
Chapter 1

Definitions

1.1 Preliminary remarks

“Chebyshev polynomials are everywhere dense in numerical anal-
ysis.”

This remark has been attributed to a number of distinguished mathematicians
and numerical analysts. It may be due to Philip Davis, was certainly spoken
by George Forsythe, and it is an appealing and apt remark. There is scarcely
any area of numerical analysis where Chebyshev polynomials do not drop
in like surprise visitors, and indeed there are now a number of subjects in
which these polynomials take a significant position in modern developments
— including orthogonal polynomials, polynomial approximation, numerical
integration, and spectral methods for partial differential equations.

However, there is a different slant that one can give to the quotation above,
namely that by studying Chebyshev polynomials one is taken on a journey
which leads into all areas of numerical analysis. This has certainly been our
personal experience, and it means that the Chebyshev polynomials, far from
being an esoteric and narrow subject, provide the student with an opportunity
for a broad and unifying introduction to many areas of numerical analysis and
mathematics.

1.2 Trigonometric definitions and recurrences

There are several kinds of Chebyshev polynomials. In particular we shall in-
troduce the first and second kind polynomials Tn(x) and Un(x), as well as
a pair of related (Jacobi) polynomials Vn(x) and Wn(x), which we call the
‘Chebyshev polynomials of the third and fourth kinds’; in addition we cover
the shifted polynomials T ∗

n(x), U
∗
n(x), V

∗
n (x) and W ∗

n(x). We shall, however,
only make a passing reference to ‘Chebyshev’s polynomial of a discrete vari-
able’, referred to for example in Erdélyi et al. (1953, Section 10.23), since this
last polynomial has somewhat different properties from the polynomials on
which our main discussion is based.

Some books and many articles use the expression ‘Chebyshev polynomial’
to refer exclusively to the Chebyshev polynomial Tn(x) of the first kind. In-
deed this is by far the most important of the Chebyshev polynomials and,
when no other qualification is given, the reader should assume that we too
are referring to this polynomial.
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Clearly some definition of Chebyshev polynomials is needed right away
and, as we shall see as the book progresses, we are spoiled for a choice of
definitions. However, what gives the various polynomials their power and
relevance is their close relationship with the trigonometric functions ‘cosine’
and ‘sine’. We are all aware of the power of these functions and of their
appearance in the description of all kinds of natural phenomena, and this
must surely be the key to the versatility of the Chebyshev polynomials. We
therefore use as our primary definitions these trigonometric relationships.

1.2.1 The first-kind polynomial Tn

Definition 1.1 The Chebyshev polynomial Tn(x) of the first kind is a poly-
nomial in x of degree n, defined by the relation

Tn(x) = cosnθ when x = cos θ. (1.1)

If the range of the variable x is the interval [−1, 1], then the range of the
corresponding variable θ can be taken as [0, π]. These ranges are traversed in
opposite directions, since x = −1 corresponds to θ = π and x = 1 corresponds
to θ = 0.

It is well known (as a consequence of de Moivre’s Theorem) that cosnθ
is a polynomial of degree n in cos θ, and indeed we are familiar with the
elementary formulae

cos 0θ = 1, cos 1θ = cos θ, cos 2θ = 2 cos2 θ − 1,
cos 3θ = 4 cos3 θ − 3 cos θ, cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, . . . .

We may immediately deduce from (1.1), that the first few Chebyshev
polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, . . . .

(1.2)

Coefficients of all polynomials Tn(x) up to degree n = 21 will be found in
Tables C.2a, C.2b in Appendix C.

In practice it is neither convenient nor efficient to work out each Tn(x)
from first principles. Rather by combining the trigonometric identity

cosnθ + cos(n− 2)θ = 2 cos θ cos(n− 1)θ
with Definition 1.1, we obtain the fundamental recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . , (1.3a)

which together with the initial conditions

T0(x) = 1, T1(x) = x (1.3b)
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recursively generates all the polynomials {Tn(x)} very efficiently.
It is easy to deduce from (1.3) that the leading coefficient (that of xn) in

Tn(x) for n > 1 is double the leading coefficient in Tn−1(x) and hence, by
induction, is 2n−1.

