
Chapter 11

Chebyshev and Spectral Methods for Partial Differential
Equations

11.1 Introduction

Chebyshev polynomial applications to partial differential equations (PDEs)

Eu = 0 on a domain S, (11.1a)

subject to boundary conditions

Bu = 0 on ∂S, (11.1b)

where ∂S is the boundary of the domain S, are a natural progression of
the work of Lanczos (1938) and Clenshaw (1957) on ordinary differential
equations. However, the first formal publications in the topic of PDEs ap-
pear to be those of Elliott (1961), Mason (1965, 1967) and Fox & Parker
(1968) in the 1960s, where some of the fundamental ideas for extending one-
dimensional techniques to multi-dimensional forms and domains were first
developed. Then in the 1970s, Kreiss & Oliger (1972) and Gottlieb & Orszag
(1977) led the way to the strong development of so-called pseudo-spectral
methods, which exploit the fast Fourier transform of Cooley & Tukey (1965),
the intrinsic rapid convergence of Chebyshev methods, and the simplicity of
differentiation matrices with nodal bases.

Another important early contribution was the expository paper of Fin-
layson & Scriven (1966), who set the new methods of the 1960s in the context
of the established “method of weighted residuals” (MWR) and classified them
formally into the categories of Galerkin, collocation, and least squares meth-
ods, as well as into the categories of boundary, interior and mixed methods.

Let us first clarify some of this nomenclature, as well as looking at early
and basic approximation methods. We assume that the solution of (11.1a),
(11.1b) is to be approximated in the form

u � un = f(Ln) (11.2)

where

Ln =
n∑

k=1

ckφk (11.3)

is a linear combination of an appropriate basis of functions {φk} of the inde-
pendent variables (x and y, say) of the problem and where f is a quasi-linear
function

f(L) = A.L+B, (11.4)

where A, B are specified functions (of x and y).
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11.2 Interior, boundary and mixed methods

11.2.1 Interior methods

An interior method is one in which the approximation (11.2) exactly satisfies
the boundary conditions (11.1b) for all choices of coefficients {ci}. This is
typically achieved by choosing each basis function φi appropriately. If Bu in
(11.1b) is identically u, so that we have the homogeneous Dirichlet condition

u = 0 on ∂S, (11.5)

then we might well use the identity function for f , and choose a basis for
which every φi vanishes on ∂S. For example, if S is the square domain with
boundary

∂S : x = 0, x = 1, y = 0, y = 1. (11.6)

then one possibility would be to choose

φk = Φij = sin iπx sin jπx (11.7)

with
k = i+ n(j − 1)

and
ck = aij ,

say, so that the single index k = 1, . . . , n2 counts row by row through the
array of n2 basis functions corresponding to the indices i = 1, . . . , n and
j = 1, . . . , n. In practice we might in this case change notation from φk to
Φij and from un2 , Ln2 to unn, Lnn, setting

u � unn = f(Lnn)

where

Lnn =
n∑

i=1

n∑
j=1

aijΦij(x, y). (11.8)

It only remains to solve the interior problem (11.1a).

There is a generalisation of the above method, that is sometimes applicable
to the general Dirichlet boundary conditions

u = B(x, y) (11.9)

on the boundary
Γ : A(x, y) = 0,

where we know a formula A = 0 for the algebraic equation of Γ, as well as a
formula B = 0 for the boundary data. Then we may choose

u � unn = f(Lnn) = A(x, y)Lnn +B(x, y), (11.10)
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Figure 11.1:

which automatically satisfies (11.5), whatever we take for Lnn. See Mason
(1967) for a successful application and early discussion of such techniques.

In the discussion that follows we assume unless otherwise stated that f is
the identity, so that un and Ln are the same function.

11.2.2 Boundary methods

A boundary method is one in which the approximation (11.2) exactly satisfies
the PDE (11.1a) for all choices of coefficients {ci}. If the PDE is linear, for
example, then this is achieved by ensuring that every basis function φk is a
particular solution of (11.1a). This method is often termed the “method of
particular solutions” and has a long history— see for example Vekua (1967)—
and indeed the classical method of separation of variables for PDEs is typically
of this nature. It remains to satisfy the boundary conditions approximately
by suitable choice of coefficients {ci}.

For example, consider Laplace’s equation in (r, θ) coordinates:

�u = r2 ∂
2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
= 0 (11.11a)

in the disk S : r ≤ 1, together with

u = g(θ) (11.11b)

on ∂S : r = 1, where g is a known 2π-periodic function of the orientation θ of
a general point, P say, on the boundary (Figure 11.1).

Then

u � un(r, θ) =
n∑′

k=0

[ak(rk cos(kθ)) + bk(rk sin(kθ))] (11.12)

is an exact solution of (11.11a) for all {ak, bk}, since rk cos(kθ) and rk sin(kθ)
are particular solutions of (11.11a), which may readily be derived by separa-
tion of variables in (11.11a) (see Problem 1).
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Substituting (11.12) into (11.11b) gives

u = g(θ) � un(1, θ) =
n∑′

k=0

[ak cos(kθ) + bk sin(kθ)]. (11.13)

Clearly we require the latter trigonometric sum to approximate g(θ). This
may theoretically be achieved by choosing ak and bk to be coefficients in the
full Fourier series expansion of g(θ), namely

ak = π−1

∫ 2π

0

g(θ) cos(kθ) dθ, bk = π−1

∫ 2π

0

g(θ) sin(kθ) dθ. (11.14)

These integrals must be replaced by numerical approximations, which may be
rapidly computed by the fast Fourier transform (FFT, see Section 4.7). The
FFT computes an approximate integral transform, by “exactly” computing
the discrete Fourier transform given by

ak = n−1

2n∑′′

i=0

g(θi) cos(kθi), bk = n−1

2n∑′′

i=0

g(θi) sin(kθi), (11.15)

where
θi = iπ/n (i = 0, . . . , 2n). (11.16)

Here the periodic formulae (11.14) have been approximated by Filon’s rule,
namely the Trapezoidal rule for trigonometric functions, which is a very ac-
curate substitute in this case.

Several examples of the method of particular solutions are given by Mason
& Weber (1992), where it is shown that the method does not always converge!
See also, however, Fox et al. (1967) and Mason (1969) where the “L-shaped
membrane eigenvalue problem” is solved very rapidly and accurately by this
method.

Boundary MWR methods are important because, when they are appli-
cable, they effectively reduce the dimension of the problem by restricting it
to the domain boundary. In consequence such methods can be very efficient
indeed. Moreover, because they normally incorporate precise features of the
solution behaviour, they are often very accurate too — see Mason (1969)
where the first L-shaped membrane eigenvalue is computed correct to 13 sig-
nificant figures for (n =)24 basis functions.

However, boundary MWR methods are not the only available techniques
for in effect reducing the problem dimension. The method of fundamental
solutions, which has been adopted prolifically by Fairweather & Karageorghis
(1998), uses fundamental PDE solutions as a basis. These solutions typically
have singularities at their centres, and so must be centred at points exterior
to S. This method is closely related to the boundary integral equation (BIE)
method and hence to the boundary element method (BEM) — for which
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there is a huge literature (Brebbia et al. 1984, for example), and indeed the
boundary integral equation method adopts the same fundamental solutions,
but as weight functions in integral equations. For example, functions behaving
like log r occur in both the method of fundamental solutions and the boundary
integral equation method for Laplace’s equation in two dimensions.

Both the BIE method and the BEM convert a PDE on a domain into
an integral equation over its boundary. They consequently have the possi-
bility for considerable improvements in efficiency and accuracy over classical
finite element methods for the original PDE, depending on the nature of the
geometry and other factors.

11.2.3 Mixed methods

A mixed method is one in which both the PDE (11.1a) and its boundary
conditions (11.1b) need to be approximated. In fact this is generally the case,
since real-life problems are usually too complicated to be treated as boundary
or interior problems alone. Examples of such problems will be given later in
this chapter.

11.3 Differentiation matrices and nodal representation

An important development, which follows a contrasting procedure to that of
the methods above, is to seek, as initial parameters, not the coefficients ck in
the approximation form Ln (11.3) but instead the values un(xi, yj) of un at
a suitable mesh of Chebyshev zeros. Derivatives can be expressed in terms of
these un values also, and hence a system of (linear) algebraic equations can
be formed for the required values of un. It is then possible, if required, to
recover the coefficients ck by a Chebyshev collocation procedure.

An example of the procedure was given in Chapter 10 (Section 10.5.1)
for ordinary differential equations (ODEs). In the case of PDEs it should be
noted that the procedure is primarily suited to rectangular regions.

11.4 Method of weighted residuals

11.4.1 Continuous MWR

The standard MWR, which we call the continuous MWR, seeks to solve an
interior problem by finding an approximation of the form (11.2) which min-
imises, with respect to ck (k = 1, . . . , n), the expression

〈Eun , Wk〉2 ≡
[∫

S

(Eun).Wk dS
]2

, (11.17)
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where Wk is a suitable weight function (Finlayson & Scriven 1966). Here we
assume that E is a linear partial differential operator. More specifically :

(i) MWR is a least squares method if

Wk ≡ w.Eun, (k = 1, . . . , n), (11.18)

where w is a fixed non-negative weight function. Then, on differentiating
(11.17) with respect to ck, we obtain the simpler form

〈Eun , w.Eφk〉 = 0, (k = 1, . . . , n). (11.19)

This comprises a linear system of n equations for ck.

