
Chapter 2

Basic Properties and Formulae

2.1 Introduction

The aim of this chapter is to provide some elementary formulae for the manip-
ulation of Chebyshev polynomials and to summarise the key properties which
will be developed in the book. Areas of application will be introduced and
discussed in the chapters devoted to them.

2.2 Chebyshev polynomial zeros and extrema

The Chebyshev polynomials of degree n > 0 of all four kinds have precisely n
zeros and n + 1 local extrema in the interval [−1, 1]. In the case n = 5, this
is evident in Figures 1.1, 1.3 and 1.4. Note that n − 1 of these extrema are
interior to [−1, 1], and are ‘true’ alternate maxima and minima (in the sense
that the gradient vanishes), the other two extrema being at the end points
±1 (where the gradient is non-zero).

From formula (1.1), the zeros for x in [−1, 1] of Tn(x) must correspond to
the zeros for θ in [0, π] of cosnθ, so that

nθ = (k − 1
2 )π, (k = 1, 2, . . . , n).

Hence, the zeros of Tn(x) are

x = xk = cos
(k − 1

2 )π
n

, (k = 1, 2, . . . , n). (2.1)

Example 2.1: For n = 3, the zeros are

x = x1 = cos
π

6
=

√
3

2
, x2 = cos

3π

6
= 0, x3 = cos

5π

6
= −

√
3

2
.

Note that these zeros are in decreasing order in x (corresponding to in-
creasing θ), and it is sometimes preferable to list them in their natural order
as

x = cos
(n− k + 1

2 )π
n

, (k = 1, 2, . . . , n). (2.2)
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Note, too, that x = 0 is a zero of Tn(x) for all odd n, but not for even n, and
that zeros are symmetrically placed in pairs on either side of x = 0.

The zeros of Un(x) (defined by (1.4)) are readily determined in a similar
way from the zeros of sin(n+ 1)θ as

x = yk = cos
kπ

(n+ 1)
, (k = 1, 2, . . . , n) (2.3)

or in their natural order

x = cos
(n− k + 1)π

n+ 1
, (k = 1, 2, . . . , n). (2.4)

One is naturally tempted to extend the set of points (2.3) by including the
further values y0 = 1 and yn+1 = −1, giving the set

x = yk = cos
kπ

(n+ 1)
, (k = 0, 1, . . . , n+ 1). (2.5)

These are zeros not of Un(x), but of the polynomial

(1− x2)Un(x). (2.6)

However, we shall see that these points are popular as nodes in applications
to integration.

The zeros of Vn(x) andWn(x) (defined by (1.8), (1.9)) correspond to zeros
of cos(n+ 1

2 )θ and sin(n+ 1
2 )θ, respectively. Hence, the zeros of Vn(x) occur

at

x = cos
(k − 1

2 )π
n+ 1

2

, (k = 1, 2, . . . , n) (2.7)

or in their natural order

x = cos
(n− k + 1

2 )π
n+ 1

2

, (k = 1, 2, . . . , n), (2.8)

while the zeros of Wn(x) occur at

x = cos
kπ

n+ 1
2

, (k = 1, 2, . . . , n) (2.9)

or in their natural order

x = cos
(n− k + 1)π
n+ 1

2

, (k = 1, 2, . . . , n). (2.10)

Note that there are natural extensions of these point sets, by including the
value k = n + 1 and hence x = −1 in (2.7) and the value k = 0 and hence
x = 1 in (2.9). Thus the polynomials

(1 + x)Vn(x) and (1− x)Wn(x)
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have as zeros their natural sets (2.7) for k = 1, . . . , n + 1 and (2.9) for k =
0, 1, . . . , n, respectively.

The internal extrema of Tn(x) correspond to the extrema of cosnθ, namely
the zeros of sinnθ, since

d
dx
Tn(x) =

d
dx

cosnθ =
d
dθ

cosnθ
/

dx
dθ

=
−n sinnθ
− sin θ

.

Hence, including those at x = ±1, the extrema of Tn(x) on [−1, 1] are

x = cos
kπ

n
, (k = 0, 1, . . . , n) (2.11)

or in their natural order

x = cos
(n− k)π

n
, (k = 0, 1, . . . , n). (2.12)

These are precisely the zeros of (1− x2)Un−1(x), namely the points (2.5)
above (with n replaced by n − 1). Note that the extrema are all of equal
magnitude (unity) and alternate in sign at the points (2.12) between −1 and
+1, as shown in Figure 1.1.

