
MODULAR ARITHMETIC AND FINITE FIELD THEORY:

A TUTORIAL

E. Horowitz

Department of Computer Science
Cornell University
Ithaca, N.Y. 14850

for constructing fast algorithms. Related to
the theory of modular arithmetic is the theory
of finite fields. The study of this area has
been accelerated by its application to the
theory of error-correcting codes. By relating
each digit of a given code to an element in a
finite field, it was found possible to derive
an algebraic equation whose roots represented
the digits which were in error. The decoding
problem was then reduced to forming this
equation and finding its roots. Newer methods

ABSTRACT still rely upon performing arithmetic in

The paradigm of algorithm analysis has achieved either finite fields or in the ring of integers

major pre-eminence in the field of symbolic modulo m.

and algebraic manipulation in the last few
years. A major factor in its success has been
the use of modular arithmetic. Application of
this technique has proved effective in re-
ducing computing times for algorithms cover-
ing a wide variety of symbolic mathematical
problems. This paper is intended to review
the basic theory underlying modular arithmetic.
In addition, attention will be paid to certain
practical problems which arise in the con-
struction of a modular arithmetic system.

A second area of importance in symbol mani-
pulation is the theory of finite fields. A
recent algorithm for polynomial factorization
over a finite field has led to faster algor-
ithms for factorization over the field of
rationals. Moreover, the work in modular
arithmetic often consists of manipulating
elements in a finite field. Hence, this paper
will outline some of the major theorems for
finite fields, hoping to provide a basis from
which an easier grasp of these new algorithms
can be made.

KEYWORDS: Modular arithmetic, finite fields,
exact multiplication, symbol manipulation;

CR CATEGORIES: 3.15, 3.64, 5.11.

Introduction

The use of modular arithmetic in the area of
mathematical symbol manipulation has gained
increasing importance in the last few years.
The major reason is because modular arithmetic
allows us to perform exact multiplication
faster than any of the conventional algorithms.
Therefore, for complex operations such as
polynomial greatest common divisor calcu-
lation or exact solution of linear systems
of equations, where many multiplications of
large integers are required, the use of
modular arithmetic can produce substantial
savings in computing times. A second use of
modular arithmetic has been in the area of
polynomial factorization over the field of
rationals. However, the advantage gained here
is not the ability for fast multiplication.
Rather we can regard the solution of problems
using modular arithmetic as a mapping from
one domain (the integers) to another (the
integers modulo p) . The solution of the prob-
lem in this new domain is in some sense

"easier" to obtain than in the former. Then,
several of these solutions may be used to cal-
culate the desired solution in the original
domain. Hence, an effort to develop efficient
methods for solution of problems over the
integers has lead to a search for efficient
solutions in the domain of integers modulo p.
The use of modular arithmetic has both in-
creased the efficiency of many symbolic oper-
ations and has given us a new point of view

In Section 2 we will develop the theory of
modular arithmetic and show how it can be used
to effect a decrease in computing time for
many different algorithms. In Section 3, the
theoretical framework of finite field theory
will be presented. Either one of these sections
may be read independently of the other. In
Section 4, a brief outline of some of the uses
of these techniques will be covered. An exten-
sive bibliography of recent work is included
at the end of the paper.

2. Modular Arithmetic

In the Introduction it was stated that modular
arithmetic gave us a new efficient way for
performing arithmetic operations on integers.
In this section we will discuss three questions
pertaining to the use of this approach. First,
what is the representation for integers and
how do we transform an integer into this re-
presentation? Second, how are arithmetic oper-
ations performed on the integers while they
are in this modular representation? Finally,
how can we transform back from this modular
form to the conventional integer representation?

