
Math 780: Elementary Number Theory
(Instructor’s Notes)*

What Is It?:

• Elementary Number Theory is the study of numbers, and in particular the study of
the set of positive integers.

• Does “elementary” mean “easy”? No.

• Example. Consider a positive integer m < 105, and view it as a four digit number
(with possible leading digit 0). Suppose all four digits are distinct. Let k be the number
obtained by putting the digits of m in increasing order, and let ` be the number obtained
by putting the digits in decreasing order. Let m′ = k− `. Now repeat the process with m′

in place of m. Continue. What happens? How can this be explained?

Rational and Irrational Numbers:

• Define them.

• Theorem 1.
√

2 is irrational.

• Give typical proof.

• Theorem 2. An irrational number to an irrational power can be rational.

• Proof: Consider
√

2
√

2
and

(√
2
√

2
)√2

.

• Theorem 3. e is irrational.

• Proof: Assume e = a/b with a and b positive integers, and set

(∗) θ = b!e−
b∑
j=0

b!
j!

=
∞∑

j=b+1

b!
j!
.

Then

0 < θ <
∞∑
j=1

1
(b+ 1)j

=
1
b
≤ 1.

On the other hand, the middle expression in (∗) is an integer. Hence, we have a contra-
diction and e is irrational.

• Open Problem. Is πe irrational?

• Open Problem. Is
∞∑
n=1

1
n5

irrational?

*These notes are from a course taught by Michael Filaseta in the Fall of 1997.
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Homework:

(1) Let I = R − Q denote the set of irrational numbers. Determine whether each of the
following is true or false. If it is true, simply state so. If it is false, state so and give a
counterexample.

(a) α ∈ I and β ∈ I implies α+ β ∈ I
(b) α ∈ I and β ∈ I implies αβ ∈ I
(c) α ∈ Q− {0} and β ∈ I implies α+ β ∈ I and αβ ∈ I
(d) α ∈ I and β ∈ Q− {0} implies αβ ∈ I
(e) α ∈ Q− {1} and β ∈ I implies αβ ∈ I

(2) Prove that
√
n is irrational whenever n is a positive integer which is not a square.

Give an argument similar to that given for
√

2. Clarify where you feel we are using certain
properties of the integers that we should have perhaps discussed first.

(3) Prove that
√

2 +
√

3 is irrational.

(4) Prove that
√

2 +
√

3 +
√

5 is irrational.

(5) Prove that log2 3 is irrational.

(6) Prove that e2 is irrational using an argument similar to that given above for e.

Divisibility Basics:

• Definition. Let a and b be integers. Then a divides b (or a is a divisor of b or b is
divisible by a) if there is an integer c such that b = ac.

• Notation. We write a|b if a divides b, and we write a - b if a does not divide b.

• Definition. An integer p is prime (or is a prime) if it is > 1 and divisible by no
other positive integer other than 1 and itself. (In Algebra, the condition that p be > 1 is
replaced by |p| > 1.)

• The division algorithm.
Theorem 4. If a 6= 0 and b are any integers, then there exist unique integers q (called the
quotient) and r (called the remainder) with 0 ≤ r < |a| such that b = qa+ r.

• Proof. Let r be the least non-negative integer in the double sequence

. . . , b− 2a, b− a, b, b+ a, b+ 2a, . . . .

Let q be such that b− qa = r. Since (b− qa)− |a| is in the double sequence and < b− qa,
we have (b− qa)− |a| < 0. Thus, r < |a|. Also, r ≥ 0. This proves the existence of q and
r as in the theorem.

For j ∈ {1, 2}, suppose qj and rj are integers such that b = qja + rj and 0 ≤ rj < |a|.
Then

(∗) (q1 − q2)a− (r1 − r2) = 0.

This implies a|(r1 − r2). On the other hand, r1 − r2 ∈ (−|a|, |a|). Hence, r1 = r2. Now,
(∗) implies q1 = q2, establishing the uniqueness of q and r as in the theorem.
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• Definition and Notation. Let n and m be integers with at least one non-zero. The
greatest common divisor of n and m is the greatest integer dividing both n and m. We
denote it by gcd(n,m) or (n,m).

• Note that if n is a non-zero integer, then (0, n) = |n|.
• Theorem 5. If a and b are integers with at least one non-zero, then there exist

integers x0 and y0 such that ax0 + by0 = (a, b). Moreover,

{ax+ by : x, y ∈ Z} = {k(a, b) : k ∈ Z}.

• Proof. Let S = {ax+by : x, y ∈ Z}. Let d denote the smallest positive integer in S.
Let x0 and y0 be integers for which d = ax0 + by0. Theorem 5 follows from the following
claims.

Claim 1. {kd : k ∈ Z} ⊆ S.

Reason: Clear.

Claim 2. S ⊆ {kd : k ∈ Z}.
Reason: Let u = ax′ + by′ ∈ S. By Theorem 4, we have integers q and r with u = dq + r
and 0 ≤ r < d. On the other hand,

r = u− dq = (ax′ + by′)− (ax0 + by0)q = a(x′ − x0q) + b(y′ − y0q) ∈ S.

It follows that r = 0 and u = qd.

Claim 3. d|a and d|b.
Reason: Use Claim 2 together with a ∈ S and b ∈ S.

Claim 4. d = (a, b).

Reason: Since ax0 + by0 = d, (a, b)|d so that (a, b) ≤ d. Since d|a and d|b, d is a common
divisor of a and b. By the definition of greatest common divisor, d = (a, b).

The Fundamental Theorem of Arithmetic (Unique Factorization):

• Theorem 6. Every integer n > 1 can be written uniquely as a product of primes in
the form

n = pe11 p
e2
2 · · · perr ,

where p1 < p2 < · · · < pr are distinct primes and e1, e2, . . . , er and r are positive integers.

• Comment: In other words, every positive integer n can be written uniquely as a
product of primes except for the order in which the prime factors occur.

• Lemma. If p is a prime and a and b are integers such that p|ab, then either p|a or
p|b.
• Proof of Lemma. Let k be an integer such that ab = kp, and suppose p - a. We

wish to show p|b. By Theorem 5, there are integers x and y such that ax+ py = 1. Hence,
b = abx+ pby = p(kx+ by). Thus, p|b.
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• Proof of Theorem 6. First, we prove that n is a product of primes by induction.
The case n = 2 is clear. Suppose it is true for n less than some integer m > 2. If m is
prime, then m is a product of primes. If m is not prime, then m = ab with a and b integers
in (1,m). Since a and b are products of primes by the induction hypothesis, so is m.

Now, we prove uniqueness by induction. Again, one checks n = 2 directly. Suppose
uniqueness of the representation of n as a product of primes as in the theorem holds for n <
m. Let p1, . . . , pr (not necessarily distinct) and q1, . . . , qt (not necessarily distinct) denote
primes such that m = p1 · · · pr = q1 · · · qt. Observe that p1|q1 · · · qt. Hence, the lemma
implies p1|q1 or p1|q2 · · · qt. This in turn implies p1|q1, p2|q2, or p1|q3 · · · qt. Continuing, we
deduce that p1|qj for some j ∈ {1, 2, . . . , t}. As p1 and qj are primes, we obtain p1 = qj .
Now, p2 · · · pr = m/p1 = q1 · · · qj−1qj+1 · · · qt and the induction hypothesis imply that the
primes p2, . . . , pr are the same as the primes q1, . . . , qj−1, qj+1, . . . , qt in some order. This
implies the theorem.

Homework:

(1) Let a, b, c, and d denote positive integers. Prove each of the following:
(a) a|b and b|c implies a|c
(b) ac|bc implies a|b
(c) a|b and c|d implies ac|bd

(2) Prove that if n is an integer ≥ 2 which is composite (i.e., not prime), then n has a
prime divisor which is ≤

√
n.

(3) Let S = {log10 p : p prime}. Prove that the elements of S are linearly independent
over the rationals. (This is an example of an infinite set of real numbers which is linearly
independent over Q.)

(4) Observe that n4 + 4n is prime if n = 1. Prove that n4 + 4n is composite if n is an
integer > 1.

Euclidean Algorithm:

• Review. In grade school, we learned to compute the greatest common divisor of two
numbers by factoring the numbers. For example, (77, 119) = (7 × 11, 7 × 17) = 7. Now,
try (3073531, 304313) this way. What’s the moral?

• Theorem 7. (The Euclidean Algorithm) Let a and b be positive integers. Set
r0 = a and r1 = b. Define r2, r3, . . . , rn+1 and n by the equations

r0 = r1q1 + r2 with 0 < r2 < r1

r1 = r2q2 + r3 with 0 < r3 < r2

...
...

rn−2 = rn−1qn−1 + rn with 0 < rn < rn−1

rn−1 = rnqn + rn+1 with rn+1 = 0

where each qj and rj is in Z. Then (a, b) = rn.
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• Back to examples. Compute (3073531, 304313) this way. Not to be misleading,
compute (2117, 3219) using the Euclidean Algorithm.

• Proof: Let d = (a, b). Then one obtains d|rj for 0 ≤ j ≤ n+1 inductively, and hence
d|rn. Thus, d ≤ rn (since rn > 0). Similarly, one obtains rn divides rn−j for 1 ≤ j ≤ n. It
follows that rn is a divisor of a and b. By the definition of (a, b), we deduce rn = (a, b).

• Solutions to ax+ by = m. From Theorem 5, we need only consider m = k(a, b). One
can find solutions when k = 1 by making use of the Euclidean Algorithm (backwards).
Show how the complete set of solutions for general m can be obtained from this. Also,
mention the connection with the simple continued fraction for a/b.

• Example. Solve 3219x+ 2117y = 29. The solutions are the (x, y) of the form

x = 25− t× 2117
29

and y = −38 + t× 3219
29

for t ∈ Z.

• Theorem 8. Let a and b be positive integers. The Euclidean Algorithm for calcu-
lating (a, b) takes ≤ 2([log2 b] + 1) steps (i.e, divisions).

• Proof: Let s = [log2 b] + 1. In the notation of Theorem 7, we want n ≤ 2s. Assume
n ≥ 2s+ 1. We show first that rj+2 < rj/2 for j ∈ {1, 2, . . . , n− 2}. If rj+1 ≤ rj/2, then
rj+2 < rj+1 ≤ rj/2. If rj+1 > rj/2, then rj = rj+1qj+1 + rj+2 where qj+1 = 1. Hence, in
this case, rj+2 = rj − rj+1 < rj/2. Hence, in either case, rj+2 < rj/2. We deduce that

1 ≤ rn <
rn−2

2
<
rn−4

4
< · · · < rn−2s

2s
≤ r1

2s
=

b

2s
.

Therefore, s < log2 b. This contradicts that s = [log2 b] + 1 > log2 b.

Homework:

(1) For each of the following, calculate (a, b) and find a pair of integers x and y for which
ax+ by = (a, b).

(a) a = 289 and b = 1003
(b) a = 3569 and b = 1333

(2) Find the complete set of integer solutions in x and y to

821x+ 1997y = 24047.

Modulo Arithmetic:

• Definition. Two integers a and b are congruent modulo an integer n if n|(a− b).
• Notation. a ≡ b (mod n).

• Examples. What will be the time 1000 hours from now? On what day of the week
will September 3 be in 1998?
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• Theorem 9. Let a, b, c, and n be integers. Then each of the following holds.
(i) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(ii) If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n).
(iii) If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).
(iv) If a ≡ b (mod n) and d|n, then a ≡ b (mod d).

• Proof: Give the obvious proofs. In particular, in (iii), observe that a− b = kn and
c− d = `n for some integers k and ` so that

ac− bd = (a− b)c+ (c− d)b = (kc+ `b)n,

and the result follows.

• Comment: Note that (iii) implies that if a ≡ b (mod n) and k is a positive integer,
then ak ≡ bk (mod n).

• Theorem 10. Let m be a positive integer, and let a be an integer relatively prime
to m. Then there is an integer x for which ax ≡ 1 (mod m).

• Proof: Use that there are integers x and y such that ax+my = 1.

• Comments: The x in Theorem 10 is called the inverse of a modulo m. It is unique
modulo m since (a,m) = 1 and ax ≡ ay mod m implies x ≡ y (mod m). Also, note that
if (a,m) 6= 1, then a does not have an inverse modulo m (since ax − 1 = mk would be
impossible).

• Examples.
(1) Explain the usual tests for divisibility by each of 2, 3, 4, 5, 6, 9, and 11.
(2) What is the last digit of 71000?

(3) Determine the last digits of the numbers in the sequence 23, 2323, 23(2323), . . . .
(4) Is 3752743877345287574827904870128487127731 a sum of two squares?
(5) Let Fn = 2(2n) + 1 (the nth Fermat number). Explain why 641|F5. Use that

641 = 24 + 54 and 641 = 5× 27 + 1.

• Comments: A regular n-gon is constructible with straight-edge and compass if
and only if n = 2kp1 · · · pr ≥ 3 where k and r are non-negative integers and p1, . . . , pr are
distinct Fermat primes. The only known Fermat primes are Fn for 0 ≤ n ≤ 4 (i.e., 3, 5,
17, 257, and 65537), and it is believed that these are the only Fermat primes.

Homework:

(1) Prove that if n ≡ 7 (mod 8), then n is not a sum of 3 squares.

(2) Prove that for every non-constant polynomial f(x) with integer coefficients, there is
an integer m such that f(m) is composite.

(3) A large furniture store sells 6 kinds of dining room suites, whose prices are $231,
$273, $429, $600.60, $1001, and $1501.50, respectively. Once a South American buyer
came, purchased some suites, paid the total amount due, $13519.90, and sailed for South
America. The manager lost the duplicate bill of sale and had no other memorandum of
each kind of suite purchased. Help him by determining the exact number of suites of
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each kind the South American buyer bought. (Don’t forget to show that your solution is
unique.)

(4) Find (with proof) the smallest integer > 1 dividing at least one number in the sequence
31, 331, 3331, 33331, . . . .

Fermat’s Little Theorem:

• Theorem 11. For any prime p and any integer a, ap − a is divisible by p.

• Comments: In other words, with p and a as above, ap ≡ a (mod p). The theorem
is equivalent to: if p is a prime and a is an integer with (a, p) = 1 (in other words, with p
not dividing a), then ap−1 ≡ 1 (mod p).

• Proof 1: Use induction. The theorem holds with a = 1. If it holds for a, then

(a+ 1)p =
p∑
j=0

(
p

j

)
aj ≡ ap + 1 ≡ a+ 1 (mod p).

This proves the theorem for positive integers. Since every integer is congruent to a positive
integer modulo p, the result follows.

• Proof 2: Again, we may suppose a > 0. Fix a colors. The number of necklaces
with p beads, each bead colored with one of the a colors (allowing repetitions), having at
least two beads colored differently is (ap−a)/p. Here, we count necklaces as distinct if one
cannot be obtained from the other by a rotation (we don’t allow flipping necklaces over).
Thus, (ap − a)/p ∈ Z, and the result follows.

• Fermat’s Little Theorem can be used for determining that a given integer N is
composite as follows:

(i) Check N for small prime factors (this step isn’t necessary but is reasonable).
(ii) Write N in base 2, say N =

∑k
j=0 εj2

j with εj ∈ {0, 1} for each j and k =
[logN/ log 2] + 1.

(iii) Compute 22j (mod N) by squaring.
(iv) Calculate m ∈ {0, 1, . . . , N − 1} such that

m ≡
k∏
j=0

2εj2
j

≡ 2N (mod N).

(v) If m 6= 2, then N is composite. Otherwise the test is inconclusive.

• Comments: The algorithm works for establishing that “most” composite numbers
are composite (i.e., for most composite numbers, m 6= 2). If m = 2, then one can check if
3N ≡ 3 (mod N). Note that the algorithm takes on the order of logN steps so that the
algorithm is a polynomial time algorithm (it runs in time that is polynomial in the length
of the input - elaborate on this). There are no polynomial time algorithms that determine
conclusively whether an arbitrary integer is composite.
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• Definitions. A pseudo-prime is a composite number n > 1 satisfying 2n ≡ 2 (mod n).
A probable prime is an integer n > 1 satisfying 2n ≡ 2 (mod n). (Explain the reasons
behind these definitions.)

• Examples. Explain why 341 = 11×31 is a pseudo-prime. Explain why Fn = 22n+1
is a probable prime. (Note that for n > 5, Fn is really probably not a prime.)

• Definition. An absolute pseudo-prime (or a Carmichael number) is a composite
number n > 1 such that an ≡ a (mod n) for every integer a.

• Example. Explain why 561 = 3× 11× 17 is an absolute pseudo-prime.

