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for constructing fast algorithms. Related to 
the theory of modular arithmetic is the theory 
of finite fields. The study of this area has 
been accelerated by its application to the 
theory of error-correcting codes. By relating 
each digit of a given code to an element in a 
finite field, it was found possible to derive 
an algebraic equation whose roots represented 
the digits which were in error. The decoding 
problem was then reduced to forming this 
equation and finding its roots. Newer methods 

ABSTRACT still rely upon performing arithmetic in 

The paradigm of algorithm analysis has achieved either finite fields or in the ring of integers 

major pre-eminence in the field of symbolic modulo m. 

and algebraic manipulation in the last few 
years. A major factor in its success has been 
the use of modular arithmetic. Application of 
this technique has proved effective in re- 
ducing computing times for algorithms cover- 
ing a wide variety of symbolic mathematical 
problems. This paper is intended to review 
the basic theory underlying modular arithmetic. 
In addition, attention will be paid to certain 
practical problems which arise in the con- 
struction of a modular arithmetic system. 

A second area of importance in symbol mani- 
pulation is the theory of finite fields. A 
recent algorithm for polynomial factorization 
over a finite field has led to faster algor- 
ithms for factorization over the field of 
rationals. Moreover, the work in modular 
arithmetic often consists of manipulating 
elements in a finite field. Hence, this paper 
will outline some of the major theorems for 
finite fields, hoping to provide a basis from 
which an easier grasp of these new algorithms 
can be made. 
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Introduction 

The use of modular arithmetic in the area of 
mathematical symbol manipulation has gained 
increasing importance in the last few years. 
The major reason is because modular arithmetic 
allows us to perform exact multiplication 
faster than any of the conventional algorithms. 
Therefore, for complex operations such as 
polynomial greatest common divisor calcu- 
lation or exact solution of linear systems 
of equations, where many multiplications of 
large integers are required, the use of 
modular arithmetic can produce substantial 
savings in computing times. A second use of 
modular arithmetic has been in the area of 
polynomial factorization over the field of 
rationals. However, the advantage gained here 
is not the ability for fast multiplication. 
Rather we can regard the solution of problems 
using modular arithmetic as a mapping from 
one domain (the integers) to another (the 
integers modulo p) . The solution of the prob- 
lem in this new domain is in some sense 

"easier" to obtain than in the former. Then, 
several of these solutions may be used to cal- 
culate the desired solution in the original 
domain. Hence, an effort to develop efficient 
methods for solution of problems over the 
integers has lead to a search for efficient 
solutions in the domain of integers modulo p. 
The use of modular arithmetic has both in- 
creased the efficiency of many symbolic oper- 
ations and has given us a new point of view 

In Section 2 we will develop the theory of 
modular arithmetic and show how it can be used 
to effect a decrease in computing time for 
many different algorithms. In Section 3, the 
theoretical framework of finite field theory 
will be presented. Either one of these sections 
may be read independently of the other. In 
Section 4, a brief outline of some of the uses 
of these techniques will be covered. An exten- 
sive bibliography of recent work is included 
at the end of the paper. 

2. Modular Arithmetic 

In the Introduction it was stated that modular 
arithmetic gave us a new efficient way for 
performing arithmetic operations on integers. 
In this section we will discuss three questions 
pertaining to the use of this approach. First, 
what is the representation for integers and 
how do we transform an integer into this re- 
presentation? Second, how are arithmetic oper- 
ations performed on the integers while they 
are in this modular representation? Finally, 
how can we transform back from this modular 
form to the conventional integer representation? 

We define the binary operator mod as follows: 

a mod b=a-b ~/~ , if b~0;a mod 0=a. (i) 

From the definition it follows that 

0~a/b-La/~ =(a mod b)/b<l, if b~0; 

therefore,if b>0 then 0<a mod b<b and if b<0 
then 0>a mod b>b. Since a-(a mod b) is an 
integral multiple of b, we may regard a mod b 
as the remainder when a is divided by b. 
Though the definition of mod holds when a 
and b are arbitrary real numbers, from now on 
we will restrict their values to be integers. 
We say that two non-zero integers a and b 
are relatively prime if they have no common 
factor other than unity. Equivalently we say 
that the greatest common divisor of a and b 
is i, i,e. gcd(a,b)=l. 

