
Chapter 6

Chebyshev Interpolation

6.1 Polynomial interpolation

One of the simplest ways of obtaining a polynomial approximation of degree
n to a given continuous function f(x) on [−1, 1] is to interpolate between the
values of f(x) at n + 1 suitably selected distinct points in the interval. For
example, to interpolate at

x1, x2, . . . , xn+1

by the polynomial
pn(x) = c0 + c1x+ · · · + cnxn,

we require that

c0 + c1xk + · · · + cnxn
k = f(xk) (k = 1, . . . , n+ 1). (6.1)

The equations (6.1) are a set of n+1 linear equations for the n+1 coefficients
c0, . . . , cn that define pn(x).

Whatever the values of f(xk), the interpolating polynomial pn(x) exists
and is unique, since the determinant of the linear system (6.1) is non-zero.
Specifically

det




1 x1 x21 · · · xn
1

1 x2 x22 · · · xn
2

...
...

...
. . .

...
1 xn+1 x2n+1 · · · xn

n+1


 =

∏
i>j

(xi − xj) �= 0.

It is generally not only rather time-consuming, but also numerically unsta-
ble, to determine pn(x) by solving (6.1) as it stands, and indeed many more
efficient and reliable formulae for interpolation have been devised.

Some interpolation formulae are tailored to equally spaced points x1, x2,
. . ., xn+1, such as those based on finite differences and bearing the names of
Newton and Stirling (Atkinson 1989, for example). Surprisingly however, if
we have a free choice of interpolation points, it is not necessarily a good idea
to choose them equally spaced. An obvious equally-spaced set for the interval
[−1, 1] is given for each value of n by

xk = −1 +
2k + 1
n+ 1

(k = 0, . . . , n); (6.2)

these points are spaced a distance 2/(n + 1) apart, with half spacings of
1/(n+ 1) between the first and last points and the end points of the interval.
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(This set would provide equally spaced interpolation on (−∞,∞) if f(x) were
periodic with period 2.) However, the following example demonstrates that
the points (6.2) are not appropriate for all continuous functions f(x) when n
becomes large.

Theorem 6.1 (Runge phenomenon) If xk are chosen to be the points (6.2)
for each n ≥ 0, then the interpolating polynomial pn(x) does not converge uni-
formly on [−1, 1] as n→ ∞ for the function f(x) = 1/(1 + 25x2).

Figure 6.1: Interpolation to f(x) = 1/(1 + 25x2) by polynomials of degrees
4 to 8 at evenly-spaced points (above) and at Chebyshev polynomial zeros
(below)

Proof: We refer the reader to (Mayers 1966) for a full discussion. The function
f(z) has complex poles at z = ± 1

5
i, which are close to the relevant part of the

real axis, and it emerges that such nearby poles are sufficient to prevent uniform
convergence. In fact the error f(x) − pn(x) oscillates wildly close to x = ±1, for
large n. This is illustrated in the upper half of Figure 6.1.

See also (Trefethen & Weideman 1991), where it is noted that Turetskii (1940)

showed that the Lebesgue constant for interpolation at evenly-spaced points is

asymptotically 2n+1/(e n log n). ••
However, formulae are also available for unequally spaced interpolation,

notably Neville’s divided-difference algorithm or Aitken’s algorithm (Atkinson
1989) and the general formula of Lagrange quoted in Lemma 6.3 below.
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A better choice of interpolation points to ensure uniform convergence,
though still not necessarily for every continuous function, is the set of zeros
of the Chebyshev polynomial Tn+1(x), namely (as given in Section 2.2)

x = xk = cos
(k − 1

2 )π
n+ 1

(k = 1, . . . , n+ 1). (6.3)

This choice of points does in fact ensure convergence for the function of The-
orem 6.1, and indeed for any continuous f(x) that satisfies a Dini–Lipschitz
condition. Thus only a very slight restriction of f(x) is required. This is illus-
trated in the lower half of Fig. 6.1. See Cheney (1966) or Mason (1982) for a
proof of this. We note also from Theorem 6.5 that convergence in a weighted
L2 norm occurs for any continuous f(x).

By expressing the polynomial in terms of Chebyshev polynomials, this
choice of interpolation points (6.3) can be made far more efficient and stable
from a computational point of view than the equally-spaced set (6.2). So
we gain not only from improved convergence but also from efficiency and
reliability. We show this in Section 6.3.

Finally, we shall find that we obtain a near-minimax approximation by in-
terpolation at Chebyshev zeros, just as we could by truncating the Chebyshev
series expansion — but in this case by a much simpler procedure.

