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Preface

Potential theory has its roots in the physical sciences and continues to find
application in diverse areas including electrostatics and elasticity. From a
mathematical point of view, the study of Laplace’s equation has profoundly
influenced the theory of partial differential equations and the development of
functional analysis. Together with the wave operator and the diffusion opera-
tor, its study and application continue to dominate many areas of mathemat-
ics, physics, and engineering. Scattering of electromagnetic or acoustic waves
is of widespread interest, because of the enormous number of technological ap-
plications developed in the last century, from imaging to telecommunications
and radio astronomy.

The advent of powerful computing resources has facilitated numerical mod-
elling and simulation of many concrete problems in potential theory and scat-
tering. The many methods developed and refined in the last three decades
have had a significant impact in providing numerical solutions and insight into
the important mechanisms in scattering and associated static problems. How-
ever, the accuracy of present-day purely numerical methods can be difficult
to ascertain, particularly for objects of some complexity incorporating edges,
re-entrant structures, and dielectrics. An example is the open metallic cavity
with a dielectric inclusion. The study of closed bodies with smooth surfaces is
rather more completely developed, from an analytical and numerical point of
view, and computational algorithms have attained a good degree of accuracy
and generality. In contradistinction to highly developed analysis for closed
bodies of simple geometric shape – which was the subject of Bowman, Senior,
and Uslenghi’s classic text on scattering [6] – structures with edges, cavities,
or inclusions have seemed, until now, intractable to analytical methods.

Our motivation for this two-volume text on scattering and potential theory
is to describe a class of analytic and semi-analytic techniques for accurately de-
termining the diffraction from structures comprising edges and other complex
cavity features. These techniques rely heavily on the solution of associated
potential problems for these structures developed in Part I.

These techniques are applied to various classes of canonical scatterers, of
particular relevance to edge-cavity structures. There are several reasons for
focusing on such canonical objects. The exact solution to a potential theory
problem or diffraction problem is interesting in its own right. As Bowman et
al. [6] state, most of our understanding of how scattering takes place is ob-
tained by detailed examination of such representative scatterers. Their study
provides an exact quantification of the effects of edges, cavities, and inclusions.
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This is invaluable for assessing the relative importance of these effects in other,
more general structures. Sometimes the solution developed in the text is in
the form of a linear system of equations for which the solution accuracy can be
determined; however, the same point about accurate quantification is valid.
Such solutions thus highlight the generic difficulties that numerical methods
must successfully tackle for more general structures. Reliable benchmarks,
against which a solution obtained by such general-purpose numerical meth-
ods can be verified, are needed to establish confidence in the validity of these
computational methods in wider contexts where analysis becomes impossible.
Exact or semi-analytic solutions are valuable elsewhere: in inverse scattering,
exact solutions may pinpoint special effects and distinguish between physi-
cally real effects and artefacts of the computational process. Moreover, many
canonical structures are of direct technological interest, particularly where a
scattering process is dominated by that observed in a related canonical struc-
ture.

Mathematically, we solve a class of mixed boundary value problems and de-
velop numerical formulations for computationally stable, rapidly converging
algorithms of guaranteed accuracy. The potential problems and diffraction
problems are initially formulated as dual (or multiple) series equations, or
dual (or multiple) integral equations. Central to the technique is the idea
of regularisation. The general concept of regularisation is well established in
many areas of mathematics. In this context, its main feature is the transfor-
mation of the badly behaved or singular part of the initial equations, describing
a potential distribution or a diffraction process, to a well behaved set of equa-
tions (technically, second-kind Fredholm equations). Physically, this process
of semi-inversion corresponds to solving analytically some associated potential
problem, and utilising that solution to determine the full wave scattering.

The two volumes of this text are closely connected. Part I develops the
theory of series equations and integral equations, and solves mixed bound-
ary potential problems (mainly electrostatic ones) for structures with cavities
and edges. The theory and structure of the dual equations that arise in this
process reflect new developments and refinements since the major exposition
of Sneddon [55]. In our unified approach, transformations connected with
Abel’s integral equation are employed to invert analytically the singular part
of the operator defining the potential. Three-dimensional structures exam-
ined include shells and cavities obtained by opening apertures in canonically
shaped closed surfaces; thus a variety of spherical and spheroidal cavities and
toroidal and conical shells are considered. Although the main thrust of both
volumes concerns three-dimensional effects, some canonical two-dimensional
structures, such as slotted elliptical cylinders and various flat plates, are con-
sidered. Also, to illustrate how regularisation transforms the standard integral
equations of potential theory and benefits subsequent numerical computa-
tions, the method is applied to a noncanonical structure, the singly-slotted
cylinder of arbitrary cross-section.