(ii) MWR is a Galerkin method if

Wk ≡ w.φk. (11.20)

Note that, in this case, we can give a zero (minimum) value to (11.17) by
setting

〈Eun , w.φk〉 = 0, (k = 1, . . . , n), (11.21)

again a system of linear equations for ck. It follows from (11.21) that

〈Eun , w.un〉 = 0. (11.22)

More generally, we can if we wish replace φk in (11.21) by any set of test
functions ψk, forming a basis for uk and solve

〈Eun , w.ψk〉 = 0, (k = 1, . . . , n). (11.23)

(iii) MWR is a collocation method (interpolation method) at the points
P1, . . . , Pn if

Wk ≡ δ(Pk), (11.24)

where δ(P ) is the Dirac delta function (which is infinite at the point P , van-
ishes elsewhere and has the property that 〈u , δ(P )〉 = u(P ) for any well-
behaved function u). Then Eun in (11.17) will be set to zero at Pk, for every
k.

11.4.2 Discrete MWR — a new nomenclature

It is also possible to define a discrete MWR, for each of the three types of
methods listed above, by using a discrete inner product in (11.17). Commonly
we do not wish, or are unable, to evaluate and integrate Eun.Wk over a
continuum, in which case we may replace the integral in (11.17) by the sum∑

Sn

(Eun).Wk, (11.25)
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where Sn is a discrete point set representing S.

The discrete MWR, applied to an interior problem, is based on a discrete
inner product. It seeks an approximation of the form (11.2) which solves

min
ck




 p∑

j=1

Eun(xj)Wk(xj)




2

≡ (Eun,Wk)2


 , (11.26)

where xj (j = 1, . . . , p) are a discrete set of nodes in S, selected suitably
from values of the vector x of independent variables, and Wk are appropriate
weights.

(i) The discrete MWR is a discrete least-squares method if

Wk ≡ wEun. (11.27)

This is commonly adopted in practice in place of (11.18) for convenience and
to avoid integration.

(ii) The discrete MWR is a discrete Galerkin method if

Wk ≡ wφk (11.28)

or, equivalently,
(Eun, wψk) = 0. (11.29)

Note that the PDE operator Eun is directly orthogonal to every test function
ψk, as well as to the approximation un, so that

(Eun, wun) = 0. (11.30)

(iii) The discrete MWR is a discrete collocation method if (11.24) holds,
where {Pk} is contained within the discrete point set Sn.

11.5 Chebyshev series and Galerkin methods

The most basic idea in Chebyshev polynomial methods is that of expanding a
solution in a (multiple) Chebyshev series expansion, and using the partial sum
as an approximation. This type of approach is referred to as a spectral method
by Gottlieb & Orszag (1977). This type of ODE/PDE method had previously,
and still has, several other names, and it is known as (or is equivalent to) a
Chebyshev series method, a Chebyshev–Galerkin method, and the tau method
of Lanczos.

Before introducing PDE methods, we consider the Lanczos tau method:
one of the earliest Chebyshev methods for solving a linear ODE

Ey = 0
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in the approximate form yn.

Lanczos (1938) and Ortiz and co-workers (Ortiz 1969, Freilich & Ortiz
1982, and many other papers) observed that, if yn is expressed in the power
form

yn = b0 + b1x+ b2x
2 + · · ·+ bnx

n, (11.31)

then, for many important linear ODEs, Eyn can be equated to a (finite)
polynomial with relatively few terms, of the form

Eyn = τ1Tq+1(x) + τ2Tq+2(x) + · · ·+ τsTq+s(x), (11.32)

where q and s are some integers dependent on E. The method involves sub-
stituting yn (11.31) into the perturbed equation (11.32) and equating powers
of x from x0 to xq+s. The t (say) boundary conditions are also applied to yn,
leading to a total of q+ s+ t+1 linear equations for b0, . . . , bn, τ1, . . . , τs. We
see that for the equations to have one and only one solution we must normally
have

q + t = n. (11.33)

The equations are solved by first expressing b0, . . . , bn in terms of τ1, . . . , τs,
solving s equations for the τ values and hence determining the b values. Be-
cause of the structure of the resulting matrix and assuming s is small com-
pared to n, the calculation can routinely reduce to one of O(n) operations,
and hence the method is an attractive one for suitable equations.

The above method is called the (Lanczos) tau method - with reference to
the introduction by Lanczos (1938) of perturbation terms, with coefficients
τ1, . . . , τs, on the right hand side of Ey = 0 to enable the ODE to be exactly
solved in finite form. The nice feature of this approach is that the tau values
give a measure of the sizes of the contributions that the perturbation terms
make to the ODE — at worst,

|Eyn| ≤ |τ1|+ |τ2|+ · · ·+ |τs| . (11.34)

For some special cases, Lanczos (1957), Fox & Parker (1968), Mason (1965),
Ortiz (1980, 1986, 1987), Khajah & Ortiz (1991) and many others were able
to give quite useful error estimates based on the known form (11.32).

The tau method is also equivalent to a Galerkin method, since Eyn is
orthogonal with respect to (1− x2)−1/2 to all polynomials of degree up to q,
as a consequence of (11.32). Note that the Galerkin method proper is more
robust than equivalent tau or Chebyshev series methods, since, for example,
it is unnecessary to introduce τ terms or to find and use the form (11.32).
The Galerkin method directly sets up a linear system of equations for its
coefficients. For example, if we wish to solve

u′ − u = 0, u(0) = 1 (11.35)
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by a Galerkin procedure using Legendre polynomials P ∗
i (x) appropriate to

[0, 1], namely

u ∼ un =
n∑

i=0

ciP
∗
i (x), (11.36)

then we solve ∫ 1

0

(u
′
n − un).P ∗

i (x) dx = 0 (i = 0, 1, . . . , n− 1) (11.37)

and
n∑

i=0

ciP
∗
i (0) = 1. (11.38)

Here (11.37) and (11.38) comprise n + 1 equations for c0, . . . , cn. Note that
a snag in the Galerkin method is the need to evaluate the various integrals
that occur, which are likely to require a numerical treatment except in simple
problems such as (11.35).

It is worth remembering that Chebyshev series are also transformed Fourier
series, and so Chebyshev methods may be based on known methods for gen-
erating Fourier partial sums or Fourier transforms, based on integrals and
expansions.

11.6 Collocation/interpolation and related methods

We have seen, in Sections 5.5 and 6.5, that a Chebyshev series partial sum of
degree n of a continuous function is a near-minimax approximation on [−1, 1]
within a relative distance of order 4π−2 logn, whereas the polynomial of de-
gree n interpolating (collocating) the function at the n + 1 zeros of Tn+1(x)
is near-minimax within a slightly larger relative distance of order 2π−1 logn.
Thus, we may anticipate an error that is π/2 times as large in Chebyshev in-
terpolation compared with Chebyshev series expansion. In practice, however,
this is a very small potential factor, and polynomial approximations from
the two approaches are virtually indistinguishable. Indeed, since collocation
methods are simpler, more flexible and much more generally applicable, they
offer a powerful substitute for the somewhat more mathematically orthodox
but restrictive series methods.

The title pseudo-spectral method was introduced by Gottlieb & Orszag
(1977), in place of Chebyshev collocation method, to put across the role of this
method as a robust substitute for the spectral method. Both series (spectral)
and collocation (pseudo-spectral) methods were rigorously described by Ma-
son (1970) as near-minimax. Note that minimax procedures generally involve
infinite procedures and are not practicably feasible, while spectral, and more
particularly pseudo-spectral, methods are typically linear and very close to
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minimax and therefore provide an excellent and relatively very inexpensive
substitute for a minimax approximation method.

It has long been realised that collocation for differential equations is almost
identical to series expansion. Lanczos (1957) noted that the ODE error form
adopted in his tau method (11.32) could conveniently be replaced with nearly
identical results (though different τ coefficients) by

Eyn = Tq+1(x).(τ1 + τ2x+ · · ·+ τsx
s−1), (11.39)

where q+ s is the degree of Eyn. Note that the error in the ODE vanishes at
the zeros of Tq+1(x), and so the method is equivalent to a collocation method
(in the ODE). Lanczos called this method the selected points method, where
the zeros of Tq+1 are the points selected in this case. Lanczos sometimes also
selected Legendre polynomial zeros instead, since in practice they sometimes
give superior results.

We have already shown that the Chebyshev collocation polynomial, fn(x)
of degree n to a given f(x), may be very efficiently computed by adopting a
discrete orthogonalisation procedure

f(x) � fn(x) =
n∑′

i=0

ciTi(x), (11.40)

where

ci =
2
N

N∑
k=0

f(xk)Ti(xk) =
2
N

N∑
k=0

f(cos(θk)) cos(iθk), (11.41)

with

xk = cos(θk) = cos
(
(2k + 1)π
2(N + 1)

)
(k = 0, 1, . . . , n). (11.42)

For N = n, this yields the collocation polynomial, and this clearly mimics
the Chebyshev series partial sum of order n, which has the form (11.40) with
(11.41) replaced by

ci =
2
π

∫ 1

−1

(1− x2)−1/2f(x)Ti(x) dx =
2
π

∫ π

0

f(cos(θ)) cos(iθ) dθ. (11.43)

with x = cos(θ).

Note that the discrete Chebyshev transform in x and the discrete Fourier
transform in θ, that appear in (11.41), also represent an excellent numerical
method (Filon’s rule for periodic integrands) for approximately computing
the continuous Chebyshev transform and Fourier transform that appear in
(11.43). The fast Fourier transform (FFT), which is of course a very efficient
method of computing the Fourier transform, does in fact compute the discrete
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Fourier transform instead. However, (11.43) is typically replaced by (11.41)
for a value of N very much larger than n, say N = 1024 for n = 10. So
there are really two different discrete Fourier transforms, one for N = n
(collocation) and one for N � n (approximate series expansion).