6.2 Orthogonal interpolation

If {φi} is any orthogonal polynomial system with φi of exact degree i then,
rather than by going to the trouble of computing an orthogonal polynomial
expansion (which requires us to evaluate the inner-product integrals 〈f , φi〉),
an easier way to form a polynomial approximation Pn(x) of degree n to a
given function f(x) is by interpolating f(x) at the (n + 1) zeros of φn+1(x).
In fact, the resulting approximation is often just as good.

The following theorem establishes for general orthogonal polynomials what
we already know in the case of Chebyshev polynomials, namely that φn+1(x)
does indeed have the required (n+ 1) distinct zeros in the chosen interval.

Theorem 6.2 If the system {φi}, with φi a polynomial of exact degree i, is
orthogonal on [a, b] with respect to a non-negative weight w(x), then φn has
exactly n distinct real zeros in [a, b], for every n ≥ 0.

Proof: (Snyder 1966, p.7, for example) Suppose that φn has fewer than n real
zeros, or that some of its zeros coincide. Then there are m points t1, t2, . . . , tm in
[a, b], with 0 ≤ m < n, where φn(x) changes sign. Let

Πm(x) :=
m∏

i=1

(x− ti), m ≥ 1; Π0(x) := 1.
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Then Πm is a polynomial of degree m < n, and so must be orthogonal to φn. But

〈Πm , φn〉 =
∫ b

a

w(x)Πm(x)φn(x) dx �= 0,

since this integrand w(x)Πm(x)φn(x) must have the same sign throughout the in-

terval (except at the m points where it vanishes). We thus arrive at a contradic-

tion. ••
Since an interpolant samples the values of the function in a discrete set

of points only, it is usual to require the function to be in C[a, b] (i.e., to be
continuous), even if we wish to measure the goodness of the approximation in
a weaker norm such as L2.

Some basic facts regarding polynomial interpolation are given by the fol-
lowing lemmas.

Lemma 6.3 The polynomial of degree n interpolating the continuous function
f(x) at the n+ 1 distinct points x1, . . . , xn+1 can be written as

pn(x) =
n+1∑
i=1

�i(x)f(xi) (6.4)

where �i(x) are the usual Lagrange polynomials

�i(x) =
n+1∏
k=1
k �=i

(
x− xk

xi − xk

)
. (6.5)

Lemma 6.4 If x1, . . . , xn+1 are the zeros of the polynomial φn+1(x), then
the Lagrange polynomials (6.5) may be written in the form

�i(x) =
φn+1(x)

(x− xi)φ′n+1(xi)
, (6.6)

where φ′(x) denotes the first derivative of φ(x).

In the special case of the first-kind Chebyshev polynomials, the preceding
lemma gives the following specific result.

Corollary 6.4A For polynomial interpolation at the zeros of the Chebyshev
polynomial Tn+1(x), the Lagrange polynomials are

�i(x) =
Tn+1(x)

(n+ 1)(x− xi)Un(xi)
,

or

�i(cos θ) =
cos(n+ 1)θ sin θi

(n+ 1)(cos θ − cos θi) sin(n+ 1)θi

= − sin(n+ 1)(θ − θi) sin θi
(n+ 1)(cos θ − cos θi)

. (6.7)
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The following general result establishes L2 convergence in this framework
of interpolation at orthogonal zeros.

Theorem 6.5 (Erdös & Turán 1937) If f(x) is in C[a, b], if {φi(x), i =
0, 1, . . .} is a system of polynomials (with φi of exact degree i) orthogonal
with respect to w(x) on [a, b] and if pn(x) interpolates f(x) in the zeros of
φn+1(x), then

lim
n→∞ (‖f − pn(x)‖2)2 = lim

n→∞

∫ b

a

w(x)(f(x) − pn(x))2 dx = 0.

Proof: The proof is elegant and subtle, and a version for Chebyshev polynomials
is given by Rivlin (1974). We give a sketched version.

It is not difficult to show that {�i} are orthogonal. By ordering the factors
appropriately, we can use (6.6) to write

�i(x)�j(x) = φn+1(x)ψn−1(x) (i �= j)

where ψn−1 is a polynomial of degree n− 1. This must be orthogonal to φn+1 and
hence

〈�i , �j〉 = 〈φn+1 , ψn−1〉 = 0.

