime fac-
torization of n is as in (10.8). By the Chinese Remainder Theorem, we have an
isomorphism of groups

ρ : Z∗
p
e1
1
× · · · × Z∗perr → Z∗n.

Let λ(peii ) = mi2
hi , wheremi is odd, for 1 ≤ i ≤ r, and let ` := max{h1, . . . , hr}.

Note that since λ(n) | f , we have ` ≤ h.
Consider one execution of the body of the recursive algorithm. If n is a prime

power, this will be detected immediately, and the algorithm will return. Here,
even if we are using probabilistic primality test, such as the Miller-Rabin test,
that always says that a prime is a prime, the algorithm will certainly halt. So
assume that n is not a prime power; i.e., r ≥ 2. If the chosen value of α is not
in Z∗n, then d1 will be a nontrivial divisor of n. Otherwise, conditioning on the
event that α ∈ Z∗n, the distribution of α is uniform over Z∗n. Consider the value

β := αm2
`−1

.
We claim that with probability at least 1/2, gcd(rep(β)+1, n) is a nontrivial

divisor of n. To prove this claim, let us write

β = ρ(β1, . . . , βr),

where βi ∈ Z∗
p
ei
i

. Note that for those i with hi < `, the m2`−1-power map

kills the group Z∗
p
ei
i

, while for those i with hi = `, the image of Z∗
p
ei
i

under the
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m2`−1-power map is [±1]. Without loss of generality, assume that the indices
i such that hi = ` are numbered 1, . . . , r′, where 1 ≤ r′ ≤ r. The values βi for
1 ≤ i ≤ r′ are uniformly and independently distributed over [±1], while for all
i > r′, βi = [1]. Thus, the value of gcd(rep(β) + 1, n) is the product of all prime
powers peii , with βi = [−1], which will be nontrivial unless either (1) all the βi
are [1], or (2) r′ = r and all the βi are [−1]. Consider two cases. First, if r′ < r,
then only event (1) is possible, and this occurs with probability 2−r

′ ≤ 1/2.
Second, if r′ = r, then each of events (1) and (2) occur with probability 2−r,
and so the probability that either occurs is 2−r+1 ≤ 1/2. That proves the claim.

From the claim, it follows that with probability at least 1/2, we will obtain
a nontrivial divisor d2 of n when j = `− 1 (if not before).

So we have shown that with probability at least 1/2, one execution of the
body will succeed in splitting n into nontrivial factors. After at most log2 n such
successes, we will have completely factored n. Therefore, the expected number
of recursive invocations of the algorithm is O(len(n)), and hence the expected
running time of the algorithm is O(len(n)4).

Exercise 10.24 Suppose you are given an integer n of the form n = pq, where
p and q are distinct, `-bit primes, with p = 2p′ + 1 and q = 2q′ + 1, where q′

and q′ are themselves prime. Suppose that you are also given an integer m such
that gcd(m, p′q′) 6= 1. Show how to efficiently factor n. 2

Exercise 10.25 Suppose there is a probabilistic algorithm A that takes as input
an integer n of the form n = pq, where p and q are distinct, `-bit primes, with
p = 2p′+1 and q = 2q′+1, where q′ and q′ are prime. The algorithm also takes
as input α, β ∈ (Z∗n)

2. It outputs either “failure,” or integers x, y, not both zero,
such that αxβy = 1. Furthermore, assume that A runs in strict polynomial time,
and that for all n of the above form, and for randomly chosen α, β ∈ (Z∗n)

2, A
succeeds in finding x, y as above with probability ε(n). Here, the probability is
taken over the random choice of α and β, as well as the random choices made
during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that
takes as input n as above, runs in strict polynomial time, and which satisfies
the following property:

if ε(n) ≥ 0.001, then A′ factors n with probability at least 0.999.

2
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10.7 The RSA Cryptosystem

Algorithms for testing and generating large primes have numerous applications
in cryptography. One of the most well known and important such applications is
the RSA cryptosystem, named after its inventors Rivest, Shamir, and Adleman.
We give a brief overview of this system here.

Suppose that Alice wants to send a secret message to Bob over an insecure
network. An adversary may be able to eavesdrop on the network, and so send-
ing the message “in the clear” is not an option. Using older, more traditional
cryptographic techniques would require that Alice and Bob share a secret key
between them; however, this creates the problem of securely generating such a
shared secret. The RSA cryptosystem is an example of a “public key” cryp-
tosystem. To use the system, Bob simply places a “public key” in the equivalent
of an electronic telephone book, while keeping a corresponding “private key”
secret. To send a secret message to Bob, Alice obtains Bob’s public key fro
the telephone book, and uses this to encrypt her message. Upon receipt of the
encrypted message, Bob uses his secret key to decrypt it, obtaining the original
message.

Here is how the RSA cryptosystem works. To generate a public key/private
key pair, Bob generates two very large random primes p and q. To be secure, p
and q should be quite large — typically, they are chosen to be around 512 bits
in length. We require that p 6= q, but the probability that two random 512-bit
primes are equal is negligible, so this is hardly an issue. Next, Bob computes
n := pq. Bob also selects an integer e > 1 such that gcd(e, φ(n)) = 1. Here,
φ(n) = (p − 1)(q − 1). Finally, Bob computes the multiplicative inverse d of e
modulo φ(n), i.e., d satisfies ed ≡ 1 (mod φ(n)). The public key is the pair (n, e),
and the private key is the pair (n, d). The integer e is called the “encryption
exponent” and d is called the “decryption exponent.”

After Bob publishes his public key (n, e), Alice may send a secret message
to Bob as follows. Suppose that a message is encoded in some canonical way as
a number between 0 and n− 1 — we can always interpret a bit string of length
less than len(n) as such a number. Thus, we may assume that a message is an
element α of Zn. To encrypt the message α, Alice simply computes β := αe.
The encrypted message is β. When Bob received β, he computes γ := βd, and
interprets γ as a message.

The most basic requirement of any encryption scheme is that decryption
should “undo” encryption. In this case, this means that for all α ∈ Zn, we
should have

(αe)d = α. (10.9)
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If α ∈ Z∗n, then this is clearly the case, since we have ed = 1 + φ(n)k for some
positive integer k, and hence

(αe)d = αed = α1+φ(n)k = α · αφ(n)k = α,

where the last equality follows from the fact that the multiplicative order of α
divides the order of the group, φ(n). Even if α 6∈ Z∗n, equation (10.9) still holds.
To see this, let α = [a mod n], with gcd(a, n) 6= 1. There are three possible
cases. First, if a ≡ 0 (mod n), then trivially, aed ≡ 0 (mod n). Second, if
a ≡ 0 (mod p) but a 6≡ 0 (mod q), then trivially aed ≡ 0 (mod p), and

aed ≡ a1+φ(n)k ≡ a · aφ(n)k ≡ a (mod q),

where the last congruence follows from the fact that φ(n)k is a multiple of q−1,
and so is a multiple of the order of [a mod q] ∈ Z∗q . The third case, where
a 6≡ 0 (mod p) and a ≡ 0 (mod q), is treated in the same way as the second.
Thus, we have shown that equation (10.9) holds for all α ∈ Zn.

Note that in place of d, one could also use as a decryption exponent any d′

such that ed′ ≡ 1 (mod λ(n)), where λ(n) = lcm(p− 1, q− 1) is the exponent of
the group Z∗n.

Of course, the interesting question about the RSA cryptosystem is whether
or not it really is secure. Now, if an adversary, given only the public key (n, e),
were able to compute the decryption exponent d, then since ed− 1 is a multiple
of φ(n), then by the results in the previous section, the adversary would already
be able to factor n. The same holds if the adversary is able to compute any
“equivalent” decryption exponent d′, with ed′ ≡ 1 (mod λ(n)).

Thus, we can say that as long as factoring n is computationally infeasible,
then recovering a decryption exponent, given only the public key, is also compu-
tationally infeasible. However, even if we assume that factoring large numbers
is infeasible, this is not enough to guarantee that for a given encrypted message
β, the adversary is unable to compute βd. Nevertheless, nobody knows how to
efficiently compute βd for arbitrary β, without first factoring n.

The reader should be warned that the proper notion of security for an en-
cryption scheme is quite subtle, and a detailed discussion of this is well beyond
the scope of this text. Indeed, the simple version of the RSA cryptosystem
presented here is in fact inadequate from a security point of view, and because
of this, actual implementations of public-key encryption schemes based on RSA
are somewhat more complicated.

Exercise 10.26 Suppose that we are given two distinct `-bit primes, p and q,
an element β ∈ Zn, where n = pq, and an integer d, where 1 ≤ e < φ(n). Using
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the algorithm from Exercise 3.19, we can compute βd at a cost of essentially 2`
squarings in Zn. Show how this can be improved, making use of the factorization
of n, so that the total cost is essentially that of ` squarings in Zp and ` squarings
in Zq, leading to a roughly four-fold speed-up in the running time. 2

Exercise 10.27 Suppose there is a probabilistic algorithm A that takes as input
an integer n of the form n = pq, where p and q are distinct primes. The algorithm
also takes as input an integer e > 1, with gcd(e, φ(n)) = 1, and an element
α ∈ Z∗n. It outputs either “failure,” or β ∈ Z∗n such that βe = α. Furthermore,
assume that A runs in strict polynomial time, and that for all n and e of the
above form, and for randomly chosen α ∈ Z∗n, A succeeds in finding β as above
with probability ε(n, e). Here, the probability is taken over the random choice
of α, as well as the random choices made during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that takes
as input n and e as above, as well as α ∈ Z∗n, runs in strict polynomial time,
and which satisfies the following property:

if ε(n, e) ≥ 0.001, then for all α ∈ Z∗n, A
′ finds β ∈ Z∗n with βe = α

with probability at least 0.999.

2

10.8 Notes

The Miller-Rabin test is due to Miller [50], and Rabin [60]. The paper by Miller
defined the set L′n, but did not give a probabilistic analysis. Rather, Miller
showed that under a generalization of the Riemann Hypothesis, for composite
n, the least α ∈ Z 6=n \L′n is at most O((log n)2), thus giving rise to a deterministic
primality test whose correctness depends on the above unproved hypothesis. The
later paper by Rabin re-interprets Miller’s result in the context of probabilistic
algorithms.

Bach [9] gives an explicit version of Miller’s result, showing that under the

same assumptions, the least α ∈ Z 6=n \ L′n is at most 2(log n)2; more generally,
Bach shows the following holds under a generalization of the Riemann Hypoth-
esis:

For any positive integer n, and any proper subgroup G ( Z∗n, the
least α ∈ Z 6=n \G is at most 2(log n)2, and the least β ∈ Z∗n \G is at
most 3(log n)2.

The first efficient probabilistic primality test was invented by Solovay and
Strassen [74] (their paper was actually submitted for publication in 1974). Later,



212 Chapter 10. Probabilistic Primality Testing

in §22, we shall discuss a recently discovered, deterministic, polynomial-time
(though not very practical) primality test, whose analysis does not rely on any
unproved hypothesis.

Carmichael numbers are named after R. D. Carmichael, who was the first
to discuss them in work published in the early 20th century. Alford, Granville,
and Pomerance [6] proved that there are infinitely many Carmichael numbers.

Theorem 10.14, as well as the table of values just below it, are from Kim and
Pomerance [42]. In fact, these bounds hold for the weaker test based on Ln.

Theorem 10.18 and its generalization in Exercise 10.20 are certainly not the
best results possible in this area. The general goal of “sieve theory” is to prove
useful upper and lower bounds for quantities like Rf (x, y) that hold when y is
as large as possible with respect to x. For example, using a technique known as
Brun’s Pure Sieve, one can show that for log y <

√
log x, there exist β and β ′,

both of absolute value at most 1, such that

Rf (x, y) = (1 + βe−
√
log x)x

∏

p≤y
(1− ωf (p)/p) + β′

√
x.

Thus, this gives us very sharp estimates for Rf (x, y) when x tends to infinity,
and y is bounded by any fixed polynomial in log x. For a proof of this result, see
§2.2 of Halberstam and Richert [33] (the result itself is stated as equation 2.16).
Brun’s Pure Sieve is really just the first non-trivial sieve result, developed in the
early 20th century; even stronger results, extending the useful range of y (but
with larger error terms), have subsequently been proved.

Theorem 10.23, as well as the table of values immediately below it, are from
Damg̊ard, Landrock, and Pomerance [26].

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman [62].
There is a vast literature on cryptography. One starting point is the book by
Menesez, van Oorschot, and Vanstone [49].



Chapter 11

Computing Generators and
Discrete Logarithms in Z∗

p

As we have seen in the previous chapter, for a prime p, Z∗p is a cyclic group of
order p − 1. This means that there exists a generator γ ∈ Z∗p, such that for all
α ∈ Z∗p, α can be written uniquely as α = γx for 0 ≤ x < p− 1; the integer x is
called the discrete logarithm of α to the base γ, and is denoted logγ α.

This chapter discusses some elementary considerations regarding the com-
putational aspects of this situation; namely, how to efficiently find a generator
γ, and given γ and α, how to compute logγ α.

More generally, if γ generates a subgroup G of Z∗p of order q, where q | (p−1),
and α ∈ G, then logγ α is defined to be the unique integer x with 0 ≤ x < q and
α = γx. In some situations it is more convenient to view logγ α as an element of
Zq. Also for x ∈ Zq, with x = [a mod q], one may write γx to denote γa. There
can be no confusion, since if x = [a′ mod q], then γa

′

= γa. However, in this
chapter, we shall view logγ α as an integer.

Although we work in the group Z∗p, all of the algorithms discussed in this
chapter trivially generalize to any finite cyclic group that has a suitably compact
representation of group elements and an efficient algorithm for performing the
group operation on these representations.

11.1 Finding a Generator for Z∗
p

There is no efficient algorithm known for this problem, unless the prime factor-
ization of p−1 is given, and even then, we must resort to the use of a probabilistic
algorithm. Of course, factoring in general is believed to be a very difficult prob-
lem, so it may not be easy to get the prime factorization of p − 1. However, if

213
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our goal is to construct a large prime p, together with a generator for Z∗p, then
we may use the algorithm in §7.7 to generate a random factored number n in
some range, test n + 1 for primality, and then repeat until we get a factored
number n such that p = n+ 1 is prime. In this way, we can generate a random
prime p in a given range along with the factorization of p− 1.

We now present an efficient probabilistic algorithm that takes as input an
odd prime p, along with the prime factorization

p− 1 =
r∏

i=1

qeii ,

and outputs a generator for Z∗p. It runs as follows:

for i← 1 to r do
repeat

choose α ∈ Z∗p at random

compute β ← α(p−1)/qi

until β 6= 1

γi ← α(p−1)/q
ei
i

γ ←∏r
i=1 γi

output γ

First, let us analyze the correctness of this algorithm. When the ith loop
iteration terminates, by construction, we have

γ
q
ei
i
i = 1 but γ

q
ei−1
i
i 6= 1.

It follows (c.f., Theorem 8.82) that γi has order qeii . From this, it follows (c.f.,
Theorem 8.83) that γ has order p− 1.

Thus, we have shown that if the algorithm terminates, its output is always
correct.

Let us now analyze the running time of this algorithm. Consider the re-
peat/until loop in the ith iteration of the outer loop. Since α is chosen at
random from Z∗p, the value of β is uniformly distributed over the image of the
(p− 1)/qi-power map (c.f., Exercise 8.68), and since the latter is a subgroup of
order qi, we see that β = 1 with probability 1/qi. It follows that the expected
number of iterations of the repeat/until loop is O(1), and therefore, the expected
running time of the entire algorithm is O(r len(p)3), and since r ≤ log2 p, this is
O(len(p)4). This algorithm can be improved (see Exercise 11.2).
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Exercise 11.1 Suppose we are not given the prime factorization of p − 1, but
rather, just a prime q dividing p− 1, and we want to find an element of order q
in Z∗p. Design and analyze an efficient algorithm to do this. 2

Exercise 11.2 Suppose we are given a prime p, the prime factorization p−1 =
∏r

i=1 q
ei
i , and an element α ∈ Z∗p.

(a) If, in addition, we are given α ∈ Z∗p, show how to compute the order of α
in time O(r len(p)3).

(b) Using the result of Exercise 3.22, improve the running time bound to
O(len(r) len(p)3).

(c) Modifying the algorithm you developed for part (b), show how to construct
a generator for Z∗p in expected time O(len(r) len(p)3).

2

Exercise 11.3 Suppose we are given a positive integer n, along with its prime
factorization n = pe11 · · · perr , and that for each i = 1, . . . , r, we are also given the
prime factorization of pi − 1. Show how to efficiently compute the order of any
element α ∈ Z∗n. 2

Exercise 11.4 Suppose there is an efficient algorithm that takes as input a
positive integer n and an element α ∈ Z∗n, and computes the multiplicative
order of α. Show how to use this algorithm to be build an efficient integer
factoring algorithm. 2

11.2 Computing Discrete Logarithms Z∗
p

In this section, we consider algorithms for computing the discrete logarithm of
α ∈ Z∗p to a given base γ. The algorithms we present here are in the worst case
exponential-time algorithms, and are by no means the best possible; however,
in some special cases, these algorithms are not so bad.

11.2.1 Brute-force search

Suppose that γ ∈ Z∗p generates a subgroup G of order q (not necessarily prime),
and we are given p, q, γ, and α ∈ G, and wish to compute logγ α.

The simplest algorithm to solve the problem is brute-force search:
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β ← 1
i← 0
while β 6= α do

β ← β · γ
i← i+ 1

output i

This algorithm is clearly correct, and the main loop will always halt after at
most q iterations (assuming, as we are, that α ∈ G). So the total running time
is O(q len(p)2).

11.2.2 Baby step/giant step method

As above, suppose that γ ∈ Z∗p generates a subgroup G of order q (not necessarily
prime), and we are given p, q, γ, and α ∈ G, and wish to compute logγ α.

A faster algorithm than brute-force search is the baby step/giant step
method. It works as follows.

Let us choose an approximation m to q1/2. It does not have to be a very
good approximation — we just need m = Θ(q1/2). Also, let m′ = bq/mc, so
that m′ = Θ(q1/2) as well.

The idea is to compute all the values γi for 0 ≤ i < m (the “baby steps”)
and to build a “lookup table” L that contains all the pairs (γ i, i). Using an
appropriate data structure, such as a search trie, we can build the table in time
O(m len(p)2), and we can perform a lookup in time O(len(p)). By a lookup,
we mean that given β ∈ Z∗p, we can determine if β = γi for some i, and if so,
determine the value of i. Let us define L(β) := i if β = γi for some i; and
otherwise, L(β) := −1.

After building the lookup table, we execute the following procedure:

γ′ ← γ−m

β ← α; j ← 0; i← L(β)
while i = −1 do

β ← β · γ′; j ← j + 1; i← L(β)

x← jm+ i
output x

To analyze this procedure, suppose that α = γx for 0 ≤ x < q. Now, x can
be written in a unique way as x = vm + u, where 0 ≤ u < m and 0 ≤ v ≤ m′.
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In the jth loop iteration, for j = 0, 1, . . . , we have

β = αγ−mj = γ(v−j)m+u.

So we will find that i 6= −1 precisely when j = v, in which case i = u. Thus,
the output will be correct, and the total running time of the algorithm is easily
seen to be O(q1/2 len(p)2).

While this algorithm is much faster than brute-force search, it has the draw-
back that it requires a table of size O(q1/2). Of course, there is a “time/space
trade-off” here: by choosing m smaller, we get a table of size O(m), but the
running time will be proportional to O(q/m). In §11.2.5 below, we discuss an
algorithm that runs (at least heuristically) in time proportional to O(q1/2), but
which requires only a constant amount of space.

11.2.3 Groups of order qe

Suppose that γ ∈ Z∗p generates a subgroup G of order qe, where q > 1 and e ≥ 1,
and we are given p, q, γ, and α ∈ G, and wish to compute logγ α.

There is a simple algorithm that allows one to reduce this problem to the
problem of computing discrete logarithms in a subgroup of order q.

It is perhaps easiest to describe the algorithm recursively.
The base case is when e = 1, in which case, we use an algorithm for the

subgroup of order q.
Suppose now that e > 1. We choose an integer f with 0 < f < e. Different

strategies for choosing f yield different algorithms — we discuss this below.
Suppose α = γx, where 0 ≤ x < qe. Then we can write x = qfv + u, where
0 ≤ u < qf and 0 ≤ v < qe−f . Therefore,

αq
e−f

= γq
e−fu.

Note that γq
e−f

has order qf , and so if we recursively compute the discrete
logarithm of αq

e−f
to the base γq

e−f
, we obtain u.

Having obtained u, observe

α/γu = γq
fv.

Note also that γq
f
has order qe−f , and so if we recursively compute the discrete

logarithm of α/γu to the base γq
f
, we obtain v, from which we then compute

x = qfv + u.
To analyze the running time of this algorithm, note that we recursively reduce

the discrete logarithm problem to a base of order qe to two discrete logarithm
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problems: one to a base of order qf and the other to a base of order qe−f . The
running time of the body of one recursive invocation (not counting the running
time of the recursive calls it makes) is O(e len(q) · len(p)2).

To calculate the total running time, we have to sum up the running times of
all the recursive calls plus the running times of all the base cases.

Regardless of the strategy for choosing f , the total number of base case
invocations is e. Note that for e > 1, all the base cases compute discrete loga-
rithms are to the base γq

e−1
. Assuming we implement the base case using the

baby step/giant step algorithm, the total running time for all the base cases is
therefore O(eq1/2 len(p)2).

The running time for the recursive calls depends on the strategy used to
choose f . If we always choose f = 1 or f = e−1, then the running time is for all
the recursive calls isO(e2 len(q)·len(p)2). However, if we use a “balanced” divide-
and-conquer strategy, choosing f ≈ e/2, then we get O(e len(e) len(q) · len(p)2).

In summary, the total running time is:

O((eq1/2 + e len(e) len(q)) · len(p)2).

11.2.4 Discrete logarithms in Z∗p

Suppose that we are given a prime p, along with the prime factorization

p− 1 =
r∏

i=1

qeii ,

a generator γ for Z∗p, and α ∈ Z∗p. We wish to compute logγ α.
Suppose that α = γx, where 0 ≤ x < p− 1. Then for 1 ≤ i ≤ r,

α(p−1)/q
ei
i = γ(p−1)/q

ei
i x.

Note that γ(p−1)/q
ei
i has order qeii , and if xi is the discrete logarithm of α(p−1)/q

ei
i

to the base γ(p−1)/q
ei
i , then we have 0 ≤ xi < qeii and x ≡ xi (mod qeii ).

Thus, if we compute the values x1, . . . , xr, using the algorithm in §11.2.3,
we can obtain x using the algorithm of the Chinese Remainder Theorem. If we
define q := max{qi : 1 ≤ i ≤ r}, then the running time of this algorithm will be
bounded by q1/2 len(p)O(1).

11.2.5 A space-efficient square-root time algorithm

We present a more space-efficient alternative to the algorithm in §11.2.2, the
analysis of which we leave as a series of exercises to the reader.
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The algorithm makes a somewhat heuristic assumption that we have a func-
tion that “behaves” for all practical purposes like a random function. Such
functions can indeed be constructed using cryptographic techniques under rea-
sonable intractability assumptions.

Let p be a prime, q a prime dividing p − 1, γ ∈ Z∗p an element of Z∗p that
generates a subgroup G of order q, and α ∈ G. Let F be a function mapping
elements of Z∗p to {0, . . . , q − 1}. Define H to be the function from G to G that

sends β to βαγF (β).
The algorithm runs as follows:

i← 1
x← 0, β ← α,
x′ ← F (β), β′ ← H(β)
while β 6= β′ do

x← (x+ F (β)) rem q, β ← H(β)
x′ ← (x′ + F (β′)) rem q, β′ ← H(β′)
x′ ← (x′ + F (β′)) rem q, β′ ← H(β′)
i← i+ 1

if i < q then
output (x− x′)i′ rem q, where ii′ ≡ 1 (mod q)

else output “fail”

Define β1, β2, . . . , as follows: β1 = α and for i > 1, βi = H(βi−1).

Exercise 11.5 Show that each time the main loop of the algorithm is entered,
we have β = βi = γxαi, and β′ = β2i = γx

′

α2i. 2

Exercise 11.6 Show that if the loop terminates with i < q, the value output is
equal to logγ α. 2

Exercise 11.7 Let j be the smallest index such that βj = βk for some index
k < j. Show that j ≤ q + 1 and that the loop terminates after less than j loop
iterations, i.e., the value of i when the loop terminates is less than j (and in
particular, i ≤ q). 2

Exercise 11.8 Assume F is a random function, that is, the random variables
F (β), as β ranges over G, are mutually independent and uniformly distributed
over {0, . . . , q− 1}. Show that this implies that H is a random function, that is,
the random variables H(β) are mutually independent and uniformly distributed
over G. 2
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Exercise 11.9 Assuming that F is a random function as in the previous ex-
ercise, show that for any fixed, positive integer k, the probability that j ≥ k
(where j is as defined in Exercise 11.7) is at most e−k(k−1)/2q. 2

Exercise 11.10 From part the previous exercise, conclude that the expected
value of j is O(q1/2), and hence the expected running time of the algorithm is
O(q1/2) times a polynomial in len(p). 2

11.3 The Diffie-Hellman Key Establishment Protocol

One of the main motivations for studying algorithms for computing discrete
logarithms is the relation between this problem and the problem of breaking a
protocol called the Diffie-Hellman Key Establishment Protocol, named after its
inventors.

In this protocol, Alice and Bob need never to have talked to each other
before, but nevertheless, can establish a shared secret key that nobody else can
easily compute. To use this protocol, a third party must provide a “telephone
book,” which contains the following information:

• p, q, and γ, where p and q are primes with q | (p− 1), and γ is an element
generating a subgroup G of order q in Z∗p;

• an entry for each user, such as Alice or Bob, that contains the user’s name,
along with a “public key” for that user, which is an element of the group
G.

To use this system, Alice posts her public key in the telephone book, which
is of the form α = γx, where x ∈ {0, . . . , q − 1} is chosen by Alice at random.
The value of x is Alice’s “secret key,” which Alice never divulges to anybody.
Likewise, Bob posts his public key, which is of the form β = γy, where y ∈
{0, . . . , q − 1} is chosen by Bob at random, and is his secret key.

To establish a shared key known only between them, Alice retrieves Bob’s
public key β from the bulletin board, and computes κA := βx. Likewise, Bob
retrieves Alice’s public key α, and computes κB := αy. It is easy to see that

κA = βx = (γy)x = γxy = (γx)y = αy = κB,

and hence Alice and Bob share the same secret key κ = κA = κB.
Using this shared secret key, they can then use standard methods for en-

cryption and message authentication to hold a secure conversation. We shall
not go any further into how this is done; rather, we briefly discuss some aspects
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(but only superficially) of the security of the key establishment protocol itself.
Clearly, if an attacker obtains α and β from the telephone book, and computes
x = logγ α, then he can compute Alice and Bob’s shared key as κ = βx — in
fact, given x, an attacker can efficiently compute any key shared between Alice
and another user.

Thus, if this system is to be secure, it should be very difficult to compute
discrete logarithms. However, the assumption that computing discrete loga-
rithms is hard is not enough to guarantee security. Indeed, it is not entirely
inconceivable that the discrete logarithm problem is hard, and yet the problem
of computing κ from α and β is easy. The latter problem — computing κ from
α and β — is called the Diffie-Hellman problem.

As in the discussion of the RSA cryptosystem in §10.7, the reader is warned
that the above discussion about security is a bit of an oversimplification. A
complete discussion of all the security issues related to the above protocol is
beyond the scope of this text.

For the following exercise, we need the following notions from complexity
theory:

• We say problem A is deterministic poly-time reducible to problem
B if there exists a deterministic algorithm R for solving problem A that
makes calls to a subroutine for problem B, where the running time of R
(not including the running time for the subroutine for B) is polynomial in
the input length.

• We say that A and B are deterministic poly-time equivalent if A is
deterministic poly-time reducible to B and B is deterministic poly-time
reducible to A.

Exercise 11.11 Show that the following problems are deterministic poly-time
equivalent:

(a) Given a prime p, a prime q that divides p−1, an element γ ∈ Z∗p generating
a subgroup G of order q, and two elements α, β ∈ G, compute γxy, where
x = logγ α and y = logγ β. This is the Diffie-Hellman problem.

(b) Given a prime p, a prime q that divides p−1, an element γ ∈ Z∗p generating

a subgroup G of order q, and an element α ∈ G, compute γx
2
, where

x = logγ α.

(c) Given a prime p, a prime q that divides p−1, an element γ ∈ Z∗p generating
a subgroup G of order q, and two elements α, β ∈ G, with β 6= [1 mod p],
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compute γxy
′

, where x = logγ α and y′ is the multiplicative inverse modulo
q of y = logγ β.

(d) Given a prime p, a prime q that divides p−1, an element γ ∈ Z∗p generating
a subgroup G of order q, and an element α ∈ G, with α 6= [1 mod p],
compute γx

′

, where x′ is the multiplicative inverse modulo q of x = logγ α.

2

Exercise 11.12 Suppose there is a probabilistic algorithm A that takes as input
a prime p, a prime q that divides p − 1, and an element γ ∈ Z∗p generating a
subgroup G of order q. The algorithm also takes as input α ∈ G. It outputs
either “failure,” or logγ α. Furthermore, assume that A runs in strict polynomial
time, and that for all p, q, and γ of the above form, and for randomly chosen
α ∈ G, A succeeds in computing logγ α with probability ε(p, q, γ). Here, the
probability is taken over the random choice of α, as well as the random choices
made during the execution of A.

Show how to use A to construct another probabilistic algorithm A′ that takes
as input p, q, and γ as above, as well as α ∈ G, runs in strict polynomial time,
and which satisfies the following property:

if ε(p, q, γ) ≥ 0.001, then for all α ∈ G, A′ computes logγ α with
probability at least 0.999.

2

Exercise 11.13 Let p be a prime, q a prime that divides p − 1, γ ∈ Z∗p an
element that generates a subgroup G of order q, and α ∈ G. For δ ∈ G, a
representation of δ with respect to γ and α is a pair of integers (r, s), with
0 ≤ r < q and 0 ≤ s < q, such that γrαs = δ.

(a) Show that for any δ ∈ G, there are precisely q representations (r, s) of
δ with respect to γ and α, and among these, there is precisely one with
s = 0.

(b) Show that given a representation (r, s) of 1 with respect to γ and α such
that s 6= 0, we can efficiently compute logγ α.

(c) Suppose there is an efficient algorithm that takes as input p, q, γ, α, δ as
above, and for all such inputs, computes some representation of δ with
respect to γ and α. Show how to use this algorithm to efficiently compute
logγ α.

2
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11.4 Notes

As we already mentioned, all of the algorithms presented in this chapter are
completely “generic,” in the sense that they work in any finite cyclic group —
we really did not exploit any properties about Z∗p other than the fact that it is
a cyclic group. In fact, as far as such “generic” algorithms go, the algorithms
presented here for discrete logarithms are optimal [53, 73]. However, there are
faster, “non-generic” algorithms (though still not polynomial time) for discrete
logarithms in Z∗p. We shall examine one such algorithm in a later chapter.

Knuth [43] attributes the “baby step/giant step” algorithm in §11.2.2 to
Dan Shanks. The algorithms in §11.2.3 and §11.2.4 are variants of an algorithm
published by Pohlig and Hellman [56]. The algorithm in §11.2.5 is a variant of
an algorithm of Pollard [57]; in fact, Pollard’s algorithm is a bit more efficient
than the one presented here, but the analysis of its running time depends on
stronger heuristics.

The key establishment protocol in §11.3 is from Diffie and Hellman [27].



Chapter 12

Quadratic Residues and
Quadratic Reciprocity

12.1 Quadratic Residues

For positive integer n, an integer a is called a quadratic residue modulo n if
gcd(a, n) = 1 and x2 ≡ a (mod n) for some integer x; in this case, we say that
x is a square root of a modulo n.

The quadratic residues modulo n correspond exactly to the subgroup of
squares (Z∗n)

2 of Z∗n; that is, a is a quadratic residue modulo n if and only if
[a mod n] ∈ (Z∗n)

2.
Let us first consider the case where n = p, where p is an odd prime. In

this case, we know that Z∗p is cyclic of order p − 1. Recall that the subgroups
any finite cyclic group are in one-to-one correspondence with the divisors of the
order of the group.

For any d | (p − 1), consider the d-power map on Z∗p that sends α ∈ Z∗p to

αd. The image of this map is the unique subgroup of Z∗p of order (p− 1)/d, and
the kernel of this map is the unique subgroup of order d (c.f., Theorem 8.78).
This means that the image of the 2-power map is of order (p − 1)/2 and must
be the same as the kernel of the (p − 1)/2-power map. Since the image of the
(p−1)/2-power map is of order 2, it must be equal to the subgroup {[±1 mod p]}.
The kernel of the 2-power map is of order 2, and so must also be equal to the
subgroup {[±1 mod p]}.

Translating from group-theoretic language to the language of congruences,
we have shown:

Theorem 12.1 For an odd prime p, the number of quadratic residues a modulo
p, with 0 < a < p, is (p − 1)/2. Moreover, if x is a square root of a modulo p,

224
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then so is −x, and any square root y of a modulo p satisfies y ≡ ±x (mod p).
Also, for any integer a 6≡ 0 (mod p), we have a(p−1)/2 ≡ ±1 (mod p), and
moreover, a is a quadratic residue modulo p if and only if a(p−1)/2 ≡ 1 (mod p).

Now consider the case where n = pe, where p is an odd prime and e > 1. We
also know that Z∗pe is a cyclic group of order pe−1(p− 1), and so everything that
we said in discussing the case Z∗p applies here as well. Thus, for a 6≡ 0 (mod p),

a is a quadratic residue modulo pe if and only if ap
e−1(p−1)/2 ≡ 1 (mod pe).

However, we can simplify this a bit. Note that ap
e−1(p−1)/2 ≡ 1 (mod pe) implies

ap
e−1(p−1)/2 ≡ 1 (mod p), and by Theorem 2.24 (Fermat’s Little Theorem),

this implies a(p−1)/2 ≡ 1 (mod p). Conversely, by Theorem 10.3, a(p−1)/2 ≡
1 (mod p) implies ap

e−1(p−1)/2 ≡ 1 (mod pe). Thus, we have shown:

Theorem 12.2 For an odd prime p and positive integer e, the number of
quadratic residues a modulo pe, with 0 < a < pe, is pe−1(p − 1)/2. Moreover,
if x is a square root of a modulo pe, then so is −x, and any square root y of a
modulo pe satisfies y ≡ ±x (mod pe). Also, for any integer a 6≡ 0 (mod p), we
have ap

e−1(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue modulo
pe iff ap

e−1(p−1)/2 ≡ 1 (mod pe) iff a(p−1)/2 ≡ 1 (mod p) iff a is a quadratic
residue modulo p.

Now consider an arbitrary odd positive integer n. Let n =
∏r

i=1 p
ei
i be

its prime factorization. Recall the group isomorphism implied by the Chinese
Remainder Theorem:

Z∗n ∼= Z∗
p
e1
1
× · · · × Z∗perr .

Now,
(α1, . . . , αr) ∈ Z∗

p
e1
1
× · · · × Z∗perr

is a square if and only if there exist β1, . . . , βr with βi ∈ Z∗
p
ei
i

and αi = β2i for

1 ≤ i ≤ k, in which case, we see that the square roots of (α1, . . . , αr) comprise
the 2r elements (±β1, . . . ,±βr). Thus we have:

Theorem 12.3 Let n be odd positive integer n with prime factorization n =
∏r

i=1 p
ei
i . The number of quadratic residues a modulo n, with 0 < a < n, is

φ(n)/2r. Moreover, if a is a quadratic residue modulo n, then there are precisely
2r distinct integers x, with 0 < x < n, such that x2 ≡ a (mod n). Also, an
integer a is a quadratic residue modulo n if and only if it is a quadratic residue
modulo pi for 1 ≤ i ≤ r.

That completes our investigation of the case where n is an odd positive inte-
ger. We shall not investigate the case where n is even, as it is a bit cumbersome,
and is not of particular importance.
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12.2 The Legendre Symbol

For an odd prime p and an integer a with gcd(a, p) = 1, the Legendre symbol
(a | p) is defined to be 1 if a is a quadratic residue modulo p, and −1 otherwise.
For completeness, one defines (a | p) = 0 if p | a.

Theorem 12.4 Let p be an odd prime, and let a, b ∈ Z, both not divisible by p.
Then

1. (a | p) ≡ a(p−1)/2 (mod p); in particular, (−1 | p) = (−1)(p−1)/2;

2. (a | p)(b | p) = (ab | p);

3. a ≡ b (mod p) implies (a | p) = (b | p);

4. (2 | p) = (−1)(p2−1)/8;

5. if q is an odd prime, then

(p | q) = (−1) p−1
2

q−1
2 (q | p).

Part (5) of this theorem is called the Law of Quadratic Reciprocity. Note
that when p = q, both (p | q) and (q | p) are zero, and so the statement of part
(5) is trivially true — the interesting case is when p 6= q, and in this case, part
(5) is equivalent to saying that

(p | q)(q | p) = (−1) p−1
2

q−1
2 .

Part (1) follows from Theorem 12.1. Part (2) is an immediate consequence
of part (1), and part (3) is clear from the definition.

The rest of this section is devoted to a proof of parts (4) and (5) of this
theorem. The proof is completely elementary, although a bit technical.

Theorem 12.5 (Gauss’ Lemma) Let p be an odd prime and a relatively
prime to p. Define αj := ja rem p for 1 ≤ j ≤ (p − 1)/2, and let n be the
number of indices j for which αj > p/2. Then (a | p) = (−1)n.

Proof. Let r1, . . . , rn denote the αj ’s exceeding p/2, and let s1, . . . , sk denote
the remaining αj ’s. The ri and si are all distinct and non-zero. We have 0 <
p − ri < p/2 for 1 ≤ i ≤ n, and no p − ri is an sj ; indeed, if p − ri = sj ,
then sj ≡ −ri (mod p), and writing sj = k1a rem p and ri = k2a rem p for
1 ≤ k1, k2 ≤ (p − 1)/2, we have k1a ≡ −k2a (mod p), which implies k1 ≡
−k2 (mod p), which is impossible.
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It follows that the sequence of numbers s1, . . . , sk, p− r1, . . . , p− rn is just a
re-ordering of 1, . . . , (p− 1)/2. Then we have

((p− 1)/2)! ≡ s1 · · · sk(−r1) · · · (−rn) ≡ (−1)ns1 · · · skr1 · · · rn
≡ (−1)n((p− 1)/2)!a(p−1)/2 (mod p),

and canceling the factor ((p − 1)/2)!, we obtain a(p−1)/2 ≡ (−1)n (mod p), and
the result follows from the fact that (a | p) ≡ a(p−1)/2 (mod p). 2

Theorem 12.6 If p is an odd prime and gcd(a, 2p) = 1, then (a | p) = (−1)t
where t =

∑(p−1)/2
j=1 bja/pc. Also, (2 | p) = (−1)(p2−1)/8.

Proof. Let a be an integer relatively prime to p (not necessarily odd), and
let us adopt the same notation as in the proof of Theorem 12.5. Note that
ja = pbja/pc+ αj , for 1 ≤ j ≤ k, so we have

(p−1)/2
∑

j=1

ja =

(p−1)/2
∑

j=1

pbja/pc+
n∑

j=1

rj +
k∑

j=1

sj .

Also, we saw in the proof of Theorem 12.5 that the integers s1, . . . , sk, p −
r1, . . . , p− rn are a re-ordering of 1, . . . , (p− 1)/2, and hence

(p−1)/2
∑

j=1

j =
n∑

j=1

(p− rj) +
k∑

j=1

sj = np−
n∑

j=1

rj +
k∑

j=1

sj .

Subtracting, we get

(a− 1)

(p−1)/2
∑

j=1

j = p





(p−1)/2
∑

j=1

bja/pc − n



+ 2

n∑

j=1

rj .

Note that
(p−1)/2
∑

j=1

j =
p2 − 1

8
,

which implies

(a− 1)
p2 − 1

8
≡

(p−1)/2
∑

j=1

bja/pc − n (mod 2).
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If a is odd,this implies

n ≡
(p−1)/2
∑

j=1

bja/pc (mod 2).

If a = 2, this — along with the fact that b2j/pc = 0 for 1 ≤ j ≤ (p − 1)/2 —
implies

n ≡ p2 − 1

8
(mod 2).

The theorem now follows from Theorem 12.5. 2

Note that this last theorem proves part (4) of Theorem 12.4. The next
theorem proves part (5).

Theorem 12.7 If p and q are distinct odd primes, then

(p | q)(q | p) = (−1) p−1
2

q−1
2 .

Proof. Let S be the set of pairs of integers (x, y) with 1 ≤ x ≤ (p − 1)/2 and
1 ≤ y ≤ (q − 1)/2. Note that S contains no pair (x, y) with qx = py, so let
us partition S into two subsets: S1 contains all pairs (x, y) with qx > py, and
S2 contains all pairs (x, y) with qx < py. Note that (x, y) ∈ S1 if and only if

1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ bqx/pc. So |S1| =
∑(p−1)/2

x=1 bqx/pc. Similarly,

|S2| =
∑(q−1)/2

y=1 bpy/qc. So we have

p− 1

2

q − 1

2
= |S| = |S1|+ |S2| =

(p−1)/2
∑

x=1

bqx/pc+
(q−1)/2
∑

y=1

bpy/qc,

and Theorem 12.6 implies

(p | q)(q | p) = (−1) p−1
2

q−1
2 .

That proves the first statement of the theorem. The second statement follows
immediately. 2

12.3 The Jacobi Symbol

Let a, n be integers, where n is positive and odd, so that n = q1 · · · qk, where the
qi are odd primes, not necessarily distinct. Then the Jacobi symbol (a | n) is
defined as

(a | n) := (a | q1) · · · (a | qk),
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where (a | qj) is the Legendre symbol. Note that (a | 1) = 1 for all a ∈ Z. Thus,
the Jacobi symbol essentially extends the domain of definition of the Legendre
symbol. Note that (a | n) ∈ {0,±1}, and that (a | n) = 0 if and only if
gcd(a, n) > 1.

Theorem 12.8 Let m,n be positive, odd integers, an let a, b be integers. Then

1. (ab | n) = (a | n)(b | n);

2. (a | mn) = (a | m)(a | n);

3. a ≡ b (mod n) implies (a | n) = (b | n);

4. (−1 | n) = (−1)(n−1)/2;

5. (2 | n) = (−1)(n2−1)/8;

6. (m | n) = (−1)m−1
2

n−1
2 (n | m).

Proof. Parts (1)–(3) follow directly from the definition (exercise).
For parts (4) and (6), one can easily verify (exercise) that for odd integers

n1, . . . , nk,
k∑

i=1

(ni − 1)/2 ≡ (n1 · · ·nk − 1)/2 (mod 2).

Part (4) easily follows from this fact, along with part (2) of this theorem and
part (1) of Theorem 12.4 (exercise). Part (6) easily follows from this fact, along
with parts (1) and (2) of this theorem, and part (5) of Theorem 12.4 (exercise).

For part (5), one can easily verify (exercise) that for odd integers n1, . . . , nk,

∑

1≤i≤k
(n2i − 1)/8 ≡ (n21 · · ·n2k − 1)/8 (mod 2).

Part (5) easily follows from this fact, along with part (2) of this theorem, and
part (4) of Theorem 12.4 (exercise). 2

As we shall see later, this theorem is extremely useful from a computational
point of view — with it, one can efficiently compute (a | n), without having to
know the prime factorization of either a or n. Also, in applying this theorem it
is useful to observe that for odd integers m,n,

• (−1)(n−1)/2 = 1 iff n ≡ 1 (mod 4);

• (−1)(n2−1)/8 = 1 iff n ≡ ±1 (mod 8);
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• (−1)((m−1)/2)((n−1)/2) = 1 iff m ≡ 1 (mod 4) or n ≡ 1 (mod 4).

Finally, we note that if a is a quadratic residue modulo n, then (a | n) = 1;
however, (a | n) = 1 does not imply that a is a quadratic residue modulo n.

Exercise 12.9 Let p and q be distinct primes, and let n := pq. Let Jn :=
{[a mod n] : a ∈ Z, (a | n) = 1}. Show that Jn is a subgroup of Z∗n containing
(Zn)

∗, and that [Z∗n : Jn] = 2 and [Jn : (Z∗n)
2] = 2. 2

Exercise 12.10 Let p and q be distinct primes, with p ≡ q ≡ 3 (mod 4), and
let n := pq. Let Jn be as defined in the previous exercise.

(a) Show that [−1 mod n] ∈ Jn \ (Z∗n)2.

(b) Show that the squaring map on (Z∗n)
2 is a group automorphism.

(c) Let δ ∈ Z∗n \ Jn. Show that the map from {0, 1} × {0, 1} × (Z∗n)
2 → Z∗n

that sends (a, b, γ) to δa(−1)bγ is a bijection.

2

12.4 Notes

The proof we present here of Theorem 12.4 is essentially the one from Niven
and Zuckerman [54]. Our proof of Theorem 12.8 is essentially the one found in
Bach and Shallit [11].
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Computational Problems
Related to Quadratic Residues

13.1 Computing the Jacobi Symbol

Suppose we are given an odd, positive integer n, along with an integer a, and we
want to compute the Jacobi symbol (a | n). Theorem 12.8 suggests the following
algorithm:

t← 1
repeat

— loop invariant: n is odd and positive

a← a rem n
if a = 0

if n = 1 return t else return 0

compute a′, h such that a = 2ha′ and a′ is odd
if h 6≡ 0 (mod 2) and n 6≡ ±1 (mod 8) then t← −t
if a′ 6≡ 1 (mod 4) and n 6≡ 1 (mod 4) then t← −t
(a, n)← (n, a′)

forever

That this algorithm correctly computes the Jacobi symbol (a | n) follows
directly from Theorem 12.8. Using an analysis similar to that of Euclid’s algo-
rithm, one easily sees that the running time of this algorithm is O(len(a) len(n)).

Exercise 13.1 Develop a “binary” Jacobi symbol algorithm, i.e., one that uses

231
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only addition, subtractions, and “shift” operations, analogous to the binary gcd
algorithm in Exercise 4.4. 2

13.2 Testing Quadratic Residuosity

13.2.1 Prime modulus

For an odd prime p, we can test if a is a quadratic residue modulo p by either per-
forming the exponentiation a(p−1)/2 rem p or by computing the Legendre symbol
(a | p). Using a standard repeated squaring algorithm, the former method takes
time O(len(p)3), while using the Euclidean-like algorithm of the previous sec-
tion, the latter method takes time O(len(p)2). So presumably, the latter method
is to be preferred.

13.2.2 Prime-power modulus

For an odd prime p, we know that a is a quadratic residue modulo pe if and only
if a is a quadratic residue modulo p. So this case immediately reduces to the
previous case.

13.2.3 Composite modulus

For odd, composite n, if we know the factorization of n, then we can also de-
termine if a is a quadratic residue modulo n by determining if it is a quadratic
residue modulo each prime divisor p of n. However, without knowledge of this
factorization (which is in general believed to be hard to compute), there is no
efficient algorithm known. We can compute the Jacobi symbol (a | n); if this is
−1 or 0, we can conclude that a is not a quadratic residue; otherwise, we cannot
conclude much of anything.

13.3 Computing Modular Square Roots

13.3.1 Prime modulus

Let p be an odd prime, and suppose that (a | p) = 1. Here is one way to compute
a square root of a modulo p, assuming we have at hand an integer y such that
(y | p) = −1.

Let α = [a mod p] ∈ Z∗p and γ = [y mod p] ∈ Z∗p. The above problem is
equivalent to finding β ∈ Z∗p such that β2 = α.
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Let us write p − 1 = 2hm, where m is odd. For any δ ∈ Z∗p, δ
m has order

dividing 2h. Since α2
h−1m = 1, αm has order dividing 2h−1. Since γ2

h−1m =
[−1 mod p], γm has order precisely 2h. Since there is only one subgroup in Z∗p
of order 2h, it follows that γm generates this subgroup, and that αm = γmx for
0 ≤ x < 2h and x is even. We can find x by computing the discrete logarithm of
αm to the base γm, using the algorithm in §11.2.3. Setting κ = γmx/2, we have

κ2 = αm.

We are not quite done, since we now have a square root of αm, and not of
α. Since m is odd, we may write m = 2t+ 1 for some non-negative integer t. It
then follows that

(κα−t)2 = κ2α−2t = αmα−2t = αm−2t = α.

Thus, κα−t is a square root of α.
The total amount of work done outside the discrete logarithm calculation

amounts to just a handful of exponentiations modulo p, and so takes time
O(len(p)3). The time to compute the discrete logarithm is O(h len(h) len(p)2).
So the total running time of this procedure is

O(len(p)3 + h len(h) len(p)2).

The above procedure assumed we had at hand a non-square γ. If h = 1, i.e.,
p ≡ 3 (mod 4), then (−1 | p) = −1, and so we are done. In fact, in this case, the
output of the above procedure is simply α(p+1)/4, no matter what value of γ is
used. One can easily show directly that α(p+1)/4 is a square root of α, without
analyzing the above procedure.

If h > 1, we can find a non-square γ using a probabilistic algorithm. Simply
choose γ at random, test if it is a square, and repeat if not. The probability that
a random element of Z∗p is a square is 1/2; thus, the expected number of trials
is O(1), and hence the expected running time of this probabilistic algorithm is
O(len(p)2).

Example 13.2 Of course, we can combine any algorithms for testing quadratic
residuosity and computing square roots modulo p with the familiar “quadratic
formula” (see Exercise 9.45) to find the roots of arbitrary quadratic polynomials
modulo p. That is, given a prime p along with α, β, γ ∈ Zp with α 6= 0, we can
determine the roots of the polynomial αX2+βX+γ by computing δ := β2−4αγ,
and testing if δ ∈ (Zp)

2 (of course, δ = 0 is allowed); if not, the polynomial has
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no roots in Zp; otherwise, we can compute a square root ζ of δ, and compute
the roots of the polynomial as (−β + ζ)/(2α) and (−β − ζ)/(2α) (which will be
the same, of course, if and only if ζ = δ = 0). 2

Exercise 13.3 Show that the following two problems are deterministic, poly-
time equivalent (see discussion just above Exercise 11.11 in §11.3):

(a) Given an odd prime p and α ∈ (Z∗p)
2, find β ∈ Z∗p such that β2 = α.

(b) Given an odd prime p, find an element of Z∗p \ (Z∗p)2.