The extrema of Un(x), Vn(x), Wn(x) are not in general as readily deter-
mined; indeed finding them involves the solution of transcendental equations.
For example,

d
dx
Un(x) =

d
dx

sin(n+ 1)θ
sin θ

=
−(n+ 1) sin θ cos(n+ 1)θ + cos θ sin(n+ 1)θ

sin3 θ

and the extrema therefore correspond to values of θ satisfying the equation

tan(n+ 1)θ = (n+ 1) tan θ �= 0.

All that we can say for certain is that the extreme values of Un(x) have
magnitudes which increase monotonically as |x| increases away from 0, until
the largest magnitude of n+ 1 is achieved at x = ±1.

On the other hand, from the definitions (1.4), (1.8), (1.9), we can show
that √

1− x2 Un(x) = sin(n+ 1)θ,
√
1 + xVn(x) =

√
2 cos(n+ 1

2 )θ,√
1− xWn(x) =

√
2 sin(n+ 1

2 )θ;

Hence the extrema of the weighted polynomials
√
1− x2 Un(x),

√
1 + xVn(x),√

1− xWn(x) are explicitly determined and occur, respectively, at

x = cos
(2k + 1)π
2(n+ 1)

, x = cos
2kπ

2n+ 1
, x = cos

(2k + 1)π
2n+ 1

(k = 0, 1, . . . , n).
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2.3 Relations between Chebyshev polynomials and powers of x

It is useful and convenient in various applications to be able to express Cheb-
yshev polynomials explicitly in terms of powers of x, and vice versa. Such
formulae are simplest and easiest to derive in the case of the first kind poly-
nomials Tn(x), and so we concentrate on these.

2.3.1 Powers of x in terms of {Tn(x)}

The power xn can be expressed in terms of the Chebyshev polynomials of
degrees up to n, but, since these are alternately even and odd, we see at once
that we need only include polynomials of alternate degrees, namely Tn(x),
Tn−2(x), Tn−4(x), . . . . Writing x = cos θ, we therefore need to express cosn θ
in terms of cosnθ, cos(n − 2)θ, cos(n − 4)θ, . . . , and this is readily achieved
by using the binomial theorem as follows:

(eiθ + e−iθ)n = einθ +
(
n

1

)
ei(n−2)θ + · · ·+

(
n

n− 1

)
e−i(n−2)θ + e−inθ

= (einθ + e−inθ) +
(
n

1

)
(ei(n−2)θ + e−i(n−2)θ) +

+
(
n

2

)
(ei(n−4)θ + e−i(n−4)θ) + · · · . (2.13)

Here we have paired in brackets the first and last terms, the second and
second-to-last terms, and so on. The number of such brackets will be

�n/2�+ 1

where �m� denotes the integer part of m. When n is even, the last bracket in
(2.13) will contain only the one (middle) term e0θ [= 1].

Now using the fact that

(eiθ + e−iθ)n = (2 cos θ)n = 2n cosn θ

we deduce from (2.13) that

2n−1 cosn θ =
�n/2�∑′

k=0

(
n

k

)
cos(n− 2k)θ,

where the dash (
∑′) denotes that the kth term in the sum is to be halved if

n is even and k = n/2. Hence, from the definition (1.1) of Tn(x),

xn = 21−n

�n/2�∑′

k=0

(
n

k

)
Tn−2k(x), (2.14)
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Figure 2.1: x4 (full curve) and its decomposition into Chebyshev polynomials
(broken curves)

where the dash now denotes that the term in T0(x), if there is one, is to be
halved.

Example 2.2: Taking n = 4 [see Figure 2.1]:

x4 = 2−3

2∑′

k=0

(
4

k

)
T4−2k(x)

= 2−3

[
T4(x) +

(
4

1

)
T2(x) +

1
2

(
4

2

)
T0(x)

]

=
1

8
T4(x) +

1

2
T2(x) +

3

8
T0(x).

2.3.2 Tn(x) in terms of powers of x

It is not quite as simple to derive formulae in the reverse direction. The
obvious device to use is de Moivre’s Theorem:

cosnθ + i sinnθ = (cos θ + i sin θ)n.

Expanding by the binomial theorem and taking the real part,

cosnθ = cosn θ −
(
n

2

)
cosn−2 θ sin2 θ +

(
n

4

)
cosn−4 θ sin4 θ + · · · .