Therefore
〈�i , �j〉 = 0 (i �= j). (6.8)

Now
‖f − pn‖2 ≤

∥∥∥f − pB
n

∥∥∥
2
+
∥∥∥pB

n − pn

∥∥∥
2

where pB
n is the best L2 approximation. Therefore, in view of Theorem 4.2, it suffices

to prove that

lim
n→∞

∥∥∥pB
n − pn

∥∥∥
2
= 0.

Since

pB
n (x) =

n+1∑
i=1

�i(x)p
B
n (xi)

it follows from (6.4) and (6.8) that

(∥∥∥pB
n − pn

∥∥∥
2

)2

=
n+1∑
i=1

〈�i , �i〉
[
f(xi)− pB

n (xi)
]2

.

Provided that 〈�i , �i〉 can be shown to be uniformly bounded for all i, the right-

hand side of this equality tends to zero by Theorem 4.2. This certainly holds in the

case of Chebyshev polynomials, where 〈�i , �i〉 = π

n+ 1
. ••

In the cases w(x) = (1+x)±
1
2 (1−x)± 1

2 , Theorem 6.5 gives L2 convergence
properties of polynomial interpolation at Chebyshev polynomial zeros. For
example, if xi are taken to be the zeros of Tn+1(x) then

lim
n→∞

∫ 1

−1

(1 − x2)−
1
2 (f(x) − pn(x))2 dx = 0.
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This result can be extended, and indeed Erdös & Feldheim (1936) have es-
tablished Lp convergence for all p > 1:

lim
n→∞

∫ 1

−1

(1 − x2)−
1
2 |f(x) − pn(x)|p dx = 0.

In the case of Chebyshev zeros we are able to make more precise compar-
isons with best approximations (see Section 6.5).

If the function f(x) has an analytic extension into the complex plane,
then it may be possible to use the calculus of residues to obtain the following
further results.

Lemma 6.6 If the function f(x) extends to a function f(z) of the complex
variable z, which is analytic within a simple closed contour C that encloses
the point x and all the zeros x1, . . . , xn+1 of the polynomial φn+1(x), then
the polynomial of degree n interpolating f(x) at these zeros can be written as

pn(x) =
1

2πi

∮
C

{φn+1(z) − φn+1(x)}f(z)
φn+1(z)(z − x) dz (6.9)

and its error is

f(x) − pn(x) =
1

2πi

∮
C

φn+1(x)f(z)
φn+1(z)(z − x) dz. (6.10)

In particular, if f(x) extends to a function analytic within the elliptical
contour Er of Figure 1.5, then we can get a bound on the error of interpolation
using the zeros of Tn+1(x), implying uniform convergence in this case.

Corollary 6.6A If the contour C in Lemma 6.6 is the ellipse Er of (1.34),
the locus of the points 1

2 (reiθ + r−1e−iθ) as θ varies (with r > 1, and if
|f(z)| ≤M at every point z on Er, then for every real x on [−1, 1] we can show
(see Problem 2) from (6.10), using (1.50) and the fact that |Tn+1(x)| ≤ 1, that

|f(x) − pn(x)| ≤ (r + r−1)M
(rn+1 − r−n−1)(r + r−1 − 2)

, x real, −1 ≤ x ≤ 1.

(6.11)

6.3 Chebyshev interpolation formulae

We showed in Section 4.6 that the Chebyshev polynomials {Ti(x)} of degrees
up to n are orthogonal in a discrete sense on the set (6.3) of zeros {xk} of
Tn+1(x). Specifically

n+1∑
k=1

Ti(xk)Tj(xk) =




0 i �= j (≤ n)
n+ 1 i = j = 0

1
2 (n+ 1) 0 < i = j ≤ n.

(6.12)
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This discrete orthogonality property leads us to a very efficient interpolation
formula. Write the nth degree polynomial pn(x), interpolating f(x) in the
points (6.3), as a sum of Chebyshev polynomials in the form

pn(x) =
n∑′

i=0

ciTi(x). (6.13)

Theorem 6.7 The coefficients ci in (6.13) are given by the explicit formula

ci =
2
n+ 1

n+1∑
k=1

f(xk)Ti(xk). (6.14)

Proof: If we set f(x) equal to pn(x) at the points {xk}, then it follows that

f(xk) =

n∑′

i=0

ciTi(xk).

Hence, multiplying by
2

n+ 1
Tj(xk) and summing,

2

n+ 1

n+1∑
k=1

f(xk)Tj(xk) =

n∑′

i=0

ci

{
2

n+ 1

n+1∑
k=1

Ti(xk)Tj(xk)

}

= cj ,

from (6.12), giving the formula (6.14). ••

Corollary 6.7A Formula (6.14) is equivalent to a ‘discrete Fourier trans-
form’ of the transformed function

g(θ) = f(cos θ).