2

Exercise 13.4 Design and analyze an efficient, deterministic algorithm that
takes as input primes p and q, such that q | (p − 1), along with an element
α ∈ Z∗p, and determines whether or not α is a perfect qth power, i.e., whether
or not there exists β ∈ Z∗p such that βq = α. 2

Exercise 13.5 We are given a positive integer n, two elements α, β ∈ Zn, and
integers e and f such that αe = βf and gcd(e, f) = 1. Show how to efficiently
find some γ ∈ Zn such that γe = β. 2

Exercise 13.6 Design and analyze a probabilistic algorithm that takes as input
primes p and q, such that q | (p − 1), along with an element α ∈ Z∗p that is a
perfect qth power, and returns a qth root of α, i.e., an element β ∈ Z∗p such that
βq = α. Your algorithm should have an expected running time that is bounded
by q1/2 times a polynomial in len(p). Hint: the previous exercise may be useful.
2

13.3.2 Prime-power modulus

Again, for an odd prime p, we know that a is a quadratic residue modulo pe if
and only if a is a quadratic residue modulo p.

Suppose we have found an integer z such that z2 ≡ a (mod p), using, say,
the procedure described above. From this, we can easily compute a square root
of a modulo pe using the following technique, which is known as Hensel lifting.

More generally, suppose we have integers a, z such that z2 ≡ a (mod pf ), for
f ≥ 1, and we want to find an integer ẑ such that ẑ2 ≡ a (mod pf+1). Clearly,
if ẑ2 ≡ a (mod pf+1), then ẑ2 ≡ a (mod pf ), and so ẑ ≡ ±z (mod pf ). So let us
set ẑ = z + upf , and solve for u. We have

ẑ2 ≡ (z + upf )2 ≡ z2 + 2zpfu+ u2p2f ≡ z2 + 2zpfu (mod pf+1).
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So we want to find integer u such that

2zpfu ≡ a− z2 (mod pf+1).

Since pf | (z2 − a), by Theorem 2.4, the above congruence holds if and only if

2zu ≡ a− z2
pf

(mod p).

From this, we can easily compute the desired value u, since gcd(2z, p) = 1.
By iterating the above procedure, starting with a square root of a modulo p,

we can quickly find a square root of a modulo pe. We leave a detailed analysis
of the running time of this procedure to the reader.

13.3.3 Composite modulus

To find square roots modulo n, where n is an odd composite modulus, if we know
the prime factorization of n, then we can use the above procedures for finding
square roots modulo primes and prime powers, and then use the algorithm of
the Chinese Remainder Theorem to get a square root modulo n.

However, if the factorization of n is not known, then there is no efficient al-
gorithm known for computing square roots modulo n. In fact, one can show that
the problem of finding square roots modulo n is at least as hard as the problem
of factoring n, in the sense that if there is an efficient algorithm for computing
square roots modulo n, then there is an efficient (probabilistic) algorithm for
factoring n.

Here is an algorithm to factor n, using a modular square-root algorithm as
a subroutine. For simplicity, we assume that n is of the form n = pq, where p
and q are distinct primes. Choose β to be a random, non-zero element of Zn.
If d := gcd(rep(β), n) > 1, then output d (recall the notation “rep(·)” from
§3.4). Otherwise, set α := β2, and feed n and α to the modular square-root
algorithm, obtaining a square root β ′ ∈ Z∗n of α. If the square-root algorithm
returns β′ ∈ Z∗n such that β′ = ±β, then output “failure”; otherwise, output
gcd(rep(β − β′), n), which is a non-trivial divisor of n.

Let us analyze this algorithm. If d > 1, we split n, so assume that d = 1,
i.e., β ∈ Z∗n. In this case, β is uniformly distributed over Z∗n, and α is uniformly
distributed over (Z∗n)

2. Let us condition on an a fixed value of α, and on fixed
random choices made by the modular square-root algorithm (in general, this
algorithm may be probabilistic). In this conditional probability distribution, the
value β′ returned by the algorithm is completely determined. If ρ : Zp×Zq → Zn

is the ring isomorphism of the Chinese Remainder Theorem, and β ′ = ρ(β′1, β
′
2),
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then in this conditional probability distribution, β is uniformly distributed over
the four square roots of α, which we may write as ρ(±β ′1,±β′2).

With probability 1/4, we have β = ρ(β ′1, β
′
2) = β′, and with probability

1/4, we have β = ρ(−β ′1,−β′2) = −β′, and so with probability 1/2, we have
β = ±β′, in which case we fail to factor n. However, with probability 1/4, we
have β = ρ(−β′1, β′2), in which case β − β′ = ρ(−2β′1, 0), and since 2β′1 6= 0,
we have p - rep(β − β′) and q | rep(β − β′), and so gcd(rep(β − β ′), n) = q.
Similarly, with probability 1/4, we have β = ρ(β ′1,−β′2), in which case β − β′ =
ρ(0,−2β′2), and since 2β′2 6= 0, we have p | rep(β − β ′) and q - rep(β − β′), and
so gcd(rep(β − β′), n) = p. Thus, with probability 1/2, we have β 6= ±β ′, and
gcd(rep(β − β′), n) splits n.

Since we split n with probability 1/2 conditioned on any fixed choice α ∈
(Z∗n)

2 and any fixed random choices of the modular square-root algorithm, it
follows that we split n with probability 1/2 conditioned simply on the event that
β ∈ Z∗n. Also, conditioned on the event that β /∈ Z∗n, we split n with certainty,
and so we may conclude that the above algorithm splits n with probability at
least 1/2.

Exercise 13.7 Generalize the algorithm above to efficiently factor arbitrary
integers, given a subroutine that computes arbitrary modular square roots. 2

Exercise 13.8 Suppose you are given a polynomial f ∈ Z[X], along with a
prime p and a root z of f modulo p, i.e., f(z) ≡ 0 (mod p). Further, assume
that z is not a “double root” of f modulo p, which means that f ′(z) 6≡ 0 (mod p)
where f ′ is the derivative of f . Show that for any integer e ≥ 1, f has a root
modulo pe, and give an efficient procedure to find it. Also, show that the root
modulo pe is uniquely determined, in the following sense: if two such roots are
congruent modulo p, then they are congruent modulo pe. 2

13.4 The Quadratic Residuosity Assumption

Loosely speaking, the Quadratic Residuosity (QR) assumption is the assumption
that it is hard to distinguish squares from non-squares in Z∗n, where n is of
the form n = pq, and p and q are distinct primes. This assumption plays an
important role in cryptography. Of course, since the Jacobi symbol is easy to
compute, for this assumption to make sense, we have to restrict our attention
to elements of Jn (see definition in Exercise 12.9). Somewhat more precisely,
the QR assumption is the assumption that it is hard to distinguish a random
element in Jn \ (Z∗n)2 from a random element in (Z∗n)

2, given n (but not its
factorization!).



13.4. The Quadratic Residuosity Assumption 237

To give a rough idea as to how this assumption may be used in cryptog-
raphy, assume that p ≡ q ≡ 3 (mod 4), so that [−1 mod n] ∈ Jn \ (Z∗n)2 (see
Exercise 12.10). The value n can be used as a public key in a public-key cryp-
tosystem (see §10.7). Alice, knowing the public key, can encrypt a single bit
b ∈ {0, 1} as β := (−1)bα2, where Alice chooses α ∈ Z∗n at random. The point
is, if b = 0, then β is uniformly distributed over (Z∗n)

2, and if b = 1, then β is
uniformly distributed over Jn \ (Z∗n)2. Now Bob, knowing the secret key, which
is the factorization of n, can easily determine if β ∈ (Z∗n)

2 or not, and hence
deduce the value of the encrypted bit b. However, under the QR assumption,
an eavesdropper, seeing just n and β, cannot effectively figure out what b is.

Of course, the above scheme is much less efficient than the RSA cryptosystem
presented in §10.7, but nevertheless, has attractive properties; in particular, its
security is very closely tied to the QR assumption, whereas the security of RSA
is a bit less well understood.

Exercise 13.9 Suppose that A is a probabilistic algorithm that takes as input
n of the form n = pq, where p and q are distinct primes such that p ≡ q ≡
3 (mod 4). The algorithm also takes as input α ∈ Jn, and outputs either 0
or 1. Furthermore, assume that A runs in strict polynomial time. Define two
random variables, Xn and Yn, as follows: Xn is defined to be the output of A
on input n and a value α chosen at random from Jn \ (Z∗n)2, and Yn is defined
to be the output of A on input n and a value α chosen at random from (Z∗n)

2.
In both cases, the value of the random variable is determined by the random
choices of α, as well as the random choices made by the algorithm. Define
ε(n) := |P[Xn = 1]− P[Yn = 1]|.

Show how to use A to design a probabilistic, strictly polynomial time algo-
rithm A′ that takes as input n as above and α ∈ Jn, and outputs either “square”
or “non-square,” with the following property:

if ε(n) ≥ 0.001, then for all α ∈ Jn, the probability that A′ correctly
identifies whether α ∈ (Z∗n)

2 is at least 0.999.

Hint: use the Chernoff Bound. 2

Exercise 13.10 Assume the same notation as in the previous exercise. Define
the random variable X ′

n to be the output of A on input n and a value α chosen
at random from Jn. Show that |P[X ′

n = 1] − P[Yn = 1]| = ε(n)/2. Thus, the
problem of distinguishing Jn from (Z∗n)

2 is essentially equivalent to the problem
of distinguishing Jn \ (Z∗n)2 from (Z∗n)

2. 2
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Modules and Vector Spaces

In this chapter, we introduce the basic definitions and results concerning modules
over a ring R and vector spaces over a field F . Many readers have likely seen
some these notions before, but perhaps only in the context of a vector spaces
over specific field, such as the real or complex numbers, and not in the context
of, say, finite fields, like Zp.

14.1 Definitions, Properties, and Some Examples

Throughout this section, R denotes a ring.

Definition 14.1 An R-module is an abelian group M , which we shall write
using additive notation, together with a scalar multiplication operation that
maps a ∈ R and α ∈M to an element aα ∈M , such that the following properties
are satisfied for all a, b ∈ R and α, β ∈M :

1. a(bα) = (ab)α,

2. (a+ b)α = aα+ bα,

3. a(α+ β) = aα+ aβ,

4. 1Rα = α.

One may also call an R-module M a module over R. Elements of R are
often referred to as scalars, and elements of M may be called vectors.

If F is a field, then an F -module M is usually called an F -vector space,
or a vector space over F .

238
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Note that for an R-moduleM , for fixed a ∈ R, the map that sends α ∈M to
aα ∈M is a group homomorphism with respect to the additive group operation
of M ; likewise, for fixed α ∈M , the map that sends a ∈ R to aα ∈M is a group
homomorphism from the additive group of R into the additive group of M .

The following theorem summarizes a few basic facts which follow directly
from the observations in the previous paragraph, and basic facts about group
homomorphisms (see Theorem 8.53):

Theorem 14.2 If M is a module over R, then for all a ∈ R and α ∈ M , we
have:

1. 0Rα = 0M ,

2. a0M = 0M ,

3. (−a)α = −(aα) = a(−α).

Proof. Exercise. 2

The definition of a module includes the possibility of the trivial module,
consisting of just the zero element 0M . If R is the trivial ring, then any R-
module is trivial.

Example 14.3 A simple but extremely important example of an R-module is
the set R×n of n-tuples of elements of R, where addition and scalar multiplication
are defined component-wise — that is, the product of a ∈ R and (a1, . . . , an) ∈
R×n is (aa1, . . . , aan). 2

Example 14.4 The ring of polynomials R[X] over R forms an R-module in the
natural way, with addition and scalar multiplication defined in terms of the
addition and multiplication operations of the polynomial ring. 2

Example 14.5 If f is a monic polynomial over R of degree ` ≥ 0, then the
quotient ring S = R[X]/(f) is a module over R, with addition defined in terms
of the addition operation of R, and scalar multiplication defined by aα :=
[a mod f ]α, for a ∈ R and α ∈ S. If f = 1, then S is trivial. 2

Example 14.6 If S is any ring containing R as a subring, then S is a module
over R, with addition and scalar multiplication defined in terms of the addition
and multiplication operations of S. 2
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Example 14.7 If M1, . . . ,Mn are R-modules, then so is the direct product
M1 × · · · ×Mn, where addition and scalar product are defined component-wise.
2

Example 14.8 Any abelian group G, written additively, can be viewed as a
Z-module, with scalar multiplication defined in terms of the usual integer mul-
tiplication map (see parts (6)–(8) of Theorem 8.17). 2

Example 14.9 Let G be any group, written additively, whose exponent divides
n. Then we may define a scalar multiplication that maps [m mod n] ∈ Zn

and α ∈ G to mα. That this map is unambiguously defined follows from the
fact that G has exponent dividing n, so that if m ≡ m′ (mod n), we have
mα −m′α = (m −m′)α = 0G, since n | (m −m′). It is easy to check that this
scalar multiplication operation indeed makes G into a Zn-module. 2

Example 14.10 Of course, viewing a group as a module does not depend on
whether or not we happen to use additive notation for the group operation. If
we specialize the previous example to the group G = Z∗p, where p is prime, then
we may view G as a Zp−1-module. However, since the group operation itself
is written multiplicatively, the “scalar product” of [m mod (p− 1)] ∈ Zp−1 and
α ∈ Z∗p is the power αm. 2

14.2 Submodules and Quotient Modules

Again, throughout this section, R denotes a ring. The notions of subgroups and
quotient groups extend in the obvious way to R-modules.

Definition 14.11 Let M be an R-module. A subset N is a submodule of M
if

• N is an additive subgroup of M , and

• N is closed under scalar multiplication, i.e., for all a ∈ R and α ∈ N , we
have aα ∈ N .

It is easy to see that a submodule N of M is also an R-module in its own
right, with addition and scalar multiplication operations inherited from M .

If α1, . . . , αn are elements of M , then we can form the set, denoted
SpanR(α1, . . . , αn), of all R-linear combinations of α1, . . . , αn, with coeffi-
cients taken from R:

SpanR(α1, . . . , αn) := {a1α1 + · · ·+ anαn : a1, . . . , an ∈ R}.
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It is not hard to see (verify) that SpanR(α1, . . . , αn) is a submodule of M , and
is called the submodule spanned or generated by α1, . . . , αn.

If N1 and N2 are submodules of M , then N1 +N2 and N1 ∩N2 are not only
a subgroups of M , they are also submodules of M (verify).

Example 14.12 Let G be an abelian group. As in Example 14.8, we can view
G as a Z-module in a natural way. Subgroups of G are just the same thing as
submodules of G, and for a1, . . . , an ∈ G, the subgroup 〈a1, . . . , an〉 generated by
a1, . . . , an is the same as the submodule SpanZ(a1, . . . , an) spanned by a1, . . . , an.
2

Example 14.13 Any ring R can be viewed as an R-module in the obvious
way, with addition and scalar multiplication defined in terms of the addition
and multiplication operations of R. With respect to this module structure,
ideals in R are just the same thing as submodules of R, and for a1, . . . , an,
the ideal (a1, . . . , an) generated by a1, . . . , an is the same as the submodule
SpanR(a1, . . . , an) spanned by a1, . . . , an. 2

If N is a submodule of M , then in particular, it is also a subgroup of M , and
so we can form the quotient group M/N in the usual way (see §8.3). Moreover,
because N is closed under scalar multiplication, we can also define a scalar
multiplication on M/N in a natural way. Namely, for a ∈ R and α ∈ M , we
define

a(α+N) := (aα) +N.

As usual, one must check that this definition is unambiguous, that is, that is, if
α ≡ α′ (mod N), then aα ≡ aα′ (mod N). But this follows from the fact that N
is closed under scalar multiplication (verify). One can also easily check (verify)
that with scalar multiplication defined in this way, M/N is an R-module; it is
called the quotient module of M modulo N .

For vector spaces over a field, one typically uses the terms subspace and
quotient space, instead of (respectively) submodule and quotient module.

Exercise 14.14 Show that a subset N of an R-module M is a submodule of
M if (1) for all α, β ∈ N , α+ β ∈ N , and (2) for all a ∈ R and α ∈ N , aα ∈ N .
2

14.3 Module Homomorphisms and Isomorphisms

Again, throughout this section, R is a ring. The notions of group homomor-
phisms and isomorphisms extend in the obvious way to R-modules.
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Definition 14.15 Let M and M ′ be modules over R. An R-module homo-
morphism from M to M ′ is a map ρ :M →M ′, such that

• ρ is a group homomorphism from M to M ′, and

• for all a ∈ R and α ∈M , we have ρ(aα) = aρ(α).

If ρ is bijective, then it is called an R-module isomorphism of M with M ′,
and if in addition, M =M ′, then it is called an R-module automorphism on
M .

An R-module homomorphism is also called an R-linear map. We shall give
preference to this terminology from now on.

Just as for groups, it is easy to see (verify) that if ρ :M →M ′ and ρ′ :M ′ →
M ′′ are R-linear maps, then so is their composition ρ′ ◦ ρ : M → M ′′; also, if ρ
is an isomorphism of M with M ′ (as R-modules), then the inverse function ρ−1

is an isomorphism of M ′ with M (again, as R-modules — verify), and we write
M ∼=M ′.

For vector spaces over a field F , one usually uses the terms F -vector space
homomorphism, isomorphism, or automorphism, as appropriate.

Example 14.16 The R-modules in Examples 14.3 and 14.5 are isomorphic,
provided n = `. Indeed, one isomorphism is the map that sends (a1, . . . , an) ∈
R×n to [

∑

i aiX
i−1 mod f ] ∈ R[X]/(f). 2

Example 14.17 Let S and S ′ be ring extensions of the ring R. As we saw in
Example 14.6, S and S′ may be viewed as R-modules in a natural way. Suppose
that ρ : S → S ′ is a ring homomorphism with the following property: ρ(a) = a
for all a ∈ R, i.e., ρ acts like the identity function on R. Then ρ is an R-linear
map. Indeed, for any a ∈ R and α, β ∈ S, we have ρ(α+ β) = ρ(α) + ρ(β) and
ρ(aα) = ρ(a)ρ(α) = aρ(α). 2

Since an R-module homomorphism is also a group homomorphism, all of the
statements in Theorem 8.53 apply. In particular, an R-linear map is injective if
and only if the kernel is trivial (i.e., contains only the zero element). However, in
the case of R-module homomorphisms, we can extend Theorem 8.53, as follows:

Theorem 14.18 Let ρ :M →M ′ be an R-linear map.

1. For any submodule N of M , ρ(N) is a submodule of M ′.

2. ker(ρ) is a submodule of M .
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3. For any submodule N ′ of M ′, ρ−1(N ′) is a submodule of M (and contains
ker(ρ)).

Theorems 8.54, 8.55, 8.56, and 8.57 (for abelian groups) generalize immedi-
ately to R-modules: all one has to check is that the relevant group homomor-
phisms are also R-module homomorphisms.

Theorem 14.19 If N is a submodule of an R-module M , then the map ρ :
M →M/N given by ρ(α) = α+N is a surjective R-linear map whose kernel is
N . This is sometimes called the “natural” map from M to M/N .

Theorem 14.20 Let ρ be an R-linear map from M into M ′. Then the map
ρ̄ : M/ ker(ρ) → im(ρ) that sends the coset α + ker(ρ) for α ∈ M to ρ(α)
is unambiguously defined and is an R-module isomorphism of M/ ker(ρ) with
im(ρ).

Theorem 14.21 Let ρ be an R-linear map from M into M ′. Then for any
submodule N contained in ker(ρ), the map ρ̄ : M/N → im(ρ) that sends the
coset α+N for α ∈M to ρ(α) is unambiguously defined and is an R-linear map
from M/N onto im(ρ) with kernel ker(ρ)/N .

Theorem 14.22 Let M be an R-module with submodules N1, N2 such that N1∩
N2 = {0M}. Then the map that sends (α1, α2) ∈ N1×N2 to α1+α2 ∈ N1+N2

is an R-module isomorphism of N1 ×N2 with N1 +N2.

14.4 Linear Independence and Bases

Throughout this section, R is a ring, and M is an R-module.

Definition 14.23 We say that M is a finitely generated R-module if it is
spanned by a finite number of elements, i.e., if M = SpanR(α1, . . . , αn) for some
α1, . . . , αn ∈M .

We say that a collection of elements α1, . . . , αn in M is linearly dependent
(over R) if there exist a1, . . . , an ∈ R, not all zero, such that a1α1+ · · · anαn =
0M ; otherwise, we say that α1, . . . , αn are linearly independent (over R).

We say that a collection α1, . . . , αn of elements in M is a basis for M
(over R) if it is linearly independent and spans M .

As a matter of definition, we consider the submodule spanned by the empty
set of elements to be the trivial submodule {0M}. If M itself is the trivial
module, then the empty set is a basis for M .
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Example 14.24 Consider the R-module R×3, where R is non-trivial.
The elements (1, 0, 0), (0, 1, 0), (0, 0, 1) form a basis, as do the elements
(1, 1, 1), (0, 1, 0), (−1, 0, 1). The elements (1, 1, 1), (0, 1, 0), (1, 0, 1) do not form
a basis, as they are linearly dependent: the third vector is equal to the first
minus the second. 2

Example 14.25 The ring of polynomials R[X] is not finitely generated as an
R-module, since any finite set of polynomials spans only polynomials of some
bounded degree. 2

Example 14.26 Consider again the ring S = R[X]/(f), where f ∈ R[X] is monic
of degree ` ≥ 0, and consider the element η = [X mod f ]. If f = 1, then R is
trivial; otherwise, 1, η, η2, . . . , η`−1 form a basis for S over R. 2

Example 14.27 If α1, . . . , αn form a basis for M , then the map ρ that sends
(a1, . . . , an) ∈ R×n to a1α1 + · · · + anαn ∈ M is an R-module isomorphism of
R×n with M . To show this, one has to show (1) that ρ is an R-linear map,
which follows immediately from the definitions, (2) that ρ is injective, which
follows immediately from the linear independence of α1, . . . , αn, and (3) that ρ
is surjective, which follows immediately from the fact that α1, . . . , αn span M .

In particular, every element of M can be expressed in a unique way as
a1α1 + · · ·+ anαn, for a1, . . . , an ∈ R. 2

Exercise 14.28 Show that if a finite set S of elements of an R-module is linearly
independent, then any subset of S is also linearly independent. 2

Exercise 14.29 Assume that R is non-trivial. Show that if a finite collection
of elements of an R-module contains the zero element, or contains two identical
elements, then it is not linearly independent. 2

Exercise 14.30 Show that if S and S ′ are finite sets of elements of an R-module
with S ⊆ S′, then the submodule spanned by S is contained in the submodule
spanned by S′. 2

Exercise 14.31 Show that if S and S ′ are finite sets of elements of an R-module
such that every element of S can be expressed as an R-linear combination of
elements in S′, then the submodule spanned by S is contained in the submodule
spanned by S′. 2
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14.5 Dimension

We now develop the basic theory of dimension for finitely generated vector
spaces. This theory in its full generality only applies to vector spaces, and
not to modules over an arbitrary field. Throughout this section, F denotes a
field, and V denotes an F -vector space.

The following two theorems are the keys to the theory of finitely generated
vector spaces.

Theorem 14.32 If V is finitely generated, then any finite set of vectors that
spans V contains a subset which is a basis.

Proof. We give an “algorithmic” proof. Let α1, . . . , αn be a given set of vectors
that spans V . Let S0 be the empty set, and for i = 1, . . . , n, do the following: if
αi does not belong to the subspace spanned by Si−1, set Si := Si−1 ∪{αi}, and
otherwise, set Si := Si−1. We claim that Sn is a basis for V .

First, we show that Sn spans V . To do this, first note that for 1 ≤ i ≤ n,
if αi is not in Sn, then by definition, αi is a linear combination of vectors in
Si−1 ⊆ Sn. In any case, each αi is a linear combination of the vectors in Sn.
Since any element β of V is a linear combination of α1, . . . , αn, and each αi is a
linear combination of elements of Sn, it follows (see Exercise 14.31) that β is a
linear combination of elements of Sn.

Second, we show that Sn is linearly independent. Suppose it were not. Then
we could express 0V as a non-trivial linear combination of elements in Sn. Let
us write this as

0V = a1α1 + a2α2 + · · ·+ anαn,

where the only non-zero coefficients ai are those with αi ∈ Sn. If j is the highest
index with aj 6= 0F , then by definition αj ∈ Sn. However, we see that αj is in
fact in the span of Sj−1; indeed,

αj = (−a1a−1j )α1 + · · ·+ (−aj−1a−1j )αj−1,

and by definition, the only terms with non-zero coefficients are those correspond-
ing to the vectors in Sj−1. This means that we would not have added αj to Sj
at step j, which means αj is not in Sn, a contradiction. 2

Theorem 14.33 If V has a basis of size n, then any collection of n+1 elements
of V is linearly dependent.

Proof. Let α1, . . . , αn be a basis, and let β1, . . . , βn+1 be any collection of n+1
vectors. We wish to show that β1, . . . , βn+1 are linearly dependent.
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Since the αi’s span V , we know that β1 is a linear combination of the αi’s,
say, β1 = a1α1+ · · · anαn. If all the ai’s were zero, then we would have β1 = 0V ,
and so trivially, the βj ’s would be linearly dependent (see Exercise 14.29). So
assume that not all ai’s are zero, and for convenience, let us say that a1 6= 0F . It
follows that α1 is a linear combination of β1, α2, . . . , αn, and hence β1, α2, . . . , αn
span V (see Exercise 14.31).

Next, consider β2. This is a linear combination of β1, α2, . . . , αn, and we
may assume that in this linear combination, the coefficient of one of α2, . . . , αn
is non-zero (otherwise, we find a linear dependence among the βj ’s), and for
convenience, let us say that the coefficient of α2 is non-zero. As in the previous
paragraph, it follows that β1, β2, α3, . . . , αn span V .

Continuing in this way, we find that β1, . . . , βn are either linearly dependent
or they span V . In the latter case, we find that βn+1 is a linear combination of
β1, . . . , βn, and hence, the vectors β1, . . . , βn, βn+1 are linearly dependent. 2

An important corollary of Theorem 14.33 is the following:

Theorem 14.34 If V is finitely generated, then any two bases have the same
size.

Proof. If one basis had more elements than another, then Theorem 14.33
would imply that the first basis was linearly dependent, which contradicts the
definition of a basis. 2

Theorem 14.34 allows us to make the following definition:

Definition 14.35 If V is finitely generated, the common size of any basis is
called the dimension of V , and is denoted dimF (V ).

Note also that one often refers to a finitely generated vector space as a finite
dimensional vector space.

To summarize the results in this section up to this point: if V is finite
dimensional, it has a basis, and any two bases have the same size, which is
called the dimension of V .

Another consequence of Theorem 14.33 is that if V is finite dimensional,
and W is a subspace of V , then W is also finite dimensional, and dimF (W ) ≤
dimF (V ). To see this, suppose dimF (V ) = n. Since any n+ 1 vectors in V are
linearly dependent, there exists a maximal linearly independent set α1, . . . , αm
of elements of W . Indeed, using a variant of the argument used in the proof
of Theorem 14.32, we can take α1 to be any non-zero vector in W , α2 to be
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any vector in W not in the subspace spanned by α1, and so on. Because of
Theorem 14.33, this process must halt at some point with m ≤ n. Now, it
must be the case that α1, . . . , αm span W , since otherwise, if αm+1 ∈ W \
SpanF (α1, . . . , αm), the set α1, . . . , αm, αm+1 would be a larger set of linearly
independent elements of W , contradicting the maximality of α1, . . . , αm.

Now suppose that V is finite dimensional, and thatW is a subspace of V , and
consider the quotient space V/W . It is clear that since V is finite dimensional,
V/W is finite dimensional as well. Indeed, if S is a finite set of vectors that spans
V , then {α +W : α ∈ S} is a finite set of vectors that spans V/W . It follows
from Theorem 14.32 that V/W has a basis, say, α1 +W, . . . , α` +W . Suppose
that β1, . . . , βm is a basis for W . Then it is straightforward to see (verify) that

α1, . . . , α`, β1, . . . , βm

is a basis for V . Thus, we have proved the following result:

Theorem 14.36 If V is finite dimensional, and W is a subspace of V , then W
and V/W are also finite dimensional, and

dimF (V )− dimF (W ) = dimF (V/W ).

Example 14.37 Suppose that F is finite, say |F | = q, and that V is finite
dimensional, say dimF (V ) = n. Then clearly |V | = qn. If W is a subspace with
dimF (W ) = m, then |W | = qm, and by Theorem 14.36, dimF (V/W ) = n −m,
and hence |V/W | = qn−m. Just viewing V and W as additive groups, we know
that the index of W in V is [V : W ] = |V/W | = |V |/|W | = qn−m, which agrees
with the above calculations. 2

The arguments in the two paragraphs preceding Theorem 14.36 also establish
the following facts:

Theorem 14.38 If V is of finite dimension n, then any set of n linearly inde-
pendent elements of V form a basis for V , and any subset of less than n linearly
independent elements of V can be extended to form a basis for V .

We next consider the relation between the notions of dimension and linear
maps.

Theorem 14.39 If V is of finite dimension n, and V is isomorphic to V ′, then
V ′ is also of finite dimension n.
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Proof. Let ρ : V → V ′ be an F -vector space isomorphism, and let α1, . . . , αn
be a basis for V . Then it is easy to see (verify) that ρ(α1), . . . , ρ(αn) is a basis
for V ′. 2

Theorem 14.36, together with Theorems 14.39 and 14.20, immediately imply
the following:

Theorem 14.40 If V is finite dimensional, and ρ : V → V ′ is an F -linear
map, then im(ρ) is a finite dimensional vector space, and

dimF (V )− dimF (ker(ρ)) = dimF (im(ρ)).

Intuitively, one way to think of Theorem 14.40 is as a “law of conservation”
for dimension: any “dimensionality” going into ρ that is not “lost” to the kernel
of ρ must show up in the image of ρ. An immediate corollary of Theorem 14.40
is:

Theorem 14.41 If ρ : V → V ′ is an F -linear map, and if V and V ′ are finite
dimensional with dimF (V ) = dimF (V

′), then we have:

ρ is injective if and only if ρ is surjective.

This last theorem turns out to be extremely useful in a number of settings.
Generally, of course, if we have a function f : A→ B, injectivity does not imply
surjectivity, nor does surjectivity imply injectivity. If A and B are finite sets of
equal size, then these implications do indeed hold. Theorem 14.41 gives us an-
other important setting where these implications hold, with finite dimensionality
playing the role corresponding to finiteness.

Exercise 14.42 Show that if V1, . . . , Vn are finite dimensional vector spaces,
then V1 × · · · × Vn has dimension

∑n
i=1 dimF (Vi). 2

Example 14.43 If V is a finite dimensional vector space with subspaces W1

and W2, such that W1 + W2 = V and W1 ∩ W2 = {0V }, then dimF (V ) =
dimF (W1) + dimF (W2). This follows immediately from Theorems 14.22 and
14.39, along with the previous exercise. 2



Chapter 15

Matrices

In this chapter, we discuss the basic definitions and results concerning matrices.
We shall start out with a very general point of view, discussing matrices whose
entries lie in an arbitrary ring R. Then we shall specialize to the case where the
entries lie in a field F , where much more can be said.

One of the main goals of this chapter is to discuss “Gaussian elimination,”
which is an algorithm that allows us to efficiently compute bases for the image
and kernel of an F -linear map.

In discussing the complexity of algorithms for matrices over a ring R, we
shall treat a ring R as an “abstract data type,” so that the running times of
algorithms will be stated in terms of the number of arithmetic operations in R.
If R is a finite ring, such as Zm, we can immediately translate this into a running
time on a RAM (in later chapters, we will discuss other finite rings and efficient
algorithms for doing arithmetic in them).

If R is, say, the field of rational numbers, a complete running time analysis
would require an additional analysis of the sizes of the numbers that appear
in the execution of the algorithm. We shall not attempt such an analysis here
(although it can be done, and all the algorithms discussed in this chapter run
in polynomial time in the setting of rational numbers, represented as factions in
lowest terms). Another possible approach for dealing with rational numbers is
to use floating point approximations — while this eliminates the size problem,
it creates many new problems because of round-off errors. We shall not address
any of these issues here.

15.1 Basic Definitions and Properties

Throughout this section, R denotes a ring.

249
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For positive integers m and n, an m × n matrix A over a ring R is a
rectangular array

A =








a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn







,

where each entry aij in the array is an element of R; the element aij is called
the (i, j) entry of A, which we may denote A(i, j). For 1 ≤ i ≤ m, the ith row
of A is

(ai1, . . . , ain),

which we may denote A(i), and for 1 ≤ j ≤ n, the jth column of A is








a1j
a2j
...

amj







,

which we may denote A(?, j). We regard a row of A as a 1 × n matrix, and a
column of A as an m× 1 matrix.

The set of all m × n matrices over R is denoted Rm×n. Elements of R1×n

are called row vectors (of dimension n) and elements of Rm×1 are called
column vectors (of dimension m). Elements of Rn×n are called square
matrices (of dimension n). We do not make a distinction between R1×n and
R×n; that is, we view standard n-tuples as row vectors. We also do not make a
distinction between R1×1 and R.

We can define the familiar operations of scalar multiplication, addition, and
multiplication on matrices:

• If A ∈ Rm×n and c ∈ R, then cA is the m× n matrix whose (i, j) entry is
cA(i, j).

• If A,B ∈ Rm×n, then A + B is the m × n matrix whose (i, j) entry is
A(i, j) +B(i, j).

• If A ∈ Rm×n and B ∈ Rn×p, then AB is the m × p matrix whose (i, k)
entry is

n∑

j=1

A(i, j)B(j, k).
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We can also define the difference A− B := A+ (−1R)B of matrices of the
same dimension, which is the same as taking the difference of corresponding
entries. These operations satisfy the usual properties:

Theorem 15.1 If A,B ∈ Rm×n, U, V ∈ Rn×p, Z ∈ Rp×q, and c, d ∈ R, then

1. c(dA) = (cd)A = d(cA),

2. A+B = B +A,

3. c(A+B) = cA+ cB,

4. (c+ d)A = cA+ dA,

5. (A+B)U = AU +BU ,

6. A(U + V ) = AU +AV ,

7. c(AU) = (cA)U = A(cU),

8. A(UZ) = (AU)Z.

Proof. All of these are completely trivial, except the last one which requires
just a bit of computation to show that the (i, `) entry of both A(UZ) and (AU)Z
is (verify)

n∑

j=1

p
∑

k=1

A(i, j)U(j, k)Z(k, `).

2

Note that while matrix addition is commutative, matrix multiplication in
general is not.

Some simple but useful facts to keep in mind are the following:

• If A ∈ Rm×n and B ∈ Rn×p, then the kth column of AB is equal to Av,
where v is the kth column of B; also, the ith row of AB is equal to wB,
where w is the ith row of A.

• If A ∈ Rm×n and u ∈ R1×m, then

uA =
m∑

i=1

u(?, i)A(i).

In words: uA is a linear combination of the rows of A, with coefficients
taken from the corresponding entries of u.
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Similarly, if v ∈ Rn×1, then

Av =
n∑

j=1

v(j)A(?, j),

i.e., Av is a linear combination of the columns of A, with coefficients taken
from the corresponding entries of v.

If A ∈ Rm×n, the transpose of A, denoted A>, is defined to be the n ×m
matrix whose (j, i) entry is A(i, j).

Theorem 15.2 If A ∈ Rm×n and B ∈ Rn×p, then (A>)> = A and (AB)> =
B>A>.

Proof. Exercise. 2

An n × n matrix A is called a diagonal matrix if A(i, j) = 0R for i 6= j,
i.e., the entries off the “main diagonal” of A are all zero. A scalar matrix is
a diagonal matrix whose diagonal entries are all the same. The scalar matrix I,
where all the entries on the main diagonal are 1R, is called the n× n identity
matrix. It is easy to see that if A is an n× n matrix, then AI = IA = A.

Algorithmic issues

For computational purposes, matrices are represented in the obvious way as ar-
rays of elements of R. As remarked at the beginning of this chapter, we shall
treat R as an “abstract data type,” and not worry about how elements of R
are actually represented; in discussing the complexity of algorithms, we shall
simply count “operations in R,” by which we mean additions, subtractions,
multiplications; we shall sometimes also include equality testing and comput-
ing multiplicative inverses as “operations in R.” In any real implementation,
there will be other costs, such as incrementing counters, etc., which we may
safely ignore, as long as their number is at most proportional to the number of
operations in R.

The following statements are easy to verify:

• We can multiply an m × n matrix times a scalar using mn operations in
R.

• We can add two m× n matrices using mn operations in R.

• We can multiply an m × n matrix and an n × p matrix using O(mnp)
operations in R.
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It is also easy to see that given an m × m matrix A, and a non-negative
integer e, we can adapt the repeated squaring algorithm discussed in §3.4 so as
to compute Ae using O(len(e)) multiplications of m × m matrices, and hence
O(len(e)m3) operations in R.

15.2 Matrices and Linear Maps

Let R be a ring. For positive integers m and n, we may naturally view R1×m

and Rn×1 as R-modules. If A is an m × n matrix over R, then the map that
sends v ∈ R1×m to vA ∈ R1×n is easily seen to be an R-linear map. Likewise,
the map that sends w ∈ Rn×1 to Aw ∈ Rm×1 is also an R-linear map. Thus,
the matrix A defines in a natural way two different linear maps, one defined in
terms of multiplying a row vector on the right by A, and the other in terms
multiplying a column vector on the left by A.

With the above interpretations as a linear map, the definition of matrix
multiplication makes a bit more sense. Let A ∈ Rm×n and B ∈ Rn×p, and
consider the product matrix C = AB. Let σA, σB, σC be the maps defined by
multiplication on the right by A,B,C, and let τA, τB, τC be the maps defined
by multiplication on the left by A,B,C. Then it is easy to see (verify) that
σC = σB ◦ σA and τC = τA ◦ τB.

We have seen how matrix/vector multiplication defines a linear map. Con-
versely, we shall now see that the action of any linear map on finite dimensional
vector spaces over a field F can be viewed as a matrix/vector multiplication.

Let V be an F -vector space of finite dimension m, and let A = (α1, . . . , αm)
be a basis for V . In this setting, the ordering of the basis elements is important,
and so we refer to A as an ordered basis. Now, A defines a canonical F -vector
space isomorphism ε that sends (a1, . . . , am) ∈ F 1×m to a1α1+ · · ·+amαm ∈ V .
Thus, elements of V can be represented concretely as elements of F 1×m; however,
this representation depends on the choice A of the ordered basis. The vector
ε−1(α) is called the coordinate vector of α (with respect to A).

LetW be an F -vector space of finite dimension n, and let B = (β1, . . . , βn) be
an ordered basis for W . Just as in the previous paragraph, B defines a canonical
F -vector space isomorphism δ : F 1×n →W .

Now let ρ : V → W be an arbitrary F -linear map. For any α ∈ V , if
α = ε(a1, . . . , am), then because ρ is F -linear, we have

ρ(α) =
m∑

i=1

ρ(aiαi) =
m∑

i=1

aiρ(αi).

Thus, the action of ρ on V is completely determined by its action on the αi’s.
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Let us now define an m × n matrix D whose ith row, for 1 ≤ i ≤ m, is
defined to be δ−1(ρ(αi)), that is, the coordinate vector of ρ(αi) with respect to
the ordered basis B. With D defined in this way, then for any α ∈ V we have

δ−1(ρ(α)) = ε−1(α)D.

In words: if we multiply the coordinate vector of α on the right by D, we get
the coordinate vector of ρ(α).

A special case of the above is when V = F 1×m and W = F 1×n, and A and
B are the standard bases for V and W , i.e., for 1 ≤ i ≤ m, the ith vector of
A has a 1 in position i and is zero everywhere else, and similarly for B. In this
case, the ith row of the matrix D is just the value of ρ applied to the ith vector
in A.

To summarize, we see that an F -linear map ρ from a finite dimensional
vector space V to a finite dimensional vector space W , together with particular
ordered bases for V and W , uniquely determine a matrix D such that the action
of multiplication on the right by D implements the action of ρ with respect to
the given ordered bases. There may be many ordered bases for V and W to
choose from, and different choices will in general lead to different matrices. In
any case, from a computational perspective, the matrix D gives us an efficient
way to compute the map ρ, assuming elements of V and W are represented as
coordinate vectors with respect to the given ordered basis.

Of course, if one prefers, by simply transposing everything, one can equally
well represent the action of ρ in terms of the action of multiplication of a column
vector on the left by a matrix.

Exercise 15.3 Let F be a finite field, and let A be a non-zero m × n matrix
over F . Suppose one chooses a vector v ∈ F 1×m at random. Show that the
probability that vA is the zero vector is at most 1/|F |. 2

Exercise 15.4 Design and analyze a probabilistic algorithm that takes as input
three m×m matrices A,B,C over a finite field F , along with an error parameter
0 < ε < 1. The algorithm should use O(m2dte) operations in F , where t :=
log(1/ε)/ log |F |. The algorithm should output either “yes” or “no” so that the
following holds:

• if C = AB, then the algorithm should always output “yes”;

• if C 6= AB, then the algorithm should output “no” with probability at
least 1− ε.

2
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15.3 The Inverse of a Matrix

Let R be a ring, and let A ∈ Rn×n be a square matrix. We call a matrix
X ∈ Rn×n an inverse of A if XA = AX = I, where I is the n × n identity
matrix.

It is easy to see that if A has an inverse, then the inverse is unique: if X
and Y were inverses, then multiplying the equation I = AY on the left by X,
we obtain X = X(AY ) = (XA)Y = IY = Y .

Because the inverse of A is uniquely determined, we denote it by A−1. If
A has an inverse, we say that A is invertible, or nonsingular. If A is not
invertible, it is sometimes called singular. We will use the terms “invertible”
and “not invertible.”

If A and B are invertible n× n matrices, then so is their product: in fact, it
is easy to see that (AB)−1 = B−1A−1 (verify).

It is also easy to see that A is invertible if and only if the transposed matrix
A> is invertible, in which case (A>)−1 = (A−1)>. Indeed, AX = I = XA holds
if and only if X>A> = I = A>X>

Let us call X a left inverse of A if XA = I, and let us call Y a right
inverse of A if AY = I.

It is easy to see that if A has both a left inverse X and a right inverse
Y , then we must have X = Y , from which it follows that X = A−1. To
see this, again, multiply the equation I = AY on the left by X, obtaining
X = X(AY ) = (XA)Y = IY = Y .

One question that remains, the answer to which is not trivially self evident
from the definitions, is whether or not the existence of either a left or right inverse
implies the existence of an inverse. The answer is yes, and we can argue this as
follows in the case where R = F is a field. Let A be the given square matrix, and
let ρ be the F -linear map from F 1×n to F 1×n that sends v to vA. If A has a left
inverse X, so I = XA, then the map ρ is surjective: indeed, for any v ∈ F 1×n,
v = vI = vXA = ρ(vX). If A has a right inverse Y , so that I = AY , then the
map ρ is injective: indeed, if ρ(v) = 01×n, then v = vI = vAY = ρ(v)Y = 01×n.
Now, by Theorem 14.41, the map ρ is a bijection if and only if it is either
surjective or injective. So if A has either a left or a right inverse, the map ρ
is a vector space isomorphism, and hence its inverse ρ−1 is also a vector space
isomorphism. If we let Z be the matrix representing ρ−1 with respect to the
standard basis for F 1×n, then ZA is the matrix representing ρ ◦ ρ−1, and AZ is
the matrix representing ρ−1 ◦ ρ. Since both ρ ◦ ρ−1 and ρ−1 ◦ ρ are the identity
function, it must be the case that ZA = AZ = I.

So we have shown that if A has either a left or right inverse, then the cor-
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responding map ρ is an isomorphism, which implies that A is invertible. Con-
versely, if A has an inverse, then it is clear that the corresponding map ρ is a
vector space isomorphism.

The above discussion also reveals the following important fact:

Theorem 15.5 An square matrix over a field invertible if and only if its rows
are linearly independent if and only if its columns are linearly independent.

Proof. As we saw above, A has an inverse if and only if the map ρ, defined
by multiplication on the right by A, is bijective, which holds if and only if ρ is
injective, which holds if and only if the rows of A are linearly independent.

That proves the statement that the inverse exists if and only if the rows are
linearly independent. The corresponding statement about columns follows from
the statement about rows, applied to the transposed matrix A>. 2

We have shown above that when R = F is a field, then a square matrix
in invertible if and only if it has a left inverse or a right inverse. The same is
true for arbitrary rings R, but the proof of this is non-trivial, and requires the
development of the theory of determinants, which we do not cover in this text.

Exercise 15.6 Show that if A and B are two square matrices over a field such
that their product AB is invertible, then both A and B themselves must be
invertible. 2

15.4 Gaussian Elimination

Throughout this section, F denotes a field.
A matrix B ∈ Fm×n is said to be in reduced row echelon form if there

exists a sequence of integers (p1, . . . , pr), with 0 ≤ r ≤ m and 1 ≤ p1 < p2 <
· · · < pr ≤ n, such that the following holds:

• for 1 ≤ i ≤ r, all of the entries in row i of B to the left of entry (i, pi) are
zero, i.e., B(i, j) = 0 for 1 ≤ j < pi;

• for 1 ≤ i ≤ r, all of the entries in B in column pi of B above entry (i, pi)
are zero, i.e., B(i′, pi) = 0 for 1 ≤ i′ < i;

• B(i, pi) = 1;

• all entries in rows r+1, . . . ,m of B are zero, i.e., B(i, j) = 0 for r < i ≤ m
and 1 ≤ j ≤ n.



15.4. Gaussian Elimination 257

It is easy to see that if B is in reduced row echelon form, the sequence
(p1, . . . , pr) above is uniquely determined, and we call it the pivot sequence of
B. Several further remarks are in order:

• All of the entries of B are completely determined by the pivot sequence,
except for the entries (i, j) with 1 ≤ i ≤ r and j > i with j /∈ {pi+1, . . . , pr},
which may be arbitrary.

• If B is an n×n matrix in reduced row echelon form whose pivot sequence
is of length n, then B must be the n× n identity matrix.

• We allow for an empty pivot sequence, i.e., r = 0, which will be the case
precisely when B = 0m×n.

Example 15.7 The following 4 × 6 matrix B over the rational numbers is in
reduced row echelon form:

B =







0 1 −2 0 0 3
0 0 0 1 0 2
0 0 0 0 1 −4
0 0 0 0 0 0






.

The pivot sequence of B is (2, 4, 5). Notice that the first three rows of B are
linearly independent, that columns 2, 4, and 5 are linearly independent, and
that all of other columns of B are linear combinations of columns 2, 4, and 5.
Indeed, if we truncate the pivot columns to their first three rows, we get the
3× 3 identity matrix. 2

Generalizing the previous example, if a matrix is in reduced row echelon
form, it is easy to deduce the following properties, which turn out to be quite
useful:

Theorem 15.8 If B is a matrix in reduced row echelon form with pivot sequence
(p1, . . . , pr), then

1. rows 1, 2, . . . , r of B are linearly independent;

2. columns p1, . . . , pr of B are linearly independent, and all other columns of
B can be expressed as linear combinations of columns p1, . . . , pr.

Proof. Exercise — just look at the matrix! 2

Gaussian elimination is an algorithm that transforms an arbitrary m× n
matrix A into a m × n matrix B, where B is a matrix in reduced row echelon
form obtained from A by a sequence of elementary row operations. There
are three types of elementary row operations:
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Type I: swap two rows,

Type II: multiply a row by a scalar,

Type III: add a scalar multiple of one row to a different row.

The application of any specific elementary row operation to an m×n matrix
C can be affected by multiplying C on the left by a suitable m×m matrix M .
Indeed, the matrix M corresponding to a particular elementary row operation
is simply the matrix obtained by applied the same elementary row operation
to the m × m identity matrix. It is easy to see that for any elementary row
operation, the corresponding matrix M is invertible.

We now describe the basic version of Gaussian elimination. The input is an
m × n matrix A. The algorithm works with a copy B of A (which we do not
need, if the original matrix A is not needed afterwards).

1. B ← A, r ← 0
2. for j ← 1 to n do
3. `← 0, i← r
4. while ` = 0 and i ≤ m do
5. i← i+ 1
6. if B(i, j) 6= 0 then `← i
7. if ` 6= 0 then
8. r ← r + 1
9. swap rows B(r) and B(`)

— B(r, j) is non-zero
— now make B(r, j) one and clear all entries
— above and below B(r, j)

10. B(r)← B(r, j)−1B(r)
11. for i← 1 to m do
12. if i 6= r then
13. B(i)← B(i)−B(i, j)B(r)
14. output B

Note that the only steps in the algorithm where B is actually modified are
at steps 9, 10, and 13, where we perform (respectively) Type I, II, and III
elementary row operations. We leave it to the reader to verify that the above
algorithm indeed transforms A into a matrix B in reduced row echelon form. To
do this, one might make use of the following “loop invariant”:

after the jth iteration of the main loop (for 0 ≤ j ≤ n), the first j
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columns of B are in reduced row echelon form with a pivot sequence
whose length is equal to the current value of r.

As for the complexity of the algorithm, it is easy to see that it performs
O(mn) elementary row operations, each of which takes O(n) operations in F ,
so a total of O(mn2) operations in F .

As discussed above, the application the eth elementary row operation in the
above algorithm can be thought of as multiplying the current value of the matrix
B by a particular invertible m×m matrix Me. If the algorithm performs a total
of t such elementary row operations, the final, output value of B satisfies the
equation

B =MA,

where

M =
t∏

e=1

Me.

Since the product of invertible matrices is also invertible, we see that M itself
is invertible.

The above algorithm does not compute the matrix M , but it can be easily
modified to do so. The resulting algorithm, which we call extended Gaussian
elimination, is the same as plain Gaussian elimination, except that we initialize
the matrix M to be the m×m identity matrix, and we add the following steps:

• Just before step 9, we add the step: swap rows M(r) and M(`).

• Just before step 10, we add the step: M(r)← B(r, j)−1M(r).

• Just before step 13, we add the step: M(i)←M(i)−B(i, j)M(r).

At the end of the algorithm we output M in addition to B.
So we simply perform the same elementary row operations on M that we

perform on B. The reader may verify that the above algorithm is correct, and
that it uses O(mn(m+ n)) operations in F .

Exercise 15.9 Given a matrix B ∈ Fm×n in reduced row echelon form, show
how to compute its pivot sequence using O(n) operations in F . 2

15.5 Applications of Gaussian Elimination

Throughout this section, A is an arbitrary m× n matrix over F , and MA = B,
where M is an invertible m×m matrix, and B is in reduced row echelon form
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with pivot sequence (p1, . . . , pr). This is precisely the information produced
by the extended Gaussian elimination algorithm, given A as input (the pivot
sequence can easily be “read” directly from B — see Exercise 15.9).

Let V := F 1×m, W := F 1×n, and ρ : V → W be the F -linear map that
sends v ∈ V to vA ∈W .

Computing the image and kernel

Consider first the row space of A, that is, the vector space spanned by the rows
of A, or equivalently, the image of ρ in W .