The idea of a modular representation for in- 

tegers is to choose several moduli, pl,...,pr 

which satisfy certain conditions and then to 
work indirectly with "residues", namely 

ai=a mod Pi,l<i<r. Thus, the integer a is 

represented by the r-tuple (al, ...,ar) . It is 
simple to compute (a I .... ,a r) from an integer 

a by means of the division command on any 
computer. The computing time for transforming 
into modular representation is clearly pro- 
portional to r. 

No~ how can we perform arithmetic on integers 
in this form? It is helpful to introduce some 
notation from number theory, the notion of 
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congruence. If the difference of two integers 
a and b is divisible by p, we shall say that 
a is con@ruent to b modulo p and use the 
notation 

aHb(mod p) 

There are some elementary properties of 
congruences. 

Theorem 2.1. If aHb and cHd, then 
a±cEb±d and acEbd(mod p) . 

Theorem 2.2. If ac~bd, aEb and gcd(a,p)=l, 
then cEd(mod p) . 

Theorem 2.3. For p~0,c~0 a~b(mod p) if and 
only if ac~bc(mod pc). 

Theorem 2.4. If p~0,c~0 and the gcd(p',c)=l, 
then aEb(mod pc) if and only if aHb(mod p) 
and a~b(mod c) . 

Proofs of these theorems can be found in any 
elementary book on number theory such as [i0] . 

Theorem 2.1 tells us that we can perform 
addition, subtraction, and multiplication 
modulo p. Theorem 2.2 says that division is 
possible when the divisor is relatively prime 
to the modulus. The operations of addition, 
subtraction, multiplication and division 
which result from these two theorems are 
collectively called modular arithmetic. 

If a is represented by the r-tuple (al,...ar) 

where a.=l a mod Pi and if b is represented as 

(bl,... ,br) where bi~b mod Pi and then we have 

the following: 

(a I, .... ar)±ibl,...,br)=((al±bl)modPl,..., 

(ar±b )mod pr ) r 

(al,...,ar) • (bl, .... br)=(alb I mod Pl ..... 

b mod pr ) 
ar r 

We would like to perform the operations 

±b ) mod Pi~aibi mod Pi as fast as possible. (ai i 
We can avoid entirely the division operation 
for addition and subtraction if we restrict 
the Pi to be single precision positive 

numbers on the computer with which we are 
working. To avoid overflow we require Pi<2~ 

where y is the largest integer representable 
by one word of the computer. Then the follow- 
ing formulas apply: 

l ai+b i if ai+bi<Pi ; 

(a +b.)mod pi = (2) 
i 1 ~ai+bi-Pi if ai+bi>Pi ; 

l 
a.-b, if a.-b.>0 ; 
l l l l-- 

(a.-b )mod p - (3) 

1 i i- ai_bi+Pi if ai-bi<0 . 

After we have performed the desired sequence 
of arithmetic operations, we are left with 
the r-tuple (c .... ,c ) . We now need some way 
of transformlng back ~rom modular form with 
the assurance that the resulting integer is 
the correct one. The ability to do this is 
guaranteed by the following theorem which 
was first proven in full generality by L. 
Euler in 1734. 
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Theorem 2.5. (Chinese Remainder Theorem): 
Let pl,...,pr be positive integers which are 

pairwise relatively prime. Let r and 

p= ~I Pi 
i=l 

let b, al,...,a r be integers. Then, there is 

exactly one integer "a" which satisfies the 
conditions 

b~a<b+p,and aHai(mod pi ) for l<i<r. (4) 

Proof (due to H L Garner [13]) : If aHx(mod pi ) 

for l<i<r, then a-x is a multiple of Pi for 

all i. Since the Pi are pairwise relatively 

prime, it follows that a-x is a multiple of p. 
Thus, there can be only one solution which 
satisfies (4). We can construct this solution 

in the following way: 

Let s.. be defined such that 
13 

- pj -- _ sijPi=l mod for l<i<j<r. 