Proof: We have

pn(cos θ) =

n∑′

i=0

ci cos iθ

with

ci =
2

n+ 1

n+1∑
k=1

g(θk) cos iθk, (6.15)

with

θk =
(k − 1

2
)π

n+ 1
. (6.16)

Thus {ci} are discrete approximations to the true Fourier cosine series coefficients

cS
i =

1

π

∫ π

−π

g(θ) cos iθ dθ, (6.17)
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obtained by applying a trapezoidal quadrature rule to the (periodic) function g(θ)
with equal intervals π/(n + 1) between the points θk. Indeed, a trapezoidal rule
approximation to (6.17), valid for any periodic function g(θ), is

cS
i � 1

π

π

n+ 1

n+1∑
k=−n

g

(
(k − 1

2
)π

n+ 1

)
cos

i(k − 1
2
)π

n+ 1
,

which gives exactly the formula (6.15) for ci (when we note that the fact that both

g(θ) and cos iθ are even functions implies that the kth and (1 − k)th terms in the

summation are identical). ••
Thus, Chebyshev interpolation has precisely the same effect as taking the

partial sum of an approximate Chebyshev series expansion, obtained by ap-
proximating the integrals in the coefficients of the exact expansion by changing
the independent variable from x to θ and applying the trapezoidal rule — thus
effectively replacing the Fourier transforms cSi by discrete Fourier transforms
ci. It is well known among practical mathematicians and engineers that the
discrete Fourier transform is a very good substitute for the continuous Fourier
transform for periodic functions, and this therefore suggests that Chebyshev
interpolation should be a very good substitute for a (truncated) Chebyshev
series expansion.

In Sections 4.6.2 and 4.6.3 we obtained analogous discrete orthogonality
properties to (6.12), based on the same abscissae xk (zeros of Tn+1) but
weighted, for the second, third and fourth kind polynomials. However, it
is more natural to interpolate a Chebyshev polynomial approximation at the
zeros of a polynomial of the same kind, namely the zeros of Un+1, Vn+1, Wn+1

in the case of second, third and fourth kind polynomials. We shall therefore
show that analogous discrete orthogonality properties also follow for these
new abscissae, and develop corresponding fast interpolation formulae.

6.3.1 Aliasing

We have already seen (Section 6.1) that polynomial interpolation at Cheb-
yshev polynomial zeros is safer than polynomial interpolation at evenly dis-
tributed points. Even the former, however, is unreliable if too small a number
of points (and so too low a degree of polynomial) is used, in relation to the
properties of the function being interpolated.

One mathematical explanation of this remark, particularly as it applies to
Chebyshev interpolation, is through the phenomenon of aliasing, described as
follows.

Suppose that we have a function f(x), having an expansion

f(x) =
∞∑′

j=0

cjTj(x) (6.18)
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in Chebyshev polynomials, which is to be interpolated between its values at
the zeros {xk} of Tn+1(x) by the finite sum

fn(x) =
n∑′

j=0

ĉjTj(x). (6.19)

The only information we can use, in order to perform such interpolation,
is the set of values of each Chebyshev polynomial at the interpolation points.
However, we have the following identity (where x = cos θ):

Tj(x) + T2n+2±j(x) = cos jθ + cos(2n+ 2 ± j)θ
= 1

2 cos(n+ 1)θ cos(n+ 1 ± j)θ
= 1

2Tn+1(x) Tn+1±j(x), (6.20)

so that
Tj(xk) + T2n+2±j(xk) = 0, k = 1, . . . , n+ 1. (6.21)

Thus T2n+2±j is indistinguishable from −Tj over the zeros of Tn+1. Figure 6.2
illustrates this in the case n = 9, j = 4 (2n+ 2 − j = 16).

Figure 6.2: T16(x) = −T4(x) at zeros of T10(x)

In consequence, we can say that fn(x) as in (6.19) interpolates f(x) as in
(6.18) between the zeros of Tn+1(x) when

ĉj = cj − c2n+2−j − c2n+2+j + c4n+4−j + c4n+4+j −· · · , j = 0, . . . , n. (6.22)

(Note that the coefficients cn+1, c3n+3, . . . do not figure in (6.22), as they
correspond to terms in the expansion that vanish at every interpolation point.)