We claim that the row space of A is the same as the row space of B. To see
this, note that for any v ∈ V , since B = MA, we have vB = v(MA) = (vM)A,
and so the row space of B is contained in the row space of A. For the other
containment, note that since M is invertible, we can write A = M−1B, and
apply the same argument.

Further, note that row space of B, and hence that of A, clearly has dimension
r. Indeed, as stated in Theorem 15.8, the first r rows of B form a basis for the
row space of B.

Consider next the kernel of ρ, or what we might call the row null space of
A. We claim that the last m− r rows of M form a basis for ker(ρ). Clearly, just
from the fact that MA = B and the fact that the last m− r rows of B are zero,
it follows that the last m − r rows of M are contained in ker(ρ). Furthermore,
as M is invertible, its rows are linearly independent, and so it suffices to show
that the last m − r rows of M span the entire kernel. Since M is invertible,
its rows are linearly independent, and hence form a basis for V . Now, suppose
there were a vector v ∈ ker(ρ) which was not in the subspace spanned by the
last m − r rows of M . This means that v = a1M(1) + · · · + amM(m), where
ai 6= 0 for some 1 ≤ i ≤ r. Setting ṽ = (a1, . . . , am), we see that v = ṽM , and
so

ρ(v) = vA = (ṽM)A = ṽ(MA) = ṽB,

and from the fact that the first r rows of B are linearly independent and the last
m− r rows of B are zero, we see that wB is not the zero vector (and because ṽ
has a nonzero entry in one its first r positions). We have derived a contradiction,
and hence may conclude that the last m− r rows of M span ker(ρ).

Finally, note that if m = n, then A is invertible if and only if its row space
has dimension m, which holds if and only if r = m, and in the latter case, B
will be the identity matrix, and hence M is the inverse of A.

Let us summarize the above discussion:
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• The first r rows of B form a basis for the row space of A (i.e., the image
of ρ).

• The last m − r rows of M form a basis for the row null space of A (i.e.,
the kernel of ρ).

• If m = n, then A is invertible (i.e., ρ is an isomorphism) if and only if
r = m, in which case M is the inverse of A (i.e., the matrix representing
ρ−1).

So we see that from the output of the extended Gaussian elimination algo-
rithm, we can simply “read off” bases for both the image and the kernel, as well
as the inverse (if it exists), of a linear map represented as a matrix with respect
to some ordered bases. Also note that this procedure provides a more concrete
version of the statement of Theorem 14.36.

Solving linear systems of equations

Suppose that in addition to the matrix A, we are given w ∈ W , and want to
find a solution v (or perhaps describe all solutions v), to the equation

vA = w. (15.1)

Equivalently, we can phrase the problem as finding an element (or describing all
elements) of the set ρ−1(w).

Now, if there exists a solution at all, say v ∈ V , then since ρ(v) = ρ(ṽ) if
and only if v ≡ ṽ (mod ker(ρ)), it follows that the set of all solutions to (15.1)
is equal to the coset v + ker(ρ). Thus, given a basis for ker(ρ) and any solution
v to (15.1), we have a complete and concise description of the set of solutions to
(15.1).

As we have discussed above, the last m − r rows of M give us a basis for
ker(ρ), so it suffices to determine if w ∈ im(ρ), and if so, determine a single
pre-image v of w.

Also as we discussed, im(ρ), i.e., the row space of A, is equal to the row space
of B, and because of the special form of B, we can quickly and easily determine
if the given w is in the row space of B, as follows. Now, w is in the row space
of B iff there exists a vector v̄ ∈ V such that v̄B = w. We may as well assume
that all but the first r entries of v̄ are zero. Moreover, v̄B = w implies that for
1 ≤ i ≤ r, the ith entry if v̄ is equal to pith entry of w. Thus, the vector v̄,
if it exists, is completely determined by the entries of w at positions p1, . . . , pr.
We can construct v̄ satisfying these conditions, and then test if v̄B = w. If not,
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then we may conclude that (15.1) has no solutions; otherwise, setting v := v̄M ,
we see that vA = (v̄M)A = v̄(MA) = v̄B = w, and so v is a solution to (15.1).

One easily verifies that if we implement the above procedure as an algo-
rithm, the work done in addition to running the extended Gaussian elimination
algorithm amounts to O(m(n+m)) operations in F .

A special case of the above procedure is when m = n and A is invertible, in
which case (15.1) has a unique solution, namely, v := wM , since in this case,
M = A−1.

The rank of a matrix

Define the row rank of A to be the dimension of its row space, i.e., dimF (im(ρ)),
and define the column rank of A to be the dimension of its column space,
i.e., the space spanned by the column of A.

Now, the column space A may not be the same as the column space of B, but
from the relation B = MA, and the fact that M is invertible, it easily follows
that these two subspaces are isomorphic, and hence have the same dimension.
Moreover, by Theorem 15.8, the column rank of B is r, which is the same as the
row rank of A.

So we may conclude: The column rank and row rank of A are the same.
Because of this, we define the rank of a matrix to be the common value of

its row and column rank.

The orthogonal compliment of a subspace

So as to give equal treatment to rows and columns, one can also define the
column null space of A to be the kernel of the linear map defined by multi-
plication on the left by A. By applying results above to the transpose of A, we
see that the column null space of A has dimension n− r, where r is the rank of
A.

Let U ⊆ W denote the row space of A, and let Ū ⊆ W denote the set of all
vectors ū ∈W whose transpose ū> belong to the column null space of A. Now,
U is a subspace of W of dimension r and Ū is a subspace of W of dimension
n− r.

Moreover, if U ∩ Ū = {0V }, then by Theorem 14.22 we have an isomorphism
of U × Ū with U + Ū , and since U × Ū has dimension n, it must be the case
that U + Ū =W . It follows that every element of W can be expressed uniquely
as u+ ū, where u ∈ U and ū ∈ Ū .

Now, all of the conclusions in the previous paragraph hinged on the as-
sumption that U ∩ Ū = {0V }. The space Ū consists precisely of all vectors
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ū ∈W which are “orthogonal” to all vectors u ∈ U , in the sense that the “inner
product” uū> is zero.. For this reason, Ū is sometimes called the “orthogonal
compliment of U .” The condition U ∩ Ū = {0V } is equivalent to saying that
U contains no non-zero “self-orthogonal vectors” u such that uu> = 0F . If F
is the field of real numbers, then of course there are no self-orthogonal vectors,
since uu> is the sum of the squares of the entries of u. However, for other fields,
there may very well be self-orthogonal vectors. As an example, if F = Z2, then
any vector u with an even number of 1-entries is self orthogonal.

So we see that while much of the theory of vector spaces and matrices car-
ries over without change from familiar ground fields, like the real numbers, to
arbitrary ground fields F , not everything does. In particular, the usual decom-
position of a vector space into a subspace and its orthogonal compliment breaks
down, as does any other procedure that relies on properties specific to “inner
product spaces.”

Exercise 15.10 With A and B as above, show that the column null space of
A is the same as the column null space of B. 2

Exercise 15.11 Show how to compute a basis for the column null space of A
using O(r(n− r)) operations in F , given A and B as above. 2

Exercise 15.12 With A and B as above, show that the matrix B is uniquely
determined by A; more precisely, show that if M ′A = B′, where M ′ is an
invertible m ×m matrix, and B′ is in reduced row echelon form, then B ′ = B.
2

In the following two exercises, the theory of determinants could be used;
however, they can all be solved directly, without too much difficulty, using just
the ideas developed in the text.

Exercise 15.13 Let p be a prime. A matrix A ∈ Zn×n is called invertible
modulo p if and only if there exists a matrix B ∈ Zn×n such that AB ≡ BA ≡
I (mod p), where I is the n × n integer identity matrix. Here, two matrices
are considered congruent with respect to a given modulus if and only if their
corresponding entries are congruent. Show that A is invertible modulo p if and
only if

(1) A is invertible over Q, and

(2) the entries of A−1 lie in Q(p) (see Example 9.29).

2
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Exercise 15.14 You are given a matrix A ∈ Zn×n and a prime p such that A
is invertible modulo p. Suppose that you are also given w ∈ Z1×n.

(a) Show how to efficiently compute a vector v ∈ Z1×n such that vA =
w (mod p), and that v is uniquely determined modulo p.

(b) Given a vector v as in part (a), along with an integer e ≥ 1, show how
to efficiently compute v̂ ∈ Z1×n such that v̂A = w (mod pe), and that v̂
is uniquely determined modulo pe. Hint: mimic the “lifting” procedure
discussed in §13.3.2.

(c) Using parts (a) and (b), design and analyze an efficient algorithm that
takes the matrix A and the prime p as input, together with a bound B on
the absolute value of the numerator and denominator of the entries of the
vector v′ that is the unique (rational) solution to the equation v′A = w.
Your algorithm should run in time polynomial in the length of B, the
length of p, and the sum of the lengths of the entries of A and w. Hint:
use rational reconstruction, but be sure to fully justify its application.

2

Note that in the previous exercise, one can use the theory of determinants
to derive good bounds, in terms of the lengths of the entries of A and w, on
the size of the least prime p such that A is invertible modulo p (assuming A is
invertible over the rationals), and the length of the numerator and denominator
of the entries of rational solution v′ to the equation v′A = w. The interested
reader who is familiar with the basic theory of determinants is encouraged to
establish such bounds.

15.6 Notes

While a trivial application of the defining formulas yields a simple algorithm for
multiplying two m ×m matrices over a ring R that uses O(m3) operations in
R, this algorithm is not the best asymptotically speaking. The currently fastest
algorithm for this problem, due to Coppersmith and Winograd [23], uses O(mω)
operations in R, where ω < 2.376. We note, however, that the good old O(m3)
algorithm is still the only one used in almost any practical setting.



Chapter 16

Subexponential-time Discrete
Logarithms and Factoring

This chapter presents subexponential-time algorithms for computing discrete
logarithms and for factoring. These algorithms are based on a common tech-
nique, which makes essential use of the notion of a smooth number.

16.1 Smooth Numbers

If y is a non-negative real number, and m is a positive integer, then we say that
m is y-smooth if all prime divisors of m are at most y.

For 0 ≤ y ≤ x, let us define Ψ(y, x) to be the number of y-smooth integers
up to x. The following theorem gives us a lower bound on Ψ(y, x), which will
be crucial in the analysis of our discrete logarithm and factoring algorithms.

Theorem 16.1 Let y be a function of x such that

y

log x
→∞ and u :=

log x

log y
→∞

as x→∞. Then

Ψ(y, x) ≥ x · exp[(−1 + o(1))u log log x].

Proof. Let us write u = buc + δ, where 0 ≤ δ < 1. Let us split the primes up
to y into two sets: the set V “very small” primes that are at most yδ/2, and the
other primes W that are greater than yδ/2 but at most y. To simplify matters,
let us also include the integer 1 in the set V .

265
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By Theorem 5.11 (Bertrand’s Postulate), there exists a constant C > 0
such that |W | ≥ Cy/ log y for sufficiently large y. By the assumption that
y/ log x→∞ as x→∞, it follows that |W | ≥ 2buc for sufficiently large x.

To derive the lower bound, we shall count those integers that can be built up
by multiplying together buc distinct elements ofW , together with one element of
V . These products are clearly distinct, y-smooth numbers, and each is bounded
by x, since each is at most ybucyδ = yu = x.

If S denotes the set of all of these products, then for x sufficiently large, we
have

|S| =

(|W |
buc

)

· |V |

=
|W |(|W | − 1) · · · (|W | − buc+ 1)

buc! · |V |

≥
( |W |

2u

)buc
· |V |

≥
(

Cy

2u log y

)buc
· |V |

=

(
Cy

2 log x

)u−δ
· |V |.

Taking logarithms, we have

log |S| ≥ (u− δ)(log y − log log x+ log(C/2)) + log |V |
= log x− u log log x+ (log |V | − δ log y) +O(u+ log log x).(16.1)

To prove the theorem, it suffices to show that

log |S| ≥ log x− (1 + o(1))u log log x.

Under our assumption that u → ∞, the term O(u + log log x) in (16.1) is
o(u log log x), and so it will suffice to show that the term log |V | − δ log y is also
o(u log log x). But by Theorem 5.2 (Chebyshev’s Theorem), for some positive
constant D, we have

Dyδ/ log y ≤ |V | ≤ yδ,

and taking logarithms, and again using the fact that u→∞, we have

log |V | − δ log y = O(log log y) = o(u log log x).

2
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16.2 An Algorithm for Discrete Logarithms

We now present a probabilistic, subexponential-time algorithm for computing
discrete logarithms. The input to the algorithm is p, q, γ, α, where p and q are
primes, with q | (p− 1), γ is an element of Z∗p generating a subgroup G of order
q, and α ∈ G.

We shall make the simplifying assumption that q2 - (p−1), which is equivalent
to saying that q - m := (p− 1)/q. This assumption greatly simplifies the design
and analysis of the algorithm, and moreover, for cryptographic applications, this
assumption is almost always satisfied. We note, however, that this assumption
may be lifted, but the algorithms in this case are significantly more complicated.

At a high level, the main goal of our discrete logarithm algorithm is to
find a random representation of 1 with respect to γ and α — as discussed in
Exercise 11.13, this allows us to compute logγ α (with high probability).

Let G′ be the subgroup of Z∗p of order m. Our assumption that q - m implies
that G∩G′ = {1}, since the order of any element in the intersection must divide
both q and m, and so the only possibility is that the order is 1. Therefore, the
map ρ : G × G′ → Z∗p that sends (β, δ) to βδ is injective (Theorem 8.57), and
since |Z∗p| = qm, it must be surjective as well.

We shall use this fact in the following way: if β is chosen uniformly at random
from G, and δ is chosen uniformly at random from G′ (and independent of β),
then βδ is uniformly distributed over Z∗p. Furthermore, since G′ is the image of
the q-power map on Z∗p, we may generate a random δ ∈ G′ simply by choosing

δ̂ ∈ Z∗p at random, and setting δ := δ̂q.

The discrete logarithm algorithm uses a “smoothness parameter” y, whose
choice will be discussed below when we analyze the running time of the algo-
rithm; for now, we only assume that y < p. Let p1, . . . , pk be an enumeration
of the primes up to y. Let πi := [pi mod p] ∈ Z∗p for i = 1, . . . , k. Let us write
ā to denote the image of an integer a in Zq, and similarly, for a vector v with
integer entries, v̄ denotes its image as a vector with entries in Zq.

The algorithm has two stages.
In the first stage, we find relations of the form

γriαsiδi = πei11 . . . πeikk , (16.2)

for integers ri, si, ei1, . . . , eik, and δi ∈ G′, and i = 1, . . . , k + 1.
We obtain one such relation by a randomized search, as follows: we choose

ri, si ∈ {0, . . . , q− 1} at random, as well as δ̂i ∈ Z∗p at random; we then compute
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δi := δ̂qi , βi := γriαsi , and mi := rep(βiδi). Now, the value βi is uniformly dis-
tributed over G, while δi is uniformly distributed over G′; therefore, the product
βiδi is uniformly distributed over Z∗p, and hence mi is uniformly distributed over
{1, . . . , p− 1}. Next, we simply try to factor mi by trial division, trying all the
primes p1, . . . , pk up to y. If we are lucky, we completely factor mi in this way,
obtaining a factorization

mi = pei11 · · · peikk ,

for some exponents ei1, . . . , eik, and we get the relation (16.2). If we are unlucky,
then we simply try (and try again) until we are lucky.

For i = 1, . . . , k+1, let vi := (ei1, . . . , eik) ∈ Z×k. The vectors v̄1, . . . , v̄k+1 ∈
Z×kq must be linearly dependent, and the second stage uses Gaussian elimination
over the field Zq (see §15.4) to find integers c1, . . . , ck+1 ∈ {0, . . . , q− 1}, not all
zero, such that c̄1v̄1 + · · ·+ c̄k+1v̄k+1 = 0. Let

(e1, . . . , ek) := c1v1 + · · · ck+1vk+1 ∈ Z×k.

Raising each equation (16.2) to the power ci, and multiplying them all together,
we obtain

γrαsδ = πe11 · · ·πekk ,
where

r :=
k+1∑

i=1

ciri, s :=
k+1∑

i=1

cisi, and δ :=
k+1∏

i=1

δcii .

Now, δ ∈ G′, and since each ei is a multiple of q, we also have πeii ∈ G′

for i = 1, . . . , k. It follows that γrαs ∈ G′. But since γrαs ∈ G as well, and
G ∩ G′ = {1}, it follows that γrαs = 1. If we are lucky (and we will be with
overwhelming probability, as we discuss below), we will have s 6≡ 0 (mod q), in
which case, we can compute a multiplicative inverse s′ of s modulo q, obtaining

α = γ−rs
′

,

and hence −rs′ rem q is the discrete logarithm of α to the base γ. If we are very
unlucky, we will have s ≡ 0 (mod q), at which point the algorithm simply quits,
reporting “failure.”

The entire algorithm, called algorithm SEDL, is presented in Figure 16.1.
As already argued above, if algorithm SEDL does not output “failure,” then

its output is indeed the discrete logarithm of α to the base γ. There remain
three questions to answer:

1. What is the expected running time of algorithm SEDL?
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i← 0
repeat

i← i+ 1
repeat

choose ri, si ∈ {0, . . . , q − 1} at random
choose δ̂i ∈ Z∗p at random

βi ← γriαsi , δi ← δ̂qi , mi ← rep(βiδi)
test if mi is y-smooth (trial division)

until mi = pei11 · · · peikk for some integers ei1, . . . , eik
until i = k + 1

set vi ← (ei1, . . . , eik) ∈ Z×k for i = 1, . . . , k + 1

apply Gaussian elimination to find integers c1, . . . , ck+1 ∈ {0, . . . , q − 1},
not all zero, such that c̄1v̄1 + · · ·+ c̄k+1v̄k+1 = 0.

r ←∑k+1
i=1 ciri, s←∑k+1

i=1 cisi

if s ≡ 0 (mod q) then
output “failure”

else
compute a multiplicative inverse s′ of s modulo q
output −rs′ rem q

Figure 16.1: Algorithm SEDL

2. How should the smoothness parameter y be chosen so as to minimize the
expected running time?

3. What is the probability that algorithm SEDL outputs “failure”?

Let us address these questions in turn. As for the expected running time, let
σ be the probability that a random element of {1, . . . , p− 1} is y-smooth. Then
the expected number of attempts needed to produce a single relation is σ−1, and
so the expected number of attempts to produce k + 1 relations is (k + 1)σ−1.
In each attempt, we perform trial division using p1, . . . , pk, along with a few
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other minor computations, leading to a total expected running time in stage 1
of k2σ−1 · (log p)O(1). The running time in stage 2 is dominated by that of the
Gaussian elimination step, which takes time k3 · (log p)O(1). Thus, if T is the
total running time of the algorithm, then we have

E[T ] ≤ (k2σ−1 + k3) · (log p)O(1). (16.3)

Let us assume for the moment that

y = exp[(log p)λ+o(1)] (16.4)

for some constant λ with 0 < λ < 1. Our final choice of y will indeed satisfy
this assumption. Consider the probability σ. We have

σ = Ψ(y, p− 1)/(p− 1) = Ψ(y, p)/(p− 1) ≥ Ψ(y, p)/p,

where for the second equality we use the assumption that y < p, so p is not
y-smooth. With our assumption (16.4), we may apply Theorem 16.1 (with the
given value of y and x := p), obtaining

σ ≥ exp[(−1 + o(1))(log p/ log y) log log p].

By Theorem 5.2 (Chebyshev’s Theorem), we know that k = Θ(y/ log y), and
so log k = (1 + o(1)) log y. Moreover, assumption (16.4) implies that the factor
(log p)O(1) in (16.3) is of the form exp[o(min(log y, log p/ log y))], and so we have

E[T ] ≤ exp[(1 + o(1))max{(log p/ log y) log log p+ 2 log y, 3 log y}]. (16.5)

Let us find the value of y that minimizes the right-hand side of (16.5), ig-
noring the “o(1)” terms. Let µ := log y, A := log p log log p, S1 := A/µ+ 2µ,
and S2 := 3µ. We want to find µ that minimizes max{S1, S2}. Using a little
calculus, one sees that S1 is minimized at µ = (A/2)1/2. With this choice of µ,
we have S1 = (2

√
2)A1/2 and S2 = (3/

√
2)A1/2 < S1. Thus, choosing

y = exp[(1/
√
2)(log p log log p)1/2],

we obtain
E[T ] ≤ exp[(2

√
2 + o(1))(log p log log p)1/2].

That takes care of the first two questions, although strictly speaking, we have
only obtained an upper bound for the expected running time, and we have not
shown that the choice of y is actually optimal, but we shall nevertheless content
ourselves (for now) with these results. Finally, we deal with the third question,
on the probability that the algorithm outputs “failure.”



16.2. An Algorithm for Discrete Logarithms 271

Lemma 16.2 The probability that the algorithm outputs “failure” is 1/q.

Proof. Consider the values ri, si, and βi generated in the inner loop in stage 1.
It is easy to see that, as random variables, the values si and βi are independent,
since conditioned on any fixed choice of si, the value ri is uniformly distributed
over {0, . . . , q − 1}, and hence βi is uniformly distributed over G. Turning
this around, we see that conditioned on any fixed choice of βi, the value si is
uniformly distributed over {0, . . . , q − 1}.

So now let us condition on any fixed choice of values βi and δi, for i =
1, . . . , k+1, that give rise to y-smooth integers. By the remarks in the previous
paragraph, we see that in this conditional probability distribution, the variables
s̄i are mutually independent and uniformly distributed over Zq, and moreover,
the behavior of the algorithm is completely determined, and in particular, the
values c̄1, . . . , c̄k+1 are fixed. Therefore, in this conditional probability distribu-
tion, the probability that the algorithm outputs failure is just the probability
that

∑

i s̄ic̄i = 0, which is 1/q, since not all the c̄i’s are zero. Since this equality
holds for every choice of βi and δi, the lemma follows. 2

Let us summarize the above discussion in the following theorem.

Theorem 16.3 With the smoothness parameter set as

y := exp[(1/
√
2)(log p log log p)1/2],

the expected running time of algorithm SEDL is

exp[(2
√
2 + o(1))(log p log log p)1/2].

The probability that algorithm SEDL outputs “failure” is 1/q.

Note that in the description and analysis of algorithm SEDL, we have as-
sumed that the primes p1, . . . , pk were pre-computed. Of course, we can con-
struct this list of primes using, for example, the Sieve of Eratosthenes (see §5.4),
and the running time of this pre-computation will be dominated by the running
time of algorithm SEDL.

Note that in the analysis of algorithm SEDL, we relied crucially on the fact
that in generating a relation, each candidate element γriαsiδi was uniformly dis-
tributed over Z∗p. If we simply left out the δi, then the candidate element would
be uniformly distributed over the subgroup G, and Theorem 16.1 simply would
not apply. Although the algorithm might anyway work as expected, we would
not be able to prove this. Of course, this problem would go away if we instead
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worked with a generator for the whole group Z∗p, rather than just the prime order
subgroup G. However, this approach creates other problems; namely, instead
of doing linear algebra over the field Zq, we would have to do linear algebra
over the ring Zp−1, and this leads to a whole host of technical difficulties, all
of which can be overcome, but the resulting algorithms are significantly more
complicated than the one presented here.

Exercise 16.4 Let n = pq, where p and q are distinct, large primes. Let e be
a prime, with e < n and e - (p − 1)(q − 1). Let x be a positive integers, with
x < min{p, q}. Suppose you are given n (but not its factorization!) along with e
and x. In addition, you are given access to two “oracles,” which you may invoke
as often as you like.

The first oracle is a “challenge oracle”: each invocation of the oracle produces
a “challenge” a ∈ {1, . . . , x} — distributed uniformly and independently of all
other challenges.

The second oracle is a “solution oracle”: you invoke this oracle with the
index of a previous challenge oracle; if the corresponding challenge was a, the
solution oracle returns the eth root of a modulo n, i.e., b ∈ {1, . . . , n− 1} such
that be ≡ a (mod n) — note that b always exists and is uniquely determined.

Let us say that you “win” if you are able to compute the eth root modulo n
of any challenge, but without invoking the solution oracle with the corresponding
index of the challenge (otherwise, winning would be trivial, of course).

(a) Design a probabilistic algorithm that wins the above game, using an ex-
pected number of

exp[(c+ o(1))(log x log log x)1/2] · len(n)O(1)

steps, for some constant c, where a “step” is either a computation step or
an oracle invocation (either challenge or solution).

(b) Suppose invocations of the challenge oracle are “cheap,” while invocations
of the solution oracle are relatively “expensive.” How would you modify
your strategy in part (a)?

2

Exercise 16.4 has implications in cryptography. A popular way of imple-
menting a public-key primitive known as a “digital signature” works as follows:
to digitally sign a message M (which may be an arbitrarily long bit string), first
apply a “hash function” or “message digest” H to M , obtaining an integer a in
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some fixed range {1, . . . , x}, and then computer the signature of M as the eth
root b of a modulo n. One can prove the security of this signature scheme by
assuming that it is hard to compute the eth root of a random number modulo n,
and by making the heuristic assumption that H is a random function (see §16.5).
However, for this proof to work, the value of x must be close to n; otherwise,
if x is significantly smaller than n, as the result of this exercise, one can break
the signature scheme at a cost that is roughly the same as the cost of factoring
numbers around the size of x, rather than the size of n.

16.3 An Algorithm for Factoring Integers

We now present a probabilistic, subexponential-time algorithm for factoring in-
tegers. The algorithm uses techniques very similar to those used in algorithm
SEDL in §16.2.

Let n > 1 be the integer we want to factor. We make a few simplifying
assumptions. First, we assume that n is odd — this is not a real restriction,
since we can always pull out any factors of 2 in a pre-processing step. Second, we
assume that n is not a perfect power, i.e., not of the form ab for integers a > 1
and b > 1 — this is also not a real restriction, since we can always partially
factor n using the algorithm in §10.5 if n is a perfect power. Third, we assume
that n is not prime — this may be efficiently checked using, say, the Miller-Rabin
test (see §10.3). Fourth, we assume that n is not divisible by any primes up to a
“smoothness parameter” y — we can ensure this using trial division, and it will
be clear that the running time of this pre-computation is dominated by that of
the algorithm itself.

With these assumptions, the prime factorization of n is of the form

n = qf11 · · · qfww ,

where the qi’s are distinct, odd primes, all greater than y, the fi’s are positive
integers, and w > 1.

The main goal of our factoring algorithm is to find a random square root of
1 in Zn. Let

ρ : Z
q
f1
1

× · · · × Z
qfww
→ Zn

be the ring isomorphism of the Chinese Remainder Theorem. The square roots
of 1 in Zn are precisely those elements of the form ρ(±1, . . . ,±1), and if β is
a random square root of 1, then with probability 1 − 2−w+1 ≥ 1/2, it will be
of the form β = ρ(β1, . . . , βw), where the βi’s are neither all 1 nor all −1 (i.e.,
β 6= ±1). If this happens, then β − 1 = ρ(β1 − 1, . . . , βw − 1), and so we see
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that some, but not all, of the values components βi − 1 will be zero. The value
of gcd(rep(β − 1), n) is precisely the product of the prime powers qfii such that
βi − 1 = 0, and hence this gcd will yield a non-trivial factorization of n, unless
β = ±1.

Let p1, . . . , pk be the primes up to the smoothness parameter y mentioned
above. Let πi := [pi mod n] ∈ Z∗n for i = 1, . . . , k. Let us write ā to denote the
image of an integer a in Z2, and likewise, for a vector v with integer entries, v̄
denotes its image as a vector with entries in Z2.

We first describe a simplified version of the algorithm, after which we modify
the algorithm slightly to deal with a technical problem. Like algorithm SEDL,
this algorithm proceeds in two stages. In the first stage, we find relations of the
form

α2i = πei11 · · ·πeikk , (16.6)

for αi ∈ Z∗n, and i = 1, . . . , k + 1.
We can obtain such a relation by randomized search, as follows: we select

αi ∈ Z∗n at random, square it, and try to factor mi := rep(α2i ) by trial division,
trying all the primes p1, . . . , pk up to y. If we are lucky, we obtain a factorization

mi = pei11 · · · peikk ,

for some exponents ei1, . . . , eik, yielding the relation (16.6).
For i = 1, . . . , k + 1, let vi := (ei1, . . . , eik) ∈ Z×k. The vectors

v̄1, . . . , v̄k+1 ∈ Z×k2 must be linearly independent, and the second stage uses
Gaussian elimination to find integers c1, . . . , ck+1 ∈ {0, 1}, not all zero, such
that c̄1v̄1 + · · ·+ c̄k+1v̄k+1 = 0. Let

(e1, . . . , ek) := c1v1 + · · · ck+1vk+1 ∈ Z×k.

Raising each equation (16.6) to the power ci, and multiplying them all together,
we obtain

α2 = πe11 · · ·πekk ,
where

α :=
k+1∏

i=1

αcii .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2k α−1,

and we see that β is a square root of 1 in Zn. A more careful analysis (see
below) shows that in fact, β is uniformly distributed over all square roots of 1,
and hence, with probability at least 1/2, if we compute gcd(rep(β − 1), n), we
get a non-trivial factor of n.
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That is the basic idea of the algorithm. There is, however, a technical prob-
lem. Namely, in the method outlined above for generating a relation, we attempt
to factor mi := rep(α2i ). Thus, the running time of the algorithm will depend
in a crucial way on the probability that a random square modulo n is y-smooth.
Unfortunately for us, our Theorem 16.1 does not say anything about this situ-
ation — it only applies to the situation where a number is chosen at random
from an interval [1, x]. There are (at least) three different ways to address this
problem:

1. Ignore it, and just assume that the bounds in Theorem 16.1 apply to
random squares modulo n (taking x := n in the theorem).

2. Prove a version of Theorem 16.1 that applies to random squares modulo
n.

3. Modify the factoring algorithm, so that Theorem 16.1 applies.

The first choice, while not completely unreasonable, is not very mathematically
satisfying. It turns out that the second choice is a indeed a viable option (i.e., the
theorem is true and is not so difficult to prove), but we opt for the third choice,
as it is somewhat easier to carry out, and illustrates a probabilistic technique
that is more generally useful.

So here is how we modify the basic algorithm. Instead of generating relations
of the form (16.6), we generate relations of the form

α2i δ = πei11 · · ·πeikk , (16.7)

for δ ∈ Z∗n, αi ∈ Z∗n, and i = 1, . . . , k + 2. Note that the value δ is the same in
all relations.

We generate these relations as follows. For the very first relation (i.e., i = 1),
we repeatedly choose α1 and δ in Z∗n at random, until rep(α21δ) is y-smooth.
Then, after having found the first relation, we find subsequent relations (i.e.,
for i > 1) by repeatedly choosing αi in Z∗n at random until rep(α2i δ) is random,
where δ is the same value that was used in the first relation. Now, Theorem 16.1
will apply directly to determine the success probability of each attempt to gener-
ate the first relation. Having found this relation, the value α21δ will be uniformly
distributed over all y-smooth elements of Z∗n (i.e., elements whose integer repre-
sentations are y-smooth). Consider the various cosets of (Z∗n)

2 in Z∗n. Intuitively,
it is much more likely that a random y-smooth element of Z∗n lies in a coset that
contains many y-smooth elements, rather than a coset with very few, and in-
deed, it is reasonably likely that the fraction of y-smooth elements in the coset
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containing δ is not much less than the overall fraction of y-smooth elements in
Z∗n. Therefore, for i > 1, each attempt to find a relation should succeed with
reasonably high probability. This intuitive argument will be made rigorous in
the analysis to follow.

The second stage is then modified as follows. For i = 1, . . . , k + 2, let vi :=

(ei1, . . . , eik, 1) ∈ Z×(k+1). The vectors v̄1, . . . , v̄k+2 ∈ Z
×(k+1)
2 must be linearly

independent, and we use Gaussian elimination to find integers c1, . . . , ck+2 ∈
{0, 1}, not all zero, such that c̄1v̄1 + · · ·+ c̄k+2v̄k+2 = 0. Let

(e1, . . . , ek+1) := c1v1 + · · ·+ ck+2vk+2 ∈ Z×(k+1).

Raising each equation (16.7) to the power ci, and multiplying them all together,
we obtain

α2δek+1 = πe11 · · ·πekk ,
where

α :=
k+2∏

i=1

αcii .

Since each ei is even, we can compute

β := π
e1/2
1 · · ·πek/2k δ−ek+1/2α−1,

which is a square root of 1 in Zn.
The entire algorithm, called algorithm SEF, is presented in Figure 16.2.
Now the analysis. From the discussion above, it is clear that algorithm SEF

either outputs “failure,” or outputs a non-trivial factor of n. So we have the
same three questions to answer as we did in the analysis of algorithm SEDL:

1. What is the expected running time of algorithm SEF?

2. How should the smoothness parameter y be chosen so as to minimize the
expected running time?

3. What is the probability that algorithm SEF outputs “failure”?

To answer the first question, let σ denote the probability that a random
element of Z∗n is y-smooth. For i = 1, . . . , k + 2, let Xi denote the number
iterations of the inner loop of stage 1 in the ith iteration of the main loop, i.e.,
Xi is the number of attempts made in finding the ith relation.

Lemma 16.5 We have
E[Xi] = σ−1

for i = 1, . . . , k + 2.
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i← 0
repeat

i← i+ 1
repeat

choose αi ∈ Z∗n at random
if i = 1 then choose δ ∈ Z∗n at random
mi ← rep(α2i δ)
test if mi is y-smooth (trial division)

until mi = pei11 · · · peikk for some integers ei1, . . . , eik
until i = k + 2

set vi ← (ei1, . . . , eik, 1) ∈ Z×(k+1) for i = 1, . . . , k + 2

apply Gaussian elimination to find integers c1, . . . , ck+2 ∈ {0, 1},
not all zero, such that c̄1v̄1 + · · ·+ c̄k+2v̄k+2 = 0.

set (e1, . . . , ek+1)← c1v1 + · · ·+ ck+2vk+2

α←∏k+2
i=1 α

ci
i , β ← π

e1/2
1 · · ·πek/2k δ−ek+1/2α−1

if β = ±1 then
output “failure”

else
output gcd(rep(β − 1), n)

Figure 16.2: Algorithm SEF

Proof. We first compute E[X1]. As δ is chosen uniformly from Z∗n and indepen-
dent of α1, at each attempt to find a relation, α21δ is uniformly distributed over
Z∗n, and hence the probability that the attempt succeeds is precisely σ. This
means E[X1] = σ−1.

We next compute E[Xi] for i > 1. To this end, let us denote the cosets of
(Z∗n)

2 in Z∗n as C1, . . . , Ct. As it happens, t = 2w, but this fact plays no role
in the analysis. For j = 1, . . . , t, let σj denote the probability that a random
element of Cj is y-smooth, and let τj denote the probability that the value of δ
determined in finding the first relation belongs to Cj .

We claim that for j = 1, . . . , t, we have τj = σjσ
−1t−1. To see this, note that
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each coset Cj has the same number of elements, namely, |Z∗n|t−1, and so the
number of y-smooth elements in Cj is equal to σj |Z∗n|t−1. Moreover, the value
α21δ is uniformly distributed over all σ|Z∗n| of the y-smooth numbers in Z∗n, and
hence

τj =
σj |Z∗n|t−1
σ|Z∗n|

= σjσ
−1t−1,

which proves the claim.
Now, for a fixed value of δ and a random choice of αi ∈ Z∗n, one sees that α

2
i δ

is uniformly distributed over the coset containing δ. Therefore, for j = 1, . . . , t,
we have

E[Xi | δ ∈ Cj ] = σ−1j .

It follows that

E[Xi] =
t∑

j=1

E[Xi | δ ∈ Cj ] · P[δ ∈ Cj ]

=
t∑

j=1

σ−1j · τj

=
t∑

j=1

σ−1j · σjσ−1t−1

= σ−1,

which proves the lemma. 2

So in stage 1, the expected number of attempts made in generating a single
relation is σ−1, each such attempt takes time k · (log n)O(1), and we have to
generate k + 2 relations, leading to a total expected running time in stage 1 of
σ−1k2 · (log n)O(1). Stage 2 is dominated by the cost of Gaussian elimination,
which takes time k3 · (log n)O(1). Thus, if T is the total running time of the
algorithm, we have

E[T ] ≤ (σ−1k2 + k3) · (log n)O(1).

By our assumption that n is not divisible by any primes up to y, all y-smooth
integers up to n − 1 are in fact relatively prime to n. Therefore, the number
of y-smooth elements of Z∗n is equal to Ψ(y, n − 1), and since n itself is not
y-smooth, this is equal to Ψ(y, n). From this, it follows that

σ = Ψ(y, n)/|Z∗n| ≥ Ψ(y, n)/n.
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The rest of the running time analysis is essentially the same as in the analysis
of algorithm SEDL; that is, assuming y = exp[(logn)λ+o(1)] for some constant
0 < λ < 1, we obtain

E[T ] ≤ exp[(1 + o(1))max{(log n/ log y) log log n+ 2 log y, 3 log y}]. (16.8)

Setting y = exp[(1/
√
2)(log n log log n)1/2], we obtain

E[T ] ≤ exp[(2
√
2 + o(1))(log n log logn)1/2].

That basically takes care of the first two questions. As for the third, we
have:

Lemma 16.6 The probability that the algorithm outputs “failure” is 2−w+1 ≤
1/2.

Proof. Let θ be the squaring map on Z∗n. By part (b) of Exercise 8.68, if
we condition on any fixed values of δ, α21, . . . , α

2
k+2 that give rise to y-smooth

integers, then in the resulting conditional probability distribution, the values
α1, . . . , αk+2 are mutually independent, with each αi uniformly distributed over
θ−1(α2i ). Moreover, these fixed values of δ, α21, . . . , α

2
k+2 completely determine

the behavior of the algorithm, and in particular, the values of c1, . . . , ck+2, α
2,

and e1, . . . , ek+1. By part (d) of Exercise 8.68, it follows that α is uniformly
distributed over θ−1(α2), and also that β is uniformly distributed over θ−1(1).
Thus, in this conditional probability distribution, β is a random square root of 1,
and so β = ±1 with probability 2−w+1. Since this holds for all relevant choices
of δ, α21, . . . , α

2
k+2, it also holds unconditionally. Finally, since we are assuming

that w > 1, we have 2−w+1 ≤ 1/2. 2

Let us summarize the above discussion in the following theorem.

Theorem 16.7 With the smoothness parameter set as

y := exp[(1/
√
2)(log n log log n)1/2],

the expected running time of algorithm SEF is

exp[(2
√
2 + o(1))(log n log log n)1/2].

The probability that algorithm SEF outputs “failure” is at most 1/2.
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Exercise 16.8 It is perhaps a bit depressing that after all that work, algorithm
SEF only succeeds (in the worst case) with probability 1/2. Of course, to reduce
the failure probability, we can simply repeat the entire computation — with `
repetitions, the failure probability drops to 2−`. However, there is a better way
to reduce the failure probability. Suppose that in stage 1, instead of collecting
k+2 relations, we collect k+1+` relations, where ` ≥ 1 is an integer parameter.

(a) Show that in stage 2, we can use Gaussian elimination to find integer
vectors

c(j) := (c
(j)
1 , . . . , c

(j)
k+1+`) ∈ {0, 1}×(k+1+`) (j = 1, . . . , `)

such that the vectors c̄(1), . . . , c̄(`) ∈ Z
×(k+1+`)
2 are linearly independent

and satisfy

c̄
(j)
1 v̄1 + . . .+ c̄

(j)
k+1+`v̄k+1+` = 0 (j = 1, . . . , `).

(b) Show that given vectors c(1), . . . , c(`) as in part (a), if for j = 1, . . . , `, we
set

(e
(j)
1 , . . . , e

(j)
k+1)← c

(j)
1 v1 + . . .+ c

(j)
k+1+`vk+1+`,

α(j) ←
k+1+`∏

i=1

α
c
(j)
i
i ,

and

β(j) ← π
e
(j)
1 /2
1 · · ·πe

(j)
k /2

k δ−e
(j)
k+1/2(α(j))−1,

then the values β(1), . . . , β(`) are independent and uniformly distributed
over the set of all square roots of 1 in Zn, and hence at least one of
gcd(rep(β(j) − 1), n) splits n with probability at least 1− 2−`.

So, for example, if we set ` = 20, then the failure probability is reduced to less
than one in a million, while the increase in running time over algorithm SEF
will hardly be noticeable. 2

16.4 Practical Improvements

Our presentation and analysis of algorithms for discrete logarithms and factoring
was geared towards simplicity and mathematical rigor. However, if one really
wants to compute discrete logarithms or factor numbers, then a number of im-
portant practical improvements should be considered. In this section, we sketch
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some of these improvements, focusing our attention on algorithms for factoring
numbers (although some of the techniques apply to discrete logarithms as well).
Unlike the other sections in this chapter, this section is more of a survey of
results and techniques.

16.4.1 Better smoothness density estimates

From an algorithmic point of view, the simplest way to improve the running
times of both algorithms SEDL and SEF is to use a more accurate smoothness
density estimate, which dictates a different choice of the smoothness bound y
in those algorithms, speeding them up significantly. While our Theorem 16.1 is
a valid lower bound on the density of smooth numbers, it is not “tight,” in the
sense that the actual density of smooth numbers is somewhat higher. We quote
from the literature the following result:

Theorem 16.9 Let y be a function of x such that for some ε > 0, we have

y = Ω((log x)1+ε) and u :=
log x

log y
→∞

as x→∞. Then

Ψ(y, x) = x · exp[(−1 + o(1))u log u].

Proof. See §16.5. 2

Let us apply this result to the analysis of algorithm SEF. Assume that y =
exp[(log n)1/2+o(1)] — our choice of y will in fact be of this form. With this
assumption, we have log log y = (1/2 + o(1)) log log n, and using Theorem 16.9,
we can improve the inequality (16.8), obtaining instead (verify)

E[T ] ≤ exp[(1 + o(1))max{(1/2)(log n/ log y) log logn+ 2 log y, 3 log y}].

From this, if we set

y := exp[(1/2)(log n log log n)1/2)],

we obtain
E[T ] ≤ exp[(2 + o(1))(log n log log n)1/2].

An analogous improvement can be obtained for algorithm SEDL.
Although this improvement reduces the constant 2

√
2 ≈ 2.828 to 2, the

constant is in the exponent, and so this improvement is not to be scoffed at!
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16.4.2 The Quadratic Sieve Algorithm

We now describe a practical improvement to algorithm SEF. This algorithm,
known as the Quadratic Sieve, is faster in practice than algorithm SEF; however,
the analysis of its running time is somewhat heuristic.

First, let us return to the simplified version of algorithm SEF, where we
collect relations of the form (16.6). Furthermore, instead of choosing the values
αi at random, we will choose them in a special way, as we now describe. Let

ñ := b√nc,
and define the polynomial

F := (X+ ñ)2 − n ∈ Z[X].

In addition to the usual “smoothness parameter” y, we need a “sieving param-
eter” z, whose choice will be discussed below. We shall assume that both y and
z are of the form exp[(log n)1/2+o(1)], and our ultimate choices of y and z will
indeed satisfy this assumption.

For all integers s = 1, 2, . . . , bzc, we shall determine for which values of s the
corresponding value F (s) is y-smooth — note that for s > 0, we have F (s) > 0.
For each such s, since we have F (s) ≡ (s + ñ)2 (mod n), this gives us one
relation of the form (16.6), with αi := [(s+ ñ) mod n]. If this procedure yields
at least k+1 values of s such that F (s) is smooth, then we can apply Gaussian
elimination as usual to find a square root β of 1 in Zn. Hopefully, we will have
β 6= ±1, allowing us to split n.

Observe that for 1 ≤ s ≤ z, we have

F (s) = (s+ ñ)2 − n = s2 + 2sñ+ ñ2 − n ≤ z2 + 2zn1/2,

and so we have
F (s) ≤ n1/2+o(1).

Now, although the values F (s) are not at all random, we might expect heuristi-
cally that the number of integers s up to z such that F (s) is y-smooth is roughly
equal to σ̂z, where σ̂ is the probability that a random integer in the interval
[1, n1/2] is y-smooth, i.e.,

σ̂ = exp[(−1/4 + o(1))(log n/ log y) log log n].

This already gives us an improvement over algorithm SEF, since now we are
looking for y-smooth numbers of size around n1/2, rather than of size around
n. But there is another improvement possible; namely, instead of testing each
individual number F (s) for smoothness using trial division, we can test them all
at once using the following “sieving procedure”:
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Create a vector v[1 . . . bzc], and initialize v[s] to F (s), for 1 ≤ s ≤ z.
For each prime p up to y, do the following:

1. Compute the roots of the polynomial F modulo p.

This can be done quite efficiently, as follows. For p = 2, F
has exactly one root mod p, which is determined by the parity
of ñ. For p > 2, we may use the familiar quadratic formula
together with an algorithm for computing square roots modulo
p, as discussed in Example 13.2. A quick calculation shows that
the discriminant of F is n, and thus, F has a root modulo p
if and only if n is a quadratic residue modulo p, in which case
it will have two roots (under our usual assumptions, we cannot
have p | n).

2. Assume that the distinct roots of F modulo p lying in the in-
terval [1, p] are ri, for i = 1, . . . , vp.

Note that vp = 1 for p = 2 and vp ∈ {0, 2} for p > 2. Also note
that F (s) ≡ 0 (mod p) if and only if s ≡ ri (mod p) for some
i = 1, . . . , vp.

For i = 1, . . . , vp, do the following:

s← ri
while s ≤ z do

repeat v[s]← v[s]/p until p - v[s]
s← s+ p

At the end of this sieving procedure, the values of s that are y-smooth may
be identified as precisely those such that v[s] = 1. The running time of this
sieving procedure is at most (log n)O(1) times

∑

p≤y

z

p
= z

∑

p≤y

1

p
= O(z log log y) = z1+o(1)

Here, we have made use of Theorem 5.14, although this is not really necessary
— for our purposes, the bound

∑

p≤y(1/p) = O(log y) would suffice. Note that

this sieving procedure is a factor of k1+o(1) faster than the method for finding
smooth numbers based on trial division. With just a little extra book-keeping,
we can not only identify the values s such that F (s) is smooth, but we can also
compute the factorization of F (s) into primes.

Now, let us put together all the pieces. We have to choose z just large enough
so as to find at least k + 1 values of s up to z such that F (s) is y-smooth. So
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we should choose z so that z ≈ k/σ̂ — in practice, we could choose an initial
estimate for z, and if this choice of z does not yield enough relations, we could
keep doubling z until we do get enough relations. Assuming that z ≈ k/σ̂, the
cost of sieving is (k/σ̂)1+o(1), or

exp[(1 + o(1))(1/4)(log n/ log y) log log n+ log y].

The cost of Gaussian elimination is still O(k3), or

exp[(3 + o(1)) log y].

Thus, if T is the running time of the entire algorithm, we have

T ≤ exp[(1 + o(1))max{(1/4)(log n/ log y) log log n+ log y, 3 log y}].

Let µ := log y, A := (1/4) log n log logn, S1 := A/µ+µ and S2 := 3µ, and let
us find the value of µ that minimizes max{S1, S2}. Using a little calculus, one
finds that S1 is minimized at µ = A1/2. For this value of µ, we have S1 = 2A1/2

and S2 = 3A1/2 > S1, and so this choice of µ is a bit larger than optimal. For
µ < A1/2, S1 is decreasing (as a function of µ), while S2 is always increasing. It
follows that the optimal value of µ is obtained by setting

A/µ+ µ = 3µ

and solving for µ. This yields µ = (A/2)1/2. So setting

y = exp[(1/(2
√
2))(log n log log n)1/2],

we have
T ≤ exp[(3/(2

√
2) + o(1))(log n log log n)1/2].

Thus, we have reduced the constant in the exponent from 2, for algorithm SEF
(using the more accurate smoothness density estimates), to 3/(2

√
2) ≈ 1.061.

We mention one final improvement. The matrix to which we apply Gaussian
elimination in stage 2 is “sparse”; indeed, since any integer less than n has
O(logn) prime factors, the total number of non-zero entries in the matrix is
k1+o(1). In this case, there are special algorithms for working with such sparse
matrices, which allow us to perform stage 2 of the factoring algorithm in time
k2+o(1), or

exp[(2 + o(1)) log y].

This gives us

T ≤ exp[(1 + o(1))max{(1/4)(log n/ log y) log log n+ log y, 2 log y}],
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and setting
y = exp[(1/2)(log n log log n)1/2]

yields
T ≤ exp[(1 + o(1))(log n log logn)1/2].

Thus, this improvement reduces the constant in the exponent from 3/(2
√
2) ≈

1.061 to 1. Moreover, the special algorithms designed to work with sparse ma-
trices typically use much less space than ordinary Gaussian elimination — even
if the input to Gaussian elimination is sparse, the intermediate matrices will
not be. We shall discuss in detail later, in §19.4, one such algorithm for solving
sparse systems of linear equations.

The Quadratic Sieve may fail to factor n, for one of two reasons: first, it
mail fail to find k+ 1 relations; second, it may find these relations, but in stage
2, it only finds a trivial square root of 1. There is no rigorous theory to say why
the algorithm should not fail for one of these two reasons, but experience shows
that the algorithm does indeed work as expected.

16.5 Notes

Many of the algorithmic ideas in this chapter were first developed for the problem
of factoring integers, and then later adapted to the discrete logarithm problem.
The first (heuristic) subexponential-time algorithm for factoring integers, called
the Continued Fraction Method (not discussed here), was introduced by Lehmer
and Powers [44], and later refined and implemented by Morrison and Brillhart
[52]. The first rigorously analyzed subexponential-time algorithm for factoring
integers was introduced by Dixon [28]. Our algorithm SEF is a variation of
Dixon’s algorithm, which works the same way as algorithm SEF, except that it
generates relations of the form (16.6) directly (and indeed, it is possible to prove a
variant of Theorem 16.1, and for that matter, Theorem 16.9, for random squares
modulo n). Our algorithm SEF uses an idea suggested by Rackoff (personal
communication).

Theorem 16.9 was proved by Canfield, Erdős, and Pomerance [18]. The
Quadratic Sieve was introduced by Pomerance [59]. Recall that the Quadratic
Sieve has a heuristic running time of

exp[(1 + o(1))(log n log log n)1/2].

This running time bound can also be achieved rigorously by a probabilistic
algorithm [46], and to date, this is the fastest rigorously analyzed factoring
algorithm. We should stress, however, that most practitioners in this field are
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not so much interested in rigorous running time analyses as they are in actually
factoring integers, and for such purposes, heuristic running time estimates are
quite acceptable. Indeed, the Quadratic Sieve is much more practical than the
algorithm in [46], which is mainly of theoretical interest.