Figure 1.1: T5(x) on range [−1, 1] Figure 1.2: cos 5θ on range [0, π]

What does the polynomial Tn(x) look like, and how does a graph in the
variable x compare with a graph of cosnθ in the variable θ? In Figures 1.1
and 1.2 we show the respective graphs of T5(x) and cos 5θ. It will be noted
that the shape of T5(x) on [−1, 1] is very similar to that of cos 5θ on [0, π], and
in particular both oscillate between six extrema of equal magnitudes (unity)
and alternating signs. However, there are three key differences — firstly the
polynomial T5(x) corresponds to cos 5θ reversed (i.e., starting with a value of
−1 and finishing with a value of +1); secondly the extrema of T5(x) at the end
points x = ±1 do not correspond to zero gradients (as they do for cos 5θ) but
rather to rapid changes in the polynomial as a function of x; and thirdly the
zeros and extrema of T5(x) are clustered towards the end points ±1, whereas
the zeros and extrema of cos 5θ are equally spaced.

The reader will recall that an even function f(x) is one for which

f(x) = f(−x) for all x

and an odd function f(x) is one for which

f(x) = −f(−x) for all x.

All even powers of x are even functions, and all odd powers of x are odd
functions. Equations (1.2) suggest that Tn(x) is an even or odd function,
involving only even or odd powers of x, according as n is even or odd. This
may be deduced rigorously from (1.3a) by induction, the cases n = 0 and
n = 1 being supplied by the initial conditions (1.3b).

1.2.2 The second-kind polynomial Un

Definition 1.2 The Chebyshev polynomial Un(x) of the second kind is a poly-
nomial of degree n in x defined by

Un(x) = sin(n+ 1)θ/ sin θ when x = cos θ. (1.4)
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The ranges of x and θ are the same as for Tn(x).

Elementary formulae give

sin 1θ = sin θ, sin 2θ = 2 sin θ cos θ, sin 3θ = sin θ (4 cos2 θ − 1),
sin 4θ = sin θ (8 cos3 θ − 4 cos θ), . . . ,

so that we see that the ratio of sine functions (1.4) is indeed a polynomial in
cos θ, and we may immediately deduce that

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x, . . . .

(1.5)

Coefficients of all polynomials Un(x) up to degree n = 21 will be found in
Tables C.3a, C.3b in Appendix C.

By combining the trigonometric identity

sin(n+ 1)θ + sin(n− 1)θ = 2 cos θ sinnθ
with Definition 1.2, we find that Un(x) satisfies the recurrence relation

Un(x) = 2xUn−1(x) − Un−2(x), n = 2, 3, . . . , (1.6a)

which together with the initial conditions

U0(x) = 1, U1(x) = 2x (1.6b)

provides an efficient procedure for generating the polynomials.

A similar trigonometric identity

sin(n+ 1)θ − sin(n− 1)θ = 2 sin θ cosnθ
leads us to a relationship

Un(x)− Un−2(x) = 2Tn(x), n = 2, 3, . . . , (1.7)

between the polynomials of the first and second kinds.

It is easy to deduce from (1.6) that the leading coefficient of xn in Un(x)
is 2n.

Note that the recurrence (1.6a) for {Un(x)} is identical in form to the
recurrence (1.3a) for {Tn(x)}. The different initial conditions [(1.6b) and
(1.3b)] yield the different polynomial systems.

In Figure 1.3 we show the graph of U5(x). It oscillates between six ex-
trema, as does T5(x) in Figure 1.1, but in the present case the extrema have
magnitudes which are not equal, but increase monotonically from the centre
towards the ends of the range.

From (1.5) it is clear that the second-kind polynomial Un(x), like the first,
is an even or odd function, involving only even or odd powers of x, according
as n is even or odd.
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Figure 1.3: U5(x) on range [−1, 1]

1.2.3 The third- and fourth-kind polynomials Vn and Wn (the air-
foil polynomials)

Two other families of polynomials Vn and Wn may be constructed, which are
related to Tn and Un, but which have trigonometric definitions involving the
half angle θ/2 (where x = cos θ as before). These polynomials are sometimes1

referred to as the ‘airfoil polynomials’, but Gautschi (1992) rather appropri-
ately named them the ‘third- and fourth-kind Chebyshev polynomials’. First
we define these polynomials trigonometrically, by a pair of relations parallel
to (1.1) and (1.4) above for Tn and Un. Again the ranges of x and θ are the
same as for Tn(x).