In effect, the process of interpolation removes certain terms of the expan-
sion (6.18) entirely, while replacing the Chebyshev polynomial in each term
after that in Tn(x) by (±1×) a Chebyshev polynomial (its ‘alias ’) of lower
degree. Since the coefficients {cj} tend rapidly to zero for well-behaved func-
tions, the difference between cj and ĉj will therefore usually be small, but
only if n is taken large enough for the function concerned.

Aliasing can cause problems to the unwary, for instance in working with
nonlinear equations. Suppose, for instance that one has a differential equation
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involving f(x) and f(x)3, and one represents the (unknown) function f(x) in
the form

∑′n
j=0 ĉjTj(x) as in (6.19). Then one might be tempted to collocate

the equation at the zeros of Tn+1(x) — effectively carrying out a polynomial
interpolation between these points. Instances such as the following, however,
cast doubt on the wisdom of this.

In Figure 6.3 we have taken n = 4, and show the effect of interpolating
the function T3(x)3 at the zeros of T5(x). (The expansion of fn(x)3 includes
other products of three Chebyshev polynomials, of course, but this term will
suffice.) Clearly the interpolation is poor, the reason being that

T3(x)3 = 1
4 (T9(x) + 3T3(x)) ,

which aliases to
1
4 (−T1(x) + 3T3(x)) .

Figure 6.3: T3(x)3 interpolated at zeros of T5(x)

In contrast, if we could have taken n = 9, we could have interpolated
T3(x)3 exactly as shown in Figure 6.4. However, we should then have had

Figure 6.4: T3(x)3 interpolated (identically) at zeros of T10(x)

to consider the effect of aliasing on further products of polynomials of higher
order, such as those illustrated in Figures 6.5 and 6.6. There are ways of
circumventing such difficulties, which we shall not discuss here.

Much use has been made of the concept of aliasing in estimating quadra-
ture errors (see Section 8.4, where interpolation points and basis functions
other than those discussed above are also considered).
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Figure 6.5: T6(x)3 interpolated at zeros of T10(x)

Figure 6.6: T7(x)3 interpolated at zeros of T10(x)

6.3.2 Second-kind interpolation

Consider in this case interpolation by a weighted polynomial
√

1 − x2 pn(x)
on the zeros of Un+1(x), namely

yk = cos
kπ

n+ 2
(k = 1, . . . , n+ 1).

Theorem 6.8 The weighted interpolation polynomial to f(x) is given by

√
1 − x2 pn(x) =

√
1 − x2

n∑
i=0

ciUi(x) (6.23)

with coefficients given by

ci =
2
n+ 1

n+1∑
k=1

√
1 − y2kf(yk)Ui(yk). (6.24)

Proof: From (4.50), with n− 1 replaced by n+ 1,

n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk) =

{
0, i �= j (≤ n);

1
2
(n+ 1), i = j ≤ n.

(6.25)

If we set
√

1− y2
kpn(yk) equal to f(yk), we obtain

f(yk) =
√
1− y2

k

n∑
i=0

ciUi(yk),
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and hence, multiplying by
2

n+ 1

√
1− y2

k Uj(yk) and summing over k,

2

n+ 1

n+1∑
k=1

√
1− y2

kf(yk)Uj(yk) =

n∑
i=0

ci

{
2

n+ 1

n+1∑
k=1

(1− y2
k)Ui(yk)Uj(yk)

}

= ci

by (6.25). ••
Alternatively, we may want to interpolate at the zeros of Un−1(x) together

with the points x = ±1, namely

yk = cos
kπ

n
(k = 0, . . . , n).

In this case, however, we must express the interpolating polynomial as a sum
of first-kind polynomials, when we can use the discrete orthogonality formula
(4.45)

n∑′′

k=0

Ti(yk)Tj(yk) =




0, i �= j (≤ n);
1
2n, 0 < i = j < n;
n, i = j = 0; i = j = n.

(6.26)

(Note the double prime indicating that the first and last terms of the sum are
to be halved.)

The interpolating polynomial is then

pn(x) =
n∑′′

i=0

ciTi(x) (6.27)

with coefficients given by

ci =
2
n

n∑′′

k=0

f(yk)Ti(yk). (6.28)

Apart from a factor of
√

2/n, these coefficients make up the discrete Cheby-
shev transform of Section 4.7.