There are two other factoring algorithms not discussed here, but that should
anyway at least be mentioned. The first is the Elliptic Curve Method, introduced
by Lenstra [45]. Unlike all of the other known subexponential-time algorithms,
the running time of this algorithm is sensitive to the sizes of the factors of n;
in particular, if p is the smallest prime dividing n, the algorithm will find p
(heuristically) in expected time

exp[(
√
2 + o(1))(log p log log p)1/2].

This algorithm is quite practical, and is the method of choice when it is known
(or suspected) that n has some small factors. It also has the advantage that it
uses only polynomial space (unlike all of the other known subexponential-time
factoring algorithms).

The second is the Number Field Sieve, the basic idea of which was intro-
duced by Pollard [58], and later generalized and refined by Buhler, Lenstra,
and Pomerance [17], as well as by others. The Number Field Sieve will split n
(heuristically) in expected time

exp[(c+ o(1))(log n)1/3(log log n)2/3],

where c is a constant (currently, the smallest value of c is 1.902 [22]). The Num-
ber Field Sieve is currently the asymptotically fastest known factoring algorithm
(at least, heuristically), and it is also practical, having been used to set the latest
factoring record — the factorization of a 512-bit integer that is the product of
two primes of about the same size (see Cavallar, et al. [20]).

As for subexponential-time algorithms for discrete logarithms, Adleman [1]
adapted the ideas used for factoring to the discrete logarithm problem, although
it seems that some of the basic ideas were known much earlier. Our algorithm
SEDL is a variation on this algorithm, and the basic technique is usually referred
to as the Index Calculus Method. Note that our restriction to subgroups of prime
order q such that q2 - (p − 1) greatly simplifies the linear algebra; otherwise,
things can get a bit tricky. The basic idea of the number field sieve was adapted
to the discrete logarithm problem by Gordon [31]; see also Adleman [2] and
Schirokauer, Weber, and Denny [64].

For many more details and references for subexponential-time algorithms for
factoring and discrete logarithms, see Chapter 6 of Crandall and Pomerance [25].
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For more details regarding the security of signature schemes, as discussed
following Exercise 16.4, see the paper by Bellare and Rogaway [12].

Last, but not least, we should mention the fact that there are in fact
polynomial-time algorithms for factoring and discrete logarithms; however, these
algorithms require special hardware, namely, a quantum computer. Shor [68, 69]
showed that these problems could be solved in polynomial time on such a device;
however, at the present time, it is unclear when and if such machines will ever
be built. Much, indeed most, of modern-day cryptography will crumble if this
happens, or if efficient “classical” algorithms for these problems are discovered
(which is still a real possibility).



Chapter 17

More Rings

This chapter develops a number of other concepts concerning rings. These con-
cepts will play important roles later in the text, and we prefer to discuss them
now, so as to avoid too many interruptions of the flow of subsequent discussions.

17.1 Algebras

We now investigate another kind of algebraic structure, called an algebra. Intu-
itively, an algebra is a structure that is simultaneously a ring and a module.

Let R be a ring. An R-algebra is a ring A, together with a ring homomor-
phism τ : R→ A. Often, the map τ will be clear from context.

Example 17.1 If A is a ring that contains R as a subring, then A is an R-
algebra, where the associated map τ : R→ A is just the inclusion map. 2

Example 17.2 If τ : R → A is an embedding of rings, then we can view A as
an R-algebra via the map τ . As discussed in §9.4, one often blurs the distinction
between R and its image under τ in A, and simply views R as a subring of A,
in which case there is no difference between this example and the previous one.
2

Example 17.3 Let R be a ring. The ring of polynomials R[X] over R is an R-
algebra, since we may view R as a subring of R[X], or a purist might insist that
R is embedded in R[X], as in Example 9.77. Let f ∈ R[X] be a monic polynomial.
The quotient ring R[X]/(f) is also an R-algebra, via the map τ : R → R[X]/(f)
that sends a ∈ R to [a mod f ]. If f = 1, then ker(τ) = R, and otherwise, τ is
an embedding. 2

288
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Example 17.4 Any ringR can be viewed as a Z-algebra, via the map that sends
m ∈ Z to m · 1R ∈ R (see Example 9.75). If R has characteristic dividing n, the
we can also view R as a Zn-algebra, via the map that sends [m mod n] ∈ Zn to
m · 1R. 2

For an R-algebra A, with associated map τ : R→ A, we can define a scalar
multiplication operation as follows: for a ∈ R and α ∈ A, define

a · α := τ(a)α.

The reader may easily verify that with scalar multiplication so defined, A is an
R-module.

Usually, whenever one discusses an R-algebra A, this natural scalar multipli-
cation and R-module structure are implicitly understood. Note that for a ∈ R,
the value of τ(a) may be inferred from the scalar multiplication operation; in-
deed, τ(a) = a · 1A.

Exercise 17.5 Let A be an R-algebra, with scalar multiplication defined as
above.

(a) Show that for all a ∈ R and α, β ∈ A, we have a(αβ) = (aα)β.

(b) Show that for all a ∈ R and α ∈ A, and for all non-negative integers n, we
have (aα)n = anαn.

2

Of course, if R = F is a field, then A is an F -vector space. The following
exercise shows that the notion of an F -algebra is really not much different than
that of a ring containing F as a subring: an F -algebra either contains (an
isomorphic copy of) F as a subring, or is itself the trivial ring.

Exercise 17.6 Let F be a field, and let A be an F -algebra with associated map
τ : F → A. Show that either τ is an embedding, or that A is the trivial ring. 2

The following exercise develops an alternative characterization of R-algebras.

Exercise 17.7 Let R be a ring, and let A be a ring, together with a scalar
multiplication operation, that makes A into an R-module. Further suppose that
for all a ∈ R and α, β ∈ A, we have a(αβ) = (aα)β. Define the map τ : R→ A
that sends a ∈ R to a · 1A ∈ A. Show that τ is a ring homomorphism, so that A
is an R-algebra, and also show that τ(a)α = aα for all a ∈ R and α ∈ A. 2
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A subset B of A is a subalgebra if B is a subring containing the image
of R under the associated map τ : R → A. Equivalently, a subring B of A
is a subalgebra if and only of it is also submodule under the natural module
structure discussed above.

Example 17.8 Let A be an R-algebra. Any polynomial g ∈ R[X] naturally
defines a function on A: if g =

∑

i giXi, with each gi ∈ R, and α ∈ A, then

g(α) :=
∑

i

giα
i.

For α ∈ A, let R[α] denote the set of elements of A of the form g(α), where
g ∈ R[X]. It is easy to see that R[α] is a subalgebra of A, and is the smallest
subalgebra containing α. Note that if A contains R as a subring, then the
notation R[α] has the same meaning as in Example 9.67. 2

Let A be an R-algebra, with associated map τ : R→ A, and let I be an ideal
in A. Consider the quotient ring A/I. If ρ is the natural map from A onto A/I,
then the homomorphism ρ◦τ makes A/I into an R-algebra, called the quotient
algebra of A modulo I.

Exercise 17.9 Let A be an R-algebra and let I be an ideal of A. Show that
with respect to the natural R-module structure of A, I is a submodule. 2

There is, of course, a natural notion of a homomorphism for R-algebras. If
A and A′ are R-algebras, with associated maps τ : R → A and τ ′ : R → A′,
then a map ρ : A→ A′ is called an R-algebra homomorphism if R is a ring
homomorphism, and if for all a ∈ R, we have

ρ(τ(a)) = τ ′(a).

As the reader may easily verify, for R-algebras A and A′, a map ρ : A→ A′

is an R-algebra homomorphism if and only if it is both a ring homomorphism
and an R-linear map (with respect to the natural R-module structure of A and
A′).

Example 17.10 If A and A′ are rings containing R as a subring, both viewed
as R-algebras via the inclusion maps τ : R → A and τ ′ : R → A′, then a ring
homomorphism ρ : A→ A′ is an R-algebra homomorphism if and only if ρ acts
like the identity function of R. 2

Example 17.11 The complex conjugation map on C that sends a+bi to a−bi,
for a, b ∈ R, is an R-algebra automorphism on C. 2
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Example 17.12 Let p be a prime, and let F be the field Zp. If A is an F -
algebra, with associated map τ : F → A, then the map ρ : A → A that
sends α ∈ A to αp is an F -algebra homomorphism. The fact that ρ is a ring
homomorphism follows from Example 9.76 (the “freshman’s dream”). The fact
that ρ is F -linear follows from Theorem 2.24 (Fermat’s Little Theorem); indeed,
for a ∈ F , we have τ(a)p = τ(ap) = τ(a). 2

The reader may easily verify the following observations. First, an R-algebra
homomorphism maps subalgebras to subalgebras. Second, Theorems 9.61, 9.62,
and 9.63 carry over mutatis mutandis from rings to R-algebras.

We next state a very simple, but extremely useful, fact:

Theorem 17.13 Let ρ : A → A′ be an R-algebra homomorphism. Then for
any g ∈ R[X] and α ∈ A, we have

ρ(g(α)) = g(ρ(α)).

Proof. Let g =
∑

i giX
i ∈ R[X]. Then we have

ρ(
∑

i

giα
i) =

∑

i

giρ(α
i) =

∑

i

giρ(α)
i,

where the first equality follows from the fact that ρ is an R-linear map, and the
second follows from the fact that ρ is a ring homomorphism. 2

As a special case of Theorem 17.13, if A = R[η] for some η ∈ A, then every
element of A can be expressed as g(η) for some g ∈ R[X], and ρ(g(η)) = g(ρ(η));
hence, the action of ρ is completely determined by its action on η.

Example 17.14 Let A := R[X]/(f) for some monic polynomial f ∈ R[X], so
that A = R[η], where η := [X mod f ], and let A′ be any R-algebra.

Suppose that ρ : A → A′ is an R-algebra homomorphism, and that η′ :=
ρ(η). The map ρ sends g(η) to g(η′), for g ∈ R[X]. Also, since f(η) = 0A, we
have 0A′ = ρ(f(η)) = f(η′). Thus, η′ must be a root of f .

Conversely, suppose that η′ ∈ A′ is a root of f , i.e., f(η′) = 0. Then the
polynomial evaluation map from R[X] to A′ that sends g ∈ R[X] to g(η′) ∈ A′

is an R-algebra homomorphism whose kernel contains f , and this gives rise to
the R-algebra homomorphism ρ : A→ A′ that sends g(η) to g(η′), for g ∈ R[X].
One sees that complex conjugation is just a special case of this construction. 2
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17.2 The Field of Fractions of an Integral Domain

Let D be any integral domain. Just as we can form the field of rational num-
bers by forming fractions involving integers, we can construct a field consisting
of fractions whose numerators and denominators are elements of D. This con-
struction is quite straightforward, but to do it carefully is a bit tedious.

First, we define an auxiliary ring R as follows. R consists of all pairs (a, b) ∈
D×2, with b 6= 0D. Addition and multiplication in R are defined as follows:

(a, b) + (c, d) := (ad+ bc, bd), (a, b) · (c, d) := (ac, bd).

The fact that D is an integral domain ensures that if b 6= 0D and d 6= 0D, then
bd 6= 0D, so these rules for addition and multiplication are well-defined binary
operations on R. We leave it to the reader to verify that R is a ring, and in fact,
an integral domain.

Next, we define an ideal M in R as follows. M consists of all pairs of the
form (0D, b), with b 6= 0D. We leave it to the reader to verify that M is an ideal,
and that R∗ = R \M , i.e., the set of invertible elements in R consists precisely
of those elements of R that lie outside M .

Finally, we define the quotient ring K := R/M . This is the field of frac-
tions of D.

We next state and prove some basic properties about K.
First, we claim that K is a field — this follows immediately from the obser-

vation in the above paragraph that R∗ = R \M .
Second, we claim that the map ρ : D → K that sends a ∈ D to [(a, 1D) mod

M ] ∈ K is an embedding. To see this, one verifies (1) that the map σ that
sends a ∈ D to (a, 1D) ∈ R is a ring homomorphism, (2) that the kernel of σ is
trivial, so σ is injective, and (3) that if a 6= 0D, then σ(a) /∈ M . Since ρ is the
composition of σ with the natural map from R to R/M , the claim that ρ is an
embedding follows immediately from the above three observations.

So starting from D, we can synthesize “out of thin air” its field of fractions
K, which essentially contains D as a subring, via the canonical embedding ρ :
D → K.

Now suppose that we are given a field L that contains D as a subring.
Consider the set K ′ consisting of all elements in L of the form ab−1, where
a, b ∈ D and b 6= 0 — note that here, the arithmetic operations are performed
using the rules for arithmetic in L. One may easily verify that K ′ is a subfield
of L that contains D, and it is easy to see that this is the smallest subfield of
L that contains D. The subfield K ′ of L may be referred to as the field of
fractions of D within L.
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More generally, suppose that L is a field, and that ρ′ : D → L is an em-
bedding. One may also easily verify that the map τ : K → L that sends
[(a, b) modM ] ∈ K to ρ′(a)ρ′(b)−1 ∈ L is an embedding. Moreover, we may
view K and L as D-algebras, via the embeddings ρ : D → K and ρ′ : D → L,
and the map τ is seen to be a D-algebra homomorphism.

From now on, we shall simply write elements of the field of fractions K of D
as fractions a/b, where a, b ∈ D and b 6= 0D. One can check that all of the usual
rules for fractions learnt in elementary school carry over to this more general
setting; in particular,

a

b
+
c

d
=
ad+ bc

bd
,
a

b
· c
d
=
ac

bd
, and

a

b
=
c

d
iff ad = bc.

Note that because of the fact that every integral domain can be embedded in
a field, it would have been sufficient to state and prove Theorem 9.42 for fields
rather than for integral domains — the statement of this theorem in terms of
the more general notion of an integral domain is really not any more general
than the corresponding statement for fields.

Function fields. An important special case of the above construction for the
field of fractions of D is when D = F [X], where F is a field. In this case, the
field of fractions is denoted F (X), and is called the field of rational functions
(over F ). This terminology is a bit unfortunate, since just as with polynomials,
although the elements of F (X) define functions, they are not (in general) in one-
to-one correspondence with these functions.

Since F [X] is a subring of F (X), and since F is a subring of F [X], we see that
F is a subfield of F (X).

More generally, we may apply the above construction to the ring D =
F [X1, . . . , Xn] of multi-variate polynomials over a field F , in which case the field
of fractions is denoted F (X1, . . . , Xn), and is also called the field of rational func-
tions (over F , in the variables X1, . . . , Xn).

Exercise 17.15 Let F be a field of characteristic zero. Show that F contains
an isomorphic copy of Q. 2

Exercise 17.16 Show that the field of fractions of Z[i] within C is Q[i]. (See
Example 9.27 and Exercise 9.34.) 2

17.3 Unique Factorization of Polynomials

Throughout this section, F denotes a field.
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Like the ring Z, the ring F [X] of polynomials is an integral domain, and as
we shall see, because of the division with remainder property for polynomials,
F [X] has many other properties in common with Z. Indeed, essentially all the
ideas and results from Chapters 1 and 2 can be carried over almost immediately
from Z to F [X], and in this section and the next, we shall do just that.

Recall that for a, b ∈ F [X], we write b | a if a = bc for some c ∈ F [X]; note
that deg(a) = deg(b) + deg(c). Also, recall that because of the cancellation law
for an integral domain, if b | a and b 6= 0, then the choice of c above is unique,
and may be denoted a/b.

The units of F [X] are precisely the units F ∗ of F ; i.e., the non-zero constants.
We call two polynomials a, b ∈ F [X] associates if a = bu for u ∈ F ∗. Clearly,
any non-zero polynomial a is associate to a unique monic polynomial (i.e., with
leading coefficient 1), called the monic associate of a. Note that a polynomial
a is a unit if and only if it is associate to 1. Let us call a polynomial normalized
if it is either zero or monic.

We call a polynomial p irreducible if it is non-constant and all divisors of
p are associate to 1 or p. Conversely, we call a polynomial n reducible if it is
non-constant and is not irreducible. Equivalently, non-constant n is reducible if
and only if there exist polynomials a, b ∈ F [X] of degree strictly less that n such
that n = ab.

Clearly, if a and b are associate polynomials, then a is irreducible if and only
if b is irreducible.

The irreducible polynomials play a role similar to that of the prime numbers.
Just as it is convenient to work with only positive prime numbers, it is also
convenient to restrict attention to monic irreducible polynomials.

Corresponding to Theorem 1.2, every non-zero polynomial can be expressed
as a unit times a product of monic irreducibles in an essentially unique way:

Theorem 17.17 Every non-zero polynomial n ∈ F [X] can be expressed as

n = u · pe11 · · · perr ,

where u ∈ F ∗, the pi’s are distinct monic irreducible polynomials, and the ei’s
are positive integers. Moreover, this expression is unique, up to a reordering of
the irreducible polynomials.

To prove this theorem, we may assume that n is monic, since the non-monic
case trivially reduces to the monic case.

The proof of the existence part of Theorem 17.17 is just as for Theorem 1.2.
If n is 1 or a monic irreducible, we are done. Otherwise, there exist a, b ∈ F [X]
of degree strictly less than n such that n = ab, and again, we may assume that
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a and b are monic. By induction on degree, both a and b can be expressed as a
product of monic irreducible polynomials, and hence, so can n.

The proof of the uniqueness part of Theorem 17.17 is almost identical to
that of Theorem 1.2. Analogous to Theorem 1.11, we have:

Theorem 17.18 For any ideal I ⊆ F [X], there exists a unique normalized poly-
nomial d such that I = (d).

Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0
does the job, so let us assume that I 6= {0}. Let d be a monic polynomial of
minimal degree in I. We want to show that I = (d).

We first show that I ⊆ (d). To this end, let c be any element in I. It
suffices to show that d | c. Using the Division with Remainder Property, write
c = qd+ r, where deg(r) < deg(d). Then by the closure properties of ideals, one
sees that r = c− qd is also an element of I, and by the minimality of the choice
of d, we must have r = 0. Thus, d | c.

We next show that (d) ⊆ I. This follows immediately from the fact that
d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note that
if (d) = (d′), we have d | d′ and d′ | d, from which it follows that d′ = ud for a
unit u. 2

For a, b ∈ F [X], we call d ∈ F [X] a common divisor of a and b if d | a and
d | b; moreover, we call such a d the greatest common divisor of a and b if d
is normalized, and all other common divisors of a and b divide d. It is immediate
from the definition of a greatest common divisor that it is unique if it exists at
all.

Analogous to Theorem 1.12, we have:

Theorem 17.19 For any a, b ∈ F [X], there exists a greatest common divisor
d of a and b, and moreover, (a, b) = (d); in particular, as + bt = d for some
s, t ∈ F [X].

Proof. We apply the previous theorem to the ideal I = (a, b). Let d ∈ F [X]
with I = (d), as in that theorem. Note that a, b, d ∈ I.

It is clear that d is a common divisor of a and b. Moreover, there exist
s, t ∈ F [X] such that as + bt = d. If d′ | a and d′ | b, then clearly d′ | (as + bt),
and hence d′ | d. 2

For a, b ∈ F [X], we denote by gcd(a, b) the greatest common divisor of a and
b.
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We say that a and b are relatively prime if gcd(a, b) = 1. Notice that a
and b are relatively prime if and only if (a, b) = F [X], i.e., if and only if there
exist s, t ∈ F [X] such that as+ bt = 1.

Analogous to Theorem 1.13, we have:

Theorem 17.20 For a, b, c ∈ F [X] such that c | ab and gcd(a, c) = 1, we have
c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1,
by Theorem 17.19 we have as + ct = 1 for some s, t ∈ F [X]. Multiplying this
equation by b, we obtain abs + cbt = b. Since d divides ab by hypothesis, it
follows that c | (abs+ cbt), and hence c | b. 2

Analogous to Theorem 1.14, we have:

Theorem 17.21 Let p ∈ F [X] be irreducible, and let a, b ∈ F [X]. Then p | ab
implies that p | a or p | b.

Proof. Assume that p | ab. The only divisors of p are associate to 1 or p. Thus,
gcd(p, a) is either 1 or the monic associate of p. If p | a, we are done; otherwise,
if p - a, we must have gcd(p, a) = 1, and by the previous theorem, we conclude
that p | b. 2

Now to prove the uniqueness part of Theorem 17.17. Clearly, the choice of
the unit u is uniquely determined: u = lc(n). Suppose we have

p1 · · · pr = p′1 · · · p′s,

where the pi and p′i are monic irreducible polynomials (duplicates are allowed
among the pi and among the p′i). If r = 0, we must have s = 0 and we are
done. Otherwise, as p1 divides the right-hand side, by inductively applying
Theorem 17.21, one sees that p1 is equal to some p′i. We can cancel these terms
and proceed inductively (on r).

That completes the proof of Theorem 17.17.

Because of the unique factorization property of F [X], any rational function
a/b ∈ F (X) can be expressed as a fraction a′/b′ in “lowest terms,” that is, a/b =
a′/b′ and gcd(a′, b′) = 1, and this representation is unique up to multiplication
by units.

For a monic irreducible polynomial p, we may define the function νp, mapping
non-zero polynomials to non-negative integers, as follows: for polynomial n 6= 0,
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if n = pem, where p - m, then νp(n) := e. We may then write the factorization
of n into irreducibles as

n = u
∏

p

pνp(n),

where the product is over all monic irreducible polynomials p, with all but finitely
many of the terms in the product equal to 1.

Just as for integers, we may extend the domain of definition of νp to include
0, defining νp(0) =∞, and interpreting p∞ as zero.

It is easy to see that for all polynomials a, b, we have

gcd(a, b) =
∏

p

pmin(νp(a),νp(b)).

For a, b ∈ F [X] a common multiple of a and b is a polynomial m such that
a | m and b | m; moreover, such an m is the least common multiple of a and
b if m is normalized, and m divides all common multiples of a and b. In light of
Theorem 17.17, it is clear that the least common multiple exists and is unique;
indeed, if we denote the least common multiple of a and b as lcm(a, b), then for
all polynomials a and b, we have

lcm(a, b) =
∏

p

pmax(νp(a),νp(b)).

Moreover, for all a, b ∈ F [X], we have

gcd(a, b) · lcm(a, b) = ab.

Just as in §1.3, the notions of greatest common divisor and least common
multiple generalize from two to any number of polynomials.

17.4 Polynomial Congruences

Throughout this section, F denotes a field.
Recall that for polynomials a, b, n ∈ F [X], we write a ≡ b (mod n) when

n | (a− b). For a non-zero polynomial n, and a ∈ F [X], we say that a is a unit
modulo n if there exists a′ ∈ F [X] such that aa′ ≡ 1 (mod n), in which case we
say that a′ is a multiplicative inverse of a modulo n.

All of the results we proved in Chapter 2 for integer congruences carry over
almost identically to polynomials. As such, we do not give proofs of any of the
results here. The reader may simply check that the proofs of the corresponding
results translate almost directly.
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Theorem 17.22 An polynomial a is a unit modulo n if and only if a and n are
relatively prime.

Theorem 17.23 If a is relatively prime to n, then az ≡ az ′ (mod n) if and
only if z ≡ z′ (mod n). More generally, if d = gcd(a, n), then az ≡ az ′ (mod n)
if and only if z ≡ z′ (mod n/d).

Theorem 17.24 Let n be a non-zero polynomial and let a, b ∈ F [X]. If a is
relatively prime to n, then the congruence az ≡ b (mod n) has a solution z;
moreover, any polynomial z′ is a solution if and only if z ≡ z′ (mod n).

Theorem 17.25 Let n be a non-zero polynomial and let a, b ∈ F [X]. Let d =
gcd(a, n). If d | b, then the congruence az ≡ b (mod n) has a solution z, and
any polynomial z′ is also a solution if and only if z ≡ z′ (mod n/d). If d - b,
then the congruence az ≡ b (mod n) has no solution z.

Theorem 17.26 (Chinese Remainder Theorem) Let k > 0, and
let a1, . . . , ak ∈ F [X], and let n1, . . . , nk be non-zero polynomials such that
gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k. Then there exists a polynomial z such that

z ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other polynomial z′ is also a solution of these congruences if and
only if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

The Chinese Remainder Theorem also has a more algebraic interpretation.
Define the F -algebras Ai := F [X]/(ni) for 1 ≤ i ≤ k, along with the product
F -algebra A1 × · · · × Ak. The map ρ from F [X] to A1 × · · · × Ak that sends
z ∈ F [X] to ([z mod n1], . . . , [z mod nk]) is an F -algebra homomorphism. The
Chinese Remainder Theorem says that ρ is surjective with kernel (n), giving rise
to an F -algebra isomorphism between F [X]/(n) and A1 × · · · ×Ak.

Let us recall the formula for the solution z (see proof of Theorem 2.8). We
have

z :=

k∑

i=1

wiai,

where

wi := n′imi, n′i := n/ni, min
′
i ≡ 1 (mod ni) (i = 1, . . . , k).

Now, let us consider the special case of the Chinese Remainder Theorem
where ai ∈ F and ni = (X − bi) with bi ∈ F , for 1 ≤ i ≤ k. The condition that
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gcd(ni, nj) = 1 for all i 6= j is equivalent to the condition that bi 6= bj for all
i 6= j. A polynomial z satisfies the system of congruences if and only if z(bi) = ai
for 1 ≤ i ≤ k. Moreover, we have n′i =

∏

j 6=i(X− bj), and mi := 1/
∏

j 6=i(bi− bj)
is a multiplicative inverse of n′i modulo ni. So we get

z =
k∑

i=1

ai

∏

j 6=i(X− bj)
∏

j 6=i(bi − bj)
.

The reader will recognize this as the Lagrange Interpolation Formula. Thus, the
Chinese Remainder Theorem for polynomials includes Lagrange Interpolation
as a special case.

We can now bring to bear the theory of vector spaces. Consider again the
F -algebra homomorphism ρ : F [X] → A1 × · · · × Ak discussed above. If ni =
(X − bi) for 1 ≤ i ≤ k, then each Ai is just an isomorphic copy of F , and the
map ρ sends z ∈ F [X] to (z(b1), . . . , z(bk)) in F×k. Both F [X] and F×k are F -
vector spaces, and the map ρ is an F -linear map. Moreover, the restriction ρ̃
of ρ to the k-dimensional subspace F [X]<k of F [X], consisting of all polynomials
of degree strictly less than k, is also an F -linear map, and by the Chinese
Remainder Theorem, the image of ρ̃ is still all of F×k. Thus, ρ̃ is an F -vector
space isomorphism of F [X]<k with F×k.

We may encode elements of F [X]<k as row vectors in a natural way, encoding
the polynomial z =

∑k−1
i=0 ziX

i as the row vector (z0, . . . , zk−1) ∈ F 1×k. With
this encoding, we have

ρ̃(z) = (z0, . . . , zk−1)V,

where V is the k × k matrix

V :=








1 1 1
b1 b2 bk
...

... · · · ...

bk−11 bk−12 · · · bk−1k







.

The matrix V (well, actually its transpose) is known as a Vandermonde ma-
trix. Because ρ̃ is an isomorphism, it follows that the matrix V is invertible.

More generally, for ` ≤ k, one might also consider linear transformations σ :
F [X]<k → F×` that send z ∈ F [X]<k to (z(b1), . . . , z(b`)), for fixed b1, . . . , b` ∈ F .
If z =

∑k−1
i=0 ziX

i, then
σ(z) = (z0, . . . , zk−1)W,
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where W is the k × ` matrix

W :=








1 1 1
b1 b2 b`
...

... · · · ...

bk−11 bk−12 · · · bk−1`







.

Now, if bi = bj for some i 6= j, then the columns of W are linearly dependent,
and hence the column rank of W is less than `. Since the column rank of W is
equal to its row rank, the dimension of the row space of W is less than `, and
hence, σ is not surjective. Conversely, if the bi’s are pair-wise distinct, then since
the submatrix of W consisting of its first ` rows is an invertible Vandermonde
matrix, we see that the rank of W is equal to `, and hence σ is surjective.

17.5 Polynomial Quotient Algebras

Throughout this section, F denotes a field.
Let f ∈ F [X] be a monic polynomial, and consider the quotient algebra

A := F [X]/(f). Let η := [X mod f ], so that A = F [η].
If f = 1, then A is just the trivial algebra, and there is not much more to

say, so assume ` := deg(f) > 0. As A contains an isomorphic copy of F via the
canonical embedding that sends c ∈ F to [c mod F ], we may simply view F as a
subring of A. Also, A has dimension ` over F , with 1, η, . . . , η`−1 being a basis.
That is, every element of A can be expressed uniquely as g(η) for g ∈ F [X] of
degree less than `.

Now, if f is irreducible, then since every polynomial a 6≡ 0 (mod f) is
invertible modulo f , it follows that A is a field. Conversely, if f is not irreducible,
then A cannot be a field — indeed, if g is a non-trivial factor of f , then g(η) is
a zero divisor.

If F = Zp for a prime number p, and f is irreducible, then we see that E
is a finite field of cardinality p`. As we shall see later, for any prime p and any
positive integer `, there exists an irreducible polynomial of degree ` over Zp, and
so there exists a finite field of cardinality p`. In the next chapter, we shall see
how one can perform arithmetic in such extension fields efficiently, and later, we
shall also see how to efficiently construct irreducible polynomials of any given
degree over a finite field. Although different irreducible polynomials give rise to
finite fields that superficially look very different, we shall also see that all finite
fields of the same cardinality are isomorphic.

Minimal polynomials. Now suppose that A is any F -algebra, and that α ∈ A.
Consider the polynomial evaluation map ρ : F [X] → A that sends g ∈ F [X]
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to g(α). The kernel of ρ is an ideal in F [X], and since every ideal in F [X]
is principal, it follows that there exists a normalized polynomial φ such that
ker(ρ) = (φ). The polynomial φ is called the minimal polynomial of α (over
F ). If φ = 0, then ρ is injective, and hence the image F [α] of ρ is isomorphic to
F [X]. Otherwise, F [α] is isomorphic to F [X]/(φ); moreover, since any polynomial
that is zero at α is a polynomial multiple of φ, we see that φ is the unique monic
polynomial of smallest degree that is zero at α.

If A is a finite dimensional F -algebra, with say dimension n, then any α ∈ A
has a non-zero minimal polynomial. Indeed, the elements 1, α, . . . , αn must be
linearly dependent, and hence there exist c0, . . . , cn ∈ F , not all zero, such that
c0 + c1α+ · · ·+ cnα

n = 0, and therefore, the non-zero polynomial g :=
∑

i ciX
i

is zero at α.

Example 17.27 The polynomial X2 + 1 is irreducible over R, since if it were
not, it would have a root in R, which is clearly impossible, since −1 is not the
square of any real number. It follows immediately that C := R[X]/(X2 + 1)
is a field, without having to explicitly calculate a formula for the inverse of a
non-zero complex number. 2

Example 17.28 Consider the polynomial f := X4 + X3 + 1 over Z2. We claim
that f is irreducible. It suffices to show that f has no irreducible factors of
degree 1 or 2.

If f had a factor of degree 1, then it would have a root; however, f(0) =
0 + 0 + 1 = 1 and f(1) = 1 + 1 + 1 = 1. So f has no factors of degree 1.

Does f have a factor of degree 2? The polynomials of degree 2 are X2, X2+X,
X2 + 1, and X2 + X + 1. The first and second of these polynomials are divisible
by X, and hence not irreducible, while the third has a 1 as a root, and hence is
also not irreducible. The last polynomial, X2 + X+1, has no roots, and hence is
the only irreducible polynomial of degree 2 over Z2. So now we may conclude
that if f were not irreducible, it would have to be equal to

(X2 + X+ 1)2 = X4 + 2X3 + 3X2 + 2X+ 1 = X4 + X2 + 1,

which it is not.
Thus, E := Z2[X]/(f) is a field with 24 = 16 elements. We may think of

elements E as bit strings of length 4, where the rule for addition is bit-wise
“exclusive-or.” The rule for multiplication is more complicated: to multiply two
given bit strings, we interpret the bits as coefficients of polynomials (with the
left-most bit the coefficient of X3), multiply the polynomials, reduce the product
modulo f , and write down the bit string corresponding to the reduced product
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polynomial. For example, to multiply 1001 and 0011, we compute

(X3 + 1)(X+ 1) = X4 + X3 + X+ 1,

and
(X4 + X3 + X+ 1) rem (X4 + X3 + 1) = X.

Hence, the product of 1001 and 0011 is 0010.
Theorem 10.2 says that E∗ is a cyclic group. Indeed, the element η := 0010

(i.e., η = [X mod f ]) is a generator for E∗, as the following table of powers shows:

i ηi i ηi

1 0010 8 1110

2 0100 9 0101

3 1000 10 1010

4 1001 11 1101

5 1011 12 0011

6 1111 13 0110

7 0111 14 1100

15 0001

Such a table of powers is sometimes useful for computations in small finite
fields such as this one. Given α, β ∈ E∗, we can compute αβ by obtaining (by
table lookup) i, j such that α = ηi and β = ηj , computing k := (i+ j) rem 15,
and then obtaining αβ = ηk (again by table lookup).

2

Exercise 17.29 In the field E is Example 17.28, what is the minimal polyno-
mial of 1011 over Z2? 2

Exercise 17.30 Show that if the factorization of f over F [X] into irreducibles is
as f = f e11 · · · f err , and if α = [h mod f ] ∈ F [X]/(f), then the minimal polynomial
φ of α is lcm(φ1, . . . , φr), where φi is the minimal polynomial of [h mod f eii ] ∈
F [X]/(f eii ). 2

17.6 General Properties of Extension Fields

We now discuss a few general notions related to extension fields. These are all
quite simple applications of the theory developed so far.

Let E be an extension field of a field F . Then E is an F -algebra, and in
particular, an F -vector space. If E is a finite dimensional F -vector space, then
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we say that E is a finite extension of F , and dimF (E) is called the degree
of the extension, and is denoted [E : F ]; otherwise, we say that E is an infinite
extension of F .

An element α ∈ E is called algebraic over F if there exists a non-zero
polynomial f ∈ F [X] such that f(α) = 0; otherwise, α is called transcendental
over F . If all elements of E are algebraic over F , then we call E an algebraic
extension of F . From the discussion on minimal polynomials in §17.5, we may
immediately state:

Theorem 17.31 If E is a finite extension of F , then E is also an algebraic
extension of F .

Suppose α ∈ E is algebraic over F . Let φ be its minimal polynomial, so that
F [X]/(φ) is isomorphic (as an F -algebra) to F [α]. Since F [α] is a subring of a
field, it must be an integral domain, which implies that φ is irreducible, which
in turn implies that F [α] is a subfield of E. Moreover, the degree [F [α] : F ] is
equal to the degree of φ, and this number is called the degree of α (over F ).
It is clear that if E is finite dimensional, then the degree of α is at most [E : F ].

Suppose that α ∈ E is transcendental over F . Consider the “rational func-
tion evaluation map” that sends f/g ∈ F (X) to f(α)/g(α) ∈ E. Since no
non-zero polynomial over F vanishes at α, it is easy to see that this map is well
defined, and is in fact an injective F -algebra homomorphism from F (X) into E.
The image is denoted F (α), and this is clearly a subfield of E containing F and
α, and it is plain to see that it is the smallest such subfield. It is also clear that
F (α) has infinite dimension over F , since it contains an isomorphic copy of the
infinite dimensional vector space F [X].

More generally, for any α ∈ E, algebraic or transcendental, we can define
F (α) to be the set consisting of all elements of the form f(α)/g(α) ∈ E, where
f, g ∈ F [X] and g(α) 6= 0. It is clear that F (α) is a field, and indeed, it is
the smallest subfield of E containing F and α. If α is algebraic, then F (α) =
F [α], and is isomorphic (as an F -algebra) to F [X]/(φ), where φ is the minimal
polynomial of α over F ; otherwise, if α is transcendental, then F (α) is isomorphic
(as an F -algebra) to the rational function field F (X).

Exercise 17.32 In the field E is Example 17.28, find all the elements of degree
2 over Z2. 2

Example 17.33 If f ∈ F [X] is monic and irreducible, E = F [X]/(f), and η :=
[X mod f ] ∈ E, then η is algebraic over F , its minimal polynomial over F is
f , and its degree over F is equal to deg(f). Also, we have E = F [η], and any
element α ∈ E is algebraic of degree at most deg(f). 2
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Exercise 17.34 Show that if E is a finite extension of F , with a basis α1, . . . , αn
over F , and K is a finite extension of E, with a basis β1, . . . , βm over E, then

αiβj (i = 1, . . . , n; j = 1, . . . ,m)

is a basis for K over F , and hence K is a finite extension of F and [K : F ] =
[K : E][E : F ]. 2

Exercise 17.35 Show that if E is an algebraic extension of F , and K is an
algebraic extension of E, then K is an algebraic extension of F . 2

Exercise 17.36 Let E be an extension of F . Show that the set of all elements
in E that are algebraic over F is a subfield of E containing F . 2

We close this section with a discussion of a splitting field — a finite ex-
tension of the coefficient field in which a given polynomial splits completely into
linear factors. As the next theorem shows, splitting fields always exist.

Theorem 17.37 Let F be a field, and f ∈ F [X] a monic polynomial of degree
`. Then there exists a finite extension E of F in which f factors as

f = (X− α1)(X− α2) · · · (X− α`),

with α1, . . . , α` ∈ E.

Proof. We prove the existence of E by induction on the degree ` of f . If ` = 0,
then the theorem is clearly true. Otherwise, let g be an irreducible factor of f ,
and set K := F [X]/(g), so that α := [X mod g] is a root of g, and hence of f ,
in K. So over the field K, f factors as

f = (X− α)h,

where h ∈ K[X] is a polynomial of degree `− 1. Applying the induction hypoth-
esis, there exists a finite extension E of K such that h splits into linear factors
over K. Thus, over E, f into linear factors, and by Exercise 17.34, E is a finite
extension of F . 2

17.7 Formal Derivatives

Let R be any ring, and let f ∈ R[X] be a polynomial. If f =
∑`

i=0 fiX
i, we define

the formal derivative of f as

D(f) :=
∑̀

i=1

ifiX
i−1.
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We stress that unlike the “analytical” notion of derivative from calculus, which
is defined in terms of limits, this definition is purely “symbolic.” Nevertheless,
some of the usual rules for derivatives still hold:

Theorem 17.38 For all f, g ∈ R[X] and c ∈ R, we have

1. D(f + g) = D(f) +D(g);

2. D(cf) = cD(f);

3. D(fg) = D(f)g + fD(g).

Proof. Parts (1) and (2) follow immediately by inspection, but part (3) requires
some proof. First, note that part (3) holds trivially if either f or g are zero, so
let us assume that neither are zero.

We first prove part (3) for monomials, i.e., polynomials of the form cXi for
non-zero c ∈ R and i ≥ 0. Suppose f = cXi and g = dXj . If i = 0, so f = c, then
the result follows from part (2) and the fact that D(c) = 0; when j = 0, the
result holds by a symmetric argument. So assume that i > 0 and j > 0. Now,
D(f) = icXi−1 and D(g) = jdXj−1, and D(fg) = D(cdXi+j) = (i + j)cdXi+j−1.
The result follows from a simple calculation.

Having proved part (3) for monomials, we now prove it in general on induc-
tion on the total number of monomials appearing in f and g. If the total number
is 2, then both f and g are monomials, and we are in the base case; otherwise,
one of f and g must consist of at least 2 monomials, and for concreteness, say
it is g that has this property. So we can write g = g1 + g2, where both g1
and g2 have fewer monomials than does g. Applying part (1) and the induction
hypothesis for part (3), we have

D(fg) = D(fg1 + fg2)

= D(fg1) +D(fg2)

= D(f)g1 + fD(g1) +D(f)g2 + fD(g2)

= D(f)(g1 + g2) + f(D(g1) +D(g2))

= D(f)(g1 + g2) + fD(g1 + g2)

= D(f)g + fD(g).

2
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17.8 Formal Power Series and Laurent Series

We discuss generalizations of polynomials that allow an infinite number of non-
zero coefficients. Although we are mainly interested in the case where the co-
efficients come from a field F , we develop the basic theory for general rings
R.

17.8.1 Formal power series

The ring R[[X]] of formal power series over R consists of all formal expressions
of the form

a = a0 + a1X+ a2X
2 + · · · ,

where a0, a1, a2, . . . ∈ R. Unlike ordinary polynomials, we allow an infinite
number of non-zero coefficients. We may write such a formal power series as

a =
∞∑

i=0

aiX
i.

The rules for addition and multiplication of formal power series are exactly
the same as for polynomials — indeed, the formulas (9.1) and (9.2) in §9.2 for
addition and multiplication may be applied directly, with the observation that
when applied to formal power series, the inner sum in (9.2) contains only finitely
many non-zero terms, and so is well defined.

We shall not attempt to interpret a formal power series as a function, and
therefore, “convergence” issues shall simply not arise.

Clearly, R[[X]] contains R[X] as a subring. Let us consider the group of units
of R[[X]].

Theorem 17.39 Let a =
∑∞

i=0 aiX
i ∈ R[[X]]. Then a ∈ (R[[X]])∗ if and only if

a0 ∈ R∗.

Proof. If a0 is not a unit, then it is clear that a is not a unit, since the constant
term of a product formal power series is equal to the product of the constant
terms.

Conversely, if a0 is a unit, we show how to define the coefficients of the
inverse b =

∑∞
i=0 biX

i of a. Let ab = c =
∑∞

i=1 ciX
i. We want c = 1, i.e.,

c0 = 1 and ci = 0 for all i > 0. Now, c0 = a0b0, so we set b0 := a−10 .
Next, we have c1 = a0b1 + a1b0, so we set b1 := −a1b0 · a−10 . Next, we have
c2 = a0b2+ a1b1+ a2b0, so we set b2 := −(a1b1+ a2b0) · a−10 . Continuing in this
way, we see that if we define bi := −(a1bi−1 + · · · + aib0) · a−10 for i ≥ 1, then
ab = 1. 2
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Example 17.40 In the ring R[[X]], the multiplicative inverse of 1−X is
∑∞

i=0 X
i.

2

Exercise 17.41 For a field F , show that any non-zero ideal in F [[X]] is of the
form (Xm) for some uniquely determined integer m ≥ 0. 2

17.8.2 Formal Laurent series

One may generalize formal power series to allow a finite number of negative
powers of X. The ring R((X)) of formal Laurent series over R consists of all
formal expressions of the form

a = amX
m + am+1X

m+1 + · · · ,

where m is allowed to be any integer (possibly negative), and am, am+1, . . . ∈ R.
Thus, elements of R((X)) may have an infinite number of terms involving positive
powers of X, but only a finite number of terms involving negative powers of X.
We may write such a formal Laurent series as

a =
∞∑

i=m

aiX
i.

Again, the rules for addition and multiplication of formal Laurent series are
the same as for polynomials, using the formulas the formulas (9.1) and (9.2)
in §9.2; and again, we observe that when applied to formal Laurent series, the
inner sum in (9.2) contains only finitely many non-zero terms. Note that the
fact that we do not allow an infinite number of terms involving both positive and
negative powers of X is critical — without this restriction, the inner sum in (9.2)
may have an infinite number of non-zero terms, and so multiplication would not
be well defined.

We leave it to the reader to verify that R((X)) is a ring containing R[[X]].

Theorem 17.42 If D is an integral domain, then D((X)) is an integral domain.

Proof. Let a =
∑∞

i=m aiX
i and b =

∑∞
i=n biX

i, where am 6= 0 and bn 6= 0. Then
ab =

∑∞
i=m+n ci, where cm+n = ambn 6= 0. 2

Theorem 17.43 If F is a field, then F ((X)) is a field.

Proof. Consider any non-zero element a =
∑∞

i=m aiX
i ∈ F ((X)), where am 6= 0.

Then we can write a = Xmb, where b is a formal power series with non-zero
constant term, and hence there is a formal power series c such that bc = 1.
Thus, X−mc is a multiplicative inverse of a in F ((X)). 2
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Exercise 17.44 Show that for a field F , F ((X)) is the field of fractions of F [[X]],
i.e., there is no proper subfield of F ((X)) that contains F [[X]]. 2

17.8.3 Reversed formal Laurent series

While formal Laurent series are useful in some situations, in many others, it is
more useful and natural to consider reversed formal Laurent series over R.
These are formal expressions of the form

a =
m∑

i=−∞
aiX

i,

where am, am−1, . . . ∈ R. Thus, in a reversed formal Laurent series, we allow an
infinite number of terms involving negative powers of X, but only a finite number
of terms involving positive powers of X.

Again, the rules for addition and multiplication of reversed formal Laurent
series are the same as for polynomials, using the formulas the formulas (9.1) and
(9.2) in §9.2. The ring of all reversed formal Laurent series is denoted R((X−1)),
and as the notation suggests, the map that sends X to X−1 (and acts as the
identity on R) is an isomorphism of R((X−1)) with R((X)).

Now, for any a =
∑m

i=−∞ aiX
i ∈ R((X−1)) with am 6= 0, let us define the

degree of a, denoted deg(a), to be the value m, and the leading coefficient
of a, denoted lc(a), to be the value am. As for ordinary polynomials, we define
the degree of 0 to be −∞, and the leading coefficient of 0 to be 0. Note that
if a happens to be a polynomial, then these definitions of degree and leading
coefficient agree with that for ordinary polynomials.

Theorem 17.45 For a, b ∈ R((X−1)), we have deg(ab) ≤ deg(a)+deg(b), where
equality holds unless both lc(a) and lc(b) are zero divisors. Furthermore, if b 6= 0
and lc(b) is a unit, then b is a unit, and we have deg(a/b) = deg(a)− deg(b).

Proof. Exercise. 2

It is also natural to define a “floor function” for reversed formal Laurent
series: for a ∈ R((X−1)) with a =

∑m
i=−∞ aiX

i, we define

bac :=

m∑

i=0

aiX
i ∈ R[X];

that is, we compute the floor function by simply throwing away all terms involv-
ing negative powers of X.
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Now, let a, b ∈ R[X] with b 6= 0 and lc(b) a unit, and write a = bq + r, where
q, r ∈ R[X] with deg(r) < deg(b). We can form the quotient a/b ∈ R((X−1)) and
apply the floor function to obtain ba/bc ∈ R[X]. It is not too hard to see that
ba/bc = q; indeed, dividing the equation a = bq+r by q inside the field R((X−1)),
we obtain a/b = q+r/b, and deg(r/b) < 0, from which it follows that ba/bc = q.

Let F be a field. Since F ((X−1)) is isomorphic to F ((X)), and the latter is a
field, it follows that F ((X−1)) is a field. Now, F ((X−1)) contains F [X] as a subring,
and hence contains (an isomorphic copy) of F (X). Just as F (X) corresponds to
the field of rational numbers, F ((X−1)) corresponds to the field real numbers.
Indeed, we can think of real numbers as decimal numbers with a finite number
of digits to the left of the decimal point and an infinite number to the right, and
reversed formal Laurent series have a similar “syntactic” structure. In many
ways, this syntactic similarity between the real numbers and reversed formal
Laurent series is more than just superficial.

Exercise 17.46 Write down the rule for determining the multiplicative inverse
of an element of R((X−1)) whose leading coefficient is a unit in R. 2

Exercise 17.47 Let F be a field of characteristic other than 2. Show that a
non-zero z ∈ F ((X−1)) has a square-root in z ∈ F ((X−1)) if and only if deg(z) is
even and lc(z) has a square-root in F . 2

Exercise 17.48 Let R be a ring, and let α ∈ R. Show that the multiplicative
inverse of X− α in R((X−1)) is

∑∞
j=1 α

j−1X−j . 2

Exercise 17.49 Let R be an arbitrary ring, let α1, . . . , α` ∈ R, and

f := (X− α1)(X− α2) · · · (X− α`).

For j ≥ 0, define the “power sum”

sj :=
∑̀

i=1

αji .

Show that in the ring R((X−1)), we have

D(f)

f
=
∑̀

i=1

1

(X− αi)
=

∞∑

j=1

sj−1X
−j .

2
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Exercise 17.50 Continuing with the previous exercise, deriveNewton’s iden-
tities, which state that if f = X` + f1X

`−1 + · · ·+ f`, with f1, . . . , f` ∈ R, then

s1 + f1 = 0

s2 + f1s1 + 2f2 = 0

s3 + f1s2 + f2s1 + 3f3 = 0
...

s` + f1s`−1 + · · ·+ f`−1s1 + `f` = 0

sj+` + f1sj+`−1 + · · ·+ f`−1sj+1 + f`sj = 0 (j ≥ 1).

2

17.9 ♣ Unique Factorization Domains
As we have seen, both the integers and the ring F [X] of polynomials over a field
enjoy a unique factorization property. These are special cases of a more general
phenomenon, which we explore here.

Throughout this section, D denotes an integral domain.
We call a, b ∈ D associates if a = bu for some u ∈ D∗. A non-zero element

p ∈ D is called irreducible if it is not a unit, and all divisors of p are associate
to 1 or p.

Definition 17.51 We call D a unique factorization domain (UFD) if

1. every non-zero element of D that is not a unit can be written as a product
of irreducibles in D, and

2. the factorization into irreducibles is unique up to associates and the order
in which the factors appear.

Another way to state part (2) of the above definition is that if p1 · · · pr and
p′1 · · · p′s are two factorizations of some element as a product of irreducibles, then
r = s, and there exists a permutation π on the indices {1, . . . , r} such that pi
and p′π(i) are associate.

As we have seen, both Z and F [X] are UFDs. In both of those cases, we chose
to single out a special irreducible element among all those associate to any given
irreducible: for Z, we always chose p to be positive, and for F [X], we chose p to
be monic. For any specific unique factorization domain D, there may be such a
natural choice, but in the general case, there will not be.
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Example 17.52 Having already seen two examples of UFDs, it is perhaps a
good idea to look at an example of an integral domain that is not a UFD.
Consider the subring Z[

√
−5] of the complex numbers, which consists an all

complex numbers of the form a+ b
√
−5, where a, b ∈ Z. As this is a subring of

the field C, it is an integral domain (one may also view Z[
√
−5] as the quotient

ring Z[X]/(X2 + 5)).
Let us first determine the units in Z[

√
−5]. For a, b ∈ Z, we have N(a +

b
√
−5) = a2 + 5b2, where N is the usual norm map on C. If z ∈ Z[

√
−5] is a

unit, then there exists z′ ∈ Z[
√
−5] such that zz′ = 1. Taking norms, we obtain

1 = N(1) = N(zz′) = N(z)N(z′).

Since the norm of an element of Z[
√
−5] is a non-negative integer, this implies

that N(z) = 1. If z = a + b
√
−5, then N(z) = a2 + 5b2, and it is clear that

N(z) = 1 if and only if z = ±1. We conclude that the only units in Z[
√
−5] are

±1.
Now consider the following factorizations:

46 = 2 · 23,
46 = (1 + 3

√
−5)(1− 3

√
−5).