Part II examines diffraction of acoustic and electromagnetic waves from
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similar classes of open structures with edges or cavities. The rigorous regu-
larisation procedure relies on the techniques solutions developed in Part I to
produce effective algorithms for the complete frequency range, quasi-static to
quasi-optical. Physical interpretation of explicit mathematical solutions and
relevant applications are provided.

The two volumes aim to provide an account of some mathematical develop-
ments over the last two decades that have greatly enlarged the set of soluble
canonical problems of real physical and engineering significance. They gather,
perhaps for the first time, a satisfactory mathematical description that accu-
rately quantifies the physically relevant scattering mechanisms in complex
structures. Our selection is not exhaustive, but is chosen to illustrate the
types of structures that may be analysed by these methods, and to provide a
platform for the further analysis of related structures.

In developing a unified treatment of potential theory and diffraction, we
have chosen a concrete, rather than an abstract or formal style of analysis.
Thus, constructive methods and explicit solutions from which practical nu-
merical algorithms can be implemented, are obtained from an intensive and
unified study of series equations and integral equations.

We hope this book will be useful to both new researchers and experienced
specialists. Most of the necessary tools for the solution of series equations
and integral equations are developed in the text; allied material on special
functions and functional analysis is collated in an appendix so that the book
is accessible to as wide a readership as possible. It is addressed to mathemati-
cians, physicists, and electrical engineers. The text is suitable for postgraduate
courses in diffraction and potential theory and related mathematical methods.
It is also suitable for advanced-level undergraduates, particularly for project
material.

We wish to thank our partners and families for their support and encour-
agement in writing this book. Their unfailing good humour and advice played
a key role in bringing the text to fruition.
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Chapter 1

Laplace’s Equation

Laplace’s equation is one of the most important partial differential equations
that arises in the application of mathematics to physical phenomena. It occurs
in diverse contexts, including electrostatics, magnetostatics, elasticity, grav-
itation, steady-state heat conduction, incompressible fluid flow, and many
related areas described in, for example, [44] and [13].

Common to these disciplines is the notion of a potential ψ, which is a scalar
function of spatial position. We will be particularly interested in the electro-
static context, where the potential ψ is constant on equipotential surfaces,
and the associated electric field vector

−→
E is expressed via the gradient

−→
E = −∇ψ. (1. 1)

This vector lies along the direction of most rapid decrease of ψ. Gauss’ law
states that the divergence of the electric field is proportional to charge density
ρ at each point in space,

∇.
−→
E = 4πρ. (1. 2)

The proportionality factor in Equation (1. 2) depends upon the choice of
units. We employ Gaussian units [20] throughout; if Système International
(SI) units are employed, the right-hand side of (1. 2) is divided by 4πε0 where
εo denotes free space permittivity. (To convert capacitances from Gaussian
to SI units, multiply by 4πε0).

From (1. 1) and (1. 2), Poisson’s equation follows,

∇. (∇ψ) = ∇2ψ = −4πρ. (1. 3)

This equation describes how the potential is determined by the charge distri-
bution in some region of space.

Now consider an electrostatic field with associated potential ψ. If a perfectly
conducting surface S is immersed in this field, a charge distribution ρi is
induced on the surface; it has an associated potential ψi satisfying (1. 3).
The total potential Ψ = ψ + ψi is constant on S (an equipotential surface),
the total electric field −∇Ψ is normal to S (at each point), and because there
are no charges except on S, the total potential satisfies Laplace’s equation,

∇2ψ = 0, (1. 4)
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at every point of space except on S.
In order to obtain a unique solution that is physically relevant, this partial

differential equation must be complemented by appropriate boundary condi-
tions; for example, the potential on one or more metallic conductors might
be specified to be of unit value, and Laplace’s equation is to be solved in the
region excluding the conductors, but subject to this specification on the con-
ductor surface. If one of the conductors encloses a (finite) region of interest,
such boundary conditions may be sufficient to specify the required solution
uniquely; however, in unbounded regions, some additional specification of the
behaviour of the potential at infinity is required. Moreover, the presence of
sharp edges on the bounding conducting surfaces may require that additional
constraints, equivalent to the finiteness of energy, be imposed to ensure that
a physically relevant solution is uniquely defined by Laplace’s equation.