6.3.3 Third- and fourth-kind interpolation

Taking as interpolation points the zeros of Vn+1(x), namely

xk = cos
(k − 1

2 )π
n+ 3

2

(k = 1, . . . , n+ 1),

we have the orthogonality formula, for i, j ≤ n,
n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk) =
{

0 i �= j
n+ 3

2 i = j (6.29)

(See Problem 14 of Chapter 4.)
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Theorem 6.9 The weighted interpolation polynomial to
√

1 + x f(x) is given
by

√
1 + x pn(x) =

√
1 + x

n∑
i=0

ciVi(x) (6.30)

where

ci =
1

n+ 3
2

n+1∑
k=1

√
1 + xkf(xk)Vi(xk). (6.31)

Proof: If we set
√
1 + xk pn(xk) equal to

√
1 + xkf(xk), we obtain

√
1 + xk f(xk) =

√
1 + xk

n∑
i=0

ciVi(xk),

and hence, multiplying by
1

n+ 3
2

√
1 + xk Vj(xk) and summing over k,

1

n+ 3
2

n+1∑
k=1

(1 + xk)f(xk)Vj(xk) =
n∑

i=0

ci

{
1

n+ 3
2

n+1∑
k=1

(1 + xk)Vi(xk)Vj(xk)

}

= ci

by (6.29). ••
The same goes for interpolation at the zeros of Wn+1(x), namely

xk = cos
(n− k + 2)π
n+ 3

2

(k = 1, . . . , n+ 1),

if we replace ‘V ’ by ‘W ’ and ‘1 + x’ by ‘1 − x’ throughout.

Alternatively, we may interpolate at the zeros of Vn(x) together with one
end point x = −1; i.e., at the points

xk = cos
(k − 1

2 )π
n+ 1

2

(k = 1, . . . , n+ 1),

where we have the discrete orthogonality formulae (the notation
∑∗ indicat-

ing that the last term of the summation is to be halved)

n+1∑∗

k=1

Ti(xk)Tj(xk) =




0 i �= j (≤ n)
n+ 1

2 i = j = 0
1
2 (n+ 1

2 ) 0 < i = j ≤ n.
(6.32)

The interpolating polynomial is then

pn(x) =
n∑′

i=0

ciTi(x) (6.33)
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with coefficients given by

ci =
2

n+ 1
2

n+1∑∗

k=1

f(xk)Ti(xk). (6.34)

6.3.4 Conditioning

In practice, one of the main reasons for the use of a Chebyshev polynomial
basis is the good conditioning that frequently results. A number of compar-
isons have been made of the conditioning of calculations involving various
polynomial bases, including {xk} and {Tk(x)}. A paper by Gautschi (1984)
gives a particularly effective approach to this topic.

If a Chebyshev basis is adopted, there are usually three gains:

1. The coefficients generally decrease rapidly with the degree n of polyno-
mial;

2. The coefficients converge individually with n;

3. The basis is well conditioned, so that methods such as collocation are
well behaved numerically.

6.4 Best L1 approximation by Chebyshev interpolation

Up to now, we have concentrated on the L∞ or minimax norm. However,
the L∞ norm is not the only norm for which Chebyshev polynomials can be
shown to be minimal. Indeed, a minimality property holds, with a suitable
weight function of the form (1−x)γ(1+x)δ, in the L1 and L2 norms, and more
generally in the Lp norm, where p is equal to 1 or an even integer, and this is
true for all four kinds of Chebyshev polynomials. Here we look at minimality
in the L1 norm.

The L1 norm (weighted by w(x)) of a function f(x) on [−1, 1] is

‖f‖1 :=
∫ 1

−1

w(x) |f(x)| dx (6.35)

and the Chebyshev polynomials have the following minimality properties in
L1.

Theorem 6.10 21−nTn(x) (n > 0), 2−nUn(x), 2−nVn(x), 2−nWn(x) are the
monic polynomials of minimal L1 norm with respect to the respective weight
functions

w(x) =
1√

1 − x2 , 1,
1√

1 − x,
1√

1 + x
. (6.36)
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Theorem 6.11 The polynomial pn−1(x) of degree n− 1 is a best L1 approxi-
mation to a given continuous function f(x) with one of the four weights w(x)
given by (6.36) if f(x) − pn−1(x) vanishes at the n zeros of Tn(x), Un(x),
Vn(x), Wn(x), respectively, and at no other interior points of [−1, 1].

(Note that the condition is sufficient but not necessary.)

Clearly Theorem 6.10 is a special case of Theorem 6.11 (with f(x) = xn),
and so it suffices to prove the latter. We first state a classical lemma on the
characterisation of best L1 approximations (Rice 1964, Section 4–4).