We claim that each of these four factors are irreducibles in Z[
√
−5]. For suppose,

say, that 2 = zz′, for z, z′ ∈ Z[
√
−5], with neither a unit. Taking norms, we

have 4 = N(2) = N(z)N(z′), and therefore, N(z) = N(z′) = 2 — but this is
impossible, since there are no integers a and b such that a2+5b2 = 2. Analogous
arguments apply to the other three factors, which we leave to the reader. Since
the only units in Z[

√
−5] are ±1, it is clear that these four irreducibles are

non-associate. 2

For a, b ∈ D, we call d ∈ D a common divisor of a and b if d | a and
d | b; moreover, we call such a d a greatest common divisor of a and b if all
other common divisors of a and b divide d. We say that a and b are relatively
prime if the only common divisors of a and b are units. It is immediate from the
definition of a greatest common divisor that it is unique, up to multiplication
by units, if it exists at all. For general integral domains D, greatest common
divisors need not exist. Unlike in the case of Z and F [X], in the general setting,
we shall not attempt to “normalize” greatest common divisors, and we speak
only of “a” greatest common divisor, rather than “the” greatest common divisor.

Just as for integers and polynomials, we can generalize the notion of a great-
est common divisor in an arbitrary integral domain D from two to any number
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of elements of D, and we can also define a least common multiple of any number
of elements as well.

These greatest common divisors and least common multiples need not exist,
but if they do, they are unique up to associates. If D is a UFD, then they
will always exist. The existence question easily reduces to the question of the
existence of a greatest common divisor and least common multiple of a and b,
where a and b are non-zero elements of D. If we write

a = u
r∏

i=1

peii and b = v
r∏

i=1

pfii ,

where u and v are units, p1, . . . , pr are non-associate irreducibles, and the ei’s
and fi’s are non-negative integers, then

r∏

i=1

pmin(ei,fi)

is a greatest common divisor of a and b, while

r∏

i=1

pmax(ei,fi)

is a least common multiple of a and b.
It is also evident that in a UFD D, if c | ab and c and a are relatively prime,

then c | b. In particular, if p is irreducible and p | ab, then p | a or p | b. From
this, we see that if p is irreducible, then the quotient ring D/(p) is an integral
domain, and so the ideal (p) is a prime ideal (see Exercise 9.55).

In a general integral domain D, we say that an element p ∈ D is prime if
for all a, b ∈ D, p | ab implies p | a or p | b. Thus, if D is a UFD, then all
irreducibles are primes; however, in a general integral domain, this may not be
the case. Here are a couple of simple but useful facts whose proofs we leave to
the reader.

Theorem 17.53 Any prime element in D is irreducible.

Proof. Exercise. 2

Theorem 17.54 Suppose D satisfies part (1) of Definition 17.51. Also, suppose
that all irreducibles in D are prime. Then D is a UFD.

Proof. Exercise. 2
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Exercise 17.55 Let D be a UFD and F its field of fractions. Show that

(a) every element x ∈ F can be expressed as x = a/b, where a, b ∈ D are
relatively prime, and

(b) that if x = a/b for a, b ∈ D relatively prime, then for any other a′, b′ ∈ D
with x = a′/b′, we have a′ = ca and b′ = cb for some c ∈ D.

2

17.9.1 Unique factorization in Euclidean and Principal Ideal
Domains

Our proofs of the unique factorization property in both Z and F [X] hinged on the
division with remainder property for these rings. This notion can be generalized,
as follows.

Definition 17.56 D is said to be a Euclidean domain if there is a function
λ mapping the non-zero elements of D to the set of non-negative integers, such
that for a, b ∈ D with b 6= 0, there exist q, r ∈ D, with the property that a = bq+r
and either r = 0 or λ(r) < λ(b).

Example 17.57 Both Z and F [X] are Euclidean domains. In Z, we can take
the ordinary absolute value function | · | as λ, and for F [X], the function deg(·)
will do. 2

Example 17.58 Recall again the ring

Z[i] = {a+ bi : a, b ∈ Z}

of Gaussian integers from Example 9.27. This is a Euclidean domain, using the
usual norm map N on complex numbers for the function λ. Let z, w ∈ Z[i],
with w 6= 0. We want to show the existence of u, v ∈ Z[i] such that z = uw+ v,
where N(v) < N(w). Suppose that in the field C, we compute zw−1 = r + si,
where r, s ∈ Q. Let m,n be integers such that |m− r| ≤ 1/2 and |n− s| ≤ 1/2
— such integers m and n always exist, but may not be uniquely determined.
Set u := m+ ni ∈ Z[i] and v := z − uw. Then we have

zw−1 = u+ δ,

where δ ∈ C with N(δ) ≤ 1/4, and

v = z − uw = z − (zw−1 − δ)w = δw,
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and hence

N(v) = N(δw) = N(δ)N(w) ≤ 1

4
N(w).

2

Theorem 17.59 If D is a Euclidean domain and I is an ideal in D, then there
exists d ∈ D such that I = (d).

Proof. If I = {0}, then d = 0 does the job, so let us assume that I 6= {0}. Let
d be an non-zero element of I such that λ(d) is minimal. We claim that I = (d).

It will suffice to show that for all c ∈ I, we have d | c. Now, we know that
there exists q, r ∈ D such that c = qd + r, where either r = 0 or λ(r) < λ(d).
If r = 0, we are done; otherwise, r is a non-zero element of I with λ(r) < λ(d),
contradicting the minimality of λ(d). 2

Recall that an ideal of the form I = (d) is called a principal ideal. If all
ideals in D are principal, then D is called a principal ideal domain (PID).
Theorem 17.59 says that any Euclidean domain is a PID.

PIDs enjoy many nice properties, including:

Theorem 17.60 If D is a PID, then D is a UFD.

For the rings Z and F [X], the proof of part (1) of Definition 17.51 was quite
straightforward (as it also would be for any Euclidean domain). For a general
PID, however, this requires a different sort of argument. We begin with the
following fact:

Theorem 17.61 If D is a PID, and I1 ⊆ I2 ⊆ · · · is an ascending chain of
ideals in D, then there exists an integer k such that Ik = Ik+1 = · · · .

Proof. Let I := ∪∞i=1Ii. It is easy to see that I is an ideal. Thus, I = (d) for
some d ∈ D. But d ∈ ∪∞i=1Ii implies that d ∈ Ik for some k, which shows that
I = (d) ⊆ Ik. It follows that I = Ik = Ik+1 = · · · . 2

We can now prove the existence part of Theorem 17.60:

Theorem 17.62 If D is a PID, then every non-zero, non-unit element of D
can be expressed as a product of irreducibles in D.

Proof. Let n ∈ D, n 6= 0, and n not a unit. If n is irreducible, we are done.
Otherwise, we can write n = ab, where neither a nor b are units. As ideals, we
have (n) ( (a) and (n) ( (b). If we continue this process recursively, building
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up a “factorization tree” where n is at the root, a and b are the children of n,
and so on, then the recursion must stop, since any infinite path in the tree would
give rise to a chain of ideals

(n) = I1 ( I2 ( · · · ,

contradicting Theorem 17.61. 2

The proof of the uniqueness part of Theorem 17.60 is essentially the same
as for proofs we gave for Z and F [X].

Analogous to Theorems 1.12 and 17.19, we have:

Theorem 17.63 Let D be a PID. For any a, b ∈ D, there exists a greatest
common divisor d of a and b, and moreover, (a, b) = (d); in particular, as+bt =
d for some s, t ∈ D.

Proof. Exercise. 2

The previous theorem says that in a PID, a and b are relatively prime if and
only if there exist s, t ∈ D such that as+ bt = 1.

Analogous to Theorems 1.13 and 17.20, we have:

Theorem 17.64 Let D be a PID. For a, b, c ∈ D such that c | ab and a and c
are relatively prime, we have c | b.

Proof. Exercise. 2

Analogous to Theorems 1.14 and 17.65, we have:

Theorem 17.65 Let D be a PID. Let p ∈ D be irreducible, and let a, b ∈ D.
Then p | ab implies that p | a or p | b. That is, all irreducibles in D are prime.

Proof. Exercise. 2

Theorem 17.60 now follows immediately from Theorems 17.62, 17.65, and
17.54.

Exercise 17.66 Consider the polynomial

X3 − 1 = (X− 1)(X2 + X+ 1).

Over C, the roots of X3 − 1 are 1, (−1 ±
√
−3)/2. Let ω = (−1 +

√
−3)/2, and

note that ω2 = (−1−
√
−3)/2, and ω3 = 1.
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(a) Show that the ring Z[ω] consists of all elements of the form a+ bω, where
a, b ∈ Z, and is an integral domain.

(b) Determine the units in Z[ω].

(c) Show that Z[ω] is a Euclidean domain.

2

Exercise 17.67 Design and analyze an efficient algorithm to compute a great-
est common divisor of two Gaussian integers. 2

17.9.2 Unique factorization in D[X]

In this section, we prove the following:

Theorem 17.68 If D is a UFD, then so is D[X].

This theorem implies, for example, that Z[X] is a UFD. Applying the theorem
inductively, one also sees that for any field F , the ring F [X1, . . . , Xn] of multi-
variate polynomials over F is also a UFD.

We begin with some simple observations. First, recall that for an integral
domain D, D[X] is an integral domain, and the units in D[X] are precisely the
units in D. Second, it is easy to see that an element of D is irreducible in D if
and only if it is irreducible in D[X]. Third, for c ∈ D and f =

∑

i aiX
i ∈ D[X],

we have c | f if and only if c | ai for all i.
We call a non-zero polynomial f ∈ F [X] primitive if the only elements in

D that divide f are units. A couple of simple observations, which hold for any
integral domain D, are the following:

• a primitive polynomial that is not a unit has degree greater than zero, i.e.,
it is not a constant;

• any non-constant irreducible polynomial must be primitive.

If D is a UFD, then given any non-zero polynomial f ∈ D[X], we can partially
factor it as f = cf ′, where c ∈ D and f ′ is a primitive polynomial — just take
c to be a greatest common divisor of all the coefficients of f . These values c
and f ′ are uniquely determined, up to associates, and are called, respectively, a
content of f and a primitive part of f .



17.9. ♣ Unique Factorization Domains 317

It is easy to prove the existence part of Theorem 17.68:

Theorem 17.69 Let D be a UFD. Any non-zero, non-unit element of D[X] can
be expressed as a product of irreducibles in D[X].

Proof. For a non-zero, non-unit polynomial f ∈ D[X], write f = cf ′ for c ∈ D
and f ′ primitive. Since D is a UFD, we know that c factors into irreducibles,
and so it suffices to consider only primitive polynomials. So assume that f is
a primitive polynomial. If f is irreducible, we are done. Otherwise, we can
write f = gh, where neither g nor h are units. Since f is primitive and not
a unit, it must not be a constant. It must also be the case that g and h are
primitive, non-constant polynomials, both of degree strictly less than that of
f . By induction on degree, both g and h can be expressed as the product of
irreducible, non-constant polynomials, and hence, so can f . 2

The uniqueness part of Theorem 17.68 is (as usual) more difficult. We begin
with the following fact:

Theorem 17.70 Let D be a UFD. The product of two primitive polynomials in
D[X] is also primitive.

Proof. Let f, g ∈ D[X] be primitive polynomials, and let h := fg. If h is not
primitive, then m | h for some non-zero, non-unit m ∈ D, and as D is a UFD,
there is some irreducible element p ∈ D that divides m, and therefore, divides h
as well. Consider the quotient ring D/(p), which is an integral domain (because
D is a UFD), and the corresponding ring of polynomials D/(p)[X], which is also
an integral domain. Consider the natural homomorphism from D[X] to D/(p)[X]
that sends a ∈ D[X] to the polynomial ā ∈ D/(p)[X] obtained by mapping each
coefficient of a to its residue class mod p. Then we have

0 = h̄ = fg = f̄ ḡ,

and since D/(p)[X] is an integral domain, it follows that f̄ = 0 or ḡ = 0, which
means that p | f or p | g. This contradicts the assumption that f and g are
primitive. 2

As a generalization of the previous theorem, we have:

Theorem 17.71 Let D be a UFD. If f and g are non-zero polynomials in D[X],
and a is a content of f and b is a content of g, then ab is a content of fg.
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Proof. Write f = af ′ and g = bg′, where f ′ and g′ are primitive polynomials.
Then we have fg = (ab)(f ′g′). By the previous theorem, f ′g′ is primitive, and
so ab is a content of fg. 2

Theorem 17.72 Let D be a UFD and F its field of fractions. If h ∈ D[X] with
deg(h) > 0 is irreducible, then h is also irreducible in F [X].

Proof. Suppose that h is irreducible in D[X], but not in F [X], so that h = fg for
non-constant polynomials f, g ∈ F [X], both of degree strictly less than that of h.
Each coefficient of f is a fraction, with numerator and denominator in D. Let
a be the product of all these denominators, so that f0 := af ∈ D[X]. Likewise,
let b be the product of all the denominators of the coefficients of g, so that
g0 := bg ∈ D[X]. Then we have abh = f0g0. Let us write f0 = cf1 and g0 = dg1,
where c, d ∈ D and f1 and g1 are primitive. Then we have (ab)h = (cd)(f1g1).
Now, since h is irreducible and non-constant, it must be primitive, and therefore
ab is a content of (ab)h. Also, by the Theorem 17.70, the polynomial f1g1 is
primitive, and so cd is a content of (cd)(f1g1). Since ab and cd are contents of
the same polynomial, it follows that ab and cd are associate, and hence cd = uab
for some unit u, from which it follows that h = uf1g1. This contradicts the
assumption that h is irreducible in D[X]. 2

Theorem 17.73 Let D be a UFD. If h ∈ D[X] is irreducible, and f, g ∈ D[X],
then h | fg implies h | f or h | g. That is, every irreducible in D[X] is prime.

Proof. We may assume that neither f nor g are zero, as otherwise, the theorem
is trivial.

Let us consider two cases. In the first case, suppose that deg(h) = 0, i.e,
h ∈ D. If a is a content of f and b is a content of g, then by Theorem 17.71, ab
is a content of fg. Now, if h | fg, then h divides the content of fg, so h | ab,
and since h is irreducible, h | a or h | b, which implies that h | f or h | g.

In the second case, suppose that deg(h) > 0. By the previous theorem, h
is irreducible in F [X], and by unique factorization in F [X], we have f = hf ′

for some f ′ ∈ F [X], or g = hg′ for some g′ ∈ F [X]. Suppose that f = hf ′ for
f ′ ∈ F [X] — the proof is analogous in the other situation. Let us choose c ∈ D
to clear the denominators of the coefficients of f ′, so that cf = hf ′0, where
f ′0 ∈ D[X]. Now, if d is a content of f ′0, then since h must be primitive, it follows
from Theorem 17.71 that d is a content of hf ′0, and hence a content of cf . As
any content of cf is a multiple of c, it follows that c | d. Canceling c, we obtain
f = h(f ′0/c), where f

′
0/c ∈ D[X], which proves the theorem. 2

Theorem 17.68 now follows immediately from Theorems 17.69, 17.73, and
17.54.



17.9. ♣ Unique Factorization Domains 319

In the proof of Theorem 17.68, there is clearly a connection between fac-
torization in D[X] and F [X], where F is the field of fractions of D. We should
perhaps make this connection more explicit. Suppose f ∈ D[X] factors into
irreducibles in D[X] as

f = ca1
1 · · · carr hb11 · · ·hbss .

where the ci’s are non-associate, irreducible constants, and the hi’s are non-
associate, irreducible, non-constant polynomials. By Theorem 17.72, the hi’s
are irreducible in F [X]. Moreover, the hi’s are not associate in F [X] (see Exer-
cise 17.77 below), and thus in F [X], f factors as

f = chb11 · · ·hbss ,

where c := ca1
1 · · · carr is a unit in F , and the hi’s are non-associate irreducible

polynomials in F [X].

Example 17.74 It is important to keep in mind the distinction between fac-
torization in D[X] and F [X]. Consider the polynomial 2X2 − 2 ∈ Z[X]. Over
Z[X], this polynomial factors as 2(X−1)(X−1), where each of these three factors
are irreducible in Z[X]. Over Q[X], this polynomials has two irreducible factors,
namely, X− 1 and X+ 1. 2

The following theorem provides a useful criterion for establishing that a
polynomial is irreducible.

Theorem 17.75 (Eisenstein’s Criterion) Let D be a UFD and F its field
of fractions. Let f = anX

n + an−1Xn−1 + · · · + a0 ∈ D[X]. If there exists an
irreducible p ∈ D such that

p - an, p | an−1, · · · , p | a0, p2 - a0,

then f is irreducible over F .

Proof. Suppose f = gh, where r := deg(g) < n and s := deg(h) < n. Let us
write

g =
r∑

i=0

biX
i and h =

s∑

i=0

ciX
i.

Since p | a0 = b0c0, but p
2 - a0, it follows that p divides one of b0 or c0, but not

both. Let us say p | b0 and p - c0. Also, since p - an = brcs, we know that p - br.
So there is a least non-negative integer t such that p - bt, and this t satisfies
0 < t ≤ r < n. Now consider at = btc0 + bt−1c1 + · · · + b0ct. By assumption,
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p | at and by the choice of t, every term on the right after the first one is also
divisible by p, which forces p to divide btc0 as well. But this is impossible, since
p divides neither bt nor c0. 2

As an application of the previous theorem, we have:

Theorem 17.76 For any prime number q, the qth cyclotomic polynomial

Φq =
Xq − 1

X− 1
= Xq−1 + Xq−2 + · · ·+ 1

is irreducible over Q.

Proof. Let

f = Φq(X+ 1) =
(X+ 1)q − 1

(X+ 1)− 1
.

It is easy to see that

f =

q−1
∑

i=0

aiXi, where ai =

(
q

i+ 1

)

(i = 0, . . . , q − 1).

Thus, aq−1 = 1, a0 = q, and for 0 < i < q− 1, we have q | ai (see Exercise 1.17).
Theorem 17.75 therefore applies, and we conclude that f is irreducible over Q.
It follows that Φq is irreducible over Q, since if Φq = gh were a non-trivial
factorization of Φq, then f = Φq(X+1) = g(X+1)h(X+1) would be a non-trivial
factorization of f . 2

Exercise 17.77 Suppose that D is a UFD, F its field of fractions, and f, g ∈
D[X] are primitive polynomials f = cg for some c ∈ F . Show that c ∈ D∗. 2

Exercise 17.78 Show that neither Z[X] nor F [X, Y] (where F is a field) are PIDs
(even though they are UFDs). 2

Exercise 17.79 Show that the polynomial X4 + 1 is irreducible in Q[X]. 2

Exercise 17.80 Design and analyze an efficient algorithm for the following
problem. The input is a pair of polynomials a, b ∈ Z[X], along with their greatest
common divisor d in the ring Q[X] — d is a normalized polynomial (i.e., zero or
monic) with rational coefficients represented as fractions in lowest terms. The
output is the greatest common divisor of a and b the ring Z[X]. 2

Exercise 17.81 Let a, b ∈ Z[X] be non-zero polynomials with d := gcd(a, b) ∈
Z[X]. Show that for any prime p not dividing lc(a) lc(b), we have d̄ | gcd(ā, b̄),
and except for finitely many primes p, we have d̄ = gcd(ā, b̄). Here, d̄, ā, and b̄
denote the images of d, a, and b in Zp[X]. 2
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17.10 ♣ Constructing the Real Numbers
It is instructive to see how the language and techniques of the theory of rings
can be used to define the real numbers R, starting from the rational numbers Q.
The purpose of this section is mainly to illustrate concepts from algebra, and
not to do any serious analysis; moreover, we leave most of the technical details
as exercises to the reader.

First, let us define the ring S of all infinite sequences (a1, a2, . . .) of rational
numbers, where addition and multiplication are defined component-wise.

Exercise 17.82 Show that S is indeed a ring, where the additive identity 0S
is the “all zero” sequence, and the multiplicative identity 1S is the “all one”
sequence. 2

We now make some “analytical” definitions. Let x = (a1, a2, . . .) ∈ S.

• We say that x is bounded if there exists a rational number b such that
|ai| ≤ b for all i ≥ 1.

• We say that x is null if for all rational ε > 0, there exists integer n ≥ 1,
such that for all i ≥ n, we have |ai| < ε.

• We say that x is positive if there exists a rational number δ > 0 and an
integer n ≥ 1, such that for all i ≥ n, we have ai > δ.

• We say that x is negative if there exists a rational number δ < 0 and an
integer n ≥ 1, such that for all i ≥ n, we have ai < δ.

• We say that x is Cauchy if for all rational ε > 0, there exists an integer
n ≥ 1, such that for all i, j ≥ n, we have |ai − aj | < ε.

Exercise 17.83 Show that

(a) every null sequence is Cauchy,

(b) every Cauchy sequence is bounded,

(c) every Cauchy sequence is either positive, negative, or null,

(d) the sum of two positive (resp., negative) sequences is positive (resp., neg-
ative), the product of two positive (resp., negative) sequences is positive,
and the product of a positive and a negative sequence is negative.

2



322 Chapter 17. More Rings

Let C be the subset of C consisting of all Cauchy sequences, and let N be
the subset of S consisting of all null sequences. By the previous exercise, we
have N ⊆ C.

Exercise 17.84 Show that

(a) C is a subring of S, and

(b) N is an ideal in C.

2

Because N is an ideal in S, we can form the quotient ring C/N . This will
be our definition of the real numbers. We first need to show that C/N is a field.

Exercise 17.85 Let x = (a1, a2, . . .) be a non-null Cauchy sequence. Define
x′ := (a′1, a

′
2, . . .), where a

′
i := a−1i , if ai 6= 0, and a′i := 0, otherwise. Show

that x′ is Cauchy and that xx′ ≡ 1S (mod N). Conclude that C/N is a field. 2

Of course, we want to view the rationals as a subfield of the reals:

Exercise 17.86 Show that the map ρ : Q→ S that sends a ∈ Q to the sequence
(a, a, . . .) is a homomorphism. Also, show that ρ is injective, and that its image
is contained in C. Further, show that ρ−1(N) = {0}, and from this, conclude
that the composition of ρ with the natural map from C to C/N is an embedding
of Q into C/N . 2

Of course, the real numbers are a special type of field in that they come
equipped with a total order “<.” We can define a total order on C/N , in terms
of the usual “<” relation on Q.

Exercise 17.87 Show that if x is a positive (resp., negative) Cauchy sequence,
then every element of the coset x+N is also positive (resp., negative). 2

We can define an element x+N of C/N to be positive if x is positive, and
to be negative if x is negative. Because of the previous exercise, this definition
does not depend on the choice of x, and so is unambiguous. Because of part
(c) of Exercise 17.83, every element of C/N is either positive, negative, or zero.
For α, β ∈ C/N , we say “α < β” if α − β is negative. Of course, from this
definition, we define the relations “>,” “≤,” and “≥,” along with the absolute
value function “| · |,” in the obvious way. This gives us a total order on C/N ,
extending that on Q.

One can derive all of the usual properties of inequalities from these defini-
tions, for example:
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Exercise 17.88 Let α, β, γ ∈ C/N . Show that

(a) exactly one of α < β, α = β, or α > β holds,

(b) α < β and β < γ implies α < γ,

(c) α < β implies α+ γ < β + γ,

(d) α < β and γ > 0 implies αγ < βγ,

(e) α < β implies −α > −β,

(f) |αβ| = |α||β|,

(g) |α+ β| ≤ |α|+ |β|.

2

Indeed, all of the familiar properties of the reals may be derived from these
definitions. However, this is not a course in analysis, and so we will not pursue
this matter any further, except to ask the interested reader to derive the following
standard results from real analysis from the definition of the reals as C/N :

Exercise 17.89 Show that the rationals are dense in the reals, i.e., between
any two distinct real numbers, there lies a rational number. 2

Exercise 17.90 Any Cauchy sequence of real numbers converges to a real num-
ber. 2

We have given one specific construction of the real numbers. There are
other constructions (e.g., “Dedekind cuts”). However, all these constructions
yield isomorphic fields.



Chapter 18

Polynomial Arithmetic and
Applications

In this chapter, we study algorithms for performing arithmetic on polynomials.
Initially, we shall adopt very general point of view, discussing polynomials whose
coefficients lie in an arbitrary ring R, and then specialize to the case where the
coefficient ring is a field F .

There are many similarities between arithmetic in Z and in R[X], and the
similarities between Z and F [X] run even deeper. Many of the algorithms we
discuss in this chapter will be quite similar to the corresponding algorithms for
integers. There are differences, however, and one has to be aware of these.

As we did in §15 for matrices, we shall treat R as an “abstract data type,”
and measure the complexity of algorithms for polynomials over a ring R by
counting “operations in R.”

18.1 Basic Arithmetic

Throughout this section, R denotes a ring.
We assume that a polynomial a = a0 + a1X + · · · + an−1Xn−1 ∈ R[X] is

represented as a coefficient vector (a0, a1, . . . , an−1). Further, we assume that
an−1 6= 0 if a 6= 0, and that n = 1 if a = 0. For a polynomial a ∈ R[X], we
define its length, denoted len(a), to be the length n of its coefficient vector.
Thus, len(a) = max{deg(a)+1, 1}. It is sometimes more convenient to state the
running times of algorithms in terms of len(a), rather than deg(a) (the latter
has the inconvenient habit of taking on the value 0, or worse, −∞).

The following theorem is the analog of Theorem 3.16.

324
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Theorem 18.1 Let a and b be arbitrary polynomials in R[X].

(i) We can compute a± b with O(len(a) + len(b)) operations in R.

(ii) We can compute a · b with O(len(a) len(b)) operations in R.

(iii) If b 6= 0 and lc(b) is a unit in R, we can compute q and r such that
a = bq + r and deg(r) < deg(b) with O(len(b) len(q)) operations in R.

Proof. All of these operations can be performed using the standard “paper-
and-pencil” method. Indeed, the basic arithmetic algorithms for polynomials
are significantly simpler than the corresponding algorithms for integers, since in
the case of polynomials, we do not have to worry about “carries.” We leave the
verification of the operations counts to the reader. 2

Analogous to algorithms for modular integer arithmetic, we can also do arith-
metic in the residue class ring R[X]/(f), where f ∈ R[X] is a monic polynomial
of degree ` > 0 whose leading coefficient lc(f) is a unit.

For computational purposes, elements of R[X]/(f) are represented as polyno-
mials of degree less than `, which in turn are represented as coefficient vectors of
length at most `. With this representation, addition and subtraction in R[X]/(f)
can be performed using O(`) operations in R, while multiplication takes O(`2)
operations in R.

As in §3.4, we make a clear distinction between elements of R[X] and elements
of R[X]/(f). To convert an element of a ∈ R[X] to an element α ∈ R[X]/(f), we
write α← [a mod f ]; to convert an element α ∈ R[X]/(f) to an element a ∈ R[X],
we write a ← rep(α), where the resulting value a is the unique polynomial of
degree less than ` such that α = [a mod f ].

The repeated-squaring algorithm for computing powers works equally well in
this setting: given α ∈ R[X]/(f) and a non-negative exponent e, we can compute
αe using O(len(e)) multiplications in R[X]/(f), and so a total of O(len(e) `2)
operations in R.

The following exercises deal with arithmetic with polynomials R[X] over a
ring R.

Exercise 18.2 State and re-work the polynomial analog of Exercise 3.17. 2

Exercise 18.3 State and re-work the polynomial analog of Exercise 3.18. As-
sume n1, . . . , nk are monic polynomials. 2
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18.2 ♣ Faster Polynomial Arithmetic
The algorithms discussed in §3.5 for faster integer arithmetic are easily adapted
to polynomials over a ring R.

Exercise 18.4 State and re-work the polynomial analog of Exercise 3.23. 2

In the following exercises, assume that we have an algorithm that multiplies
two polynomials of length at most ` using at most M(`) operations in R, where
M is a well-behaved complexity function (as defined in §3.5).

Exercise 18.5 State and re-work the polynomial analog of Exercise 3.24. 2

Exercise 18.6 This problem is the polynomial analog of Exercise 3.25. Let
us first define the notion of a “floating point” reversed Laurent series ẑ, which
is represented as a pair (a, e), where a ∈ R[X] and e ∈ Z — the value of ẑ
is aXe ∈ R((X−1)), and we call len(a) the precision of ẑ. We say that ẑ is a
length k approximation of z ∈ R((X−1)) if ẑ has precision k and ẑ = z(1 + ε)
for ε ∈ R((X−1)) with deg(ε) ≤ −k — this is the same as saying that the high
order k coefficients of ẑ and z are equal. Show how to compute — given monic
b ∈ R[X] and positive integer k — a length k approximation to 1/b ∈ R((X−1))
using O(M(k)) operations in R. Hint: using Newton iteration, show how to go
from a length t approximation to 1/b to a length 2t approximation, making use
of just the high order 2t coefficients of b, and using O(M(t)) operations in R.
2

Exercise 18.7 State and re-work the polynomial analog of Exercise 3.26. As-
sume that b is a monic polynomial. 2

Exercise 18.8 State and re-work the polynomial analog of Exercise 3.27.
Conclude that a polynomial of length ` can be evaluated at ` points using
O(M(`) len(`)) operations in R. 2

Exercise 18.9 State and re-work the polynomial analog of Exercise 3.28, as-
suming that R is a field of odd characteristic. 2

Exercise 18.10 State and re-work the polynomial analog of Exercise 3.29. As-
sume that 2 ∈ R∗. 2
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18.3 Computing Minimal Polynomials in F [X]/(f) (I)

Let F be a field, f ∈ F [X] a monic polynomial of degree ` > 0, and let E :=
F [X]/(f). E is an F -algebra of dimension `. Suppose we are given an element
α ∈ E, and want to efficiently compute the minimal polynomial of α over F ,
i.e., the monic polynomial φ ∈ F [X] of least degree such that φ(α) = 0, which
we know has degree at most `. This is a computational problem that we shall
consider from several points of view, illustrating a number of computational and
algebraic ideas.

We can solve this problem using Gaussian elimination, as follows. Consider
the F -linear map ρ from F [X]≤` to E that sends a polynomial h of degree at
most ` to h(α). Let us fix ordered bases for F [X]≤` and E: for F [X]≤`, let us
take X`, X`−1, . . . , 1, and for E, let us take 1, η, . . . , η`−1, where η := [X mod f ].
The matrix A representing the map ρ (via multiplication on the right by A), is
the (`+1)×` matrix A whose ith row, for 1 ≤ i ≤ `+1, is the coordinate vector
of α`+1−i.

We apply Gaussian elimination to A to find a set of row vectors v1, . . . , vs
which are coordinate vectors for a basis for the kernel of ρ. Now, the coordinate
vector of the minimal polynomial of α is a linear combination of v1, . . . , vs. To
find it, we form the s × (` + 1) matrix B whose rows consist of v1, . . . , vs, and
apply Gaussian elimination to B, obtaining an s× (`+ 1) matrix B ′ in reduced
row echelon form whose row space is the same as that of B. Let g be the
polynomial whose coordinate vector is the last row of B ′. Because of the choice
of ordered basis for F [X]≤`, and because B′ is in reduced row echelon form, it
is clear that no non-zero polynomial in ker(ρ) has degree less than that of g.
Moreover, as g is already monic (again, by the fact that B ′ is in reduced row
echelon form), it follows that g is in fact the minimal polynomial of α over F .

The total amount of work performed by this algorithm is O(`3) operations
in F to build the matrix A (this just amounts to computing ` successive powers
of α), and O(`3) operations in F to perform both Gaussian elimination steps.

18.4 Euclid’s Algorithm

In this section, F denotes a field, and we consider the computation of greatest
common divisors in F [X].

The following is the analog of Theorem 4.1.

Theorem 18.11 Let a, b ∈ F [X], with deg(a) ≥ deg(b) and a 6= 0. Define the
polynomials r0, r1, . . . , r`+1, and q1, . . . , q`, where ` ≥ 0, as follows:

r0 = a,
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r1 = b,

r0 = r1q1 + r2 (−∞ < deg(r2) < deg(r1)),

...

ri−1 = riqi + ri+1 (−∞ < deg(ri+1) < deg(ri)),

...

r`−2 = r`−1q`−1 + r` (−∞ < deg(r`) < deg(r`−1)),

r`−1 = r`q` (r`+1 = 0).

Then r`/ lc(r`) = gcd(a, b). Moreover, if b 6= 0, then ` ≤ deg(b)+1, and if b = 0,
then ` = 0.

Proof. Arguing as in the proof of Theorem 4.1, one sees that gcd(r0, r1) =
gcd(r`, r`+1) = r`/ lc(r`). That proves the first statement. Also, one easily sees
that for 0 ≤ i ≤ ` − 1, deg(r`−i) ≥ i, from which the second statement follows.
2

This gives us the following Euclidean algorithm for polynomials, which takes
as input polynomials a, b with deg(a) ≥ deg(b) and a 6= 0:

while b 6= 0 do
(a, b)← (b, a rem b)

output a/ lc(a)

By Theorem 18.11, this algorithm outputs the greatest common divisor of a and
b.

Theorem 18.12 Euclid’s algorithm for polynomials uses O(len(a) len(b)) oper-
ations in F .

Proof. The proof is almost identical to that of Theorem 4.3. Details are left to
the reader. 2

Just as for integers, if d = gcd(a, b), then (d) = (a, b), and so there exist
polynomials s and t such that as+ bt = d. The procedure to calculate s and t is
precisely the same as in the case for integers; however, in the polynomial case,
we can be much more precise about the relative sizes of the objects involved in
the calculation.
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Theorem 18.13 Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theorem 18.11.
Define polynomials s0, s1, . . . , s`+1 and t0, t1, . . . , t`+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for 1 ≤ i ≤ `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then

(i) for 0 ≤ i ≤ `+ 1, we have sia+ tib = ri;

(ii) for 0 ≤ i ≤ `, siti+1 − tisi+1 = (−1)i;

(iii) for 0 ≤ i ≤ `+ 1, gcd(si, ti) = 1;

(iv) for 2 ≤ i ≤ `+ 1, we have

deg(si) = deg(b)− deg(ri−1) and deg(ti) = deg(a)− deg(ri−1);

moreover, for i = 1, we have

deg(si) ≤ deg(b)− deg(ri−1) and deg(ti) = deg(a)− deg(ri−1);

(v) for 1 ≤ i ≤ `, we have deg(si+1) > deg(si); for 0 ≤ i ≤ `, we have
deg(ti+1) ≥ deg(ti), and this inequality is strict, except when i = 1 when
deg(a) = deg(b);

(vi) for 1 ≤ i ≤ `+1, we have deg(si) ≤ deg(b), and for 0 ≤ i ≤ `+1, we have
deg(ti) ≤ deg(a).

Proof. (i), (ii), and (iii) are proved just as in the corresponding parts of
Theorem 4.5.

For (iv), first observe that deg(q1) ≥ 0, and deg(qi) ≥ 1 for 2 ≤ i ≤ `.
We now prove the first statement of (iv) by induction on i. From the def-

initions, we see that s2 = 1, and deg(b) − deg(r1) = 0. Also, t2 = −q1, and
deg(a) − deg(r1) = deg(q1). That proves (iv) for i = 2. Now suppose i > 2.
Consider first the statement involving si. By definition, si = si−2 − si−1qi−1.
We claim that deg(si−1qi−1) > deg(si−2); this follows from the fact that
deg(qi−1) > 0 and the fact that deg(si−1) ≥ deg(si−2) (the latter fact follows
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from the induction hypothesis for i > 3 and by inspection for i = 3). Thus,
again applying the induction hypothesis, we see that

deg(si) = deg(si−1) + deg(qi−1)

= deg(b)− deg(ri−2) + deg(qi−1)

= deg(b)− deg(ri−1).

The induction step for ti is analogous, and is left to the reader.
The second statement of part (iv) (i.e., the statement for i = 1) follows

trivially by inspection.
Parts (v) and (vi) follow easily from part (iv); the details are left to the

reader. 2

We can easily turn the scheme described in Theorem 18.13 into a simple
algorithm, taking as input polynomials a, b, such that deg(a) ≥ deg(b) and
a 6= 0:

s← 1, t← 0
s′ ← 0, t′ ← 1
while b 6= 0 do

Compute q, r such that a = bq + r, with deg(r) < deg(b)
(s, t, s′, t′)← (s′, t′, s− s′q, t− t′q)
(a, b)← (b, r)

output a/ lc(a), s/ lc(a), t/ lc(a)

Theorem 18.14 The extended Euclidean algorithm for polynomials uses
O(len(a) len(b)) operations in F .

Proof. Left as an exercise for the reader. 2

18.5 Computing Modular Inverses and Chinese Re-
maindering

In this and the remaining sections of this chapter, we explore various applications
of Euclid’s algorithm for polynomials. Many of these applications are analogous
to their integer counterparts, although there are some differences to watch for.
Throughout this section, F denotes a field.

We begin with the obvious application of the extended Euclidean algorithm
for polynomials to the problem of computing multiplicative inverses in F [X]/(f),
where f ∈ F [X] with deg(f) > 0.
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Given a ∈ F [X] with deg(a) < deg(f), we can determine if [a mod f ] has
a multiplicative inverse in F [X]/(f), and if so, determine this inverse, using
O(len(f)2) operations in F , as follows. We run the extended Euclidean algorithm
on input (f, a) to determine polynomials d, s, and t, such that d = gcd(f, a)
and fs+ at = d. If d 6= 1, then [a mod f ] is not invertible; otherwise, [a mod f ]
is invertible, and [t mod f ] is its inverse. Moreover, by parts (v) and (vi) of
Theorem 18.13, we have deg(t) < deg(f) (verify), and so the polynomial t may
be used directly to represent the multiplicative inverse of [a mod f ]; i.e., there
is no need to reduce t modulo f .

If the polynomial f is irreducible, then F [X]/(f) is a field, and the extended
Euclidean algorithm, together with the basic algorithms for addition, subtrac-
tion, and multiplication modulo f , gives us efficient algorithms for performing
addition, subtraction, multiplication and division in the extension field F [X]/(f),
assuming of course, that we have efficient algorithms for arithmetic in F .

We also observe that Theorem 17.26 (the Chinese Remainder Theorem for
polynomials) can be made computationally effective as well.

Theorem 18.15 Given polynomials n1, . . . , nk and a1, . . . , ak over a field F ,
with deg(ni) > 0, gcd(ni, nj) = 1 for i 6= j, and deg(ai) < deg(ni), we can com-
pute z ∈ F [X] such that deg(z) < deg(n) and z ≡ ai (mod ni) using O(len(n)2)
operations in F , where n =

∏

i ni.

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, which are
repeated below the statement of Theorem 17.26). 2

18.5.1 Chinese remaindering and polynomial interpolation

We remind the reader of the discussion following Theorem 17.26, where the
point was made that when ni = (X − bi) for 1 ≤ i ≤ k, then the Chinese
Remainder Theorem for polynomials reduces to Lagrange interpolation. Thus,
Theorem 18.15 says that given distinct elements b1, . . . , bk ∈ F , along with
elements a1, . . . , ak ∈ F , we can compute the unique polynomial z ∈ F [X] of
degree less than k such that

z(bi) = ai (i = 1, . . . , k),

using O(k2) operations in F .
It is perhaps worth noting that we could also solve the polynomial inter-

polation problem using Gaussian elimination, by inverting the corresponding
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Vandermonde matrix. However, this algorithm would use O(k3) operations in
F . This is specific instance of a more general phenomenon: there are many
computational problems involving polynomials over fields can be solved using
Gaussian elimination, but which can be solved more efficiently using more spe-
cialized algorithmic techniques.

Exercise 18.16 State and re-work the polynomial analog of Exercises 4.10 and
4.11. In the special case of polynomial interpolation, this algorithm is called
Newton interpolation. 2

18.5.2 Mutual independence and secret sharing

As we also saw in the discussion following Theorem 17.26, for ` ≤ k and fixed
and distinct b1, . . . , b` ∈ F , the “multi-point evaluation” map σ from F [X]<k to
F×` that sends z ∈ F [X]<k to (z(b1), . . . , z(b`)) ∈ F×` is a surjective F -linear
map. If F is a finite field, then this has the following probabilistic interpretation:
if the coefficient vector (z0, . . . , zk−1) of z is a random variable, uniformly dis-
tributed over F×k, i.e., the zi’s are independently and uniformly distributed over
F , then the random variables z(b1), . . . , z(b`) are independently and uniformly
distributed over F . This is because: (1) σ is surjective, and (2) every element
of F×` has the same number of pre-images under σ, namely | ker(σ)| = |F |d,
where d = dimF (ker(σ)); from this, it follows that when z ∈ F [X]<k is chosen at
random, all possible values are equally likely.

Put another way, the collection {z(b) : b ∈ F} of random variables is `-wise
independent, where each individual z(b) uniformly distributed over F . Clearly,
given z and b, we can efficiently compute the value of z(b), so this construc-
tion gives us a nice way to build effectively constructible, `-wise independent
collections of random variables for any `, thus generalizing the constructions in
Examples 6.23 and 6.25 of pairwise and 3-wise independent collections.

As a particular application of this idea, we describe a simple secret sharing
scheme. Suppose Alice wants to share a secret among some number m of
parties, call them P1, . . . , Pm, in such a way that if less than k parties share
their individual secret shares with one another, then Alice’s secret is still well
hidden, while any subset of k parties can reconstruct Alice’s secret.

She can do this as follows. Suppose her secret s is (or can be encoded as)
an element of a finite field F , and that b0, b1, . . . , bm are some fixed, distinct
elements of F , where b0 = 0. This presumes, of course, that |F | ≥ m + 1. To
share her secret s, Alice chooses z1, . . . , zk−1 ∈ F at random, and sets z0 := s.
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Let z ∈ F [X] be the polynomial whose coefficient vector is (z0, . . . , zk−1), i.e.,

z =

k−1∑

i=0

ziX
i.

For 1 ≤ i ≤ m, Alice gives party Pi its share

ai := z(bi).

For the purposes of analysis, it is convenient to define

a0 := z(b0) = z(0) = z0 = s.

Clearly, if any k parties pool their shares, they can reconstruct Alice’s secret
by interpolating a polynomial of degree less than k at k points — the constant
term of this polynomial is equal to Alice’s secret s.

It remains to show that Alice’s secret remains well hidden provided less than
k parties pool their shares. To do this, first assume that Alice’s secret s is
uniformly distributed over F , independently of z1, . . . , zk−1 (we will relax this
assumption below). With this assumption, z0, z1, . . . , zk−1 are independently
and uniformly distributed over F . Now consider any subset of k − 1 parties;
to simplify notation, assume the parties are P1, . . . , Pk−1. Then the random
variables a0, a1, . . . , ak−1 are mutually independent. The variables a1, . . . , ak−1
are of course the shares of P1, . . . , Pk−1, while a0 is equal to Alice’s secret (the
fact that a0 has two interpretations, one as the value of z at a point, and one
as a coefficient of z, plays a crucial role in the analysis). Because of mutual
independence, the distribution of a0, conditioned on fixed values of the shares
a1, . . . , ak−1, is still uniform over F , and so even by pooling their shares, these
k − 1 parties would have no better chance of guessing Alice’s secret than they
would have without pooling their shares.

Continuing the analysis of the previous paragraph, consider the conditional
probability distribution in which we condition on the event that a0 = s for
some specific, fixed value of s ∈ F . Because the z0, z1, . . . , zk−1 were initially
independently and uniformly distributed over F , and because z0 = a0, in this
conditional probability distribution, we have z0 = s and z1, . . . , zk−1 are in-
dependently and uniformly distributed over F . So this conditional probability
distribution perfectly models the secret sharing algorithm performed by Alice
for a specific secret s, without presuming that s is drawn from any particular
distribution. Moreover, because the a0, a1, . . . , ak−1 were initially independently
and uniformly distributed over F , in this conditional probability distribution,
a1, . . . , ak−1 are independently and uniformly distributed over F .

The argument in the previous two paragraphs shows that
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for any fixed secret s, the shares a1, . . . , am are (k−1)-wise indepen-
dent, with each individual share ai uniformly distributed over F .

This property ensures that Alice’s secret is perfectly hidden, provided that less
than k parties pool their shares: for any secret s, these parties just see a bunch of
random values in F , with no particular bias that would give any hint whatsoever
as to the actual value of s.

Secret sharing has a number of cryptographic applications, but one simple
motivation is the following. Alice may have some data that she wants to “back
up” on some file servers, who play the role of the parties P1, . . . , Pm. To do
this, Alice gives each server a share of her secret data (if she has a lot of data,
she can break it up into many small blocks, and process each block separately).
If at a later time, Alice wants to restore her data, she contacts any k servers
who will give Alice their shares, from which Alice can reconstruct the original
data. In using a secret sharing scheme in this way, Alice trusts that the servers
are reliable to the extent that they do not modify the value of their share (as
otherwise, this would cause Alice to reconstruct the wrong data). We shall
discuss later in this chapter how one can relax this trust assumption. But even
with this trust assumption, Alice does gain something above and beyond the
simpler solution of just backing up her data on a single server, namely:

• even if some of the servers crash, or are otherwise unreachable, she can
still recover her data, as long as at least k are available at the time she
wants to do the recovery;

• even if the data on some (but strictly less than k) of the servers is “leaked”
to some attacker, the attacker gains no information about Alice’s data.

Exercise 18.17 Consider the data-backup scenario described above. Suppose
that Alice wants to back up a large file, which she does by breaking it up into
a long sequence of h of “F -sized” blocks. Moreover, Alice does not want to
trust that the servers do not maliciously (or accidentally) modify their shares.
Show that if Alice has a small amount of secure storage, namely, space for O(m)
elements of F , then she can effectively protect herself from malicious servers,
so that if any particular server tries to give her a modified share, Alice will fail
to detect this with probability at most (h − 1)/|F |. If |F | is very large (say,
|F | = 2128), and h is any reasonable value (say, h ≤ 240), this failure probability
will be acceptably small for all practical purposes. 2



18.6. Rational Function Reconstruction and Applications 335

18.5.3 Speeding up algorithms via modular computation

In §4.4, we discussed how the Chinese Remainder Theorem could be used to
speed up certain types of computations involving integers. The example we
gave was the multiplication of integer matrices. We can use the same idea to
speed up certain types of computations involving polynomials. For example, if
one wants to multiply two matrices whose entries are elements of F [X], one can
use the Chinese Remainder Theorem for polynomials to speed things up. This
strategy is most easily implemented if F is sufficiently large, so that we can
use polynomial evaluation and interpolation directly, and do not have to worry
about constructing irreducible polynomials. We leave the details as an exercise.

Exercise 18.18 You are give two matrices A,B ∈ F [X]`×`. All entries of A and
B are polynomials of degree at most M . Assume that |F | ≥ 2M + 1. Using
polynomial evaluation and interpolation, show how to compute the product
matrix C = A · B using O(`2M2 + `3M) operations in F . Compare this to the
cost of computing C directly, which would be O(`3M2). 2

18.6 Rational Function Reconstruction and Applica-
tions

We next state and prove the polynomial analog of Theorem 4.13. As we are now
“reconstituting” a rational function, rather than a rational number, we call this
procedure rational function reconstruction. Because of the relative simplic-
ity of polynomials compared to integers (in particular, the lack of “carries”), the
rational reconstruction theorem for polynomials is a bit “sharper” than the ra-
tional reconstruction theorem for integers. Throughout this section, F denotes
a field.

Theorem 18.19 Let r∗ ≥ −1 and t∗ ≥ 0 be integers, and let n, y ∈ F [X] be
polynomials such that r∗ + t∗ < deg(n) and deg(y) < deg(n). Suppose we run
the Extended Euclidean Algorithm with inputs a := n and b := y. Then,
adopting the notation of Theorem 18.13, the following hold:

1. There exists a unique index i, with 1 ≤ i ≤ `+1, such that deg(ri) ≤ r∗ <
deg(ri−1), and for this i, ti 6= 0; let r′ := ri, s

′ := si, and t
′ := ti.

2. Furthermore, for any polynomials r, s, t ∈ F [X] such that

r = sn+ ty, deg(r) ≤ r∗, 0 ≤ deg(t) ≤ t∗, (18.1)
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we have
r = r′α, s = s′α, t = t′α,

for some non-zero polynomial α ∈ F [X].

Proof. By hypothesis, −1 ≤ r∗ < deg(n) = deg(r0). Moreover, since

deg(r0), . . . , deg(r`), deg(r`+1) = −∞

is a decreasing sequence, and ti 6= 0 for 1 ≤ i ≤ `+ 1, the first statement of the
theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let r, s, t
be as in (18.1).

From part (iv) of Theorem 18.13, we have

deg(ti) ≤ deg(n)− deg(ri−1) < deg(n)− r∗.

From the equalities ri = sin+ tiy and r = sn+ ty, we have the two congruences:

r ≡ ty (mod n),

ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti − rit; however, using the bounds deg(r) ≤ r∗ and
deg(ti) < deg(n) − r∗, we see that deg(rti) < deg(n), and using the bounds
deg(ri) ≤ r∗, deg(t) ≤ t∗, and r∗ + t∗ < deg(n), we see that deg(rit) < deg(n);
it immediately follows that

deg(rti − rit) < deg(n).

Since n divides rti − rit and deg(rti − rit) < deg(n), the only possibility is that

rti − rit = 0.

The rest of the proof runs exactly the same as the corresponding part of the
proof of Theorem 4.13, as the reader may easily verify. 2

Note that when r∗ = −1, the only possibility for r is the zero polynomial.
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18.6.1 Application: Polynomial Interpolation with Errors

We now discuss the polynomial analog of the application in §4.5.1.
If we “encode” a polynomial z ∈ F [X], with deg(z) < k, as the sequence

(a1, . . . , ak) ∈ F×k, where ai = z(bi), then we can efficiently recover z from this
encoding, using an algorithm for polynomial interpolation. Here, of course, the
bi’s are distinct elements of F , and F is a finite field (which must have at least
k elements, of course).

Now suppose that Alice encodes z as (a1, . . . , ak), and sends this encoding
to Bob, but that some, say at most `, of the ai’s may be corrupted during
transmission. Let (ã1, . . . , ãk) denote the vector actually received by Bob.

Here is how we can use Theorem 18.19 to recover the original value of z from
(ã1, . . . , ãk), assuming:

• the original polynomial z has degree at most k′,

• at most ` errors occur in transmission, and

• k > 2`+ k′.

Let us set ni := (X−bi) for 1 ≤ i ≤ k, and n := n1 · · ·nk. Now, suppose Bob
obtains the corrupted encoding (ã1, . . . , ãk). Here is what Bob does to recover
z:

1. Interpolate, obtaining a polynomial y, with deg(y) < k and y(bi) = ãi for
1 ≤ i ≤ k.

2. Run the Extended Euclidean Algorithm on a := n and b := y, and let
r′, t′ be the values obtained from Theorem 18.19 applied with r∗ := k′+ `
and t∗ := `.