• Comment: Alford, Granville, and Pomerance have shown that there exist infinitely
many absolute pseudo-primes. The much easier result that there exist infinitely many
pseudo-primes is in the next list of homework problems.

Euler’s Theorem:

• Definition and Notation. For a positive integer n, we define φ(n) to be the number
of positive integers ≤ n which are relatively prime to n. The function φ is called Euler’s
φ-function.

• Examples. φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(p) = p− 1 for every prime p,
and φ(pq) = (p− 1)(q − 1) for all primes p and q

• Theorem 12. For every positive integer n and every integer a relatively prime to
n, we have aφ(n) ≡ 1 (mod n).

• Proof: If n = 1, the result is clear. We suppose as we may then that n > 1.
Let a1, a2, . . . , aφ(n) be the φ(n) positive integers ≤ n relatively prime to n. Consider the
numbers

(∗) a1a, a2a, . . . , aφ(n)a.

Note that no two numbers in (∗) are congruent modulo n since (a, n) = 1 and aia ≡ aja
(mod n) implies ai ≡ aj (mod n) so that i = j. Now, fix j ∈ {1, 2, . . . , φ(n)}. There are
integers q and r such that aja = nq + r and 0 ≤ r < n. Since (aja, n) = 1 and n > 1, we
obtain r 6= 0 and (r, n) = 1. Thus, r = ak for some k ∈ {1, 2, . . . , φ(n)}. Hence, for each
j ∈ {1, 2, . . . , φ(n)}, there is a k ∈ {1, 2, . . . , φ(n)} for which aja ≡ ak (mod n). Since
the numbers aja are distinct modulo n, we deduce that the numbers in (∗) are precisely
a1, a2, . . . , aφ(n) in some order. Therefore,

a1a2 · · · aφ(n) ≡ (a1a)(a2a) · · · (aφ(n)a) ≡ aφ(n)a1a2 · · · aφ(n) (mod n).

Since gcd(a1a2 · · · aφ(n), n) = 1, we obtain aφ(n) ≡ 1 (mod n) as desired.

Wilson’s Theorem:

• Theorem 13. For every prime p, (p− 1)! ≡ −1 (mod p).

• Proof: If p = 2, the result is clear. We consider now the case p > 2. Let S =
{1, 2, . . . , p − 1}. For every a ∈ S, there is a unique a′ ∈ S satisfying a′a ≡ 1 (mod p).
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If a = 1 or a = p − 1, then a′ = a. The converse statement also holds since a′ = a
implies (a − 1)(a + 1) = a2 − 1 is divisible by p so that a ≡ 1 (mod p) or a ≡ p − 1
(mod p). The remaining elements of S can be grouped in (p − 3)/2 pairs (a, a′), say
(a1, a

′
1), . . . , (a(p−3)/2, a

′
(p−3)/2), so that

(p− 1)! ≡ 1× (p− 1)× (a1a
′
1) · · · (a(p−3)/2a

′
(p−3)/2) ≡ 1× (p− 1) ≡ −1 (mod p).

• Comment: The converse of Wilson’s Theorem also holds (see homework problem
(4) below).

Homework:

(1) Prove that 1105 and 1729 are absolute pseudo-primes.

(2) Prove that if n is a pseudo-prime, then 2n − 1 is a pseudo-prime. (Note that this
implies that there are infinitely many pseudo-primes.)

(3) Find the smallest positive integer k such that ak ≡ 1 (mod 756) for every integer a
which is relatively prime to 756.

(4) Prove the converse of Wilson’s Theorem. More specifically, prove that if n is an integer
> 1 for which (n− 1)! ≡ −1 (mod n), then n is a prime.

(5) Let p and d be integers with p > 1 and d > 0. Prove that p and p+ d are both prime
if and only if

(p− 1)!
(

1
p

+
(−1)dd!
p+ d

)
+

1
p

+
1

p+ d

is an integer.

Public-Key Encryption:

• Example. The following information is made public:

If someone wishes to send me, Jim, a message, use the following. Let N = 49601 and

s = 247. As your alphabet use 00 for a blank, 01 for “a”, 02 for “b”, 03 for “c”, etc.

(Eg. “No” would be represented “1415”.) Suppose your message is M . Let

E ≡Ms (mod N)

where 0 ≤ E < N . Then M is your actual message, and E is the encrypted message.

Publish E in the personals tomorrow, and I alone will know your actual message M .

Note: To do this properly, one needs N to be considerably larger. Here, only two letter
words can actually be sent (though a combination of two letter words including blanks can
make for a sentence).

• The secret. The number N is a product of two large primes (sufficiently large so
only Jim knows how N factors). In the example above, N = 193× 257. Since Jim knows
how N factors, he can also compute φ(N). In this case,

φ(N) = φ(193× 257) = 192× 256 = 49152.
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Using the Euclidean algorithm, for example, Jim also knows a positive integer t such that

st ≡ 1 (mod φ(N)).

Here, t = 199. Thus, Jim (and only Jim) can calculate

Et ≡Mst ≡Mkφ(N)+1 ≡M (mod N).

In other words, Jim can figure out M given the value of E.

• Comment: This approach makes for a good public-key encryption scheme because
the value of φ(N) cannot seemingly be computed without the knowledge of how N factors.
To clarify, it is possible to compute φ(N) without having the factorization of N , but
the fastest known methods at the time for computing φ(N) when N is large involve first
factoring N .

• Further example. Someone has sent the encrypted message E = 48791 to Jim. What
should he do (assuming he wants to know what the message says)? Note that

t = 199 = 27 + 26 + 22 + 2 + 1.

By squaring, he computes

E ≡ 48791 (mod N)

E2 ≡ 11287 (mod N)

E22
≡ 21001 (mod N)

E23
≡ 39510 (mod N)

E24
≡ 47029 (mod N)

E25
≡ 18251 (mod N)

E26
≡ 28286 (mod N)

E27
≡ 33666 (mod N).

Hence,

M ≡ Et ≡ E27
E26

E22
E2E1

≡ (33666)(28286)(21001)(11287)(48791) ≡ 809 (mod N).

The message sent was, “Hi”.

Homework:

(1) Someone wants to send Jim the message, “No”. Compute the encrypted message E
and then verify your work by decoding E. (Show your work using steps similar to that
shown above.)



11

Certified Signatures:

• The problem. Jim has two friends, Brian and Jason. Jim just got an encrypted
message E in the personals. I won’t specify what E was because it might upset Jim (since
you can now decode Jim’s messages because you too know how N factors). The message
to Jim in the personals read:

Jim, I really like your idea for having secret messages sent to you so that no one else can

know what’s being said in the personals besides you. In fact, I liked it so much that I

thought I would send you a quick note to let you know what I think of you. Here it is:

E. Sincerely, Brian.

In the above message, E is actually some number. The problem is that when Jim decoded
E, he was not very happy about what Brian had to say (and you wouldn’t be either if
you happened to be the one the message E was intended for). As a consequence, Jim and
Brian never talked to each other again, and Jim’s best friend became Jason. What Jim
never did figure out though was that Jason actually wrote the message.

• Solution. One can sign a message simply by adding ones name to the end of a message
M and then encrypting the whole message, name and all. Unfortunately, this is precisely
what Jason did; he added Brian’s name to the end of the message sent to Jim. When Jim
read it, he actually thought that Brian must have sent it since no one else could possibly
have encrypted Brian’s name. He never realized that actually anyone could encrypt Brian’s
name. There is however a proper way to certify a signature in an encrypted message. Let’s
suppose that Brian and Jason also decided to use the same encrypting scheme as Jim. In
particular, Brian has some number N ′ that he alone knows how to factor and some number
s′, both of which he makes public. And suppose he has computed t′ (his secret exponent for
decoding messages sent to him) satisfying s′t′ ≡ 1 (modφ(N ′)). Note that S = 0218090114
represents Brian’s name. Brian computes the value of T ≡ St′ (mod N ′) with 0 ≤ T < N ′.
Since t′ is only known to Brian, T is something only Brian knows. If Brian wants to truly
sign a message to Jim (so that Jim knows it is from him) he now simply adds T to the
end of his message and then encrypts the entire message (with T ). When Jim receives
the message, he decodes it. To verify the message is from Brian, he takes the value of the
signature T given at the end of the message and computes T s

′
modulo N ′ (note that both

s′ and N ′ are known to him). Since s′t′ ≡ 1 (mod φ(N ′)), Jim obtains S this way (i.e.,
S ≡ T s′ (mod N ′)). He then sees that the message is from Brian. The main point is that
since t′ is only known to Brian, he alone could have computed the value of T given at the
end of the message to Jim.

• The rest of the story. Actually, Brian did have numbers N ′ and s′ that he made
public, and Jason had such numbers as well. Jason sent a friendly message to Brian which
Jason signed with a certified signature. Brian responded with a message containing his
own certified signature. It was then that Jason sent his message to Jim. At that point,
Brian had given Jason the value of T (Brian’s certified signature), so Jason used Brian’s
certified signature in his message to Jim. So how might this problem be avoided? (Discuss
possible answers.)
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The Chinese Remainder Theorem:

• Theorem 14. Let m1, . . . ,mk be pairwise relatively prime positive integers. Let
b1, . . . , bk be arbitrary integers. Then the system

x ≡ b1 (mod m1)
...

x ≡ bk (mod mk)

has a unique solution modulo m1 · · ·mk.

• Proof (Constructive): Let M = m1 · · ·mk. For j ∈ {1, 2, . . . , k}, define Mj =
M/mj . If i and j are in {1, 2, . . . , k} with i 6= j, then (mi,mj) = 1. It follows that for
each j ∈ {1, 2, . . . , k}, (Mj ,mj) = 1 so that there is an M ′j ∈ Z such that

MjM
′
j ≡ 1 (mod mj).

We set x =
∑k
j=1 bjMjM

′
j . Then

x ≡ bjMjM
′
j ≡ bj (mod mj) for j ∈ {1, 2, . . . , k}.

This proves the existence of a solution to the system of congruences in the statement of
the theorem.

For uniqueness, suppose that y also satisfies y ≡ bj (mod mj) for each j ∈ {1, 2, . . . , k}.
Then y − x ≡ 0 (mod mj) for each such j, and we deduce that each mj divides y − x. As
the mj are relatively prime, we obtain M |(y−x). In other words, y ≡ x (mod m1 · · ·mk).

• Examples.

(1) Solve 17x ≡ 3 (mod 210) by using the Chinese Remainder Theorem. Use that
210 = 2 × 3 × 5 × 7 and observe that solving 17x ≡ 3 (mod 210) is equivalent to solving
the system x ≡ 1 (mod 2), x ≡ 0 (mod 3), x ≡ −1 (mod 5), and x ≡ 1 (mod 7). The
latter is equivalent to x ≡ 1 (mod 14) and x ≡ 9 (mod 15). Therefore,

x ≡ 1× 15× 1 + 9× 14× (−1) ≡ −111 ≡ 99 (mod 210).

(2) If a and b are integers, then the point (a, b) is called a lattice point. A visible
lattice point is one for which gcd(a, b) = 1 (it is visible from the origin). Prove that there
are circles (or squares) in the plane which are arbitrarily large and have the property that
each lattice point in the circles (or squares) is not visible. (Use that there are infinitely
many primes.)

(3) Prove that there exists a positive integer k for which 2nk + 1 is composite for
all positive integers n. (It is known that k = 78557 has this property and it is an open
problem to determine whether or not 78557 is the smallest such k.) We use the Fermat



13

numbers Fn = 22n + 1. Recall that Fn is prime for 0 ≤ n ≤ 4 and F5 is composite with
641 a “proper” divisor. Explain the following implications:

n ≡ 1 (mod 2) =⇒ 2nk + 1 ≡ 0 (mod 3) provided k ≡ 1 (mod 3),

n ≡ 2 (mod 4) =⇒ 2nk + 1 ≡ 0 (mod 5) provided k ≡ 1 (mod 5),

n ≡ 4 (mod 8) =⇒ 2nk + 1 ≡ 0 (mod 17) provided k ≡ 1 (mod 17),

n ≡ 8 (mod 16) =⇒ 2nk + 1 ≡ 0 (mod 257) provided k ≡ 1 (mod 257),

n ≡ 16 (mod 32) =⇒ 2nk + 1 ≡ 0 (mod 65537) provided k ≡ 1 (mod 65537),

n ≡ 32 (mod 64) =⇒ 2nk + 1 ≡ 0 (mod 641) provided k ≡ 1 (mod 641),

n ≡ 0 (mod 64) =⇒ 2nk + 1 ≡ 0 (mod F5/641) provided k ≡ −1 (mod F5/641).

By the Chinese Remainder Theorem, there are infinitely many positive integers k satisfying
the conditions on k on the right above (note that the last modulus is relatively prime to
the others). Also, every integer n can be seen to satisfy at least one of the congruences
involving n on the left. It follows that there are infinitely many positive integers k such
that for every positive integer n, the number 2nk + 1 is divisible by one of 3, 5, 17, 257,
65537, 641, and F5/641. If k is sufficiently large with this property, then it will suffice for
a value of k for this example

• Comments: If every integer n satisfies at least one of a set of congruences x ≡
aj (mod mj), for j = 1, . . . , k, then the congruences are said to form a covering of the
integers. It is unkown whether or not there is a covering consisting of distinct odd moduli
> 1. Also, it is not known whether or not there is a constant C > 0 such that every
covering using distinct moduli contains a modulus < C.

Homework:

(1) Find the smallest positive integer n > 2 such that 2 divides n, 3 divides n + 1, 4
divides n+ 2, 5 divides n+ 3, and 6 divides n+ 4. Prove your answer is the least such n.

(2) A squarefree number is a positive integer n which is not divisible by a square > 1. For
example, 1, 2, 3, 5, and 6 are squarefree but 4, 8, 9, and 12 are not. Let k be an arbitrary
positive integer. Prove that there is a positive integer m such that m+ 1,m+ 2, . . . ,m+k
are each NOT squarefree. (Use that there are infinitely many primes.)

(3) Calculate the remainder when the number 123456789101112 . . . 19781979 is divided by
1980.

(4) Let a0 = a and a1 = b be positive integers, and let an+1 = 2an + an−1 for all positive
integers n. Find relatively prime a and b such that every an, with n ≥ 0, is composite.
(Hint: I used the system of congruences n ≡ 0 (mod 2), n ≡ 1 (mod 3), n ≡ 3 (mod 4),
n ≡ 5 (mod 6), and n ≡ 9 (mod 12). You should convince yourselves that this system
forms a covering of the integers. The idea is to make each an divisible by a prime where the
prime depends on which of these congruences n satisfies. For example, suppose I choose a
and b so that a ≡ 1 (mod 3) and b ≡ −1 (mod 3). Then for n satisfing n ≡ 3 (mod 4),
which is one of the congruences in the system above, we will have that an is divisible by
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3. To see this consider the sequence an modulo 3 keeping in mind that a ≡ 1 (mod 3) and
b ≡ −1 (mod 3). The main problem should be figuring out what primes to use.)

Euler’s Phi Function Revisited:

• Recall φ(n) is the number of positive integers ≤ n that are relatively prime to n.

• Lemma 1. For every prime p and every positive integer k, φ(pk) = pk − pk−1.

• Proof. The number of multiples of p which are ≤ pk is pk−1. The result follows.

• Lemma 2. For relatively prime positive integers m and n, φ(mn) = φ(m)φ(n).

• Proof. If m = 1 or n = 1, then the result is clear; so we suppose m > 1 and n > 1.
Let a1, . . . , aφ(m) denote the positive integers ≤ m which are relatively prime to m, and
let b1, . . . , bφ(n) denote the positive integers ≤ n which are relatively prime to n. Suppose
now that k ∈ {1, 2, . . . ,mn} and (k,mn) = 1. Define a and b by

k ≡ a (mod m), 0 ≤ a < m, k ≡ b (mod n), and 0 ≤ b < n.

Since k = a + tm for some integer t and since (k,m) = 1, we deduce that (a,m) = 1.
Similarly, (b, n) = 1. Hence, there are i ∈ {1, 2, . . . , φ(m)} and j ∈ {1, 2, . . . , φ(n)} such
that

k ≡ ai (mod m) and k ≡ bj (mod n).

Since there are φ(m)φ(n) choices of pairs (i, j) and k is uniquely determined by the above
congruences (i.e., because of the Chinese Remainder Theorem), we get φ(mn) ≤ φ(m)φ(n).