We define the binary operator mod as follows:

a mod b=a-b ~/~ , if b~0;a mod 0=a. (i)

From the definition it follows that

0~a/b-La/~ =(a mod b)/b<l, if b~0;

therefore,if b>0 then 0<a mod b<b and if b<0
then 0>a mod b>b. Since a-(a mod b) is an
integral multiple of b, we may regard a mod b
as the remainder when a is divided by b.
Though the definition of mod holds when a
and b are arbitrary real numbers, from now on
we will restrict their values to be integers.
We say that two non-zero integers a and b
are relatively prime if they have no common
factor other than unity. Equivalently we say
that the greatest common divisor of a and b
is i, i,e. gcd(a,b)=l.

The idea of a modular representation for in-

tegers is to choose several moduli, pl,...,pr

which satisfy certain conditions and then to
work indirectly with "residues", namely

ai=a mod Pi,l<i<r. Thus, the integer a is

represented by the r-tuple (al, ...,ar) . It is
simple to compute (a I ,a r) from an integer

a by means of the division command on any
computer. The computing time for transforming
into modular representation is clearly pro-
portional to r.

No~ how can we perform arithmetic on integers
in this form? It is helpful to introduce some
notation from number theory, the notion of

188

congruence. If the difference of two integers
a and b is divisible by p, we shall say that
a is con@ruent to b modulo p and use the
notation

aHb(mod p)

There are some elementary properties of
congruences.

Theorem 2.1. If aHb and cHd, then
a±cEb±d and acEbd(mod p) .

Theorem 2.2. If ac~bd, aEb and gcd(a,p)=l,
then cEd(mod p) .

Theorem 2.3. For p~0,c~0 a~b(mod p) if and
only if ac~bc(mod pc).

Theorem 2.4. If p~0,c~0 and the gcd(p',c)=l,
then aEb(mod pc) if and only if aHb(mod p)
and a~b(mod c) .

Proofs of these theorems can be found in any
elementary book on number theory such as [i0] .

Theorem 2.1 tells us that we can perform
addition, subtraction, and multiplication
modulo p. Theorem 2.2 says that division is
possible when the divisor is relatively prime
to the modulus. The operations of addition,
subtraction, multiplication and division
which result from these two theorems are
collectively called modular arithmetic.

If a is represented by the r-tuple (al,...ar)

where a.=l a mod Pi and if b is represented as

(bl,... ,br) where bi~b mod Pi and then we have

the following:

(a I, ar)±ibl,...,br)=((al±bl)modPl,...,

(ar±b)mod pr) r

(al,...,ar) • (bl, br)=(alb I mod Pl

b mod pr)
ar r

We would like to perform the operations

±b) mod Pi~aibi mod Pi as fast as possible. (ai i
We can avoid entirely the division operation
for addition and subtraction if we restrict
the Pi to be single precision positive

numbers on the computer with which we are
working. To avoid overflow we require Pi<2~

where y is the largest integer representable
by one word of the computer. Then the follow-
ing formulas apply:

l ai+b i if ai+bi<Pi ;

(a +b.)mod pi = (2)
i 1 ~ai+bi-Pi if ai+bi>Pi ;

l
a.-b, if a.-b.>0 ;
l l l l--

(a.-b)mod p - (3)

1 i i- ai_bi+Pi if ai-bi<0 .

After we have performed the desired sequence
of arithmetic operations, we are left with
the r-tuple (c ,c) . We now need some way
of transformlng back ~rom modular form with
the assurance that the resulting integer is
the correct one. The ability to do this is
guaranteed by the following theorem which
was first proven in full generality by L.
Euler in 1734.

189

Theorem 2.5. (Chinese Remainder Theorem):
Let pl,...,pr be positive integers which are

pairwise relatively prime. Let r and

p= ~I Pi
i=l

let b, al,...,a r be integers. Then, there is

exactly one integer "a" which satisfies the
conditions

b~a<b+p,and aHai(mod pi) for l<i<r. (4)

Proof (due to H L Garner [13]) : If aHx(mod pi)

for l<i<r, then a-x is a multiple of Pi for

all i. Since the Pi are pairwise relatively

prime, it follows that a-x is a multiple of p.
Thus, there can be only one solution which
satisfies (4). We can construct this solution

in the following way:

Let s.. be defined such that
13

- pj -- _ sijPi=l mod for l<i<j<r.