In this book we shall be interested in analytic and semi-analytic methods for
solving Laplace’s equation with appropriate boundary and other conditions.
To make substantive progress, we shall consider orthogonal coordinate systems
in which Laplace’s equation is separable (i.e., it can be solved by the method
of separation of variables), and the conductors occupy part or whole of a
coordinate surface in these systems.

Laplace’s equation can be solved by the method of separation of variables
only when the boundary conditions are enforced on a complete coordinate
surface (e.g., the surface of a sphere in the spherical coordinate system). As
indicated in the preface, it is important to emphasize that the methods de-
scribed in this book apply to a much wider class of surfaces, where the bound-
ary conditions (describing, say, the electrostatic potential of a conductor) are
prescribed on only part of a coordinate surface in the following way. Let
u1, u2, and u3 be a system of coordinates in which the three sets of coordinate
surfaces, u1 = constant, u2 = constant, and u3 = constant, are mutually or-
thogonal. We shall consider portions of a coordinate surface typically specified
by

u1 = constant, a ≤ u2 ≤ b (1. 5)

where a and b are fixed. For example, a spherical cap of radius a and sub-
tending an angle θo (at the centre of the appropriate sphere) may be specified
in the spherical coordinate system (r, θ, φ) by

r = a, 0 ≤ θ ≤ θ0, 0 ≤ φ ≤ 2π. (1. 6)

The determination of the electrostatic potential surrounding the cap can be
posed as a mixed boundary value problem, and can be solved by the analytic
methods of this book, despite its insolubility by the method of separation of
variables.

Although the type of surface specified by (1. 5) is somewhat restricted, it
includes many cases not merely of mathematical interest, but of substantive
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physical and technological interest as well; the class of surfaces for which ana-
lytic solutions to the potential theory problem (of solving Laplace’s equation)
can be found is thus considerably enlarged, beyond the well-established class
of solutions obtained by separation of variables (see, for example [54]). Since
it will be central to later developments, Sections 1.1 and 1.2 briefly describe
the form of Laplace’s equation in some of these orthogonal coordinate sys-
tems, and the solutions generated by the classical method of separation of
variables.

The formulation of potential theory for structures with edges is expounded
in Section 1.3. For the class of surfaces described above, dual (or multiple)
series equations arise naturally, as do dual (or multiple) integral equations.
Various methods for solving such dual series equations are described in Sec-
tion 1.4, including the Abel integral transform method that is the key tool
employed throughout this text. It exploits features of Abel’s integral equation
(described in Section 1.5) and Abel-type integral representations of Legendre
polynomials, Jacobi polynomials, and related hypergeometric functions (de-
scribed in Section 1.6). In the final Section (1.7), the equivalence of the dual
series approach and the more usual integral equation approach (employing
single- or double-layer surface densities) to potential theory is demonstrated.

1.1 Laplace’s equation in curvilinear coordinates

The study of Laplace’s equation in various coordinate systems has a long
history, generating, amongst other aspects, many of the special functions of
applied mathematics and physics (Bessel functions, Legendre functions, etc.).
In this section we gather material of a reference nature; for a greater depth
of detail, we refer the interested reader to one of the numerous texts written
on these topics, such as [44], [32] or [74].

Here we consider Laplace’s equation in those coordinate systems that will
be of concrete interest later in this book; in these systems the method of
separation of variables is applicable. Let u1, u2, and u3 be a system of coor-
dinates in which the coordinate surfaces u1 = constant, u2 = constant, and
u3 = constant are mutually orthogonal (i.e., intersect orthogonally). Fix a
point (u1, u2, u3) and consider the elementary parallelepiped formed along the
coordinate surfaces, as shown in Figure 1.1.

Thus O, A, B, and C have coordinates (u1, u2, u3), (u1+du1, u2, u3), (u1, u2+
du2, u3), and (u1, u2, u3 + du3), respectively. The length ds of the diagonal
line segment connecting (u1, u2, u3) and (u1 +du1, u2 +du2, u3 +du3) is given
by

ds2 = h2
1du

2
1 + h2

2du2 + h3
3du

2
3 (1. 7)

where h1, h2, and h3 are the metric coefficients (or Lamé coefficients, in recog-
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Figure 1.1
The elementary parallelepiped.

nition of the transformation of the Laplacian to general orthogonal coordinates
first effected in [35]).