Now, fix a pair (i, j) with i ∈ {1, 2, . . . , φ(m)} and j ∈ {1, 2, . . . , φ(n)}, and consider the
integer k ∈ {1, 2, . . . ,mn} (that exists by the Chinese Remainder Theorem) which satisfies
k ≡ ai (mod m) and k ≡ bj (mod n). There exists an integer t such that k = ai + tm
so that, since (ai,m) = 1, we obtain (k,m) = 1. Also, (k, n) = 1. Hence, (k,mn) =
1. Therefore, since each pair (i, j) corresponds to a different k, φ(mn) ≥ φ(m)φ(n).
Combining the inequalities, we get φ(mn) = φ(m)φ(n).

• Theorem 15. Suppose n = pe11 p
e2
2 · · · perr , where e1, . . . , er, and r are positive

integers and p1, . . . , pr are distinct primes. Then

φ(n) =
r∏
j=1

(pejj − p
ej−1
j ) = n

∏
p|n

(
1− 1

p

)
.

• Proof. The second equality is clear and the first follows from Lemma 1 and Lemma
2 (using φ(n) = φ(pe11 ) · · ·φ(perr )).

• Examples. Use the theorem to show that φ(100) = 40 and φ(140) = 48.

• A “sieve” proof of Theorem 15 can be given that doesn’t make use of the lemmas.
Observe that a positive integer m is not relatively prime to n if and only if m is divisible by
some pj with j ∈ {1, 2, . . . , r}. For distinct j1, . . . , jk in {1, 2, . . . , r}, the number of positive
multiples of pj1 · · · pjk which are ≤ n is n/(pj1 · · · pjk). The inclusion-exclusion principle
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implies that the number of positive integers ≤ n which are not divisible by p1, . . . , pr−1,
or pr is

n−
r∑
j=1

n

pj
+

∑
j1<j2≤r

n

pj1pj2
−

∑
j1<j2<j3≤r

n

pj1pj2pj3
+ · · ·+(−1)r

n

p1p2 . . . pr
= n

r∏
j=1

(
1− 1

pj

)
.

The theorem follows.

• Comments: An open problem due to Carmichael is to determine whether or not
there is a positive integer n such that if m is a positive integer different from n then
φ(m) 6= φ(n). If such an n exists, it is known that if must be > 101000. Some result in
this direction can be obtained as follows. Observe that n ≡ 0 (mod 2) since otherwise
φ(n) = φ(2n). Now, n ≡ 0 (mod 4) since otherwise φ(n) = φ(n/2). Now, n ≡ 0 (mod 3)
since otherwise φ(n) = φ(3n/2); and n ≡ 0 (mod 9) since otherwise φ(n) = φ(2n/3). This
approach can be extended (apparently indefinitely as long as one is willing to consider
branching off into different cases).

Homework:

(1) Calculate φ(180) and φ(1323).

(2) Prove that if n is a positive integer as in the comment above, then n > 1030. (Hint:
Eventually consider two cases depending on whether 13|n or 13 - n.)

(3) During the year 1985, a convenience store, which was open 7 days a week, sold at least
one book each day, and a total of 600 books over the entire year. Must there have been a
period of consecutive days when exactly 129 books were sold?

Polynomial Basics:

• Irreducible polynomials. A non-zero polynomial f(x) ∈ Z[x] with f(x) 6≡ ±1 is
irreducible (over Z or in Z[x]) if f(x) = g(x)h(x) with g(x) and h(x) in Z[x] implies either
g(x) ≡ ±1 or h(x) ≡ ±1. A non-zero polynomial f(x) ∈ Z[x] with f(x) 6≡ ±1 is reducible
if f(x) is not irreducible. A non-constant polynomial f(x) ∈ Q[x] is irreducible over Q
(or in Q[x]) if f(x) = g(x)h(x) with g(x) and h(x) in Q[x] implies either g(x) or h(x)
is a constant. A non-constant polynomial f(x) ∈ Q[x] is reducible over Q if f(x) is not
irreducible over Q.

• Examples. The polynomial x2 +1 is irreducible over Z and over Q. The polynomial
2x2 + 2 is reducible over Z and irreducible over Q.

• Comment: Suppose f(x) ∈ Z[x] and the greatest common divisor of the coefficients
of f(x) is 1. Then f(x) is irreducible over the integers if and only if f(x) is irreducible
over the rationals.

• Unique factorization in Z[x]. It exists.

• Division algorithm for polynomials. Given f(x) and g(x) in Z[x] with g(x) 6≡ 0,
there are unique polynomials q(x) and r(x) in Q[x] such that f(x) = q(x)g(x) + r(x) and
either r(x) ≡ 0 or deg r(x) < deg g(x). In the case where g(x) is monic, the polynomials
q(x) and r(x) will be in Z[x].



16

• Examples. If f(x) = x3 + 2x + 1 and g(x) = x2 + 2, then q(x) = x and r(x) = 1.

If f(x) = x4 + 4 and g(x) = 2x3 − 3x2 + 2, then q(x) =
1
2
x+

3
4

and r(x) =
9
4
x2 − x+

5
2

.

• The Euclidean Algorithm. Illustrate by computing gcd(x9+1, x8+x4+1). Note that
this example is not meant to be typical; in general the coefficients might not be integral.
If we want gcd(f(x), g(x)) to be monic, then division by a constant may be necessary after
performing the Euclidean algorithm.

• Given f(x) and g(x) in Z[x], not both ≡ 0, there exist polynomials u(x) and v(x)
in Q[x] such that

f(x)u(x) + g(x)v(x) = gcd(f(x), g(x)).

The Euclidean algorithm can be used to compute such u(x) and v(x).

• The Remainder Theorem. The remainder when a polynomial f(x) is divided by
x − a is f(a). Observe that the division algorithm for polynomials implies that there is
a polynomial q(x) ∈ Q[x] and a rational number r such that f(x) = (x − a)q(x) + r; the
remainder theorem follows by letting x = a. As a corollary, we note that (x − a)|f(x) if
and only if f(a) = 0.

• The Fundamental Theorem of Algebra. A non-zero polynomial f(x) ∈ C[x] of degree
n has exactly n complex roots when counted to their multiplicity. In other words, if f(x) =∑n
j=0 ajx

j ∈ C[x] is a non-zero polynomial with roots (counted to their multiplicity)
α1, α2, . . . , αn, then

f(x) = an(x− α1)(x− α2) · · · (x− αn).

• Elementary Symmetric Functions. Expanding the above factorization of f(x) in
terms of its roots, we deduce that

f(x) = an
(
xn − σ1x

n−1 + σ2x
n−2 − · · ·+ (−1)nσn

)
where

σ1 = α1 + α2 + · · ·+ αn, σ2 = α1α2 + α1α3 + · · ·+ αn−1αn, . . . , σn = α1α2 · · ·αn

(in general, σj is the sum of the roots of f(x) taken j at a time). We deduce the formula
σj = (−1)jan−j/an for each j ∈ {1, 2, . . . , n}. Any rational symmetric function of the
roots α1, α2, . . . , αn can be written in terms of the elementary symmetric functions σj .

• Examples. Discuss the values of σj when f(x) = x2 − 3x + 2 = (x − 1)(x − 2).
Also, given α1, α2, α3, α4 are the roots of f(x) = x4 + 2x3 − 3x+ 5, compute the value of
(1/α1) + (1/α2) + (1/α3) + (1/α4).

• Congruences Modulo Polynomials. Is x18 − 3x15 + x6 − x4 + 2x3 − x2 − 2 divisible
by x2 + x+ 1? If not, what’s the remainder? Discuss the answer(s).

Homework:

(1) Calculate gcd(x5 − 3x4 + 3x3 − 6x2 + 2x− 3, x4 − 3x3 + 2x2 − 3x+ 1).
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(2) Let α1, α2, and α3 be the roots of x3 + x+ 1 = 0. Calculate

Sk =
3∑
j=1

αkj for k = 1, 2, . . . , 10.

(3) Determine whether x4 + 1 is a factor of x25 + 2x23 + x17 + x13 + x7 + x3 + 1 using
arithmetic modulo x4 + 1.

(4) Consider all lines which meet the graph on y = 2x4 + 7x3 + 3x − 5 in four distinct
points, say (xi, yi), i = 1, 2, 3, 4. Show that (x1 +x2 +x3 +x4)/4 is independent of the line
and find its value.

Polynomials Modulo Integers, Part I:

• Theorem 16. Let p be an odd prime. The congruence x2 + 1 ≡ 0 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

• Proof: First suppose p ≡ 1 (mod 4). Then p = 4k + 1 for some positive integer k.
Thus, (p− 1)/2 is even. By Wilson’s Theorem, we obtain

−1 ≡ (p− 1)! ≡ 1× 2× · · · ×
(
p− 1

2

)
×
(
p+ 1

2

)
× · · · × (p− 2)× (p− 1)

≡ 1× 2× · · · ×
(
p− 1

2

)
×
(
− p− 1

2

)
× · · · × (−2)× (−1)

≡ (−1)(p−1)/2

(
p− 1

2

)
!
(
p− 1

2

)
! (mod p).

Thus, in this case, x2 + 1 ≡ 0 (mod p) has the solution x = ((p− 1)/2)!.
Now, suppose p ≡ 3 (mod 4). Then (p− 1)/2 is odd. Assume there is an integer x such

that x2 + 1 ≡ 0 (mod p). Then x2 ≡ −1 (mod p) implies (since (p− 1)/2 is odd) that

xp−1 ≡ (x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡ −1 (mod p).

This contradicts Fermat’s Little Theorem. Hence, the theorem follows.

• Corollary. There exist infinitely many primes ≡ 1 (mod 4).

• Before proving the corollary, we establish

Theorem 17. There exist infinitely many primes.

Proof 1 (Euclid’s). Assume there are only finitely many primes, say p1, . . . , pr. Then
the number p1 · · · pr + 1 is not divisible by any of the primes p1, . . . , pr, contradicting the
Fundamental Theorem of Arithmetic.

Proof 2. The Fermat numbers Fn = 22n + 1 are odd numbers > 1 satisfying

Fn+1 − 2 =
n∏
j=0

Fj .
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Hence, they are relatively prime, so there must exist infinitely many primes.

• Proof of Corollary. Consider the numbers n2 + 1 where n is an integer. By
Theorem 16, the only primes dividing any such number are 2 and primes ≡ 1 (mod 4).
Thus, it suffices to show there exist infinitely many primes dividing numbers of the form
n2 + 1. Assume otherwise. Let p1, . . . , pr be the primes which divide numbers of the form
n2 + 1. Since (p1 · · · pr)2 + 1 is not divisible by any of the primes p1, . . . , pr, we obtain a
contradiction.

Homework:

(1) Use an argument similar to Euclid’s to prove there exist infinitely many primes ≡ 3
(mod 4).

(2) Let f(x) be a non-constant polynomial in Z[x]. Prove there exist infinitely many
primes dividing numbers of the form f(n) where n ∈ Z.

(3) Let q be an odd prime, and let k be a positive integer. Let Nk = 2q
k − 1 = 2(qk) − 1.

(a) Prove that q does not divide Nk.
(b) Let p be a prime dividing Nk. Prove that p ≡ 1 (mod q).
(c) Explain why gcd

(
Nk, 2q

k(q−1) + 2q
k(q−2) + 2q

k(q−3) + · · ·+ 2q
k

+ 1
)

= 1.
(d) Observe that xq − 1 = (x− 1)(xq−1 + xq−2 + xq−3 + · · ·+ x+ 1). Prove that there

is a prime dividing Nk+1 which does not divide Nk.
(e) Prove there are infinitely many primes p ≡ 1 (mod q).

(4) Let n be an integer ≥ 3. Prove there exist infinitely many primes p which are not
congruent to 1 modulo n.

Lagrange’s Theorem:

• Theorem 18. Let f(x) ∈ Z[x] with f(x) 6≡ 0. Let p be a prime, and let n = deg f .
Then either the congruence

(∗) f(x) ≡ 0 (mod p)

has at most n incongruent roots modulo p or p divides each coefficient of f(x).

• Proof. The theorem is clearly true if n = 0. Let m be a positive integer, and
suppose the theorem holds for n < m. Consider f(x) ∈ Z[x] with deg f = m. If (∗)
has no solutions, then the desired conclusion follows for f(x). Suppose then that (∗) has
a solution, say a. Hence, there is an integer k such that f(a) = kp. This implies that
x − a is a factor of f(x) − kp (by the Remainder Theorem). In other words, there is a
g(x) ∈ Z[x] such that f(x) = (x − a)g(x) + kp. Clearly, deg g = m − 1. Observe that
f(x) ≡ g(x)(x − a) (mod p). We deduce that f(b) ≡ 0 (mod p) if and only if g(b) ≡ 0
(mod p) or b ≡ a (mod p). Since deg g = m− 1, we deduce that either there are at most
m−1 incongruent integers b modulo p that can satisfy g(b) ≡ 0 (mod p) or every coefficient
of g(x) is divisible by p. In either case, the theorem follows.

• Comment: Theorem 18 is not true if the prime p is replaced by a composite number
n. For example, x2 − 1 ≡ 0 (mod 8) has 4 incongruent solutions modulo 8. Also, 3x ≡ 0
(mod 9) has 3 incongruent solutions modulo 9.
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• Corollary. Let f(x) ∈ Z[x] be a monic polynomial of degree n, and let p be a prime.
Suppose f(x) ≡ 0 (mod p) has n incongruent solutions modulo p, say a1, . . . , an. Then

f(x) ≡ (x− a1) · · · (x− an) (mod p).

• Proof. Let g(x) = f(x)− (x− a1) · · · (x− an). Since f(x) is monic, deg g ≤ n− 1.
Also, g(x) ≡ 0 (mod p) has the n incongruent solutions a1, . . . , an modulo p. Lagrange’s
Theorem implies that p divides each coefficient of g(x).

• Wilson’s theorem can be established with the aid of Theorem 18. Let p be a prime.
We want to prove (p − 1)! ≡ −1 (mod p). Let f(x) = xp−1 − 1. By Fermat’s Little
Theorem and the above Corollary, we deduce

f(x) ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p).

Letting x = 0, we obtain the desired result.

Primitive Roots:

• Definition. Let a be an integer, and let n be a positive integer with gcd(a, n) = 1.
The order of a modulo n is the least positive integer d such that ad ≡ 1 (mod n).

• Comment: With a and n as above, the order of a modulo n exists since aφ(n) ≡ 1
(mod n). Furthermore, the order of a modulo n divides φ(n). To see this, consider
integers x and y for which dx+ φ(n)y = gcd(d, φ(n)), where d is the order of a modulo n.
Then it follows easily that agcd(d,φ(n)) ≡ 1 (mod n), and the definition of d implies that
d = gcd(d, φ(n)). This in turn implies d|φ(n) as claimed.

• Definition. If an integer a has order φ(n) modulo a positive integer n, then we say
that a is a primitive root modulo n.

• Comment: Given a positive integer n, it is not necessarily the case that there exists
a primitive root modulo n. There exists a primitive root modulo n if and only if n is 2, 4,
pr, or 2pr where p denotes an odd prime and r denotes a positive integer. The remainder
of this section deals with the case where n is a prime, and in this case we establish the
existence of a primitive root.

• Theorem 19. There is a primitive root modulo p for every prime p. Furthermore,
there are exactly φ(p− 1) incongruent primitive roots modulo p.

• Lemma. Let n denote a positive integer. Then∑
d|n

φ(d) = n,

where the summation is over all positive divisors of n.

• Proof of Lemma. Write n = pe11 p
e2
2 · · · perr where the pj are distinct primes and

the ej are positive integers. Note that∑
d|n

φ(d) =
r∏
j=1

(
1 + φ(pj) + · · ·+ φ(pejj )

)
.
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Since,
1 + φ(pj) + · · ·+ φ(pejj ) = 1 + (pj − 1)(1 + pj + · · ·+ p

ej−1
j ) = p

ej
j ,

we deduce that ∑
d|n

φ(d) =
r∏
j=1

p
ej
j = n.

• Theorem 19 is an apparent consequence of the next more general theorem.
Theorem 20. Let p be a prime, and let d be a positive divisor of p − 1. Then the

number of incongruent integers of order d modulo p is φ(d).