If sin2 θ is replaced by 1 − cos2 θ throughout, then a formula is obtained for
cosnθ in terms of cosn θ, cosn−2 θ, cosn−4 θ, . . . . On transforming to x = cos θ,
this leads to the required formula for Tn(x) in terms of xn, xn−2, xn−4, . . . .
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We omit the details here, but refer to Rivlin (1974), where the relevant result
is obtained in the form

Tn(x) =
�n/2�∑
k=0


(−1)k �n/2�∑

j=k

(
n

2j

)(
j

k

)
xn−2k. (2.15)

However, a rather simpler formula is given, for example, by Clenshaw
(1962) and Snyder (1966) in the form

Tn(x) =
�n/2�∑
k=0

c
(n)
k xn−2k (2.16)

where

c
(n)
k = (−1)k2n−2k−1

[
2
(
n− k
k

)
−

(
n− k − 1

k

)]
(2k < n) (2.17a)

and
c
(2k)
k = (−1)k (k ≥ 0). (2.17b)

This formula may be proved by induction, using the three-term recurrence
relation (1.3a), and we leave this as an exercise for the reader (Problem 5).

In fact the term in square brackets in (2.17a) may be further simplified,
by taking out common ratios, to give

c
(n)
k = (−1)k2n−2k−1 n

n− k
(
n− k
k

)
. (2.18)

Example 2.3: For n = 6 we obtain from (2.17b), (2.18):

c
(6)
0 = 25 = 32; c

(6)
1 = (−1)123 6

5

(
5

1

)
= −48;

c
(6)
2 = (−1)221 6

4

(
4

2

)
= 18; c

(6)
3 = (−1)32−1 6

3

(
3

3

)
= −1.

Hence
T6(x) = 32x

6 − 48x4 + 18x2 − 1.

For an alternative derivation of the results in this section, making use of
generating functions, see Chapter 5.
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2.3.3 Ratios of coefficients in Tn(x)

In applications, recurrence formulae which link pairs of coefficients are often
more useful than explicit formulae (such as (2.18) above) for the coefficients
themselves since, using such formulae, the whole sequence of coefficients may
be assembled rather more simply and efficiently than by working them out
one by one.

From (2.18),

c
(n)
k = (−1)k2n−2k−1n

k

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)
1 · 2 · · · (k − 1)

;

c
(n)
k+1 = (−1)k+12n−2k−3 n

k + 1
(n− k − 2)(n− k − 3) · · · (n− 2k − 1)

1 · 2 · · ·k .

Hence, on dividing and cancelling common factors,

c
(n)
k+1 = − (n− 2k)(n− 2k − 1)

4(k + 1)(n− k − 1)
c
(n)
k (2.19)

where c(n)
k denotes the coefficient of xn in Tn(x). Formula (2.19) is valid for

n > 0 and k ≥ 0.

2.4 Evaluation of Chebyshev sums, products, integrals and deriva-
tives

A variety of manipulations of Chebyshev polynomials and of sums or series
of them can be required in practice. A secret to the efficient and stable exe-
cution of these tasks is to avoid rewriting Chebyshev polynomials in terms of
powers of x and to operate wherever possible with the Chebyshev polynomials
themselves (Clenshaw 1955).

2.4.1 Evaluation of a Chebyshev sum

Suppose that we wish to evaluate the sum

Sn =
n∑

r=0

arPr(x) = a0P0(x) + a1P1(x) + · · ·+ anPn(x) (2.20a)

where {Pr(x)} are Chebyshev polynomials of either the first, second, third or
fourth kinds. We may write (2.20a) in vector form as

Sn = aTp, (2.20b)
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where aT and p denote the row- and column-vectors

aT = (a0, a1, . . . , an), p =



P0(x)
P1(x)

...
Pn(x)


 .

In each of the four cases, from (1.3a), (1.6a), (1.12a), (1.12b) above, the
recurrence relation between the polynomials takes the same form

Pr(x)− 2xPr−1(x) + Pr−2(x) = 0, r = 2, 3, . . . . (2.21a)

with P0(x) = 1 and, respectively,

P1(x) = T1(x) = x, P1(x) = U1(x) = 2x,

P1(x) = V1(x) = 2x− 1, P1(x) =W1(x) = 2x+ 1. (2.21b)

Equations (2.21) may be written in matrix notation as




1
−2x 1
1 −2x 1

1 −2x 1
. . . . . . . . .

