
Chapter 7

Near-Best L∞, L1 and Lp Approximations

7.1 Near-best L∞ (near-minimax) approximations

We have already established in Section 5.5 that partial sums of first kind
expansions

(ST
n f)(x) =

n∑′

k=0

ckUk(x), ck =
2
π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx (7.1)

yield near-minimax approximations within a relative distance of O(log n) in
C[−1, 1]. Is this also the case for other kinds of Chebyshev polynomial expan-
sions? The answer is in the affirmative, if we go about the expansion in the
right way.

7.1.1 Second-kind expansions in L∞

Consider the class C±1[−1, 1] of functions continuous on [−1, 1] but con-
strained to vanish at ±1. Let S(2)

n f denote the partial sum of the expansion
of f(x)/

√
1− x2 in Chebyshev polynomials of the second kind, {Uk(x) : k =

0, 1, 2, . . . , n}, multiplied by
√
1− x2. Then

(S(2)
n f)(x) =

√
1− x2

n∑
k=0

bkUk(x), bk =
2
π

∫ 1

−1

f(x)Uk(x) dx. (7.2)

If now we define

g(θ) =
{
f(cos θ) 0 ≤ θ ≤ π
−f(cos θ) −π ≤ θ ≤ 0

(g(θ) being an odd, continuous and 2π-periodic function since f(1) = f(−1) =
0), then we obtain the equivalent Fourier sine series partial sum

(SFS
n+1g)(θ) =

n∑
k=0

bk sin(k + 1)θ, bk =
2
π

∫ π

0

g(θ) sin(k + 1)θ dθ. (7.3)

The operator SFS
n+1 can be identified as the restriction of the Fourier projection

SF
n+1 to the space C0

2π,o of continuous functions that are both periodic of period
2π and odd; in fact we have SFS

n+1g = SF
n+1g for odd functions g, where

(SF
n+1g)(θ) =

1
2π

∫ π

−π

g(t+ θ)
sin(n+ 3

2 )t
sin 1

2 t
dt. (7.4)
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If λn is the Lebesgue constant defined in (5.71)

λn =
1
2π

∫ π

−π

∣∣∣∣ sin(n+
1
2 )t

sin 1
2 t

∣∣∣∣ dt
and partly tabulated in Table 5.1 on page 126, then, similarly to (5.75), we
may show that

∥∥∥S(2)
n

∥∥∥
∞

=
∥∥SFS

n+1

∥∥
∞ ≤ λn+1 (on the space C±1[−1, 1]). (7.5)

Therefore (S(2)
n f)(x) is near-minimax within a relative distance λn+1.

This constant λn+1 is not, however, the best possible, as has been shown
by Mason & Elliott (1995) — the argument of Section 5.5.1 falls down because
the function

sgn
(
sin(n+ 3

2 )θ
sin 1

2θ

)

is even, and cannot therefore be closely approximated by any function in C0
2π,o.

However, g being odd, we may rewrite (7.4) as

(SFS
n+1g)(θ) =

1
4π

∫ π

−π

{g(t+ θ)− g(−t− θ)} sin(n+
3
2 )t

sin 1
2 t

dt

=
1
4π

∫ π

−π

g(t)
{
sin(n+ 3

2 )(t− θ)
sin 1

2 (t− θ)
− sin(n+ 3

2 )(t+ θ)
sin 1

2 (t+ θ)

}
dt

=
1
4π

∫ π

−π

g(t)KFS
n+1(θ, t) dt. (7.6)

This kernel KFS
n+1(θ, t) is an odd function of θ and t, and an argument similar

to that in Section 5.5.1 can now be used to show that
∥∥∥S(2)

n

∥∥∥
∞

=
∥∥SFS

n+1

∥∥
∞ =

1
4π

sup
θ

∫ π

−π

∣∣KFS
n+1(θ, t)

∣∣ dt = λ(2)
n , say. (7.7)

Table 7.1: Lower bounds on λ(2)
n

n bound n bound n bound
1 1.327 10 1.953 100 2.836
2 1.467 20 2.207 200 3.114
3 1.571 30 2.362 300 3.278
4 1.653 40 2.474 400 3.394
5 1.721 50 2.561 500 3.484
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Mason & Elliott (1995) have actually computed values of λ(2)
n , which is no

straightforward task since the points where the integrand KFS
n+1(θ, t) changes

sign are not in general easily determined. For a lower bound to the supremum
for each n, however, we may evaluate the integral when θ = π/(2n+3), when
the sign changes occur at the precisely-known points t = 0, ±3π/(2n + 3),
±5π/(2n+ 3), . . . , ±π. This gives the values shown in Table 7.1.

