
Chapter 3

The Minimax Property and Its Applications

3.1 Approximation — theory and structure

One area above all in which the Chebyshev polynomials have a pivotal role
is the minimax approximation of functions by polynomials. It is therefore
appropriate at the beginning of this discussion to trace the structure of the
subject of approximation and to present some essential theoretical results,
concentrating primarily on uniform (or L∞) approximation and introducing
the minimax property of the Chebyshev polynomials.

It is very useful to be able to replace any given function by a simpler
function, such as a polynomial, chosen to have values not identical with but
very close to those of the given function, since such an ‘approximation’ may
not only be more compact to represent and store but also more efficient to
evaluate or otherwise manipulate. The structure of an ‘approximation prob-
lem’ involves three central components: (i) a function class (containing the
function to be approximated), (ii) a form (for the approximating function)
and (iii) a norm (of the approximation error), in terms of which the problem
may be formally posed. The expert’s job is to make appropriate selections
of these components, then to pose the approximation problem, and finally to
solve it.

By a function class, we mean a restricted family F of functions f to which
any function f(x) that we may want to fit is assumed to belong. Unless oth-
erwise stated, we shall be concerned with real functions of a real variable, but
the family will generally be narrower than this. For example we may consider
amongst others the following alternative families F of functions defined on
the real interval [a, b]:

1. C[a, b]: continuous functions on [a, b];

2. L∞[a, b]: bounded functions on [a, b];

3. L2[a, b]: square-integrable functions on [a, b];

4. Lp[a, b]: Lp-integrable functions on [a, b], namely functions f(x) for
which is defined ∫ b

a

w(x) |f(x)|p dx, (3.1)

where w(x) is a given non-negative weight function and 1 ≤ p < ∞.
Note that L2[a, b] is a special case (p = 2) of Lp[a, b].
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The reason for defining such a family of functions, when in practice we may
only in fact be interested in one specific function, is that this helps to isolate
those properties of the function that are relevant to the theory — moreover,
there is a close link between the function class we work in and the norms we
can use. In particular, in placing functions in one of the four families listed
above, it is implicitly assumed that we neither care how the functions behave
nor wish to approximate them outside the given interval [a, b].

By form of approximation we mean the specific functional form which
is to be adopted, which will always include adjustable coefficients or other
parameters. This defines a family A of possible approximations f∗(x) to the
given function f(x). For example, we might draw our approximation from
one of the following families:

1. Polynomials of degree n, with

A = Πn = {f∗(x) = pn(x) = c0 + c1x + · · ·+ cnx
n} (parameters {cj})

2. Rational functions of type (p, q), with

A =
{
f∗(x) = rp,q(x) =

a0 + a1 + · · · + apx
p

1 + b1 + · · · + bqxq

}
(parameters {aj}, {bj})

For theoretical purposes it is usually desirable to choose the function class
F to be a vector space (or linear space). A vector space V comprises elements
u, v, w, . . . with the properties (which vectors in the conventional sense are
easily shown to possess):

1. (closure under addition)
u + v ∈ V for any u, v ∈ V ,

2. (closure under multiplication by a scalar)
αu ∈ V for any u ∈ V and for any scalar α.

When these elements are functions f(x), with f + g and αf defined as the
functions whose values at any point x are f(x) + g(x) and αf(x), we refer
to F as a function space. This space F typically has infinite dimension, the
‘vector’ in question consisting of the values of f(x) at each of the continuum
of points x in [a, b].

The family A of approximations is normally taken to be a subclass of F :

A ⊂ F

— in practice, A is usually also a vector space, and indeed a function space.
In contrast to F , A is a finite dimensional function space, its dimension being
the number of parameters in the form of approximation. Thus the space Πn of
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polynomials pn(x) of degree n has dimension n + 1 and is in fact isomorphic
(i.e., structurally equivalent) to the space �

n+1 of real vectors with n + 1
components:

{c = (c0, c1, . . . , cn)}.
(Note that the family of rational functions rp,q of type (p, q) is not a vector
space, since the sum of two such functions is in general a rational function of
type (p + q, 2q), which is not a member of the same family.)

The norm of approximation ‖·‖ serves to compare the function f(x) with
the approximation f∗(x), and gives a single scalar measure of the closeness of
f∗ to f , namely

‖f − f∗‖ . (3.2)

Definition 3.1 A norm ‖·‖ is defined as any real scalar measure of elements
of a vector space that satisfies the axioms:

1. ‖u‖ ≥ 0, with equality if and only if u ≡ 0;

2. ‖u + v‖ ≤ ‖u‖ + ‖v‖ ( the ‘triangle inequality’);

3. ‖αu‖ = |α| ‖u‖ for any scalar α.

Such a definition encompasses all the key features of distance or, in the case
of a function, size. Standard choices of norm for function spaces are the
following:

1. L∞ norm (or uniform norm, minimax norm, or Chebyshev norm):

‖f‖ = ‖f‖∞ = max
a≤x≤b

|f(x)| ; (3.3)

2. L2 norm (or least-squares norm, or Euclidean norm):

‖f‖ = ‖f‖2 =

√∫ b

a

w(x) |f(x)|2 dx, (3.4)

where w(x) is a non-negative weight function;

3. L1 norm (or mean norm, or Manhattan norm):

‖f‖ = ‖f‖1 =
∫ b

a

w(x) |f(x)| dx; (3.5)

4. The above three norms can be collected into the more general Lp norm
(or Hölder norm):

‖f‖ = ‖f‖p =

[∫ b

a

w(x) |f(x)|p dx

] 1
p

, (1 ≤ p < ∞), (3.6)
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where w(x) is a non-negative weight function.

With suitable restrictions on f , which are normally satisfied in practice,
this Lp norm corresponds to the L∞, L2 and L1 norms in the cases
p → ∞, p = 2, p = 1, respectively.

5. The weighted minimax norm:

‖f‖ = max
a≤x≤b

w(x) |f(x)| (3.7)

(which does not fall into the pattern of Hölder norms) also turns out to
be appropriate in some circumstances.

The Lp norm becomes stronger as p increases, as the following lemma
indicates.

Lemma 3.1 If 1 ≤ p1 < p2 ≤ ∞, and if a, b and
∫ b

a
w(x) dx are finite, then

Lp2 [a, b] is a subspace of Lp1 [a, b], and there is a finite constant kp1p2 such
that

‖f‖p1
≤ kp1p2 ‖f‖p2

(3.8)

for every f in Lp2 [a, b].

This lemma will be deduced from Hölder’s inequality in Chapter 5 (see
Lemma 5.4 on page 117).

A vector space to which a norm has been attached is termed a normed
linear space. Hence, once a norm is chosen, the vector spaces F and A of
functions and approximations become normed linear spaces.