• Proof of Theorem 20. We first show that xd − 1 ≡ 0 (mod p) has exactly d
incongruent solutions modulo p. By Lagrange’s Theorem, it suffices to show that there is
at least d incongruent solutions. Assume there are < d incongruent solutions. Observe
that xp−1 − 1 = (xd − 1)g(x) for some g(x) ∈ Z[x] for degree p − 1 − d. A number is a
root of xp−1 − 1 ≡ 0 (mod p) if and only if it is a root of xd − 1 ≡ 0 (mod p) or g(x) ≡ 0
(mod p). By Lagrange’s Theorem, g(x) ≡ 0 (mod p) has at most p − 1 − d incongruent
solutions modulo p. Hence, xp−1−1 ≡ 0 (mod p) has < d+(p−1−d) = p−1 incongruent
solutions modulo p. This contradicts Fermat’s Little Theorem. Hence, xd−1 ≡ 0 (mod p)
must have exactly d incongruent solutions modulo p.

Next, suppose a has order d′ modulo p. We show that a is a root of xd− 1 ≡ 0 (mod p)
if and only if d′|d. If d′|d, then d = kd′ for some integer k so that

ad − 1 ≡ (ad
′
)k − 1 ≡ 1− 1 ≡ 0 (mod p).

Hence, a is a root of xd − 1 ≡ 0 (mod p). Now suppose we know a is a root of xd − 1 ≡ 0
(mod p) and we want to prove d′|d. There are integers q and r such that d = d′q + r and
0 ≤ r < d. Since

1 ≡ ad ≡ ad
′q+r ≡ (ad

′
)qar ≡ ar (mod p),

we deduce that r = 0 and, hence, d′|d as desired.
We proceed to prove the theorem by induction. If d = 1, then the theorem is clear.

Suppose the theorem holds for d < D. Then using the above information (including the
Lemma), we have

D = |{a : aD − 1 ≡ 0 (mod p), 0 ≤ a < p}|

=
∑
d′|D

|{a : a has order d′, 0 ≤ a < p}|

=
∑
d′|D
d′<D

φ(d′) + |{a : a has order D, 0 ≤ a < p}|

=
∑
d′|D

φ(d′)− φ(D) + |{a : a has order D, 0 ≤ a < p}|

= D − φ(D) + |{a : a has order D, 0 ≤ a < p}|.
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The theorem follows.

• Comment: If g is a primitive root modulo p, then the numbers 1, g, g2, . . . , gp−2 are
incongruent modulo p. It follows that the numbers 1, g, g2, . . . , gp−2 are congruent modulo
p to the numbers 1, 2, . . . , p− 1 in some order.

• Corollary. For all odd primes p, there are exactly (p − 1)/2 non-zero incongruent
squares modulo p.

• Proof. If x ≡ a2 (mod p) for some integer a with a 6≡ 0 (mod p), then x(p−1)/2 ≡
ap−1 ≡ 1 (mod p). Hence, Lagrange’s Theorem implies that there are ≤ (p−1)/2 non-zero
incongruent squares modulo p. On the other hand, if g is a primitive root modulo p, then
the numbers 1, g2, g4, . . . , gp−3 form (p− 1)/2 non-zero incongruent squares modulo p.

• Example. Illustrate the above by considering p = 7. Here, 3 is a primitive root,
and the non-zero squares are 1, 2, and 4.

• Comment: It is not known whether 2 is a primitive root modulo p for infinitely
many primes p. On the other hand, it is known that at least one of 2, 3, and 5 is a primitive
root modulo p for infinitely many primes p.

Homework:

(1) (a) Using an argument similar to that given for the proof of the lemma to Theorem
20, show that if n = pe11 p

e2
2 · · · perr and σ(n) =

∑
d|n d (i.e., σ(n) is the sum of the positive

divisors of n), then

σ(n) =
r∏
j=1

p
ej+1
j − 1
pj − 1

.

(b) Let τ(n) =
∑
d|n 1 (i.e., τ(n) is the number of positive divisors of n). With n as

above and using a similar argument to the above, show that

τ(n) = (e1 + 1) (e2 + 1) · · · (er + 1) .

(2) Let n be a positive integer. Given the notation in (1)(b) above, prove

(∑
d|n

τ(d)
)2

=
∑
d|n

τ3(d).

(3) Let p be a prime, let g be a primitive root modulo p, and let k be an integer. Prove
that gk is a primitive root modulo p if and only if gcd(k, p− 1) = 1.

(4) (a) Prove that if p is a prime ≡ 1 (mod 3), then there are exactly (p − 1)/3 non-zero
incongruent cubes modulo p.

(b) Prove that if p is a prime 6≡ 1 (mod 3), then there are exactly p − 1 non-zero
incongruent cubes modulo p. (Hint: If gj doesn’t look like a cube, maybe gj+(p−1) or
gj+2(p−1) will.)
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(c) Generalize parts (a) and (b) to kth powers modulo a prime. In other words, find a
precise description similar to the above for the number of kth powers modulo a prime.

Euler’s Criterion:

• Theorem 21. Let p be an odd prime, and let a be an integer not divisible by p. If
a is a square modulo p, then a(p−1)/2 ≡ 1 (mod p). If a is not a square modulo p, then
a(p−1)/2 ≡ −1 (mod p).

• Proof: In the first line of the proof of the Corollary to Theorem 20, we saw that
non-zero squares modulo p are roots of xp−1 − 1 ≡ 0 (mod p). This is the first half of
Theorem 21. It remains to prove now that if a is not a square modulo p, then a is a root
of x(p−1)/2 + 1 ≡ 0 (mod p). Observe that every integer in {1, 2, . . . , p− 1} satisfies

(x(p−1)/2 − 1)(x(p−1)/2 + 1) ≡ xp−1 − 1 ≡ 0 (mod p)

so that if a ∈ {1, 2, . . . , p − 1}, then a is a root of either x(p−1)/2 − 1 ≡ 0 (mod p) or
x(p−1)/2 + 1 ≡ 0 (mod p) (and not both). By Lagrange’s Theorem, x(p−1)/2 − 1 ≡ 0
(mod p) can have at most (p − 1)/2 incongruent roots. By the first part of the proof,
these roots are the non-zero squares modulo p. It follows that the remaining integers in
{1, 2, . . . , p− 1} must satisfy x(p−1)/2 + 1 ≡ 0 (mod p), completing the proof.

• Example. Determine if 3 is a square modulo 31. Use that 33 ≡ −4 (mod 31) =⇒
36 ≡ 16 (mod 31) =⇒ 39 ≡ −2 (mod 31) =⇒ 315 ≡ −1 (mod 31). By Euler’s criterion,
3 is not a square modulo 31.

Quadratic Residues:

• Definition. Let p be a prime, and let a be an integer not divisible by p. If a is a
square modulo p, then a is said to be a quadratic residue modulo p. Otherwise, we say
that a is a quadratic nonresidue modulo p.

• Definition. Let p be a prime, and let a be an integer. The Legendre symbol
(
a

p

)
is

defined by (
a

p

)
=


1 if a is a quadratic residue mod p

0 if a ≡ 0 (mod p)
−1 otherwise.

• Comment. For p an odd prime and a an integer, Euler’s criterion is equivalent to(
a

p

)
≡ a(p−1)/2 (mod p).

• Theorem 22. Let a and b be integers, and let p be a prime. Then the following
hold.

(i) If a ≡ b (mod p), then
(
a

p

)
=
(
b

p

)
.

(ii) If a 6≡ 0 (mod p), then
(
a2

p

)
= 1.
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(iii)
(
ab

p

)
=
(
a

p

)(
b

p

)
.

(iv) If p is odd, then
∑p−1
a=1

(
a

p

)
= 0.

• Proof. The definition of the Legendre symbol immediately implies (i) and (ii).
Euler’s criterion implies (iii) (deal with p = 2 separately). Finally, (iv) follows from the
fact that if p is odd, then there are (p − 1)/2 quadratic residues and (p − 1)/2 quadratic
nonresidues in the sum (see the Corollary to Theorem 20).

• Evaluating the Legendre symbol. One can evaluate the Legendre symbol directly
from the definition or with the aid of Euler’s criterion. The latter done correctly is quite
efficient. Another method which works somewhat better (especially by hand) is to make
use of the following three theorems.

Theorem 23. For p an odd prime,
(
−1
p

)
=
{

1 if p ≡ 1 (mod 4)
−1 if p ≡ −1 (mod 4).

Theorem 24. For p an odd prime,
(

2
p

)
=
{

1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8).

Theorem 25. If p and q are odd primes, then

(
p

q

)
=


(
q

p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−
(
q

p

)
if p ≡ q ≡ −1 (mod 4).

• Comment. In some sense, only Theorem 25 is needed here as it can be shown that
Theorem 23 and Theorem 24 follow as a consequence of Theorem 25.

• Theorem 23 is an immediate consequence of previous material. Euler’s criterion
implies (

−1
p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ −1 (mod 4).

Theorem 23 is also equivalent to Theorem 16.

• Examples. Show that
(
−17
79

)
= 1 using the above results. Hence, −17 is a

quadratic residue modulo 79. Also, discuss whether x2 − x − 1 factors modulo 7 and
modulo 11. Describe the primes p for which x2 − x− 1 factors modulo p.

• A further example. Here we show that there are no integers x and y satisfying the
Diophantine equation

(∗) y2 = x3 + 11.

Assume integers x and y exist satisfying (∗). By considering (∗) modulo 4, we deduce that
x ≡ 1 (mod 4) (i.e., since 0 and 1 are the only squares modulo 4). Observe that (∗) implies

y2 + 16 = x3 + 27 = (x+ 3)(x2 − 3x+ 9).
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Since x ≡ 1 (mod 4), we deduce x2 − 3x + 9 ≡ 3 (mod 4). This implies that there is a
prime p ≡ 3 (mod 4) dividing x2−3x+9 and, hence, y2 +16. This implies

(
y×4−1

)2 ≡ −1
(mod p). This contradicts Theorem 23. Hence, (∗) has no integer solutions.

Homework:

(1) Calculate the Legendre symbols
(

30
71

)
and

(
−56
103

)
.

(2) Let p denote a prime. Prove that there is a solution to x2− 3x+ 3 ≡ 0 (mod p) if and
only if p = 3 or p ≡ 1 (mod 3).

(3) Prove that for every prime p, there is an a ∈ {1, 2, . . . , 9} such that both a and a+ 1
are squares modulo p.

(4) Prove that there are no integers x and y such that y2 = x3 + 7.

(5) (a) For every odd prime p, prove either
(
−1
p

)
= 1,

(
2
p

)
= 1, or

(
−2
p

)
= 1.

(b) Prove that x4 + 1 is reducible modulo p for every prime p.

(6) Prove that for every positive integer N , there is an integer a such that a is not a
square modulo p for every odd prime p ≤ N . (Hint: Use a major theorem from earlier in
this course.)

(7) Note that 107 and (107− 1)/2 = 53 are primes.

(a) Calculate the Legendre symbol
(

15
107

)
.

(b) The value of 1553 is either 1 or −1 modulo 107. Use Euler’s criterion together
with part (a) to determine (with explanation) whether 1553 ≡ 1 (mod 107) or 1553 ≡ −1
(mod 107).

(c) Using part (b), explain why 15 is a primitive root modulo 107.

Gauss’ Lemma and the Proof of Theorem 24:

• Theorem 26. Let p be an odd prime, and let a be an integer not divisible by p. Let
n denote the number of integers in the set S = {a, 2a, 3a, . . . , ((p − 1)/2)a} which have a
remainder > p/2 when divided by p. Then(

a

p

)
= (−1)n.

• Comment: Observe that Theorem 23 is a consequence of Theorem 26.

• Before proving Theorem 26, we explain its connection to Theorem 24.

Proof of Theorem 24 assuming Theorem 26. Here a = 2 and S = {2, 4, 6, . . . , p−1}.
If p ≡ 1 (mod 4), then the elements of S which have a remainder > p/2 when divided by
p are ((p− 1)/2) + 2k for k = 1, 2, . . . , (p− 1)/4. Hence, n = (p− 1)/4 and we obtain(

2
p

)
= (−1)(p−1)/4 =

{
1 if p ≡ 1 (mod 8)
−1 if p ≡ −3 (mod 8).
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If p ≡ 3 (mod 4), then the elements of S which have a remainder > p/2 when divided by
p are ((p− 1)/2) + 2k − 1 for k = 1, 2, . . . , (p+ 1)/4. Thus, n = (p+ 1)/4 and we obtain(

2
p

)
= (−1)(p+1)/4 =

{
1 if p ≡ −1 (mod 8)
−1 if p ≡ 3 (mod 8).

This completes the proof.

• Proof of Theorem 26. Let a1, . . . , an be the elements of S which have a remainder
> p/2 when divided by p. Let b1, . . . , bm be the remaining elements of S. Let a′j (for
1 ≤ j ≤ n) and b′j (for 1 ≤ j ≤ m) be defined by

a′j ≡ aj (mod p), 0 ≤ a′j < p, b′j ≡ bj (mod p), and 0 ≤ b′j < p.

Let T = {p− a′j : 1 ≤ j ≤ n} ∪ {b′j : 1 ≤ j ≤ m}.
We begin by showing that T = {1, 2, . . . , (p−1)/2}. Note that T ⊆ {1, 2, . . . , (p−1)/2}

and that n + m = (p − 1)/2. Hence, it suffices to show the n + m elments defining T
are distinct. If u and v are in {1, 2, . . . , (p − 1)/2} and ua ≡ va (mod p), then u ≡ v
(mod p). It follows that the n values of p − a′j are distinct and the m values of b′j are
distinct. Assume k ∈ {1, 2, . . . , n} and ` ∈ {1, 2, . . . ,m} are such that p − a′k = b′`. Then
there are u and v in {1, 2, . . . , (p − 1)/2} such that p − ua ≡ va (mod p). This implies
(u+ v)a ≡ 0 (mod p) which contradicts that p - a and 2 ≤ u+ v ≤ p− 1. We deduce that
T = {1, 2, . . . , (p− 1)/2}.

From T = {1, 2, . . . , (p− 1)/2}, we obtain(
p− 1

2

)
! ≡ (p− a′1) · · · (p− a′n)b′1 · · · b′m ≡ (−1)na′1 · · · a′nb′1 · · · b′m

≡ (−1)na(2a)(3a) · · ·
((

p− 1
2

)
a

)
≡ (−1)na(p−1)/2

(
p− 1

2

)
! (mod p).

Therefore, by Euler’s criterion,(
a

p

)
≡ a(p−1)/2 ≡ (−1)n (mod p),

and Theorem 26 follows.

The Quadratic Reciprocity Law:

• Lemma. If p is an odd prime and a is an odd integer with p not dividing a, then

(
a

p

)
= (−1)

(p−1)/2∑
k=1

[ka/p]

where [ ] denotes the greatest integer function.
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• Proof. We use the notation given in the proof of Theorem 26. For each k ∈
{1, 2, . . . , (p− 1)/2}, we have

ka = qkp+ tk with 1 ≤ tk ≤ p− 1,

where if tk > p/2 then tk is some a′j and if tk < p/2 then tk is some b′j . Observe that
qk = [ka/p]. Thus,

(∗)
(p−1)/2∑
k=1

ka =
(p−1)/2∑
k=1

[
ka

p

]
p+

n∑
j=1

a′j +
m∑
j=1

b′j .

Recall that

{p− a′j : 1 ≤ j ≤ n} ∪ {b′j : 1 ≤ j ≤ m} = {1, 2, . . . , (p− 1)/2}.

Hence,
(p−1)/2∑
k=1

k =
n∑
j=1

(p− a′j) +
m∑
j=1

b′j .

Combining this with (∗) gives

(a+ 1)
(p−1)/2∑
k=1

k =
(p−1)/2∑
k=1

[
ka

p

]
p+ pn+ 2

m∑
j=1

b′j .

Since a and p are odd, we obtain
(p−1)/2∑
k=1

[
ka

p

]
≡ n (mod 2). The result now follows from

Theorem 26.

• Proof of Theorem 25. If p = q, then the result is clear. So suppose p 6= q. It suffices
to prove in this case that

(
p

q

)(
q

p

)
= (−1)

p− 1
2
×
q − 1

2 .

Consider the rectangle R in the xy-plane with vertices (0, 0), (p/2, 0), (p/2, q/2), and

(0, q/2). The number of lattice points strictly inside R is
p− 1

2
× q − 1

2
. We now count

these points in a different way. Let D denote the diagonal joining (0, 0) to (p/2, q/2). Thus,
D is a segment of the line py = qx. If (x0, y0) is a lattice point on this line, then p|x0.
Therefore, (x0, y0) is not strictly inside R. It follows that the number of lattice points
strictly inside R is the number of such points below D plus the number of such points
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above D. The number of such lattice points below D is
(p−1)/2∑
k=1

[
kq

p

]
, and the number of

such lattice points above D is
(q−1)/2∑
k=1

[
kp

q

]
. We deduce that

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
k=1

[
kp

q

]
=
p− 1

2
× q − 1

2
.