Definition 1.3 The Chebyshev polynomials Vn(x) and Wn(x) of the third
and fourth kinds are polynomials of degree n in x defined respectively by

Vn(x) = cos(n+ 1
2 )θ/ cos

1
2θ (1.8)

and
Wn(x) = sin(n+ 1

2 )θ/ sin
1
2θ, (1.9)

when x = cos θ.

To justify these definitions, we first observe that cos(n + 1
2 )θ is an odd

polynomial of degree 2n+1 in cos 1
2θ. Therefore the right-hand side of (1.8) is

an even polynomial of degree 2n in cos 1
2θ, which is equivalent to a polynomial

of degree n in cos2 1
2θ =

1
2 (1 + cos θ) and hence to a polynomial of degree n

in cos θ. Thus Vn(x) is indeed a polynomial of degree n in x. For example

V1(x) =
cos(1 + 1

2 )θ
cos 1

2θ
=
4 cos3 1

2θ − 3 cos 1
2θ

cos 1
2θ

= 4 cos2 1
2θ−3 = 2 cos θ−1 = 2x−1.

We may readily show that

V0(x) = 1, V1(x) = 2x− 1, V2(x) = 4x2 − 2x− 1,
V3(x) = 8x3 − 4x2 − 4x+ 1, . . . .

(1.10)

1See for example, Fromme & Golberg (1981).
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Similarly sin(n + 1
2 )θ is an odd polynomial of degree 2n + 1 in sin 1

2θ.
Therefore the right-hand side of (1.9) is an even polynomial of degree 2n in
sin 1

2θ, which is equivalent to a polynomial of degree n in sin
2 1

2θ =
1
2 (1−cos θ)

and hence again to a polynomial of degree n in cos θ. For example

W1(x) =
sin(1 + 1

2 )θ
sin 1

2θ
=
3 sin 1

2θ − 4 sin3 1
2θ

sin 1
2θ

= 3−4 sin2 1
2θ = 2 cos θ+1 = 2x+1.

We may readily show that

W0(x) = 1, W1(x) = 2x+ 1, W2(x) = 4x2 + 2x− 1,
W3(x) = 8x3 + 4x2 − 4x− 1, . . . .

(1.11)

The polynomials Vn(x) andWn(x) are, in fact, rescalings of two particular
Jacobi2 polynomials P (α,β)

n (x) with α = − 1
2 , β =

1
2 and vice versa. Explicitly(

2n
n

)
Vn(x) = 22nP

(− 1
2 , 1

2 )
n (x),

(
2n
n

)
Wn(x) = 22nP

( 1
2 ,− 1

2 )
n (x).

Coefficients of all polynomials Vn(x) and Wn(x) up to degree n = 10 will
be found in Table C.1 in Appendix C.

These polynomials too may be efficiently generated by the use of a recur-
rence relation. Since

cos(n+ 1
2 )θ + cos(n− 2 + 1

2 )θ = 2 cos θ cos(n− 1 + 1
2 )θ

and
sin(n+ 1

2 )θ + sin(n− 2 + 1
2 )θ = 2 cos θ sin(n− 1 + 1

2 )θ,

it immediately follows that

Vn(x) = 2xVn−1(x)− Vn−2(x), n = 2, 3, . . . , (1.12a)

and
Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2, 3, . . . , (1.12b)

with
V0(x) = 1, V1(x) = 2x− 1 (1.12c)

and
W0(x) = 1, W1(x) = 2x+ 1. (1.12d)

Thus Vn(x) and Wn(x) share precisely the same recurrence relation as
Tn(x) and Un(x), and their generation differs only in the prescription of the
initial condition for n = 1.

2See Chapter 22 of Abramowitz and Stegun’s Handbook of Mathematical Functions
(1964).
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It is immediately clear from (1.12) that both Vn(x) and Wn(x) are poly-
nomials of degree n in x, in which all powers of x are present, and in which
the leading coefficients (of xn) are equal to 2n.

In Figure1.4 we show graphs of V5(x) and W5(x). They are exact inverted
mirror images of one another, as will be proved in the next section (1.19).