3.1.1 The approximation problem

We defined above a family of functions or function space, F , a family of
approximations or approximation (sub)space, A, and a measure ‖f − f∗‖ of
how close a given function f(x) in F is to a derived approximation f∗(x)
in A. How then do we more precisely judge the quality of f∗(x), as an
approximation to f(x) in terms of this measure? In practice there are three
types of approximation that are commonly aimed for:

Definition 3.2 Let F be a normed linear space, let f(x) in F be given, and
let A be a given subspace of F .

1. An approximation f∗(x) in A is said to be good (or acceptable) if

‖f − f∗‖ ≤ ε (3.9)

where ε is a prescribed level of absolute accuracy.

© 2003 by CRC Press LLC



2. An approximation f∗
B(x) in A is a best approximation if, for any other

approximation f∗(x) in A,

‖f − f∗
B‖ ≤ ‖f − f∗‖ . (3.10)

Note that there will sometimes be more than one best approximation to
the same function.

3. An approximation f∗
N (x) in A is said to be near-best within a relative

distance ρ if
‖f − f∗

N‖ ≤ (1 + ρ) ‖f − f∗
B‖ , (3.11)

where ρ is a specified positive scalar and f∗
B(x) is a best approximation.

In the case of the L∞ norm, we often use the terminology minimax and near-
minimax in place of best and near-best.

The ‘approximation problem’ is to determine an approximation of one of
these types (good, best or near-best). In fact, it is commonly required that
both ‘good’ and ‘best’, or both ‘good’ and ‘near-best’, should be achieved —
after all, it cannot be very useful to obtain a best approximation if it is also
a very poor approximation.

In defining ‘good’ in Definition 3.2 above, an absolute error criterion is
adopted. It is, however, also possible to adopt a relative error criterion,
namely ∥∥∥∥1 − f∗

f

∥∥∥∥ ≤ ε. (3.12)

This can be viewed as a problem of weighted approximation in which we
require

‖w (f − f∗)‖ ≤ ε, (3.13)

where, in this case,
w(x) = 1/ |f(x)| .

In approximating by polynomials on [a, b], it is always possible to obtain a
good approximation by taking the degree high enough. This is the conclusion
of the following well-known results.

Theorem 3.2 (Weierstrass’s theorem) For any given f in C[a, b] and for
any given ε > 0, there exists a polynomial pn for some sufficiently large n
such that ‖f − pn‖∞ < ε.

Proof: A proof of this will be given later (see Corollary 5.8A on page 120). ••
Corollary 3.2A The same holds for ‖f − pn‖p for any p ≥ 1.
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Proof: This corollary follows directly by applying Lemma 3.1. ••
But of course it is a good thing from the point of view of efficiency if we

can keep the degree of polynomial as low as possible, which we can do by
concentrating on best or near-best approximations.

3.2 Best and minimax approximation

Given a norm ‖·‖ (such as ‖·‖∞, ‖·‖2 or ‖·‖1), a best approximation as defined
by (3.10) is a solution of the problem:

minimise
f∗∈A

‖f − f∗‖ . (3.14)

In the case of polynomial approximation:

f∗(x) = pn(x) = c0 + c1x + · · · + cnx
n, (3.15)

to which we now restrict our attention, we may rewrite (3.14) in terms of the
parameters as:

minimise
c0,...,cn

‖f − pn‖ . (3.16)

Can we always find such a pn? Is there just one?

Theorem 3.3 For any given p (1 ≤ p ≤ ∞), there exists a unique best
polynomial approximation pn to any function f ∈ Lp[a, b] in the Lp norm,
where w(x) is taken to be unity in the case p → ∞.

We refrain from giving proofs, but refer the reader to Cheney (1966), or
other standard texts, for details.

Note that best approximations also exist in Lp norms on finite point sets,
for 1 ≤ p ≤ ∞, and are then unique for p 	= 1 but not necessarily unique for
p = 1. Such Lp norms are defined by:

‖f − f∗‖p =

[
m∑

i=1

wi |f(xi) − f∗(xi)|p
] 1

p

where {wi} are positive scalar weights and {xi} is a discrete set of m fitting
points where the value of f(xi) is known. These are important in data fitting
problems; however, this topic is away from our central discussion, and we shall
not pursue it here.

It is possible to define forms of approximation other than polynomials,
for which existence or uniqueness of best approximation holds — see Cheney
(1966) for examples. Since polynomials are the subject of this book, however,
we shall again refrain from going into details.
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Note that Theorem 3.3 guarantees in particular the existence of a unique
best approximation in the L∞ or minimax norm. The best L∞ or minimax
approximation problem, combining (3.3) and (3.15), is (in concise notation)

minimise
c0,...,cn

max
a≤x≤b

|f(x) − pn(x)| . (3.17)

It is clear from (3.17) why the word ‘minimax’ is often given to this problem,
and why the resulting best approximation is often referred to as a ‘minimax
approximation’.

Theorem 3.3 is not a constructive theorem and does not characterise (i.e.
describe how to recognise) a minimax approximation. However, it is possible
to do so rather explicitly, as the following powerful theorem asserts.

Theorem 3.4 (Alternation theorem for polynomials) For any f(x) in
C[a, b] a unique minimax polynomial approximation pn(x) exists, and is uniquely
characterised by the ‘alternating property’ (or ‘equioscillation property’) that
there are n + 2 points (at least) in [a, b] at which f(x) − pn(x) attains its
maximum absolute value (namely ‖f − pn‖∞) with alternating signs.

This theorem, often ascribed to Chebyshev but more properly attributed
to Borel (1905), asserts that, for pn to be the best approximation, it is both
necessary and sufficient that the alternating property should hold, that only
one polynomial has this property, and that there is only one best approxima-
tion. The reader is referred to Cheney (1966), for example, for a complete
proof. The ‘sufficient’ part of the proof is relatively straightforward and is set
as Problem 6 below; the ‘necessary’ part of the proof is a little more tricky.

Example 3.1: As an example of the alternation theorem, suppose that the function
f(x) = x2 is approximated by the first-degree (n = 1) polynomial

f∗(x) = p1(x) = x − 0.125 (3.18)

on [0, 1]. Then the error f(x)− pn(x), namely

x2 − x+ 0.125,

has a maximum magnitude of 0.125 which it attains at x = 0, 0.5 and 1. At

these points it takes the respective values +0.125, −0.125 and +0.125, which have
alternating signs. (See Figure 3.1.) Hence p1(x), given by (3.18), is the unique

minimax approximation.

Define C0
2π to be the space of functions which are continuous and 2π-

periodic (so that f(2π+θ) = f(θ)). There is a theorem similar to Theorem 3.4
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Figure 3.1: Minimax linear approximation to x2 on range [0, 1]

which holds for approximation of a continuous function by a trigonometric
polynomial, such as

qn(θ) = a0 +
n∑

k=1

(ak cos kθ + bk sinkθ) (3.19)

on the range [−π, π] of θ.