Then,let 

tl÷a I mod Pl ' 

t2~(a2-tl) s12 mod P2 (5) 

t3+((a3-tl) s13-t2)s23 mod P3 

tr+ ( . ((a -tl) s . )s r m°d Pr "" ~ Slr-t2 ) 2r-" "tr-i (r-l) 

Then 

a=trPr_l- --Pl+..-+t3P2Pl+t2Pl+tl 

satisfies the conditions 0~a<p, a{aim°d Pi ' 

l<i<r. If ~,p) is not the desired range, any 
multiple of p can be added or subtracted 
after conversion is completed. 

Thus, the Chinese Remainder Theorem guarantees 
that we can use a modular representation for 
numbers in any consecutive interval of 

r 
P= ~ Pi integers. That is, there is a unique 

i=l 

result and it can be obtained using the pro- 
cedure which is outlined in the proof of 

Theorem 2.5. 

There are several aspects of this theorem 
which should be especially studied if a com- 
puter program is to be written. A total of 

(~) constants, sij must first be calculated. 

These are easily obtained by using Euclid's 
algorithm which determines x,y such that 

xPi+ypj=gcd(Pi,Pj)=l, see [18] or [5]. 

Remember that the moduli are pairwise relative- 
ly prime. The t. , l<i<r may be found accord- 

1 
ing to (5). Note that all arithmetic is mod Pi 

and this capability is already contained with- 
in the system. 

In actual practice Theorem 5 is often imple- 
mented for only two moduli. Examples of this 



can be found in the systems of Brown, [4,p. 
28] and Collins [8]. The algorithm then pro- 

ceeds as follows: we are given pl,P2 where 

Pl is generally much larger than P2 and al,a 2 

such that IalI<Pl/2,0!a2<P2." 

i) Find s12 such that sl2Pl~l mod P2 

2) let tl+a I mod Pl 

t2÷(a2-tl)Sl2 mod P2 

a+tl+t2P 1 

Thus, a satisfies 0~a<plP2 and a~a i mod Pi 

for i<i<2. Instead of Pl being a single 

modulus it is generally equal to the product 
of the previously used moduli. Also, a I is 

the current tentative solution. Then a is the 
new tentative solution and Pl is updated by 

setting pl÷plP2 . The correct solution is 

obtained when either the proper number of 
moduli have been processed or when the 
"tentative" solution satisfies some pre- 
arranged condition. The computing time for 
the above version of Garner's method is pro- 

portional to lOgloPl. 

In order to process as few moduli as possible 
we would like to choose the Pi to be very 

large. In order to avoid the division opera- 
tion for addition and subtraction, the moduli 
should be single precision. Theorem 5 requires 
that the moduli be pairwise relatively prime. 
Therefore, the moduli are easily chosen to be 
a set of consecutive, single precision primes. 
Given a computer whose word length is k bits, 
there will be a minimum of 2k-i/k=g primes in 

the interval [2 k,2 k+l] . Since k ranges between 

30-60, g~107. Algorithms to compute these 
primes can be found in either [18,p.143] or 
[8,p.4]. 

A practical and important issue in the use of 
a modular arithmetic system is the determin- 
ation of r, the number of moduli, that must 
be processed until the correct answer can be 
obtained. Unfortunately, it is difficult to 
test whether or not overflow has occurred as 
the result of an addition, subtraction, or 
multiplication when using modular represent- 
ation. In [19,p.257] , Knuth shows that any 
method which tests for overflow must rely on 
all the residues at once. Thus, the computing 
time for this check would nullify the advant- 
ages gained from the modular representation. 

One technique for deciding on the number of 
moduli is to estimate from the inputs a 
bound for the maximum size of any resulting 
integer. For example, in [6,pp.215-216] , 
Collins uses Hadamard's theorem to derive a 
bound for the coefficients of the polynomial 
which is the greatest common divisor of the 
two given polynomials. He uses this bound to 
determine the number of moduli (in this case 
single precision odd primes, called p.) which 
must be processed before he can applylthe 
Chinese Remainder Theorem. The calculation of 
this bound requires first the summing of the 

magnitude of the coefficients of the input 
polynomials, say d and e. Then the least 
integers r,s are computed such that 

2r~d,2S>e . Then, if the degrees of the 
polynomials are m and n, compute t=ms+nr 

and u=[t/h]+l where h satisfies 2hAp i and 2 h 

is usually about half the largest integer 
which can be stored in one computer word. 
After u primes have been successfully pro- 

caused, the correct solution is guaranteed. 