Then,let

tl÷a I mod Pl '

t2~(a2-tl) s12 mod P2 (5)

t3+((a3-tl) s13-t2)s23 mod P3

tr+ (. ((a -tl) s .)s r m°d Pr "" ~ Slr-t2) 2r-" "tr-i (r-l)

Then

a=trPr_l- --Pl+..-+t3P2Pl+t2Pl+tl

satisfies the conditions 0~a<p, a{aim°d Pi '

l<i<r. If ~,p) is not the desired range, any
multiple of p can be added or subtracted
after conversion is completed.

Thus, the Chinese Remainder Theorem guarantees
that we can use a modular representation for
numbers in any consecutive interval of

r
P= ~ Pi integers. That is, there is a unique

i=l

result and it can be obtained using the pro-
cedure which is outlined in the proof of

Theorem 2.5.

There are several aspects of this theorem
which should be especially studied if a com-
puter program is to be written. A total of

(~) constants, sij must first be calculated.

These are easily obtained by using Euclid's
algorithm which determines x,y such that

xPi+ypj=gcd(Pi,Pj)=l, see [18] or [5].

Remember that the moduli are pairwise relative-
ly prime. The t. , l<i<r may be found accord-

1
ing to (5). Note that all arithmetic is mod Pi

and this capability is already contained with-
in the system.

In actual practice Theorem 5 is often imple-
mented for only two moduli. Examples of this

can be found in the systems of Brown, [4,p.
28] and Collins [8]. The algorithm then pro-

ceeds as follows: we are given pl,P2 where

Pl is generally much larger than P2 and al,a 2

such that IalI<Pl/2,0!a2<P2."

i) Find s12 such that sl2Pl~l mod P2

2) let tl+a I mod Pl

t2÷(a2-tl)Sl2 mod P2

a+tl+t2P 1

Thus, a satisfies 0~a<plP2 and a~a i mod Pi

for i<i<2. Instead of Pl being a single

modulus it is generally equal to the product
of the previously used moduli. Also, a I is

the current tentative solution. Then a is the
new tentative solution and Pl is updated by

setting pl÷plP2 . The correct solution is

obtained when either the proper number of
moduli have been processed or when the
"tentative" solution satisfies some pre-
arranged condition. The computing time for
the above version of Garner's method is pro-

portional to lOgloPl.

In order to process as few moduli as possible
we would like to choose the Pi to be very

large. In order to avoid the division opera-
tion for addition and subtraction, the moduli
should be single precision. Theorem 5 requires
that the moduli be pairwise relatively prime.
Therefore, the moduli are easily chosen to be
a set of consecutive, single precision primes.
Given a computer whose word length is k bits,
there will be a minimum of 2k-i/k=g primes in

the interval [2 k,2 k+l] . Since k ranges between

30-60, g~107. Algorithms to compute these
primes can be found in either [18,p.143] or
[8,p.4].

A practical and important issue in the use of
a modular arithmetic system is the determin-
ation of r, the number of moduli, that must
be processed until the correct answer can be
obtained. Unfortunately, it is difficult to
test whether or not overflow has occurred as
the result of an addition, subtraction, or
multiplication when using modular represent-
ation. In [19,p.257] , Knuth shows that any
method which tests for overflow must rely on
all the residues at once. Thus, the computing
time for this check would nullify the advant-
ages gained from the modular representation.

One technique for deciding on the number of
moduli is to estimate from the inputs a
bound for the maximum size of any resulting
integer. For example, in [6,pp.215-216] ,
Collins uses Hadamard's theorem to derive a
bound for the coefficients of the polynomial
which is the greatest common divisor of the
two given polynomials. He uses this bound to
determine the number of moduli (in this case
single precision odd primes, called p.) which
must be processed before he can applylthe
Chinese Remainder Theorem. The calculation of
this bound requires first the summing of the

magnitude of the coefficients of the input
polynomials, say d and e. Then the least
integers r,s are computed such that

2r~d,2S>e . Then, if the degrees of the
polynomials are m and n, compute t=ms+nr

and u=[t/h]+l where h satisfies 2hAp i and 2 h

is usually about half the largest integer
which can be stored in one computer word.
After u primes have been successfully pro-

caused, the correct solution is guaranteed.