Theorem 3.5 (Alternation theorem for trigonometric polynomials)
For any f(θ) in C0

2π, the minimax approximation qn(θ) of form (3.19) exists
and is uniquely characterised by an alternating property at 2n + 2 points of
[−π, π]. If b1, . . . , bn (or a0, . . . , an) are set to zero, so that qn(θ) is a sum of
cosine (or sine) functions alone, and if f(θ) is an even (or odd) function, then
the minimax approximation qn(θ) is characterised by an alternating property
at n + 2 (or respectively n + 1) points of [0, π].

Finally, we should mention recent work by Peherstorfer (1997, and else-
where) on minimax polynomial approximation over collections of non-over-
lapping intervals.

3.3 The minimax property of the Chebyshev polynomials

We already know, from our discussions of Section 2.2, that the Chebyshev
polynomial Tn(x) has n + 1 extrema, namely

x = yk = cos
kπ

n
(k = 0, 1, . . . , n). (3.20)

Since Tn(x) = cosnθ when x = cos θ (by definition), and since cosnθ
attains its maximum magnitude of unity with alternating signs at its extrema,
the following property holds.

Lemma 3.6 (Alternating property of Tn(x)) On [−1, 1], Tn(x) attains
its maximum magnitude of 1 with alternating signs at precisely (n+1) points,
namely the points (3.20).
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Clearly this property has the flavour of the alternation theorem for minimax
polynomial approximation, and indeed we can invoke this theorem as follows.
Consider the function

f(x) = xn,

and consider its minimax polynomial approximation of degree n−1 on [−1, 1],
pn−1(x), say. Then, by Theorem 3.4, f(x) − pn−1(x) = xn − pn−1(x) must
uniquely have the alternating property on n + 1 points. But Tn(x) has a
leading coefficient (of xn) equal to 2n−1 and hence 21−nTn(x) is of the same
form xn − pn−1(x) with the same alternating property. It follows that

xn − pn−1(x) = 21−nTn(x). (3.21)

We say that 21−nTn(x) is a monic polynomial, namely a polynomial with
unit leading coefficient. The following two corollaries of the alternation theo-
rem now follow.

Corollary 3.4A (of Theorem 3.4) The minimax polynomial approximation
of degree n− 1 to the function f(x) = xn on [−1, 1] is

pn−1(x) = xn − 21−nTn(x). (3.22)

Corollary 3.4B (The minimax property of Tn) 21−nTn(x) is the mini-
max approximation on [−1, 1] to the zero function by a monic polynomial of
degree n.

Example 3.2: As a specific example of Corollary 3.4B, the minimax monic poly-
nomial approximation of degree n = 4 to zero on [−1, 1] is

2−3T4(x) = 2
−3(8x4 − 8x2 + 1) = x4 − x2 + 0.125.

This polynomial has the alternating property, taking extreme values +0.125, −0.125,
+0.125, −0.125, +0.125, respectively, at the 5 points yk = cos kπ/4 (k = 0, 1, . . . , 4),
namely

yk = 1,
1√
2
, 0, − 1√

2
, −1. (3.23)

Moreover, by Corollary 3.4A, the minimax cubic polynomial approximation to the
function f(x) = x4 on [−1, 1] is, from (3.22),

p3(x) = x4 − (x4 − x2 + 0.125) = x2 − 0.125, (3.24)

the error f(x)−p3(x) having the alternating property at the points (3.23). Thus the
minimax cubic polynomial approximation in fact reduces to a quadratic polynomial
in this case.

It is noteworthy that x2−0.125 is also the minimax quadratic polynomial (n = 2)
approximation to x4 on [−1, 1]. The error still has 5 extrema, and so in this case the
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alternation theorem holds with n+3 alternation points. It is thus certainly possible
for the number of alternation points to exceed n+ 2.

If the interval of approximation is changed to [0, 1], then a shifted Chebyshev
polynomial is required. Thus the minimax monic polynomial approximation of de-
gree n to zero on [0, 1] is

21−2nT ∗
n(x). (3.25)

For example, for n = 2, the minimax monic quadratic is

2−3T ∗
2 (x) = 2

−3(8x2 − 8x+ 1) = x2 − x+ 0.125.

This is precisely the example (3.18) that was first used to illustrate Theorem 3.4

above.

3.3.1 Weighted Chebyshev polynomials of second, third and fourth
kinds

We saw above that the minimax property of Tn(x) depended on the alternating
property of cosnθ. However, an alternating property holds at n + 1 points θ
in [0, π] for each of the trigonometric polynomials

sin(n + 1)θ , at θ =
(k + 1

2 )π
n + 1

(k = 0, . . . , n),

cos(n + 1
2 )θ, at θ =

kπ

n + 1
2

(k = 0, . . . , n),

sin(n + 1
2 )θ , at θ =

(k + 1
2 )π

n + 1
2

(k = 0, . . . , n).

The following properties may therefore readily be deduced from the defi-
nitions (1.4), (1.8) and (1.9) of Un(x), Vn(x), Wn(x).

Corollary 3.5A (of Theorem 3.5) (Weighted minimax properties of Un,
Vn, Wn)

The minimax approximations to zero on [−1, 1], by monic polynomials of
degree n weighted respectively by

√
1 − x2,

√
1 + x and

√
1 − x, are

2−nUn(x), 2−nVn(x) and 2−nWn(x).

The characteristic equioscillation may be seen in Figure 3.2.
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Figure 3.2: Equioscillation on [−1, 1] of T5(x),
√

1 − x2U5(x),
√

1 + xV5(x)
and

√
1 − xW5(x)
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3.4 The Chebyshev semi-iterative method for linear equations

The minimax property of the Chebyshev polynomials Tn has been exploited to
accelerate the convergence of iterative solutions of linear algebraic equations
(Varga 1962, p.138), (Golub & van Loan 1983, p.511).

Let a set of linear equations be written in matrix form as

Ax = b. (3.26)

Then a standard method of solution is to express the square matrix A in the
form A = M−N, where the matrix M is easily inverted (e.g., a diagonal or
banded matrix), to select an initial vector x0, and to perform the iteration

Mxk+1 = Nxk + b. (3.27)

This iteration will converge to the solution x of (3.26) if the spectral radius
ρ(G) of the matrix G = M−1N (absolute value of its largest eigenvalue) is
less than unity, converging at a geometric rate proportional to ρ(G)k.

Now suppose that we replace each iterate xk by a linear combination of
successive iterates:

yk =
k∑

j=0

νj(k)xj (3.28)

where
k∑

j=0

νj(k) = 1, (3.29)

and write

pk(z) :=
k∑

j=0

νj(k)zj,

so that pk(1) = 1.