Lemma 6.12 If f(x)− pn−1(x) does not vanish on a set of positive measure
(e.g., over the whole of a finite subinterval), where pn−1 is a polynomial of
degree n − 1 in x, then pn−1 is a best weighted L1 approximation to f on
[−1, 1] if and only if

I(r)
n :=

∫ 1

−1

w(x) sgn[f(x) − pn−1(x)] φr(x) dx = 0 (6.37)

for r = 0, 1, . . . , n − 1, where each φr(x) is any given polynomial of exact
degree r.

Using this lemma, we can now establish the theorems.

Proof: (of Theorem 6.11 and hence of Theorem 6.10)

Clearly sgn(f(x) − pn−1(x)) = sgnPn(x), where Pr ≡ Tr, Ur, Vr, Wr, respec-
tively (r = 0, 1, . . . , n).

Then, taking φr(x) = Pr(x) in (6.37) and making the usual change of variable,

I(r)
n =




∫ π

0

sgn(cosnθ) cos rθ dθ,∫ π

0

sgn(sin(n+ 1)θ) sin(r + 1)θ dθ,∫ π

0

sgn(cos(n+ 1
2
)θ) cos(r + 1

2
)θ dθ,∫ π

0

sgn(sin(n+ 1
2
)θ) sin(r + 1

2
)θ dθ,

respectively. The proof that I
(r)
n = 0 is somewhat similar in each of these four cases.

Consider the first case. Here, since the zeros of cosnθ occur at (k − 1
2
)π/n for

k = 1, . . . , n, we have

I(r)
n =

∫ π/2n

0

cos rθ dθ +
n−1∑
k=1

(−1)k
∫ (k+

1
2
)π/n

(k− 1
2
)π/n

cos rθ dθ + (−1)n
∫ π

(n− 1
2
)π/n

cos rθ dθ

=
1

r
sin

rπ

2n
+

n−1∑
k=1

(−1)k
1

r

[
sin

(k + 1
2
)rπ

n
− sin

(k − 1
2
)rπ

n

]
+
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+ (−1)n−1 1

r
sin

(n− 1
2
)rπ

n

=
2

r

[
sin

rπ

2n
− sin

3rπ

2n
+ · · ·+ (−1)n−1 sin

(2n− 1)rπ

2n

]

=
1

r

[
sin

rπ

n
−
{
sin

rπ

n
+ sin

2rπ

n

}
+ · · ·+ (−1)n−1 sin

(n− 1)rπ

n

]/
cos

rπ

2n

= 0.

We can likewise show that I
(r)
n = 0 in each of the three remaining cases. Theo-

rems 6.11 and 6.10 then follow very easily from Lemma 6.12 ••
It follows (replacing n by n + 1) that the nth degree polynomial pn(x)

interpolating a function f(x) at the zeros of one of the Chebyshev polynomials
Tn+1(x), Un+1(x), Vn+1(x) or Wn+1(x), which we showed how to construct
in Section 6.3, will in many cases give a best weighted L1 approximation
— subject only to the condition (which we cannot usually verify until after
carrying out the interpolation) that f(x)−pn(x) vanishes nowhere else in the
interval.

6.5 Near-minimax approximation by Chebyshev interpolation

Consider a continuous function f(x) and denote the (first-kind) Chebyshev
interpolation mapping by Jn. Then

(Jnf)(x) =
n+1∑
k=1

f(xk)�k(x), (6.38)

by the Lagrange formula, and clearly Jn must be a projection, since (6.38) is
linear in f and exact when f is a polynomial of degree n. From Lemma 5.13,
Jn is near-minimax within a relative distance ‖Jn‖∞.

Now

|(Jnf)(x)| ≤
n+1∑
k=1

‖f‖∞ |�k(x)| .

Hence

‖Jn‖∞ = sup
f

‖Jnf‖∞
‖f‖∞

= sup
f

sup
x∈[−1,1]

|(Jnf)(x)|
‖f‖∞

≤ sup
f

sup
x∈[−1,1]

n∑
k=0

|�k(x)|

= µn (6.39)
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where

µn = sup
x∈[−1,1]

n+1∑
k=1

|�k(x)| . (6.40)

Now if
∑n

k=0 |�k(x)| attains its extremum at x = ξ, we can define a con-
tinuous function φ(x) such that

‖φ‖∞ ≤ 1,

φ(xk) = sgn(�k(ξ)).