11.7 PDE methods

We note that, for simplicity, the above discussions of nomenclature have been
based on ODEs, for which boundary conditions apply at just a few points,
usually only one or two. Typically these boundary conditions are imposed
exactly as additional constraints on the approximation, with only a little effect
on the number of coefficients remaining. For example, in the tau method for

Eu ≡ u′ − u = 0, u(0) = 1 in [0, 1], (11.44)

we determine
u ∼ un = c0 + c1x+ · · ·+ cnx

n

by equating coefficients of 1, x, x2, . . . , xn in

Eun ≡ (c1 − c0) + (2c2 − c1)x+ (3c3 − c2)x2 + · · · +
+ (ncn − cn−1)xn−1 − cnx

n = τT ∗
n(x). (11.45)

This yields n+1 linear equations for c0, . . . , cn, τ , and an additional equation
is obtained by setting c0 = 1 to satisfy the boundary (initial) condition.

In spectral and pseudo-spectral methods for PDEs, the boundary condi-
tions play a much more crucial role than for ODEs, and it becomes important
to decide whether to satisfy the boundary conditions implicitly, in the form
chosen for the basis functions, or to apply the boundary conditions as addi-
tional constraints. For this reason, Gottlieb & Orszag (1977) and Canuto et al.
(1988) differentiate between Galerkin and tau methods primarily in terms of
their treatment of boundary conditions — whereas we have above viewed
these methods as equivalent, one based on the orthogonality requirement and
the other based on the form of the ODE (perturbation) error. Canuto et al.
(1988) view a Galerkin method as a series method in which the boundary
conditions are included implicitly in the chosen solution form, whereas a tau
method is seen by them as a series method for which the boundary conditions
are applied explicitly through additional constraints.

The distinction made by Canuto et al. (1988) between Galerkin and tau
methods has virtues. In particular the number of free approximation coeffi-
cients needed to satisfy boundary conditions can be very large, whereas this
may be a peripheral effect if the boundary can be treated implicitly. So a
distinction is needed. But the words, Galerkin and tau, do not conjure up
boundary issues, but rather an orthogonality technique and tau perturbation
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terms. A better terminology, we would suggest, would be to refer to methods
which include/exclude boundary conditions from the approximation form as
implicit/explicit methods respectively. We could alternatively use the titles
interior/mixed methods, as discussed for the MWR above.

Nomenclature and methods become more complicated for PDEs in higher
dimensions. In the following sections we therefore give a number of exam-
ples of problems and methods to illustrate the formalisms that result from
approaches of the Galerkin, tau, collocation, implicit, explicit (&c.) variety.
We do not view spectral and pseudo-spectral methods, unlike Galerkin and
tau methods, as specifically definable methods, but rather as generic titles for
the two main branches of methods (series and collocation). A generalisation
of the Lanczos tau method might thus be termed a spectral explicit/mixed
tau method.

11.7.1 Error analysis

Canuto et al. (1988) and Mercier (1989), among others, give careful attention
to error bounds and convergence results. In particular, Canuto et al. (1988)
address standard problems such as the Poisson problem, as well as individu-
ally addressing a variety of harder problems. In practice, however, the main
advantage of a spectral method lies in the rapid convergence of the Chebyshev
series; this in many cases makes feasible an error estimate based on the sizes
of Chebyshev coefficients, especially where convergence is exponential.

11.8 Some PDE problems and various methods

It is simplest to understand, develop and describe spectral and pseudo-spectral
methods by working through a selection of problems of progressively increas-
ing complexity. This corresponds quite closely to the historical order of devel-
opment, which starts, from a numerical analysis perspective, with the novel
contributions of the 1960s and is followed by the fast (FFT-based) spectral
methods of the 1970s. Early work of the 1960s did establish fundamental
techniques and compute novel approximations to parabolic and elliptic PDEs,
based especially on the respective forms

u(x, t) ∼ un(x, t) =
n∑

i=0

cifi(t)Ti(x) (−1 ≤ x ≤ 1; t ≥ 0) (11.46)

for parabolic equations, such as uxx = ut, and

u(x, y) ∼ un(x, y) =
m∑

i=0

n∑
j=0

cijTi(x)Tj(y) (−1 ≤ x, y ≤ 1) (11.47)

for elliptic problems, such as ∆u ≡ uxx + uyy = f .
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An early paper based on (11.46) was that of Elliott (1961), who deter-
mined fi(t) as approximate solutions of a system of ODEs, in the spirit of the
“method of lines”. Another early paper based on (11.47) was that of Mason
(1967), which solves the membrane eigenvalue problem (see Section 11.8.2
below)

∆u+ λu = 0 in S, u = 0 on ∂S, (11.48)

for the classical problem of an L-shaped membrane (consisting of three squares
co-joined), based on a preliminary conformal mapping of the domain and an
approximation

u � A(x, y).φn(x, y), (11.49)

where A = 0 is the algebraic equation of the mapped boundary. Mason
(1969) also used an approximation of form (11.46) to solve a range of separable
PDEs including (11.48). Indeed the leading eigenvalue of the L-membrane was
computed to 13 significant figures by Mason (1969) (λ = 9.639723844022).

These early quoted papers are all essentially based on the collocation
method for computing coefficients ci or cij . It is also possible to develop
tau/series methods for the form (11.46), based on the solution by the Lanczos
tau method of the corresponding ODEs for fi(t) ; this has been carried out for
very basic equations such as the heat equation and Poisson equation (Berzins
& Dew 1987).

11.8.1 Power basis: collocation for Poisson problem

Consider the Poisson problem

∆u ≡ ∂2u

∂x2
+

∂2u

∂y2
= f(x, y) in S, u = 0 on ∂S, (11.50)

where S is the square with boundaries x = ±1, y = ±1. Suppose we approxi-
mate as

u � umn = φ(x, y)
m−2∑
i=0

n−2∑
j=0

aijx
iyj , (11.51)

where we adopt the power basis xiyj and include a multiplicative factor φ(x)
such that φ = 0 is the (combined) equation of the boundaries. In this case,

φ(x, y) = (x2 − 1)(y2 − 1). (11.52)

Then we may rewrite umn as

umn =
m−2∑
i=0

n−2∑
j=0

aij(xi+2 − xi)(yj+2 − yj) (11.53)
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and hence, applying ∆, obtain

∆umn =
m−2∑
i=0

n−2∑
j=0

aij

(
[(i+ 2)(i+ 1)x2 − i(i− 1)]xi−2yj(y2 − 1)

+ [(j + 2)(j + 1)y2 − j(j − 1)]xi(x2 − 1)yj−2
)
. (11.54)

Now set ∆umn equal to f(x, y) at the (m − 1)(n − 1) points (xk, yl) (k =
1, . . . ,m−1; l = 1, . . . , n−1), where {xk}, {yl} are the respective sets of zeros
of Tm−1(x), Tn−1(y), respectively, namely the points

xk = cos
(
(2k − 1)π
2(m− 1)

)
, yl = cos

(
(2l− 1)π
2(n− 1)

)
. (11.55)

This leads to a full linear algebraic system of (m−1)(n−1) equations for aij .
It is relatively straightforward to code a computer procedure for the above
algorithm.

We also observe that the approximation umn adopted in (11.53) above
could equally well be replaced by the equivalent form

umn =
m∑

i=2

n∑
j=2

aij(xi − xi mod 2)(yj − yj mod 2), (11.56)

where (i mod 2) is 0 or 1 according as i is even or odd, since x2−1 and y2−1
are in every case factors of umn. This leads to a simplification in ∆umn (as
in (11.54)), namely

∆umn =
m∑

i=2

n∑
j=2

aij

[
i(i− 1)xi−2(yj − yj mod 2)

+ j(j − 1)yj−2(xi − xi mod 2)
]
. (11.57)

The method then proceeds as before. However, we note that (11.51) is a more
robust form for more general boundary shapes ∂S and more general boundary
conditions Bu = 0, since simplifications like (11.56) are not generally feasible.

The above methods, although rather simple, are not very efficient, since no
account has been taken of special properties of Chebyshev polynomials, such
as discrete orthogonality. Moreover, (11.53) and (11.56) use the basis of power
functions xiyj which, form and n sufficiently large, can lead to significant loss
of accuracy in the coefficients aij , due to rounding error and poor conditioning
in the resulting linear algebraic system. We therefore plan to follow up this
discussion in a later Section by considering more efficient and well conditioned
procedures based on the direct use of a Chebyshev polynomial product as a
basis, namely Ti(x)Tj(y).