From (3.26) and (3.27), we have M(xj+1 − x) = N(xj − x), so that

xj − x = Gj(x0 − x)

and, substituting in (3.28) and using (3.29),

yk − x =
k∑

j=0

νj(k)Gj(x0 − x) = pk(G)(x0 − x), (3.30)

where pk(G) denotes the matrix
∑k

j=0 νj(k)Gj .

Assume that the matrix G = M−1N has all of its eigenvalues {λi} real
and lying in the range [α, β], where −1 < α < β < +1. Then pk(G) has
eigenvalues pk(λi), and

ρ(pk(G)) = max
i

|pk(λi)| ≤ max
α≤λ≤β

|pk(λ)| . (3.31)
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Let F denote the linear mapping of the interval [α, β] onto the interval
[−1, 1]:

F (z) =
2z − α− β

β − α
(3.32)

and write
µ = F (1) =

2 − α− β

β − α
. (3.33)

Choose the coefficients νj(k) so that

pk(z) =
Tk(F (z))
Tk(µ)

. (3.34)

Then pk(1) = 1, as required, and

max
α≤λ≤β

|pk(λ)| =
1

|Tk(µ)| =
1

cosh(k argcoshµ)
∼ 2e−k argcosh µ, (3.35)

using (1.33a) here, rather than (1.1), since we know that µ > 1. Convergence
of yk to x is therefore rapid, provided that µ is large.

It remains to show that yk can be computed much more efficiently than
by computing xk and evaluating the entire summation (3.28) at every step.
We can achieve this by making use of the recurrence (1.3a) in the forms

Tk−1(µ) = 2µTk(µ) − Tk+1(µ)

Tk+1(Γ) = 2ΓTk(Γ) − Tk−1(Γ) (3.36)

where
Γ = F (G) =

2
β − α

G− β + α

β − α
. (3.37)

From (3.30) we have

yk+1 − yk−1 = (yk+1 − x) − (yk−1 − x)

= pk+1(G)(x0 − x) − pk−1(G)(x0 − x)

=
(
Tk+1(Γ)
Tk+1(µ)

− Tk−1(Γ)
Tk−1(µ)

)
(x0 − x);

yk − yk−1 =
(
Tk(Γ)
Tk(µ)

− Tk−1(Γ)
Tk−1(µ)

)
(x0 − x).

Define

ωk+1 = 2µ
Tk(µ)

Tk+1(µ)
. (3.38)

Then, using (3.36), the expression

(yk+1 − yk−1) − ωk+1(yk − yk−1)
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simplifies to

2(Γ− µ)
Tk(Γ)

Tk+1(µ)
(x0 − x) = ωk+1

Γ− µ

µ
(yk − x)

= ωk+1γ(G− 1)(yk − x) = ωk+1γzk

where
γ = 2/(2 − α− β) (3.39)

and where zk satisfies

Mzk = M(G− 1)(yk − x)

= (N−M)(yk − x) = A(x − yk) = b−Ayk. (3.40)

The successive iterates yk can thus be generated by means of the three-
term recurrence

yk+1 = ωk+1(yk − yk−1 + γzk) + yk−1, k = 1, 2, . . . , (3.41)

starting from
y0 = x0, y1 = y0 + γz0, (3.42)

where
ωk+1 = 2µ

Tk(µ)
Tk+1(µ)

, µ =
2 − α− β

β − α
, γ =

2
2 − α− β

,

and zk is at each step the solution of the linear system

Mzk = b−Ayk. (3.43)

Using (1.3a) again, we can generate the coefficients ωk most easily by means
of the recurrence

ωk+1 =
1

1 − ωk/4µ2
(3.44)

with ω1 = 2; they converge to a limit ωk → 2µ(µ−
√

µ2 − 1) as k → ∞.

In summary, the algorithm is as follows:

Given the system of linear equations Ax = b, with A = M−N,
where Mz = b is easily solved and all eigenvalues of M−1N lie on
the real subinterval [α, β] of [−1, 1]:

1. Let γ :=
2

2 − α− β
and µ :=

2 − α− β

β − α
;

2. Take an arbitrary starting vector y0 := x0;
Take ω1 := 2;
Solve Mz0 = b−Ay0 for z0;
Let y1 := x0 + γz0 (3.42);
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3. For k = 1, 2, . . .:

Let ωk+1 :=
1

1 − ωk/4µ2
(3.44);

Solve Mzk = b−Ayk for zk (3.43);
Let yk+1 := ωk+1(yk − yk−1 + γzk) + yk−1 (3.41).

3.5 Telescoping procedures for power series

If a function f(x) may be expanded in a power series which converges on
[−1, 1] (possibly after a suitable transformation of the x variable), then a
plausible approximation may clearly be obtained by truncating this power
series after n+1 terms to a polynomial pn(x) of degree n. It may be possible,
however, to construct an nth degree polynomial approximation better than
this, by first truncating the series to a polynomial pm(x) of some higher degree
m > n (which will usually be a better approximation to f(x) than pn(x)) and
then exploiting the properties of Chebyshev polynomials to ‘economise’ pm(x)
to a polynomial of degree n.

The simplest economisation technique is based on the idea of subtracting a
constant multiple of a Chebyshev polynomial of the same degree, the constant
being chosen so as to reduce the degree of the polynomial.

Example 3.3: For f(x) = ex, the partial sum of degree 7 of the power series
expansion is given by

p7(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ x7

7!

= 1 + x+ 0.5x2 + 0.1666667x3 + 0.0416667x4 +

+ 0.008333x5 + 0.0013889x6 + 0.0001984x7 , (3.45)

where a bound on the error in approximating f(x) is given, by the mean value
theorem, by

|f(x)− p7(x)| =
∣∣∣∣x

8

8!
f (8)(ξ)

∣∣∣∣ =
∣∣∣∣x

8

8!
eξ
∣∣∣∣ ≤ e

8!
= 0.0000674 for x in [−1, 1]. (3.46)

(The actual maximum error on [−1, 1] in this example is in fact the error at x = 1,
|f(1)− p7(1)| = 0.0000279.)
Now (3.45) may be economised by forming the degree-6 polynomial

p6(x) = p7(x)− 0.0001984 [2−6T7(x)]

= p7(x)− 0.0000031 T7(x). (3.47)

Since 2−6T7(x) is the minimax monic polynomial of degree 7, this means that p6 is
the minimax 6th degree approximation to p7 on [−1, 1], and p7 has been economised
in an optimal way.
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From (3.45), (3.47) and the coefficients in Table C.2, we obtain

p6(x) = p7(x)− 0.0001984(64x7 − 112x5 + 56x3 − 7x)/26

= p7(x)− 0.0001984(x7 − 1.75x5 + 0.875x3 − 0.109375x).
Thus

p6(x) = 1 + 1.0000217x + 0.5x
3 + 0.1664931x3 +

+ 0.0416667x4 + 0.0086805x5 + 0.0013889x6 . (3.48)