In terms of the Lamé coefficients, the lengths of the elementary paral-
lelepiped edges equal h1du1, h2du2, and h3du3, respectively, so that its volume
is h1h2h3du1du2du3. These coefficients depend, in general, upon the coordi-
nates u1, u2, u3 and can be calculated explicitly from the functional relation-
ship between rectangular and curvilinear coordinates,

x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3). (1. 8)

It is useful to state the relationship between rectangular and curvilinear com-
ponents of any vector

−→
F . Designate by

−→
ix,
−→
iy,
−→
iz the unit rectangular (Carte-

sian) coordinate vectors, and by
−→
i1,
−→
i2,
−→
i3 the unit coordinate vectors in the

orthogonal curvilinear coordinate system; the unit vectors are defined by the
relation (with −→r = x

−→
ix + y

−→
iy + z

−→
iz ):

−→
ii =

1
hi

(
∂x

∂ui

−→
ix +

∂y

∂ui

−→
iy +

∂z

∂ui

−→
iz

)
=
∂−→r
∂ui

/

∣∣∣∣∂−→r∂ui

∣∣∣∣ (1. 9)

where i = 1, 2, 3, and are mutually orthogonal. Then

−→
F = Fx

−→
ix + Fy

−→
iy + Fz

−→
iz = F1

−→
i1 + F2

−→
i2 + F3

−→
i3 . (1. 10)

Taking inner products yields the following relations:

F1 = Fx(
−→
ix ,
−→
i1 ) + Fy(

−→
iy ,
−→
i1 ) + Fz(

−→
iz ,
−→
i1 )

F2 = Fx(
−→
ix ,
−→
i2 ) + Fy(

−→
iy ,
−→
i2 ) + Fz(

−→
iz ,
−→
i2 ) (1. 11)

F3 = Fx(
−→
ix ,
−→
i3 ) + Fy(

−→
iy ,
−→
i3 ) + Fz(

−→
iz ,
−→
i3 )
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The differentials of the rectangular coordinates are linear functions of the
curvilinear coordinates:

dx =
∂x

∂u1
du1 +

∂x

∂u2
du2 +

∂x

∂u3
du3,

dy =
∂y

∂u1
du1 +

∂y

∂u2
du2 +

∂y

∂u3
du3, (1. 12)

dz =
∂z

∂u1
du1 +

∂z

∂u2
du2 +

∂z

∂u3
du3.

Comparing the expression for elementary length ds2 = dx2 + dy2 + dz2 with
(1. 7), and using orthogonality of the coordinate basis vectors, we obtain

h2
1du

2
1 + h2

2du
2
2 + h2

3du
2
3 = dx2 + dy2 + dz2; (1. 13)

substituting (1. 12) into (1. 13) and equating like coefficients shows that

h2
i =

(
∂x

∂ui

)2

+
(
∂y

∂ui

)2

+
(
∂z

∂ui

)2

(i = 1, 2, 3) . (1. 14)

Let ψ = ψ(u1, u2, u3) be a scalar function dependent upon spatial position,
and let

−→
A =

−→
A (u1, u2, u3) be a vector function of position, the three compo-

nents of which will be denoted A1 = A1(u1, u2, u3), A2 = A2(u1, u2, u3), and
A3 = A3(u1, u2, u3). We wish to find the coordinate expression for the gradi-
ent of the scalar ψ (gradψ) in this system, as well as the divergence (div

−→
A )

and circulation or curl (curl
−→
A ) of the vector

−→
A.

It follows from Figure 1.1 that the first component of the gradient is

(gradψ)1 = lim
du1→0

ψ(u1 + du1, u2, u3)− ψ(u1, u2, u3)
h1du1

=
1
h1

∂ψ

∂u1
. (1. 15)

Analogously, the other two components are

(gradψ)2 =
1
h2

∂ψ

∂u2
, (gradψ)3 =

1
h3

∂ψ

∂u3
. (1. 16)

To determine the divergence, let us calculate the total flux∫
S

−→
A.−→n ds

of the vector
−→
A through the surface S of the elementary parallelepiped, the

flux being calculated in the direction of the external unit normal −→n. The flux
through the surface OBHC is A1h2h3du2du3, whereas the flux through surface
AFGI is

A1h2h3du2du3 +
∂

∂u1
(A1h2h3)du1du2du3,
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so the net flux through these two surfaces is

∂

∂u1
(A1h2h3)du1du2du3.