However, before we return to the Poisson problem, let us consider a more
difficult problem, where the form (11.51) is very effective and where a power
basis is adequate for achieving relatively high accuracy.
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11.8.2 Power basis: interior collocation for the L-membrane

Consider the eigenvalue problem

∆u+ λu = 0 in S, u = 0 on ∂S, (11.58)

where S is the L-shaped region shown (upside down for convenience) in Fig-
ure 11.2. It comprises three squares of unit sides placed together. To remove
the re-entrant corner atO, we perform the mapping, adopted by Reid &Walsh
(1965),

z′ = z2/3 (z′ = x′ + iy′, z = x+ iy), (11.59)

where x, y are coordinates in the original domain S (Figure 11.2) and x′, y′

are corresponding coordinates in the mapped domain S′ (Figure 11.3).
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Figure 11.3: Mapped domain

Note that the domain S′ is the upper half of a curved hexagon with corners
of angle π

2 shown in Figure 11.3, where the vertices A′, B′, C′, D′, E′ corre-
spond to A,B,C,D,E in Figure 11.2. (The lower half of the hexagon does
not concern us, but is included in Figure 11.3 to show the geometry and the
symmetry.) Now, from the mapping,

r′ = r2/3, θ′ = 2
3θ. (11.60)

Then

∆u + λu ≡ r−2

[
r2 ∂

2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
+ λu

]

= r−2

[
r
∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂θ2

]
+ λu

= (r′)−3

[
2
3

(
r′

∂

∂r′

)
2
3

(
r′
∂u

∂r′

)
+ 4

9

∂2u

∂θ′2

]
+ λu. (11.61)
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Hence
∆u+ λu = 4

9 (r
′)−1.(∆′u+ 9

4r
′λu) = 0, (11.62)

where dashes on ∆′, r′ indicate that dashed coordinates are involved. Thus
the problem (11.58) has transformed, now dropping dashes on r, u, to

∆u+ 9
4rλu = 0 in S′, u = 0 on ∂S′. (11.63)

Before proposing a numerical method, we need to find the algebraic equa-
tion of the boundary O′A′B′C′D′E′(O′) in Figure 11.3. This boundary has
two parts: the straight line E′O′A′, namely y′ = 0, and the set of four curves
A′B′C′D′E′ which correspond to (x2−1)(y2−1) = 0 in S. Thus the boundary
equation is

0 = A(x, y) = 4y′(x2 − 1)(y2 − 1) = 4y′(x2y2 − r2 + 1)

= y′(r4 sin2(2θ)− 4r2 + 4) = y′
[
(r′)6 sin2(3θ′)− 4(r′)3 + 4]

= y′
[
(y′)2{3(x′)2 − (y′)2}2 − 4{(x′)2 + (y′)2}3/2 + 4

]
. (11.64)

Dropping dashes again,

A(x, y) = y.
[
y2(3x2 − y2)2 − 4(x2 + y2)3/2 + 4

]
= 0. (11.65)

We now adopt as our approximation to u, using (11.65) for φ:

u � umn = A(x, y).
m∑

i=0

n∑
j=0

cijx
2i+tyj , (11.66)

where t = 0 or 1, according as we seek a solution which is symmetric or
anti-symmetric about OC. For the leading (i.e., largest) λ, we choose t = 0.

The rectangle TUVW , which encloses the mapped membrane, has sides
O′T , TU in the x, y directions, respectively, of lengths a, b, say, given by

a = O′T = O′B′ cos(π/6) = 21/331/2/2 = 2−2/331/2,

b = TU = O′C′ = (21/2)2/3 = 21/3. (11.67)

An appropriate ‘interior’ collocation method is now simply constructed. We
specify that the form of approximation (11.66) should satisfy the PDE (11.63)
at the tensor product of (m+1)(n+1) positive zeros of T ∗

m+1(x/a)T
∗
n+1(y/b),

where a, b are given in (11.67), namely the points

{x, y} =
{
a. cos2

(
(2k − 1)π
4(m+ 1)

)
, b. cos2

(
(2l − 1)π
4(n+ 1)

)}
(k = 1, . . . ,m+ 1; l = 1, . . . , n+ 1). (11.68)

© 2003 by CRC Press LLC



Table 11.1: Estimates of first 3 eigenvalues of L-membrane
m = n λ Rayleigh quotient

Functional form A(x, y)
∑m

0

∑n
0 x2iyj

4 9.6398 9.6723
6 9.6400 9.6397
8 9.6397 9.6397

Functional form xA(x, y)
∑m

0

∑n
0 x2iy2j

4 15.2159
5 15.1978 15.1980
6 15.1974 15.1974
7 15.1974 15.1974

Functional form A(x, y)
∑m

0

∑n
0 x2iy2j

4 19.8054
5 19.7394
6 19.7392 19.7392
7 19.7392 19.7392

This leads to a homogeneous system of (m+1)(n+1) linear equations, which
we may write in matrix form as A.c = 0, for the determination of c = {cij},
where A depends on λ. The determinant of A must vanish, thus defining
eligible values of λ, corresponding to eigenvalues of the PDE. We have applied
the secant method to find the λ nearest to a chosen guess. Results for the first
three eigenvalues, taken from Mason (1965), are shown in Table 11.1 together
with Rayleigh quotient estimates. Clearly the method is rather successful,
and the application serves as an interesting model problem.

Strictly speaking, the collocation method above is not an interior method,
since some collocation points are exterior to S although interior to the rect-
angle TUVW . However, the PDE solution does extend continuously across
the problem boundaries to these exterior points.

In fairness we should point out that, although the above collocation method
is probably at least as effective for this problem as the best finite difference
method, such as that of Reid & Walsh (1965), it is not the best method of
all. A better method for the present problem is the boundary method, based
on separation of variables, due to Fox et al. (1967) and further extended by
Mason (1969). This breaks down for regions with more than one re-entrant
corner, however, on account of ill-conditioning; a better method is the finite-
element/domain-decomposition method described by Driscoll (1997).
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11.8.3 Chebyshev basis and discrete orthogonalisation

In the remaining discussion, we concentrate on the use of a Chebyshev poly-
nomial basis for approximation and exploit properties such as discrete orthog-
onality and the FFT for efficiency. However, it is first appropriate to remind
the reader that the classical method of separation of variables provides both
a fast boundary method for Laplace’s equation and a superposition method,
combining interior and boundary methods for the Poisson equation with non-
zero boundary conditions.

Separation of variables: basic Dirichlet problem

Consider the basic Dirichlet problem for Laplace’s equation on a square,
namely

∆u = 0 in S, (11.69a)

u = g(x, y) on ∂S, (11.69b)

where ∂S is the square boundary formed by x = ±1, y = ±1, S is its interior
and g is defined only on ∂S. Then we may solve (11.69a) analytically for the
partial boundary conditions

u = g(−1, y) on x = −1; u = 0 on x = +1, y = −1, y = +1, (11.70)

in the form

u =
∞∑

k=1

ak sinh 1
2kπ(1 − x) sin 1

2kπ(1− y), (11.71)

where ak are chosen to match the Fourier sine series of g(−1, y) on x = −1.
Specifically

g(−1, y) =
∞∑

k=1

bk sin 1
2kπ(1− y), (11.72)

where

bk = 2
∫ 1

−1

g(−1, y) sin 1
2kπ(1− y) dy, (11.73)

and hence ak is given by

ak = bk[sinh kπ]−1. (11.74)

Clearly we can define three more solutions of (11.69a), analogous to (11.71),
each of which matches g(x, y) on one side of ∂S and is zero on the remainder
of ∂S. If we sum these four solutions then we obtain the analytical solution of
(11.69a) and (11.69b). For an efficient numerical solution, the Fourier series
should be truncated and evaluated by using the FFT [see Section 4.7].
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Chebyshev basis: Poisson problem

The Poisson Problem can be posed in a slightly more general way than in
Section 11.8.3, while still permitting efficient treatment. In particular we may
introduce two general functions, f as the right-hand side of the PDE, and g
as the boundary function, as follows.

∆u = f(x, y) in S, u = g(x, y) in ∂S, (11.75)

where S and ∂S denote the usual square {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and its
boundary. Then we may eliminate g (and replace it by zero) in (11.75), by
superposing two problem solutions

u = u1 + u2, (11.76)

where u1 is the solution of the Laplace problem ((11.75) with f ≡ 0) and u2

is the solution of the simple Poisson problem ((11.75) with g ≡ 0), so that

∆u1 = 0 in S, u1 = g(x, y) on ∂S, (11.77a)

∆u2 = f(x, y) in S, u2 = 0 on ∂S. (11.77b)

We gave details above of the determination of u1 from four Fourier sine series
expansions based on separation of variables, as per (11.71) above. We may
therefore restrict attention to the problem (11.77b) defining u2, which we now
rename u.

We now re-address (11.77b), which was discussed in Section 11.8.1 using
a power basis, and, for greater efficiency and stability, we adopt a boundary
method based on a Chebyshev polynomial representation

umn = (x2 − 1)(y2 − 1)
m−2∑′

i=0

n−2∑′

j=0

cijTi(x)Tj(y), (11.78)

or equivalently, again to ensure that u = 0 on ∂S,

umn =
m∑

i=2

n∑
j=2

aij [Ti(x) − Ti mod 2(x)] [Tj(y)− Tj mod 2(y)]. (11.79)

Now, as in Problem 16 of Chapter 2,

∂2

∂x2
Ti(x) =

i−2∑
r=0

i−r even

(i− r)i(i+ r)Tr(x), (11.80)

and hence

∆umn =
m∑

i=2

n∑
j=2

aij




i−2∑
r=0

i−r even

(i− r)i(i+ r)Tr(x) (Tj(y)− Tj mod 2(y)) +
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+
j−2∑
s=0

j−s even

(j − s)j(j + s)Ts(y) (Ti(x)− Ti mod 2(x))




= f (11.81)

Now define collocation points {xk(k = 1, . . . ,m−1)} and {yl(l = 1, . . . , n−
1)} to be, respectively, the zeros of Tm−1(x) and Tn−1(y). Then discrete
orthogonality gives, for p, r less than m− 1 and q, s less than n− 1,

2(m+ 1)−1
m−1∑
k=1

Tp(xk)Tr(xk) =



2, p = r = 0,
1, p = r 
= 0,
0, p 
= r,

(11.82a)

2(n+ 1)−1
n−1∑
l=1

Tq(yl)Ts(yl) =



2, q = s = 0,
1, q = s 
= 0,
0, q 
= s.