(Since T7(x) is an odd function of x, coefficients of even powers of x are unchanged
from those in p7(x).) An error has been committed in replacing p7 by p6, and, from
(3.47), this error is of magnitude 0.0000031 at most (since |T7(x)| is bounded by 1
on the interval). Hence, from (3.46), the accumulated error in f(x) satisfies

|f(x)− p6(x)| ≤ 0.0000674 + 0.0000031 = 0.0000705. (3.49)

A further economisation leads to the quintic polynomial

p5(x) = p6(x)− 0.0013889 [2−5T6(x)]

= p6(x)− 0.0000434 T6(x). (3.50)

Here p5 is the minimax quintic polynomial approximation to p6. From (3.48), (3.50)
and Table C.2, we obtain

p5(x) = p6(x)− 0.0013889(32x6 − 48x2 + 18x2 − 1)/25

= p6(x)− 0.0013889(x6 − 1.5x4 + 0.5625x2 − 0.03125).
Thus

p5(x) = 1.0000062 + 1.0000217x + 0.4992188x
2 +

+ 0.1664931x3 + 0.0437500x4 + 0.0086805x5 (3.51)

and, since T6(x) is an even function of x, coefficients of odd powers are unchanged
from those in p6(x). The error in replacing p6 by p5 is, from (3.50), at most
0.0000434. Hence, from (3.49), the accumulated error in f(x) now satisfies

|f(x)− p5(x)| ≤ 0.0000705 + 0.0000434 = 0.0001139. (3.52)

Thus the degradation in replacing p7 (3.45) by p5 (3.51) is only marginal, increasing
the error bound from 0.000067 to 0.000114.

In contrast, the partial sum of degree 5 of the power series (3.45) has a mean-
value-theorem error bound of

∣∣x6eξ/6!
∣∣ ≤ e/6! ∼ 0.0038 on [−1, 1], and the actual

maximum error on [−1, 1], attained at x = 1, is 0.0016. However, even this is about
15 times as large as (3.52), so that the telescoping procedure based on Chebyshev
polynomials is seen to give a greatly superior approximation.

The approximation (3.50) and the 5th degree partial sum of the Taylor series are
both too close to ex for the error to be conveniently shown graphically. However, in
Figures 3.3 and 3.4 we show the corresponding approximations of degree 2, where
the improved accuracy is clearly visible.
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Figure 3.3: The function ex on
[−1, 1] and an economised polyno-
mial approximation of degree 2

Figure 3.4: The function ex on
[−1, 1] and its Taylor series trun-
cated at the 2nd degree term

An alternative technique which might occur to the reader is to rewrite the poly-
nomial p7(x), given by (3.45), as a sum of Chebyshev polynomials

p7(x) =

7∑
k=0

ckTk(x), (3.53)

where ck are determined by using, for example, the algorithm of Section 2.3.1 above
(powers of x in terms of {Tk(x)}). Suitable higher order terms, such as those in T6

and T7, could then be left out of (3.53) according to the size of their coefficients ck.
However, the telescoping procedure above is exactly equivalent to this, and is in fact
a somewhat simpler way of carrying it out. Indeed c7 and c6 have been calculated
above, in (3.47) and (3.50) respectively, as

c7 = 0.0000031, c6 = 0.0000434.

If the telescoping procedure is continued until a constant approximation p0(x) is

obtained, then all of the Chebyshev polynomial coefficients ck will be determined.

3.5.1 Shifted Chebyshev polynomials on [0, 1]

The telescoping procedure may be adapted to ranges other than [−1, 1], pro-
vided that the Chebyshev polynomials are adjusted to the range required.
For example, the range [−c, c] involves the use of the polynomials Tk(x/c).
A range that is often useful is [0, 1] (or, by scaling, [0, c]), and in that case
the shifted Chebyshev polynomials T ∗

k (x) (or T ∗
k (x/c)) are used. Since the

latter polynomials are neither even nor odd, every surviving coefficient in the
polynomial approximation changes at each economisation step.
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Example 3.4: Suppose that we wish to economise on [0, 1] a quartic approximation
to f(x) = ex:

q4(x) = 1 + x+ 0.5x2 + 0.1666667x3 + 0.0416667x4

in which the error satisfies

|f(x)− q4(x)| = x5

5!
eξ ≤ e

5!
= 0.0227. (3.54)

Then the first economisation step leads to

q3(x) = q4(x)− 0.0416667 [2−7T ∗
4 (x)]

= q4(x)− 0.0003255 T ∗
4 (x). (3.55)

From Table C.2:

q3(x) = q4(x)− 0.0416667(128x4 − 256x3 + 160x2 − 32x + 1)/27

= q4(x)− 0.0416667(x4 − 2x3 + 1.25x2 − 0.25x + 0.0078125).

Thus

q3(x) = 0.9996745 + 1.0104166x + 0.4479167x
2 + 0.25x3. (3.56)

Here the maximum additional error due to the economisation is 0.0003255, from

(3.55), which is virtually negligible compared with the existing error (3.54) of q4. In

fact, the maximum error of (3.56) on [0, 1] is 0.0103, whereas the maximum error of

the power series truncated after the term in x3 is 0.0516.

The economisation can be continued in a similar way for as many steps as
are valid and necessary. It is clear that significantly smaller errors are incurred
on [0, 1] by using T ∗

k (x) than are incurred on [−1, 1] using Tk(x). This is to
be expected, since the range is smaller. Indeed there is always a reduction in
error by a factor of 2m, in economising a polynomial of degree m, since the
respective monic polynomials that are adopted are

21−mTm(x) and 21−2mT ∗
m(x).

3.5.2 Implementation of efficient algorithms

The telescoping procedures above, based on Tk(x) and T ∗
k (x) respectively, are

more efficiently carried out in practice by implicitly including the computation
of the coefficients of the powers of x in Tk or T ∗

k within the procedure (so that
Table C.2 does not need to be stored). This is best achieved by using ratios
of consecutive coefficients from formula (2.19) of Section 2.3.3 above.
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Consider first the use of the shifted polynomial T ∗
k (x/d) on a chosen range

[0, d]. Suppose that f(x) is initially approximated by a polynomial pm(x) of
degree m, where for each � ≤ m,

p�(x) =
�∑

k=0

a
(�)
k xk = a

(�)
0 + a

(�)
1 x + · · · + a

(�)
� x�. (3.57)

Then the first step of the telescoping procedure replaces pm by

pm−1(x) = pm(x) − a(m)
m 21−2mdmT ∗

m(x/d). (3.58)

(The factor dm is included, to ensure that 21−2mdmT ∗
m(x/d) is monic.)