The net flux through the remaining two opposing pairs of surfaces is

∂

∂u2
(A2h3h1)du1du2du3 and

∂

∂u3
(A3h1h2)du1du2du3.

Thus the total flux through the complete parallelepiped surface is∫
S

−→
A.−→n ds =

[
∂

∂u1
(A1h2h3) +

∂

∂u2
(A2h3h1) +

∂

∂u3
(A3h1h2)

]
du1du2du3.

According to the Gauss-Ostrogradsky theorem [74], [32]∫
S

−→
A.−→n ds =

∫
V

div
−→
AdV

where V is the volume enclosed by S. A comparison of the last two formulae
shows that in curvilinear coordinates the divergence of

−→
A is (also denoted

∇.
−→
A ),

div
−→
A =

1
h1h2h3

[
∂

∂u1
(A1h2h3) +

∂

∂u2
(A2h3h1) +

∂

∂u3
(A3h1h2)

]
. (1. 17)

To derive the circulation (curl
−→
A ) of the vector

−→
A , consider the contour

OBHC, which is denoted L. Observing that∫ B

0

−→
A.
−→
dl = A2h2du2,∫ C

H

−→
A.
−→
dl = −A2h2du2 −

∂

∂u3
(A2h2du2)du3,∫ H

B

−→
A.
−→
dl = A3h3du3 +

∂

∂u2
(A3h3du3)du2,∫ O

C

−→
A.
−→
dl = −A3h3du3,

the circulation along this contour L is∮
L

−→
A.
−→
dl =

∂

∂u2
(A3h3du3)du2 −

∂

∂u3
(A2h2du2)du3.

According to Stokes’ theorem [74], [32]∮
L

−→
A.
−→
dl =

∫
S

curl
−→
A.−→n ds
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where S is the surface bounded by L, with the normal −→n defined above. A
comparison of the last two formulae shows that the circulation curl

−→
A ≡ ∇×

−→
A

has first component

(curl
−→
A )1 =

1
h2h3

[
∂

∂u2
(h3A3)−

∂

∂u3
(h2A2)

]
. (1. 18)

Considering the contours OCIA and OAFB, the other two components are

(curl
−→
A )2 =

1
h3h1

[
∂

∂u3
(h1A1)−

∂

∂u1
(h3A3)

]
, (1. 19)

(curl
−→
A )3 =

1
h1h2

[
∂

∂u1
(h2A2)−

∂

∂u2
(h1A1)

]
. (1. 20)

The Laplacian can now be stated in curvilinear coordinate form, combining
(1. 15), (1. 16), and (1. 17) with the definition

4ψ = ∇2ψ = div(gradψ) (1. 21)

to obtain

∇2ψ =
1

h1h2h3

[
∂

∂u1
(
h2h3

h1

∂ψ

∂u1
) +

∂

∂u2

(
h3h1

h2

∂ψ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂ψ

∂u3

)]
.

(1. 22)
Let us gather the explicit form of the metric coefficients, the volume ele-

ment, and the Laplacian in the various coordinates systems of interest in this
book.

1.1.1 Cartesian coordinates

The range of the coordinates is

−∞ < x <∞,−∞ < y <∞,−∞ < z <∞.

The metric coefficients are hx = hy = hz = 1, and the volume element is
dV = dx dy dz. The forms of the Laplacian and gradient are, respectively,

4ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0, (1. 23)

∇ψ =
−→
ix
∂ψ

∂x
+
−→
iy
∂ψ

∂y
+
−→
iz
∂ψ

∂z
. (1. 24)

The coordinates surfaces (x, y, or z = constant) are planes.
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1.1.2 Cylindrical polar coordinates

In terms of Cartesian coordinates, the cylindrical coordinates are

x = ρ cosφ, y = ρ sinφ, z = z,

and the range of the coordinates is 0 ≤ ρ < ∞, 0 ≤ φ ≤ 2π,−∞ < z < ∞.
The metric coefficients are

hρ = 1, hφ = ρ, hz = 1,

and the volume element is dV = ρdρ dφ dz. The forms of the Laplacian and
gradient are, respectively,

4ψ =
1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
, (1. 25)

∇ψ =
−→
iρ
∂ψ

∂ρ
+
−→
iφ

1
ρ

∂ψ

∂φ
+
−→
iz
∂ψ

∂z
. (1. 26)

The coordinates surfaces are cylinders (ρ = constant), planes through the
z-axis (φ = constant), or planes perpendicular to the z-axis (z = constant).