Figure 1.4: V5(x) and W5(x) on range [−1, 1]

1.2.4 Connections between the four kinds of polynomial

We already have a relationship (1.7) between the polynomials Tn and Un. It
remains to link Vn and Wn to Tn and Un. This may be done by introducing
two auxiliary variables

u = [12 (1 + x)]
1
2 = cos 1

2θ, t = [12 (1− x)]
1
2 = sin 1

2θ. (1.13)

Using (1.8) and (1.9) it immediately follows, from the definitions (1.1) and
(1.4) of Tn and Un, that

Tn(x) = T2n(u), Un(x) = 1
2u

−1U2n+1(u), (1.14)

Vn(x) = u−1T2n+1(u), Wn(x) = U2n(u). (1.15)

Thus Tn(x), Un(x), Vn(x), Wn(x) together form the first- and second-kind
polynomials in u, weighted by u−1 in the case of odd degrees. Also (1.15)
shows that Vn(x) andWn(x) are directly related, respectively, to the first- and
second-kind Chebyshev polynomials, so that the terminology of ‘Chebyshev
polynomials of the third and fourth kind’ is justifiable.

From the discussion above it can be seen that, if we wish to establish
properties of Vn andWn, then we have two main options: we can start from the
trigonometric definitions (1.8), (1.9) or we can attempt to exploit properties
of Tn and Un by using the links (1.14)–(1.15).

Note that Vn and Wn are neither even nor odd (unlike Tn and Un). We
have seen that the leading coefficient of xn is 2n in both Vn and Wn, as it is
in Un. This suggests a close link with Un. Indeed if we average the initial
conditions (1.12c) and (1.12d) for V1 and W1 we obtain the initial condition
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(1.6b) for U1, from which we can show that the average of Vn andWn satisfies
the recurrence (1.6a) subject to (1.6b) and therefore that for all n

Un(x) = 1
2 [Vn(x) +Wn(x)]. (1.16)

The last result also follows directly from the trigonometric definitions (1.4),
(1.8), (1.9) of Un, Vn, Wn, since

sin(n+ 1)θ
sin θ

=
sin(n+ 1

2 )θ cos
1
2θ + cos(n+

1
2 )θ sin

1
2θ

2 sin 1
2θ cos

1
2θ

= 1
2

[
cos(n+ 1

2 )θ
cos 1

2θ
+
sin(n+ 1

2 )θ
sin 1

2θ

]
.

Equation (1.16) is not the only link between the sets {Vn}, {Wn} and
{Un}. Indeed, by using the trigonometric relations

2 sin 1
2θ cos(n+

1
2 )θ = sin(n+ 1)θ − sinnθ,

2 cos 1
2θ sin(n+

1
2 )θ = sin(n+ 1)θ + sinnθ

and dividing through by sin θ, we can deduce that

Vn(x) = Un(x) − Un−1(x), (1.17)

Wn(x) = Un(x) + Un−1(x). (1.18)

Thus Vn and Wn may be very simply determined once {Un} are available.
Note that (1.17), (1.18) are confirmed in the formulae (1.5), (1.10), (1.11)
and are consistent with (1.16) above.

From the evenness/oddness of Un(x) for n even/odd, we may immediately
deduce from (1.17), (1.18) that

Wn(x) = Vn(−x) (n even);
Wn(x) = −Vn(−x) (n odd). (1.19)

This means that the third- and fourth-kind polynomials essentially transform
into each other if the range [−1, 1] of x is reversed, and it is therefore sufficient
for us to study only one of these kinds of polynomial.

Two further relationships that may be derived from the definitions are

Vn(x) + Vn−1(x) =Wn(x) −Wn−1(x) = 2Tn(x). (1.20)

If we were asked for a ‘pecking order’ of these four Chebyshev polynomials
Tn, Un, Vn and Wn, then we would say that Tn is clearly the most important
and versatile. Moreover Tn generally leads to the simplest formulae, whereas
results for the other polynomials may involve slight complications. However,
all four polynomials have their role. For example, as we shall see, Un is useful
in numerical integration, while Vn andWn can be useful in situations in which
singularities occur at one end point (+1 or −1) but not at the other.
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1.3 Shifted Chebyshev polynomials

1.3.1 The shifted polynomials T ∗
n , U∗

n, V ∗
n , W ∗

n

Since the range [0, 1] is quite often more convenient to use than the range
[−1, 1], we sometimes map the independent variable x in [0, 1] to the variable
s in [−1, 1] by the transformation

s = 2x− 1 or x = 1
2 (1 + s),

and this leads to a shifted Chebyshev polynomial (of the first kind) T ∗
n(x) of

degree n in x on [0, 1] given by

T ∗
n(x) = Tn(s) = Tn(2x− 1). (1.21)

Thus we have the polynomials

T ∗
0 (x) = 1, T ∗

1 (x) = 2x− 1, T ∗
2 (x) = 8x

2 − 8x+ 1,
T ∗

3 (x) = 32x
3 − 48x2 + 18x− 1, . . . .