(11.82b)

Evaluating (11.81) at (xk, y�), multiplying by 4[(m− 1)(n− 1)]−1 and by
Tp(xk)Tq(y�) for p = 0, . . . ,m − 2; q = 0, . . . , n − 2, summing over k, 	, and
using discrete orthogonality, we obtain

Apq +Bpq = 4[(m− 1)(n− 1)]−1
m−1∑
k=1

n−1∑
�=1

f(xk, y�)Tp(xk)Tq(y�), (11.83)

where

Apq =




m∑
i=2

i−p even

aiq(i− p)i(i+ p), q ≥ 2,

−
m∑

i=2
i−p even

n∑
j=3

j odd

aij(i− p)i(i+ p), q = 1,

−2
m∑

i=2
i−p even

n∑
j=2

j even

aij(i− p)i(i+ p), q = 0,

Bpq =




n∑
j=2

j−q even

apj(j − q)j(j + q), p ≥ 2,

−
n∑

j=2
j−q even

m∑
i=3

i odd

aij(j − q)j(j + q), p = 1,

−2
n∑

j=2
j−q even

m∑
i=2

i even

aij(j − q)j(j + q), p = 0.

(11.84)
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This system of linear equations for aij is very sparse, having between 2 and
(m + n − 2)/2 entries in each row of the matrix for p, q ≥ 2. It is only the
equations where “boundary effects” enter (for p = 0, 1; q = 0, 1), that fill
out the matrix entries into alternate rows and/or columns. Note also that all
right-hand sides are discrete Chebyshev transforms, which could be evaluated
by adopting FFT techniques.

The border effects can be neatly avoided for this particular Poisson prob-
lem, by adopting instead a matrix method based on differentiation matrices, in
which the unknowns of the problem become the solution values at Chebyshev
nodes, rather than the solution coefficients. This approach was introduced
in Section 10.5.3 of Chapter 10 for ODEs and is particularly convenient for
some relatively simple problems. We now see its advantages for the present
problem.

11.8.4 Differentiation matrix approach: Poisson problem

To illustrate this approach, we follow the treatment of Trefethen (2000), set-
ting m = n and adopting as collocation points the tensor product of the zeros
of (1 − x2)Un−1(x) and the zeros of (1 − y2)Un−1(y). The reader is referred
to Section 10.5.2 for a detailed definition of the (n+ 1)× (n+ 1) differentia-
tion matrix D ≡ Dn, which transforms all u values at collocation points into
approximate derivative values at the same points, by forming linear combina-
tions of the u values. The problem is significantly simplified by noting that
the border elements of D, namely the first and last rows and columns of Dn,
correspond to zero boundary values and may therefore be deleted to give an
active (n− 1)× (n− 1) matrix D̃n.

For the Poisson problem

∆u = f(x, y) in S : {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, (11.85a)

u = 0 on ∂S : {x = ±1, y = ±1}, (11.85b)

the method determines a vector u of approximate solutions at the interior
collocation points (compare (10.52) with e0 = en = 0) by solving

Enu = fn (11.86)

where
En = I⊗ D̃2

n + D̃2
n ⊗ I (11.87)

and A⊗B is the Kronecker (tensor) product, illustrated by the example

(
a b
c d

)
⊗
(

α β
γ δ

)
=




aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ


 .
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For example, for n = 3, this gives (see (10.49) et seq.)

E3 = I⊗ D̃2
3 + D̃2

3 ⊗ I

=




−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14



+

+




−14 6 −2
−14 6 −2

−14 6 −2
4 −6 4

4 −6 4
4 −6 4

−2 6 −14
−2 6 −14

−2 6 −14




. (11.88)

Clearly the matrix En is sparse and easily calculable. Hence (11.86) may
readily be solved by Gauss elimination, using for example Matlab’s efficient
system. The right-hand side of (11.86) is simply obtained by evaluating f at
the interior collocation points. The shape (location of the non-zero terms) of

Figure 11.4: Shape of matrix En for n = 3


× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × × ×
× × × × ×

× × × × ×
× × × × ×

× × × × ×




the matrix En is illustrated in Figure 11.4 and consists of a diagonal of square
matrices, flanked by diagonal matrices. The matrix is very sparse in all rows,
having 2n− 3 non-zero entries out of (n− 1)2.
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This Differentiation Matrix method is very attractive and efficient for this
problem, and should always be given consideration in problems that respond
to it. We now turn our attention to a more general problem, with non-zero
boundary conditions.

11.8.5 Explicit collocation for the quasilinear Dirichlet problem:
Chebyshev basis

We now continue to exploit the better conditioning of a Chebyshev polynomial
basis, but we also consider the greater generality of a Dirichlet problem for a
quasilinear elliptic equation on a square, namely

Lu ≡ a.uxx+ b.uxy+ c.uyy+ d.ux+ e.uy = f in D : |x| ≤ 1, |y| ≤ 1, (11.89a)

u = g(x, y) on ∂D : {x = ±1, y = ±1}, (11.89b)

where a, b, c, d, e, f are functions of x and y defined in D, g(x, y) is defined on
∂D only, and where, to ensure ellipticity,

a.c ≥ b2 for all (x, y) in D. (11.90)

This is an extension of recent work by Mason & Crampton (2002).

For generality we do not attempt to include the boundary conditions
(11.89b) implicitly in the form of approximation, but rather we represent
them by a set of constraints at a discrete set of selected points, namely Cheb-
yshev zeros on the boundary. Moreover we adopt a Chebyshev polynomial
basis for u:

u � umn =
m∑′

i=0

n∑′

j=0

aijTi(x)Tj(y). (11.91)

As it happens, we find that the apparently most logical collocation pro-
cedure, similar to that of Section 11.8.1 above, for approximately solving
(11.89a), (11.89b) in the form (11.91), leads to a singular matrix and re-
quires modification. More details about this follow as the method develops.
The fundamental idea that we use is that, since umn, given by (11.91), has
(m + 1)(n + 1) undetermined coefficients, we expect to be able to generate
an appropriate set of equations for aij if we form (m − 1)(n − 1) equations
by collocating (11.89a) at a tensor product of Chebyshev zeros and a further
2m+2n equations by collocating (11.89b) at Chebyshev zeros on the bound-
ary. It is in the formation of the latter boundary equations that difficulties
arise, and so we consider these equations first, noting that they are completely
independent of the specification Lu = f of the elliptic equation (11.89a).

To form the 2m + 2n boundary equations for aij , we set umn equal to g
at the zeros, Xk (k = 1, . . . ,m) and Y� (	 = 1, . . . , n) of Tm(x) and Tn(y),
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respectively, on y = ±1 and x = ±1, respectively. This gives the two pairs of
equations

m∑′

i=0

n∑′

j=0

aijTi(Xk)Tj(±1) = g(Xk,±1),

m∑′

i=0

n∑′

j=0

aijTi(±1)Tj(Y�) = g(±1, Y�). (11.92)

If we add/subtract these pairs of equations, noting that Tj(1) = 1 and that
Tj(−1) = (−1)j, we deduce that

m∑′

i=0

n∑′

j=0
j even

aijTi(Xk) = Gk0 ≡ 1
2 (g(Xk, 1) + g(Xk,−1)), (k = 1, . . . ,m)

m∑′

i=0

n∑
j=1

j odd

aijTi(Xk) = Gk1 ≡ 1
2 (g(Xk, 1)− g(Xk,−1)), (k = 1, . . . ,m)

m∑′

i=0
i even

n∑′

j=0

aijTj(Y�) = H�0 ≡ 1
2 (g(1, Y�) + g(−1, Y�)), (	 = 1, . . . , n)

m∑
i=1

i odd

n∑′

j=0

aijTj(Y�) = H�1 ≡ 1
2 (g(1, Y�)− g(−1, Y�)), (	 = 1, . . . , n)

(11.93)

where the arrays Gkp, H�q are defined above for p = 0, 1; q = 0, 1.

Now, defining wi to be 2/(i+1) for all i, multiplying the first pair of equa-
tions in (11.93) by wmTr(Xk) and summing over k, multiplying the second
pair of equations by wnTs(Y�) and summing over 	, and exploiting discrete
orthogonality, it follows that

Rr0 ≡
n∑′

j=0
j even

arj = Jr0 ≡ wm

m∑
k=1

Tr(Xk)Gk0, (r = 0, . . . ,m− 1)

Rr1 ≡
n∑

j=1
j odd

arj = Jr1 ≡ wm

m∑
k=1

Tr(Xk)Gk1, (r = 0, . . . ,m− 1)

Cs0 ≡
m∑′

i=0
i even

ais = Ks0 ≡ wn

n∑
�=1

Ts(Y�)H�0, (s = 0, . . . , n− 1)

© 2003 by CRC Press LLC



Cs1 ≡
m∑

i=1
i odd

ais = Ks1 ≡ wn

n∑
�=1

Ts(Y�)H�1, (s = 0, . . . , n− 1) (11.94)

where R,C, J,K are defined to form left-hand sides (R,C) or right-hand sides
(J,K) of the relevant equations. In addition each R or C is a linear sum of
alternate elements in a row or column, respectively, of the matrix A = [aij ].

Now we claim that this set of 2m+2n linear equations (11.94) in a00, . . . , amn

is not of rank 2m+ 2n but rather of rank 2m+ 2n− 1. Indeed, it is easy to
verify that a sum of alternate rows of A equals a sum of alternate columns;
specifically

n−1∑′

i=0
n−i odd

Rip =
m−1∑′

j=0
m−j odd

Cjq =
m−1∑′

i=0
m−i odd

n−1∑′

j=0
n−j odd

aij , (11.95)

where p = 0, 1 for m− 1 even, odd, respectively, and q = 0, 1 for n− 1 even,
odd, respectively. For example, for m = n = 4,

R11 +R31 = C11 + C31 = a11 + a13 + a31 + a33, (11.96)

and, for m = n = 3,

1
2R00 +R20 = 1

2C00 + C20 = 1
2 (

1
2a00 + a02 + a20) + a22. (11.97)

Clearly we must delete one equation from the set (11.94) and add an
additional independent equation in order to restore full rank. For simplicity
we shall only discuss the cases where m,n are both even or both odd, leaving
the even/odd and odd/even cases to the reader.