The lemma now implies

(
p

q

)(
q

p

)
= (−1)

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
k=1

[
kp

q

]
= (−1)

p− 1
2
×
q − 1

2 ,

completing the proof.

Homework:

(1) Let ω(n) denote the number of incongruent solutions to x2 ≡ 1 (mod 2n). Observe
that ω(1) = 1, ω(2) = 2, and ω(3) = 4. Prove that ω(n) = 4 for all n ≥ 3. (Indicate
clearly where you use that n ≥ 3.)

Sums of Two Squares:

• Theorem 27. A positive integer n is a sum of two squares if and only if every
prime p ≡ 3 (mod 4) satisfies pe||n for some even number e.

• Proof. First, we show that if n is a sum of two squares and p2k+1||n for some non-
negative integer k, then either p = 2 or p ≡ 1 (mod 4). Write n = p2k+1m for some integer
m not divisible by p. Let a and b be such that n = a2 + b2. Let ` be the non-negative
integer satisfying p`||a, and write a = p`a′ so that a′ ∈ Z and p - a′. If ` ≥ k + 1, then

b2 = n− a2 = p2k+1m− p2`(a′)2 = p2k+1(m− p2`−2k−1(a′)2).

This is impossible since p does not divide m − p2`−2k−1(a′)2 and p2k+1|b2 =⇒ p2k+2|b2.
Thus, ` ≤ k and p2`||(n− a2). In other words, b = p`b′ where b′ is an integer not divisible
by p. From n = a2 + b2 and p2k+1|n, we deduce (a′)2 + (b′)2 ≡ 0 (mod p). Hence,
(a′(b′)−1)2 ≡ −1 (mod p). By Theorem 23, we conclude as desired that either p = 2 or
p ≡ 1 (mod 4).

Now, suppose that every prime p ≡ 3 (mod 4) satisfies pe||n for some even number e.
Observe that 2 = 12 + 12 (i.e., 2 is a sum of two squares). We want to show that n is a
sum of two squares. It suffices to show (i) if k and ` are both sums of two squares, then so
is k`, (ii) if p ≡ 3 (mod 4), then p2 is the sum of two squares, and (iii) if p ≡ 1 (mod 4),
then p is the sum of two squares. To prove (i), let a, b, a′, and b′ be integers such that
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k = a2 + b2 and ` = (a′)2 + (b′)2. Then k = (a+ bi)(a− bi) and ` = (a′ + b′i)(a′ − b′i) so
that

k` = (a+ bi)(a′ + b′i)(a− bi)(a′ − b′i)
= ((aa′ − bb′) + (ab′ + a′b)i)((aa′ − bb′)− (ab′ + a′b)i) = (aa′ − bb′)2 + (ab′ + a′b)2.

To prove (ii), simply observe that p2 = 02 + p2 is the sum of two squares. We now turn to
establishing (iii). Since p ≡ 1 (mod 4), there is an integer x0 such that x2

0 ≡ −1 (mod p).
Let m = [

√
p]+1 so that

√
p < m <

√
p+1. In particular, m2 > p which implies m2 ≥ p+1.

Let S1 = {k ∈ Z : |k| ≤ m−1}. Since |S1| = 2m−1 and 2m−1 +m(m−2) = m2−1 ≥ p,
we can find m− 2 sets S2, . . . , Sm−1 satisfying

S1 ∪ S2 ∪ · · · ∪ Sm−1 = {−(m− 1),−(m− 2), . . . ,−1, 0, 1, . . . , p−m− 1, p−m}

with each Sj consisting of ≤ m consecutive integers and with every two Si and Sj with
1 ≤ i < j ≤ m − 1 being disjoint. Observe that for every integer t there is a unique
j ∈ {1, 2, . . . ,m− 1} such t is congruent modulo p to some element of Sj . Consider the m
numbers sx0 where 0 ≤ s ≤ m − 1. By the pigeonhole principal, some two of these, say
ux0 and vx0, are congruent modulo p to elements in the same Sj . Fix such u, v, and j. If
j = 1 and uv 6= 0, then reassign the value of u so that u = 0. It follows that (v − u)x0 is
congruent modulo p to some element in S1. Let k = |v − u| so that k ∈ {1, 2, . . . ,m − 1}
and kx0 is congruent modulo p to some element in S1. Let a ≡ kx0 (mod p) with a ∈ S1,
and set b = k. Then

a2 + b2 ≡ k2(x2
0 + 1) ≡ 0 (mod p).

Also,
|a2 + b2| ≤ (m− 1)2 + (m− 1)2 < (

√
p)2 + (

√
p)2 = 2p.

Since b = k ≥ 1, we obtain a2 + b2 ∈ (0, 2p). Since a2 + b2 is divisible by p, we deduce
a2 + b2 = p. This completes the argument for (iii) and completes the proof of the theorem.

Polynomial Congruences Modulo Composite Numbers:

• Reduction to prime powers. We have dealt with solving quadratic polynomials
modulo primes; we deal now with the general congruence f(x) ≡ 0 (mod m) where f(x) ∈
Z[x] and m = pe11 · · · perr with the pj denoting distinct primes and the ej denoting positive
integers. Given an integer x0, it is easy to see that f(x0) ≡ 0 (mod m) if and only if
f(x0) ≡ 0 (mod p

ej
j ) for every j ∈ {1, 2, . . . , r}. In other words, solving the congruence

f(x) ≡ 0 (mod m) is the same as solving the system of congruences f(x) ≡ 0 (mod p
ej
j )

with j ∈ {1, 2, . . . , r}. We discuss an approach to solving f(x) ≡ 0 (mod pe). Once this
congruence can be solved, we can piece together the solution with different prime powers
by using the Chinese Remainder Theorem. The third example below illustrates how this
is done.

• Solving congruences modulo prime powers. Let f(x) ∈ Z[x], and let p be a prime. To
find the roots of f(x) modulo a power of p, we first find the solutions to f(x) ≡ 0 (mod p)
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and inductively increase the exponent of p in the modulus. For this purpose, suppose
that e is an integer ≥ 2, we know the solutions to the congruence f(x) ≡ 0 (mod pe−1),
and we want to know the solutions to f(x) ≡ 0 (mod pe). We begin with an integer x0

satisfying f(x0) ≡ 0 (mod pe−1) and determine the integers u ≡ x0 (mod pe−1) for which
f(u) ≡ 0 (mod pe). All integers u satisfying f(u) ≡ 0 (mod pe) can be obtained this way
as such u also satisfy f(u) ≡ 0 (mod pe−1). Since u ≡ x0 (mod pe−1), there is an integer
k such that u = x0 + kpe−1. We may further suppose that k ∈ {0, 1, . . . , p − 1} since
f(u) ≡ 0 (mod pe) holds if and only if f(u+ `pe) ≡ 0 (mod pe) holds for every integer `.
From Calculus, we can write

f(x+ kpe−1) = f(x) + f ′(x)kpe−1 +
f ′′(x)

2!
(kpe−1)2 + · · · .

Observe that there are a finite number of terms on the right-hand side above and that
f (`)(x)/`! ∈ Z[x] for every positive integer `. Note that e ≥ 2 implies 2(e− 1) ≥ e. Hence,

(∗) 0 ≡ f(x0 + kpe−1) ≡ f(x0) + f ′(x0)kpe−1 (mod pe).

If f ′(x0) ≡ 0 (mod p) and f(x0) ≡ 0 (mod pe), then (∗) is true for all integers k. If
f ′(x0) ≡ 0 (mod p) and f(x0) 6≡ 0 (mod pe), then (∗) is not true regardless of k. If
f ′(x0) 6≡ 0 (mod p), then f ′(x0) has an inverse modulo p. Also, f(x0) ≡ 0 (mod pe−1) so
pe−1|f(x0). In this case, (∗) has the unique solution k ∈ {0, 1, . . . , p− 1} given by

(∗∗) k ≡ −f(x0)
pe−1

f ′(x0)−1 (mod p).

Summarizing, we have that for a given solution x0 of f(x) ≡ 0 (mod pe−1), one of the
following occurs:

(i) f ′(x0) ≡ 0 (mod p) and f(x0) ≡ 0 (mod pe) and there are p incongruent solutions
u modulo pe to f(x) ≡ 0 (mod pe) with u ≡ x0 (mod pe−1) and they are given by u =
x0 + kpe−1 where k ∈ {0, 1, . . . , p− 1},

(ii) f ′(x0) ≡ 0 (mod p) and f(x0) 6≡ 0 (mod pe) and there do not exist solutions u to
f(x) ≡ 0 (mod pe) with u ≡ x0 (mod pe−1), or

(iii) f ′(x0) 6≡ 0 (mod p) and there is exactly one solution u modulo pe to f(x) ≡
0 (mod pe) with u ≡ x0 (mod pe−1) and it is given by u = x0 + kpe−1 with k satisfying
(∗∗).
• Two examples. Let f(x) = x2 + x+ 1 and p = 3. Then f(1) ≡ 0 (mod 3). In fact,

every integer satisfying f(x) ≡ 0 (mod 3) is congruent to 1 modulo 3. Since f ′(x) = 2x+1,
we deduce that f ′(1) ≡ 0 (mod 3) and f(1) ≡ 3 6≡ 0 (mod 32). By (ii), f(x) ≡ 0 (mod 32)
has no solutions and so neither does f(x) ≡ 0 (mod 3e) for each e ≥ 2.

Now, suppose f(x) = x2 + 4x + 4 and p = 3. Note that modulo 3, f(x) is the same
here as in the previous problem. Again, all solutions to f(x) ≡ 0 (mod 3) are 1 modulo 3.
Also, f ′(1) ≡ 0 (mod 3) and f(1) ≡ 0 (mod 32). Thus, by (i), there are three incongruent
solutions to f(x) ≡ 0 (mod 32) given by 1, 4, and 7. Observe that if x0 represents any one
of these three solutions, then f ′(x0) ≡ f ′(1) ≡ 0 (mod 3). Also, f(1) ≡ 9 6≡ 0 (mod 33),
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f(4) ≡ 36 6≡ 0 (mod 33), and f(7) ≡ 81 ≡ 0 (mod 33). By (i) and (ii), there exist exactly
three incongruent solutions to f(x) ≡ 0 (mod 33) given by 7, 16, and 25. Observe that
solving f(x) ≡ 0 (mod 3e) is actually easy since f(x) = (x + 2)2. If k is the least integer
greater than or equal to e/2, then f(x) ≡ 0 (mod 3e) if and only if x + 2 ≡ 0 (mod 3k).
It follows that f(x) ≡ 0 (mod 3e) has exactly 3e−k solutions given by 3k` − 2 where
` ∈ {1, 2, . . . , 3e−k}.
• A third example. Here we calculate all incongruent solutions modulo 175 to

x3 + 2x2 + 2x− 6 ≡ 0 (mod 175).

Since 175 = 52 × 7, we consider f(x) ≡ 0 (mod 25) and f(x) ≡ 0 (mod 7) where f(x) =

x3 + 2x2 + 2x − 6. Since f(x) ≡ (x − 3)(x2 + 2) (mod 5) and
(
−2
5

)
= −1, the only

solutions of f(x) ≡ 0 (mod 5) are 3 modulo 5. Since f ′(3) ≡ 41 ≡ 1 6≡ 0 (mod 5) and
f(3) = 45, we obtain from (iii) that the all solutions to f(x) ≡ 0 (mod 25) are congruent
to 3 + 5(−9) ≡ 8 modulo 25. One checks directly that the incongruent solutions modulo
7 to f(x) ≡ 0 (mod 7) are 2, 4, and 6. It follows that there are exactly three incongruent
solutions modulo 175, say x1, x2, and x3, satisfying

x1 ≡ 8 (mod 25), x2 ≡ 8 (mod 25), x3 ≡ 8 (mod 25)

x1 ≡ 2 (mod 7), x2 ≡ 4 (mod 7), x3 ≡ 6 (mod 7).

By the proof of the Chinese Remainder Theorem,

x1 ≡ 8× 7× (−7) + 2× 25× 2 ≡ −392 + 100 ≡ −292 ≡ 58 (mod 175),

x2 ≡ 8× 7× (−7) + 4× 25× 2 ≡ x1 + 100 ≡ 158 (mod 175), and

x3 ≡ 8× 7× (−7) + 6× 25× 2 ≡ x2 + 100 ≡ 83 (mod 175).

Thus, f(x) ≡ 0 (mod 175) has exactly three incongruent solutions modulo 175 given by
58, 83, and 158.

Homework:

(1) Find all the incongruent solutions modulo 135 to x5 + x3 + 5x + 15 ≡ 0 (mod 135).
Do this in the method described above showing your work as in the third example.

Tossing Coins Over The Phone:

• Two people A and B agree over the phone to get together at either A’s house or
B’s house, but each is too lazy to volunteer going over to the other’s house. Since B is
thinking rather quickly, he says, “I’ll toss a coin and you call heads or tails. If you are
right, I’ll come over to your house. If you are wrong, you have to come over here.” It so
happens that A is thinking even better, and she suggests the following fair way to toss a
coin over the phone.
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Step 1: A forms a number n = pq where p and q are distinct large primes congruent to
3 modulo 4. The primes are small enough that they can pass current primality tests and
large enough so that n cannot be factored using current factoring methods. A tells B what
the value of n is.

Step 2: B chooses k ∈ {1, 2, . . . , n−1}, computes ` ≡ k2 (mod n) with ` ∈ {1, 2, . . . , n−1},
and tells A what ` is. (We suppose that gcd(k, pq) = 1; since p and q are large, this is very
likely. In any case, the coin toss is not perfect because of this assumption.)

Step 3: A tries to figure out what k is. She knows ` ≡ k2 (mod p) and ` ≡ k2 (mod q).
Note that p ≡ 3 (mod 4) so that (p + 1)/4 ∈ Z. The value of ±k modulo p can be
determined by computing k1 ≡ `(p+1)/4 (mod p). To see this, observe that

k2
1 ≡

(
`(p+1)/4

)2 ≡ `(p+1)/2 ≡ `(p−1)/2` ≡ kp−1` ≡ ` (mod p).

Note that Lagrange’s Theorem implies the incongruent solutions of x2 ≡ ` (mod p) are
precisely ±k modulo p. Hence, k1 ≡ ±k (mod p). Also, A computes k2 ≡ `(q+1)/4 (mod q)
so that k2 ≡ ±k (mod q). Observe that the solutions modulo n of x2 ≡ ` (mod n) are
given by

(i) x ≡ k1 (mod p) and x ≡ k2 (mod q)

(ii) x ≡ −k1 (mod p) and x ≡ −k2 (mod q)

(iii) x ≡ k1 (mod p) and x ≡ −k2 (mod q)

(iv) x ≡ −k1 (mod p) and x ≡ k2 (mod q)

A computes u ∈ {1, 2, . . . , n − 1} satisfying (i) and v ∈ {1, 2, . . . , n − 1} satisfying (iii).
Then the solution to (ii) is x ≡ −u (mod n) and the solution to (v) is x ≡ −v (mod n).
Note that v 6≡ ±u (mod n) as u + v is not divisible by p and u − v is not divisible by q.
Since k2 ≡ ` (mod n), we deduce that either k ≡ ±u (mod n) or k ≡ ±v (mod n) but
not both. A selects one of u or v, say w, and tells B that she is guessing that k is one of
w and n− w.

Step 4: B checks if k is one of w and n − w. If it is, then B admits it (so he has to go
over to her place). If k is not one of w and n−w, then B tells A that she was incorrect. In
this event the conversation continues as B must convince A that he is not lying. To prove
that B is telling the truth, B tells A how n factors. B determines this as follows. Suppose
w = u (in the case that w = v, the factorization of n is determined in a similar way) so
that k ≡ ±v (mod n). From the definition of u and v, it follows that w + k is divisible
by exactly one of p and q. Hence, B can determine p or q by computing gcd(n,w + k).
(Observe that B does not know which of the two numbers u and n − u given to him is
w, but either one can be used since gcd(n, n − w + k) is also either p or q.) This easily
enables B to factor n. Thus, in the event that B claims that A’s guess of w or n− w for
k is incorrect, B verifies that A is incorrect by giving A the factorization of n.
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Definitions and Notations for Analytic Estimates:

• Let f and g be real-valued functions with domain containing an interval [c,∞) for
some real number c. We say that f(x) is big oh of g(x) and write f(x) = O(g(x)) if there
is a constant C > 0 such that |f(x)| ≤ Cg(x) for all x sufficiently large. We say f(x) is less
than less than g(x) and write f(x) � g(x) if f(x) = O(g(x)), and we say f(x) is greater
than greater than g(x) and write f(x) � g(x) if g(x) = O(f(x)). We say the asymptotic
order of f(x) is g(x) and write f(x) � g(x) (or f(x)�� g(x)) if g(x)� f(x)� g(x). We

say that f(x) is little oh of g(x) and write f(x) = o(g(x)) if lim
x→∞

f(x)
g(x)

= 0. We say that

f(x) is aymptotic to g(x) and write f(x) ∼ g(x) if lim
x→∞

f(x)
g(x)

= 1. Analogous definitions

exist if the domain is in the set of positive integers.