(1.22)

From (1.21) and (1.3a), we may deduce the recurrence relation for T ∗
n in

the form
T ∗

n(x) = 2(2x− 1)T ∗
n−1(x)− T ∗

n−2(x) (1.23a)

with initial conditions

T ∗
0 (x) = 1, T ∗

1 (x) = 2x− 1. (1.23b)

The polynomials T ∗
n(x) have a further special property, which derives from

(1.1) and (1.21):

T2n(x) = cos 2nθ = cosn(2θ) = Tn(cos 2θ) = Tn(2x2 − 1) = T ∗
n(x

2)

so that
T2n(x) = T ∗

n(x
2). (1.24)

This property may readily be confirmed for the first few polynomials by com-
paring the formulae (1.2) and (1.22). Thus T ∗

n(x) is precisely T2n(
√
x ), a

higher degree Chebyshev polynomial in the square root of the argument, and
relation (1.24) gives an important link between {Tn} and {T ∗

n} which com-
plements the shift relationship (1.21). Because of this property, Table C.2a
in Appendix C, which gives coefficients of the polynomials Tn(x) up to de-
gree n = 20 for even n, at the same time gives coefficients of the shifted
polynomials T ∗

n(x) up to degree n = 10.

It is of course possible to define T ∗
n , like Tn and Un, directly by a trigono-

metric relation. Indeed, if we combine (1.1) and (1.24) we obtain

T ∗
n(x) = cos 2nθ when x = cos2 θ. (1.25)
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This relation might alternatively be rewritten, with θ replaced by φ/2, in the
form

T ∗
n(x) = cosnφ when x = cos2 φ/2 = 1

2 (1 + cosφ). (1.26)

Indeed the latter formula could be obtained directly from (1.21), by writing

Tn(s) = cosnφ when s = cosφ.

Note that the shifted Chebyshev polynomial T ∗
n(x) is neither even nor odd,

and indeed all powers of x from 1 = x0 to xn appear in T ∗
n(x). The leading

coefficient of xn in T ∗
n(x) for n > 0 may be deduced from (1.23a), (1.23b) to

be 22n−1.

Shifted polynomials U∗
n, V

∗
n ,W

∗
n of the second, third and fourth kinds may

be defined in precisely analogous ways:

U∗
n(x) = Un(2x− 1), V ∗

n (x) = Vn(2x− 1), W ∗
n(x) =Wn(2x− 1). (1.27)

Links between U∗
n, V ∗

n ,W ∗
n and the unstarred polynomials, analogous to (1.24)

above, may readily be established. For example, using (1.4) and (1.27),

sin θ U2n−1(x) = sin 2nθ = sinn(2θ) = sin 2θ Un−1(cos 2θ)

= 2 sin θ cos θ Un−1(2x2 − 1) = sin θ {2xU∗
n−1(x

2)}
and hence

U2n−1(x) = 2xU∗
n−1(x

2). (1.28)

The corresponding relations for V ∗
n and W ∗

n are slightly different in that
they complement (1.24) and (1.28) by involving T2n−1 and U2n. Firstly, using
(1.13), (1.15) and (1.27),

V ∗
n−1(u

2) = Vn−1(2u2 − 1) = Vn−1(x) = u−1T2n−1(u)

and hence (replacing u by x)

T2n−1(x) = xV ∗
n−1(x

2). (1.29)

Similarly,

W ∗
n−1(u

2) =Wn−1(2u2 − 1) =Wn−1(x) = U2n(u)

and hence (replacing u by x)

U2n(x) =W ∗
n(x

2). (1.30)

Because of the relationships (1.28)–(1.30), Tables C.3b, C.2b, C.3a in Ap-
pendix C, which give coefficients of Tn(x) and Un(x) up to degree n = 20, at
the same time give the coefficients of the shifted polynomials U∗

n(x), V
∗
n (x),

W ∗
n(x), respectively, up to degree n = 10.
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1.3.2 Chebyshev polynomials for the general range [a, b]