Another technique for determining when the 
computations are complete is to constantly 
maintain a "tentative" solution. After each 
new modulus is processed, a check can be made 
to see if the correct solution has been compu- 
ted. Since this test may well require multi- 
precision calculations, its total computing 
time must be small. Suppose this technique is 
used in a modular arithmetic based algorithm 
for determing C(x)=gcd(A(x) ,B(x)) . For an 
actual example see [4,p.312] . Then, after each 
new m~dulus is processed the tentative solu- 
tion C(x) is obtained. 

If ~(x) IA(x) and ~(x) IB(x) then ~(x)=C(x) . 
This approach can be especially efficient if 
the bound for the resulting integers is much 
larger than their true size. In this case we 
are processing the minimum number of moduli 
which are required at the expense of a test 
after each modulus is used. 

Of course, some problems do not allow for 
simple efficient tests for a correct solution. 
A case in point is the exact solution of 
linear systems of equations. A matrix multi- 
plication and a vector compare is necessary to 
see if no more moduli need be processed. The 
computing time here is prohibitive and rather 
an a priori bound for the number of moduli is 
calculated. Finally, some problems are not 
amenable to a test at all. An example of this 
would be determinant calculation. 

Let us now consider a more formal approach to 
modular arithmetic. Let I stand for the integral 
domain of the integers and consider the mapping 
h :I+I/(m) , from I onto the ring of integers 
m 

mod m. If m=p, a prime then the elements of 
I/(p) , namely ~0,i,2 .... ,p-l} form a finite 
field usually called the Galois field with p 
elements and designated as GF(p) . This mapping 
h constitutes a homomorphism because it is 
a~ onto mapping and if a,bEI it follows that 

hp(a) "hp(b)=hp(a-b) ,hp(a)+hp(b)=hp(a+b) . We can 

extend this modular homomor~hism to polynomial 
domains in the natural way. If A(Xl,...,x r) is 

an r-variable polynomial over I, let 

h* : I [x I +GF(p) .... x r] where p ..... x r ] [x I , 

h* (xi)=x i and h* (c)=hp(C) where c is a numerical 
P P 

coefficient of A. 

Now, a modular arithmetic system for symbol 
manipulation must first provide a reasonable 
number of single precision primes, say 50-100. 
Then a subprogram is needed which applies h 

P 
to any integer or more generally h* to any 

P 
multivariable polynomial with integer coeffic- 
ients. If A(Xl,...,Xr) has n i as the maximum 
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degree of x. in A for l<i<r and if N bounds 
l 

in magnitude the numerical coefficients of A, 
then the computing time to obtain 

h~(A(Xl,...,Xr)) is proportional to 

nln2...nr(log N) . The inverse operation con- 

sists of applying Garner's version of the 
Chinese Remainder Theorem. Here the inputs are 

two polynomials A(Xl,...,Xr) over GF(p) and 

B(Xl,...,x r) over I and two integers Q and p 

where Q is relatively prime to p. The output 
is the unique polynomial C(Xl,...,Xr) over I 

which satisfies C~B(modQ) , C£A(mod p) and the 
coefficients of C are less than p-Q/2 in 
magnitude. If both A and B have maximum degree 
n i in x. ,l then the computing time, using 

Garner's version is proportional to 

nln2"''nr (log Q) . 

Another homomorphism which has proven useful 
in conjunction with the modular homomorphism 
is the evaluation homomorphism, E b. When 

applied to some polynomial A(Xl'''''Xr) it 

produces C ( X l , . . . , X r _ l ) = A ( X l , . . . , X r _ l , b )  . I n  

order to minimize the computing time for 
algorithms with multivariable polynomial 
arguments, the modular homomorphism is applied 
first. Then, the evaluation homomorphisms are 
applied to polynomials with coefficients in 
GF(p) . If n. is the maximum degree of x. in A 

l l 
for l<i<r, the computing time to form 

C(Xl,...,Xr_ I) is proportional to nln2"''nr" 