Another technique for determining when the
computations are complete is to constantly
maintain a "tentative" solution. After each
new modulus is processed, a check can be made
to see if the correct solution has been compu-
ted. Since this test may well require multi-
precision calculations, its total computing
time must be small. Suppose this technique is
used in a modular arithmetic based algorithm
for determing C(x)=gcd(A(x) ,B(x)) . For an
actual example see [4,p.312] . Then, after each
new m~dulus is processed the tentative solu-
tion C(x) is obtained.

If ~(x) IA(x) and ~(x) IB(x) then ~(x)=C(x) .
This approach can be especially efficient if
the bound for the resulting integers is much
larger than their true size. In this case we
are processing the minimum number of moduli
which are required at the expense of a test
after each modulus is used.

Of course, some problems do not allow for
simple efficient tests for a correct solution.
A case in point is the exact solution of
linear systems of equations. A matrix multi-
plication and a vector compare is necessary to
see if no more moduli need be processed. The
computing time here is prohibitive and rather
an a priori bound for the number of moduli is
calculated. Finally, some problems are not
amenable to a test at all. An example of this
would be determinant calculation.

Let us now consider a more formal approach to
modular arithmetic. Let I stand for the integral
domain of the integers and consider the mapping
h :I+I/(m) , from I onto the ring of integers
m

mod m. If m=p, a prime then the elements of
I/(p) , namely ~0,i,2 ,p-l} form a finite
field usually called the Galois field with p
elements and designated as GF(p) . This mapping
h constitutes a homomorphism because it is
a~ onto mapping and if a,bEI it follows that

hp(a) "hp(b)=hp(a-b) ,hp(a)+hp(b)=hp(a+b) . We can

extend this modular homomor~hism to polynomial
domains in the natural way. If A(Xl,...,x r) is

an r-variable polynomial over I, let

h* : I [x I +GF(p) x r] where p x r] [x I ,

h* (xi)=x i and h* (c)=hp(C) where c is a numerical
P P

coefficient of A.

Now, a modular arithmetic system for symbol
manipulation must first provide a reasonable
number of single precision primes, say 50-100.
Then a subprogram is needed which applies h

P
to any integer or more generally h* to any

P
multivariable polynomial with integer coeffic-
ients. If A(Xl,...,Xr) has n i as the maximum

190

degree of x. in A for l<i<r and if N bounds
l

in magnitude the numerical coefficients of A,
then the computing time to obtain

h~(A(Xl,...,Xr)) is proportional to

nln2...nr(log N) . The inverse operation con-

sists of applying Garner's version of the
Chinese Remainder Theorem. Here the inputs are

two polynomials A(Xl,...,Xr) over GF(p) and

B(Xl,...,x r) over I and two integers Q and p

where Q is relatively prime to p. The output
is the unique polynomial C(Xl,...,Xr) over I

which satisfies C~B(modQ) , C£A(mod p) and the
coefficients of C are less than p-Q/2 in
magnitude. If both A and B have maximum degree
n i in x. ,l then the computing time, using

Garner's version is proportional to

nln2"''nr (log Q) .