In the last section, the range [−1, 1] was adjusted to the range [0, 1] for conve-
nience, and this corresponded to the use of the shifted Chebyshev polynomials
T ∗

n , U∗
n, V ∗

n , W ∗
n in place of Tn, Un, Vn, Wn respectively. More generally we

may define Chebyshev polynomials appropriate to any given finite range [a, b]
of x, by making this range correspond to the range [−1, 1] of a new variable
s under the linear transformation

s =
2x− (a+ b)

b− a
. (1.31)

The Chebyshev polynomials of the first kind appropriate to [a, b] are thus
Tn(s), where s is given by (1.31), and similarly the second-, third- and fourth-
kind polynomials appropriate to [a, b] are Un(s), Vn(s), and Wn(s).

Example 1.1: The first-kind Chebyshev polynomial of degree three appropriate
to the range [1, 4] of x is

T3

(
2x − 5

3

)
= 4

(
2x − 5

3

)3

− 3

(
2x − 5

3

)
=

1

27
(32x3 − 240x2 + 546x − 365).

Note that in the special case [a, b] ≡ [0, 1], the transformation (1.31) be-
comes s = 2x−1, and we obtain the shifted Chebyshev polynomials discussed
in Section 1.3.1.

Incidentally, the ‘Chebyshev Polynomials Sn(x) and Cn(x)’ tabulated by
the National Bureau of Standards (NBS 1952) are no more than mappings of
Un and 2Tn to the range [a, b] ≡ [−2, 2]. Except for C0, these polynomials all
have unit leading coefficient, but this appears to be their only recommending
feature for practical purposes, and they have never caught on.

1.4 Chebyshev polynomials of a complex variable

We have chosen to define the polynomials Tn(x), Un(x), Vn(x) and Wn(x)
with reference to the interval [−1, 1]. However, their expressions as sums
of powers of x can of course be evaluated for any real x, even though the
substitution x = cos θ is not possible outside this interval.

For x in the range [1,∞), we can make the alternative substitution

x = coshΘ, (1.32)
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with Θ in the range [0,∞), and it is easily verified that precisely the same
polynomials (1.2), (1.5), (1.10) and (1.11) are generated by the relations

Tn(x) = coshnΘ, (1.33a)

Un(x) =
sinh(n+ 1)Θ

sinhΘ
, (1.33b)

Vn(x) =
cosh(n+ 1

2 )Θ
cosh 1

2Θ
, (1.33c)

Wn(x) =
sinh(n+ 1

2 )Θ
sinh 1

2Θ
. (1.33d)

For x in the range (−∞,−1] we can make use of the odd or even parity of
the Chebyshev polynomials to deduce from (1.33) that, for instance,

Tn(x) = (−1)n coshnΘ

where
x = − coshΘ.

It is easily shown from (1.33) that none of the four kinds of Chebyshev
polynomials can have any zeros or turning points in the range [1,∞). The
same applies to the range (−∞,−1]. This will later become obvious, since we
shall show in Section 2.2 that Tn, Un, Vn and Wn each have n real zeros in
the interval [−1, 1], and a polynomial of degree n can have at most n zeros in
all.

The Chebyshev polynomial Tn(x) can be further extended into (or initially
defined as) a polynomial Tn(z) of a complex variable z. Indeed Snyder (1966)
and Trefethen (2000) both start from a complex variable in developing their
expositions.

1.4.1 Conformal mapping of a circle to and from an ellipse

For convenience, we consider not only the variable z but a related complex
variable w such that

z = 1
2 (w + w−1). (1.34)

Then, if w moves on the circle |w| = r (for r > 1) centred at the origin,
we have

w = reiθ = r cos θ + ir sin θ, (1.35)

w−1 = r−1e−iθ = r−1 cos θ − ir−1 sin θ, (1.36)

and so, from (1.34),
z = a cos θ + ib sin θ (1.37)
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where
a = 1

2 (r + r−1), b = 1
2 (r − r−1). (1.38)

Hence z moves on the standard ellipse

x2

a2
+

y2

b2
= 1 (1.39)

centred at the origin, with major and minor semi-axes a, b given by (1.38). It
is easy to verify from (1.38) that the eccentricity e of this ellipse is such that

ae =
√

a2 − b2 = 1,

and hence the ellipse has foci at z = ±1.
In the case r = 1, where w moves on the unit circle, we have b = 0 and

the ellipse collapses into the real interval [−1, 1]. However, z traverses the
interval twice as w moves round the circle: from −1 to 1 as θ moves from −π
to 0, and from 1 to −1 as θ moves from 0 to π.