• Examples. Discuss each of the following:

n∑
k=1

k � n2,
n∑
k=1

k ∼ n2

2
,

√
x+ 1−

√
x� 1√

x
, log

(
1 +

1
x

)
= O(1/x).

• Comment: The expression O(g(x)) in an equation represents a function f(x) =
O(g(x)). To clarify, the last equation in∑

p≤x

[
x

p

]
=
∑
p≤x

x

p
+O

(∑
p≤x

1
)

=
∑
p≤x

x

p
+O(x)

does not assert that a function is O
(∑
p≤x

1
)

if and only if it is O(x) but rather there is a

function f(x) that satisfies f(x) = O

(∑
p≤x

1
)

and f(x) = O(x). Indeed, in the equation

above, the big oh expressions both represent the same function f(x) =
∑
p≤x

([
x

p

]
− x

p

)
.

• An estimate using integrals. Explain why
∑
k≤x

1
k
≥ log x.

Homework:

(1) Let f : R+ → R
+ and g : R+ → R

+. Find all possible implications between the
following. In each case, give a proof or a counterexample.

(a) f(x) ∼ g(x)
(b) f(x) = g(x) +O(1)
(c) f(x)− g(x) � 1
(d) f(x) = g(x) + o(g(x))

(2) (a) Prove that
∑
k≤x

1
k
≤ 1 + log x for all x ≥ 1.
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(b) Prove that
∑
k≤x

1
k
∼ log x.

(c) Prove that
∑
k≤x

1
k

= log x+O(1).

(3) (a) How many positive integers ≤ 210 are not divisible by each of the primes 2, 3, 5,
and 7? For example, 11 would be such an integer but 39 would not be.

(b) Let A(x) = |{n ≤ x : each of 2, 3, 5, and 7 does not divide n}|. Prove that A(x) ∼
cx for some constant c and determine the value of c.

(4) Let a be a real number. Suppose f : [a,∞)→ R has the property that for every t ≥ a,
there exists an M(t) such that |f(x)| ≤ M(t) for all x ∈ [a, t]. Suppose g : [a,∞) → R

+

has the property that for every t ≥ a, there exists an ε(t) > 0 such that g(x) ≥ ε(t) for all
x ∈ [a, t]. Finally, suppose that f(x) � g(x). Prove that there is a constant C > 0 such
that |f(x)| ≤ Cg(x) for all x ≥ a.

(5) Let f : R+ → R and g : R+ → R
+ be Riemann integrable functions. Suppose that

f(t) = O(g(t)). Prove or disprove that∫ x

1

f(t) dt = O

(∫ x

1

g(t) dt
)
.

Sums and Products Involving Primes:

• Lemma.
∏
p≤x

(
1− 1

p

)
≤ 1

log x
for all x > 1.

• Proof. The lemma follows from∏
p≤x

(
1− 1

p

)−1

=
∏
p≤x

(
1 +

1
p

+
1
p2

+ · · ·
)
≥
∑
k≤x

1
k
≥ log x.

• Comment: Observe that the lemma gives another proof that there are infinitely
many primes.

• Theorem 28. The series
∑

p prime

1
p

diverges. In fact,
∑
p≤x

1
p
� log log x.

• Proof. For x > 1, the lemma implies

− log
∏
p≤x

(
1− 1

p

)
≥ log log x.

On the other hand,

log
∏
p≤x

(
1− 1

p

)
=
∑
p≤x

log
(

1− 1
p

)
= −

∑
p≤x

(
1
p

+
1

2p2
+

1
3p3

+ · · ·
)

≥ −
∑
p≤x

(
1
p

+
1
p2

+
1
p3

+ · · ·
)

= −
∑
p≤x

1
p

+ C(x),
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where

|C(x)| =
∣∣∣∣−∑

p≤x

1
p(p− 1)

∣∣∣∣ ≤ ∞∑
n=2

1
n(n− 1)

= 1.

Hence, ∑
p≤x

1
p
≥ − log

∏
p≤x

(
1− 1

p

)
− 1 ≥ log log x− 1� log log x.

• Comment: The sum of the reciprocals of every prime ever written down is < 4.

• Theorem 29.
∑
p≤x

log p
p
� log x.

• Proof. Observe that
∑
n≤x

log n ≤ x log x since the sum consists of [x] terms each

≤ log x. Therefore,

x log x ≥
∑
n≤x

log n ≥
∑
n≤x

∑
p|n

log p =
∑
p≤x

∑
n≤x
p|n

log p =
∑
p≤x

[
x

p

]
log p

= x

(∑
p≤x

log p
p

)
+O

(∑
p≤x

log p
)

= x

(∑
p≤x

log p
p

)
+O

(
x log x

)
.

The result follows.

• Theorem 30.
∏
p≤x

(
1− 1

p

)
�� 1

log x
.

• Proof. The lemma implies the � part of the asymptotic relation. We begin in a
manner similar to the proof of the lemma. We use that

∏
p≤x

(
1− 1

p

)−1

=
∏
p≤x

(
1 +

1
p

+
1
p2

+ · · ·
)
≤
∑
k≤y

1
k

+ S,

where y is an arbitrary number > 1 and where

S =
∑
k>y

q|k =⇒ q≤x

1
k
≤

∑
k>y

q|k =⇒ q≤x

log k
k log y

=
1

log y

∑
k>y

q|k =⇒ q≤x

1
k

∑
pe|k

log p =
1

log y

∑
p≤x

log p
∑
e≥1

∑
k>y,pe|k
q|k =⇒ q≤x

1
k

≤ 1
log y

∑
p≤x

∑
e≥1

log p
pe

∑
k≥1

q|k =⇒ q≤x

1
k

=
1

log y

∑
p≤x

∑
e≥1

log p
pe

∏
q≤x

(
1− 1

q

)−1

.
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By Theorem 29, there is a constant c > 0 such that

∑
p≤x

∑
e≥1

log p
pe

=
∑
p≤x

log p
p− 1

≤ 2
∑
p≤x

log p
p
≤ c log x.

Setting P =
∏
p≤x

(
1− 1

p

)−1

and using the previous homework problem (2)(a), we deduce

that

P ≤ 1 + log y +
c(log x)P

log y
=⇒

(
1− c log x

log y

)
P ≤ 1 + log y.

Taking y = x4c, we obtain (3/4)P ≤ 1 + 4c log x from which P � log x follows. This
implies the � part of the asymptotic relation in the statement of the theorem.

• Theorem 31.
∑
p≤x

1
p

= log log x+O(1).

• Proof. From the proof of Theorem 28,

log
∏
p≤x

(
1− 1

p

)
= −

∑
p≤x

1
p

+ C(x) where |C(x)| ≤ 1.

By Theorem 30, there exist constants c1 > 0 and c2 > 0 (and we may in fact take c2 = 1)
such that

c1
log x

<
∏
p≤x

(
1− 1

p

)
<

c2
log x

provided x is sufficiently large (but note that problem (3) in the previous homework implies
x ≥ 2 will do). Hence, for x sufficiently large, it follows that

log
∏
p≤x

(
1− 1

p

)
= − log log x+O(1).

We deduce then that∑
p≤x

1
p

= − log
∏
p≤x

(
1− 1

p

)
+ C(x) = log log x+O(1).

Homework:

(1) (a) Prove that (log x)k = o(xε) for every ε > 0 and every k > 0.
(b) Part (a) implies that log x to any power grows slower than xε for every ε > 0. Find

a function which grows slower than xε for every ε > 0 and also grows faster than log x to
any power. In other words, find an explicit function f(x) such that f(x) = o(xε) for every
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ε > 0 and (log x)k = o(f(x)) for every k > 0. Justify your answer. (Hint: Try f(x) = eu(x)

for some appropriate u(x).)
(c) Prove that (log log x)k = o((log x)ε) for every ε > 0 and every k > 0.

(d) Find with proof a function f : R+ → R
+ such that x log x = o(f(x)) and

∞∑
n=1

1
f(n)

diverges.

(2) Let pn denote the nth prime. It is known that pn ∼ cn log n for some constant c.
Using this information and Theorem 31, prove that c = 1.

The Number of Prime Divisors of n:

• Notation. The number of distinct prime divisors of n is denoted by ω(n).

• Definition. Let f : Z+ → R
+ and g : Z+ → R

+. Then f(n) is said to have normal
order g(n) if for every ε > 0, the number of positive integers n ≤ x satisfying

(1− ε)g(n) < f(n) < (1 + ε)g(n)

is asymptotic to x (i.e., for almost all positive integers n, f(n) ∈ ((1−ε)g(n), (1+ε)g(n))).

• Theorem 32. ω(n) has normal order log log n.

• Lemma.
∑
n≤x

(
ω(n)− log log x

)2 � x log log x.

• Proof. We examine each term on the right-hand side of the equation∑
n≤x

(
ω(n)− log log x

)2 =
∑
n≤x

ω(n)2 − 2
(∑
n≤x

ω(n)
)

log log x+
∑
n≤x

(log log x)2.

For the third term, we easily obtain∑
n≤x

(log log x)2 = x(log log x)2 +O((log log x)2).

For the second term, we use that∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

∑
n≤x

n≡0 (mod p)

1 =
∑
p≤x

[
x

p

]

=
∑
p≤x

x

p
+O(x) = x(log log x+O(1)) +O(x) = x log log x+O(x).

For the first term, we take advantage of the estimate we just made to obtain∑
n≤x

ω(n)2 =
∑
n≤x

(∑
p|n

1
)2

=
∑
n≤x

∑
p|n

∑
q|n

1

=
∑
n≤x

∑
p6=q
pq|n

1 +
∑
n≤x

∑
p|n

1 =
∑
n≤x

∑
p6=q
pq|n

1 + x log log x+O(x).
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We proceed by observing that

∑
n≤x

∑
p6=q
pq|n

1 =
∑
p6=q
pq≤x

∑
n≤x
pq|n

1 =
∑
p6=q
pq≤x

[
x

pq

]
=
∑
p6=q
pq≤x

x

pq
+O(x) =

∑
pq≤x

x

pq
−
∑
p≤
√
x

x

p2
+O(x).

Theorem 31 imlies that each of the sums
∑
p≤
√
x

(1/p) and
∑
p≤x

(1/p) is log log x+O(1) so that

(log log x)2+O(log log x) =
( ∑
p≤
√
x

1
p

)2

≤
∑
pq≤x

1
pq
≤
(∑
p≤x

1
p

)2

= (log log x)2+O(log log x).

Also,
∑
p≤
√
x

(1/p2) = O(1) since
∑
p

(1/p2) converges (by comparison with
∞∑
n=1

(1/n2)). We

deduce that ∑
n≤x

ω(n)2 = x(log log x)2 +O(x log log x).

Combining the above information, we obtain∑
n≤x

(
ω(n)− log log x

)2 = O(x(log log x)).

• Proof of Theorem 32. Assume ω(n) does not have normal order log log n. Then
there exist ε > 0 and δ > 0 such that there are arbitrarily large values of x for which the
number of positive integers n ≤ x satisfying

(∗) |ω(n)− log log n| ≥ ε log log n

is > δx. If x1/e < n ≤ x, then

log log x ≥ log log n > log log(x1/e) = log log x− 1.

If, in addition, n satisfies (∗), then

|ω(n)− log log x| > |ω(n)− log log n| − 1 ≥ ε log log n− 1 > ε log log x− (1 + ε).

We consider x satisfying (∗) for > δx positive integers n ≤ x with x sufficiently large so
that

ε

2
log log x > 1 + ε and x1/e <

δ

2
x.

In particular,
ε log log x− (1 + ε) >

ε

2
log log x.
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We deduce that there are > δx− x1/e > (δ/2)x positive integers n ∈ (x1/e, x] for which

|ω(n)− log log x| > ε

2
log log x.

Hence, ∑
n≤x

(
ω(n)− log log x

)2 ≥ δ

2
x

(
ε

2
log log x

)2

≥ δε2

8
x(log log x)2.

Observe that we can find x arbitrarily large satisfying this inequality. We obtain a contra-
diction to the lemma since it implies that there is a constant C > 0 for which∑

n≤x

(
ω(n)− log log x

)2 ≤ Cx log log x

for all x sufficiently large.

Homework:

(1) Prove that for every ε > 0, there is a constant C(ε) > 0 such that the number of
positive integers n ≤ x for which

(1− ε) log log n < ω(n) < (1 + ε) log log n

does not hold is ≤ C(ε)x/ log log x for all x sufficiently large.

(2) Let f : Z+ → R
+, and suppose that f(n) has normal order log logn. Prove or disprove

that the average value of f(n) for n ≤ x is asymptotic to log log x. More specifically, prove
or disprove that

1
x

∑
n≤x

f(n) ∼ log log x.

(Comment: In the proof of the lemma in this section, we showed a result that is even
stronger than this in the case that f(n) = ω(n).)

Chebyshev’s Theorem:

• Background. Let π(x) denote the number of primes ≤ x. Chebyshev’s Theorem
asserts that for all x sufficiently large

0.92
(

x

log x

)
< π(x) < 1.11

(
x

log x

)
.

He used his result to give the first proof of Bertrand’s Hypothesis that for every x ≥ 1
there is a prime in the interval (x, 2x]. More specifically, the above implies that there is
an x0 such that if x ≥ x0, then

π(2x)− π(x) > 0.92
(

2x
log(2x)

)
− 1.11

(
x

log x

)
> 0.
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Combining such an estimate with knowledge of a specific x0 and computations verifying
Bertrand’s Hypothesis for x < x0, a proof of Bertrand’s Hypothesis follows. Similar work
by others has been obtained. In particular, Ramanujan gave an argument for Bertrand’s
Hypothesis and noted that there are at least 5 primes in (x, 2x] for x ≥ 20.5. Our next
theorem is a variation of Chebyshev’s Theorem. The proof below is due to Erdős.

• Theorem 33. If n is a sufficiently large positive integer, then

1
6

(
n

log n

)
< π(n) < 3

(
n

log n

)
.

• Proof. Let m be a positive integer. We begin with the inequalities

2m ≤
(

2m
m

)
< 4m.

The first of these inequalities follows from noting that one can choose m objects from a
collection of 2m objects by first randomly deciding whether each of the first m objects is
to be included in the choice or not. The second inequality follows from

4m = (1 + 1)2m =
2m∑
j=0

(
2m
j

)
>

(
2m
m

)
.

From the above inequalities, we deduce that

(∗) m log 2 ≤ log((2m)!)− 2 log(m!) < m log 4.

We use that if p is a prime and pr||k!, then r = [k/p] + [k/p2] + · · · . Therefore,

(∗∗) log((2m)!)− 2 log(m!) =
∑
p

∞∑
j=1

([
2m
pj

]
− 2
[
m

pj

])
log p.

It is easy to verify that [2x] − 2[x] ∈ {0, 1} for every real number x. Hence, (∗) and (∗∗)
imply

m log 2 ≤
∑
p≤2m

( ∑
1≤j≤log(2m)/ log p

1
)

log p ≤
∑
p≤2m

log(2m) = π(2m) log(2m).

Thus, if n = 2m, then

π(n) ≥ log 2
2

(
n

log n

)
>

1
4

(
n

log n

)
.

Also, if n = 2m+ 1, then

π(n) ≥ π(2m) >
1
4

(
2m

log(2m)

)
≥ 1

4

(
2m

2m+ 1

)
2m+ 1

log(2m+ 1)
≥ 1

6

(
n

log n

)
.
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This establishes the lower bound in the theorem (for all positive integers n).
For the upper bound, we use that if m < p ≤ 2m, then [2m/p]− 2[m/p] = 1. Thus, (∗)

and (∗∗) imply

m log 4 ≥
∑

m<p≤2m

([
2m
p

]
− 2
[
m

p

])
log p

≥
∑

m<p≤2m

log p ≥
∑

m<p≤2m

logm =
(
π(2m)− π(m)

)
logm.

Hence,
π(2m)− π(m) ≤ (log 4)

m

logm
.