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, under the assumptions listed
above. To see this, let t be the product of the ni’s for those values of i where an
error occurred. Now, assuming at most ` errors occurred, we have deg(t) ≤ `.
Also, let r := tz, and note that deg(r) ≤ k′ + `. We claim that

r ≡ ty (mod n). (18.2)

To show that (18.2) holds, it suffices to show that

tz ≡ ty (mod ni) (18.3)
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for all 1 ≤ i ≤ k. To show this, consider first an index i at which no error
occurred, so that ai = ãi. Then tz ≡ tai (mod ni) and ty ≡ tãi ≡ tai (mod ni),
and so (18.3) holds for this i. Next, consider an index i for which an error
occurred. Then by construction, tz ≡ 0 (mod ni) and ty ≡ 0 (mod ni), and so
(18.3) holds for this i. Thus, (18.2) holds, from which it follows that the values
r′, t′ obtained from Theorem 18.19 satisfy

r′

t′
=
r

t
=
tz

t
= z.

One easily checks that both the procedures to encode and decode a value z
run in time O(k2). The above scheme is an example of an error correcting code
called a Reed-Solomon code. Note that we are completely free to choose the finite
field F however we want, just so long as it is big enough. An attractive choice
in some settings is to choose F = Z2[Y]/(f), where f ∈ Z2[Y] is an irreducible
polynomial; with this choice, elements of F may be encoded as bit strings of
length deg(f)− 1.

One can combine the above error correction technique with the idea of secret
sharing (see §18.5.2) to obtain a secret sharing scheme that is robust, even in the
presence of erroneous (as opposed to just missing) shares. More precisely, Alice
can share a secret s ∈ F among parties P1, . . . , Pm, in such a way that (1) if at
most k′ parties pool their shares, Alice’s secret remains well hidden, and (2) from
any k shares, we can correctly reconstruct Alice’s secret, provided at most ` of
the shares are incorrect, and k > 2`+k′. To do this, Alice chooses z1, . . . , zk′ ∈ F
at random, sets z0 := s, and z :=

∑k′

i=0 ziX
i ∈ F [X], and computes the ith share

as ai := z(bi), for 1 ≤ i ≤ m. Here, we assume that the bi’s are distinct, non-
zero elements of F . Now, just as in §18.5.2, as long as at most k′ parties pool
their shares, Alice’s secret remains well hidden; however, as long as k > k′ +2`,
we can correctly and efficiently reconstruct Alice’s secret given any k values ãi,
as long as at most ` of the ãi’s differ from the corresponding value of ai.

18.6.2 Application: recovering rational functions from their re-
versed formal Laurent series

We now discuss the polynomial analog of the application in §4.5.2. This is an
entirely straightforward translation of the results in §4.5.2, but we shall see in
the next chapter that this problem has its own interesting applications.

Suppose Alice knows a rational function z = s/t ∈ F (X), where s and t
are polynomials with deg(s) < deg(t), and tells Bob some of the high order
coefficients of the reversed formal Laurent series (see §17.8) representing z in
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F ((X−1)). We shall show that if deg(t) ≤ M and Bob is given the bound M on
deg(t), along with the high order 2M coefficients of z, then Bob can determine
z, expressed as a rational function in lowest terms.

So suppose that z = s/t =
∑∞

i=1 ziX
−i, and that Alice tells Bob the coeffi-

cients z1, . . . , z2M . Equivalently, Alice gives Bob the polynomial

y := z1X
2M−1 + · · ·+ z2M−1X+ z2M = bznc,

where n := X2M . Here is Bob’s algorithm for recovering z:

1. Run the Extended Euclidean Algorithm on inputs a := n and b := y,
and let s′, t′ be as in Theorem 18.19, using r∗ := M − 1 and t∗ := M .

2. Output s′, t′.

We claim that z = −s′/t′.
To prove this, let z = s/t as above, and note that by definition

s

t
=
y

n
+ w, (18.4)

where w ∈ F ((X−1)) with deg(w) < −2M . Clearing denominators, we have

sn = ty + wnt.

Thus we see that r := wnt is an element of F [X] with deg(r) ≤ M − 1, and so
we have

r = sn− ty, deg(r) ≤ r∗, 0 ≤ deg(t) ≤ t∗, and r∗ + t∗ < deg(n).

It follows that the polynomials s′, t′ from Theorem 18.19 satisfy s = s′α and
−t = t′α for some non-zero polynomial α. Thus, s′/t′ = −s/t, which proves the
claim.

We may further observe that since the extended Euclidean algorithm guar-
antees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z expressed
as a fraction in lowest terms.

It is clear that this algorithm takes O(M 2) operations in F .
The following exercises are the polynomial analogs of Exercises 4.15, 4.17,

and 4.18.

Exercise 18.20 Let F be a field. Show that given polynomials s, t ∈ F [X] and
integer k, with deg(s) < deg(t) and k > 0, we can compute the kth coefficient
in the reversed formal Laurent series representing s/t using O(len(k) len(t)2)
operations in F . 2



340 Chapter 18. Polynomial Arithmetic and Applications

Exercise 18.21 Let F be a field. Let z ∈ F ((X−1)) be a reversed formal Laurent
series whose coefficient sequence is ultimately periodic. Show that z ∈ F (X). 2

Exercise 18.22 Let F be a field. Let z = s/t, where s, t ∈ F [X], deg(s) <
deg(t), and gcd(s, t) = 1. Let d > 1 be an integer.

(a) Show that if F is finite, there exist integers 0 ≤ k < k′ such that sdk ≡
sdk

′

(mod t).

(b) Show that for integers 0 ≤ k < k′, the sequence of coefficients of the
reversed Laurent series representing z is (k, k′ − k)-periodic if and only if
sdk ≡ sdk

′

(mod t).

(c) Show that if F is finite and X - t, then the reversed Laurent series represent-
ing z is purely periodic with period equal to the order of [X mod t] ∈ Z∗t .

(d) More generally, show that if F is finite and t = Xkt′, with X - t′, then
the reversed Laurent series representing z is ultimately periodic with pre-
period k and period equal to the order of [X mod t′] ∈ Z∗t′

2

18.6.3 Applications to symbolic algebra

Rational function reconstruction has applications in symbolic algebra, analogous
to those discussed in §4.5.3. In that section, we discussed the application of solv-
ing systems of linear equations over the integers using rational reconstruction.
In exactly the same way, one can use rational function reconstruction to solve
systems of linear equations over F [X] — the solution to such a system of equa-
tions will be a vector whose entries are elements of F (X), the field of rational
functions.

18.7 Notes

Just as in the case of integer arithmetic, the basic “pencil and paper” quadratic-
time algorithms discussed in this chapter for polynomial arithmetic are not the
best possible. The fastest known algorithms for multiplication of polynomials
of length ` over a ring R take O(` len(`) len(len(`))) operations in R. The Eu-
clidean and extended Euclidean algorithms for polynomials over a field F can
be implemented so as to take O(` len(`)2 len(len(`))) operations in F , as can the
algorithms for Chinese remaindering and rational function reconstruction. See
the book by von zur Gathen and Gerhard [75] for details (as well for an analysis
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of the Euclidean algorithm for polynomials over the field of rational numbers
and over function fields).

Depending on the setting and many implementation details, such asymptot-
ically fast algorithms for multiplication and division can be significantly faster
than the quadratic-time algorithms, even for quite moderately sized inputs of
practical interest. However, the fast Euclidean algorithms are only useful for
significantly larger inputs.

The interpretation of Lagrange interpolation as “secret sharing” (see
§18.5.2), and its application to cryptography, was made by Shamir [67].

Reed-Solomon codes were first propose by Reed and Solomon [61], although
the decoder presented here was developed later. Theorem 18.19 was proved by
Mills [51]. The Reed-Solomon code is just one way of detecting and correcting
errors — we have only just scratched the surface of the subject of error correcting
codes.



Chapter 19

Linearly Generated Sequences
and Applications

In this chapter, we develop some of the theory of linearly generated sequences.
As an application, we develop an efficient algorithm for solving sparse systems of
linear equations, such as those that arise in the subexponential-time algorithms
for discrete logarithms and factoring in §16. These topics illustrate the beautiful
interplay between the arithmetic of polynomials, linear algebra, and the use of
randomization in the design of algorithms.

19.1 Basic Definitions and Properties

Let F be a field, let V be an F -vector space, and consider an infinite sequence

S = (α0, α1, α2, . . .),

where αi ∈ V for i = 0, 1, 2 . . . . We say that S is linearly generated (over F )
if there exist scalars c0, . . . , cm−1 ∈ F such that the following recurrence relation
holds:

αm+i =

m−1∑

j=0

cjαj+i (for i = 0, 1, 2, . . .).

In this case, all of the elements of the sequence S are determined by the initial
segment α0, . . . , αm−1, together with the coefficients c0, . . . , cm−1 defining the
recurrence relation.

The general problem we consider is this: how to determine the coefficients
defining such a recurrence relation, given a sufficiently long initial segment of S.
To study this problem, it turns out to be very useful to rephrase the problem just

342



19.1. Basic Definitions and Properties 343

a bit. Let g ∈ F [X] be a polynomial of degree, say, m, and write g =
∑m

j=0 gjX
j .

Next, define

g ? S :=
m∑

j=0

gjαj .

Then it is clear that S is linearly generated if and only if there exists a non-zero
polynomial g such that

(Xig) ? S = 0 (for i = 0, 1, 2, . . .). (19.1)

Indeed, if there is such a non-zero polynomial g, then we can take

c0 := −(g0/gm), c1 := −(g1/gm), . . . , cm−1 := −(gm−1/gm)

as coefficients defining the recurrence relation for S. We call a polynomial g
satisfying (19.1) a generating polynomial for S. The sequence S will in gen-
eral have more than one generating polynomial. Note that the zero polynomial
is technically considered a generating polynomial, but is not a very interesting
one.

Let G(S) be the set of all generating polynomials for S.

Theorem 19.1 G(S) is an ideal in F [X].

Proof. First, note that for any two polynomials f, g, we have (f + g) ? S =
(f ? S) + (g ? S) — this is clear from the definitions. It is also clear that for any
c ∈ F and f ∈ F [X], we have (cf)?S = c(f ?S). From these two observations, it
is immediately clear that G(S) is closed under addition and scalar multiplication.
It is also clear from the definition that G(S) is closed under multiplication by X;
indeed, if (Xif)?S = 0 for all i ≥ 0, then certainly, (Xi(Xf))?S = (Xi+1f)?S = 0
for all i ≥ 0. But any non-empty subset of F [X] that is closed under addition,
multiplication by elements of F , and multiplication by X is an ideal in F [X] (see
Exercise 9.54). 2

Since all ideals in F [X] are principal, it follows that G(S) = (φ) for some
polynomial φ ∈ F [X] — we can make this polynomial unique by choosing the
monic associate (if it is non-zero), and we call this polynomial the minimal
polynomial of S. Note that S is linearly generated if and only if φ 6= 0, in
which case, all polynomials g satisfying (19.1) are polynomial multiples of φ.

We can now restate our main objective as follows: given a sufficiently long
initial segment of a linearly generated sequence, determine its minimal polyno-
mial.
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Example 19.2 Of course, one can always define a linearly generated sequence
by simply choosing an initial sequence α0, α1, . . . , αm−1, along with the coeffi-
cients g0, . . . , gm−1 of a generating polynomial g := g0+g1X+ · · ·+gm−1Xm−1+
Xm. One can enumerate as many elements of the sequence as one wants by us-
ing storage for m elements of V , along with storage for the coefficients of g, as
follows:

(β0, . . . , βm−1)← (α0, . . . , αm−1)
repeat

output β0
β′ ← −∑m−1

i=0 giβi
(β0, . . . , βm−1)← (β1, . . . , βm−1, β′)

forever

Because of the structure of the above algorithm, linearly generated sequences
are sometimes also called shift register sequences. Also observe that if F
is a finite field, and V is finite dimensional, the value stored in the “register”
(β0, . . . , βm−1) must repeat at some point, from which it follows that the linearly
generated sequence must be ultimately periodic. 2

Example 19.3 Linearly generated sequences can also arise in a natural way,
as this example and the next illustrate. Let E = F [X]/(f), where f ∈ F [X] is a
monic polynomial of degree ` > 0. For any α ∈ E, we have defined the minimal
polynomial of α over F in §17.5 to be the monic polynomial φ ∈ F [X] of least
degree such that φ(α) = 0, which by linear algebra, we know will have degree
at most `. The polynomial φ is also the minimal polynomial of the sequence
S := (1, α, α2, . . .). Indeed, for all i ≥ 0, we have (Xiφ) ? S = αiφ(α) = 0, and
φ is the monic polynomial of least degree for which this holds. 2

Example 19.4 Let V be a vector space over F of dimension ` > 0, and let
τ : V → V be an F -linear map. Let β ∈ V , and consider the sequence S :=
(α0, α1, . . .), where αi = τ i(β), i.e., α0 = β, α1 = τ(β), α2 = τ(τ(β)), etc. The
sequence S is linearly generated, as we now argue. Since V has dimension `,
the vectors α0, . . . , α` must be linearly dependent. This implies the existence
of a non-zero polynomial g ∈ F [X], of degree at most `, such that g ? S = 0.
Furthermore, for any i ≥ 0, we have (Xig) ? S = τ i(g ? S) = 0. It follows that
the minimal polynomial φ of S may be characterized as the monic polynomial
of least degree such that φ ? S = 0.

The previous example can be seen as a special case of this one, by taking V
to be E, τ to be the “multiplication by α” map, and setting β to 1. 2



19.2. Computing Minimal Polynomials — a Special Case 345

Exercise 19.5 Suppose that you are given c0, . . . , cm−1 ∈ F and z0, . . . , zm−1 ∈
F . Suppose that for all i ≥ 0, we define

zm+i :=
m−1∑

j=0

cjzj+i.

Given k ≥ 0, show how to compute zk using O(len(k)m2) operations in F . 2

Exercise 19.6 Let V be a vector space over F , and consider the set V ×∞ of all
infinite sequences (α0, α1, . . .), where the αi’s are in V . Let us define the scalar
product of g ∈ F [X] and S ∈ V ×∞ as

g · S = (g ? S, (Xg) ? S, (X2g) ? S, . . .) ∈ V ×∞.

Show that with this scalar product, V ×∞ is an F [X]-module, and that a poly-
nomial g ∈ F [X] is a generating polynomial for S ∈ V ×∞ if and only if g ·S = 0.
2

19.2 Computing Minimal Polynomials — a Special
Case

We now tackle the problem of computing the minimal polynomial of a linearly
generated sequence from a sufficiently long initial segment.

We shall first address a special case of this problem, namely, the case where
the vector space V is just the field F . In this case, we have

S = (z0, z1, z2, . . .),

where zi ∈ F for i = 0, 1, 2, . . . .
Suppose that we do not know the minimal polynomial φ of S, but we know

an upper bound M ≥ 0 on its degree. Then it turns out that the initial seg-
ment z0, z1, . . . z2M−1 completely determines φ, and moreover, we can efficiently
compute φ given the bound M and this initial segment. The following theorem
provides the essential ingredient.

Theorem 19.7 Let S = (z0, z1, . . .) be a sequence of elements of F , and define
the reversed formal Laurent series

z :=
∞∑

i=0

ziX
−(i+1),
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whose coefficients are the elements of the sequence S. Then for any g ∈ F [X],
we have g ∈ G(S) if and only if gz ∈ F [X]. In particular, S is linearly generated
if and only if z is a rational function, in which case, its minimal polynomial is
the denominator of z when expressed as a fraction in lowest terms.

Proof. Observe that for any polynomial g ∈ F [X] and any integer i ≥ 0, the
coefficient of X−(i+1) in the product gz is equal to Xig ? S — just look at the
formulas defining these expressions! It follows that g is a generating polynomial
for S if and only if the coefficients of the negative powers of X in gz are all zero,
i.e., gz ∈ F [X]. Further, if g 6= 0 and h := gz ∈ F [X], then deg(h) < deg(g)
— this follows simply from the fact that deg(z) < 0. All the statements in the
theorem follow immediately from these observations. 2

By virtue of Theorem 19.7, we can compute the minimal polynomial φ of S
using the algorithm in §18.6.2 for computing the numerator and denominator
of a rational function from its reversed Laurent series expansion. More pre-
cisely, we can compute φ given the bound M on its degree, along with and the
first 2M elements z0, . . . , z2M−1 of S, using O(M2) operations in F . Just for
completeness, we write down this algorithm:

1. Run the Extended Euclidean Algorithm on inputs

a := X2M and b := z0X
2M−1 + z1X

2M−2 + · · ·+ z2M−1,

and let s′, t′ be as in Theorem 18.19, using r∗ := M − 1 and t∗ := M .

2. Output φ := t′/ lc(t′).

The characterization of linearly generated sequences provided by Theo-
rem 19.7 is also very useful in other ways. For example, suppose the field F
is finite. As we already saw in Example 19.2, any linearly generated sequence
S := (z0, z1, . . .), where the zi’s are in F , must be ultimately periodic. However,
Theorem 19.7, together with the result of Exercise 18.22, tells us much more;
for example, if the minimal polynomial φ of S is not divisible by X, then S is
purely periodic with period equal to the order of [X mod φ] ∈ (F [X]/(φ))∗.

19.3 Computing Minimal Polynomials — a More
General Case

Having dealt with the problem of finding the minimal polynomial of a sequence
S of elements of F , we address the more general problem, where the elements



19.3. Computing Minimal Polynomials — a More General Case 347

of S lie in a vector space V over F . We shall only deal with a special case of
this problem, but it is one which has useful applications. First, we shall assume
that V has finite dimension over F , say ` > 0. Second, we shall assume that the
sequence S = (α0, α1, . . .) has full rank, by which we mean the following: if the
minimal polynomial of S over F has degree m, then the vectors α0, . . . , αm−1
are linearly independent. The sequences considered in Examples 19.3 and 19.4
are of this type. Third, we shall assume that F is a finite field.

The Dual Space. To develop the theory behind the approach we are going to
present, we need to discuss the dual space DF (V ) of V (over F ), which consists
of all F -linear maps from V into F . We may sometimes refer to elements of
DF (V ) as projections. Now, as was discussed in §15.2, if we choose any ordered
basis γ1, . . . , γ` of V , the elements of V are in one-to-one correspondence with
the coordinate vectors F 1×`, where the element a1γ1+. . .+a`γ` ∈ V corresponds
to the coordinate vector (a1, . . . , a`) ∈ F 1×`. The elements of DF (V ) are in one-
to-one correspondence with F `×1, where the map π ∈ DF (V ) corresponds to
the column vector whose jth coordinate is π(γj), for 1 ≤ j ≤ `. It is natural
to call the column vector corresponding to π its coordinate vector. A map
π ∈ DF (V ) may be evaluated at a point δ ∈ V by taking the product of the
coordinate vector of δ with the coordinate vector of π.

One may also impose a vector space structure on DF (V ), in a very natural
way: for π, π′ ∈ DF (V ), the map π + π′ sends δ ∈ V to π(δ) + π′(δ), and for
c ∈ F , the map cπ sends δ ∈ V to cπ(δ). By the observations in the previous
paragraph, DF (V ) is an F -vector space of dimension `; indeed, the sum and
scalar multiplication operations on DF (V ) correspond to analogous operations
on coordinate vectors.

One last fact we need about the dual space is the following:

Theorem 19.8 Let V be an F -vector space of finite dimension ` > 0. For any
linearly independent vectors δ1, . . . , δm ∈ V , and any c1, . . . , cm ∈ F , there exists
π ∈ DF (V ) such that π(δi) = ci for 1 ≤ i ≤ m.

Proof. Fix any ordered basis for V , and let M be the m × ` matrix whose
ith row is the coordinate vector of δi with respect to this ordered basis. Let v
be the m × 1 column vector whose ith coordinate is ci. As the δi’s are linearly
independent, the rows of M must also be linearly independent, and so the F -
linear map which sends w ∈ F `×1 to Mw ∈ Fm×1 is surjective; therefore, any
solution w to the equation v =Mw is the coordinate vector of a map π ∈ DF (V )
that satisfies the requirements of the theorem. 2

That completes our digression on the dual space. We now return to the
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problem of computing the minimal polynomial φ of the linearly generated se-
quence S = (α0, α1, . . .). Assume we have a bound M on the degree of φ.
As we are assuming S has full rank, we may assume that M ≤ `. For any
π ∈ DF (V ), we may consider the projected sequence Sπ = (π(α0), π(α1), . . .).
Observe that φ is a generating polynomial for Sπ; indeed, for any polynomial
g ∈ F [X], we have g ? Sπ = π(g ? S), and hence, for all i ≥ 0, we have
(Xiφ) ? Sπ = π((Xiφ) ? S) = π(0) = 0. Let φπ denote the minimal polyno-
mial of Sπ. Since φπ divides any generating polynomial of Sπ, and since φ is a
generating polynomial for Sπ, it follows that φπ is a divisor of φ.

This suggests the following algorithm for efficiently the minimal polynomial
of S:

Algorithm MP:

g ← 1 ∈ F [X]
repeat

choose π ∈ DF (V ) at random
compute the first 2M terms of the projected sequence Sπ
use the algorithm in §19.2 to compute the minimal polynomial

φπ of Sπ
g ← lcm(g, φπ)

until g ? S = 0
output g

A few remarks on the above procedure are in order:

• in every iteration of the main loop, g is the least common multiple of a
number of divisors of φ, and hence is itself a divisor of φ;

• under our assumption that S has full rank, and since g is a monic divisor
of φ, if g ? S = 0, we may safely conclude that g = φ;

• under our assumption that F is finite, choosing a random element π of
DF (V ) amounts to simply choosing at random the entries of the coordinate
vector of π, relative to some ordered basis for V ;

• we also assume that elements of V are represented as coordinate vectors,
so that applying a projection π ∈ DF (V ) to a vector in V takes O(`)
operations in F ;

• similarly, adding two elements of V , or multiplying an element of V times
a scalar, takes O(`) operations in F .
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Based on the above observations, it follows that when the algorithm halts, its
output is correct, and that the cost of each loop iteration is O(M`) operations in
F . The remaining question to be answered is this: what is the expected number
of iterations of the main loop? The answer to this question is O(1), which leads
to a total expected cost of algorithm MP of O(M`) operations in F .

The key to establishing that the expected number of iterations of the main
loop is constant is provided by the following theorem.

Theorem 19.9 Let S = (α0, α1, . . .) be a linearly generated sequence over the
field F , where the αi’s are elements of a vector space V of finite dimension ` > 0.
Let φ be the minimal polynomial of S over F , let m := deg(φ), and assume that
S has full rank, i.e., that α0, . . . , αm−1 are linearly independent.

Under the above assumptions, there exists a surjective F -linear map σ :
DF (V ) → F [X]<m such that for all π ∈ DF (V ), the minimal polynomial φπ of
the projected sequence Sπ := (π(α0), π(α1), . . .) satisfies

φπ =
φ

gcd(σ(π), φ)
.

Proof. While the statement of this theorem looks a bit complicated, its proof is
quite straightforward, given our characterization of linearly generated sequences
in Theorem 19.7 in terms of rational functions. We build the linear map σ as
the composition of three linear maps, σ0, σ1, and σ2.

First, let σ0 : DF (V )→ F×m be the F -linear map that sends π ∈ DF (V ) to
(π(α0), . . . , π(αm−1)) ∈ F×m. Under our assumption that S has full rank, and
by Theorem 19.8, we see that σ0 is surjective.

Next, consider the set Mφ of infinite sequences of the form T = (z0, z1, . . .),
where the zi’s are in F , such that φ ∈ G(T ), i.e., φ is a generating polynomial
for T . That Mφ is a vector space over F , under the usual, component-wise
definitions of addition and scalar multiplication, quite easily follows from its
definition.

We define the F -linear map σ1 : F×m → Mφ that sends the vector
(z0, . . . , zm−1) ∈ F×m to the sequence T ∈ Mφ whose first m entries are
z0, . . . , zm−1, and whose remaining terms are uniquely determined by these terms
and the generating polynomial φ. It is clear that σ1 is both injective and surjec-
tive (verify), and hence is an isomorphism between F×m and Mφ. In particular,
we may conclude that dimF (Mφ) = m.

By Theorem 19.7, one sees that for any vector T = (z0, z1, . . .) ∈ Mφ, if we
set z :=

∑

i≥0 ziX
−(i+1) ∈ F ((X−1)), then h := φ · z ∈ F [X]<m. It is easy to

see (verify) that the map σ2 : Mφ → F [X]<m that sends T to h as above is an
F -vector space isomorphism. Moreover, if we write the rational function h/φ as
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a fraction in lowest terms, then the denominator of this fraction is the minimal
polynomial of T . It follows that the minimal polynomial of T is φ/ gcd(h, φ).

The theorem now follows by setting σ := σ2 ◦ σ1 ◦ σ0. Note that the map
σ1 ◦ σ0 sends π ∈ DF (V ) to Sπ, and that the minimal polynomial of Sπ is
precisely φ/ gcd(h, φ), where h = σ2(Sπ) = σ(π). That proves the theorem. 2

Given the above theorem, there are several ways one can proceed to analyze
the expected number of iterations of the main loop of algorithm MP. If the field
F is very large, one can show that with very high probability, g = φ at the end
of the very first loop iteration (see Exercise 19.12 below). The analysis we give
here will work for any finite field, large or small; although the bound we get is
a bit pessimistic, it is still an O(1) bound, which is as good as possible, if one
ignores constant factors in the running time.

First of all, we may as well assume that the degree m of φ is greater than
0, as otherwise, we are sure to get φ in the very first iteration. Let π1, . . . , πt
be the random projections chosen in the first t iterations of algorithm MP. By
Theorem 19.9, the polynomials σ(π1), . . . , σ(πt) are uniformly and independently
distributed over F [X]<m, and we have g = φ at the end of loop iteration t if and
only if gcd(φ, σ(π1), . . . , σ(πt)) = 1. Thus, if pt is the probability that the
algorithm runs for more than t loop iterations, we can bound pt from above by
the probability that t randomly chosen polynomials over F of degree less than
m have a non-trivial common factor. It is not too difficult to calculate the latter
probability exactly.

Theorem 19.10 Let F be a finite field of cardinality q, and let t ≥ 1 be an
integer. For integer m ≥ 1, let Cm be the probability that gcd(f1, . . . , ft) = 1,
where f1, . . . , ft are uniformly and independently chosen from F [X]<m. Then we
have

Cm = 1− 1/qt−1 + (q − 1)/qtm.

Proof. For m ≥ 1, let Um be the set of all tuples of polynomials (f1, . . . , ft) ∈
F [X]×t<m with gcd(f1, . . . , ft) = 1, and let um = |Um|. First, let h be any monic
polynomial of degree 0 ≤ k < m. The set Um,h of all t-tuples of polynomials of
degree less than m whose gcd is h is in one-to-one correspondence with Um−k,
via the map that sends (f1, . . . , ft) ∈ Um,h to (f1/h, . . . , ft/h) ∈ Um−k. As there
are qk possible choices for h of degree k, we see that the set Vm,k, consisting
of tuples (f1, . . . , ft) ∈ F [X]×t<m with deg(gcd(f1, . . . , ft)) = k, has cardinality
qkum−k. Every non-zero element of F [X]×t<m appears in exactly one of the sets
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Vk, for 0 ≤ k < m. It follows that

qtm = 1 +

m−1∑

k=0

qkum−k, (19.2)

which holds for all m ≥ 1. Replacing m by m− 1 in (19.2), we obtain

qt(m−1) = 1 +
m−2∑

k=0

qkum−1−k, (19.3)

which holds for all m ≥ 2, and indeed, holds for m = 1 as well. Subtracting q
times (19.3) from (19.2), we deduce that for m ≥ 1,

qtm − qtm−t+1 = 1 + um − q,

and rearranging terms:

um = qtm − qtm−t+1 + q − 1.

Therefore,
Cm = um/q

tm = 1− 1/qt−1 + (q − 1)/qtm.

2

From the above theorem, it follows that for t ≥ 1, the probability pt that
algorithm MP runs for more than t loop iterations is at most 1/qt−1. If T is the
total number of loop iterations, then

E[T ] =
∑

i≥1
P[T ≥ i] = 1 +

∑

t≥1
pt ≤ 1 +

∑

t≥1
1/qt−1 = 1 +

q

q − 1
= O(1).

Let us summarize all of the above analysis with the following:

Theorem 19.11 Let S be a sequence of elements of an F -vector space V of
finite dimension ` > 0 over F , where F is a finite field. Assume that S is
linearly generated over F with minimal polynomial φ ∈ F [X] of degree m, and
that S has full rank, i.e., the firstm elements of S are linearly independent. Then
given an upper bound M on m, along with the first 2M elements of S, algorithm
MP correctly computes φ using an expected number of O(M`) operations in F .

Exercise 19.12 If |F | = q, and deg(φ) = m, show that the probability that
algorithm MP terminates after just one loop iteration is 1−O(m/q). Thus, if q
is very large relative to m, it is highly likely that algorithm MP terminates after
just one iteration of the main loop. 2
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19.4 Solving Sparse Linear Systems

As in Example 19.4, let V be a vector space of finite dimension ` > 0 over a
field F , and let τ : V → V be an F -linear map. We shall assume in this section
that F is a finite field.

The goal of this section is to develop a time- and space-efficient algorithm
to solve equations of the form

τ(γ) = δ; (19.4)

that is, given τ and δ ∈ V , find γ ∈ V satisfying (19.4). The algorithm we
develop will have the following properties: it will be probabilistic, and will use
an expected number of O(`2) operations in F , an expected number of O(`)
evaluations of τ , and space for O(`) elements of F . By an “evaluation of τ ,” we
mean the computation of τ(β) for some β ∈ V .

We shall assume that elements of V are represented as coordinate vectors
with respect to some fixed ordered basis for V . Now, if the matrix representing
τ with respect to the given ordered basis is sparse, having, say, `1+o(1) non-zero
entries, then the space required to represent τ is `1+o(1) elements of F , and the
time required to evaluate τ is `1+o(1) operations in F . Under these assumptions,
our algorithm to solve (19.4) uses an expected number of `2+o(1) operations in
F , and space for `1+o(1) operations in F . This is to be compared with standard
Gaussian elimination: even if the original matrix is sparse, during the execution
of the algorithm, most of the entries in the matrix may eventually be “filled in”
with non-zero field elements, leading to a running time of O(`3) operations in F ,
and a space requirement of O(`2) elements of F . Thus, the algorithm presented
here will be much more efficient than Gaussian elimination when the matrix
representing τ is sparse.

It should be pointed out that the algorithm presented here may be more
efficient than Gaussian elimination in other cases, as well. All that matters is
that τ can be represented and evaluated using o(`3) operations in F and/or
using space for o(`2) elements of F — in either case, we obtain a time and/or
space improvement over Gaussian elimination. Indeed, there are applications
where the matrix of the linear map τ may not be sparse, but nevertheless has
special structure that allows it to be represented and evaluated in time o(`3)
and/or space o(`2).

We shall only present an algorithm that works in two special, but important,
cases:

• the first case is where τ is an automorphism (i.e., its matrix is invertible,
or non-singular),
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• and the second case is where τ is not an automorphism (i.e., its matrix is
not invertible, or singular), δ = 0, and a non-zero solution γ to (19.4) is
required (i.e., we are looking for a non-zero element in ker(τ)).

In both cases, the key will be to use algorithm MP in §19.3 to find the
minimal polynomial φ of the linearly generated sequence

S := (α0, α1, . . .), (αi = τ i(β), i = 0, 1, . . .), (19.5)

where β ∈ V is suitably chosen. From the discussion in Example 19.4, this
sequence has full rank, and so we may use algorithm MP. We may use M := `
as an upper bound on the degree of φ (assuming we know nothing more about
τ and β that would allow us to use a smaller upper bound). In using algorithm
MP in this application, note that we do not need to store α0, . . . , α2`−1 — if we
did, we would not satisfy our stated space bound. Instead of storing the αi’s in
a “warehouse,” we use a “just in time” strategy for computing them, as follows:

• In the body of the main loop of algorithm MP, where we calculate the
values ai := π(αi), for i = 0 . . . 2` − 1, we perform the computation as
follows:

θ ← β
for i← 0 . . . 2`− 1 do

ai ← π(θ), θ ← τ(θ)

• In the test at the bottom of the main loop of algorithm MP, if g =
∑k

i=0 giX
i, we compute b := g ? S ∈ V as follows:

b← 0, θ ← β
for i← 0 . . . 2`− 1 do

b← b+ gi · θ, θ ← τ(θ)

With this implementation, algorithm MP uses an expected number of O(`2)
operations in F , an expected number of O(`) evaluations of τ , and space for
O(`) elements of F . Of course, this “just in time” strategy is slightly slower
than the “warehouse” strategy, because we will compute each αi several times;
however, while the “warehouse” strategy is faster than the “just in time” strategy
by a constant factor, it uses about ` times as much space; for large `, using the
“just in time” strategy is an excellent time/space trade-off.
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The non-singular case. Now consider the case where τ is an automorphism,
and we want to solve (19.4) for a given δ ∈ V . We proceed as follows. First,
using algorithm MP as discussed above, compute the minimal polynomial φ of
the sequence S defined in (19.5), using β := δ. Let φ =

∑m
i=0 giX

i, so that

g0δ + g1τ(δ) + · · ·+ gmτ
m(δ) = 0. (19.6)

We claim that g0 6= 0. To prove the claim, suppose that g0 = 0. Then
applying τ−1 to (19.6), we would obtain

g1δ + · · ·+ gmτ
m−1(δ) = 0,

which would imply that φ/X is a generating polynomial for S, contradicting the
minimality of φ. That proves the claim.

Since g0 6= 0, we can apply τ−1 to (19.6), and solve for γ = τ−1(δ) as follows:

γ = −g−10 (g1δ + · · ·+ gmτ
m−1(δ)).

To actually compute γ, we use the same “just in time” strategy as was used in
the implementation of the computation of g ? S in algorithm MP, which costs
O(`2) operations in F , O(`) evaluations of τ , and space for O(`) elements of F .

The singular case. Now consider the case where τ is not an automorphism,
and we want to find non-zero vector γ ∈ V such that τ(γ) = 0. The idea is this.
Suppose we choose an arbitrary β ∈ V , and use algorithm MP to compute the
minimal polynomial φ of the sequence S defined in (19.5), using this value of β.
Let φ =

∑m
i=0 giX

i, so that

g0β + g1τ(β) + · · ·+ gmτ
m(β) = 0. (19.7)

Let
γ := g1β + · · · gmτm−1(β).

We must have γ 6= 0, since γ = 0 would imply that φ/X is a generating poly-
nomial for S, contradicting the minimality of φ. If it happens that g0 = 0,
then equation (19.7) implies that τ(γ) = 0, and we are done. As before, to
actually compute γ, we use the same “just in time” strategy as was used in the
implementation of the computation of g ? S in algorithm MP, which costs O(`2)
operations in F , O(`) evaluations of τ , and space for O(`) elements of F .

The above approach fails if g0 6= 0. However, in this “bad” case, equation
(19.7) implies that β = −g−10 τ(γ); that is, β ∈ im(τ). One way to avoid such
a “bad” β is to randomize: as τ is not an automorphism, the image of τ has
dimension strictly less than `, and therefore, a randomly chosen β lies in the
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image of τ with probability at most 1/|F |. So a simple technique is to choose
repeatedly β at random until we get a “good” β. The overall complexity of the
resulting algorithm will be as required: O(`2) expected operations in F , O(`)
expected evaluations of τ , and space for O(`) elements of F .

As a special case of this situation, consider the problem that arose in §16
in connection with algorithms for computing discrete logarithms and factoring.
We had to solve the following problem: given an ` × (` − 1) matrix M with
entries in a finite field F , containing `1+o(1) non-zero entries, find a non-zero
vector v ∈ F 1×` such that vM = 0. To solve this problem, we can augment the
matrix M , adding an extra column of zeros, to get an `× ` matrix M ′. Now, let
V = F 1×` and let τ be the F -linear map on V that sends γ ∈ V to γM ′. A non-
zero solution γ to the equation τ(γ) = 0 will provide us with the solution to our
original problem; thus, we can apply the above technique directly, solving this
problem using `2+o(1) expected operations in F , and space for `1+o(1) elements
of F . As a side remark, in this particular application, we can choose a “good”
β in the above algorithm without randomization: just choose β := (0, . . . , 0, 1),
which is clearly not in the image of τ .

19.5 Computing Minimal Polynomials in F [X]/(f) (II)

Let us return to the problem discussed in §18.3: F is a field, f ∈ F [X] is a monic
polynomial of degree ` > 0, and E := F [X]/(f) = F [η], where η := [X mod f ];
we are given an element α ∈ E, and want to compute the minimal polynomial
φ ∈ F [X] of α over F . As discussed in Example 19.3, this problem is equivalent
to the problem of computing the minimal polynomial of the sequence

S := (α0, α1, . . .) (αi := αi, i = 0, 1, . . .),

and the sequence has full rank; therefore, we can use algorithm MP in §19.3
directly to solve this problem, assuming F is a finite field.

If we use the “just in time” strategy in the implementation of algorithm
MP, as was used in §19.4, we get an algorithm that computes the minimal
polynomial of α using O(`3) expected operations in F , but space for just O(`2)
elements of F . Thus, in terms of space, this approach is far superior to the
algorithm in §18.3, based on Gaussian elimination. In terms of time complexity,
the algorithm based on linearly generated sequences is a bit slower than the
one based on Gaussian elimination (but only by a constant factor). However,
if we use any subquadratic-time algorithm for polynomial arithmetic such as
those discussed in §18.2, we immediately get an algorithm that runs in less than
cubic time, while still using linear space. In the exercises below, you are as
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asked to develop subroutines that can be used in an algorithm that computes
the minimal polynomial of α using just O(`2.5) operations in F , at the expense
of requiring space for O(`1.5) elements of F — this algorithm does not rely on
fast polynomial arithmetic, and can be made even faster if fast arithmetic is
used.

Exercise 19.13 Let f ∈ F [X] be a monic polynomial of degree ` > 0 over a
field F , and let E := F [X]/(f). Show how to compute — given as input the
polynomial f defining E, an element α ∈ E, and a polynomial g ∈ F [X] of degree
k > 0 — the value g(α) ∈ E, using just O(k` + k1/2`2) operations in F . Hint:
first compute a table of powers 1, α, . . . , αm, for m ≈ k1/2. 2

Exercise 19.14 Let f ∈ F [X] be a monic polynomial of degree ` > 0 over a field
F , and let E := F [X]/(f). Also, let η := [X mod f ] ∈ E. For computational
purposes, we assume that elements of E andDF (E) are represented as coordinate
vectors with respect to the usual “polynomial” basis 1, η, . . . , η`−1. For β ∈ E,
let Mβ denote the “multiplication by β” map on E that sends α ∈ E to αβ,
which is an F -linear map from E into E.

(a) Show how to compute — given as input the polynomial f defining E, along
with a projection π ∈ DF (E) and an element β ∈ E — the projection
π ◦Mβ ∈ DF (E), using O(`2) operations in F .

(b) Show how to compute — given as input the polynomial f defining E, along
with a projection π ∈ DF (E), an element α ∈ E, and a parameter k > 0
— all of the k values

π(1), π(α), . . . , π(αk−1)

using just O(k` + k1/2`2) operations in F . Hint: same hint as in the
previous exercise.

2

Exercise 19.15 Let f ∈ F [X] be a monic polynomial over a finite field F of
degree ` > 0, and let E := F [X]/(f). Show how to use the result of the previous
two exercises to get an algorithm that computes the minimal polynomial of
α ∈ E over F using O(`2.5) expected operations in F , and space for O(`1.5)
operations in F . 2

Exercise 19.16 Let f ∈ F [X] be a monic polynomial of degree ` > 0 over a
field F (not necessarily finite), and let E := F [X]/(f). Further, suppose that



19.6. ♣ The Algebra of Linear Transformations 357

f is irreducible, so that E is itself a field. Show how to compute the minimal
polynomial of α ∈ E over F deterministically, satisfying the following complexity
bounds:

(a) O(`3) operations in F and space for O(`) elements of F ;

(b) O(`2.5) operations in F and space for O(`1.5) elements of F .

2

19.6 ♣ The Algebra of Linear Transformations
Throughout this chapter, one could hear the whispers of the algebra of linear
transformations. We develop some of the more important aspects of this theory
here, mainly through a series of exercises. It will not play a role in any material
that follows, but it serves to provide the reader with a “bigger picture.”

Let F be a field and V be an F -vector space. We denote by LF (V ) the
set of all F -linear maps from V into V . Elements of LF (V ) are called linear
transformations. We can make LF (V ) into an F -vector space by defining
addition and scalar multiplication as follows: for τ, τ ′ ∈ LF (V ), define τ + τ ′ to
be the map that sends α ∈ V to τ(α) + τ ′(α); for c ∈ F and τ ∈ LF (V ), define
cτ to be the map that sends α ∈ V to cτ(α).

Exercise 19.17 (a) Verify that with addition and scalar multiplication de-
fined as above, LF (V ) is an F -vector space.

(b) Suppose that V has dimension 0 ≤ ` < ∞. By identifying elements of
LF (V ) with `× ` matrices over F , show that LF (V ) has dimension `2.

2

As usual, for τ, τ ′ ∈ LF (V ), the composed map, τ ◦ τ ′ that sends α ∈ V to
τ(τ ′(α)) is also an element of LF (V ) (verify). As always, function composition
is associative, i.e., for τ, τ ′, τ ′′ ∈ LF (V ), we have τ ◦ (τ ′ ◦ τ ′′) = (τ ◦ τ ′) ◦ τ ′′;
however, it is not in general commutative, i.e., we may have τ ◦ τ ′ 6= τ ′ ◦ τ for
some τ, τ ′ ∈ LF (V ). For any τ ∈ LF (V ) and an integer i ≥ 0, the map τ i,
i.e., the map obtained by composing τ with itself i times, is also an element of
LF (V ). Note that for any τ ∈ LF (V ), the map τ 0 is just the identity map on V .
When the context is clear, for any c ∈ F , we identify c with the “multiplication
by c” map on V , which is clearly a linear transformation. With this convention,
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for any τ ∈ LF (V ), and for any polynomial f ∈ F [X], with f =
∑

i aiXi, we
denote by f(τ) the linear transformation

f(τ) :=
∑

i

aiτ
i.

Exercise 19.18 Verify the following properties of LF (V ). For all τ, τ ′, τ ′′ ∈
LF (V ), and for all c ∈ F :

(a) τ ◦ (τ ′ + τ ′′) = τ ◦ τ ′ + τ ◦ τ ′′;

(b) (τ ′ + τ ′′) ◦ τ = τ ′ ◦ τ + τ ′′ ◦ τ ;

(c) c(τ ◦ τ ′) = (cτ) ◦ τ ′ = τ ◦ (cτ ′).

2

Under the addition operation of the vector space LF (V ), and defining mul-
tiplication on LF (V ) using the “◦” operator, we get an algebraic structure
that satisfies all the properties of Definition 9.1, with the exception of prop-
erty (5) of that definition (commutativity). Thus, we can view LF (V ) as a
non-commutative ring with unity (the identity map acts as the multiplicative
identity).

Exercise 19.19 Show that for f, g ∈ F [X], and τ ∈ LF (V ), we have

(a) f(τ) ◦ g(τ) = (fg)(τ) = g(τ) ◦ f(τ);

(b) f(τ) + g(τ) = (f + g)(τ).

2

For τ ∈ LF (V ), consider the set Aτ of all polynomials f ∈ F [X] such that
f(τ) = 0. It is a consequence of Exercise 19.19 that Aτ is an ideal in F [X]
(verify). The unique monic or zero polynomial φ that generates Aτ is called the
minimal polynomial of τ . We can also characterize φ as follows (verify):

if there exists a non-zero polynomial f ∈ F [X] such that f(τ) = 0,
then φ is the monic polynomial of least degree such that φ(τ) = 0;
otherwise, φ = 0.

Another way to characterize φ is as follows (verify):

φ is the minimal polynomial of the sequence (1, τ, τ 2, . . .).
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It is easy to see that if V happens to be finite dimensional, with ` :=
dimF (V ), then by Exercise 19.17, LF (V ) has dimension `2. Therefore, there
must be a linear dependence among 1, τ, . . . , τ `

2
, which implies that the mini-

mal polynomial of τ is non-zero with degree at most `2. We shall show below
that in this case, the minimal polynomial of τ actually has degree at most `.

Exercise 19.20 Let τ ∈ LF (V ), and let φ be the minimal polynomial of τ . Let
us define F [τ ] := {f(τ) : f ∈ F [X]}.
(a) Show that F [τ ] is a ring (i.e., a commutative ring with unity).

(b) Extending the result of part (a), show that F [τ ] is an F -algebra, via the
map that identifies c ∈ F with the “multiplication by c” map on V .

(c) Show that F [τ ] is isomorphic (as an F -algebra) to F [X]/(φ).

(d) Show that if φ 6= 0, then τ has an inverse, i.e., an element σ ∈ LF (V ) such
that σ ◦ τ = 1 = τ ◦ σ, if and only if the constant term of φ is not zero.

2

Exercise 19.21 For every τ ∈ LF (V ), we can define a “scalar multiplication”
operator ¯τ , that maps f ∈ F [X] and α ∈ V to

f ¯τ α := f(τ)(α),

i.e., if f =
∑

i aiX
i, then

f ¯τ α =
∑

i

aiτ
i(α).

Show that for all τ ∈ LF (V ), the scalar multiplication operator “¯τ ,” together
with the usual addition operator on V , makes V into an F [X]-module. Note that
each choice of τ gives rise to a different F [X]-module structure, but all of these
structures are extensions of the usual vector space structure, in the sense that
for all c ∈ F and α ∈ V , we have c¯τ α = cα. 2

For τ ∈ LF (V ) and α ∈ V , consider the set Aτ (α) of all polynomials f ∈ F [X]
such that f(τ)(α) = 0. Again, by Exercise 19.19, Aτ (α) is an ideal in F [X]
(verify). The unique monic or zero polynomial φ that generates Aτ (α) is called
the minimal polynomial of α under τ . We can also characterize φ as follows
(verify):

if there exists a non-zero polynomial f ∈ F [X] such that f(τ)(α) = 0,
then φ is the monic polynomial of least degree such that φ(τ)(α) = 0;
otherwise, φ = 0.
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Another way to characterize φ is as follows (verify):

φ is the minimal polynomial of the sequence (α, τ(α), τ 2(α), . . .).

Note that if φ is the minimal polynomial of α under τ , and φ′ is the minimal
polynomial of τ , then we have φ′(τ)(α) = 0, which implies that φ | φ′. Also,
if V has finite dimension `, then there must be a linear dependence among
α, τ(α), . . . , τ `(α), and so the minimal polynomial of α under τ is non-zero and
has degree at most `.

Exercise 19.22 Assume that V has finite dimension ` ≥ 0, and let τ ∈ LF (V )
and α ∈ V . Let φ be the minimal polynomial of α under τ , which we know has
degree k, with 0 ≤ k ≤ `. Define Pτ (α) := {f(τ)(α) : f ∈ F [X]}.
(a) Show that Pτ (α) is a subspace of V of dimension k.

(b) Show that τ(β) ∈ Pτ (α) for all β ∈ Pτ (α).

(c) Show that φ(τ)(β) = 0 for all β ∈ Pτ (α).
2

Using the result of the previous exercise, we can easily prove the following:

Theorem 19.23 Let V be a vector space of finite dimension ` ≥ 0, and let
τ ∈ LF (V ). Then the minimal polynomial of τ has degree at most `.

Proof. We prove this by induction on `. If ` ≤ 1, then the result follows
from part (b) of Exercise 19.17, and the fact that the degree of the minimal
polynomial of τ is at most the dimension of LF (V ).

So assume that ` > 1. Let α be any non-zero element of V , and consider
the minimal polynomial φ of α under τ , as well as the subspace Pτ (α) defined
in Exercise 19.22. Let k = deg(φ). By part (a) of Exercise 19.22, k is also
the dimension of Pτ (α). Since α 6= 0, we must have 0 < k ≤ `. Consider the
quotient space V/Pτ (α), which has dimension ` − k, which is strictly less than
`. For γ ∈ V , let γ̄ := γ + Pτ (α) ∈ V/Pτ (α). Also, consider the map τ̄ on
V/Pτ (α) defined by

τ̄(γ̄) := τ(γ).

It follows from part (b) of Exercise 19.22 that τ̄ is unambiguously defined, and
it is easy to see that τ̄ is a linear transformation on V/Pτ (α) (verify). By the
induction hypothesis, the minimal polynomial φ′ of τ̄ has degree at most `− k.
Note that for all γ ∈ V , we have

0 = φ′(τ̄)(γ̄) = φ′(τ)(γ),
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i.e., φ′(τ)(γ) ∈ Pτ (α). We claim that φφ′ ∈ Aτ . To see this, note that for all
γ ∈ V , we have

(φφ′)(τ)(γ) = φ(τ)(φ′(τ)(γ)) (by part (a) of Exercise 19.19)

= φ(τ)(β) (for some β ∈ Pτ (α))
= 0 (by part (c) of Exercise 19.22)

Finally, we note that φφ′ is non-zero of degree at most k+ (`− k) = `, and that
proves the theorem. 2

19.7 Notes

Berlekamp [14] and Massey [48] discuss an algorithm for finding the minimal
polynomial of a linearly generated sequence that is closely related to the one
presented in §19.2, and which has a similar complexity. This connection be-
tween Euclid’s algorithm and finding minimal polynomials of linearly generated
sequences has been observed by many authors, including Mills [51], Welch and
Scholtz [79], and Dornstetter [29].

The algorithm presented in §19.3 is due to Wiedemann [80], as are the algo-
rithms for solving sparse linear systems in §19.4.

Using fast matrix and polynomial arithmetic, Shoup [71] shows how to im-
plement the algorithms in §19.5 so as to use just O(`(ω+1)/2) operations in F ,
where ω is the exponent for matrix multiplication, and so (ω + 1)/2 < 1.7.



Chapter 20

Finite Fields

This chapter develops some of the basic theory of finite fields. The main results
concern the existence and uniqueness of finite fields; namely, (1) any finite field
has pw elements, for some prime p and positive integer w, (2) for any such p and
w there exists a finite field of cardinality pw, and (3) any two finite fields of the
same cardinality are isomorphic.

20.1 The Characteristic and Cardinality of a Finite
Field

Let F be a finite field. Clearly, simply because F is finite, its characteristic must
be non-zero, and by the discussion in Example 9.75, its characteristic must be
a prime p and we may view Zp as a subfield of F . Again because F is finite, its
degree w = [F : Zp] over Zp must be finite (see §17.6). It immediately follows
that F has cardinality pw.