Figure 1.5: The circle |w| = r = 1.5 and its image in the z plane

Figure 1.6: The circle |w| = 1 and its image in the z plane

The standard circle (1.35) and ellipse (1.39) are shown in Figure 1.5, and
the special case r = 1 is shown in Figure 1.6. See Henrici (1974–1986) for
further discussions of this mapping.
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From (1.34) we readily deduce that w satisfies

w2 − 2wz + 1 = 0, (1.40)

a quadratic equation with two solutions

w = w1, w2 = z ±
√

z2 − 1. (1.41)

This means that the mapping from w to z is 2 to 1, with branch points at
z = ±1. It is convenient to define the complex square root √z2 − 1 so that it
lies in the same quadrant as z (except for z on the real interval [−1, 1], along
which the plane must be cut), and to choose the solution

w = w1 = z +
√

z2 − 1, (1.42)

so that |w| = |w1| ≥ 1. Then w depends continuously on z along any path
that does not intersect the interval [−1, 1], and it is easy to verify that

w2 = w−1
1 = z −

√
z2 − 1, (1.43)

with |w2| ≤ 1.

If w1 moves on |w1| = r, for r > 1, then w2 moves on |w2| =
∣∣w−1

1

∣∣ =
r−1 < 1. Hence both of the concentric circles

Cr := {w : |w| = r} , C1/r :=
{
w : |w| = r−1

}
transform into the same ellipse defined by (1.37) or (1.39), namely

Er :=
{
z :

∣∣∣z +√
z2 − 1

∣∣∣ = r
}
. (1.44)

1.4.2 Chebyshev polynomials in z

Defining z by (1.34), we note that if w lies on the unit circle |w| = 1 (i.e. C1),
then (1.37) gives

z = cos θ (1.45)

and hence, from (1.42).

w = z +
√

z2 − 1 = eiθ. (1.46)

Thus Tn(z) is now a Chebyshev polynomial in a real variable and so by
our standard definition (1.1), and (1.45), (1.46),

Tn(z) = cosnθ = 1
2 (e

inθ + e−inθ) = 1
2 (w

n + w−n).

This leads us immediately to our general definition, for all complex z,
namely

Tn(z) = 1
2 (w

n + w−n) (1.47)
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where
z = 1

2 (w + w−1). (1.48)

Alternatively we may write Tn(z) directly in terms of z, using (1.42) and
(1.43), as

Tn(z) = 1
2{(z +

√
z2 − 1)n + (z −

√
z2 − 1)n}. (1.49)

If z lies on the ellipse Er, the locus of (1.48) when |w| = r > 1, then it
follows from (1.47) that we have the inequality

1
2 (r

n − r−n) ≤ |Tn(z)| ≤ 1
2 (r

n + r−n). (1.50)

In Fig. 1.7 we show the level curves of the absolute value of T5(z), and it can
easily be seen how these approach an elliptical shape as the value increases.

Figure 1.7: Contours of |T5(z)| in the complex plane

We may similarly extend polynomials of the second kind. If |w| = 1, so
that z = cos θ, we have from (1.4),

Un−1(z) =
sinnθ
sin θ

.

Hence, from (1.45) and (1.46), we deduce the general definition

Un−1(z) =
wn − w−n

w − w−1
(1.51)

where again z = 1
2 (w + w−1). Alternatively, writing directly in terms of z,

Un−1(z) = 1
2

(z +
√
z2 − 1)n − (z −√

z2 − 1)n√
z2 − 1 . (1.52)

If z lies on the ellipse (1.44), then it follows directly from (1.51) that

rn − r−n

r + r−1
≤ |Un−1(z)| ≤ rn + r−n

r − r−1
; (1.53)
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however, whereas the bounds (1.50) on |Tn(z)| are attained on the ellipse, the
bounds (1.53) on |Un−1(z)| are slightly pessimistic. For a sharp upper bound,
we may expand (1.51) into

Un−1(z) = wn−1 + wn−3 + · · ·+ w3−n + w1−n (1.54)

giving us

|Un−1(z)| ≤
∣∣wn−1

∣∣+ ∣∣wn−3
∣∣+ · · ·+ ∣∣w3−n

∣∣+ ∣∣w1−n
∣∣

= rn−1 + rn−3 + · · ·+ r3−n + r1−n

=
rn − r−n

r − r−1
, (1.55)

which lies between the two bounds given in (1.53). In Fig. 1.8 we show the
level curves of the absolute value of U5(z).