We consider positive integers r and s satisfying 2r ≤ n < 2r+1 and 2s ≤ n19/20 < 2s+1.
Observe that s tends to infinity with n. Taking m = 2j above, we deduce

π(2j+1)− π(2j) ≤ (log 4)
2j

log(2j)
≤ (log 4)

2j

log(2s)
for j ∈ {s, s+ 1, . . . , r}.

Summing over j, we obtain

π(n)−π
(
n19/20

)
≤ π

(
2r+1

)
− π

(
2s
)
≤ log 4

log(2s)

(
2s + 2s+1 + · · ·+ 2r

)

≤ (log 4)2r+1

log(2s)
≤ 2(log 4)n

s log 2
= 2(log 4)n

(
s+ 1
s

)
1

(s+ 1) log 2

≤ 2(log 4)n
(
s+ 1
s

)
1

log
(
n19/20

) =
40 log 4

19

(
s+ 1
s

)
n

log n
< 2.92

(
s+ 1
s

)
n

log n
.

For n and, hence, s sufficiently large, we deduce

π(n) < 2.95
n

log n
+ π

(
n19/20

)
≤ 2.95

n

log n
+ n19/20 =

(
2.95 +

log n
n1/20

)
n

log n
< 3
(

n

log n

)
,

completing the proof.

The Prime Number Theorem and Its Generalizations:

• The Prime Number Theorem asserts that π(x) ∼ x/ log x. Observe that this is
stronger than Chebyshev’s theorem. In this section, we mention some theorems without
proving them. The first two are variations of the Prime Number Theorem.

• Theorem 34. π(x) =
x

log x
+O

(
x

log2 x

)
.

• Definition and Notation. We define the logarithmic integral of x by Li(x) =
∫ x

2

dt

log t
.

This varies slightly (by a constant) from historic definitions of the logarithmic integral, but
the results below will not be affected by this change.
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• Theorem 35. For every k > 0, we have π(x) = Li(x) + O

(
x

logk x

)
where the

implied constant depends on k.

• Theorem 35 implies Theorem 34 and more. Using integration by parts and the
estimate

(∗)
∫ x

2

dt

log4 t
� x

log4 x
,

explain why Theorem 35 implies

π(x) =
x

log x
+

x

log2 x
+

2x
log3 x

+O

(
x

log4 x

)
.

• Dirichlet’s Theorem asserts that if a and b are positive relatively prime integers,
then there are infinitely many primes of the form a+ bn. Set

π(x; b, a) = |{p ≤ x : p ≡ a (mod b)}|.

Then a strong variation of Dirichlet’s Theorem is the following.

Theorem 36. If a and b are positive relatively prime integers and k > 0, then

π(x; b, a) =
1

φ(b)
Li(x) +O

(
x

logk x

)
where the implied constant depends only on k and b.

Homework:

(1) Prove (∗).

(2) There is a constant A such that
∣∣∣∣π(x)− x

(log x) +A

∣∣∣∣� x

log3 x
. Determine with proof

the value of A.

(3) (a) Let α and β be positive real numbers. Prove that
∑

α<n≤β

1
n

= log(β/α) +O(1/α).

(b) Let S = {m1,m2, . . . } where m1,m2, . . . are integers satisfying 0 < m1 < m2 < · · · .
Define S(x) = |{m ≤ x : m ∈ S}| (so S(x) is the number of elements in S which are ≤ x).

Suppose that
∞∑
j=1

1
mj

converges. Prove that almost all integers are not in S. In other

words, show that

lim
x→∞

S(x)
x

= 0.

(c) Use Theorem 33 to show that
∑

x<p≤20x

1
p
� 1

log x
. (Alternatively, one can use

Theorem 31, but Theorem 33 is simpler.)
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(d) Let T = {p1, p2, . . . } where p1, p2, . . . are primes satisfying p1 < p2 < · · · . Define

T (x) = |{p ≤ x : p ∈ T}|. Suppose that
∞∑
j=1

1
pj

converges. Is it necessarily true that

lim
x→∞

T (x)
π(x)

= 0

(i.e., that almost all primes are not in T )?

Riemann-Stieltjes Integrals:

• Definitions and Notations. Suppose f : [a, b] 7→ R. Let P = {x0, x1, . . . , xn} denote a
partition of [a, b] with a = x0 < x1 < · · · < xn−1 < xn = b. Let M(P) = max

1≤k≤n
{xk−xk−1}.

Let tk ∈ [xk−1, xk] for k ∈ {1, 2, . . . , n}. Consider

S(P, f, {tk}) =
n∑
k=1

f(tk)(xk − xk−1).

If S(P, f, {tk}) tends to a limit A (independent of the tk) as M(P) tends to zero, then we
write ∫ b

a

f(x) dx = A

and say that the Riemann integral of f(x) on [a, b] exists and equals A. Let g : [a, b] 7→ R.
With the notations above, we set

S(P, f, g, {tk}) =
n∑
k=1

f(tk)
(
g(xk)− g(xk−1)

)
.

If S(P, f, g, {tk}) tends to a limit A (independent of the tk) as M(P) tends to zero, then
we write ∫ b

a

f(x) dg(x) = A

and say that the Riemann-Stieltjes integral of f(x) with respect to g(x) on [a, b] exists and
equals A.

• Comments: The properties of Riemann integrals and Riemann-Stieltjes integrals
are very similar. Note in fact that if g(x) = x, then the definitions coincide. If g(x) is
differentiable on [a, b], then one can show∫ b

a

f(x) dg(x) =
∫ b

a

f(x)g′(x) dx.

We will mainly be interested in the case when g(x) is a step function.
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• Example:
∫ x

1

1
t
d[t] =

[x]∑
n=2

1
n

.

• We will make use of an integration by parts formula for Riemann-Stieltjes integrals.
For a proof of this and other properties of Riemann-Stieltjes integrals (defined somewhat
differently), see the instructor’s notes at:

http://www.math.sc.edu/~filaseta/courses/Math555/Math555.html

Lemma: If
∫ b

a

g(x) df(x) exists, then so does
∫ b

a

f(x) dg(x) and

∫ b

a

f(x) dg(x) = f(x)g(x)
∣∣b
a
−
∫ b

a

g(x) df(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x) df(x).

• Example: We apply integration by parts to the integral in the previous example.
We obtain∫ x

1

1
t
d[t] =

[x]
x
− [1]

1
−
∫ x

1

[t] d(1/t) =
∫ x

1

[t]
t2
dt+O(1/x)

=
∫ x

1

1
t
dt−

∫ x

1

t− [t]
t2

dt+O(1/x) = log x−
∫ x

1

{t}
t2

dt+O(1/x).

Observe that
∫ x

1

{t}
t2

dt ≤
∫ x

1

1
t2
dt = 1− 1

x
. It follows that

∫ ∞
1

{t}
t2

dt exists. Also,

∫ ∞
x

{t}
t2

dt ≤
∫ ∞
x

1
t2
dt =

1
x
.

Combining the above, we deduce∫ x

1

1
t
d[t] = log x−

∫ ∞
1

1
t2
dt+

∫ ∞
x

1
t2
dt+O(1/x) = log x−

∫ ∞
1

1
t2
dt+O(1/x).

From the previous example, we obtain∑
n≤x

1
n

= log x+ γ +O(1/x) where γ = 1−
∫ ∞

1

1
t2
dt = 0.5772157 . . . .

More precisely, the analysis above gives∑
n≤x

1
n

= log x+ γ + E(x) where E(x) = −{x}
x

+
∫ ∞
x

{t}
t2

dt.

Recall that this last integral is ≤ 1/x so that we can deduce |E(x)| ≤ 1/x. Thus, for exam-
ple,

∑
n≤106

1/n can be computed to within 10−6 by considering log
(
106
)
+γ = 14.392726 . . . .
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• Comment: The constant γ is called Euler’s constant. It is unknown whether or
not γ is irrational.

Sums and Products of Primes Revisited:

• We combine the lemma from the previous section with the Prime Number Theorem
to arrive at improvements to some earlier results.

Theorem 37: There exist constants C1, C2, and C3 such that

(i)
∑
p≤x

1
p

= log log x+ C1 +O

(
1

log x

)
,

(ii)
∑
p≤x

log p
p

= log x+ C2 +O

(
1

log x

)
, and

(iii)
∏
p≤x

(
1− 1

p

)
∼ C3

log x
.

• Proof of parts (i) and (iii): For (i), we use integration by parts and Chebyshev’s
Theorem to obtain∑

p≤x

1
p

=
∫ x

1

1
t
dπ(t) =

π(x)
x

+
∫ x

1

π(t)
t2

dt = O

(
1

log x

)
+
∫ x

2

1
t log t

dt+ C1(x)

where

C1(x) =
∫ x

2

1
t2

(
π(t)− t

log t

)
dt.

By a previous homework problem and Theorem 34,∫ x

2

1
t2

∣∣∣∣π(t)− t

log t

∣∣∣∣ dt� ∫ x

2

1
t log2 t

dt� 1.

It follows that ∫ ∞
2

1
t2

(
π(t)− t

log t

)
dt = lim

x→∞
C1(x)

exists. Also, observe that∫ ∞
x

1
t2

∣∣∣∣π(t)− t

log t

∣∣∣∣ dt� ∫ ∞
x

1
t log2 t

dt� 1
log x

.

Hence,

C1(x) =
∫ ∞

2

1
t2

(
π(t)− t

log t

)
dt−

∫ ∞
x

1
t2

(
π(t)− t

log t

)
dt

=
∫ ∞

2

1
t2

(
π(t)− t

log t

)
dt+O

(
1

log x

)
.
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Since ∫ x

2

1
t log t

dt = log log x− log log 2,

we obtain (i) with

C1 =
∫ ∞

2

1
t2

(
π(t)− t

log t

)
dt− log log 2.

For (iii), we argue along the lines of the proofs of Theorem 28 and 31. Note that

log
∏
p≤x

(
1− 1

p

)
=
∑
p≤x

log
(

1− 1
p

)
= −

∑
p≤x

∞∑
k=1

1
kpk

= −
∑
p≤x

1
p
− C3(x),

where

C3(x) =
∑
p≤x

∞∑
k=2

1
kpk
≤
∑
p≤x

∞∑
k=2

1
pk

=
∑
p≤x

1
p(p− 1)

≤
∑

2≤n≤x

1
n(n− 1)

≤ 1.

We deduce that lim
x→∞

C3(x) exists. Also,

∑
p>x

∞∑
k=2

1
kpk
≤
∑
n>x

1
n(n− 1)

=
1

[x]− 1
� 1

x
.

It follows that

C3(x) =
∑
p

∞∑
k=2

1
kpk
−
∑
p>x

∞∑
k=2

1
kpk

=
∑
p

∞∑
k=2

1
kpk

+O

(
1
x

)
.

We deduce from (i) that

log
∏
p≤x

(
1− 1

p

)
= − log log x−C1−

∑
p

∞∑
k=2

1
kpk

+O
(

1
log x

)
= − log log x−C+O

(
1

log x

)

where C = C1 +
∑
p

∞∑
k=2

1
kpk

. We obtain

∏
p≤x

(
1− 1

p

)
=
e−C+O(1/ log x)

log x
∼ C3

log x

where C3 = e−C .

• Comments: The proof of (ii) is omitted (but note the related problem in the next
homework). The constants in Theorem 37 are

C1 = 0.261497212847643 . . . , C2 = −1.33258 . . . , and C3 = 0.561459 . . . .
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Also, the number C in the argument above can be shown to be Euler’s constant. Ignoring
the big-oh term in (i), it is not hard to see that if one could print a million primes per
second, then it would take over 1000 years to print enough primes (assumed distinct) to
make the sum of their reciprocals exceed 4. A more rigorous estimate is possible (where
the error term is not ignored).

Homework:

For the problems below, you are to make use of Theorems 34, 35, and 36 as well as
Riemann-Stieltjes integrals.

(1) Prove that
∑
p≤x

log p
p

= log x+O(1).

(2) Prove that
∑
p≤x

log p = x+O

(
x

log x

)
.

(3) Let a and b be positive integers with gcd(a, b) = 1. Prove that

∑
p≤x

p≡a (mod b)

1
p
∼ 1
φ(b)

log log x.

(4) Let pn denote the nth prime. Prove that pn ∼ n log n.

(5) Prove that there are infinitely many primes which begin and end with the digit 9.
More specifically, show that there are infinitely many primes which can be written in the

form
r∑

k=0

dk10k where dr = d0 = 9 and dk ∈ {0, 1, 2, . . . , 9} for each k.

Integers With Large Prime Factors:

• Definitions. Let P (x) denote the number of positive integers ≤ x having a property
P . Then we say that a positive proportion of the positive integers satisfies P if there is
a constant C > 0 such that P (x) > Cx for all sufficiently large x. If there is a constant
C ≥ 0 for which P (x) ∼ Cx, then we say the proportion of positive integers satisfying P
is C. If this proportion is 1, then we say that almost all positive integers satisfy P .

• Examples. Almost all positive integers are composite. It follows as a consequence
of our next result that the proportion of positive integers n having a prime factor >

√
n is

log 2.

• Theorem 38. The number of positive integers n ≤ x having a prime factor >
√
n

is (log 2)x+O

(
x

log x

)
.
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• Proof. The desired quantity is∑
n≤x

∑
√
n<p≤n
p|n

1 =
∑
p≤x

∑
n≤x,n<p2

p|n

1 =
∑
p≤
√
x

∑
n<p2

p|n

1−
∑

√
x<p≤x

∑
n≤x
p|n

1

=
∑
p≤
√
x

(p− 1)−
∑

√
x<p≤x

[
x

p

]
= O

(√
xπ(
√
x)
)

+
∑

√
x<p≤x

x

p
+O(π(x)).

Chebyshev’s Theorem implies that the error terms (the big-oh terms) are both O(x/ log x).
Theorem 37 (i) implies

∑
√
x<p≤x

1
p

= log log x− log log
√
x+O

(
1

log x

)
= log 2 +O

(
1

log x

)
.

The theorem follows.

The Sieve of Eratosthenes:

• We begin by illustrating the approach with an easy consequence of Theorem 33. It
should be noted that some similarities exist with the argument below and the sieve proof
given for Theorem 15.

• Theorem 39. π(x) = o(x).

• Proof. The number of positive integers ≤ x divisible by a product of primes
p1p2 . . . pr is [x/(p1p2 . . . pr)]. The inclusion-exclusion principal implies that the number
of positive integers n ≤ x with each prime factor of n being greater than z is

[x]−
∑
p≤z

[
x

p

]
+

∑
p1<p2≤z

[
x

p1p2

]
−

∑
p1<p2<p3≤z

[
x

p1p2p3

]
+ · · ·

= x−
∑
p≤z

x

p
+

∑
p1<p2≤z

x

p1p2
− · · ·+O

(
1 +

∑
p≤z

1 +
∑

p1<p2≤z

1 + · · ·
)

= x
∏
p≤z

(
1− 1

p

)
+O

((
π(z)

0

)
+
(
π(z)

1

)
+
(
π(z)

2

)
+ · · ·

)
.

The big-oh term is � 2π(z) � 2z. We take z = log x and use Theorem 37 (iii) to deduce
that

x
∏
p≤z

(
1− 1

p

)
� x

log log x
.

Also, this choice of z gives 2z = xlog 2. We obtain that the number of positive integers
n ≤ x with each prime factor of n being greater than log x is o(x). This accounts for all
the primes ≤ x except those which are ≤ log x. There are clearly o(x) such primes and
the result follows.
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• A closer look at the argument. We estimated π(x) using the inequality

π(x) ≤ z +A(z, x) where A(z, x) = |{n ≤ x : p|n =⇒ p > z}|

(so that A(z, x) denotes the number of positive integers ≤ x having each of its prime
divisors > z). We used that

A(z, x) = [x]−
∑
p≤z

[
x

p

]
+

∑
p1<p2≤z

[
x

p1p2

]
−

∑
p1<p2<p3≤z

[
x

p1p2p3

]
+ · · · .

This last identity can be justified as follows. For n a positive integer, define

α(n) = 1−
∑
p≤z
p|n

1 +
∑

p1<p2≤z
p1p2|n

1−
∑

p1<p2<p3≤z
p1p2p3|n

1 + · · · .

Write n in the form n = qe11 q
e2
2 · · · qerr m where r is a non-negative integer, q1, . . . , qr are

distinct primes ≤ z, m, e1, . . . , er are positive integers, and every prime divisor of m is > z.
If r = 0, then clearly α(n) = 1. If r > 0, then

α(n) = 1−
(
r

1

)
+
(
r

2

)
− · · · ±

(
r

r

)
= (1− 1)r = 0.