The iverse operation requires an interpolation 
algorithm. As with the Chinese Remainder 
Theorem an iterative algorithm can be used. 
The inputs are three polynomials 

B(Xr)= ~ (Xr-b i) where the b. are distinct 
0<i<m 1 

elements of GF(p) , A(Xl,...,Xr) over GF(p) 

with degree m or less in x and C r (Xl'''" Xr-l) 

over GF(p) . The output is the unique poly- 

nomial D(Xl,... ,Xr) of degree m+l or less in 

x defined as 
r 

D(x I , .... Xr)= 

{C(x I ..... Xr_l)-A(x I ..... Xr_l) } -B(Xr)/B(b) , 

+A(Xl, .... x ) r 

Thus we see that D(Xl,...,Xr_l,bi)= 

A(Xl,...,Xr_l,b i) for 0<i<m and D(Xl,...,Xr_l, 

b)=C(Xl,...,Xr_l) . The computing time can 

clearly be made proportional to nln2...nr_l'm 

where n is the degree of x. in A and m is 
1 l 

defined above. Precise algorithms for evalu- 
ation homomorphism and interpolation can be 
found in [8,p.17] . 

Both Brown in [4] and Collins in [7] use 
modular and evaluation homomorphisms to pro- 
duce efficient algorithms for multivariable 
gcd and resultant calculation, respectively. 
The modular homomorphism is applied first and 
a solution over GF(Pi) is obtained using 

191 

evaluation homomorphisms. These are applied 
and reduce the single problem to several with 
inputs of univariate polynomials and coeffi- 
cients over GF(Pi) . The solutions are inter- 

polated to form a single multivariable solu- 
tion over GF(p.) . After each p. has been pro- 
cessed a tenta~ive solutlon ~s constructed via 
the iterative version of the Chinese Remainder 
Theorem. After a sufficient number of primes 
have been done the correct answer has been 
produced. 

Besides the increased efficiency of this 
approach an important auxiliary benefit is 
derived. When this schema is applied to gcd 
or resultant calculation/ the natural way of 
calculating a polynomial remainder sequence 
can be used over GF(p) . Also, in linear 
systems algorithms with multivariable poly- 
nomial elements when the system is finally 
reduced to one with elements in GF(p) , the 
classical Gaussian elimination can be used to 
solve the system. Thus, the previously used 
methods (e.g. reduced p.r.s, algorithm for 
gcd calculation) which were the most efficient 
known, have been outmoded. The use of modular 
and evaluation homomorphisms has returned us 
to our classical methods and provides a much 
more esthetic way of efficiently solving these 
problems. 

3. Finite Fields 

In the previous section we have discussed the 
application of modular arithmetic to symbol 
manipulation. In general, this technique is 
used by mapping the problem from the domain 
of integers to the domain GF(p) , the finite 
field with a prime number of elements p. The 
algorithm was then carried out using arithmetic 
in GF(p) or GF(p) Ix] . It is useful then to 
study and understand more fully some of the 
properties of arithmetic in these fields. 

The theory of finite fields has also proved 
very useful in the area of coding theory, see 
[i] . In connection with this work, E R 
Berlekamp in 1967 discovered a fast factori- 
zation algorithm for polynomials with coeffi- 
cients in a finite field. It turns out that 
one can obtain the factors of an nth degree 
polynomial over GF(p) faster than one can find 
the factors of an arbitrary n-bit binary 
integer. This algorithm for factoring modulo 
p while useful in itself, has aided in con- 
structing new algorithms for factoring poly- 
nomials with integer coefficients. 

Therefore, the application of finite field 
theory has provided both new algorithms 
(factorization) and a new way of speeding up 
our old algorithms. In this section we will 
develop the theory of finite fields and show 
how certain properties make them especially 
useful in mathematical symbol manipulation. 

Definition A field F is a set of elements • 
including 0 and 1 for which the operations of 
addition and multiplication are closed, 
associative, and commutative. Multiplication 
distributes over addition such that a* (b+c)= 
ab+ac where a,b,c,~F. For every non-zero 
element a £ F there is a unique reciprocal, 
i/a such that a*(i/a)=l. For every a £ F there 
is a unique negative, -a, such that a+(-a)=0, 



0+a=a=l*a and 0.a=0. 