Another homomorphism which has proven useful
in conjunction with the modular homomorphism
is the evaluation homomorphism, E b. When

applied to some polynomial A(Xl'''''Xr) it

produces C (X l , . . . , X r _ l) = A (X l , . . . , X r _ l , b) . I n

order to minimize the computing time for
algorithms with multivariable polynomial
arguments, the modular homomorphism is applied
first. Then, the evaluation homomorphisms are
applied to polynomials with coefficients in
GF(p) . If n. is the maximum degree of x. in A

l l
for l<i<r, the computing time to form

C(Xl,...,Xr_ I) is proportional to nln2"''nr"

The iverse operation requires an interpolation
algorithm. As with the Chinese Remainder
Theorem an iterative algorithm can be used.
The inputs are three polynomials

B(Xr)= ~ (Xr-b i) where the b. are distinct
0<i<m 1

elements of GF(p) , A(Xl,...,Xr) over GF(p)

with degree m or less in x and C r (Xl'''" Xr-l)

over GF(p) . The output is the unique poly-

nomial D(Xl,... ,Xr) of degree m+l or less in

x defined as
r

D(x I , Xr)=

{C(x I Xr_l)-A(x I Xr_l) } -B(Xr)/B(b) ,

+A(Xl, x) r

Thus we see that D(Xl,...,Xr_l,bi)=

A(Xl,...,Xr_l,b i) for 0<i<m and D(Xl,...,Xr_l,

b)=C(Xl,...,Xr_l) . The computing time can

clearly be made proportional to nln2...nr_l'm

where n is the degree of x. in A and m is
1 l

defined above. Precise algorithms for evalu-
ation homomorphism and interpolation can be
found in [8,p.17] .

Both Brown in [4] and Collins in [7] use
modular and evaluation homomorphisms to pro-
duce efficient algorithms for multivariable
gcd and resultant calculation, respectively.
The modular homomorphism is applied first and
a solution over GF(Pi) is obtained using

191

evaluation homomorphisms. These are applied
and reduce the single problem to several with
inputs of univariate polynomials and coeffi-
cients over GF(Pi) . The solutions are inter-

polated to form a single multivariable solu-
tion over GF(p.) . After each p. has been pro-
cessed a tenta~ive solutlon ~s constructed via
the iterative version of the Chinese Remainder
Theorem. After a sufficient number of primes
have been done the correct answer has been
produced.

Besides the increased efficiency of this
approach an important auxiliary benefit is
derived. When this schema is applied to gcd
or resultant calculation/ the natural way of
calculating a polynomial remainder sequence
can be used over GF(p) . Also, in linear
systems algorithms with multivariable poly-
nomial elements when the system is finally
reduced to one with elements in GF(p) , the
classical Gaussian elimination can be used to
solve the system. Thus, the previously used
methods (e.g. reduced p.r.s, algorithm for
gcd calculation) which were the most efficient
known, have been outmoded. The use of modular
and evaluation homomorphisms has returned us
to our classical methods and provides a much
more esthetic way of efficiently solving these
problems.

3. Finite Fields

In the previous section we have discussed the
application of modular arithmetic to symbol
manipulation. In general, this technique is
used by mapping the problem from the domain
of integers to the domain GF(p) , the finite
field with a prime number of elements p. The
algorithm was then carried out using arithmetic
in GF(p) or GF(p) Ix] . It is useful then to
study and understand more fully some of the
properties of arithmetic in these fields.

The theory of finite fields has also proved
very useful in the area of coding theory, see
[i] . In connection with this work, E R
Berlekamp in 1967 discovered a fast factori-
zation algorithm for polynomials with coeffi-
cients in a finite field. It turns out that
one can obtain the factors of an nth degree
polynomial over GF(p) faster than one can find
the factors of an arbitrary n-bit binary
integer. This algorithm for factoring modulo
p while useful in itself, has aided in con-
structing new algorithms for factoring poly-
nomials with integer coefficients.

Therefore, the application of finite field
theory has provided both new algorithms
(factorization) and a new way of speeding up
our old algorithms. In this section we will
develop the theory of finite fields and show
how certain properties make them especially
useful in mathematical symbol manipulation.

Definition A field F is a set of elements •
including 0 and 1 for which the operations of
addition and multiplication are closed,
associative, and commutative. Multiplication
distributes over addition such that a* (b+c)=
ab+ac where a,b,c,~F. For every non-zero
element a £ F there is a unique reciprocal,
i/a such that a*(i/a)=l. For every a £ F there
is a unique negative, -a, such that a+(-a)=0,

0+a=a=l*a and 0.a=0.