1 −2x 1
1 −2x 1







P0(x)
P1(x)
P2(x)
P3(x)

...
Pn−1(x)
Pn(x)




=




1
X
0
0
...
0
0




(2.22a)
or (denoting the (n+ 1)× (n+ 1) matrix by A)

Ap = c (2.22b)

where

c =




1
X
0
...
0




with X = −x, 0, −1, 1, respectively in the four cases.

Let

bT = (b0, b1, . . . , bn)
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be the row vector satisfying the equation

(b0, b1, . . . , bn)




1
−2x 1
1 −2x 1

1 −2x 1
. . . . . . . . .

1 −2x 1
1 −2x 1




=

= (a0, a1, . . . , an) (2.23a)

or
bTA = aT . (2.23b)

Then we have
Sn = aTp = bTAp = bT c = b0 + b1X. (2.24)

If we write bn+1 = bn+2 = 0, then the matrix equation (2.23a) can be seen
to represent the recurrence relation

br − 2xbr+1 + br+2 = ar, r = 0, 1, . . . , n. (2.25)

We can therefore evaluate Sn by starting with bn+1 = bn+2 = 0 and
performing the three-term recurrence (2.25) in the reverse direction,

br = 2xbr+1 − br+2 + ar, r = n, . . . , 1, 0, (2.26)

to obtain b1 and b0, and finally evaluating the required result Sn as

Sn = b0 + b1X. (2.27)

For the first-kind polynomials Tr(x), it is more usual to need the modified
sum

S′
n =

n∑′

r=0

arTr(x) = 1
2a0T0(x) + a1T1(x) + · · ·+ anTn(x),

in which the coefficient of T0 is halved, in which case (2.27) is replaced (re-
membering that X = −x) by

S′
n = Sn − 1

2a0

= (b0 − b1x) + 1
2 (b0 − 2xb1 + b2),

or
S′

n = 1
2 (b0 − b2). (2.28)
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Note that, for a given x, carrying out the recurrence requires only O(n)
multiplications, and hence is as efficient as Horner’s rule for evaluating a
polynomial as a sum of powers using nested multiplication.

In some applications, which we shall refer to later, it is necessary to eval-
uate Chebyshev sums of a large number of terms at an equally large number
of values of x. While the algorithm described above may certainly be used in
such cases, one can often gain dramatically in efficiency by making use of the
well-known fast Fourier transform, as we shall show later in Section 4.7.1.

Sums of even only or odd only polynomials, such as

S(0)
n =

n∑′

r=0

ā2rT2r(x) and S(1)
n =

n∑
r=0

ā2r+1T2r+1(x)

may of course be evaluated by the above method, setting odd or even co-
efficients (respectively) to zero. However, the sum may be calculated much
more efficiently using only the given even/odd coefficients by using a modified
algorithm (Clenshaw 1962) which is given in Problem 7 below.

Example 2.4: Consider the case n = 2 and x = 1 with coefficients

a0 = 1, a1 = 0.1, a2 = 0.001.

Then from (2.21b) we obtain

b3 = b4 = 0

b2 = a2 = 0.01

b1 = 2b2 − b3 + 0.1 = 0.12

b0 = 2b1 − b2 + 1 = 1.23.

Hence

2∑′

r=0

arTr(1) =
1
2
(b0 − b2) = 0.61

2∑
r=0

arUr(1) = b0 = 1.23

2∑
r=0

arVr(1) = b0 − b1 = 1.11

2∑
r=0

arWr(1) = b0 + b1 = 1.35.

To verify these formulae, we may set θ = 0 (i.e., x = 1) in (1.1), (1.4), (1.8),
(1.9), giving

Tn(1) = 1, Un(1) = n+ 1, (2.29a)
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Vn(1) = 1, Wn(1) = 2n+ 1. (2.29b)

Hence

2∑′

r=0

arTr(1) =
1
2
a0 + a1 + a2 = 0.61

2∑
r=0

arUr(1) = a0 + 2a1 + 3a2 = 1.23

2∑
r=0

arVr(1) = a0 + a1 + a2 = 1.11

2∑
r=0

arWr(1) = a0 + 3a1 + 5a2 = 1.35.