Now, write
T ∗

m(x/d) = 22m−1d−m
∑

d
(m)
k xkdm−k (3.59)

where 22m−1d
(m)
k is the coefficient of xk in T ∗

m(x). Then, by (3.57), (3.58),
(3.59):

a
(m−1)
k = a

(m)
k − a(m)

m d
(m)
k (k = m− 1,m− 2, . . . , 0). (3.60)

The index k has been ordered from k = m − 1 to k = 0 in (3.60), since the
coefficients d

(m)
k will be calculated in reverse order below.

Now T ∗
m(x) = T2m(x

1
2 ) and hence, from (2.16),

T ∗
m(x) =

m∑
k=0

c
(2m)
k xm−k (3.61)

where c
(2m)
k is defined by (2.17a). Hence, in (3.59),

d
(m)
k = c

(2m)
m−k21−2m. (3.62)

Now, from (2.19)

c
(n)
k+1 = − (n− 2k)(n− 2k − 1)

4(k + 1)(n− k − 1)
c
(n)
k (3.63)

and hence, from (3.62),

d
(m)
m−k−1 = − (2m− 2k)(2m− 2k − 1)

4(k + 1)(2m− k − 1)
d
(m)
m−k.

Thus
d
(m)
r−1 =

−2r(2r − 1)
4(m− r + 1)(m + r − 1)

d(m)
r (3.64)

where d
(m)
m = 1.

In summary, the algorithm is as follows:
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Given pm(x) of form (3.57), with coefficients a
(m)
k :

1. With d
(m)
m = 1, determine d

(m)
m−1, . . . , d

(m)
0 , using (3.64);

2. Determine a
(m−1)
k , using (3.60), and hence pm−1(x) of form

(3.57), with coefficients a
(m−1)
k .

However, if a telescoping procedure is based on the range [−d, d] and the
standard polynomials Tk(x/d), then it is more appropriate to treat even and
odd powers of x separately, since each Tk involves only one or the other, and
so the algorithm is correspondingly more complicated, but at the same time
more efficient.

Suppose f(x) is initially approximated by the polynomial p2M+1(x) of odd
degree, where (for each � ≤ M)

p2�+1(x) =
�∑

k=0

b
(�)
k x2k+1 +

�∑
k=0

c
(�)
k x2k (3.65a)

and

p2�(x) =
�−1∑
k=0

b
(�−1)
k x2k+1 +

�∑
k=0

c
(�)
k x2k. (3.65b)

Then the first two (odd and even) steps of the telescoping procedure replace
p2M+1(x) by p2M (x) and p2M (x) by p2M−1(x), where

p2M (x) = p2M+1(x) − b
(M)
M 2−2Md2M+1T2M+1(x/d), (3.66a)

p2M−1(x) = p2M (x) − c
(M)
M 21−2Md2MT2M (x/d). (3.66b)

Now, let 22Me
(M)
k and 22M−1f

(M)
k denote respectively the coefficients of x2k+1

in T2M+1(x) and of x2k in T2M (x).

Then, from (2.16),

T2M+1(x/d) = 22Md−2M−1
M∑

k=0

e
(M)
k x2k+1d2M−2k =

=
M∑

k=0

b
(M)
M−kx

2k+1d−2k−1 (3.67a)

T2M (x/d) = 22M−1d−2M
M∑

k=0

f
(M)
k x2kd2M−2k =

=
M∑

k=0

c
(M)
M−kx

2kd−2k (3.67b)
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Hence, from (3.65)–(3.67),

b
(M−1)
k = b

(M)
k − b

(M)
M e

(M)
k (k = M − 1,M − 2, . . . , 0), (3.68a)

c
(M−1)
k = c

(M)
k − c

(M)
M f

(M)
k (k = M − 1,M − 2, . . . , 0). (3.68b)

Formulae for generating the scaled Chebyshev coefficients e
(M)
k and f

(M)
k

may be determined from (3.63) and (3.67) (by replacing n by 2M + 1, 2M ,
respectively) in the form

e
(M)
M−k−1 = − (2M − 2k + 1)(2M − 2k)

4(k + 1)(2M − k)
e
(M)
M−k,

f
(M)
M−k−1 = − (2M − 2k)(2M − 2k − 1)

4(k + 1)(2M − k − 1)
f

(M)
M−k.

Thus e
(M)
M = f

(M)
M = 1, and

e
(M)
r−1 = − (2r + 1)(2r)

4(M − r + 1)(M + r)
e(M)

r , (3.69a)

f
(M)
r−1 = − (2r)(2r − 1)

4(M − r + 1)(M + r − 1)
f (M)

r . (3.69b)

In summary, the algorithm is as follows:

Given p2M+1(x) of form (3.65a), with coefficients b
(M)
k and

c
(M)
k :

1. With e
(M)
M = 1, determine e

(M)
M−1, . . . , e

(M)
0 , using (3.69a);

2. Determine b
(M−1)
k , using (3.68a), and hence p2M (x) of form

(3.65b), with coefficients b
(M−1)
k and c

(M)
k ;

3. With f
(M)
M = 1, determine f

(M)
M−1, . . . , f

(M)
0 , using (3.69b);

4. Determine c
(M−1)
k , using (3.68b), and hence p2M−1(x) of form

(3.65a), with coefficients b
(M−1)
k and c

(M−1)
k .

We should add as a postscript that Gutknecht & Trefethen (1982) have
succeeded in implementing an alternative economisation method due to Cara-
théodory and Fejér, which yields a Chebyshev sum giving a much closer ap-
proximation to the original polynomial.
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3.6 The tau method for series and rational functions

Sometimes a power series converges very slowly at a point of interest, or even
diverges, so that we cannot find a suitable partial sum to provide an initial
approximation for the above telescoping procedure. However, in some cases
other approaches are useful, one of which is the ‘tau’ (τ) method1 of Lanczos
(1957).

Consider for example the function

y(x) =
1

1 + x

which has the power series expansion

1 − x + x2 − x3 + · · · + (−1)nxn + · · · .

This series has radius of convergence 1, and since it does not converge for
|x| ≥ 1, cannot be used on [0, 1] or wider ranges. However, y(x) is the solution
of the functional equation

(1 + x)y(x) = 1 (3.70)

and may be approximated on [0, 1] by a polynomial pn(x) of degree n in the
form

pn(x) =
n∑′

k=0

ckT
∗
k (x) (3.71)

(where, as previously, the dash denotes that the first term in the sum is
halved), by choosing the coefficients {ck} so that pn approximately satisfies
the equation

(1 + x)pn(x) = 1. (3.72)

Equation (3.72) can be perturbed slightly into one that can be satisfied
exactly, by adding to the right-hand side an undetermined multiple τ (say) of
a shifted Chebyshev polynomial of degree n + 1:

(1 + x)pn(x) = 1 + τT ∗
n+1(x). (3.73)

Since there are n + 2 free parameters in (3.71) and (3.73), namely ck (k =
0, 1, . . . , n) and τ , it should be possible to determine them by equating coeffi-
cients of powers of x in (3.73) (since there are n+2 coefficients in a polynomial
of degree n+ 1). Equivalently, we may equate coefficients of Chebyshev poly-
nomials after writing the two sides of (3.73) as Chebyshev summations; this
can be done if we note from (2.39) that

(2x− 1)Tk(2x− 1) = 1
2 [Tk+1(2x− 1) + T|k−1|(2x− 1)]

1A slightly different but related approach, also known as the ‘tau method’, is applied to
solve differential equations in a later chapter (see Chapter 10).
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and hence, since T ∗
k (x) = Tk(2x− 1),

(1 + x)T ∗
k (x) = 1

4 [T ∗
k+1(x) + 6T ∗

k (x) + T ∗
|k−1|(x)]. (3.74)

Substituting (3.74) into (3.71) and (3.73),
n∑′

k=0

1
4ck[T ∗

|k−1|(x) + 6T ∗
k (x) + T ∗

k+1(x)] = T ∗
0 (x) + τT ∗

n+1(x).