7.1.2 Third-kind expansions in L∞

Following Mason & Elliott (1995) again, consider functions f in C−1[−1, 1],
continuous on [−1, 1] but constrained to vanish at x = −1. Then the nth
degree projection operator S(3)

n , such that S(3)
n f is the partial sum of the

expansion of f(x)
√
2/(1 + x) in Chebyshev polynomials of the third kind,

{Vk(x) : k = 0, 1, 2, . . . , n}, multiplied by
√
(1 + x)/2, is defined by

(S(3)
n f)(x) =

√
1 + x
2

n∑
k=0

ckVk(x)

=
n∑

k=0

ck cos(k + 1
2 )θ (7.8)

where x = cos θ and

ck =
1
π

∫ 1

−1

√
2

1− xf(x)Vk(x) dx

=
2
π

∫ π

0

g(θ) cos(k + 1
2 )θ dθ

=
1
2π

∫ 2π

−2π

g(θ) cos(k + 1
2 )θ dθ (7.9)

with g defined as follows:

g(θ) =




f(cos θ) 0 ≤ θ ≤ π
−g(2π − θ) π ≤ θ ≤ 2π

g(−θ) −2π ≤ θ ≤ 0.

The function g(θ) has been defined to be continuous (since g(π) = f(−1) = 0)
and 4π-periodic, and is even about θ = 0 and odd about θ = π. Its Fourier
expansion (in trigonometric functions of 1

2θ) therefore involves only terms in
cos(2k + 1) θ

2 = cos(k + 1
2 )θ and is of the form (7.8) when truncated. From

(7.8) and (7.9),

(S(3)
n f)(x) =

1
2π

∫ 2π

−2π

g(t)
n∑

k=0

cos(k + 1
2 )t cos(k +

1
2 )θ dt.
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Table 7.2: Values of λ(3)
n

n λ
(3)
n n λ

(3)
n n λ

(3)
n

1 1.552 10 2.242 100 3.140
2 1.716 20 2.504 200 3.420
3 1.832 30 2.662 300 3.583
4 1.923 40 2.775 400 3.700
5 1.997 50 2.864 500 3.790

We leave it as an exercise to the reader (Problem 1) to deduce that

(S(3)
n f)(x) =

1
π

∫ π

−π

g(t+ θ)
sin(n+ 1)t

sin 1
2 t

dt.

Thus ∣∣∣(S(3)
n f)(x)

∣∣∣ ≤ ‖g‖∞ λ(3)
n (7.10)

where

λ(3)
n =

1
π

∫ π

0

∣∣∣∣ sin(n+ 1)t
sin 1

2 t

∣∣∣∣ dt. (7.11)

Hence
∥∥∥S(3)

n

∥∥∥
∞

≤ λ(3)
n .

Arguing as in Section 5.5.1 as before, we again show that we have an
equality ∥∥∥S(3)

n

∥∥∥
∞

= λ(3)
n .

Numerical values of λ(3)
n are shown in Table 7.2, and clearly appear to

approach those of λn (Table 5.1) asymptotically.

A fuller discussion is given by Mason & Elliott (1995), where it is conjec-
tured that (as for λn in (5.77))

λ(3)
n =

4
π2

logn+A1 +O(1/n)

where A1 � 1.2703. (This follows earlier work by Luttman & Rivlin (1965)
and by Cheney & Price (1970) on the asymptotic behaviour of λn.) Once
more, then, we have obtained a near-minimax approximation within a relative
distance asymptotic to 4π−2 logn.

For further detailed discussion of Lebesgue functions and constants for
interpolation, see Brutman (1997).
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7.2 Near-best L1 approximations

From Section 6.4 we would expect Chebyshev series partial sums to yield near-
best L1 approximations with respect to the weights given in (6.36), namely
w(x) = 1/

√
1− x2, 1, 1/

√
1− x, 1/√1 + x, since they already provide best

L1 approximations for a function that is a polynomial of one degree higher. In
fact, this can be shown to hold simply by pre-multiplying and post-dividing
the functions expanded in Section 7.1 by the additional factor

√
1− x2. The

simplest case to consider here is that of the second-kind polynomials Un, since
the function expanded is then just the original function.