Incidentally, it is also useful to note that, by setting θ = π, 1
2
π in (1.1), (1.4),

(1.8), (1.9), we can find further special values of the Chebyshev polynomials at
x = −1 and x = 0, similar to those (2.29) at x = 1, namely

Tn(−1) = (−1)n, Un(−1) = (−1)n(n+ 1), (2.30a)

Vn(−1) = (−1)n(2n+ 1), Wn(−1) = (−1)n, (2.30b)

T2n+1(0) = U2n+1(0) = 0, T2n(0) = U2n(0) = (−1)n, (2.30c)

−V2n+1(0) = W2n+1(0) = (−1)n, V2n(0) = W2n(0) = (−1)n. (2.30d)

We leave the confirmation of formulae (2.29) and (2.30) as an exercise to the reader

(Problem 8 below).

2.4.2 Stability of the evaluation of a Chebyshev sum

It is important to consider the effects of rounding errors when using recur-
rence relations, and specifically (2.26) above, since it is known that instability
can sometimes occur. (By instability, we mean that rounding errors grow
unacceptably fast relative to the true solution as the calculation progresses.)
Three-term recurrence relations have two families of solutions, and it is possi-
ble for contributions from a relatively larger but unwanted solution to appear
as rounding errors; so we need to take note of this. A brief discussion is given
by Clenshaw (1962); a more detailed discussion is given by Fox & Parker
(1968).

In the case of the recurrence (2.26), suppose that each bs is computed with
a local rounding error εs, which local errors together propagate into errors δr
in br for r < s, resulting in an error ∆ in Sn or ∆′ in S′

n. Writing b̄r for the
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computed br and S̄n or S̄′
n for the Sn or S′

n computed without further error
from (2.24) or (2.28), then from (2.26) (for fixed x)

b̄r = 2xb̄r+1 − b̄r+2 + ar − εr (2.31)

while
br − b̄r = δr. (2.32)

Also

S̄n = b̄0 + b̄1X,

S̄′
n = 1

2 (b̄0 − b̄2),
and

Sn − S̄n = ∆, S′
n − S̄′

n = ∆′.

From (2.26), (2.31), (2.32) we deduce that

δr = 2xδr+1 − δr+2 + εr (r < s) (2.33)

while

∆ = δ0 + δ1X,

∆′ = 1
2 (δ0 − δ2).

Now the recurrence (2.33), is identical in form to (2.26), with εr replacing
ar and δr replacing br, while obviously δn+1 = δn+2 = 0. Taking the final
steps into account, we deduce that

∆ =
n∑

r=0

εrPr(x), (2.34)

where Pr is Tr, Ur, Vr or Wr, depending on the choice of X , and

∆′ =
n∑′

r=0

εrTr(x). (2.35)

Using the well-known inequality∣∣∣∣∣
∑

r

xryr

∣∣∣∣∣ ≤
(∑

r

|xr|
)
max

r
|yr| ,

we deduce the error bounds

|∆′| ≤
( n∑′

r=0

|εr|
)

n
max
r=0

|Tr(x)| ≤
n∑′

r=0

|εr| (2.36)
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and

|∆| ≤
(

n∑
r=0

|εr|
)

n
max
r=0

|Pr(x)| ≤ Cn

n∑
r=0

|εr| , (2.37)

where Cn = 1, n + 1, 2n + 1, 2n + 1 when Pr is Tr, Ur, Vr or Wr, respec-
tively. (Note that the εr in these formulae are the absolute, not relative, errors
incurred at each step of the calculation.)

2.4.3 Evaluation of a product

It is frequently necessary to be able to multiply Chebyshev polynomials by
each other, as well as by factors such as x, 1 − x and 1 − x2, and to re-
express the result in terms of Chebyshev polynomials. Such products are
much less readily carried out for second-, third- and fourth-kind polynomials,
as a consequence of the denominators in their trigonometric definitions. We
therefore emphasise Tn(x) and to a lesser extent Un(x).

Various formulae are readily obtained by using the substitution x = cos θ
and trigonometric identities, as follows.

Tm(x)Tn(x) = cosmθ cosnθ = 1
2 (cos(m+ n)θ + cos |m− n| θ),

giving
Tm(x)Tn(x) = 1

2 (Tm+n(x) + T|m−n|(x)). (2.38)

xTn(x) = cos θ cosnθ = 1
2 (cos(n+ 1)θ + cos |n− 1| θ),

xUn(x) sin θ = cos θ sin(n+ 1)θ = 1
2 (sin(n+ 2)θ + sinnθ),

giving
xTn(x) = 1

2 (Tn+1(x) + T|n−1|(x)) (2.39)

and
xUn(x) = 1

2 (Un+1(x) + Un−1(x)), (2.40)

(provided that we interpret U−1(x) as sin 0/ sin θ = 0).