Thus, we deduce that

α(n) =
{

1 if every prime divisor of n is > z

0 otherwise.

Hence,

A(z, x) =
∑
n≤x

α(n) =
∑
n≤x

(
1−

∑
p≤z
p|n

1 +
∑

p1<p2≤z
p1p2|n

1− · · ·
)

=
∑
n≤x

1−
∑
p≤z

∑
n≤x
p|n

1 +
∑

p1<p2≤z

∑
n≤x
p1p2|n

1− · · ·

= [x]−
∑
p≤z

[
x

p

]
+

∑
p1<p2≤z

[
x

p1p2

]
−

∑
p1<p2<p3≤z

[
x

p1p2p3

]
+ · · · .

We will modify our choice for α(n) slightly for other applications. The basic approach we
used to estimate A(z, x) is called the sieve of Eratosthenes. We give two more examples.

• Theorem 40. The number of squarefree numbers ≤ x is asymptotic to (6/π2)x.

• Proof. We make use of the identity

(∗)
∏
p

(
1− 1

p2

)
=

6
π2
.
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One can obtain (∗) from

∏
p

(
1− 1

p2

)−1

=
∏
p

(
1 +

1
p2

+
1
p4

+ · · ·
)

=
∞∑
n=1

1
n2

=
π2

6
.

Denote by A1(z, x) the number of n ≤ x that are not divisible by p2 for every p ≤ z. Let
A2(z, x) denote the number of such n that are not squarefree. In other words,

A1(z, x) = |{n ≤ x : p2|n =⇒ p > z}|

and
A2(z, x) = |{n ≤ x : p2|n =⇒ p > z, ∃p such that p2|n}|.

By the sieve of Eratosthenes,

A1(z, x) =
∑
n≤x

(
1−

∑
p≤z
p2|n

1 +
∑

p1<p2≤z
p2

1p
2
2|n

1− · · ·
)

= [x]−
∑
p≤z

[
x

p2

]
+

∑
p1<p2≤z

[
x

p2
1p

2
2

]
− · · · = x

∏
p≤z

(
1− 1

p2

)
+O

(
2π(z)

)
.

Taking z = log x, we obtain

A1(z, x) = x
∏

p≤log x

(
1− 1

p2

)
+O

(
2log x

)
= x

∏
p≤log x

(
1− 1

p2

)
+ o
(
x
)
.

Thus, A1(z, x) ∼ (6/π2)x (with z = log x). Since the number of squarefree numbers ≤ x
is A1(z, x)−A2(z, x), it suffices to show A2(z, x) = o(x). We use that

A2(z, x) ≤
∑
n≤x

∑
p>z
p2|n

1 =
∑
p>z

∑
n≤x
p2|n

1 =
∑
p>z

[
x

p2

]
≤ x

(∑
p>z

1
p2

)
.

The series
∑
p

1
p2

converges by comparison with
∞∑
n=1

1
n2

. Since z = log x and
∑
p>z

1
p2

is the tail end of a convergent series, we deduce that
∑
p>z

1
p2

= o(1). It follows that

A2(z, x) = o(x), completing the proof.

• Comment: Let ζ(k) =
∞∑
k=1

1
nk

. An argument similar to the above shows that for

every integer k > 1, the number of k-free numbers ≤ x is asymptotic to x/ζ(k).

• Theorem 41. Let T be a set of positive integers with the property that for every odd
prime p, every sufficiently large multiple of p is in T . In other words, T is such that if p is
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an odd prime, then there is a k0(p) for which kp ∈ T for every positive integer k ≥ k0(p).
Define T (x) as the number of elements of T that are ≤ x. Then T (x) ∼ x.

• Comments. It will follow from the proof that the existence of k0(p) only needs
to hold for a set of primes P having the property that

∑
p∈P

(1/p) diverges. Theorem 41 is

connected to Fermat’s Last Theorem. Explain this connection.

• Proof. Fix ε > 0. It suffices to show that there is an x0(ε) such that if x ≥ x0(ε),
then

1− ε ≤ T (x)
x
≤ 1.

The upper bound is obvious. For z > 0, define K = K(z) = max{k0(p) : 2 < p ≤ z}. Then
for each prime p ≤ z and each integer k ≥ K, we have kp ∈ T . Let S = {n ∈ Z+ : n 6∈ T},
and define S(x) = |{n ≤ x : n ∈ S}|. Thus,

S(x) = [x]− T (x).

For each z > 0 and each odd prime p ≤ z, there are ≤ K = K(z) multiples of p in S. The
remaining elements of S are not multiples of any odd prime p ≤ z. In other words, the
remaining elements of S have all their odd prime factors > z. Thus,

S(x) ≤
∑
p≤z

K +A(z, x) where A(z, x) = |{n ≤ x : p|n =⇒ p = 2 or p > z}|.

Now,

A(z, x) =
∑
n≤x

(
1−

∑
2<p≤z
p|n

1 +
∑

2<p1<p2≤z
p1p2|n

1− · · ·
)

= [x]−
∑

2<p≤z

[
x

p

]
+

∑
2<p1<p2≤z

[
x

p1p2

]
− · · ·

= x
∏

2<p≤z

(
1− 1

p

)
+O

(
2π(z)

)
= 2x

∏
p≤z

(
1− 1

p

)
+O

(
2z
)
.

Taking z = e4/ε and using the lemma to Theorem 28, we deduce that

S(x) ≤ Kπ(z) +A(z, x) ≤ Kz +
2x

log z
+O

(
2z
)
≤ Ke4/ε +

ε

2
x+O

(
2e

4/ε)
=
ε

2
x+O(1)

where the implied constant depends on ε and K (but note that K only depends on ε). For
x sufficiently large, we obtain S(x) ≤ εx− 1 so that

T (x) = [x]− S(x) ≥ x− 1− (εx− 1) = (1− ε)x.

This completes the proof.
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Homework:

(1) (a) Let P be a set of primes for which
∑
p∈P

(1/p) diverges. Explain why
∑
p∈P

log
(

1− 1
p

)
diverges.

(b) Given the set P in (a), explain why lim
z→∞

∏
p≤z,p∈P

(
1− 1

p

)
= 0.

(c) Justify the first comment made after the statement of Theorem 41.

(2) (a) For z > 1, define

α(n) = 1−
∑
p≤z

p≡3 (mod 4)
p|n

1 +
∑

p1<p2≤z
p1≡p2≡3 (mod 4)

p1p2|n

1−
∑

p1<p2<p3≤z
p1≡p2≡p3≡3 (mod 4)

p1p2p3|n

1 + · · · .

Prove that α(n) = 1 if x2 +1 ≡ 0 (mod n) has a solution and that α(n) ≥ 0 for all positive
integers n.

(b) Use a sieve argument to show that for almost all positive integers n, x2 + 1 ≡ 0
(mod n) does not have a solution. In other words, show that the number of n ≤ x for
which x2 + 1 ≡ 0 (mod n) has a solution is o(x).

The Pure Brun Sieve:

• The idea. The sieve of Eratosthenes was based on estimating
∑
n≤x

α(n) where α(n)

is something like (depending on the application)

α(n) = 1−
∑
p≤z
p|n

1 +
∑

p1<p2≤z
p1p2|n

1−
∑

p1<p2<p3≤z
p1p2p3|n

1 + · · · .

One major goal of sieve methods is to take z as large as possible without causing the
error terms that arise to exceed what one expects the main term to be. In the sieve of
Eratosthenes, we took z = log x which caused the error term O

(
2z
)

not to be too large.
The choice of α(n) above has the property that

α(n) =
{

1 if every prime divisor of n is > z

0 otherwise

so that |{n ≤ x : p|n =⇒ p > z}| =
∑
n≤x α(n). We fix a positive integer k and define a

new quantity
α′(n) = 1−

∑
p≤z
p|n

1 +
∑

p1<p2≤z
p1p2|n

1− · · ·+
∑

p1<p2<···<p2k≤z
p1p2···p2k|n

1.

We will show that

(∗) |{n ≤ x : p|n =⇒ p > z}| ≤
∑
n≤x

α′(n).



52

The advantage of using α′(n) over α(n) can be seen as follows. Recall that in using
α(n), we were led to considering sums of expressions of the form [x/(p1p2 · · · pr)] where
the pj denoted primes satisfying p1 < p2 < · · · < pr ≤ z. In that approach, we then
replaced this expression with x/(p1p2 · · · pr) + O(1). We can see immediately that this is
too wasteful if r (and, hence, z) is large. For example, if z = (log x)2 and r = π(z) are
large, then p1p2 · · · pr =

∏
p≤z

p ≥ ez/2 = x(log x)/2 is so large that [x/(p1p2 · · · pr)] = 0 and

[x/(p1p2 · · · pr)] is very close to the value of x/(p1p2 · · · pr). Our method used an error of
O(1) when in fact the true error was much smaller. By limiting the number of primes one
considers as in the definition of α′(n), one can better control the lost made by omitting
the greatest integer function. This in turn allows us to choose z larger than before. In
particular, in the application we describe shortly, we will take z = x1/(24 log log x).

• Comments: A lower bound similar to the upper bound given in (∗) can be ob-
tained by considering 2k + 1 instead of 2k primes in the definition of α′(n). Further sieve
methods, due independently to Brun and Selberg, allow one to take z even larger than
that mentioned above. Typically, one can z = xc where c is a positive constant depending
on the application.

• A property of α′(n). We show that α′(n) = 1 if every prime divisor of n is > z
and that α′(n) ≥ 0 for all n. Observe that (∗) follows as a consequence. The first part is
obvious for if every prime factor of n is > z, then all the sums in the definition of α′(n) are
empty and only the term 1 is non-zero in this definition. Now, suppose n = qe11 q

e2
2 · · · qerr m

where the qj are distinct primes ≤ z, each of r, e1, . . . , er are positive integers, and every
prime factor of m is > z. It follows that

(∗∗) α′(n) = 1−
(
r

1

)
+
(
r

2

)
− · · ·+

(
r

2k

)
,

where we interpret
(
a
b

)
as 0 is b > a. To show that α′(n) ≥ 0, consider three cases: (i)

r ≤ 2k, (ii) 2k < r ≤ 4k, and (iii) r > 4k. Case (i) is dealt with by using (1 − 1)r = 0 to
show α′(n) = 0. For Case (ii), use (1− 1)r = 0 to obtain

α′(n) =
(

r

2k + 1

)
−
(

r

2k + 2

)
+ · · · ±

(
r

r

)

≥
((

r

2k + 1

)
−
(

r

2k + 2

))
+
((

r

2k + 3

)
−
(

r

2k + 4

))
+ · · · ≥ 0.

For Case (iii), use (∗∗) directly to show that α′(n) ≥ 1 (by again grouping the binomial
coefficients in pairs).

• An estimate concerning twin primes. A twin prime is a prime p for which p − 2 or
p+ 2 is also prime. Thus, 3, 5, 7, 11, 13, 17, 19, 29, and 31 are all twin primes. We denote
the number of twin primes ≤ x by π2(x). We will show

Theorem 42. π2(x)� x

log2 x
(log log x)2.
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More generally, we denote by πa(x) the number of primes p ≤ x for which p − a or p + a
is also prime. We prove our next theorem from which Theorem 42 follows.

Theorem 43. Let a be a positive integer. Then πa(x) � x

log2 x
(log log x)2 where the

implied constant depends on a.

• Proof. We define

A′(z, x) = |{n ≤ x : p|n(n+ a) =⇒ p > z}|.

Observe that for z sufficiently large (eg., z ≥ 2a + 2 so that π(z) + a ≤ z), we have
πa(x) ≤ 2A′(z, x) + z. We seek a good estimate for A′(z, x). We use that

A′(z, x) ≤
∑
n≤x

α′(n(n+ a))

=
∑
n≤x

1−
∑
p≤z

∑
n≤x

p|n(n+a)

1 +
∑

p1<p2≤z

∑
n≤x

p1p2|n(n+a)

1

− · · ·+
∑

p1<p2<···<p2k≤z

∑
n≤x

p1p2···p2k|n(n+a)

1.

We fix momentarily z ≥ a so that if p|a, then p ≤ z. For a given p ≤ z, we consider two
possibilities, p|a and p - a. If p|a, then the number of n ≤ x for which p|n(n+ a) is [x/p],
which is within 1 of x/p. If p - a, then the number of n ≤ x for which p|n(n+ a) is within
2 of 2x/p. In general, if p1, . . . , pu are distinct primes dividing a and pu+1, . . . , pu+v are
distinct primes not dividing a, then the number of n ≤ x for which n(n + a) is divisible
by p1p2 · · · pu+v is within 2v of 2vx/

(
p1p2 · · · pu+v

)
(this can be seen by using the Chinese

Remainder Theorem and considering the number of such n in a complete system of residues
modulo p1p2 · · · pu+v). It follows that

A′(z, x) ≤ x−
∑
p≤z
p|a

x

p
−
∑
p≤z
p-a

2x
p

+
∑

p1<p2≤z
p1p2|a

x

p1p2

+
∑

p1<p2≤z
p1|a,p2-a

2x
p1p2

+
∑

p1<p2≤z
p1-a,p2|a

2x
p1p2

+
∑

p1<p2≤z
p1-a,p2-a

4x
p1p2

− · · ·+
∑

p1<p2<···<p2k≤z
p1-a,...,p2k-a

22kx

p1 · · · p2k
+ E1

=
∏
p|a

(
1− 1

p

)∏
p≤z
p-a

(
1− 2

p

)
x+ E1 + E2,
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where

E1 ≤ 1 + 2
(
π(z)

1

)
+ 4
(
π(z)

2

)
+ · · ·+ 22k

(
π(z)
2k

)

≤ π(z)2k

(
1 + 2 +

22

2!
+ · · ·+ 22k

(2k)!

)
≤ e2π(z)2k

and

E2 ≤
∑

p1<p2<···<p2k+1≤z

22k+1x

p1p2 · · · p2k+1
+

∑
p1<p2<···<p2k+2≤z

22k+2x

p1p2 · · · p2k+2
+ · · ·

≤ x
∞∑

u=2k+1

1
u!

(∑
p≤z

2
p

)u
≤ x

∞∑
u=2k+1

1
u!
(
2 log log z + 2C1

)u
,

where C1 is some appropriate constant. Using eu =
∑∞
j=0 u

j/j! ≥ uu/u! and choosing
k = [6 log log z], we obtain

E2 ≤ x
∞∑

u=2k+1

(
2e log log z + 2eC1

u

)u
≤ x

∞∑
u=2k+1

(
1
2

)u
=

x

22k
<

x

(log z)6

for z sufficiently large. We also have

E1 ≤ e2π(z)2k ≤ z12 log log z

for z sufficiently large. We now choose z = x1/(24 log log x) and consider x sufficiently large
to deduce that

A′(z, x) ≤
∏
p|a

(
1− 1

p

)∏
p≤z
p-a

(
1− 2

p

)
x+ E,

where |E| ≤ x/(log x)5. Observe that, for some constants C2 and C3 depending on a,

∏
p|a

(
1− 1

p

)∏
p≤z
p-a

(
1− 2

p

)
x ≤ C2x

(∏
p≤z

(
1− 1

p

))2

≤ C3
x

(log x)2
(log log x)2.

Theorem 43 follows.

• Brun’s Theorem. Brun introduced his pure sieve and used it to establish

Theorem 44.
∑

p a twin prime

(1/p) converges.

• Proof. We use Riemann-Stieltjes integrals to obtain∑
p≤x

p a twin prime

1
p

=
∫ x

1

1
t
dπ2(t) =

π2(x)
x

+
∫ x

2

π2(t)
t2

dt.
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Clearly, π2(x)/x ≤ 1. Also, Theorem 43 implies

π2(t)
t2
� (log log t)2

t(log t)2
� 1

t(log t)3/2

so that ∫ x

2

π2(t)
t2

dt�
∫ x

2

1
t(log t)3/2

dt� 1.

Thus,
∑

p a twin prime

1
p

is a bounded infinite series with positive terms. The theorem follows.

Homework:

(1) Let pn denote the nth prime.
(a) Explain why the Prime Number Theorem implies that lim sup

n→∞
(pn+1 − pn) =∞.

(b) Use Theorem 43 to prove that for every positive integer k,

lim sup
n→∞

(
min{pn+1 − pn, pn+2 − pn+1, . . . , pn+k − pn+k−1}

)
=∞.

(Note that this would follow from part (a) if “min” were replaced by “max”; the problem
is to figure out how to handle the “min” situation.)