Form,n both even, we delete C11 = K11 from (11.94) and add an averaged
“even/even” boundary collocation equation

1
4 [u(1, 1) + u(−1, 1) + u(−1,−1) + u(1,−1)] =
λ00 := 1

4 [g(1, 1) + g(−1, 1) + g(−1,−1) + g(1,−1)]. (11.98)

This simplifies to
m∑′

i=0
i even

Ri0 = λ00 (11.99)

where Rm0 is defined by extending the definition (11.94) of Rr0 to r = m and
where λ00 is as defined in (11.98). We may eliminate every R except Rm0

from this equation, by using (11.94), to give a simplified form for the extra
equation

Rm0 = Jm0 = λ00 −
m−2∑′

i=0
i even

Ji0 (11.100)
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where the right-hand side Jm0 is defined as shown.

For m,n both odd, we delete C00 = K00 from (11.94) and add an averaged
“odd/odd” boundary collocation equation

1
4 [u(1, 1)− u(−1, 1) + u(−1,−1)− u(1,−1)] =
λ11 := 1

4 [g(1, 1)− g(−1, 1) + g(−1,−1)− g(1,−1)]. (11.101)

This simplifies to
n∑

j=1
j odd

Cj1 = λ11 (11.102)

where Cn1 is defined by extending the definition (11.94) of Cs1 to s = n and
where λ11 is as defined in (11.101).

We may eliminate every C except Cn1 from this equation, by using (11.94),
to give a simplified form for the extra equation

Cn1 = Kn1 ≡ λ11 −
n−2∑
j=1

j odd

Kj1 (11.103)

where the right-hand side Kn1 is defined as shown.

We now have 2m+ 2n non-singular equations for the coefficients aij , and
it remains to handle the elliptic equation by collocation at (m − 1)(n − 1)
suitable Chebyshev points in D.

For a general quasilinear equation we should set Lu = f at a tensor product
of (m−1)×(n−1) Chebyshev zeros, giving the same number of linear algebraic
equations for {aij}, and these equations together with the 2m+2n boundary
collocation equations would then be solved as a full system.

For simplicity, and so that we can give fuller illustrative details, we concen-
trate on the Poisson equation, as a special example of (11.89a), corresponding
to the form

Lu ≡ ∆u ≡ uxx + uyy = f(x, y) in D. (11.104)

Now second derivatives of Chebyshev sums are readily seen (see Chapter 2)
to take the form

d2

dx2
Tk(x) =

k−2∑′

r=0
k−r even

(k − r)k(k + r)Tr(x) (k ≥ 2), (11.105a)

d2

dy2
T�(y) =

�−2∑′

s=0
�−s even

(	− s)	(	+ s)Ts(y) (	 ≥ 2). (11.105b)
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Hence, on substituting (11.91) into (11.104), we obtain

∆umn =
m∑

k=2

n∑′

�=0

ak�T�(y)
k−2∑′

r=0
k−r even

(k − r)k(k + r)Tr(x)

+
n∑

�=2

m∑′

k=0

ak�Tk(x)
�−2∑′

s=0
�−s even

(	− s)	(	+ s)Ts(y)

= Amn, say. (11.106)

Setting ∆umn equal to f(x, y) at the abscissae xi, yj , where xi are zeros of
Tm−1(x) and yj are zeros of Tn−1(y) (for i = 1, . . . ,m− 1; j = 1, . . . , n− 1),
multiplying by Tp(xi)Tq(yj), and summing over i, j, we deduce that, for every
p = 0, . . . ,m− 2; q = 0, . . . , n− 2:

Epq ≡
m−1∑
i=1

n−1∑
j=1

Amn(xi, yj)Tp(xi)Tq(yj)

=
m−1∑
i=1

n−1∑
j=1

f(xi, yj)Tp(xi)Tq(yj)

≡ fpq, (11.107)

where fpq represents the discrete Chebyshev transform of f with respect to
Tp(x)Tq(y). Substituting for Amn,

Epq =
m−1∑
i=1

n−1∑
j=1

m∑
k=2

n∑′

�=0

ak�T�(yj)Tq(yj)
k−2∑′

r=0

(k − r)k(k + r)Tr(xi)Tp(xi)

+
m−1∑
i=1

n−1∑
j=1

n∑
�=2

n∑′

k=0

ak�Tk(xi)Tp(xi)
�−2∑′

s=0

(	− s)	(	+ s)Ts(yj)Tq(jj)

=
m∑

k=2

n∑′

�=0

n−1∑
j=1

T�(yj)Tq(yj)ak�

k−2∑′

r=0
k−r even

(k − r)k(k + r)
m−1∑
i=1

Tr(xi)Tp(xi)

+
n∑

�=2

m∑′

k=0

m−1∑
i=1

Tk(xi)Tp(xi)ak�

�−2∑′

s=0
�−s even

(	− s)	(	+ s)
n−1∑
j=1

Ts(yj)Tq(yj).

(11.108)
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Using the discrete orthogonality property that, for example,

n−1∑
j=1

T�(yj)Tq(yj) =



0, 	 
= q
(n− 1)/2, 	 = q 
= 0
n− 1, 	 = q = 0

,

we deduce that

Epq =




m∑
k=p+2

k−p even

1
2 (n− 1)akq +

n−1∑
j=1

Tn−1(yj)Tq(yj)ak,n−1

+
n−1∑
j=1

Tn(yj)Tq(yj)akn


 1

2 (m− 1)(k − p)k(k + p)

+




n∑
�=q+2

�−q even

1
2 (m− 1)ap� +

m−1∑
i=1

Tm−1(xi)Tp(xi)am−1,�

+
m−1∑
i=1

Tm(xi)Tp(xi)am�

]
1
2 (n− 1)(	− q)	(	+ q).

(11.109)

Now, by the definition of xi, yj , we know that Tm−1(xi) and Tn−1(yj) are
zero. Also, using the three-term recurrence at xi,

Tm(xi) = 2xTm−1(x) − Tm−2(xi) = −Tm−2(xi), Tn(yj) = −Tn−2(yj).
(11.110)

Substituting these values into (11.109), using discrete orthogonality, and using
the Kronecker delta notation

δrs = 1 (r = s), δrs = 0 (r 
= s), (11.111)

we deduce that

Epq ≡ 1
4 (m− 1)(n− 1)




m∑
k=p+2

k−p even

(akq − δq,n−2akn) (k − p)k(k + p) +

+
n∑

l=q+2
l−q even

(apl − δp,m−2aml) (l − q)l(l+ q)




= fpq (p = 0, . . . ,m− 2; q = 0, . . . , n− 2). (11.112)
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For example, for m = n = 3 we have this set of four collocation equations:

E11 ≡ 4
4
[(a31 − a33) + (a13 − a33)]2.3.4

= 24(a13 + a31 − 2a33) = f11 = 24F11,

E10 ≡ a302.3.4 + (a12 − a32)2.2.2

= 8(a12 + 3a30 − a32) = f10 = 8F10,

E01 ≡ (a21 − a23)2.2.2 + a032.3.4

= 8(3a03 + a21 − a23) = f01 = 8F01,

E00 ≡ a202.2.2 + a022.2.2

= 8(a02 + a20) = f00 = 8F00, (11.113)

where Fij are defined as shown by scaling fij . For m = n = 4, the sys-
tem (11.112) gives the following nine equations, where we leave the reader to
confirm the details:

E22 ≡ 108(a24 + a42 − 2a44)

= f22 = 108F22,

E21 ≡ 54(a23 + 2a41 − a43)

= f21 = 54F21,

E20 ≡ 18(a22 + 8a24 + 6a40 − a42 − 8a44)

= f20 = 18F20,

E12 ≡ 54(2a14 + a32 − a34)

= f12 = 54F12,

E11 ≡ 54(a13 + a31)

= f11 = 54F11,

E10 ≡ 18(a12 + 8a12 + 3a30)

= f10 = 18F10,

E02 ≡ 18(6a04 + a22 − a24 + 8a42 − 8a44)

= f02 = 18F02,

E01 ≡ 18(3a03 + a21 + 8a41)

= f01 = 18F01,

E00 ≡ 18(a02 + 8a04 + a20 + 8a40)

= f00 = 18F00. (11.114)

For m = n = 4, the complete set of 25 collocation equations, 16 boundary
equations and 9 interior PDE equations, namely (11.94) for m = n = 4 and
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(11.114), may be written in the matrix form

Ma = b, (11.115)

where M is the matrix of equation entries and a is the column vector of
approximation coefficients

a = (a00, a01, . . . , a04, a10, a11, . . . , a14, a20, . . . , a30, . . . , a40, . . . , a44)′

(11.116)
and b is the set of right-hand sides, either boundary or PDE terms, in appro-
priate order. In Table 11.2 we display the matrices M, a, b for m = n = 4,
blank entries denoting zeros. The column of symbols to the left of M indi-
cates which equation has been used to construct each row. Note that we have
ordered the equations to give a structure inM as close to lower triangular as
possible. The order used is based on:

R4∗, R3∗, E2∗, R2∗, E1∗, R1∗, E0∗, R0∗, C3∗, C2∗, C1∗, C0∗ (11.117)

where ∗ is a wild subscript, E indicates a PDE term, and R,C indicate bound-
ary conditions.