1.1.3 Spherical polar coordinates

In terms of Cartesian coordinates, the spherical coordinates are

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

and the range of the coordinates is 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. The
metric coefficients are

hr = 1, hθ = r, hφ = r sin θ.

The volume element is dV = r2 sin θdr dθ dφ and the forms of the Laplacian
and gradient are, respectively,

4ψ =
1
r2

∂

∂r

(
r2
∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
, (1. 27)

∇ψ =
−→
ir
∂ψ

∂r
+
−→
iθ

1
r

∂ψ

∂θ
+
−→
iφ

1
r sin θ

∂ψ

∂φ
. (1. 28)

The coordinates surfaces are spheres (r = constant), right circular cones (θ =
constant), or azimuthal planes containing the z-axis (φ = constant).
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1.1.4 Prolate spheroidal coordinates

There are two commonly used systems of spheroidal coordinates employing
coordinates denoted (ξ, η, ϕ) and (α, β, ϕ) , respectively. In terms of Cartesian
coordinates, the first representation is

x =
d

2

√
(1− η2)(ξ2 − 1) cosϕ, y =

d

2

√
(1− η2)(ξ2 − 1) sinϕ, z =

d

2
ηξ,

where the parameter d will be identified as the interfocal distance; the range
of coordinates is 1 ≤ ξ <∞,−1 ≤ η ≤ 1, 0 ≤ φ < 2π.

The coordinate surface ξ = constant > 1 is a prolate spheroid with foci
at the points (x, y, z) = (0, 0,±d

2 ), with major semi-axis b = d
2ξ, and minor

semi-axis a = d
2

(
ξ2 − 1

) 1
2 ,

x2 + y2

(ξ2 − 1)
+
z2

ξ2
=
(
d

2

)2

;

the degenerate surface ξ = 1 is the straight line segment |z| ≤ d
2 . The coor-

dinate surface |η| = constant < 1 is a hyperboloid of revolution of two sheets
with an asymptotic cone whose generating line passes through the origin and
is inclined at an angle β = cos−1(η) to the z−axis,

z2

η2
− x2 + y2

(1− η2)
=
(
d

2

)2

;

the degenerate surface |η| = 1 is that part of the z−axis for which |z| > 1
2d.

The surface ϕ = constant is a half-plane containing the z−axis and forming
angle ϕ with the x, z−plane.

In the limit when the interfocal distance approaches zero and ξ tends to
infinity, the prolate spheroidal system (ξ, η, ϕ) reduces to the spherical system
(r, θ, φsphere) by making the identification

d

2
ξ = r, η = cos θ, ϕ ≡ φsphere

in such a way that the product d
2ξ remains finite as d→ 0, ξ →∞.

The second representation (α, β, ϕ) of prolate spheroidal coordinates is ob-
tained by setting ξ = coshα and η = cosβ so that in terms of Cartesian
coordinates

x =
d

2
sinhα sinβ cosϕ, y =

d

2
sinhα sinβ sinϕ, z =

d

2
coshα cosβ.

The range of coordinates is 0 ≤ α < ∞, 0 ≤ β ≤ π, 0 ≤ φ < 2π. Both
representations are used equally in this book.
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The metric coefficients are, respectively,

hξ =
d

2

√
ξ2 − η2

ξ2 − 1
, hη =

d

2

√
ξ2 − η2

1− η2
, hφ =

d

2

√
(ξ2 − 1) (1− η2)

and
hα = hβ =

d

2

√
sinh2 α+ sin2 β, hφ =

d

2
sinhα sinβ;

the volume element is

dV =
(
d

2

)3 (
ξ2 − η2

)
dξ dη dφ

=
(
d

2

)3 (
sinh2 α+ sin2 β

)
sinhα sinβdαdβdφ.