The order of a field is the number of elements

in the field. The rational, real and complex

numbers are all examples of infinite fields.

If p is a prime, then the integers mod p form

a finite field of order p, designated as GF(p) .

If a field F contains "a", then it must also

contain -2 -i 2
• . .a ,a ,l,a,a , If these

powers of "a" are not all distinct, then for

some m,n we have am=a n or am-n=l. The least

positive integer n for which an=l is called

the order of a. If the order of "a" is n,

2 n-1
then l,a,a ,...a are all distinct. In a

finite field,each element can have only a

finite number of distinct powers. Hence,

every non-zero element in a finite field has

a finite order•

The following three theorems establish some

elementary facts about the orders of elements

in a field. Proofs of these theorems can be

found in [i,p.89].

Theorem 3.1. If a has order n, then am=l if

and only if m is a multiple of n.

Theorem 3.2. If a has order m, b has order n

and gcd(m,n)=l then ab has order mn.

Theorem 3.3. If a has order n, then the order

of a K is n/gcd(n,k) .

Definition If a is an element of a finite

field F and "a" has order n, then "a" is said

to be a primitive nth root of unity. If the

order of F is q, then "a" is said to be a

primitive field element if the order of "a"

is q-l.

In [i] , Berlekamp establishes the existence

of a primitive field element for any finite

field of order q. If "a" is this element, then

2 , a q - 2
l,a,a , . . . constitutes all non-zero

elements in the field• An immediate conse-

quence of this result is that every element

in the field satisfies the equation xq-x=0.

If "a" is the primitive field element,then

q-2
xq-l-i = [[(x-ai) = rl (x-b)

i=0 bE GF(q)
b#0

n
Since 16 F, it follows that (Z i) 6 F for all

i=l

n. If these elements are not all distinct,

then there exists a least p such that p
i=0

i=l

in the field. This number p is called the

characteristic of the field• If n is non-
E 1

i=l

zero for every n, then we say that the
characteristic is ao. In a field of p-i

characteristic p, the elements i,i+i,..., Z 1
i=l

are called the field inte@ers.

Theorem 3.4. The characteristic of any field

is either oo or a prime number p.

192

Proof If mn n
1 = 0 and ~ 1 ~ 0, then we can

i=l i=l

multiply by

n m mn

i/ Z 1 and obtain ~ i=0. Hence, if ~ i=0,

i=l i=l i=l

m n

then either ~ i=0 or
i=l i = l 1=0"

If the field has characteristic ~, then there

are an infinite number of distinct elements
and the order of the field is ~. If the field

has characteristic p, its order may be finite

or infinite. For example, the integers mod p

form a finite field of characteristic p while

the set of rational functions A(x)/B(x) with

coefficients from the integers mod p form an

infinite field of characteristic p.

Theorem 3.5. In a field F of characteristic

p, the field integers form a subfield of

order p isomorphic to the field of integers

mod p.

Proof The field integers are closed under the

four arithmetic operations• For any integer

k<p, we can find integers r,s such that

rk+sp=l, [18,p. 302]. Therefore, in the field

r k r

(Z i) (Z i)=i so that Z 1 is the reciprocal

i=l i=l i=l

k
of Z i. This subfield is usually called

i=l

the prime subfield of F.

Theorem 3.6. In any field of characteric p,

xP-aP=(x-a) p

Proof Applying the binomial theorem to (x-a) p,

we get (x-a) p= ~ (~)xi(-a) p-I But for 0<i<p

i=0

(P)=(p(p-l) ... (p-i+l))/il~0(mod p) since the
1

numerator contains a factor of p which cannot

be removed. Hence only xP-a p remain•

In fact, a more general theorem can be proven.

Theorem 3.7. If al,...a~F,F a field of

characteristic p, then

k n k n
(~ a.) p = ~ aP for all n.
i=l 1 i=l l

Now suppose that A(x) , B(x) are any poly-

nomials with coefficients in GF(p) . Then

(A(x)+B(x))P=A(x)P+(~)A(x)P-iB(x)+...+

(pPl)A(x) B(x)P-i+B(x)P=A(x)P+B (x) p

since (~) is divisible by p for l~i~p-l.