The partial sum of degree n of the second kind, for a continuous function
f(x), is defined by the projection

P (2)
n : (P (2)

n f)(x) =
n∑

k=0

bkUk(x), bk =
2
π

∫ 1

−1

√
1− x2f(x)Uk(x) dx. (7.12)

Defining the function g by

g(θ) = sin θ f(cos θ), (7.13)

which is naturally an odd periodic continuous function, we see that

bk =
2
π

∫ π

0

g(θ) sin(k + 1)θ dθ, (7.14)

as in (7.3), and (P (2)
n f)(cos θ) = (SFS

n+1g)(θ).

Now, treating f(x) as defined on [−1, 1] and g(θ) as defined on [−π, π] so
that

‖g‖1 =
∫ π

−π

|g(θ)| dθ =
∫ π

−π

|sin θ f(cos θ)| dθ = 2
∫ 1

−1

f(x) dx = 2 ‖f‖1 ,

we have ∥∥∥P (2)
n f

∥∥∥
1
= 1

2

∥∥SFS
n+1g

∥∥
1

= 1
2

∫ π

−π

∣∣∣∣ 1
4π

∫ π

−π

g(t)KFS
n+1(θ, t) dt

∣∣∣∣ dθ

≤ 1
2

∫ π

−π

|g(t)| dt 1
4π

sup
t

∫ π

−π

∣∣KFS
n+1(θ, t)

∣∣ dθ
= 1

2 ‖g‖1 λ
(2)
n

= ‖f‖1 λ
(2)
n ,

where λ(2)
n is the constant defined in (7.7) above.
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Hence ∥∥∥P (2)
n

∥∥∥
1
≤ λ(2)

n . (7.15)

Thus λ(2)
n is a bound on

∥∥∥P (2)
n

∥∥∥
1
, just as it was a bound on

∥∥∥S(2)
n

∥∥∥
∞

in Sec-

tion 7.1.1, and so (P (2)
n f)(x), given by (7.12), is a near-best L1 approximation

within the relative distance λ(2)
n defined in (7.7).

The discussion above is, we believe, novel. Freilich & Mason (1971) estab-
lished that

∥∥∥P (2)
n

∥∥∥
1
is bounded by λn, but the new bound (7.15) is smaller by

about 0.27.

If we define P (1)
n and P (3)

n to be the corresponding partial sum projections
of the first and third kinds,

(P (1)
n f)(x) =

1√
1− x2

n∑′

k=0

ckTk(x),

ck =
2
π

∫ 1

−1

f(x)Tk(x) dx, (7.16)

(P (3)
n f)(x) =

1
2
√
1− x

n∑
k=0

ckVk(x),

ck =
1
π

∫ 1

−1

√
2(1 + x)f(x)Vk(x) dx, (7.17)

then it is straightforward to show in a similar way (see Problem 2) that
∥∥∥P (1)

n

∥∥∥
1
≤ λn (classical Lebesgue constant)

and ∥∥∥P (3)
n

∥∥∥
1
≤ λ(3)

n (given by (7.11)).

7.3 Best and near-best Lp approximations

The minimal L∞ and L1 properties of the weighted Chebyshev polynomials,
discussed in Sections 3.3 and 6.4, are in fact special examples of general Lp

minimality properties, which are discussed by Mason & Elliott (1995).

Theorem 7.1 The monic polynomials 21−nTn(z), 2−nUn(z), 2−nVn(z),
2−nWn(z) minimise the Lp norm

[∫ 1

−1

w(x) |Pn(x)|p dx
] 1

p

(1 < p <∞) (7.18)
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over all monic polynomials Pn(x) with

w(x) = (1 − x) 1
2 (α−1)(1 + x)

1
2 (β−1)

for the respective values

(α, β) = (0, 0), (p, p), (0, p), (p, 0).

The proof of this result depends on the characterisation of the best Lp

approximation according to the following result, which we state without proof.