The forms of the Laplacian and gradient are, respectively,(
d

2

)2

4ψ =
1

(ξ2 − η2)

{
∂

∂ξ

((
ξ2 − 1

) ∂ψ
∂ξ

)
+

∂

∂η

((
1− η2

) ∂ψ
∂η

)}
+

1
(ξ2 − 1) (1− η2)

∂2ψ

∂φ2
, (1. 29)

(
d

2

)
∇ψ =

−→
iξ

√
ξ2 − 1
ξ2 − η2

∂ψ

∂ξ
+
−→
iη

√
1− η2

ξ2 − η2

∂ψ

∂η

+
−→
iφ
[(
ξ2 − 1

) (
1− η2

)]− 1
2 ∂ψ

∂φ
, (1. 30)

and(
d

2

)2 (
sinh2 α+ sin2 β

)
4ψ

=
1

sinhα
∂

∂α

(
sinhα

∂ψ

∂α

)
+

1
sinβ

∂

∂β

(
sinβ

∂ψ

∂β

)
+
(

1
sinh2 α

+
1

sin2 β

)
∂2ψ

∂φ2
, (1. 31)

(
d

2

)
∇ψ =

1√
sinh2 α+ sin2 β

{
−→
iα
∂ψ

∂α
+
−→
iβ
∂ψ

∂β

}
+
−→
iφ

1
sinhα sinβ

∂ψ

∂φ
.

(1. 32)
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1.1.5 Oblate spheroidal coordinates

As with the prolate system, there are two commonly used systems of oblate
spheroidal coordinates employing coordinates denoted (ξ, η, ϕ) and (α, β, ϕ) ,
respectively. In terms of Cartesian coordinates, the first representation is

x =
d

2

√
(1− η2) (ξ2 + 1) cosφ, y =

d

2

√
(1− η2) (ξ2 + 1) sinφ, z =

d

2
ηξ

where the parameter d will be identified as interfocal distance; the range of
the coordinates is 0 ≤ ξ < ∞,−1 ≤ η ≤ 1, 0 ≤ φ < 2π. The coordinate
surface ξ = constant is an oblate spheroid with foci at the points (x, y, z) =
±
(

d
2 ,

d
2 , 0
)
,

x2 + y2

(ξ2 + 1)
+
z2

ξ2
=
(
d

2

)2

;

the degenerate surface ξ = 0 is the disk x2+y2 ≤
(

d
2

)2
in the plane z = 0. The

coordinate surface η = constant is a one-sheeted hyperboloid of revolution,
with an asymptotic cone whose generating line passes through the origin and
is inclined at the angle β = cos−1(η) to the z−axis,

x2 + y2

(1− η2)
− z2

η2
=
(
d

2

)2

.

The coordinate surface φ = constant is a half-plane containing the z-axis.
The second representation (α, β, ϕ) of oblate spheroidal coordinates is ob-

tained by setting ξ = sinhα and η = cosβ so that in terms of Cartesian
coordinates

x =
d

2
coshα sinβ cosϕ, y =

d

2
coshα sinβ sinϕ, z =

d

2
sinhα cosβ,

where the range of coordinates is 0 ≤ α <∞, 0 ≤ β ≤ π, 0 ≤ φ < 2π.
The metric coefficients are, respectively,

hξ =
d

2

√
ξ2 + η2

ξ2 + 1
, hη =

d

2

√
ξ2 + η2

1− η2
, hφ =

d

2

√
(ξ2 + 1) (1− η2) ,

and
hα = hβ =

d

2

√
cosh2 α− sin2 β, hφ =

d

2
coshα sinβ.

The forms of the Laplacian and gradient are, respectively,(
d

2

)2

4ψ =
1

(ξ2 + η2)

{
∂

∂ξ

((
ξ2 + 1

) ∂ψ
∂ξ

)
+

∂

∂η

((
1− η2

) ∂ψ
∂η

)}
+

1
(ξ2 + 1) (1− η2)

∂2ψ

∂φ2
, (1. 33)
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(
d

2

)
∇ψ =

−→
iξ

√
ξ2 + 1
ξ2 + η2

∂ψ

∂ξ
+
−→
iη

√
1− η2

ξ2 + η2

∂ψ

∂η

+
−→
iφ

1√
(ξ2 + 1) (1− η2)

∂ψ

∂φ
, (1. 34)

and(
d

2

)2 (
cosh2 α− sin2 β

)
4ψ

=
1

coshα
∂

∂α

(
coshα

∂ψ

∂α

)
+

1
sinβ

∂

∂β

(
sinβ

∂ψ

∂β

)
+
(

1
sin2 β

− 1
cosh2 α

)
∂2ψ

∂φ2
, (1. 35)

(
d

2

)
∇ψ =

1√
cosh2 α− sin2 β

{
−→
iα
∂ψ

∂α
+
−→
iβ
∂ψ

∂β

}
+
−→
iφ

1
coshα sinβ

∂ψ

∂φ
.