On studying Table 11.2, some important facts emerge. The coefficients
aij appearing in any equation are exclusively in one of the four symmetry
classes: i, j both even, i, j both odd, i odd and j even, and i even and j odd.
Thus the set of 25 equations can be separated into four wholly independent
subsystems, respectively involving 4 subsets of aij . These four subsystems are
shown in Table 11.3 for m = n = 4, and they consist of 8,5,6,6 equations in
9,4,6,6 coefficients aij , respectively.

This immediately confirms that we have a surplus equation in the odd/odd
subsystem (for a11, a13, a31, a33) and one too few equations in the even/even
subsystem. As proposed in earlier discussions, we therefore delete equation
C11 and replace it by equation R40, as indicated in Table 11.2.

The extremely sparse nature of the matrixM is clear from Table 11.2, and
moreover the submatrices formed from even and/or odd subsystems remain
relatively sparse, as is illustrated in Tables 11.3 to 11.6.

The odd/odd subsystem (form = n = 4) (in Table 11.6) is remarkably easy
to solve in the case g ≡ 0 of zero boundary conditions, when J∗∗ = K∗∗ = 0.
The solution is then

−a11 = a13 = a31 = −a33 = 1
2F11. (11.118)

In Table 11.7, we also show the full algebraic system for the odd degrees
m = n = 3, and in Tables 11.8 to 11.11 the equations are separated into their
four even/odd subsystems. The equation C00 is noted and is to be deleted,
while the equation C31 has been added. Equations are again ordered so as to
optimise sparsity above the diagonal. The m = n = 3 subsystems are easily
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Table 11.2: Full collocation matrix—Poisson problem: m = n = 4

R40

R31

R30

E22

E21

E20

R21

R20

E12

E11

E10

R11

R10

E02

E01

E00

R01

R00

C30

C31

C21

C20

C10

C11

C01

C02




1
2 0 1 0 1

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 1 0 0 1 0 −2

0 0 0 1 0 0 2 0 −1 0

0 0 1 0 8 6 0 −1 0 −8

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 2 0 0 1 0 −1

0 0 0 1 0 0 1 0 0 0

0 0 1 0 8 3 0 0 0 0

0 1 0 1 0

1
2 0 1 0 1

0 0 0 0 6 0 0 1 0 −1 0 0 8 0 −8

0 0 0 3 0 0 1 0 0 0 0 8 0 0 0

0 0 1 0 8 1 0 0 0 0 8 0 0 0 0

0 1 0 1 0

1
2 0 1 0 1

0 0 0 1
2 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 0 1
2 0 0 0 0 1 0 0 0 0 1 0 0

0 1
2 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0

1
2 0 0 0 0 1 0 0 0 0 1 0 0 0 0







a00

a01

a02

a03

a04

a10

a11

a12

a13

a14

a20

a21

a22

a23

a24

a30

a31

a32

a33

a34

a40

a41

a42

a43

a44




=




J40

J31

J30

F22

F21

F20

J21

J20

F12

F11

F10

J11

J10

F02

F01

F00

J01

J00

K30

K31

K21

K20

K10

K11

K01

K02
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Table 11.3: m = n = 4, partial system odd/even in x/y

R30

E12

E10

R10

C21

C01




1
2 1 1

0 0 2 0 1 −1

0 1 8 3 0 0

1
2 1 1

0 1 0 0 1 0

1 0 0 1 0 0







a10

a12

a14

a30

a32

a34




=




J30

F12

F10

J10

K21

K01




Table 11.4: m = n = 4, partial system even/odd in x/y

E21

R21

E01

R01

C30

C10




0 1 2 −1

1 1

0 3 1 0 8 0

1 1

0 1
2 0 1 0 1

1
2 0 1 0 1 0







a01

a03

a21

a23

a41

a43




=




F21

J21

F01

J01

K30

K10




Table 11.5: m = n = 4, partial system even/even in x/y

R40

E22

E20

R20

E02

E00

R00

C20

C00




1
2 1 1

0 0 1 0 1 −2

0 1 8 6 −1 −8

1
2 1 1

0 0 6 0 1 1 0 8 −8

0 1 8 1 0 0 8 0 0

1
2 1 1

0 1
2 0 0 1 0 0 1 0

1
2 0 0 1 0 0 1 0 0







a00

a02

a04

a20

a22

a24

a40

a42

a44




=




J40

F22

F20

J20

F02

F00

J00

K20

K00




Table 11.6: m = n = 4, partial system odd/odd in x/y

R31

E11

R11

C31

C11




1 1

0 1 1 0

1 1

0 1 0 1

1 0 1 0







a11

a13

a31

a33




=




J31

F11

J11

K31

K11
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Table 11.7: Full collocation matrix—Poisson problem: m = n = 3 (blank
spaces contain zero entries)

C31

R21

R20

E11

E10

R11

R10

E01

E00

R01

R00

C20

C21

C11

C10

C00

C01




0 0 0 1 0 0 0 1

0 1 0 1

1
2 0 1 0

0 0 0 1 0 1 0 −2

0 0 1 0 3 0 −1 0

0 1 0 1

1
2 0 1 0

0 0 0 3 0 1 0 −1

0 0 1 0 1 0 0 0

0 1 0 1

1
2 0 1 0

0 0 1
2 0 0 0 1 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1
2 0 0 0 1 0 0

1
2 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0







a00

a01

a02

a03

a10

a11

a12

a13

a20

a21

a22

a23

a30

a31

a32

a33




=




K31

J21

J20

F11

F10

J11

J10

F01

F00

J01

J00

K20

K21

K11

K10

K00

K01




solved to give explicit formulae in the case g ≡ 0, as we now show. We leave it
as an exercise to the reader to generate a set of tables for the case m = n = 5.

We may readily determine formulae for all coefficients aij form = n = 3 by
eliminating variables in Tables 11.8 to 11.11, and we leave this as an exercise
to the reader (Problem 7).

We deduce from Table 11.8 that, for g ≡ 0, and hence J∗∗ = K∗∗ = 0, the
even/even coefficients are

−a00 = 2a02 = 2a20 = −4a22 = F00. (11.119)

From Table 11.9, for g ≡ 0, the odd/odd coefficients are

−a11 = a13 = a31 = −a33 = 1
4F11. (11.120)

From Table 11.10, for g ≡ 0, the even/odd coefficients are

−a01 = a03 = 2a21 = −2a23 = 1
4F01. (11.121)

From Table 11.11, for g ≡ 0, the odd/even coefficients are

−a10 = 2a12 = a30 = −2a32 = 1
4F10. (11.122)
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Table 11.8: m = n = 3, partial system even/even in x/y

R20

E00

R00

C20

C00




1
2 1

0 1 1 0

1
2 1

0 1
2 0 1

1
2 0 1 0







a00

a02

a20

a22




=




J20

F00

J00

K20

K00




Table 11.9: m = n = 3, partial system odd/odd in x/y

C31

E11

R11

C11




0 1 0 1

0 1 1 −2

1 1

1 0 1 0







a11

a13

a31

a33




=




K31

F11

J11

K11




Table 11.10: m = n = 3, partial system even/odd in x/y

R21

E01

R01

C10




1 1

0 3 1 −1

1 1

1
2 0 1 0







a01

a03

a21

a23




=




J21

F01

J01

K10




Table 11.11: m = n = 3, partial system odd/even in x/y

E10

R10

C21

C01




0 1 3 −1

1
2 1

0 1 0 1

1 0 1 0







a10

a12

a30

a32




=




F10

J10

K21

K01
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Thus for zero boundary conditions, the approximate solution u is given
very simply for m = n = 3. Indeed we see, not surprisingly, (Problem 8) that
umn can be written exactly in the form

umn = (x2 − 1)(y2 − 1)(a+ bx+ cy + dxy). (11.123)

If J∗∗ and K∗∗ are not both zero, then no simplification such as (11.123)
occurs, but we still obtain four separate sparse subsystems to solve for the
coefficients aij for all m, n.

An alternative but closely related approach to the special case of the Pois-
son problem is given by Haidvogel & Zang (1979).

11.9 Computational fluid dynamics

One of the most important PDE problems in computational fluid dynamics
is the Navier–Stokes equation

∂v
∂t
+ v · ∇v = −∇p+ ν∆v, ∇ · v = 0 (11.124)

where v is the velocity vector, p is the pressure divided by the (constant) den-
sity, ν is the kinematic viscosity and ∆ denotes the Laplacian. This problem
is studied in detail in the lecture notes by Deville (1984), as well as in Canuto
et al. (1988). Deville considers, as preparatory problems, the Helmholtz equa-
tion, the Burgers equation and the Stokes problem. We shall here briefly
discuss the Burgers equation.

The Burgers equation is the nonlinear equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (11.125)

which we shall take to have the boundary and initial conditions

u(−1, t) = u(1, t) = 0, u(x, 0) = u0(x). (11.126)

The general procedure for solution is to discretise (11.125) into a first-order
system of ordinary differential equations in t, which is solved by a scheme that
is explicit as regards the nonlinear part and implicit for the linear part. Using
Chebyshev collocation at the n + 1 points {yj}, the discretisation can be
written (Canuto et al. 1988) as

Zn

(
∂un

∂t
+UnDnun − νD2un

)
= 0, (11.127)

where Dn is the appropriate Chebyshev collocation differentiation matrix,
un is a vector with elements un(yj , t), Un is a diagonal matrix with the
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elements of un on its diagonal and Zn is a unit matrix with its first and
last elements replaced by zeros. The boundary conditions are imposed by
requiring un(y0, t) = un(yn, t) = 0. The method as it stands involves O(n2)
operations at each time step for the implicit term, but this can be reduced to
O(n log n) operations by using FFT techniques.