More generally, we may also obtain expressions for xmTn(x) (and similarly
xmUn(x)) for any m, by expressing xm in terms of Chebyshev polynomials by
(2.14) and then using (2.38). (See Problem 4 below.)

In a similar vein,

(1− x2)Tn(x) = sin2 θ cosnθ = 1
2 (1− cos 2θ) cosnθ

= 1
2 cosnθ − 1

4 (cos(n+ 2)θ + cos |n− 2| θ),
(1− x2)Un(x) sin θ = sin2 θ sin(n+ 1)θ = 1

2 (1− cos 2θ) sin(n+ 1)θ

= 1
2 sin(n+ 1)θ − 1

4 (sin(n+ 3)θ + sin(n− 1)θ),
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giving
(1− x2)Tn(x) = − 1

4Tn+2(x) + 1
2Tn(x) − 1

4T|n−2|(x) (2.41)

and
(1− x2)Un(x) = − 1

4Un+2(x) + 1
2Un(x) − 1

4Un−2(x) (2.42)

where we interpret U−1(x) as 0 again, and U−2(x) as sin(−θ)/ sin θ = −1.
Note that the particular cases n = 0, n = 1 are included in the formulae

above, so that, specifically

xT0(x) = T1(x),

xU0(x) = 1
2U1(x),

(1− x2)T0(x) = 1
2T0(x)− 1

2T2(x),

(1− x2)T1(x) = 1
4T1(x)− 1

4T3(x),

(1− x2)U0(x) = 3
4U0(x) − 1

4U2(x),

(1− x2)U1(x) = 1
2U1(x) − 1

4U3(x).

2.4.4 Evaluation of an integral

The indefinite integral of Tn(x) can be expressed in terms of Chebyshev poly-
nomials as follows. By means of the usual substitution x = cos θ,∫

Tn(x) dx =
∫

− cosnθ sin θ dθ

= − 1
2

∫
(sin(n+ 1)θ − sin(n− 1)θ) dθ

= 1
2

[
cos(n+ 1)θ
n+ 1

− cos |n− 1| θ
n− 1

]

(where the second term in the bracket is to be omitted in the case n = 1).

Hence

∫
Tn(x) dx =




1
2

[
Tn+1(x)
n+ 1

− T|n−1|(x)
n− 1

]
, n �= 1;

1
4T2(x), n = 1.

(2.43)

Clearly this result can be used to integrate the sum

Sn(x) =
n∑′

r=0

arTr(x)
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in the form

In+1(x) =
∫
Sn(x) dx

= constant + 1
2a0T1(x) + 1

4a1T2(x) +
n∑

r=2

ar

2

[
Tr+1(x)
r + 1

− Tr−1(x)
r − 1

]

=
n+1∑′

r=0

ArTr(x) (2.44)

where A0 is determined from the constant of integration, and

Ar =
ar−1 − ar+1

2r
, r > 0, (2.45)

with an+1 = an+2 = 0.

Example 2.5: Table 2.1 gives 5-decimal values of Ar computed from values of

ar, obtained from an infinite expansion of the function ex, after each value of ar

had been rounded to 4 decimals (numbers taken from Clenshaw (1962)). Each Ar

would be identical to ar for an exact calculation, but it is interesting to observe

that, although there is a possible rounding error of ±0.00005 in each given ar, all

the computed Ar actually have errors significantly smaller than this.

Table 2.1: Integration of a Chebyshev series

r ar Ar |error in Ar|
0 2.53213 — —
1 1.13032 1.13030 0.00002
2 0.27150 0.27150 0.00000
3 0.04434 0.04433 0.00001
4 0.00547 0.00548 0.00001
5 0.00054 0.00055 0.00001
6 0.00004 0.00004 0.00000

There is an interesting and direct integral relationship between the Cheb-
yshev polynomials of the first and second kinds, namely∫

Un(x) dx =
1

n+ 1
Tn+1(x) + constant (2.46)
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(which is easily verified by substituting x = cos θ). Hence, the sum

Sn(x) =
n∑

r=1

brUr−1(x)

can be integrated immediately to give∫
Sn(x) dx =

n∑
r=1

br
r
Tr(x) + constant. (2.47)