Figure 1.8: Contours of |U5(z)| in the complex plane

The third- and fourth-kind polynomials of degree n in z may readily be
defined in similar fashion (compare (1.51)) by

Vn(z) =
wn+ 1

2 + w−n− 1
2

w
1
2 + w− 1

2
, (1.56)

Wn(z) =
wn+ 1

2 − w−n− 1
2

w
1
2 − w− 1

2
(1.57)

where w
1
2 is consistently defined from w. More precisely, to get round the

ambiguities inherent in taking square roots, we may define them by

Vn(z) =
wn+1 + w−n

w + 1
, (1.58)

Wn(z) =
wn+1 − w−n

w − 1 (1.59)

It is easily shown, by dividing denominators into numerators, that these give
polynomials of degree n in z = 1

2 (w + w−1).
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1.4.3 Shabat polynomials

Shabat & Voevodskii (1990) introduced the concept of ‘generalised Chebyshev
polynomials’ (or Shabat polynomials), in the context of trees and number
theory. The most recent survey paper in this area is that of Shabat & Zvonkin
(1994). They are defined as polynomials P (z) with complex coefficients having
two critical values A and B such that

P ′(z) = 0 =⇒ P (z) = A or P (z) = B.

The prime example of such a polynomial is Tn(z), a first-kind Chebyshev
polynomial, for which A = −1 and B = +1 are the critical values.

1.5 Problems for Chapter 1

1. The equation x = cos θ defines infinitely many values of θ corresponding
to a given value of x in the range [−1, 1]. Show that, whichever value
is chosen, the values of Tn(x), Un(x), Vn(x) and Wn(x) as defined by
(1.1), (1.4), (1.8) and (1.9) remain the same.

2. Determine explicitly the Chebyshev polynomials of first and second
kinds of degrees 0, 1, 2, 3, 4 appropriate to the range [−4, 6] of x.

3. Prove that
Tm(Tn(x)) = Tmn(x)

and that

Um−1(Tn(x))Un−1(x) = Un−1(Tm(x))Um−1(x) = Umn−1(x).

4. Verify that equations (1.33) yield the same polynomials for x > 1 as the
trigonometric definitions of the Chebyshev polynomials give for |x| ≤ 1.

5. Using the formula

z = 1
2 (r + r−1) cos θ + 1

2 i(r − r−1) sin θ, (r > 1)

which defines a point on an ellipse centred at 0 with foci z = ±1,
(a) verify that

√
z2 − 1 = 1

2 (r − r−1) cos θ + 1
2 i(r + r−1) sin θ

and hence

(b) verify that
∣∣z +√

z2 − 1∣∣ = r.
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6. By expanding by the first row and using the standard three-term recur-
rence for Tr(x), show that

Tn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x −1 0 0 · · · 0 0 0
−1 2x −1 0 · · · 0 0 0
0 −1 2x −1 · · · 0 0 0
...

...
...

. . . . . . . . .
...

...
0 0 0 0 · · · −1 2x −1
0 0 0 0 · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n× n determinant)

.

Write down similar expressions for Un(x), Vn(x) and Wn(x).

7. Given that the four kinds of Chebyshev polynomial each satisfy the same
recurrence relation

Xn = 2xXn−1 −Xn−2,

with X0 = 1 in each case and X1 = x, 2x, 2x+ 1, 2x− 1 for the four
respective families, use these relations only to establish that

(a) Vi(x) +Wi(x) = 2Ui(x),

(b) Vi(x) −Wi(x) = 2Ui−1(x),

(c) Ui(x) − 2Ti(x) = Ui−2(x),

(d) Ui(x) − Ti(x) = xUi−1(x).

8. Derive the same four formulae of Problem 7, this time using only the
trigonometric definitions of the Chebyshev polynomials.

9. From the last two results in Problem 7, show that

(a) Ti(x) = xUi−1(x)− Ui−2(x),

(b) Ui(x) = 2xUi−1(x) − Ui−2(x).
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