The order of a field is the number of elements 

in the field. The rational, real and complex 

numbers are all examples of infinite fields. 

If p is a prime, then the integers mod p form 

a finite field of order p, designated as GF(p) . 

If a field F contains "a", then it must also 

contain -2 -i 2 
• . .a ,a ,l,a,a , .... If these 

powers of "a" are not all distinct, then for 

some m,n we have am=a n or am-n=l. The least 

positive integer n for which an=l is called 

the order of a. If the order of "a" is n, 

2 n-1 
then l,a,a ,...a are all distinct. In a 

finite field,each element can have only a 

finite number of distinct powers. Hence, 

every non-zero element in a finite field has 

a finite order• 

The following three theorems establish some 

elementary facts about the orders of elements 

in a field. Proofs of these theorems can be 

found in [i,p.89]. 

Theorem 3.1. If a has order n, then am=l if 

and only if m is a multiple of n. 

Theorem 3.2. If a has order m, b has order n 

and gcd(m,n)=l then ab has order mn. 

Theorem 3.3. If a has order n, then the order 

of a K is n/gcd(n,k) . 

Definition If a is an element of a finite 

field F and "a" has order n, then "a" is said 

to be a primitive nth root of unity. If the 

order of F is q, then "a" is said to be a 

primitive field element if the order of "a" 

is q-l. 

In [i] , Berlekamp establishes the existence 

of a primitive field element for any finite 

field of order q. If "a" is this element, then 

2 , a q - 2  
l,a,a , . . . constitutes all non-zero 

elements in the field• An immediate conse- 

quence of this result is that every element 

in the field satisfies the equation xq-x=0. 

If "a" is the primitive field element,then 

q-2 
xq-l-i = [[ (x-ai) = rl (x-b) 

i=0 bE GF(q) 
b#0 

n 
Since 16 F, it follows that ( Z i) 6 F for all 

i=l 

n. If these elements are not all distinct, 

then there exists a least p such that p 
i=0 

i=l 

in the field. This number p is called the 

characteristic of the field• If n is non- 
E 1 

i=l 

zero for every n, then we say that the 
characteristic is ao. In a field of p-i 

characteristic p, the elements i,i+i,..., Z 1 
i=l 

are called the field inte@ers. 

Theorem 3.4. The characteristic of any field 

is either oo or a prime number p. 
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Proof If mn n 
1 = 0 and ~ 1 ~ 0, then we can 

i=l i=l 

multiply by 

n m mn 

i/ Z 1 and obtain ~ i=0. Hence, if ~ i=0, 

i=l i=l i=l 

m n 

then either ~ i=0 or 
i=l i = l  1=0" 

If the field has characteristic ~, then there 

are an infinite number of distinct elements 
and the order of the field is ~. If the field 

has characteristic p, its order may be finite 

or infinite. For example, the integers mod p 

form a finite field of characteristic p while 

the set of rational functions A(x)/B(x) with 

coefficients from the integers mod p form an 

infinite field of characteristic p. 

Theorem 3.5. In a field F of characteristic 

p, the field integers form a subfield of 

order p isomorphic to the field of integers 

mod p. 

Proof The field integers are closed under the 

four arithmetic operations• For any integer 

k<p, we can find integers r,s such that 

rk+sp=l, [18,p. 302]. Therefore, in the field 

r k r 

( Z i) ( Z i)=i so that Z 1 is the reciprocal 

i=l i=l i=l 

k 
of Z i. This subfield is usually called 

i=l 

the prime subfield of F. 

Theorem 3.6. In any field of characteric p, 

xP-aP=(x-a) p 

Proof Applying the binomial theorem to (x-a) p, 

we get (x-a) p= ~ (~)xi(-a) p-I But for 0<i<p 

i=0 

(P)=(p(p-l) ... (p-i+l))/il~0(mod p) since the 
1 

numerator contains a factor of p which cannot 

be removed. Hence only xP-a p remain• 

In fact, a more general theorem can be proven. 