Now there is a definite relationship between

the characteristic p and the order q of any

finite field.

Theorem 3.8. The order of a finite field is a

power of its characteristic.

Proof [21, p.ll6] If we consider the prime
subfield P of any field F of order q and
characteristic p, then there is in F a maxi-
mal set of linearly independent elements
al,... ,a n with respect to P. Every element in

F is of the form Clal+c2a2+...+Cnan (6)

with uniquely determined coefficients ci£P.

Since for every ci, p values are possible by
n

Theorem 3. 5, thus there are exactly p ex-
pressions for (6). Since these constitute all

n
elements in F, thus q=p

We are now able to establish the following
theorem concerning finite fields and ir-
reducible polynomials. Proofs can be found
in [i, p.103] .

Theorem 3.9. Every element in a field of
order q satisfies the equation

n
x q - x = 0 for every n.

Theorem 3.10. Every irreducible polynomial
of degree d over a field of order q divides

k
x q - x if k is a multiple of d.

k
Theorem 3.11. In a field of order q, x q -x
factors into the product of all monic ir-
reducible polynomials whose degrees divide k.

k
Therefore, in I mod p, x p -x factors into the
product of all monic irreducible polynomials
whose degrees divide k.

k
k xp k In a field of order p , -x factors into p

linear factors. Since I mod p is a subfield
k

of the order p we can equate the factorization
and obtain:

Theorem 3.12. If f(x) is an irreducible poly-
nomial of degree m over I mod p and mlk,

k
then a field of order p must contain m roots

of f (x) .

Let f(x) be any irreducible polynomial of
degree k over the integers mod p. Then any
finite field of order pk must contain k roots
of f(x) . If a is one root, then every element
of the field is expressible as a polynomial
in a degree less than k. Thus, if p is any
prime and k is any integer, then there exists
a unique finite field of order pk.

These properties of finite fields play a key
part in the new factorization algorithm of
Berlekamp, see [19, p.381] and [2]. Also, they
underlie the general techniques of modular
arithmetic which have been discussed in
Section 2. In some of the papers given at this
conference, namely [4] , [7] , and [2] , the
foregoing theory and methods are extensively

used.

4. Applications

The idea of modular arithmetic and congruences
goes back to classical number theory. An ex-
position of these concepts can be found in
many books, for example, see [i0]. After the
advent of computers, modular arithmetic was
reinvestigated as an approach for performing
fast arithmetic operations by the central

processing unit of a digital computer. For a
complete discussion of the problem and results
in this area see [22].

In the past decade many papers have appeared
which describe mathematical software packages
for certain applications which use modular
arithmetic. An early such paper was by H.
Takahasi and Y. Ishibashi, [20], in which
applications such as matrix inversion, deter-
minant calculation and interpolation are
discussed. More recent work on the exact solu-
tion of linear systems has been done by Borosh
and Fraenkel, [3], Howell and Gregory in [16]
and [17] and by Horowitz in [14] and [9]. The
problem of polynomial greatest common divisor
calculations using modular arithmetic has been
treated by W. S. Brown in [4], G.Collins in [6]
and D.Knuth in [19, pp.393-395] . A modular
approach for the Extended Euclidean algorithm
for univariate polynomials is given by Horowitz
in [15]. A modular algorithm for computing
multivariate resultants is given by G.Collins

in [7].

The factorization of polynomials with coeffi-
cients either in GF(p) or in I can be found in
[19, pp.381-398] . In [i] an excellent review of
Berlekamp's method for polynomial factorization
any many examples can be found. A new improved

version is discussed by him in [2].

References

[i] Berlekamp,E.R, Algebraic Coding Theory,
McGraw-Hill Book Co., New York, 1968,
Chapters 2,4, and 6.