We proved in Theorem 10.2 that any finite subgroup of the multiplicative
group of units of a field is cyclic. In particular, for the finite field F , F ∗ is cyclic.
If γ ∈ F ∗ is a generator for F ∗, then in particular, every element of F can be
expressed as a polynomial in γ with coefficients in Zp; that is, F = Zp[γ]. Let
φ ∈ Zp[X] be the minimal polynomial of γ over Zp (see §17.5 and §17.6), which
is an irreducible polynomial of degree w. It follows that F is isomorphic (as a
Zp-algebra) to Zp[X]/(φ).

So we have shown that any finite field of cardinality pw must be isomorphic,
as a Zp-algebra, to Zp[X]/(φ) for some irreducible polynomial of degree w. Con-
versely, given any irreducible polynomial φ over Zp of degree w, we can construct
the finite field Zp[X]/(φ) of cardinality p

w. Thus, the question of the existence of
a finite fields of a given cardinality pw reduces to the question of the existence

362
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of an irreducible polynomial over Zp of degree w.
The observations in the previous paragraph, by the way, give another proof

that the cardinality of F must be a power of p, without appealing to the theory
of vector spaces and dimension. Indeed, since every element of Zp[X]/(φ) can
be uniquely expressed as [g mod φ], where g ∈ Zp[X] with deg(g) < w, it follows
that |F | = pw.

20.2 Some Useful Divisibility Criteria

Before moving on to the proof that finite fields of every possible cardinality exist,
we state two simple but useful theorems:

Theorem 20.1 Let R be a non-trivial ring, and let k, ` be positive integers. The
polynomial Xk − 1 divides X` − 1 in R[X] if and only if k divides `.

Proof. Let ` = kq + r, with 0 ≤ r < k. We have

X` ≡ XkqXr ≡ Xr (mod Xk − 1),

and Xr ≡ 1 (mod Xk − 1) if and only if r = 0. 2

Theorem 20.2 Let a ≥ 2 be an integer and k, ` be positive integers. Then
ak − 1 divides a` − 1 if and only if k divides `.

Proof. The proof is analogous to that of Theorem 20.1. We leave the details
to the reader. 2

One may combine these two theorems, obtaining:

Theorem 20.3 Let a ≥ 2 be an integer, k, ` be positive integers, and R a non-
trivial ring. The polynomial Xa

k − X divides Xa
` − X in R[X] if and only if k

divides `.

Proof. Because X is not a zero divisor, we have (verify) Xa
k − X divides Xa

` − X

iff Xa
k−1 − 1 divides Xa

`−1 − 1, and by Theorem 20.1, this happens iff ak − 1
divides a` − 1, which by Theorem 20.2 happens iff k divides `. 2
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20.3 The Existence of Finite Fields

We now get to the proof that there exists a finite field of every prime-power
cardinality. We prove a somewhat more general theorem, however.

Throughout this section, F denotes a finite field of cardinality q. Of course,
as we have shown, q must be a prime power, say q = pw, and F is an extension
field of degree w over Zp (possibly, F = Zp). We shall show that for every
` ≥ 1, there exists an extension E of F of degree `. Now, E is itself a finite
extension of Zp, and so, as we have shown, E = Zp[γ] for some γ ∈ E, from
which it follows that E = F [γ], and hence, E is isomorphic (as an F -algebra)
to F [X]/(φ), where φ is the minimal polynomial of γ over F . So the problem of
proving the existence of such a field E is equivalent to proving the existence of
an irreducible polynomial of degree ` over F .

We begin with a simple generalization of Theorem 2.24 (Fermat’s Little
Theorem).

Theorem 20.4 For any a ∈ F ∗, we have aq−1 = 1, and for any a ∈ F , we have
aq = a.

Proof. The multiplicative group of units F ∗ of F contains q − 1 elements, and
hence, every a ∈ F ∗ satisfies the equation aq−1 = 1. Multiplying this equation
by a yields aq = a for all a ∈ F ∗, and this latter equation obviously holds for
a = 0 as well. 2

The following theorem generalizes Example 17.12.

Theorem 20.5 Let A be an F -algebra. Then the map ρ : A → A that sends
α ∈ A to αq is an F -algebra homomorphism.

Proof. Since A is an F -algebra, it must have characteristic p. Since q is a
power of the characteristic, the fact that ρ is a ring homomorphism follows from
the discussion in Example 9.76. The fact that ρ is F -linear follows directly from
Theorem 20.4. 2

Theorem 20.6 Let E be a finite extension of F , and consider the map σ : E →
E that sends α ∈ E to αq ∈ E. Then σ is an F -algebra automorphism on E.
Moreover, if α ∈ E is such that σ(α) = α, then α ∈ F .

Proof. The fact that σ is an F -algebra homomorphism follows from the previous
theorem. Any ring homomorphism from a field into a field is injective (see
Exercise 9.80). Surjectivity follows from injectivity and finiteness.
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For the second statement, observe that σ(α) = α if and only of α is a root
of the polynomial Xq − X, since all q elements of F are already roots of this
polynomial, there can be no other roots. 2

The map σ defined in Theorem 20.6 is called the Frobenius map on E
over F . Since the composition of two F -algebra automorphisms is also an F -
algebra automorphism, for any i ≥ 0, the map σi that sends α ∈ E to αq

i
is also

an F -algebra automorphism.

Theorem 20.7 We have

Xq − X =
∏

a∈F
(X− a).

Proof. The polynomial

(Xq − X)−
∏

a∈F
(X− a)

has degree less than q, but has q distinct roots (every element of F ), and hence
must be the zero polynomial. 2

Let Pk denote the product of all the monic irreducible polynomials in F [X]
of degree k.

Theorem 20.8 For all positive integers `, we have

Xq
` − X =

∏

k|`
Pk,

where the product is over all divisors k of `.

Proof. First, we claim that the polynomial Xq
` − X is square-free, i.e., it is not

divisible by the square of any non-constant polynomial f . Suppose it were, so
that Xq

` − X = f2g. Taking formal derivatives, we see that

−1 = 2fD(f)g + f2D(g).

But this is impossible, since it implies that f divides 1. That proves the claim.
So we have reduced the proof to showing that if f is a monic irreducible

polynomial of degree k, then f divides Xq
` − X if and only if k | `. Let E =

F [X]/(f), and let η be a root of f in E.

For the first implication, assume that f divides Xq
` − X. We want to show

that k | `. Now, if Xq
` − X = fg, then ηq

` − η = f(η)g(η) = 0, so ηq
`
= η.
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Therefore, if σ is the Frobenius map on E over F , then we have σ`(η) = η, and
hence (by Theorem 17.13) σ`(α) = α for all α ∈ E.

So every element of E is a root of Xq
`−X. That is,∏α∈E(X−α) divides Xq

`−X.
Applying Theorem 20.7 to the field E, we see that

∏

α∈E(X− α) = Xq
k − X, and

hence Xq
k − X divides Xq

` − X. By Theorem 20.3, this implies k divides `.
For the second implication, suppose that k | `. We want to show that

f | Xq` − X. Since f is the minimal polynomial of η, and since η is a root

of Xq
k − X, we must have that f divides Xq

k − X. Since k | `, and applying

Theorem 20.3 once more, we see that Xq
k − X divides Xq

` − X. That proves the
second implication, and hence, the theorem. 2

For ` ≥ 1, let Π(`) denote the number of monic irreducible polynomials of
degree ` in F [X].

Theorem 20.9 For all ` ≥ 1, we have

q` =
∑

k|`
kΠ(k). (20.1)

Proof. Just equate the degrees of both sides of the identity in Theorem 20.8.
2

From Theorem 20.9 it is easy to deduce that Π(`) > 0 for all `, and in
fact, one can prove a density result — essentially a “prime number theorem” for
polynomials over finite fields:

Theorem 20.10 For all ` ≥ 1, we have

q`

2`
≤ Π(`) ≤ q`

`
, (20.2)

and

Π(`) =
q`

`
+O

(
q`/2

`

)

. (20.3)

Proof. First, since all the terms in the sum on the right hand side of (20.1) are
non-negative, and `Π(`) is one of these terms, we may deduce that `Π(`) ≤ q`,
which proves the second inequality in (20.2). Since this holds for all `, we have

`Π(`) = q` −
∑

k|`
k<`

kΠ(k) ≥ q` −
∑

k|`
k<`

qk ≥ q` −
b`/2c
∑

k=1

qk.
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Let us set

S(q, `) :=

b`/2c
∑

k=1

qk =
q

q − 1
(qb`/2c − 1),

so that `Π(`) ≥ q`−S(q, `). It is easy to see that S(q, `) = O(q`/2), which proves
(20.3). For the first inequality of (20.2), it suffices to show that S(q, `) ≤ q`/2.
One can check this directly for ` ∈ {1, 2, 3} (verify), and for ` ≥ 4, we have

S(q, `) ≤ q`/2+1 ≤ q`−1 ≤ q`/2.

2

We note that the inequalities in (20.2) are tight, in the sense that Π(`) =
q`/(2`) when q = 2 and ` = 2, and Π(`) = q` when ` = 1. The first inequality in
(20.2) implies not only that Π(`) > 0, but that the fraction of all monic degree
` polynomials that are irreducible is at least 1/(2`), while (20.3) says that this
fraction gets arbitrarily close to 1/` as either q or ` are sufficiently large.

Exercise 20.11 Starting from Theorem 20.9, show that

Π(`) = `−1
∑

k|`
µ(k)q`/k,

where µ is the Möbius function (see §2.6). 2

Exercise 20.12 How many irreducible polynomials of degree 30 over Z2 are
there? 2

In the proof of Theorem 20.8, we made use of a connection between formal
derivatives and the square-freeness property for polynomials. The following
exercise develops this connection more fully.

Exercise 20.13 Let F be an arbitrary field, and let f ∈ F [X] with deg(f) > 0.

(a) Show that if f is not square-free, then gcd(f,D(f)) 6= 1.

(b) Show that if D(f) = 0, then the characteristic of F must be a prime p,
and f must be of the form f = g(Xp) for some g ∈ F [X].

(c) Show that if F is a finite field of characteristic p, and f = g(Xp), then

f = hp for some h ∈ F [X]; in fact, if g =
∑

i giX
i, then h =

∑

i g
p(w−1)

i Xi,
where w := [F : Zp].
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(d) Show that if F is a finite field or a field of characteristic zero, then f is
square-free if and only if d := gcd(f,D(f)) = 1; moreover, if d 6= 1, then
either deg(d) < deg(f), or F has prime characteristic p and f = hp for
some h ∈ F [X].

(e) Give an example of a field F of characteristic p and an irreducible poly-
nomial f ∈ F [X] such that f = g(Xp) for some g ∈ F [X].

2

20.4 The Subfield Structure and Uniqueness of Fi-
nite Fields

We begin with a result that holds for field extensions in general.

Theorem 20.14 Let E be an extension of a field F , and let σ be an F -algebra
automorphism on E. Then the set E ′ := {α ∈ E : σ(α) = α} is a subfield of E
containing F .

Proof. By definition, σ acts as the identity function on F , and so F ⊆ E ′, and
in particular 1 ∈ E ′. To show that E ′ is closed under addition, let α, β ∈ E ′.
Then σ(α+β) = σ(α)+σ(β) = α+β, and hence α+β ∈ E ′. Replacing “+” by
“·” in the above argument shows that E ′ is closed under multiplication. Finally,
we need to show that if 0 6= α ∈ E ′ and β ∈ E with αβ = 1, then β ∈ E ′. But
αβ = 1 implies σ(α)σ(β) = σ(1), which implies ασ(β) = 1, and from this, it
follows that σ(β) = β. 2

The subfield E′ in the above theorem is called the subfield of E fixed by
σ. Turning our attention again to finite fields, the following theorem completely
characterizes the subfield structure of a finite field.

Theorem 20.15 Let E be an extension of degree ` of a finite field F , and let
σ be the Frobenius map on E over F . Then the intermediate fields E ′, with
F ⊆ E′ ⊆ E, are in one-to-one correspondence with the divisors k of `, where
the divisor k corresponds to the subfield of E fixed by σk, which has degree k
over F .

Proof. Let q be of cardinality F . Let k be a divisor of `. Now, by Theo-
rem 20.7, the polynomial Xq

`−X splits into distinct linear factors over E, and by
Theorem 20.3, the polynomial Xq

k − X divides Xq
` − X. Hence, Xq

k − X also splits
into distinct linear factors over E. This says that the subfield of E fixed by σk,
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which consists of the roots of Xq
k − X, has precisely qk elements, and hence is an

extension of degree k over F . That proves the existence part of the theorem.
As for uniqueness, we have to show that any intermediate is of this type.

Let E′ be an intermediate field of degree k over F . By Theorem 20.7, we have
Xq

k − X =
∏

α∈E′(X− α) and Xq
` − X =

∏

α∈E(X− α), from which it follows that

Xq
k − X divides Xq

` − X, and so by Theorem 20.3, we must have k | `. There can
be no other intermediate fields of the same degree k over F , since the elements
of such a field would also be roots of Xq

k − X. 2

The next theorem shows that up to isomorphism, there is only one finite
field of a given cardinality.

Theorem 20.16 Let E,E′ be extensions of the same degree over a finite field
F . Then E and E ′ are isomorphic as F -algebras.

Proof. Let ` be the degree of the extensions. As we have argued before, we
have E′ = F [α′] for some α′ ∈ E′, and so E′ is isomorphic as an F -algebra to
F [X]/(φ), where φ is the minimal polynomial of α′ over F . As φ is an irreducible

polynomial of degree `, by Theorem 20.8, φ divides Xq
`−X, and by Theorem 20.7,

Xq
` − X =

∏

α∈E(X − α), from which it follows that φ has a root α ∈ E. Since
φ is irreducible, φ is the minimal polynomial of α over F , and hence F [α] is
isomorphic as an F -algebra to F [X]/(φ). Since α has degree ` over F , we must
have E = F [α]. 2

Exercise 20.17 This exercise develops an alternative proof for the existence of
finite fields — however, it does not yield a density result for irreducible polyno-
mials. Let F be a finite field of cardinality q, and let ` ≥ 1 be an integer. Let
E be a splitting field for the polynomial Xq

` − X ∈ F [X] (see Theorem 17.37).
Let E′ be the subfield of E fixed by the q`th power map. Show that E ′ is an
extension of F of degree `. 2

Exercise 20.18 Let E be an extension of degree ` over a finite field F of car-
dinality q. Show that at least half the elements of E have degree ` over F , and
that the total number of elements of degree ` over F is q` +O(q`/2). 2

20.5 Conjugates, Norms and Traces

Throughout this section, F denotes a finite field of cardinality q, E denotes an
extension over F of degree `, and σ denotes the Frobenius map on E over F .



370 Chapter 20. Finite Fields

For any non-negative integer i, we can define the function σi, obtained by
composing σ with itself i times, which is also an F -algebra automorphism. The
inverse function σ−1 is also an F -algebra automorphism, as is σi for negative
values of i, defined by composing σ−1 with itself |i| times. Under the operation
of function composition, the set GE/F = {σi : i ∈ Z} forms an abelian group,
as the reader may easily verify. Indeed, GE/F is a cyclic group generated by

σ. Moreover, σ` is the identity function, and σi for 0 < i < ` cannot be the
identity function, since then the polynomial Xq

i − X would have too many roots.
We summarize these observations as follows:

Theorem 20.19 The set GE/F := {σi : i ∈ Z} forms a group with respect
to the operation of function composition. Moreover, GE/F is isomorphic to
the cyclic group Z`, via the group isomorphism that sends [i mod `] to σi. In
particular, the distinct elements of GE/F are σi for 0 ≤ i < `.

This group GE/F is called the Galois group of E over F .

Consider an element α ∈ E. We say that β ∈ E is conjugate to α (over
F ) if β = σi(α) for some i ∈ Z. The reader may verify that the “conjugate
to” relation is an equivalence relation. We call the equivalence classes of this
relation conjugacy classes, and we call the elements of the conjugacy class
containing α the conjugates of α.

Consider the set Iα of all integers i such that σi(α) = α. We claim that
Iα is a subgroup of the additive group of integers. Indeed, if σi(α) = α and
σj(α) = α, then

σi+j(α) = σi(σj(α)) = σi(α) = α

and
α = σ−i(σi(α)) = σ−i(α).

It follows that Iα = kZ for some non-negative integer k. Moreover, it is clear
that ` ∈ Iα, and so we have k | `. Further, all the conjugates of α are of the
form σi(α) for 0 ≤ i < k, since for any conjugate σj(α), we can write j = ka+ i
for 0 ≤ i < k, and

σj(α) = σi(σka(α)) = σi(α).

Finally, all of the conjugates σi(α) for 0 ≤ i < k are distinct, since σi(α) = σj(α)
implies that σi−j(α) = α, and hence k | (i− j).

With α and k as above, consider the polynomial φ

φ :=

k−1∏

i=0

(X− σi(α)).
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The coefficients of φ obviously lie in E, but we claim that in fact, they lie in
F . This is easily seen as follows. Consider the extension of the map σ from
E to E[X] that applies σ coefficient-wise to polynomials. This was discussed in
Example 9.70, where we saw that the extended map, which we also denote by
σ, is a ring homomorphism from E[X] into E[X]. Applying σ to φ, we obtain

σ(φ) =
k−1∏

i=0

σ(X− σi(α)) =
k−1∏

i=0

(X− σi+1(α)) =
k−1∏

i=0

(X− σi(α)),

since σk(α) = α. Thus we see that σ(φ) = φ. Writing φ =
∑

i aiX
i, we see

that σ(ai) = ai for all i, and hence by Theorem 20.6, ai ∈ F for all i. Hence
φ ∈ F [X]. We further claim that φ is the minimal polynomial of α. To see this,
let f ∈ F [X] be any polynomial over F with α as a root. Then for any integer j,
by Theorem 17.13, we have

0 = σj(0) = σj(f(α)) = f(σj(α)).

Thus, the conjugates of α are also roots of f , and so φ divides f . Since φ is the
minimal polynomial of α and deg(φ) = k, it follows that the number k is none
other than the degree of α over F .

Let us summarize the above discussion as follows:

Theorem 20.20 Let α ∈ E be of degree k over F , and let φ be the minimal
polynomial of α over F . Then k is the smallest positive integer such that σk(α) =
α, the distinct conjugates of α are σi(α) for 0 ≤ i < k, and φ factors over E (in
fact, over F [α]) as

φ =

k−1∏

i=0

(X− σi(α)).

Another useful way of reasoning about conjugates is as follows. First, if
α = 0, then the degree of α over F is 1, and there is nothing more to say, so
let us assume that α ∈ E∗. If r is the multiplicative order of α, then note that
any conjugate σi(α) also has multiplicative order r — this follows from the fact
that for any positive integer s, αs = 1 if and only if (σi(α))s = 1. Also, note
that we must have r | |E∗| = q` − 1, i.e., q` ≡ 1 (mod r). Focusing now on the
fact that σ is the q-power map, we see that the degree k of α is the smallest
positive integer such that αq

k
= α, which holds iff αq

k−1 = 1, which holds iff
qk ≡ 1 (mod r). Thus, the degree of α over F is simply the multiplicative order
of q modulo r. Again, we summarize these observations as a theorem:
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Theorem 20.21 If α ∈ E∗ has multiplicative order r, then the degree of α over
F is equal to the multiplicative order of q modulo r.

Let us define the polynomial

χ :=
`−1∏

i=0

(X− σi(α)).

It is easy to see, using the same type of argument as above, that χ ∈ F [X], and
indeed, that

χ = φ`/k.

The polynomial χ is called the characteristic polynomial of α with respect
to the extension E of F .

Two functions that are often useful are the “norm” and “trace.” The norm
of α with respect to the extension E of F is defined as

NE/F (α) :=
`−1∏

i=0

σi(α),

while the trace of α with respect to the extension E of F is defined as

TrE/F (α) :=
`−1∑

i=0

σi(α).

It is easy to see that both the norm and trace of α are elements of F , as they
are fixed by σ; alternatively, one can see this by observing that they appear,
possibly with a minus sign, as coefficients of the characteristic polynomial χ —
indeed, the constant term of χ is equal to (−1)`NE/F (α), and the coefficient of

X`−1 in χ is −TrE/F (α).
The following two theorems summarize the most important facts about the

norm and trace functions.

Theorem 20.22 The function NE/F , restricted to E∗, is a group homomor-
phism from E∗ onto F ∗.

Proof. We have

NE/F (α) =

`−1∏

i=0

αq
i
= α

P`−1
i=0 q

i
= α(q

`−1)/(q−1).
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Since E∗ is a cyclic group of order q`−1, the image of the (q`−1)/(q−1)-power
map on E∗ is the unique subgroup of E∗ of order q − 1 (see Theorem 8.78).
Since F ∗ is a subgroup of E∗ of order q − 1, it follows that the image of this
power map is F ∗. 2

Theorem 20.23 The function TrE/F is an F -linear map from E onto F .

Proof. The fact that TrE/F is an F -linear map is a simple consequence of the
fact that σ is an F -algebra automorphism (verify). As discussed above, TrE/F
maps into F . Since the image of TrE/F is a subspace of F , the image is either
{0} or F , and so it suffices to show that TrE/F does not map all of E to zero.
But an element α ∈ E is in the kernel of TrE/F if and only of α is a root of the
polynomial

X+ Xq + · · ·+ Xq
`−1
,

which has degree q`−1. Since E contains q` elements, not all elements of E can
lie in the kernel of TrE/F . 2

Example 20.24 As an application of some of the above theory, let us investi-
gate the factorization of the polynomial Xr−1 over F , a finite field of cardinality
q. Let us assume that r > 0 and is relatively prime to q. Let E be a splitting
field of Xr − 1 (see Theorem 17.37), so that E is a finite extension of F in which
Xr − 1 splits into linear factors:

Xr − 1 =
r∏

i=1

(X− αi).

We claim that the roots αi of X
r − 1 are distinct — this follows from the

Exercise 20.13 and the fact that gcd(Xr − 1, rXr−1) = 1.
Next, observe that the r roots of Xr − 1 in E actually form a subgroup of

E∗, and since E∗ is cyclic, this subgroup must be cyclic as well. So the roots
of Xr − 1 form a cyclic subgroup of E of order r. Let ζ be a generator for this
group. Then all the roots of Xr − 1 are contained in F [ζ], and so we may as well
assume that E = F [ζ].

Let us compute the degree of ζ over F . By Theorem 20.21, the degree ` of
ζ over F is the multiplicative order of q modulo r. Moreover, the φ(r) roots
of Xr − 1 of multiplicative order r are partitioned into φ(r)/` conjugacy classes,
each of size `; indeed, as the reader is urged to verify, these conjugacy classes
are in one-to-one correspondence with the cosets of the subgroup generated by
[q mod r] in Z∗r , where each such coset C ⊆ Z∗r corresponds to the conjugacy
class {ζa : a ∈ C}.
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More generally, for any s | r, any root of Xr − 1 whose multiplicative order
is s has degree k over F , where k is the multiplicative order of q modulo s.
As above, the φ(s) roots of multiplicative order s are partitioned into φ(s)/k
conjugacy classes, which are in one-to-one correspondence with the cosets of the
subgroup generated by [q mod s] in Z∗s.

This tells us exactly how Xr−1 splits into irreducible factors over F . Things
are a bit simpler when r is prime, in which case, from the above discussion, we
see that

Xr − 1 = (X− 1)

(r−1)/`
∏

i=1

fi,

where each fi is an irreducible polynomial of degree `, and ` is the multiplicative
order of q modulo r.

In the above analysis, instead of constructing the field E using Theo-
rem 17.37, one could instead simply construct E as F [X]/(φ), where φ is any
irreducible polynomial of degree `, where ` is the multiplicative order of q mod-
ulo r. We know that such a polynomial φ exists by Theorem 20.10, and since
E has cardinality q`, and r | (q` − 1) = |E∗|, and E∗ is cyclic, we know that E∗

contains an element ζ of order r, and each of the r distinct powers of ζ are roots
of Xr − 1, and so this E is a splitting field Xr − 1 over F . 2

Exercise 20.25 Let E be a finite extension of a finite field F . Show that for
a ∈ F , we have NE/F (a) = a` and TrE/F (a) = `a. 2

Exercise 20.26 Let E be a finite extension of a finite field F . Let E ′ be an
intermediate field, F ⊆ E ′ ⊆ E. Show that

(a) NE/F (α) = NE′/F (NE/E′(α)), and

(b) TrE/F (α) = TrE′/F (TrE/E′(α)).

2

Exercise 20.27 Let F be a finite field, and let f ∈ F [X] be a monic irreducible
polynomial of degree `. Let E = F [X]/(f) = F [η], where η := [X mod f ].

(a) Show that

D(f)

f
=

∞∑

j=1

TrE/F (η
j−1)X−j .
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(b) From part (a), deduce that the sequence

TrE/F (η
j−1) (j = 1, 2, . . .)

is linearly generated over F with minimal polynomial f .

(c) Show that one can always choose a polynomial f so that sequence in part
(b) is purely periodic with period q` − 1.

2

Exercise 20.28 Let F be a finite field, and f ∈ F [X] an irreducible polynomial
of degree k over F . Let E be an extension of degree ` over F . Show that over
E, f factors as the product of d distinct irreducible polynomials, each of degree
k/d, where d = gcd(k, `). 2

Exercise 20.29 Let E be a finite extension of a finite field F of characteristic
p. Show that if α ∈ E and 0 6= a ∈ F , and if α and α+ a are conjugate over F ,
then p divides the degree of α over F . 2

Exercise 20.30 Let F be a finite field of characteristic p. For a ∈ F , consider
the polynomial f := Xq − X− a ∈ F [X].

(a) Show that if F = Zp and a 6= 0, then f is irreducible.

(b) More generally, show that if TrF/Zp
(a) 6= 0, then f is irreducible, and

otherwise, f splits into distinct linear factors over F .

2

Exercise 20.31 Let E be a finite extension of a finite field F . Let α, β ∈ E,
where α has degree a over F , β has degree b over F , and gcd(a, b) = 1. Show
that α+ β has degree ab over F . 2

Exercise 20.32 Let E be a finite extension of a finite field F . Show that any
F -algebra automorphism on E must be an element of the Galois group GE/F .
2

Exercise 20.33 Show that for all primes p, the polynomial X4 + 1 is reducible
in Zp[X]. (Contrast this to the fact that this polynomial is irreducible in Q[X],
as discussed in Exercise 17.79.) 2



Chapter 21

Algorithms for Finite Fields

This chapter discusses efficient algorithms for factoring polynomials over finite
fields, and related problems, such as testing if a given polynomial is irreducible,
and generating an irreducible polynomial of given degree.

Throughout this chapter, F denotes a finite field of cardinality q and char-
acteristic p, where q = pw for some positive integer w.

In addition to performing the usual arithmetic and comparison operations
in F , we assume that our algorithms have access to the numbers p, w, and
q, and have the ability to generate random elements of F . Generating such a
random field element will count as one “operation in F ,” along with the usual
arithmetic operations. Of course, the “standard” way of representing F as either
Zp (if w = 1), or as the ring of polynomials modulo an irreducible polynomial
over Zp of degree w (if w > 1), satisfy the above requirements, and also allow for
the implementation of arithmetic operations in F that take time O(len(q)2) on
a RAM (using simple, quadratic-time arithmetic for polynomials and integers).

21.1 Testing and Constructing Irreducible Polynomi-
als

Let f ∈ F [X] be a monic polynomial of degree ` > 0. We develop here an efficient
algorithm that determines if f is irreducible.

The idea is a simple application of Theorem 20.8. That theorem says that for
any integer k ≥ 1, the polynomial Xq

k−X is the product of all monic irreducibles
whose degree divides k. Thus, gcd(Xq − X, f) is product of all the distinct linear
factors of f . If f has no linear factors, then gcd(Xq

2 − X, f) is the product of
all the distinct quadratic irreducible factors of f . And so on. Now, if f is not
irreducible, it must be divisible by some irreducible polynomial of degree at

376
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most `/2, and if g is an irreducible factor of f of minimal degree, say k, then

we have k ≤ `/2 and gcd(Xq
k − X, f) 6= 1. Conversely, if f is irreducible, then

gcd(Xq
k − X, f) = 1 for all 1 ≤ k ≤ `/2. So to test if f is irreducible, it suffices

to check if gcd(Xq
k − X, f) = 1 for all 1 ≤ k ≤ `/2 — if so, we may conclude

that f is irreducible, and otherwise, we may conclude that f is not irreducible.
To carry out the computation efficiently, we note that if h ≡ Xq

k
(mod f), then

gcd(h− X, f) = gcd(Xq
k − X, f).

The above observations suggest the following algorithm, which takes as input
a monic polynomial f ∈ F [X] of degree ` > 0, and outputs true if f is irreducible,
and false otherwise:

Algorithm IPT:

h← X rem f
k ← 1
while k ≤ b`/2c do

h← hq rem f
if gcd(h− X, f) 6= 1 then return false
k ← k + 1

return true

The correctness of algorithm IPT follows immediately from the above dis-
cussion. As for the running time, we have:

Theorem 21.1 Algorithm IPT uses O(`3 len(q)) operations in F .

Proof. Consider an execution of a single iteration of the main loop. The
cost of the qth-powering step (using a standard repeated-squaring algorithm) is
O(len(q)) operations mod f , and so O(`2 len(q)) operations in F . The cost of
the gcd computation is O(`2) operations in F . Thus, the cost for a single loop
iteration is O(`2 len(q)) operations in F , from which it follows that the cost for
the entire algorithm is O(`3 len(q)) operations in F . 2

Algorithm IPT is a “polynomial time” algorithm, since the length of the
binary encoding of the input is about ` len(q), and so the algorithm runs in time
polynomial in its input length, assuming that arithmetic operations in F run
take time polynomial in len(q). Indeed, using a standard representation for F ,
each operation in F takes time O(len(q)2) on a RAM, and so the running time
on a RAM for the above algorithm would be O(`3 len(q)3), i.e., cubic in the
bit-length of the input.
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Let us now consider the related problem of constructing an irreducible poly-
nomial of specified degree ` > 0. To do this, we can simply use the result of
Theorem 20.10, which has the following probabilistic interpretation: if we choose
a random, monic polynomial f of degree ` over F , then the probability that f
is irreducible is Θ(1/`). This suggests the following probabilistic algorithm:

Algorithm RIP:

repeat
choose f0, . . . , f`−1 ∈ F at random

set f ← X` +
∑`−1

i=0 fiX
i

test if f is irreducible using algorithm IPT
until f is irreducible
output f

Theorem 21.2 Algorithm RIP uses an expected number of O(`4 len(q)) opera-
tions in F , and its output is uniformly distributed over all monic irreducibles of
degree `.

Proof. Because of Theorem 20.10, the expected number of loop iterations of
the above algorithm is O(`). Since algorithm IPT uses O(`3 len(q)) operations
in F , the statement about the running time of algorithm RIP is immediate. The
statement about its output distribution is clear. 2

The expected running-time estimate in Theorem 21.2 is actually a bit of an
over-estimate. The reason is that if we generate a random polynomial of degree
`, it is likely to have a small irreducible factor, which will be discovered much
more rapidly by algorithm IPT. In fact, it is known that the expected value of
the least degree irreducible factor of a random monic polynomial of degree ` over
F is O(len(`)), from which it follows that the expected number of operations in
F performed by algorithm RIP is actually O(`3 len(`) len(q)).

Exercise 21.3 Let F be a finite field. Design and analyze a deterministic al-
gorithm that takes as input a list of irreducible polynomials f1, . . . , fr ∈ F [X],
where `i := deg(fi) for 1 ≤ i ≤ r, and ` :=

∑r
i=1 `i. Assuming that the degrees

`1, . . . , `r are pair-wise co-prime, your algorithm should output an irreducible
polynomial f ∈ F [X] of degree ` using O(`3) operations in F . 2

Exercise 21.4 Let F be a finite field, let f ∈ F [X] be a monic irreducible
polynomial of degree ` > 0, and let E := F [X]/(f), where η := [X mod f ].
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Design and analyze a deterministic algorithm that takes as input the polynomial
f defining the extension E, and outputs the values

sj := TrE/F (η
j) ∈ F (j = 0, . . . , `− 1)

using O(`2) operations in F . Show that given an arbitrary α ∈ E, along with
the values s0, . . . , s`−1, one can compute TrE/F (α) using just O(`) operations
in F . 2

Exercise 21.5 Let F be a finite field. Design and analyze a probabilistic algo-
rithm that given a monic irreducible polynomial f ∈ F [X] of degree ` as input,
generates as output a random monic irreducible polynomial g ∈ F [X] of degree
` (i.e., g should be uniformly distributed over all such polynomials), using an
expected number of O(`2.5) operations in F . 2

Exercise 21.6 Let F be a finite field of cardinality q. Let f ∈ F [X] be a monic
polynomial of degree ` > 0. Also, let η := [X mod f ] ∈ A, where A is the
F -algebra A := F [X]/(f).

(a) Show how to compute — given as input β ∈ A and ηq
m ∈ A (for some

integer m > 0) — the value βq
m ∈ A, using just O(`2.5) operations in F .

Hint: see Theorems 17.13 and 20.5, as well as Exercise 19.13.

(b) Show how to compute — given as input ηq
m ∈ A and ηq

m′

∈ A, where

m and m′ are positive integers — the value ηq
m+m′

∈ A using O(`2.5)
operations in F .

(c) Show how to compute — given as input ηq ∈ A and a positive integer m
— the value ηq

m ∈ A using O(`2.5 len(m)) operations in F .

2

Exercise 21.7 Let F be a finite field of cardinality q.

(a) Show that a monic polynomial f ∈ F [X] of degree ` > 0 is irreducible if

and only if Xq
` ≡ X (mod f) and gcd(Xq

`/s − X, f) = 1 for all primes s | `.

(b) Using part (a) and the result of the previous exercise, show how to deter-
mine if f is irreducible using O(`2.5 len(`)k + `2 len(q)) operations in F ,
where k is the number of distinct prime factors of `.

(c) Show that the operation count in part (b) can be reduced to
O(`2.5 len(`) len(k) + `2 len(q)). Hint: see Exercise 3.22.

2
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21.2 Computing Minimal Polynomials in F [X]/(f)
(III)

We consider, for the third and final time, the problem considered in §18.3 and
§19.5: f ∈ F [X] is a monic polynomial of degree `, and E := F [X]/(f) = F [η],
where η := [X mod f ]; we are given an element α ∈ E, and want to compute the
minimal polynomial φ ∈ F [X] of α over F . We develop an alternative algorithm,
based on the theory of finite fields. Unlike the algorithms in §18.3 and §19.5,
this algorithm only works when F is finite and the polynomial f is irreducible,
so that E is also a finite field.

From Theorem 20.20, we know that the degree of α over F is the smallest pos-
itive integer k such that αq

k
= α. By successive qth powering, we can compute

the conjugates of α using O(k len(q)) operations in E, and hence O(k`2 len(q))
operations in F .

Now, we could simply compute the minimal polynomial φ by directly using
the formula

φ(Y) =

k−1∏

i=0

(Y− αqi). (21.1)

This would involve computations with polynomials in the variable Y whose co-
efficients lie in the extension field E, although at the end of the computation,
we would end up with a polynomial all of whose coefficients lie in F . The cost
of this approach would be O(k2) operations in E, and hence O(k2`2) operations
in F .

A better approach is the following. Substituting η for Y in the identity (21.1),
we have

φ(η) =
k−1∏

i=0

(η − αqi).

Using this formula, we can compute (given the conjugates of α) the value φ(η) ∈
E using O(k) operations in E, and hence O(k`2) operations in F . Now, φ(η) is
an element of E, and for computational purposes, it is represented as [g mod f ]
for some polynomial g ∈ F [X] of degree less than `. Moreover, φ(η) = [φ mod f ],
and hence φ ≡ g (mod f). In particular, if k < `, then g = φ; otherwise, if k = `,
then g = φ− f . In either case, we can recover φ from g with an additional O(`)
operations in F .

Thus, given the conjugates of α, we can compute φ using O(k`2) operations in
F . Adding in the cost of computing the conjugates, this gives rise to an algorithm
that computes the minimal polynomial of α using O(k`2 len(q)) operations in F .
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In the worst case, then, this algorithm uses O(`3 len(q)) operations in F . A
reasonably careful implementation needs space for storing a constant number
elements of E, and hence O(`) elements of F . For very small values of q, the
efficiency of this algorithm will be comparable to that of the algorithm in §19.5,
but for large q, it will be much less efficient. Thus, this approach does not really
yield a better algorithm, but it does serve to illustrate some of the ideas of the
theory of finite fields.

21.3 Factoring Polynomials: The Cantor-Zassenhaus
Algorithm

In the remaining sections of this chapter, we develop efficient algorithms for
factoring polynomials over the finite field F .

The algorithm we discuss in this section is due to Cantor and Zassenhaus.
The algorithm has two stages:

distinct degree factorization: The input polynomial is decomposed into fac-
tors so that each factor is a product of distinct irreducibles of the same
degree (and the degree of those irreducibles is also determined).

equal degree factorization: Each of the factors produced in the distinct de-
gree factorization stage are further factored into their irreducible factors.

The algorithm we present for distinct degree factorization is a deterministic,
polynomial-time algorithm. The algorithm we present for equal degree factor-
ization is a probabilistic algorithm that runs in expected polynomial time (and
whose output is always correct).

21.3.1 Distinct degree factorization

The problem, more precisely stated, is this: given a monic polynomial f ∈ F [X]
of degree `, produce a list of pairs (g, k), where

• each g ∈ F [X] is a product of distinct monic irreducible polynomials of
degree k, and

• the product of all the g’s in the list is equal to f .

This problem can be easily solved using Theorem 20.8, using a simple varia-
tion of the algorithm we discussed in §21.1 for irreducibility testing. The basic
idea is this. We can compute g := gcd(Xq − X, f), so that g is the product of
all the distinct linear factors of f . We can remove the factor g from f , but after
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doing so, f may still contain some linear factors (if the original polynomial was
not square-free), and so we have to repeat the above step until no linear fac-
tors are discovered. Having removed all linear factors from f , we next compute
gcd(Xq

2−X, f), which will be the product of all the distinct quadratic irreducible
dividing f , and we can remove these from f — although Xq

2 − X is the product
of all linear and quadratic irreducibles, since we have already removed the linear
factors from f , the gcd will give us just the quadratic factors of f . As above,
we may have to repeat this a few times to remove all the quadratic factors from
f . In general, for 1 ≤ k ≤ `, having removed all the irreducible factors of degree
less than k from f , we compute gcd(Xq

k − X, f) to obtain the product of all the
distinct irreducible factors of f of degree k, repeating as necessary to remove all
such factors.

The above discussion yields the following algorithm, which takes as input a
monic polynomial f ∈ F [X] of degree ` > 0:

Algorithm DDF:

h← X rem f
k ← 1
while f 6= 1 do

h← hq rem f
g ← gcd(h− X, f)
while g 6= 1 do

output (g, k)
f ← f/g
h← h rem f
g ← gcd(h− X, f)

k ← k + 1

The correctness of algorithm DDF follows from the discussion above. As for
the running time:

Theorem 21.8 Algorithm DDF uses O(`3 len(q)) operations in F .

Proof. Note that the body of the outer loop is executed at most ` times, since
after ` iterations, we will have removed all the factors of f . Thus, we perform at
most ` qth-powering steps, each of which takes O(`2 len(q)) operations in F , and
so the total contribution to the running time of these is O(`3 len(q)) operations
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in F . We also have to take into account the cost of the gcd’s. We perform one
gcd operation in every iteration of the main loop, for a total of ` such operations.
We also perform an “extra” gcd operation whenever we discover a non-trivial
factor of f ; however, since we only discover at most ` such non-trivial factors,
we perform at most ` such “extra” gcd operations. So the total number of gcd
operations is at most 2`, and as each of these takes O(`2) operations in F , they
contribute a term of O(`3) to the total operation count. This term is dominated
by the cost of the qth-powering steps (as is the cost of the division step in the
inner loop), and so the total cost of algorithm DDF is O(`3 len(q)) operations in
F . 2

21.3.2 Equal degree factorization

The problem, more precisely stated, is this: given a monic polynomial g ∈ F [X]
of degree ` > 0, and an integer k > 0, such that g is of the form

g = g1 · · · gr

for distinct monic irreducible polynomials g1, . . . , gr, compute these irreducible
factors of g. Note that given g and k, the value of r easily determined, r = `/k.

If r = 1, we have nothing to do. So assume that r > 1.
By the Chinese Remainder Theorem, we have an F -algebra isomorphism

ρ : E1 × · · · × Er → A,

where for 1 ≤ i ≤ r, Ei is the extension field F [X]/(gi) of degree k over F , and
A is the F -algebra A := F [X]/(g).

We have to treat the cases p = 2 and p > 2 separately. We first treat the case
p = 2. Let us define the function F : A → A that sends α ∈ A to

∑wk−1
i=0 α2

i

(the algorithm in the case p > 2 will only differ in the definition of F). Note
that each Ei is an extension of Z2 of degree wk. For α ∈ A, if α = ρ(α1, . . . , αr),
then, just using the fact that ρ is a ring homomorphism, we have

F(α) =
∑

i

(ρ(α1, . . . , αr))
2i

=
∑

i

ρ(α2
i

1 , . . . , α
2i

r )

= ρ(
∑

i

α2
i

1 , . . . ,
∑

i

α2
i

r )

= ρ(TrE1/Z2
(α1), . . . ,TrEr/Z2

(αr)).
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Now, suppose we choose α ∈ A at random. Then if α = ρ(α1, . . . , αr),
the αi’s will be independently distributed, with each αi uniformly distributed
over Ei. Since TrEi/Z2

is an F -linear map from Ei onto Z2, it follows that the
values ci := TrEi/Z2

(αi) will be independently and uniformly distributed over
Z2. Thus, if a = rep(F(α)), i.e., a ∈ F [X] is the polynomial of degree less than `
such that F(α) = [a mod g], then gcd(a, g) will be the product of those factors
gi of g such that ci = 0. We will fail to get a non-trivial factorization only if the
ci’s are either all 0 or all 1, which in the worst case, when r = 2, happens with
probability 1/2.

So our equal degree factorization algorithm in this case is a probabilistic,
recursive algorithm that takes as input a monic polynomial g ∈ F [X] of degree `
(we allow ` = 0 to simplify the recursion), and an integer k > 0, such that g is
the product of r := `/k distinct monic irreducible polynomials, each of degree
k, and runs as follows, where A := F [X]/(g) and F : A → A is the map that
sends α to

∑wk−1
i=0 α2

i
:

Algorithm EDF:

If r = 0 then
return

if r = 1 then
output g, return

choose α at random from A
d← gcd(rep(F(α)), g)
recursively factor g and g/d

The correctness of algorithm EDF follows from the above discussion. As for
its expected running time, we can get a quick-and-dirty upper bound as follows:

• The expected number of trials until we get a non-trivial split is O(1).

• Each trial costs O(k`2 len(q)) operations in F .

• The algorithm finishes after getting r − 1 non-trivial splits.

• Therefore, the total expected cost is O(rk`2 len(q)), or O(`3 len(q)), oper-
ations in F .

This analysis gives a bit of an over-estimate — it does not take into account the
fact that we expect to get fairly “balanced” splits. The following analysis gives
a better result:
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Theorem 21.9 In the case p = 2, algorithm EDF uses an expected number of
O(k`2 len(q) len(r)) operations in F .

Proof. First, let us analyze the cost of a single invocation of the body of
the recursive step. This is dominated by the cost of computing F(α), which is
O(wk`2), or O(k`2 len(q)), operations in F .

Second, let us analyze the expected value of the depth D of the recursion tree
associated with the computation. Here, we measure D as the maximal depth of
any internal node in the recursion tree (corresponding to recursive invocations
where “real” work occurs), counting the root to be at depth 1. We claim that
E[D] = O(len r). To prove this claim, we use of the fact that

E[D] =
∑

t≥1
P[D ≥ t].

For any t ≥ 1 and any distinct pair of indices (i, j), let Atij be the event that the
factors gi and gj have not been separated from each other after t − 1 levels of
recursion. Now, at any invocation of the body of the recursive step, if gi and gj
have not been separated, then they will be with probability 1/2. It follows that

P[Atij ] ≤ 2−(t−1).

Also note that D ≥ t implies that for some (i, j), the event Atij occurs. Hence,
for t ≥ 1, we have

P[D ≥ t] ≤
∑

i,j

P[Atij ] ≤ r22−t.

So we have

E[D] =
∑

t≥1
P[D ≥ t]

=
∑

t≤2 log2 r
P[D ≥ t] +

∑

t>2 log2 r

P[D ≥ t]

≤ 2 log2 r +
∑

t>2 log2 r

r22−t

≤ 2 log2 r +
∑

t≥0
2−t

= 2 log2 r + 2.

That proves the claim.
Third, consider any one level in the recursion tree, and suppose there are s

internal nodes in the tree at this level, and that there are ri irreducible factors
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at the ith node, for 1 ≤ i ≤ s, so that.
∑s

i=1 ri ≤ r. The amount of work done
at the ith node at this level is O(r2i k

3 len(q)) operations in F , and so the total
amount of work done at this level is O(τ) operations in F , where

τ =

s∑

i=1

r2i k
3 len(q)

= k3 len(q)
s∑

i=1

r2i ≤ k3 len(q)(
s∑

i=1

ri)
2

≤ k3 len(q)r2

= k`2 len(q).

Putting this all together, since expected depth of the recursion tree is
O(len(r)), and the total amount of work done at any one level in the recur-
sion tree is O(k`2 len(q)) operations in F , it follows that the expected number
of operations in F performed by this algorithm is O(k`2 len(q) len(r)). 2

Actually, the above running time estimate is still a bit of an over-estimate.
The expected number of operations in F is really only O(k`2 len(q)). Intuitively,
the reason is that at each recursive step, we expect to split g into two roughly
equal pieces, and so heuristically speaking, we expect the running time to behave
like O(k3 len(q)C(r)), where C(r) satisfies the recurrence

C(r) = 2C(r/2) +O(r2).

It is a standard fact from the analysis of “divide and conquer” algorithms
that C(r) = O(r2), and so the total running time should be O(k3 len(q)r2), or
O(k`2 len(q)), operations in F . The above argument is only heuristic, however,
because the “divide and conquer” step is probabilistic, rather than deterministic,
as the standard analysis of such algorithms assumes.

Exercise 21.10 Make the above heuristic argument rigorous, and prove that
the expected number of operations in F performed by the above algorithm is in
fact O(k`2 len(q)). 2

Now assume that p > 2, so that p, and hence also q, is odd. Each group E∗i
is a cyclic group of order qk − 1. Therefore, the image of the (qk − 1)/2-power

map on E∗i is {±1}. If we choose αi ∈ Ei at random, then either α
(qk−1)/2
i = 0,

which happens with probability 1/qk, or α
(qk−1)/2
i is equally likely to be 1 or −1.
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Consider the (qk − 1)/2-power map on A. For α ∈ A, if α = ρ(α1, . . . , αr),
we have

α(q
k−1)/2 = ρ(α

(qk−1)/2
1 , . . . , α(q

k−1)/2
r ).

Now, suppose we choose α ∈ A at random. Then if α = ρ(α1, . . . , αr), the
αi’s will be independently distributed, with each αi uniformly distributed over

Ei. Moreover, the values ci := α
(qk−1)/2
i will be independently distributed, with

each ci distributed as:

ci =







0 with probability 1/qk,
1 with probability (qk − 1)/(2qk),
−1 with probability (qk − 1)/(2qk).

Thus, if a = rep(α(q
k−1)/2−1) then gcd(a, g) will be the product of those factors

gi of g such that ci = 1. We will fail to get a non-trivial factorization only if the
ci’s are either all 1 or all not 1. Consider the worst case, namely, when r = 2.
In this case, a simple calculation shows that the probability that we fail to split
these two factors is

(
qk − 1

2qk

)2

+

(
qk + 1

2qk

)2

=
1

2
(1 + 1/q2k).

The (very) worst case is when qk = 3, in which case the probability of failure is
at most 5/9.

So our equal degree factorization algorithm in the case is the same as algo-
rithm EDF above, except that we define the function F : A→ A so that it sends
α ∈ A to α(q

k−1)/2 − 1.
The same quick-and-dirty analysis given just above Theorem 21.9 applies

here as well, but just as before, we can do better:

Theorem 21.11 In the case p > 2, algorithm EDF uses an expected number of
O(k`2 len(q) len(r)) operations in F .

Proof. The analysis is essentially the same as in the case p = 2:

• The cost of a single recursive invocation is O(k`2 len(q)) operations in F .

• The expected value of the depth of the recursion is O(len(r)). The analysis
is the same as in the case p = 2, except now we use the bound 5/9, instead
of 1/2, on the probability of failing to split a given pair of irreducible fac-
tors. This has the effect of increasing the expectation by a small constant
factor (verify).
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• The amount of work performed on any one level of the recursion tree is
O(k`2 len(q)) operations in F .

2

Again,this estimate is actually somewhat pessimistic — the true value of the
expectation is O(k`2 len(q)).

21.3.3 Analysis of the whole algorithm

Given an arbitrary polynomial f ∈ F [X] of degree ` > 0, the distinct degree fac-
torization step takes O(`3 len(q)) operations in F . This step produces a number
of polynomials that must be subjected to equal degree factorization. If there are
s such polynomials, where the ith polynomial has degree `i, for 1 ≤ i ≤ s, then
∑s

i=1 `i = `. Now, the equal degree factorization step for the ith polynomial
takes an expected number of O(`3i len(q)) operations in F (actually, our “quick
and dirty” estimates are good enough here), and so it follows that the total ex-
pected cost of all the equal degree factorization steps is O(

∑

i `
3
i len(q)), which

is O(`3 len(q)), operations in F . Putting this all together, we conclude:

Theorem 21.12 The Cantor-Zassenhaus factoring algorithm uses an expected
number of O(`3 len(q)) operations in F .

This bound is tight, since in the worst case, when the input is irreducible,
the algorithm really does do this much work.

21.4 Factoring Polynomials: Berlekamp’s Algorithm

We now develop an alternative algorithm, due to Berlekamp, for factoring a
polynomial over the finite field F .

This algorithm usually starts with a pre-processing phase to reduce the prob-
lem to that of factoring square-free polynomials. There are a number of ways to
carry out this step. We present a simple-minded method here that is sufficient
for our purposes.

21.4.1 A simple square-free decomposition algorithm

Let f ∈ F [X] be a monic polynomial of degree ` > 0. According to Exercise 20.13,
if f is square-free, then gcd(f,D(f)) = 1; otherwise, either gcd(f,D(f)) is a non-
trivial factor of f , or f is of the form f = g(Xp); in the latter case, if g =

∑

i giX
i,

then f = hp, where h =
∑

i g
p(w−1)

i Xi.
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This suggests the following recursive algorithm. The input is the polynomial
f as above, and a parameter s, which is set to 1 on the initial invocation. The
output is a list of pairs (gi, si) such that each gi is a square-free, non-constant
polynomial over F and f =

∏

i g
si
i .