2.4.5 Evaluation of a derivative

The formula for the derivative of Tn(x) in terms of first-kind polynomials is
not quite as simple as (2.43). From (2.46) we deduce that

d
dx
Tn+1(x) = (n+ 1)Un(x), (2.48)

so that it is easily expressed in terms of a second-kind polynomial. Then from
(1.6b) and (1.7) it follows that

d
dx
Tn(x) = 2n

n−1∑′

r=0
n−r odd

Tr(x). (2.49)

However, the derivative of a finite sum of first-kind Chebyshev polynomials
is readily expressible as a sum of such polynomials, by reversing the process
used in the integration of (2.44). Given the Chebyshev sum (of degree n+ 1,
say)

In+1(x) =
n+1∑′

r=0

ArTr(x),

then

Sn(x) =
d
dx
In+1 =

n∑′

r=0

arTr(x) (2.50)

where the coefficients {ar} are derived from the given {Ar} by using (2.45) in
the form

ar−1 = ar+1 + 2rAr , (r = n+ 1, n, . . . , 1) (2.51a)

with
an+1 = an+2 = 0. (2.51b)

Explicitly, if we prefer, we may say that

ar =
n+1∑

k=r+1
k−r odd

2kAk. (2.52)
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Example 2.6: Table 2.2 shows 4-decimal values of ar computed from 4-decimal

values of Ar, for the same example as in Table 2.1. Each ar would be identical

to Ar in an exact computation, and we see this time that the derivative Sn(x)

is less accurate than the original polynomial In+1(x) by nearly one decimal place.

The contrast between these results is consistent with the principle that, in general,

numerical integration is a stable process and numerical differentiation an unstable

process. The size of the errors in the latter case can be attributed to the propagation,

by (2.51a), of the error inherent in the assumptions (2.51b).

Table 2.2: Differentiation of a Chebyshev series

r Ar ar |error in ar|
0 2.53213 2.5314 0.0007
1 1.13032 1.1300 0.0003
2 0.27150 0.2708 0.0007
3 0.04434 0.0440 0.0003
4 0.00547 0.0050 0.0005
5 0.00054 0.0000 0.0005

There is another relatively simple formula for the derivative of Tn(x),
which we can obtain as follows.

d
dx
Tn(x) =

d
dθ

cosnθ
/ d
dθ

cos θ

=
n sinnθ
sin θ

=
1
2n(cos(n− 1)θ − cos(n+ 1)θ)

sin2 θ

=
1
2n(Tn−1(x)− Tn+1(x))

1− x2
.

Thus, for |x| �= 1,

d
dx
Tn(x) =

n

2
Tn−1(x) − Tn+1(x)

1− x2
. (2.53)

Higher derivatives may be obtained by similar formulae (see Problem 17
for the second derivative).
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2.5 Problems for Chapter 2

1. Determine the positions of the zeros of the Chebyshev polynomials of
the second and third kinds for the general interval [a, b] of x.

2. From numerical values of the cosine function (from table, calculator or
computer), determine the zeros of T4(x), U4(x), V4(x), W4(x) and the
extrema of T4(x).

3. Show that

(a) 1
2U2k(x) = 1

2T0(x) + T2(x) + T4(x) + · · ·+ T2k(x);

(b) 1
2U2k+1(x) = T1(x) + T3(x) + · · ·+ T2k+1(x);

(c) xU2k+1(x) = T0(x) + 2T2(x) + · · ·+ 2T2k−2(x) + T2k(x).

[Hint: In (3a), multiply by sin θ and use 2 sinA cosB = sin(A − B) +
sin(A+B). Use similar ideas in (3b), (3c).]

4. Obtain the expression

xmTn(x) = 2−m
m∑

r=0

(
m

r

)
Tn−m−2r(x) (m < n)

(a) by applying the formula (2.39) m times;

(b) by applying the expression (2.14) for xm in terms of Chebyshev
polynomials and the expression (2.38) for products of Chebyshev
polynomials.

5. Prove by induction on n that

Tn(x) =
�n/2�∑
k=0

cnkx
n−2k,

where

cnk = (−1)k2n−2k−1

[
2
(
n− k
k

)
−

(
n− k − 1

k

)]
(n, k > 0)

cn0 = 2n−1 (n > 0)

c00 = 1.

[Hint: Assume the formulae are true for n = N − 2, N − 1 and hence
derive them for n = N , using Tn = 2xTn−1 − Tn−2.]