Lemma 7.2 The Lp norm (7.18) is minimised if and only if

∫ 1

−1

w(x) |Pn(x)|p−2
Pn(x)Pk(x) dx = 0, ∀k < n. (7.19)

Proof: (of Theorem 7.1)

We shall concentrate on the first case, that of the first kind polynomials Tn(x),
and leave the remaining cases as exercises for the reader (Problem 3).

Define
Pn(x) = Tn(x), w(x) = 1/

√
(1 − x2).

Then∫ 1

−1

w(x) |Pn(x)|p−2 Pn(x)Pk(x) dx =

∫ π

0

|cos nθ|p−2 cos nθ cos kθ dθ.

Now, for 0 ≤ y ≤ 1, define

Cn(θ, y) =

{
1 (|cos nθ| ≤ y),
0 (|cos nθ| > y).

Then if y = cos η we have Cn(θ, y) = 1 over each range

(r − 1)π + η

n
≤ θ ≤ rπ − η

n
, r = 1, 2, . . . , n.

Thus, for any integer j with 0 < j < 2n,

∫ π

0

Cn(θ, y) cos jθ dθ =
n∑

r=1

∫ (rπ−η)/n

((r−1)π+η)/n

cos jθ dθ

=
n∑

r=1

1

j

[
sin

j{(r − 1)π + η}
n

− sin
j{rπ − η}

n

]

=
2n∑

r=1

1

j
sin

j{(r − 1)π + η}
n

= 0.
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But now, for 0 ≤ k < n,

∫ 1

−1

w(x) |Pn(x)|p−2 Pn(x)Pk(x) dx

=

∫ π

0

|cos nθ|p−2 cos nθ cos kθ dθ

=

∫ π

0

|cos nθ|p−2 1
2
[cos(n + k)θ + cos(n − k)θ] dθ

=

∫ π

0

{
1

p − 1

∫ 1

0

yp−1(1 − Cn(θ, y)) dy

}
1
2
[cos(n + k)θ + cos(n − k)θ] dθ

=
1

p − 1

∫ 1

0

yp−1

{∫ π

0

(1 − Cn(θ, y)) 1
2
[cos(n + k)θ + cos(n − k)θ] dθ

}
dy

= 0.

The result then follows from Lemma 7.2. ••
(An alternative method of proof is to translate into polynomial terms

the result on trigonometric polynomials, due to S. N. Bernstein, given in
Achieser’s book (Achieser 1956, Section 10).)

7.3.1 Complex variable results for elliptic-type regions

It is possible to obtain bounds for norms of projections, and hence measures
of near-best Lp approximation, by using ideas of convexity over a family of Lp

measure spaces for 1 ≤ p ≤ ∞ (Mason 1983b, Mason 1983a). However, the
settings for which there are results have been restricted to ones involving gen-
eralised complex Chebyshev series — based on results for Laurent series. Ma-
son & Chalmers (1984) give Lp results for Fourier, Taylor and Laurent series;
moreover Chalmers & Mason (1984) show these to be minimal projections on
appropriate analytic function spaces. The settings, involving projection from
space X to space Y , where A(D) denotes the space of functions analytic in
D and continuous on D̄, are:

1. Chebyshev, first kind: X = A(Dρ), where Dρ is the elliptical domain
{z : ∣∣z +√

z2 − 1
∣∣ < ρ}; Y = Y1 = Πn (polynomials of degree n in z);

P = Gn

where Gn is the Chebyshev first-kind series projection of A(Dρ) into
Πn.

2. Chebyshev, second kind: X = {f(z) =
√
z2 − 1F (z), F ∈ A(Dρ)},

Y = Y2 = {f(z) = √
z2 − 1F (z), F ∈ Πn};

P = H∗
n−1 : H∗

n−1f =
√
z2 − 1Hn−1F,
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where Hn is the Chebyshev second kind series projection of A(Dρ) into
Πn.

3. Generalised Chebyshev: X = A({z : ρ1 <
∣∣z +√

z2 − 1
∣∣ < ρ2}) (annu-

lus between two ellipses); Y = Y1 ⊕ Y2;

P = Jn = Gn +H∗
n−1.

Then it is proved by Mason (1983b), using convexity arguments, that for each
of the three projections above

‖P‖p ≤ (σ2n)|2p−1−1| (1 ≤ p ≤ ∞) (7.20)

where

σn =
1
n

∫ π

0

∣∣∣∣sin(n+ 1)θ
sin θ

∣∣∣∣ dθ.
Note that σ2n = λn. So the generalised expansion is proved to be as close to
minimax as the (separated) first kind one.