A Chebyshev tau method may instead be applied, defining

〈f , Tk〉 = 2
πck

∫ 1

−1

f(x)Tk(x)√
1− x2

dx. (11.128)

Then, defining

un(x, t) =
n∑′

k=0

ak(t)Tk(x),

we have 〈
∂un

∂t
+ un

∂un

∂x
− ν

∂2un

∂x2
, Tk

〉
= 0, (11.129)

which reduces to

dak

dt
+
〈
un

∂un

∂x
, Tk

〉
− νa

(2)
k = 0. (11.130)

Again a mixed explicit/implicit method may be adopted for each time step,
the inner product being evaluated explicitly.

For discussion of the Stokes and Navier–Stokes equations, the reader is re-
ferred to Deville (1984), Canuto et al. (1988), Fornberg (1996), and Gerritsma
& Phillips (1998, 1999).

11.10 Particular issues in spectral methods

It is important to remember that the key advantages of spectral and pseu-
dospectral methods lie in

1. the rapid (e.g., exponential) convergence of the methods for very smooth
data and PDEs, which makes Chebyshev methods so powerful;

2. the use of discrete orthogonality, which greatly simplifies collocation
equations;

3. the use of the FFT, which speeds up computations typically from O(n2)
to O(n log n) operations;

4. the possibility of a matrix representation of derivatives, which simplifies
the representation of the solution and boundary conditions in certain
problems.
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For the reasons above, the method will always be restricted to somewhat
special classes of problems if it is to compete with more general methods like
the finite element method. However, the spectral method shares with the
finite element method a number of common features, including the pointwise
and continuous representation of its solution (as in the differentiation matrix
method) and the possibility of determining good preconditioners (Fornberg &
Sloan 1994).

We now raise some further important issues that arise in spectral/pseudo-
spectral methods. We do not have the scope to illustrate these issues in detail
but can at least make the reader aware of their significance.

Aliasing (see Section 6.3.1) is an interesting feature of trigonometric and
Chebyshev polynomials on discrete meshes. There is a potential for ambiguity
of definition when a Chebyshev or Fourier series attempts to match a PDE
on too coarse a grid. Fortunately, aliasing is not generally to be regarded
as threatening, especially not in linear problems, but nonlinear problems do
give cause for some concern on account of the possible occurrence of high-
frequency modes which may be misinterpreted as low-frequency ones. Canuto
et al. (1988, p.85) note that aliases may be removed by phase shifts, which
can eliminate special relationships between low and high frequency modes.

Preconditioners are frequently used in finite-element methods to improve
the conditioning of linear equations. Their use with finite differences for Cheb-
yshev methods is discussed for example by Fornberg (1996), Fornberg & Sloan
(1994) and Phillips et al. (1986). The idea is, for example, to take a system of
linear equations whose matrix is neither diagonally dominant nor symmetric,
and to find a multiplying matrix that yields a result that is strictly diagonally
dominant, and therefore amenable to Gauss–Seidel iteration. More broadly,
it improves the conditioning of the system matrix.

Basis functions in spectral methods may be not only Chebyshev polyno-
mials, but also Legendre polynomials or trigonometric polynomials (Canuto
et al. 1988). Legendre polynomials are sometimes preferred for Galerkin meth-
ods and Chebyshev polynomials for collocation methods (because of discrete
orthogonality). Trigonometric polynomials are versatile but normally suitable
for periodic functions only, because of the Gibbs phenomenon (see page 118,
footnote). Clearly we are primarily interested in Chebyshev polynomials here,
and so shall leave discussion of Legendre polynomials and other possible bases
to others.

11.11 More advanced problems

The subject of partial differential equations is a huge one, and we cannot in
this broadly-based book do full credit to spectral and pseudospectral methods.
We have chosen to illustrate some key aspects of the methods, mainly for linear
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and quasilinear problems, and to emphasise some of the technical ideas that
need to be exploited.

For discussion of other problems and, in particular, more advanced PDE
problems including nonlinear problems, the reader is referred to such books
as:

• Canuto et al. (1988) — for many fluid problems of varying complexity
and solution structures, as well as an abundance of background theory;

• Trefethen (2000) — for a very useful collection of software and an easy-
to-read discussion of the spectral collocation approach;

• Boyd (2000) — for a modern treatment including many valuable results;

• Guo Ben-yu (1998) — for an up-to-date and very rigorous treatment;

• Fornberg (1996) — as it says, for a practical guide to pseudospectral
methods;

• Deville (1984) — for a straightforward introduction mainly to fluid prob-
lems;

• Gottlieb & Orszag (1977) — for an early and expository introduction
to the spectral approach.

11.12 Problems for Chapter 11

1. Apply the method of separation of variables in (r, θ) coordinates to

∆u = r2 ∂
2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
= 0

(see (11.11a) above) in the disc S : r ≤ 1, where u(1, θ) = g(θ) on
∂S : r = 1, and g(θ) is a known 2π-periodic function of the orientation
of a point P of the boundary. Determine the solution as a series in the
cases in which

(a) g(θ) = π2 − θ2;

(b) g(θ) =
{ −1, −π ≤ θ ≤ 0
+1, 0 ≤ θ ≤ π.

2. In addition to satisfying (m−1)(n−1) specified linear conditions in the
interior of the square domain D : {|x| < 1, |y| < 1}, the form

m+1∑′

i=0

n+1∑′

j=0

aijTi(x)Tj(y)
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is collocated to a function g(x, y) at 2(m + n) points on its boundary
∂D. The latter points are chosen at the zeros of (1 − x2)Um−2(x) on
y = ±1 and at the zeros of (1−y2)Un−2(y) on x = ±1, where each of the
four corners of the boundary (which occur in both sets of zeros) is only
counted once. Investigate whether or not the resulting linear system is
singular and determine its maximum rank.

(This question is an analogue of a result in Section 11.8.5, where the
zeros of Tm(x) and Tn(y) were adopted.)

3. The diagram shows a square membrane with a slit from the midpoint
A of one side to the centre O. We wish to determine solutions of the
eigenvalue problem

∆u+ λu = 0 in S,

u = 0 on ∂S.

�S A
B

F

C

E

D

O

Follow the style of Section 11.8.2 to transform the domain and problem
into one which may be approximated by Chebyshev collocation. Use
the mapping z′ = z

1
2 about O to straighten the cut AOB, determine

equations for the mapped (curved) sides of the domain, determine the
mapped PDE and deduce the form of approximation umn to u. Describe
the method of solution for λ and u.

[Note: The boundary equation is again y′(x2y2 − r2 + 1) = 0 before
mapping.]

4. Investigate whether or not there is any gain of efficiency or accuracy in
practice in using the Chebyshev form

∑∑
cijT2i+t(x/a)Tj(y/b) rather

than
∑∑

cijx
2i+tyj in the L-membrane approximation of Section 11.8.2

and, similarly, for the relevant forms in the method for Problem 3 above.
Is it possible, for example, to exploit discrete orthogonality in the col-
location equations?
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5. As a variant on the separation of variables method, consider the solution
of

∆u = f(x, y) in the ellipse D :
x2

a2
+

y2

b2
≤ 1, (A)

u = g(x, y) on ∂D : φ(x, y) ≡ x2

a2
+

y2

b2
= 1, (B)

where f ≡ 0 and g is given explicitly on ∂D.

Then the form

un = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ)rk,

where x = r cos θ and y = r sin θ, satisfies (A) for all coefficients a0, ak,
bk. Compute a0, . . . , an, b1, . . . , bn so that (B) is collocated at 2n + 1
suitably chosen points of ∂D. It is suggested that equal angles of θ
should be used on [0, 2π]; discuss some of the possible choices. What
set of points would remain distinct as b → 0, if the ellipse has a small
eccentricity?

�

��

��

[Hint: Start at θ = 1
2π/(2n+1); the nodes for n = 2 are then chosen as

in the figure and occur at π/10, 5π/10, 9π/10, 13π/10, 17π/10. Choose
simple non-polynomial functions for g; e.g., g(x, y) = cosh(x+ y).]

6. Repeat Problem 5, but with g ≡ 0 and f given explicitly on D, using
the Chebyshev polynomial approximation

umn = φ(x, y).
m∑′

i=0

n∑′

j=0

aijTi(x)Tj(y)

and collocating the PDE at a tensor product of the zeros of Tm+1(x/a)
and Tn+1(y/b) on the rectangle

R : {−a ≤ x ≤ a;−b ≤ y ≤ b}.
Compute results for small choices of m, n.

[Note: This is a method which might be extended to more general
boundary φ(x, y), and φ does not need to be a polynomial in x, y.]

7. Generate a set of tables similar to Tables 11.7–11.11 for the odd/odd
case m = n = 5, showing the 36× 36 linear algebraic system for {aij}
and the four subsystems derived from this.
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8. For m = n = 3 (see Section 11.8 above) show that the approximate
solution umn of (11.75) with g ≡ 0, given by (11.91) with coefficients
(11.119)–(11.122), may be simplified exactly into the form

umn = (1− x2)(1− y2)[a+ bx+ cy + dxy].

What are the values of a, b, c, d?

Derive umn directly in this form by collocating the PDE at the Cheby-
shev zeros. (Note that this method cannot be applied unless g(x, y) ≡
0.)

9. For m = n = 3 in (11.75), in the case where g is not identically zero,
obtain formulae for the coefficients aij in umn from Tables 11.8–11.11,
namely the four linear subsystems that define them.
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