On equating coefficients of T ∗
0 , . . . , T ∗

n+1, we obtain
1
4 (3c0 + c1) = 1,

1
4 (ck−1 + 6ck + ck+1) = 0 (k = 1, . . . , n− 1),

1
4 (cn−1 + 6cn) = 0,

1
4cn = τ.

These are n + 2 equations for c0, c1, . . . , cn and τ , which may be readily
solved by back-substituting for cn in terms of τ , hence (working backwards)
determining cn−1 , cn−2, . . . , c0 in terms of τ , leaving the first equation to
determine the value of τ .

Example 3.5: For n = 3, we obtain (in this order)

c3 = 4τ,

c2 = −6c3 = −24τ,

c1 = −6c2 − c3 = 140τ,

c0 = −6c1 − c2 = −816τ,

3c0 + c1 = −2308τ = 4.
Hence τ = −1/577 and, from (3.71),

y(x) � p3(x)

= 1
577
[408T ∗

0 (x)− 140T ∗
1 (x) + 24T

∗
2 (x)− 4T ∗

3 (x)]

= 0.707106T ∗
0 (x)− 0.242634T ∗

1 (x) +

+ 0.041594T ∗
2 (x)− 0.006932T ∗

3 (x). (3.75)

The error ε(x) in (3.75) is known from (3.70) and (3.73) to be

ε(x) = y(x)− p3(x) =
τT ∗

4 (x)

1 + x
.

Since 1/(1 + x) and T ∗
4 (x) are both bounded by 1 in magnitude, we deduce the

bound
|ε(x)| ≤ |τ | = 0.001704 � 0.002 on [0, 1]. (3.76)

This upper bound is attained at x = 0, and we would expect the resulting approxi-

mation p3(x) to be reasonably close to a minimax approximation.
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3.6.1 The extended tau method

Essentially the same approach has been proposed by Fox & Parker (1968) for
the approximation on [−1, 1] of a rational function a(x)/b(x) of degrees (p, q).
They introduce a perturbation polynomial

e(x) =
n+q∑

m=n+1

τm−nTm(x), (3.77)

in place of the single term τTn+1(x) used above, to give

a(x) + e(x) = b(x)
n∑′

k=0

ckTk(x). (3.78)

The number and degrees of the terms in (3.77) are chosen so that (3.78) is
uniquely solvable for {ck} and {τm}.

For example, for
a(x)
b(x)

=
1 − x + x2

1 + x + x2

we need two tau terms and (3.78) becomes

(1 − x + x2) +
n+2∑

m=n+1

τm−nTm(x) = (1 + x + x2)
n∑′

k=0

ckTk(x). (3.79)

Both sides of (3.79) are then written in terms of Chebyshev polynomials, and
on equating coefficients, a set of equations is obtained for ck and τm. Back-
substitution in terms of τ1 and τ2 leads to a pair of simultaneous equations
for τ1 and τ2; hence ck are found.

Example 3.6: For n = 2, (3.79) becomes, using (2.38) to transform products into
sums,

( 3
2
T0(x) − T1(x) +

1
2
T2(x)) + τ1T3(x) + τ2T4(x)

= ( 3
2
T0(x) + T1(x) +

1
2
T2(x))(

1
2
c0T0(x) + c1T1(x) + c2T2(x))

= ( 3
4
c0 +

1
2
c1 +

1
4
c2)T0(x) + (

1
2
c0 +

7
4
c1)T1(x) +

+ ( 1
4
c0 +

1
2
c1 +

3
2
c2)T2(x) + (

1
4
c1 +

1
2
c2)T3(x) +

1
4
T4(x).

Equating coefficients of the Chebyshev polynomials T0(x), . . . , T4(x) yields the
equations

c2 = 4τ2

c1 + 2c2 = 4τ1

c0 + 2c1 + 6c2 = 2


 (3.80)

2c0 + 7c1 = −4
3c0 + 2c1 + c2 = 6

}
(3.81)
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Back-substituting in (3.80):

c2 = 4τ2, c1 = 4τ1 − 8τ2, c0 = 2− 8τ1 − 8τ2.

Now (3.81) gives

3τ1 − 16τ2 = −2
9τ1 + 4τ2 = 0

and hence
τ1 = −18/91, τ2 = 8/91

so that
c0 = 262/91, c1 = −136/91, c2 = 32/91.

Thus

y(x) =
a(x)

b(x)
=
1− x+ x2

1 + x+ x2
� p3(x) = 1.439 T0(x)− 1.494 T1(x) + 0.352 T2(x)

and the error is given by

ε(x) = y(x)− p3(x) = − τ1T3(x) + τ2T4(x)

1 + x+ x2

=
0.198 T3(x)− 0.088 T4(x)

1 + x+ x2
.

On [−1, 1], 1/(1 + x+ x2) is bounded by 4
3
and |T3| and |T4| are bounded by 1.

Hence we have the bound (which is not far from the actual maximum error)

|ε(x)| < 1.333 (0.198 + 0.088) = 0.381.

With an error bound of 0.381, the approximation found in this example is not

particularly accurate, and indeed a much higher degree of polynomial is needed

to represent such a rational function at all reasonably, but the method does give

credible and measurable results even in this simple case (see Figure 3.5).

We may note that an alternative approach to the whole calculation is to
use the power form for the polynomial approximation

pn(x) =
n∑

k=0

akx
k (3.82)

and then to replace (3.79) by

(1 − x + x2) +
n+2∑

m=n+1

τm−nTm(x) = (1 + x + x2)
n∑

k=0

akx
k. (3.83)

We then equate coefficients of powers of x and solve for τ1 and τ2.
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Figure 3.5: Rational function and a quadratic approximation obtained by the
extended τ method

Example 3.7: For n = 2, equation (3.83) takes the form

(1− x+ x2) + τ1(4x
3 − 3x) + τ2(8x

4 − 8x2 + 1) = (1 + x+ x2)(a0 + a1x+ a2x
2),

and on equating coefficients of 1, x, . . . , x4,

a0 = 1 + τ2

a1 + a0 = −1− 3τ1

}
(3.84)

a2 + a1 + a0 = 1− 8τ2

a2 + a1 = 4τ1

a2 = 8τ2


 (3.85)

Back-substituting in (3.85):

a2 = 8τ2, a1 = 4τ1 − 8τ2, a0 = 1− 4τ1 − 8τ2.