6. Derive formulae for T ∗
m(x)T ∗

n(x) and xT
∗
n(x) in terms of {T ∗

r (x)}, using
the ideas of Section 2.4.3.
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7. Suppose

S(0)
n =

n∑′

r=0

a2rT2r(x), S(1)
n =

n∑
r=0

a2r+1T2r+1(x)

are sums of even-only/odd-only Chebyshev polynomials.

(a) Show that S(0)
n may be efficiently determined by applying the re-

currence (2.26) followed by (2.28), with x replaced by (2x2−1) and
ar replaced by a2r;

(b) Show that S(1)
n may be efficiently determined by applying the re-

currence (2.26), with x replaced by (2x2 − 1) and ar replaced by
a2r+1, and then taking

S(1)
n = x(b0 − b1).

[Hint: From (1.14) and (1.15), we have T2r(x) = Tr(2x2 − 1) and
T2r+1(x) = xVr(2x2 − 1).]

8. Derive the formulae (2.29a)–(2.30d) for the values of Tn, Un, Vn, Wn at
x = −1, 0, 1, using only the trigonometric definitions of the Chebyshev
polynomials.

9. Use the algorithm (2.21b) to evaluate

3∑′

r=0

crTr(x),
3∑

r=0

crUr(x),
3∑

r=0

crVr(x),
3∑

r=0

crWr(x)

at x = −1, 0, 1 for c0 = 1, c1 = 0.5, c2 = 0.25, c3 = 0.125. Check your
results using correct values of Tr, Ur, Vr , Wr at 0, 1.

10. Illustrate the algorithms (7a), (7b) of Problem 7 by using them to eval-
uate at x = −1

2∑′

0

crTr(x),
2∑′

0

crT2r(x),
2∑′

0

crT2r+1(x),

where c0 = 1, c1 = 0.1, c2 = 0.001. Check your results using correct
values of Tr at x = −1.

11. Discuss the stability of the summation formulae for sums of Chebyshev
polynomials Ur, Vr, Wr when the size of each sum is

(a) proportional to unity,

(b) proportional to the largest value in [−1, 1] of Un, Vn, Wn, respec-
tively (where the sums are from r = 0 to r = n).
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12. Show that

(a) 2(1− x2)Un−2(x) = Tn(x) − Tn−2(x);

(b) (1 + x)Vn−1(x) = Tn(x) + Tn−1(x);

(c) (1− x)Wn−1(x) = Tn(x) − Tn−1(x);

(d) (1 + x)Vm(x)Vn(x) = T|m−n|(x) + Tm+n+1(x);

(e) (1− x)Wm(x)Wn(x) = T|m−n|(x)− Tm+n+1(x).

13. Show that Tm(x)Un−1(x) = 1
2{Un+m−1(x) + Un−m−1(x)}, and deter-

mine an expression for xmUn−1(x) in terms of {Uk} by a similar proce-
dure to that of Problem 4.

14. Show that (ignoring constants of integration)

(a)
∫
(1 − x2)−

1
2Tn(x) dx = n−1(1− x2)

1
2Un−1(x);

(b)
∫
(1 − x)− 1

2 Vn(x) dx = (n+ 1
2 )

−1(1 − x) 1
2Wn(x);

(c)
∫
(1 + x)−

1
2Wn(x) dx = (n+ 1

2 )
−1(1 + x)

1
2 Vn(x).

15. Show that, for n > 0,

d
dx
Un(x) =

(n+ 2)Un−1(x) − nUn+1(x)
2(1− x2)

.

16. Using (2.52), show that if

n+1∑′

r=0

ArTr(x) = In+1(x)

and
n−1∑′

r=0

arTr(x) =
d2

dx2
In+1(x),

then

ar =
n+1∑

k=r+2
k−r even

(k − r)k(k + r)Ak.

Show further that

d2

dx2
Tn(x) =

n−2∑′

r=0
n−r even

(n− r)n(n + r)Tr(x).
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17. Using (2.53) and (1.3a), prove that, for n > 1,

d2

dx2
Tn(x) =

n

4
(n+ 1)Tn−2(x) − 2nTn(x) + (n− 1)Tn+2(x)

(1− x2)2
.

18. Show that
n∑′

j=0

Tj(x)Tj(y) = 1
4

{
Wn

(
xy +

√
(1− x2)(1− y2)

)
+

+Wn

(
xy −

√
(1− x2)(1 − y2)

)}
.

19. Show that

(1− x2)
∞∑′

j=0

cjTj(x) = 1
4

∞∑
j=0

(cj − cj+2)(Tj(x)− Tj+2(x)).
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