[2] Berlekamp,E.R, "Factoring polynomials over
large finite fields," Mathematics of
Computation, July, 1970.

[3] Borosh, I. and A.S. Fraenkel, "Exact solu-
tion of linear equations with rational
coefficients by congruence techniques,"
Mathematics of Computation, Vol.20,No. 93
(January 1966), pp. 107-112.

[4] Brown, W.S., "On Euclid's algorithm and the
computation of polynomial greatest common
divisors," Proceedings of the Second Sym-
posium on Symbolic and Algebraic Manipula-
tion, Los Angeles, March 1971.

[5] Collins, G.E., "Computing multiplicative

inverses in GF(p) ," Mathematics of Compu-
tation, Voi.23, No.105 (January 1969, pp.
197-200.

[6] Collins, G.E. "Computing time analysis of
some arithmetic and algebraic algorithms,"
Proceedings of the IBM 1968 Summer Institute
on Symbolic Mathematics by Computer, IBM
Boston Programming Center, Cambridge, Mass,
June 1969, pp. 195-232.

[7] Collins, G.E."The Calculation of Multivariate
Polynomial Resultants," Proceedings of the
Second Symposium on Symbolic and Algebraic
Manipulation, Los Angeles, March, 1971.

[8] Collins, G.E., and E Horowitz, et al.,"The
SAC-i modular arithmetic system," Computing
Center and Computer Sciences Department,
University of Wisconsin, Technical Reference
No. i0, June 1969.

[9] Collins, G.E. and E Horowitz, "The SAC-i
partial fraction decomposition and rational

function integration system." Computing

193

Center and Computer Sciences Department,
University of Wisconsin, Technical Ref-
erence No. 80, February 1970.

[i0~ Dickson, E.L. Introduction to the Theory
of Numbers, Dover Publications, Inc,
New York, 1929.

[ii] Feldman, H.A., "Some symbolic computations
in finite fields", Proceedings of the
IBM Summer 1968 Institute on Symbolic
Mathematics by Computer, IBM Boston
Programming Center, Cambridge, Mass,
June 1969, pp. 79-96.

[12] Fraenkel, A.S.,"The use of index calculus
and Mersenne primes for the design of a
high speed digital multiplier," Journal
of the ACM, Vol. 8 (1961), pp. 87-96.

[13] Garner, H.L. "The residue number system"
IRE Transactions, EC-8 (1956), pp 140-147.

[14] Horowitz,E, "Algorithms for partial
fraction decomposition and rational
function integration," Proceedings of the
Second Symposium on Symbolic and Algebraic
Manipulation, Los Angeles, March 1971.

[15] Horowitz , E. Algorithms for Symbolic
Integration of Rational Functions, PhD
Dissertation, University of Wisconsin,
Madison, Wisconsin, November 1969.

[16] Howell, J.A. and R.T. Gregory, "An
algorithm for solving linear algebraic
equations using residue arithmetic I,"
BIT, Vol.9 (1969) ,pp 200-224.

[17] Howell, J.A. and R.T.Gregory, "Solving
linear equations using residue arithmetic-
Algorithm II", TNN-95, Computation Center
University of Texas at Austin, September
1969.

[18] Knuth, D.E. The Art of Computer Program-
ming, Vol. i: Fundamental Algorithms,
Addison-Wesley, 1968, p. 302.

[19] Knuth, D.E. The Art of Computer Program-
ming, Vol. 2, Seminumerical Algorithms,
Addison-Wesley, 1969, pp. 248-257.

[20] Takahasi, H., and Y. Ishibashi, "A new
method for exact calculation by a digital
computer, Information Processing in
Japan, Vol. 1 (1961), pp. 28-42.

[21] Van der Waerden, B.L., Modern Algebra,
translated by F. Blum, Vol. i, New York,
Ungar Publishing, 1949.

[22] Szabo, N.S. and R.I. Tanaka, Residue
Arithmetic and It's application to
Computer Technology, McGraw-Hill, New
York, 1967.

194