Theorem 3.7. If al,...a~F,F a field of 

characteristic p, then 

k n k n 
( ~ a.) p = ~ aP for all n. 
i=l 1 i=l l 

Now suppose that A(x) , B(x) are any poly- 

nomials with coefficients in GF(p) . Then 

(A(x)+B(x))P=A(x)P+(~)A(x)P-iB(x)+...+ 

(pPl)A(x) B(x)P-i+B(x)P=A(x)P+B (x) p 

since (~) is divisible by p for l~i~p-l. 

Now there is a definite relationship between 

the characteristic p and the order q of any 

finite field. 

Theorem 3.8. The order of a finite field is a 

power of its characteristic. 



Proof [21, p.ll6] If we consider the prime 
subfield P of any field F of order q and 
characteristic p, then there is in F a maxi- 
mal set of linearly independent elements 
al,... ,a n with respect to P. Every element in 

F is of the form Clal+c2a2+...+Cnan (6) 

with uniquely determined coefficients ci£P. 

Since for every ci, p values are possible by 
n 

Theorem 3. 5, thus there are exactly p ex- 
pressions for (6). Since these constitute all 

n 
elements in F, thus q=p 

We are now able to establish the following 
theorem concerning finite fields and ir- 
reducible polynomials. Proofs can be found 
in [i, p.103] . 

Theorem 3.9. Every element in a field of 
order q satisfies the equation 

n 
x q - x = 0 for every n. 

Theorem 3.10. Every irreducible polynomial 
of degree d over a field of order q divides 

k 
x q - x if k is a multiple of d. 

k 
Theorem 3.11. In a field of order q, x q -x 
factors into the product of all monic ir- 
reducible polynomials whose degrees divide k. 

k 
Therefore, in I mod p, x p -x factors into the 
product of all monic irreducible polynomials 
whose degrees divide k. 

k 
k xp k In a field of order p , -x factors into p 

linear factors. Since I mod p is a subfield 
k 

of the order p we can equate the factorization 
and obtain: 

Theorem 3.12. If f(x) is an irreducible poly- 
nomial of degree m over I mod p and mlk, 

k 
then a field of order p must contain m roots 

of f (x) . 

Let f(x) be any irreducible polynomial of 
degree k over the integers mod p. Then any 
finite field of order pk must contain k roots 
of f(x) . If a is one root, then every element 
of the field is expressible as a polynomial 
in a degree less than k. Thus, if p is any 
prime and k is any integer, then there exists 
a unique finite field of order pk. 

These properties of finite fields play a key 
part in the new factorization algorithm of 
Berlekamp, see [19, p.381] and [2]. Also, they 
underlie the general techniques of modular 
arithmetic which have been discussed in 
Section 2. In some of the papers given at this 
conference, namely [4] , [7] , and [2] , the 
foregoing theory and methods are extensively 

used. 

4. Applications 

The idea of modular arithmetic and congruences 
goes back to classical number theory. An ex- 
position of these concepts can be found in 
many books, for example, see [i0]. After the 
advent of computers, modular arithmetic was 
reinvestigated as an approach for performing 
fast arithmetic operations by the central 

processing unit of a digital computer. For a 
complete discussion of the problem and results 
in this area see [22]. 

In the past decade many papers have appeared 
which describe mathematical software packages 
for certain applications which use modular 
arithmetic. An early such paper was by H. 
Takahasi and Y. Ishibashi, [20], in which 
applications such as matrix inversion, deter- 
minant calculation and interpolation are 
discussed. More recent work on the exact solu- 
tion of linear systems has been done by Borosh 
and Fraenkel, [3], Howell and Gregory in [16] 
and [17] and by Horowitz in [14] and [9]. The 
problem of polynomial greatest common divisor 
calculations using modular arithmetic has been 
treated by W. S. Brown in [4], G.Collins in [6] 
and D.Knuth in [19, pp.393-395] . A modular 
approach for the Extended Euclidean algorithm 
for univariate polynomials is given by Horowitz 
in [15]. A modular algorithm for computing 
multivariate resultants is given by G.Collins 

in [7]. 

The factorization of polynomials with coeffi- 
cients either in GF(p) or in I can be found in 
[19, pp.381-398] . In [i] an excellent review of 
Berlekamp's method for polynomial factorization 
any many examples can be found. A new improved 

version is discussed by him in [2]. 
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