Now (3.84) gives

4τ1 + 9τ2 = 0

3τ1 − 16τ2 = −2
and hence

τ1 = −18/91, τ2 = 8/91

(the same values as before) so that

a0 = 99/91, a1 = −136/91, a2 = 64/91.

Thus

y(x) =
a(x)

b(x)
=
1− x+ x2

1 + x+ x2
� p3(x) = 1.088 − 1.495x + 0.703x2.

It is easily verified that this is precisely the same approximation as was obtained

previously, but expressed explicitly as a sum of powers of x.
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For the degrees n of polynomial likely to be required in practice, it is not
advisable to use the power representation (3.82), even though the algebra ap-
pears simpler, since the coefficients ak tend to become large as n increases,
whereas the Chebyshev coefficients ck in the form (3.71) typically tend to con-
verge with n to the true coefficients of an infinite Chebyshev series expansion
(see Chapter 4).

3.7 Problems for Chapter 3

1. Verify the axioms of a vector space for the following families of functions
or data:

(a) F = C[a, b];

(b) F = {{f(xk), k = 1, . . . ,m}} (values of a function at discrete
points).

What are the dimensions of these spaces?

2. Verify, from the definition of a norm, that the following is a norm:

‖f‖ = ‖f‖p =

[∫ b

a

|f(x)|p dx

] 1
p

(1 ≤ p < ∞),

by assuming Minkowski’s continuous inequality:

(∫
|f + g|p dx

) 1
p

≤
(∫

|f |p dx
) 1

p

+
(∫

|g|p dx
) 1

p

.

Prove the latter inequality for p = 1, 2, and show, for p = 2, that equality
does not occur unless f(x) = λg(x) (‘almost everywhere’), where λ is
some constant.

3. For what values of p does the function f(x) = (1 − x2)−1/2 belong to
the function space Lp[−1, 1], and what is its norm?

4. Prove Minkowski’s discrete inequality:

(∑
k

|uk + vk|p
) 1

p

≤
(∑

k

|uk|p
) 1

p

+

(∑
k

|vk|p
) 1

p

in the case p = 2 by first showing that

(∑
ukvk

)2

≤
∑

(uk)2
∑

(vk)2.
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Deduce that

‖f‖p =

[
m∑

k=1

|f(xk)|p
] 1

p

(1 ≤ p < ∞)

is a norm for space (b) of Problem 1.

Find proofs in the literature (Hardy et al. 1952, for example) of both
continuous and discrete Minkowski inequalities for general p. Can equal-
ity occur for p = 1?

5. Find the minimax constant (i.e., polynomial of degree zero) approxi-
mation to ex on [−1, 1], by assuming that its error has the alternating
property at −1, +1. Deduce that the minimax error in this case is sinh 1.

Generalise the above approach to determine a minimax constant ap-
proximation to any monotonic continuous function f(x).

6. Prove the sufficiency of the characterisation of the error in Theorem 3.4,
namely that, for a polynomial approximation pn of degree n to a contin-
uous f to be minimax, it is sufficient that it should have the alternating
property at n + 2 points x1 < · · · < xn+2.

[Hint: Assume that an approximation p′n exists with smaller error norm
than pn, show that pn − p′n changes sign between each pair xi and xi+1,
and hence obtain the result.]

7. Consider the function

f(x) =
∞∑

i=0

ciTbi(x), (∗)

where {ci} are so defined that the series is uniformly convergent and
where b is an odd integer not less than 2. Show that, for every i > n with
n fixed, Tbi has the alternating property on a set of bn + 1 consecutive
points of [−1, 1]. Deduce that the partial sum of degree bn of (*) (namely
the sum from i = 0 to n) is the minimax polynomial approximation of
degree bn to f(x).

[Note: A series in {Tk(x)} such as (*) in which terms occur progressively
more rarely (in this case for k = 0, b, b2, b3, . . . ) is called lacunary; see
Section 5.9 below for a fuller discussion.]

8. For f(x) = arctanx, show that (1 + x2)f ′(x) = 1, and hence that

(1+x2)f (n)(x)+2x(n−1)f (n−1)(x)+(n+1)(n+2)f (n−2)(x) = 0 (n ≥ 2).

Deduce the Taylor–Maclaurin expansion

f(x) ∼ x− x3

3
+

x5

5
− x7

7
+ · · · + (−1)n x2n+1

2n + 1
+ · · · . (∗∗)
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Estimate the error in the partial sum P7(x) of degree 7 of (**) for x in
[−0.3, 0.3].

Telescope P7, into polynomials P5 of degree 5 and P3 of degree 3 by
using Chebyshev polynomials normalised to [−0.3, 0.3], and estimate
the accumulated errors in P5 and P3.

9. Given

f(x) = log(1 + x) = x− x2

2
+

x3

3
− · · · + (−1)n−1x

n

n
+ · · · , (∗ ∗ ∗)

use the mean value theorem to give a bound on the error on [0, 0.1] of the
partial sum Pn of degree n of (***). Telescope P4 into polynomials P3 of
degree 3 and P2 of degree 2, respectively, using a Chebyshev polynomial
adjusted to [0, 0.1], and estimate the accumulated errors in each case.

10. (Programming Exercise) Write a computer program (in a programming
language of your own choice) to implement the telescoping algorithm of
Section 3.5, either

(a) based on T ∗
k (x/d) and using (3.60)–(3.64) or

(b) based on Tk(x/d) and using (3.68)–(3.69).

11. Apply the tau method of Section 3.6 to determine a polynomial approx-
imation of degree 3 to x/(1 + x) on [0, 1] based on the equation

(1 + x)y = x

and determine a bound on the resulting error.

12. Apply the extended tau method of Section 3.6.1 to determine a polyno-
mial approximation of degree 2 to (1+x+x2)−1 on [−1, 1] and determine
a bound on the resulting error.

13. Show that 2−n
√

1 − x2Un(x), 2−n
√

1 + xVn(x) and 2−n
√

1 − xWn(x)
equioscillate on (n + 2), (n + 1) and (n + 1) points, respectively, of
[−1, 1], and find the positions of their extrema. Deduce that these are
minimax approximations to zero by monic polynomials of degree n with
respective weight functions

√
1 − x2,

√
1 + x,

√
1 − x. Why are there

more equioscillation points in the first case?
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