For p = 1, p = ∞, we obtain bounds increasing as 4π−2 log n, while
‖P‖p → 1 as p→ 2.

It follows also (Chalmers & Mason 1984) that Jn is a minimal projection;
indeed, this appears to be the only such result for Chebyshev series. The
component projectionsGn andH∗

n−1 are essentially odd and even respectively,
and correspond to the cosine and sine parts of a full Fourier series. In contrast,
the projection Gn is not minimal.

The earliest near-best results for L∞ and L1 approximation on elliptic
domains appear to be those of Geddes (1978) and Mason (1978). See also
Mason & Elliott (1993) for detailed results for all individual cases.

We should also note that it has long been known that

‖P‖p ≤ Cp (7.21)

where Cp is some constant independent of n. Although this is superficially
stronger than (7.20) from a theoretical point of view, the bounds (7.20) are
certainly small for values of n up to around 500. Moreover, it is known that
Cp → ∞ as p→ ∞. See Zygmund (1959) for an early derivation of this result,
and Mhaskar & Pai (2000) for a recent discussion.

7.4 Problems for Chapter 7

1. Show that

cos(k + 1
2 )t cos(k +

1
2 )θ =

1
2 [cos(k +

1
2 )(t+ θ) + cos(k + 1

2 )(t− θ)]
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and that
n∑

k=0

cos(k + 1
2 )u =

sin(n+ 1)u
2 sin 1

2u
.

Hence prove that

1
π

∫ π

−π

g(t)
n∑

k=0

cos(k + 1
2 )t cos(k +

1
2 )θ dθ =

1
π

∫ π

0

g(t+ θ)
sin(n+ 1)t

sin 1
2 t

dt

by showing that the pair of integrals involved are equal.

(This completes the proof of Section 7.1.2, showing that the weighted
third-kind expansion has a partial sum which is near-minimax.)

2. Show that
∥∥∥P (1)

n

∥∥∥
1
≤ λn and

∥∥∥P (3)
n

∥∥∥
1
≤ λ(3)

n , where λn is the classical

Lebesgue constant and λ(3)
n is given by (7.11).

3. Prove Theorem 7.1 in the case of polynomials of the second and third
kinds.

4. If Sn is a partial sum of a Fourier series

(Snf)(θ) = 1
2a0 +

n∑
k=0

(ak cos kθ + bk sin kθ),

show how this may be written, for suitably defined functions, as a com-
bined first-kind and (weighted) second-kind Chebyshev expansion.

[Hint: f(θ) = F (cos θ) + sin θ G(cos θ) = even part of f + odd part of
f .]

5. Consider the Fejér operator F̃n, which takes the mean of the first n
partial sums of the Fourier series.

(a) Show that F̃n is not a projection.

(b) Show that

(F̃nf)(θ) =
1
nπ

∫ 2π

0

f(t)σ̃n(t− θ) dt

where

σ̃n(θ) =
sin 1

2 (n+ 1)θ sin 1
2nθ

2 sin 1
2θ

.

(c) Show that (F̃nf)(θ), under the transformation x = cos θ, becomes
a combined third-kind and fourth-kind Chebyshev-Fejér sum, each
part being appropriately weighted.

6. Derive the basic result for p = ∞, namely ‖P‖∞ ≤ σ2n = λn, for the
three projections listed in Section 7.3.1.
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7. Derive the corresponding basic results for p = 1.

Would it be possible to obtain a better set of results in this case by
using an odd kernel, like that used in (7.6)?

8. Note that ‖P‖2 = 1 in Section 7.3.1 and that it is known that ‖P‖p is
bounded for any fixed p in the range 1 < p <∞. Discuss whether there
is a ‘better’ result than the one quoted.

(You might like to consider both the practical case n ≤ 500 and the
theoretical case of arbitrarily large n.)

9. Investigate the validity of letting p → 1 in the results of Section 7.3.1,
when the interior of the ellipse collapses to the interval [−1, 1].

10. Compute by hand the bounds for
∥∥∥S(2)

n

∥∥∥
∞

in the case n = 0.

11. Compute some numerical values of λ(2)
n and compare them with the

lower bounds given in Table 7.1.
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