Algorithm SFD:

d← gcd(f,D(f))
if d = 1 then

output (f, s)
else if d 6= f then

recursively process (d, s) and (f/d, s)
else

let f = X` +
∑`−1

i=0 fiX
i — note that fi = 0 except when p | i

set h← X`/p +
∑`/p−1

i=0 (fpi)
pw−1

Xi — note that h = f1/p

recursively process (h, ps)

The correctness of the above algorithm follows from the discussion above.
As for the running time:

Theorem 21.13 Algorithm SFD uses O(`3 + `(w − 1) len(p)) operations in F .

Proof. It is fairly easy to see that the total number of recursive invocations is
O(`) (verify). From this, it follows that the total cost contributed by the gcd
computations is O(`3) operations in F . The only remaining cost to consider
is that of computing the pw−1th powers in F (if w = 1, of course, there is
no cost). We claim that the total number of such powering steps is at most
`, and hence, if these are implemented using a repeated-squaring algorithm,
the total cost of these steps is O(`(w − 1) len(p)). To prove this claim, let
C(f) be the maximum number of pw−1th powering steps performed for an input
polynomial f . We prove by induction on the recursion depth of the algorithm
that C(f) ≤ deg(f) for all f . Now, if f is square-free, then the algorithm halts
immediately without performing any powering steps, and so C(f) = 0 ≤ deg(f).
Otherwise, if d = gcd(f,D(f)) is a proper divisor of f , the algorithm recursively
processes d and f/d, and so by induction,

C(f) = C(d) + C(f/d) ≤ deg(d) + deg(f/d) = deg(f).

Otherwise, the algorithm performs deg(f)/p powering steps, and recursively
processes a polynomial h of degree deg(f)/p, and so by induction

C(f) = deg(f)/p+ C(h) ≤ 2 deg(f)/p ≤ deg(f).



390 Chapter 21. Algorithms for Finite Fields

2

The running-time bound in Theorem 21.13 is tight. This cubic behavior is
evoked, for example, on inputs that are powers of a single irreducible polynomial
of constant degree.

Although it suffices for our immediate purpose as a pre-processing step in
Berlekamp’s factoring algorithm, algorithm SFD is by no means the most effi-
cient algorithm possible for square-free decomposition of polynomials. We return
to this issue below, in §21.6.

21.4.2 The main factoring algorithm

Let us now assume we have a monic square-free polynomial f of degree ` >
0 that we want to factor into irreducibles, such as is output by the square-
free decomposition algorithm above. We first present the mathematical ideas
underpinning the algorithm.

Let A be the F -algebra A := F [X]/(f). We define a subset B of A as follows:

B := {α ∈ A : αq = α}.

It is easy to see that B is a subalgebra of A. Indeed, for α, β ∈ B, we have
(α + β)q = αq + βq = α + β, and similarly, (αβ)q = αqβq = αβ. One also sees
that 1qA = 1A, as our definition of a subring requires. Finally, one sees that since
cq = c for all c ∈ F , and hence B is a subalgebra. The subalgebra B is called
the Berlekamp subalgebra of A.

Let us take a closer look at the subalgebra B. To do this, suppose that the
factorization of f into irreducibles is

f = f1 · · · fr,

and let
ρ : E1 × · · · × Er → A

be the F -algebra isomorphism from the Chinese Remainder Theorem, where
Ei := F [X]/(fi) is an extension field of F of finite degree for 1 ≤ i ≤ r. Now,
for α = ρ(α1, . . . , αr) ∈ A, we have αq = α if and only if αqi = αi for 1 ≤ i ≤ r;
moreover, by Theorem 20.6, we know that for any αi ∈ Ei, we have αqi = αi if
and only if αi ∈ F . Thus, we may characterize B as follows:

B = {ρ(c1, . . . , cr) : c1, . . . , cr ∈ F}.

Since B is a subalgebra of A, then as F -vector spaces, B is a subspace of
A. Of course, A has dimension ` over F , with the natural basis 1, η, . . . , η`−1,
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where η := [X mod f ]. As for the Berlekamp subalgebra, from the above char-
acterization of B, it is evident that

ρ(1, 0, 0, . . . , 0, 0), ρ(0, 1, 0, . . . , 0, 0), . . . , ρ(0, 0, 0, . . . , 0, 1)

is a basis for B over F , and hence, B has dimension r over F .
Now we come to the actual factoring algorithm.

Stage 1: Construct a basis for B

The first stage of Berlekamp’s factoring algorithm constructs a basis for B over
F . We can easily do this using Gaussian elimination, as follows. Let τ : A→ A
be the map that sends α ∈ A to αq − α. Since the qth power map on A is an
F -algebra homomorphism (see Theorem 20.5) — and in particular, an F -linear
map — the map τ is also F -linear. Moreover, the kernel of τ is none other than
the Berlekamp subalgebra B. So to find a basis for B, we simply need to find a
basis for the kernel of τ using Gaussian elimination, as in §15.4.

To perform the Gaussian elimination, we need to choose an ordered basis
for A over F , and construct a matrix Q that represents τ with respect to that
ordered basis as in §15.2, so that evaluation of τ corresponds to multiplying a row
vector byQ on the right. We are free to choose an ordered basis in any convenient
way, and the most convenient ordered basis, of course, is (1, η, . . . , η`−1), as this
directly corresponds to the way we represent elements of A for computational
purposes. Let ε : F 1×` → A be the F -vector space isomorphism that sends the
coordinate vector (a0, . . . , a`−1) to the corresponding element

∑

i aiη
i ∈ A. The

maps ε and ε−1 are best thought of as “type conversion operators” that require
no actual computation to evaluate. The matrix Q, then, is the ` × ` matrix
whose ith row, for 1 ≤ i ≤ `, is ε−1(τ(ηi−1)). Note that if α := ηq, then

τ(ηi−1) = (ηi−1)q − ηi−1 = (ηq)i−1 − ηi−1 = αi−1 − ηi−1.

This observation allows us to construct the rows of Q by first computing α as
ηq via repeated squaring, and then just computing successive powers of α.

After we construct the matrix Q, we apply Gaussian elimination to get row
vectors v1, . . . , vr that form a basis for the row null space of Q. It is at this point
that our algorithm actually discovers the number r of irreducible factors of f .
We can then set βi := ε(vi) for 1 ≤ i ≤ r to get our basis for B.

Putting this altogether, we have the following algorithm to compute a basis
for the Berlekamp subalgebra. The algorithm takes as input a monic square-
free polynomial f of degree ` > 0, and runs as follows, where A := F [X]/(f),
η := [X mod f ] ∈ A, and ε : F 1×` → A is the map that sends (a0, . . . , a`−1) to
∑

i aiη
i:
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Algorithm B1:

let Q be an `× ` matrix over F (initially with undefined entries)
compute α← ηq using repeated squaring
β ← 1A
for i← 1 to ` do

— invariant: β = αi−1 = (ηi−1)q

Q(i)← ε−1(β)
Q(i, i)← Q(i, i)− 1
β ← βα

compute a basis v1, . . . , vr of the row null space of Q using
Gaussian elimination

set βi ← ε(vi) for i = 1, . . . , r
output β1, . . . , βr

The correctness of algorithm B1 is clear from the above discussion. As for
the running time:

Theorem 21.14 Algorithm B1 uses O(`2 len(q) + `3) operations in F .

Proof. This is just a matter of counting. The computation of α takes O(len(q))
operations in A using repeated squaring, and hence O(`2 len(q)) operations in
F . To build the matrix Q, we have to perform an additional O(`) operations in
A to compute the successive powers of α, which translates into O(`3) operations
in F . Finally, the cost of Gaussian elimination is an additional O(`3) operations
in F . 2

Stage 2: Recursive splitting

The second stage of Berlekamp’s factoring algorithm is a probabilistic, recursive
algorithm that takes as input a monic square-free polynomial f and an auxiliary
list (β1, . . . , βr) of elements which span the Berlekamp subalgebra B of A :=
F [X]/(f). This algorithm is initially invoked with the original input polynomial
f to be factored, along with the basis constructed in Stage 1 above.

The algorithm chooses c1, . . . , cr ∈ F at random, and computes β :=
∑

i ciβi. The element β will be uniformly distributed over B, and hence, if

β = ρ(b1, . . . , br),
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then the bi’s will be uniformly and independently distributed over F . Analogous
to algorithm EDF in §21.3.2, let us define a function F : A→ A as follows:

F(α) :=

{ ∑w−1
i=0 α2

i
if p = 2

α(q−1)/2 − 1 if p > 2
(21.2)

With β as above, then just as in algorithm EDF, we have that d :=
gcd(rep(F(β)), f) will be a non-trivial factor of f with probability at least 1/2,
if p = 2, and probability at least 4/9, if p > 2. If we succeed in splitting f
in this way, then we proceed recursively, factoring g1 := d and g2 := f/d.
Note, however, that for the recursive step, we have to supply spanning sets
for the Berlekamp subalgebras of A1 := F [X]/(g1) and A2 := F [X]/(g2). To
do this, we simply reduce each of the given βi’s modulo g1 and g2. It is
clear that each of these reduced lists form a spanning set for the corresponding
Berlekamp subalgebra. To simplify notation, for α ∈ A, and g | f , let us define
[α mod g] := [rep(α) mod g] ∈ F [X]/(g). In any recursive step, we can tell when
we have an irreducible factor, since this happens if and only if the Berlekamp
subalgebra coincides with F .

Our recursive splitting algorithm, then, takes as input a monic square-free
polynomial f of degree ` (we allow ` = 0 to simplify the recursion), along with
an auxiliary list (β1, . . . , βr) of elements that span the Berlekamp subalgebra of
A := F [X]/(f), and runs as follows, where the function F : A→ A is as defined
in (21.2):

Algorithm B2:

if ` = 0 return
if β1, . . . , βr ∈ F then

— f must be irreducible
output f
return

choose c1, . . . , cr ∈ F at random
β ← c1β1 + · · ·+ crβr
d← gcd(rep(F(β)), f)
g1 ← d, g2 ← f/d
for i = 1, 2, recursively process gi using the list

([β1 mod gi], . . . , [βr mod gi])

Note that in the above recursive specification, the quantity r refers to the
number of factors of the original input polynomial f , which will not in general be
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the same as the number of irreducible factors of the factor of f being processed
at a particular stage in the recursion.

The correctness of algorithm B2 follows from the above discussion. It is
clear that algorithm B2 runs in expected polynomial time, since the expected
number of trials until we get a non-trivial split is O(1), the cost of each trial is
polynomially bounded, and we are done after r − 1 non-trivial splits. A more
careful analysis reveals:

Theorem 21.15 Algorithm B2 uses an expected number of

O(r`2 + `2 len(q) len(r))

operations in F .

Proof. Let us break the cost (i.e., the number of operations in F ) into two parts:
the cost C1 of computing the auxiliary list ([β1 mod gi], . . . , [βr mod gi]) in the
cases where we actually have a non-trivial split, and the cost C2 comprising all
other computations.

We claim that
C1 = O(r`2).

We leave the proof of this as an exercise (see below).
As for C2, the analysis is essentially the same as that of algorithm EDF, and

we obtain (verify)
E[C2] = O(`2 len(q) len(r)).

2

Unlike in the case of algorithm EDF, the above running time estimate is
tight, i.e., the factor of len(r) in the expected running time estimate really
needs to be there. This worst-case behavior will be evoked, for example, when
the input polynomial is the product of an irreducible factor of degree `/2, and
r − 1 linear factors — we expect that the large irreducible factor will appear
at a depth of Ω(len(r)) in the recursion tree, and hence will cause an expected
number of Ω(`2 len(q) len(r)) operations in F to be performed.

Exercise 21.16 Prove the claim made in the proof of Theorem 21.15 that C1 =
O(r`2). 2
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21.4.3 Analysis of the whole algorithm

Putting together algorithm SFD with algorithms B1 and B2, we get Berlekamp’s
complete factoring algorithm. The running time bound is easily estimated from
the results already proved:

Theorem 21.17 Berlekamp’s factoring algorithm uses an expected number of
O(`3 + `2 len(`) len(q)) operations in F .

So we see that Berlekamp’s algorithm is in fact faster than the Cantor-
Zassenhaus algorithm, whose expected operation count is O(`3 len(q)). The
speed advantage of Berlekamp’s algorithm grows as q gets large. The one disad-
vantage of Berlekamp’s algorithm is space: it requires space for Θ(`2) elements of
F , while the Cantor-Zassenhaus algorithm requires space for only O(`) elements
of F .

Exercise 21.18 Using the ideas behind Berlekamp’s factoring algorithm, devise
a deterministic irreducibility test that given monic polynomial of degree ` over
a finite field F of cardinality q uses O(`2 len(q) + `3) operations in F . 2

Exercise 21.19 Let β1, . . . , βr be a basis for the Berlekamp subalgebra of A :=
F [X]/(f). Show that the set S := {rep(β1), . . . , rep(βr)} is a separating set for
f over F (see Exercise 21.20). Use this fact to design a deterministic factoring
algorithm based on Berlekamp’s method that uses (`+w+ p)O(1) operations in
F , and make a careful estimate of the running time of your algorithm. 2

21.5 ♣ Deterministic Factorization Algorithms
Both the algorithms of Cantor and Zassenhaus and of Berlekamp are prob-
abilistic. The exercises below develop a deterministic variant of the Cantor-
Zassenhaus algorithm. (One can also develop deterministic variants of
Berlekamp’s algorithm, with similar complexity.)

This algorithm is only practical for finite fields of small characteristic, and is
anyway mainly of theoretical interest, since from a practical perspective, there
is nothing wrong with the above probabilistic method. In all of these exercises,
F is a finite field of characteristic p and cardinality q, where q = pw, and we
assume that we have access to a basis ε1, . . . , εw for F as a vector space over Zp.

To make the Cantor-Zassenhaus algorithm deterministic, we only need to
develop a deterministic variant of algorithm EDF, as algorithm DDF is already
deterministic.
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Exercise 21.20 Let g = g1 · · · gr, where the gi’s are distinct monic irreducible
polynomials in F [X]. Assume that r > 0, and let ` := deg(g). For this exercise,
the degrees of the gi’s need not be the same. For an intermediate field F ′, with
Zp ⊆ F ′ ⊆ F , let us call a set S = {λ1, . . . , λs} of polynomials in F [X]<` a
separating set for g over F ′ if the following conditions hold:

• for 1 ≤ i ≤ r and 1 ≤ u ≤ s, there exists cui ∈ F ′ such that λu ≡
cui (mod gi), and

• for any distinct pair of indices 1 ≤ i < j ≤ r, there exists 1 ≤ u ≤ s such
that cui 6= cuj .

Show that if S is a Zp-separating set for g, then the following algorithm
completely factors g using O(p|S|`2) operations in F .

C ← {g}
for each λ ∈ S do

for each a ∈ Zp do
C ′ ← {}
for each h ∈ C do

d← gcd(λ− a, h)
if d = 1 then

C ′ ← C ∪ {h}
else

C ′ ← C ∪ {d, h/d}
C ← C ′

output C

2

Exercise 21.21 Let g be as in the previous exercise. Show that if S is a sepa-
rating set for g over F , then the set

S′ := {
w−1∑

i=0

(εjλ)
pi rem g : 1 ≤ j ≤ w, λ ∈ S}

is a separating set for g over Zp. Show how to compute this set using
O(|S|`2 len(p)w(w − 1)) operations in F . 2

Exercise 21.22 Let g be as in the previous two exercises, but further suppose
that each irreducible factor of g is of the same degree, say k. Let A := F [X]/(g)
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and η := [X mod g] ∈ A. Define the polynomial φ ∈ A[Y] as follows:

φ :=
k−1∏

i=0

(Y− ηqi).

If
φ = Yk + αk−1Y

k−1 + · · ·+ α0,

with α0, . . . , αk−1 ∈ A, show that the set

S := {rep(αi) : 0 ≤ i ≤ k − 1}

is separating set for g over F , and can be computed deterministically using
O(k len(q) + k2) operations in A, and hence O((k len(q) + k2)`2) operations in
F . 2

Exercise 21.23 Put together all of the above pieces, together with algorithm
DDF, so as to obtain a deterministic algorithm for factoring polynomials over
F that uses (`+w+ p)O(1) operations in F , and make a careful estimate of the
running time of your algorithm. 2

The following exercises show that the problem of factoring polynomials over
F reduces in deterministic polynomial time to the problem of finding roots of
polynomials over Zp.

Exercise 21.24 Now let F and g be as in Exercise 21.20. Suppose that S =
{λ1, . . . , λs} is a separating set for g over Zp, and φu ∈ F [X] is the minimal
polynomial over F of [λu mod g] ∈ F [X]/(g) for 1 ≤ u ≤ s. Show that each φu
is the product of linear factors over Zp, and that given S along with the roots
of all the φu’s, we can deterministically factor g using (|S|+ `)O(1) operations in
F . Hint: see Exercise 17.30. 2

Exercise 21.25 Using the previous exercise, show that the problem of factoring
a polynomial over a finite field F reduces in deterministic polynomial time to
the problem of finding roots of polynomials over the prime field of F . 2

21.6 ♣ Faster Square-Free Decomposition
The algorithm presented in §21.4.1 for square-free decomposition was simple
and suitable for our immediate purposes, but is certainly not the most efficient
possible. The following exercises develop a faster algorithm for this problem.
To simplify matters, we first consider the problem over a field of characteristic
zero.
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Exercise 21.26 Let f ∈ F [X] be a monic polynomial over a field F of charac-
teristic zero. Suppose that the factorization of f into irreducibles is

f = f e11 · · · f err .

Show that
f

gcd(f,D(f))
= f1 · · · fr.

2

Exercise 21.27 Let F be a field of characteristic zero. Consider the following
algorithm that takes as input a monic polynomial f ∈ F [X] of degree ` > 0:

j ← 1, g ← f/ gcd(f,D(f))
repeat

f ← f/g, h← gcd(f, g), m← g/h
if m 6= 1 then output (m, j)
g ← h, j ← j + 1

until g = 1

Using the result of the previous exercise, show that this algorithm outputs a
list of pairs (gi, si), such that each gi is square-free, f =

∏

i g
si
i , and the gi’s are

pair-wise co-prime. Furthermore, show that this algorithm uses O(`2) operations
in F . 2

Exercise 21.28 Let f ∈ F [X] be a monic polynomial over a field F of charac-
teristic p. Suppose that the factorization of f into irreducibles is

f = f e11 · · · f err .

Show that
f

gcd(f,D(f))
=

∏

1≤i≤r
p-ei

fi.

2

Exercise 21.29 Let F be a finite field of characteristic p and cardinality q =
pw. Consider the following algorithm that takes as input a monic polynomial
f ∈ F [X] of degree ` > 0:



21.7. Notes 399

s← 1
repeat

j ← 1, g ← f/ gcd(f,D(f))
repeat

f ← f/g, h← gcd(f, g), m← g/h
if m 6= 1 then output (m, js)
g ← h, j ← j + 1

until g = 1
if f 6= 1 then

— f is a pth power
— we compute a pth root as in algorithm SFD

f ← f1/p, s← ps
until f = 1

Using the result of the previous exercise, show that this algorithm outputs a
list of pairs (gi, si), such that each gi is square-free, f =

∏

i g
si
i , and the gi’s are

pair-wise co-prime. Furthermore, show that this algorithm uses O(`2 + `(w −
1) len(p)) operations in F . 2

21.7 Notes

In this section, we use the notation “O (̃f),” pronounced “soft-Oh of f ,” to
denote a function that is O(f(log(2 + |f |))c) for some constant c. For example,
with this notation, we can simply say that multiplication, division, and greatest
common divisors of degree ` polynomials can be computed usingO (̃`) operations
in F . This notation is useful for simplifying messy expressions involving powers
of len(`) and len(len(`)). Of course, from a practical point of view, such “soft-
Oh” estimates must be viewed with a certain amount of skepticism.

The average-case analysis of algorithm IPT, assuming its input is random,
and the application to the analysis of algorithm RIP, is due to Ben-Or [13]. If
one implements algorithm RIP using fast polynomial arithmetic, one gets an
expected cost of O (̃`2 len(q)) operations in F . Note that Ben-Or’s analysis is
a bit incomplete — see Exercise 32 in Chapter 7 of Bach and Shallit [11] for a
complete analysis of Ben-Or’s claims.

The asymptotically fastest probabilistic algorithm for constructing an irre-
ducible polynomial over F of degree ` is due to Shoup [71]. That algorithm
uses an expected number of O (̃`2 + ` len(q)) operations in F , and in fact does
not follow the “generate and test” paradigm of algorithm RIP, but uses a com-
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pletely different approach. As far as deterministic algorithms for constructing
irreducible polynomials of given degree over F , the only efficient methods known
are when the characteristic p of F is small (see Chistov [21], Semaev [66], and
Shoup [70]).

The algorithm in §21.2 for computing minimal polynomials over finite fields
is due to Gordon [32].

The Cantor-Zassenhaus algorithm was initially developed by Cantor and
Zassenhaus [19], although many of the basic ideas can be traced back quite a
ways. A straightforward implementation of this algorithm using fast polynomial
arithmetic uses an expected number of O (̃`2 len(q)) operations in F .

Berlekamp’s algorithm was initially developed by Berlekamp [14, 15], but
again, many of the basic idea go back a long way. A straightforward implementa-
tion using fast polynomial arithmetic uses an expected number ofO (̃`3+` len(q))
operations in F , which may be reduced to of O (̃`ω + ` len(q)), where ω is the
exponent of matrix multiplication.

The square-free decomposition of a polynomial over a field F of characteristic
zero can be obtained using an algorithm of Yun [81] using O (̃`) operations in
F . For finite fields F of cardinality pw, one can adapt Yun’s algorithm so that
it uses O (̃` + `(w − 1) len(p)) operations in F (c.f., Exercise 14.30 in von zur
Gathen and Gerhard [75]).

The asymptotically fastest algorithms for factoring polynomials over a finite
field F are due to von zur Gathen, Kaltofen, and Shoup: the algorithm of von zur
Gathen and Shoup [76] uses an expected number of O (̃`2 + ` len(q)) operations
in F ; the algorithm of Kaltofen and Shoup [40] has a cost that is subquadratic
in the degree — it uses an expected number of O(`1.815 len(q)0.407) operations
in F . Although the “fast” algorithms in [76] and [40] are mainly of theoretical
interest, a variant in [40], which uses O (̃`2.5 + ` len(q)) operations in F , and
space for O(`1.5) elements of F , has proven to be quite practical (see Shoup
[72]).



Chapter 22

Deterministic Primality
Testing

Until very recently, there was no known deterministic, polynomial time algo-
rithm for testing whether a given integer n > 1 is a prime. However, that is no
longer the case — the breakthrough algorithm of Agrawal, Kayal, and Saxena,
or AKS algorithm for short, is just such an algorithm. Not only is the result
itself wonderful, but the algorithm is striking in both its simplicity, and in the
fact that the proof of its running time and correctness are completely elementary
(though ingenious).

We should stress at the outset that although this result is an important
theoretical result, as of yet, it has no real practical significance: probabilistic
tests, such as the Miller-Rabin test discussed in §10, are much more efficient, and
the suitably practical minded person is not at all bothered by the fact that such
algorithms may in theory make a mistake with an incredibly small probability.

22.1 The Basic Idea

The algorithm is based on the following fact:

Theorem 22.1 Let n > 1 be an integer and a ∈ Z∗n. Then n is prime if and
only if in the ring Zn[X]

(X+ a)n = Xn + a. (22.1)

Proof. Note that

(X+ a)n = Xn + an +
n−1∑

i=1

(
n

i

)

aiXn−i.

401
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If n is prime, then by Theorem 2.24 (Fermat’s Little Theorem), we have
an = a, and by Exercise 1.17, all of the binomial coefficients

(
n
i

)
, for 1 ≤ i ≤ n−1,

are divisible by n, and hence their images in the ring Zn vanish. That proves
that the identity (22.1) holds when n is prime.

Conversely, suppose that n is composite. Consider any prime factor p of n,
and suppose n = pkm, where p - m.

We claim that pk -
(
n
p

)
. To prove the claim, one simply observes that

(
n

p

)

=
n(n− 1) · · · (n− p+ 1)

p!
,

and the numerator of this fraction is an integer divisible by pk, but no higher
power of p, and the denominator is divisible by p, but no higher power of p.
That proves the claim.

From the claim, and the fact that a ∈ Z∗n, it follows that the coefficient of
Xn−p in (X+ a)n is not zero, and hence the identity (22.1) does not hold. 2

Of course, Theorem 22.1 does not immediately give rise to an efficient pri-
mality test, since just evaluating the left-hand side of the identity (22.1) takes
time Ω(n) in the worst case. The key observation of Agrawal, Kayal, and Saxena
is that if (22.1) holds modulo Xr − 1 for a suitably chosen value of r, and for
sufficiently many a, then n must be prime. To make this idea work, one must
show that a suitable r exists that is bounded by a polynomial in len(n), and
that the number of different values of a that must be tested is also bounded by
a polynomial in len(n).

22.2 The Algorithm and its Analysis

Here is the primality test. It takes as input an integer n > 1.



22.2. The Algorithm and its Analysis 403

Algorithm AKS:

1. if n is of the form ab for integers a > 1 and b > 1 then
return false

2. find the smallest integer r > 1 such that either
gcd(n, r) > 1

or
gcd(n, r) = 1 and [n mod r] ∈ Z∗r has order exceeding 4 len(n)2

3. if r = n then
return true

4. if gcd(n, r) > 1 then
return false

5. for j ← 1 to 2 len(n)br1/2c+ 1 do
if (X+ j)n 6≡ Xn + j (mod Xr − 1) in the ring Zn[X] then

return false
6. return true

A few remarks on implementation are in order:

• In step (1), we can use the algorithm for perfect-power testing discussed
in §10.5, which is a deterministic, polynomial-time algorithm.

• The search for r in step (2) can just be done by brute-force search; likewise,
the determination of the order of [n mod r] ∈ Z∗r can be done by brute
force — after verifying that gcd(n, r) = 1, compute successive powers of n
modulo r until we get 1.

We want to prove that algorithm AKS runs in polynomial time and is correct.
To prove that it runs in polynomial time, it clearly suffices to prove that there
exists an integer r satisfying the condition in step (2) that is bounded by a
polynomial in len(n), since all other computations can be carried out in time
(r + len(n))O(1). Correctness means that if it outputs true if and only if n is
prime.

The question of running time of algorithm AKS is settled by the following
fact:

Theorem 22.2 For integers n > 1 and m ≥ 1, the least prime r such that r - n
and the order of [n mod r] ∈ Z∗r is greater than m is O(m2 len(n)).

Proof. Call a prime r “good” if r - n and the order of [n mod r] ∈ Z∗r is greater
than m, and otherwise call r “bad.” If r is bad, then either r | n or r | (nd − 1)
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for some 1 ≤ d ≤ m. Thus, any bad prime r satisfies

r | n
m∏

d=1

(nd − 1).

If all primes r up to some given bound x ≥ 2 are bad, then the product of all
primes up to x divides n

∏m
d=1(n

d − 1), and so in particular,

∏

r≤x
r ≤ n

m∏

d=1

(nd − 1),

where the product is over all primes r up to x. Taking logarithms, we obtain

∑

r≤x
log r ≤ log(n

m∏

d=1

(nd − 1)) ≤ (log n)(1 +
m∑

d=1

d) = (log n)(1 +m(m+ 1)/2).

But by Theorem 5.7, we have
∑

r≤x
log r ≥ cx

for some constant c > 0, from which it follows that

x ≤ c−1(log n)(1 +m(m+ 1)/2),

and the theorem follows. 2

From this theorem, it follows that the value of r found in step (2) — which
need not be prime — will be O(len(n)5). From this, we obtain:

Theorem 22.3 Algorithm AKS can be implemented so as to run in time
O(len(n)16.5).

Proof. As discussed above, the value of r determined in step (2) will be
O(len(n)5). It is fairly straightforward to see that the running time of the
algorithm is dominated by the running time of step (5). Here, we have to perform
O(r1/2 len(n)) exponentiations to the power n in the ring Zn[X]/(X

r − 1). Each
of these exponentiations takes O(len(n)) operations in Zn[X]/(X

r − 1), each of
which takes O(r2) operations in Zn, each of which takes time O(len(n)2). This
yields a running time bounded by a constant times

r1/2 len(n)× len(n)× r2 × len(n)2 = r2.5 len(n)4.

Substituting the bound O(len(n)5) for r, we obtain the stated bound in the
theorem. 2

As for the correctness of algorithm AKS, we first show:
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Theorem 22.4 If the input to algorithm AKS is prime, then the output is true.

Proof. Assume that the input n is prime. The test in step (1) will certainly
fail. If the algorithm does not return true in step (3), then certainly the test in
step (4) will fail as well. If the algorithm reaches step (5), then all of the tests
in the loop in step (5) will fail — this follows from Theorem 22.1. Note that for
very small values of n, we could have j ≡ 0 (mod n) for some values of the loop
index j, and strictly speaking, Theorem 22.1 only applies for a ∈ Z∗n; however,
it is clear that for prime n, the identity (22.1) holds for all a ∈ Zn. 2

The interesting case is the following:

Theorem 22.5 If the input to algorithm AKS is composite, then the output is
false.

The proof of this theorem is rather long, and is the subject of the remainder
of this section.

Suppose the input n is composite. If n is a prime power, then this will be
detected in step (1), so we may assume that n is not a prime power. Assume
that the algorithm has found a suitable value of r in step (2). Clearly, the test
in (3) will fail. If the test in step (4) passes, we are done, so we may assume
that this test fails, i.e., that all prime factors of n are greater than r. Our goal
now is to show that one of the tests in the loop in step (5) must pass. The proof
will be by contradiction: we shall assume that none of the tests pass, and derive
a contradiction.

The assumption that none of the tests in step (5) fail means that in the ring
Zn[X], the following congruences hold:

(X+ j)n ≡ Xn + j (mod Xr − 1) (j = 1, . . . , 2 len(n)br1/2c+ 1). (22.2)

For the rest of the proof, we fix any particular prime divisor p of n — the
choice does not matter. Since p | n, we have a natural homomorphism from
Zn[X] to Zp[X] (see Example 9.70), which implies that the congruences (22.2)
hold in the ring of polynomials over Zp as well. From now on, we shall work
exclusively with polynomials over Zp. Moreover, let us state in somewhat more
abstract terms the precise assumptions we are making in order to derive our
contradiction — the rest of the proof will rely only on these assumptions, and
not on any other details of algorithm AKS.

A0. n > 1, r > 1, and ` ≥ 1 are integers, p is a prime dividing n, and
gcd(n, r) = 1.
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A1. n is not a prime power.

A2. p > r.

A3. The congruences

(X+ j)n ≡ Xn + j (mod Xr − 1) (j = 1, . . . , `)

hold in the ring Zp[X].

A4. The order of [n mod r] ∈ Z∗r is greater than 4 len(n)2.

A5. ` > 2 len(n)br1/2c.

From now on, only assumption (A0) will be implicitly in force. The other
assumptions will be explicitly invoked as necessary. Our goal is to show that
assumptions (A1), (A2), (A3), (A4), and (A5) cannot all be true simultaneously.

Define the Zp-algebra A := Zp[X]/(X
r − 1), and let η := [X mod (Xr −

1)] ∈ A, so that A = Zp[η]. Every element of A can be expressed uniquely as
g(η) = [g mod (Xr − 1)], for g ∈ Zp[X] of degree less than r, and for an arbitrary
polynomial g ∈ Zp[X], we have g(η) = 0 if and only if (Xr − 1) | g. Note that
η ∈ A∗ and has multiplicative order r: indeed, ηr = 1, and ηs−1 cannot be zero
for s < r, since Xs − 1 has degree less than r.

Assumption (A3) implies that we have a number of interesting identities in
the Zp-algebra A:

(η + j)n = ηn + j (j = 1, . . . , `).

For the polynomials gj := X + j ∈ Zp[X], with j in the given range, these
identities say that gj(η)

n = gj(η
n).

In order to exploit these identities, we study more generally functions σk, for
various integer values k, that send g(η) ∈ A to g(ηk), for arbitrary g ∈ Zp[X],
and we investigate the implications of the assumption that such functions behave
like the kth power map on certain inputs. To this end, let Z(r) denote the set
of all positive integers k such that gcd(r, k) = 1. Note that the set Z(r) is
multiplicative, i.e., 1 ∈ Z(r), and for all k, k′ ∈ Z(r), we have kk′ ∈ Z(r). Also
note that because of our assumption (A0), both n and p are in Z(r). For integer
k ∈ Z(r), let σ̂k : Zp[X] → A be the polynomial evaluation map that sends
g ∈ Zp[X] to g(η

k). This is of course a Zp-algebra homomorphism, and we have:

Lemma 22.6 For all k ∈ Z(r), the kernel of σ̂k is (Xr− 1), and the image of σ̂k
is A.
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Proof. Let J := ker(σ̂k), which is an ideal in Zp[X], of course. Let k′ be a
positive integer such that kk′ ≡ 1 (mod r), which exists because gcd(r, k) = 1.

To show that J = (Xr − 1), we first observe that

σ̂k(X
r − 1) = (ηk)r − 1 = (ηr)k − 1 = 1k − 1 = 0,

and hence (Xr − 1) ⊆ J .
Next, we show that J ⊆ (Xr − 1). Let g ∈ J . We want to show that

(Xr−1) | g. Now, g ∈ J means that g(ηk) = 0. If we set h := g(Xk), this implies
that h(η) = 0, which means that (Xr − 1) | h. So let us write h = (Xr − 1)f , for
some f ∈ Zp[X]. Then

g(η) = g(ηkk
′

) = h(ηk
′

) = (ηk
′r − 1)f(ηk

′

) = 0,

which implies that (Xr − 1) | g.
That finishes the proof that J = (Xr − 1).
Finally, to show that σ̂k is surjective, suppose we are given an arbitrary

element of A, which we can express as g(η) for some g ∈ Zp[X]. Now set h :=
g(Xk

′

), and observe that

σ̂k(h) = h(ηk) = g(ηkk
′

) = g(η).

2

Because of Lemma 22.6, then by Theorem 9.62, the map σk : A → A that
sends g(η) ∈ A to g(ηk), for g ∈ Zp[X], is well defined, and is a ring automorphism
— indeed, a Zp-algebra automorphism — on A. Note that for any k, k′ ∈ Z(r),
we have

• σk = σk′ if and only if ηk = ηk
′

if and only if k ≡ k′ (mod r), and

• σk ◦ σk′ = σk′ ◦ σk = σkk′ .

So in fact, the set of all σk forms an abelian group (with respect to composition)
that is isomorphic to Z∗r .

It is perhaps helpful (but not necessary for the proof) to examine the behavior
of the map σk in a bit more detail. Let α ∈ A, and let

α =

r−1∑

i=0

giη
i

be the canonical representation of α. Since gcd(r, k) = 1, the map that π :
{0, . . . , r − 1} → {0, . . . , r − 1} that sends i to ki rem r is a permutation whose
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inverse is the permutation π′ that sends i to k′i rem r, where k′ is a multiplicative
inverse of k modulo r. Then we have

σk(α) =
r−1∑

i=0

giη
ki =

r−1∑

i=0

giη
π(i) =

r−1∑

i=0

gπ′(i)η
i.

Thus, the action of σk is to permute the coordinate vector (g0, . . . , gr−1) of α,
sending α to the element in A whose coordinate vector is (gπ′(0), . . . , gπ′(r−1)). So
we see that although we defined the maps σk in a rather “high brow” algebraic
fashion, their behavior in concrete terms is actually quite simple.

Recall that the pth power map on A is a Zp-algebra homomorphism (see
Theorem 20.5), and so for all α ∈ A, if α = g(η) for g ∈ Zp[X], then (by
Theorem 17.13) we have

αp = g(η)p = g(ηp) = σp(α).

Thus, σp acts just like the pth power map on all elements of A.
We can restate assumption (A3) as follows:

(η + j)n = σn(η + j) (j = 1, . . . , `).

That is to say, the map σn acts just like the nth power map on the elements
η + j for 1 ≤ j ≤ `.

Now, although the σp map must act like the pth power map on all of A,
there is no good reason why the σn map should act like the nth power map on
any particular element of A, and so the fact that it does so on all the elements
η + j for 1 ≤ j ≤ ` looks decidedly suspicious. To turn our suspicions into a
contradiction, let us start by defining some notation. For α ∈ A, let us define

C(α) := {k ∈ Z(r) : σk(α) = αk},

and for k ∈ Z(r), let us define

D(k) := {α ∈ A : σk(α) = αk}.

In words: C(α) is the set of all k for which σk acts like the kth power map on
α, and D(k) is the set of all α for which σk acts like the kth power map on α.
From the discussion above, we have p ∈ C(α) for all α ∈ A, and it is also clear
that 1 ∈ C(α) for all α ∈ A. Also, it is clear that α ∈ D(p) for all α ∈ A, and
1A ∈ D(k) for all k ∈ Z(r).

The following two simple lemmas say that the sets C(α) and D(k) are mul-
tiplicative.
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Lemma 22.7 For any α ∈ A, if k ∈ C(α) and k′ ∈ C(α), then kk′ ∈ C(α).

Proof. If σk(α) = αk and σk′(α) = αk
′

, then

σkk′(α) = σk(σk′(α)) = σk(α
k′) = (σk(α))

k′ = (αk)k
′

= αkk
′

,

where we have made use of the homomorphic property of σk. 2

Lemma 22.8 For any k ∈ Z(r), if α ∈ D(k) and β ∈ D(k), then αβ ∈ D(k).

Proof. If σk(α) = αk and σk(β) = βk, then

σk(αβ) = σk(α)σk(β) = αkβk = (αβ)k,

where again, we have made use of the homomorphic property of σk. 2

Let us define

• s to be the order of [p mod r] ∈ Z∗r , and

• t to be the order of the subgroup of Z∗r generated by [p mod r] and [n mod
r].

Since r | (ps− 1), if we take any extension field E of degree s over Zp (which
we know exists by Theorem 20.10), then since E∗ is cyclic (Theorem 10.2) and
has order ps − 1, we know that there exists an element ζ ∈ E∗ of order r
(Theorem 8.78). Let us define the polynomial evaluation map τ̂ : Zp[X] → E
that sends g ∈ Zp[X] to g(ζ) ∈ E. Since Xr − 1 is clearly in the kernel of
τ̂ , then by Theorem 9.63, the map τ : A → E that sends g(η) to g(ζ), for
g ∈ Zp[X], is a well-defined ring homomorphism, and actually, it is a Zp-algebra
homomorphism.

For concreteness, one could think of E as Zp[X]/(φ), where φ is an irreducible
factor of Xr − 1 of degree s. In this case, we could simply take ζ to be [X mod φ]
(see Example 20.24), and the map τ̂ above would be just the natural map from
Zp[X] to Zp[X]/(φ).

The key to deriving our contradiction is to examine the set S := τ(D(n)),
that is, the image under τ of the set D(n) of all elements α ∈ A for which σn
acts like the nth power map.

Lemma 22.9 Under assumption (A1), we have

|S| ≤ n2bt
1/2c.
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Proof. Consider the set of integers

I := {nupv : 0 ≤ u, v ≤ bt1/2c}.

We first claim that |I| > t. To prove this, we first show that each distinct
pair (u, v) gives rise to a distinct value nupv. To this end, we make use of our
assumption (A1) that n not a prime power, and so is divisible by some prime q
other than p. Thus, if (u′, v′) 6= (u, v), then either

• u 6= u′, in which case the power of q in the prime factorization of nupv is
different from that in nu

′

pv
′

, or

• u = u′ and v 6= v′, in which case the power of p in the prime factorization
of nupv is different from that in nu

′

pv
′

.

The claim now follows from the fact that both u and v range over a set of size
bt1/2c+ 1 > t1/2, and so there are strictly more than t such pairs (u, v).

Next, recall that t was defined to be the order of the subgroup of Z∗r generated
by [n mod r] and [p mod r]; that is, t is the number of distinct residue classes
of the form [nupv mod r], where u and v range over all non-negative integers.
Since each element of I is of the form nupv, and |I| > t, we may conclude that
there must be two distinct elements of I, call them k and k′, that are congruent
modulo r. Furthermore, any element of I is a product of two positive integers
each of which is at most nbt

1/2c, and so we have 1 ≤ k, k′ ≤ n2bn
1/2c.

Now, let α ∈ D(n). This is equivalent to saying n ∈ C(α). We always have
1 ∈ C(α) and p ∈ C(α), and so by Lemma 22.7, we have nupv ∈ C(α) for all
non-negative integers u, v, and so in particular, k, k′ ∈ C(α).

Since both k and k′ are in C(α), we have

σk(α) = αk and σk′(α) = αk
′

.

Since k ≡ k′ (mod r), we have σk = σk′ , and hence

αk = αk
′

.

Now apply the homomorphism τ , obtaining

τ(α)k = τ(α)k
′

.

Since this holds for all α ∈ D(n), we conclude that all elements of S are roots
of the polynomial Xk − Xk

′

. Since k 6= k′, we see that Xk − Xk
′

is a non-zero
polynomial of degree at most max{k, k′} ≤ n2bt

1/2c, and hence can have at most

n2bt
1/2c roots in the field E (Theorem 9.42). 2
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Lemma 22.10 Under assumptions (A2) and (A3), we have

|S| ≥ 2min(t,`) − 1.

Proof. Let m := min(t, `). Under assumption (A3), we have η + j ∈ D(n) for
j = 1, . . . ,m. Under assumption (A2), we have p > r > t ≥ m, and hence the
integers j = 1, . . . ,m are distinct modulo p. Define

P := {
m∏

j=1

(X+ j)ej ∈ Zp[X] : ej ∈ {0, 1} for j = 1, . . . ,m, and
m∑

j=1

ej < m}.

That is, we form P by taking products over all subsets S ( {X+j : j = 1, . . . ,m}.
Clearly, |P | = 2m − 1.

Define P (η) := {f(η) ∈ A : f ∈ P} and P (ζ) := {f(ζ) ∈ E : f ∈ P}. Note
that τ(P (η)) = P (ζ), and that by Lemma 22.8, P (η) ⊆ D(n).

Therefore, to prove the lemma, it suffices to show that |P (ζ)| = 2m − 1.
Suppose that this is not the case. This would give rise to polynomials g, h ∈
Zp[X], such that

deg(g), deg(h) ≤ t− 1, g 6= h, g(η), h(η) ∈ D(n), and τ(g(η)) = τ(h(η)).

So we have n ∈ C(g(η)) and (as always) 1, p ∈ C(g(η)). Likewise, we have
1, n, p ∈ C(h(η)). By Lemma 22.7, for all integers k of the form nupv, where u
and v range over all non-negative integers, we have

k ∈ C(g(η)) and k ∈ C(h(η)).

For any such k, since τ(g(η)) = τ(h(η)), we have τ(g(η))k = τ(h(η))k, and hence

0 = τ(g(η))k − τ(h(η))k
= τ(g(η)k)− τ(h(η)k) (τ is a homomorphism)

= τ(g(ηk))− τ(h(ηk)) (k ∈ C(g(η)) and k ∈ C(h(η)))

= g(ζk)− h(ζk) (definition of τ).

Thus, the polynomial f := g − h ∈ Zp[X] is a non-zero polynomial of degree at
most t−1, having roots ζk in the field E for all k of the form nupv. Now, t is by
definition the number of distinct residue classes of the form [nupv mod r] ∈ Z∗r .
Also, since ζ has order r in E∗, for integers k, k′, we have ζk = ζk

′

if and only
if k ≡ k′ (mod r). Therefore, as k ranges over all integers of the form nupv,
ζk ranges over precisely t distinct values in E. But since all of these values are
roots of the polynomial f , which is non-zero and of degree at most t− 1, this is
impossible (Theorem 9.42). 2
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We are now (finally!) in a position to complete the proof of Theorem 22.5.
Under assumptions (A1), (A2), and (A3), Lemmas 22.9 and 22.10 imply that

2min(t,`) − 1 ≤ |S| ≤ n2bt
1/2c. (22.3)

The contradiction is provided by the following:

Lemma 22.11 Under assumptions (A4) and (A5), we have

2min(t,`) − 1 > n2bt
1/2c.

Proof. Observe that log2 n ≤ len(n), and so it suffices to show that

2min(t,`) − 1 > 22 len(n)bt
1/2c,

and for this, it suffices to show that

min(t, `) > 2 len(n)bt1/2c,

since for any integers a > b ≥ 1, we have 2a > 2b + 1.
To show that t > 2 len(n)bt1/2c, it suffices to show that t > 2 len(n)t1/2, i.e.,

t > 4 len(n)2. But observe that by definition, t is the order of the subgroup of
Z∗r generated by [n mod r] and [p mod r], which is at least as large as the order
of [n mod r] in Z∗r , and by assumption (A4), this is larger than 4 len(n)2.

Finally, directly by assumption (A5), we have ` > 2 len(n)bt1/2c. 2

That concludes the proof of Theorem 22.5.

Exercise 22.12 Show that if Conjecture 5.48 is true, then the value of r dis-
covered in step (2) of algorithm AKS satisfies r = O(len(n)2). 2

22.3 Notes

The algorithm presented here is due to Agrawal, Kayal, and Saxena. The paper
is currently available only on the Internet [5]. The analysis in the original version
of the paper made use of a deep number-theoretic result of Fouvry [30], but it
was subsequently noticed that the algorithm can be fully analyzed using just
elementary arguments (as we have done here).

If fast algorithms for integer and polynomial arithmetic are used, then using
the analysis presented here, it is easy to see that the algorithm runs in time
O (̃len(n)10.5) — see §21.7 for a discussion of the “O ”̃ notation. More generally,
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it is easy to see that the algorithm runs in time O (̃r1.5 len(n)3), where r is the
value determined in step (2) of the algorithm. In our analysis of the algorithm,
we were able to obtain the bound r = O(len(n)5), leading to the running-time
bound O (̃len(n)10.5). Using Fouvry’s result, one can show that r = O(len(n)3),
leading to a running-time bound of O (̃len(n)7.5). Moreover, if Conjecture 5.48
on the density of Sophie Germain primes is true, then one could show that
r = O(len(n)2) (see Exercise 22.12), which would lead to a running-time bound
of O (̃len(n)6).

Prior to this algorithm, the fastest deterministic, rigorously proved primality
test was one introduced by Adleman, Pomerance, and Rumely [4], called the
Jacobi Sum Test, which runs in time

O(len(n)c len(len(len(n))))

for some constant c. Note that for numbers n with less than 2256 bits, the value
of len(len(len(n))) is as most 8, and so this algorithm runs in time O(len(n)8c)
for any n that one could ever actually write down.

We also mention the earlier work of Adleman and Huang [3], who gave a
probabilistic algorithm whose output is always correct, and which runs in ex-
pected polynomial time (i.e., a Las Vegas algorithm, in the parlance of §7.2).



Appendix A

Some Useful Facts

1. Some handy inequalities. The following inequalities involving exponentials
and logarithms are very handy.

(1) For all real x, we have
1 + x ≤ ex,

or, taking logarithms,
log(1 + x) ≤ x.

(2) The inequality above can be generalized by considering more terms
of the Taylor series expansion of ex. For integer k ≥ 0 and real x,
define

Ek(x) :=
k−1∑

i=0

xi

i!
.

That is, Ek(x) is the sum of the first k terms of the Taylor series
expansion of ex. Then for all real x ≥ 0 and integer k ≥ 0, we have

ex ≥ Ek(x) and E2k(−x) ≤ e−x ≤ E2k+1(−x).

(3) By considering the Taylor series expansion for log(1 − x), one can
easily derive the following bound: for all real x with 0 ≤ x ≤ 1/2, we
have

1− x ≥ e−x−x
2 ≥ e−2x,

or, taking logarithms,

log(1− x) ≥ −x− x2 ≥ −2x.
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2. Estimating sums by integrals. Using elementary calculus, it is easy to
estimate sums over a monotone sequences in terms of a definite integral,
by interpreting the integral as the area under a curve. Let f be a real-
valued function that is continuous and monotone on the closed interval
[a, b], where a and b are integers. Then we have

min(f(a), f(b)) ≤
b∑

i=a

f(i)−
∫ b

a
f(x)dx ≤ max(f(a), f(b)).

3. Integrating piece-wise continuous functions. In discussing the Riemann
integral

∫ b
a f(x)dx, many introductory calculus texts only discuss in any

detail the case where the integrand f is continuous on the closed inter-
val [a, b], in which case the integral is always well defined. However,
the Riemann integral is well defined for much broader classes of func-
tions. For our purposes in this text, it is convenient and sufficient to
work with integrands that are piece-wise continuous on [a, b], that is,
there exist real numbers x0, x1, . . . , xk and functions f1, . . . , fk, such that
a = x0 ≤ x1 ≤ · · · ≤ xk = b, and for 1 ≤ i ≤ k, the function fi is continu-
ous on the closed interval [xi−1, xi], and agrees with f on the open interval
(xi−1, xi). In this case, f is integrable on [a, b], and indeed

∫ b

a
f(x)dx =

k∑

i=1

∫ xi

xi−1

fi(x)dx.

It is not hard to prove this equality, using the basic definition of the Rie-
mann integral; however, for our purposes, we can also just take the value
of the expression on the right-hand side as the definition of the integral on
the left-hand side.

We also say that f is piece-wise continuous on [a,∞) if for all b ≥ a, f is
piece-wise continuous on [a, b]. In this case, we may define the improper

integral
∫∞
a f(x)dx as the limit, as b → ∞, of

∫ b
a f(x)dx, provided the

limit exists.

4. Infinite series. It is a basic fact from calculus that if an infinite series
∑∞

i=1 xi of non-negative terms converges to a value y, than any infinite
series whose terms are a rearrangement of the xi’s converges to the same
value y.

An infinite series
∑∞

i=1 xi, where now some of the xi’s may be negative,
is called absolutely convergent if the series

∑∞
i=1 |xi| is convergent. It
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is a basic fact from calculus that if an infinite series
∑∞

i=1 xi is absolutely
convergent, then not only does the series itself converge to some value y,
but any infinite series whose terms are a rearrangement of the xi’s also
converges to the same value y.

5. Double infinite series. The topic of double infinite series may not be
discussed in a typical introductory calculus course; we summarize here the
basic facts that we need. We state these facts without proof, but all of
them are fairly straightforward applications of the definitions.

Suppose that xij , i, j = 1, 2, . . . are non-negative real numbers. The ith
row gives a series

∑

j xij , and if each of these converges, one can form the
double infinite series

∑

i

∑

j xij . Similarly, one may for the double infinite
series

∑

j

∑

i xij One may also arrange the terms xij in a single infinite
series

∑

ij xij , using some enumeration of the set of pairs (i, j). Then these
three series either all diverge or all converge to the same value.

If we drop the requirement that the xij ’s are non-negative, but instead
require that the single infinite series

∑

ij xij is absolutely convergent, then
these three series all converge to the same value.
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