Then, from (6.38),

(Jnφ)(ξ) =
n+1∑
k=1

|�k(ξ)| = µn,

whence
‖Jn‖∞ ≥ ‖Jnφ‖∞ ≥ µn. (6.41)

Inequalities (6.39) and (6.41) together give us

‖Jn‖∞ = µn.

What we have written so far applies to any Lagrange interpolation op-
erator. If we specialise to first-kind Chebyshev interpolation, where �k(x) is
as given by Corollary 6.4A, then we have the following asymptotic bound on
‖Jn‖∞.

Theorem 6.13 If {xk} are the zeros of Tn+1(x), then

1.

µn =
1
π

n+1∑
k=1

∣∣∣∣cot
(k − 1

2 )π
2(n+ 1)

∣∣∣∣ ,
2.

µn =
2
π

logn+ 0.9625 +O(1/n) as n→ ∞.

Proof: For the details of the proof, the reader is referred to Powell (1967) or Rivlin

(1974). See also Brutman (1978). ••
The following classical lemma then enables us to deduce convergence prop-

erties.

Lemma 6.14 (Jackson’s theorem) If ω(δ) is the modulus of continuity of
f(x), then the minimax polynomial approximation Bnf of degree n to f sat-
isfies

‖f −Bnf‖∞ ≤ ω(1/n).
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Corollary 6.14A If (Jnf)(x) interpolates f(x) in the zeros of Tn+1(x), and
if f(x) is Dini–Lipschitz continuous, then (Jnf)(x) converges uniformly to
f(x) as n→ ∞.

Proof: By the definition of Dini–Lipschitz continuity, ω(δ) log δ → 0 as δ → 0. By
Theorem 5.12

‖f − Jnf‖∞ ≤ (1 + ‖Jn‖)∞ ‖f −Bnf‖∞
≤ (1 + µn)ω(1/n)

∼ 2

π
ω(1/n) log n

= − 2

π
ω(δ) log δ (δ = 1/n)

→ 0 as δ → 0; i.e., as n → ∞. ••

In closing this chapter, we remind the reader that further interpolation
results have been given earlier in Chapter 4 in the context of orthogonality.
See in particular Sections 4.3.2 and 6.2.

6.6 Problems for Chapter 6

1. Prove Lemmas 6.3 and 6.4, and deduce Corollary 6.4A.

2. Prove Corollary 6.6A.

3. Find expressions for the coefficients (6.14) of the nth degree interpolat-
ing polynomial when f(x) = sgnx and f(x) = |x|, and compare these
with the coefficients in the Chebyshev expansions (5.11) and (5.12).

4. List the possibilities of aliasing in the following interpolation situations:

(a) Polynomials Uj of the second kind on the zeros of Tn+1(x),

(b) Polynomials Vj of the third kind on the zeros of Tn+1(x),

(c) Polynomials Uj on the zeros of (1 − x2)Un−1(x),

(d) Polynomials Tj on the zeros of (1 − x2)Un−1(x),

(e) Polynomials Vj on the zeros of (1 − x2)Un−1(x),

(f) Polynomials Uj on the zeros of Un+1(x),

(g) Polynomials Tj on the zeros of Un+1(x).

5. Give a proof of Theorem 6.11 for the case of the function Ur.
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6. Using Theorem 6.11, consider the lacunary series partial sum

fn(x) =
n∑

k=1

ckU2k−1(x).

Assuming that the series is convergent to f = limn→∞ fn, show that
f − fn, for instance, vanishes at the zeros of U2n−1. Give sufficient
conditions for fn to be a best L1 approximation to f for every n.

7. Show that the n+ 1 zeros of Tn+1(z) − Tn+1(z∗) are distinct and lie on
Er, for a suitable fixed point z∗ on Er (r > 1). Fixing r, find the zeros
for the following choices of z∗:

(a) z∗ = 1
2 (r + r−1),

(b) z∗ = − 1
2 (r + r−1),

(c) z∗ = 1
2 i(r − r−1),

(d) z∗ = − 1
2 i(r − r−1).

8. If fn(z) is a polynomial of degree n interpolating f(z), continuous on the
ellipse Er and analytic in its interior, find a set of interpolation points
zk (k = 1, . . . , n+ 1) on Er such that

(a) fn is near-minimax within a computable relative distance σn on
Er, giving a formula for σn;

(b) this result is valid as r→ 1; i.e., as the ellipse collapses to the line
segment [−1, 1].

To effect (b), show that it is necessary to choose the interpolation points
asymmetrically across the x-axis, so that points do not coalesce.
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