(1. 36)

1.1.6 Elliptic cylinder coordinates

In terms of Cartesian coordinates, the elliptic cylinder coordinates are

x =
d

2
coshα cosβ, y =

d

2
sinhα sinβ, z = z,

where the range of the coordinates is −∞ < α <∞, 0 ≤ β ≤ π, −∞ < z <∞.
The metric coefficients are

hα = hβ =
d

2

√
cosh2 α− cos2 β, hz = 1,

and the volume element is dV =
(

d
2

)3 (
cosh2 α− cos2 β

)
. The forms of the

Laplacian and gradient are, respectively,

4ψ =
1(

d
2

)2 (
cosh2 α− cos2 β

) {∂2ψ

∂α2
+
∂2ψ

∂β2

}
+
∂2ψ

∂z2
, (1. 37)

∇ψ =
1(

d
2

) (
cosh2 α− cos2 β

) 1
2

{
−→
iα
∂ψ

∂α
+
−→
iβ
∂ψ

∂β

}
+
−→
iz
∂ψ

∂z
.

An alternative representation employs ξ = coshα, η = cosβ, so that

x =
d

2
ξη, y =

d

2

√
(ξ2 − 1) (1− η2), z = z,
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where the range of the coordinates is 1 ≤ ξ <∞,−1 ≤ η ≤ 1,−∞ < z <∞.
The metric coefficients are

hξ =
d

2

√
ξ2 − η2

ξ2 − 1
, hη =

d

2

√
ξ2 − η2

1− η2
, hz = 1.

The volume element is dV =
(

d
2

)3 (
ξ2 − η2

) {(
ξ2 − 1

) (
1− η2

)}− 1
2 dξ dη dz.

The forms of the Laplacian and gradient are, respectively,

4ψ =

√
ξ2 − 1(

d
2

)2
(ξ2 − η2)

∂

∂ξ

(√
ξ2 − 1

∂ψ

∂ξ

)
+√

1− η2(
d
2

)2
(ξ2 − η2)

∂

∂η

(√
1− η2

∂ψ

∂η

)
+
∂2ψ

∂z2
(1. 38)

∇ψ =
−→
iξ

(
d

2

)−1
√

ξ2 − 1
ξ2 − η2

∂ψ

∂ξ
+
−→
iη

(
d

2

)−1
√

1− η2

ξ2 − η2

∂ψ

∂η
+
−→
iz
∂ψ

∂z
(1. 39)

The coordinate surfaces are confocal elliptic cylinders with semi-focal distance
d
2 (when ξ or α is constant) or confocal, one-sheeted hyperbolic cylinders (when
η or β is constant), or planes perpendicular to the z-axis (z = constant).

1.1.7 Toroidal coordinates

In terms of Cartesian coordinates, the toroidal coordinates employ a scale
factor c > 0 and

x =
c sinhα cosφ
coshα− cosβ

, y =
c sinhα sinφ

coshα− cosβ
, z =

c sinβ
coshα− cosβ

,

where the range of the coordinates is 0 ≤ α < ∞,−π ≤ β ≤ π,−π ≤ φ ≤ π.
The metric coefficients are

hα = hβ =
c

coshα− cosβ
, hφ =

c sinhα
coshα− cosβ

,

and the volume element is dV = c3 sinhα (coshα− cosβ)−3
dα dβ dφ. The

form of the Laplacian and gradient can be expressed as

hαhβhφ4ψ =
∂

∂α

(
hφ
∂ψ

∂α

)
+

∂

∂β

(
hφ
∂ψ

∂β

)
+

1
(coshα− cosβ) sinhα

∂2ψ

∂φ2
,

(1. 40)

∇ψ =
−→
iαc

−1 (coshα− cosβ)
∂ψ

∂α
+
−→
iβ c

−1 (coshα− cosβ)
∂ψ

∂β

+
−→
iz c

−1 (coshα− cosβ)
sinhα

∂ψ

∂φ
. (1. 41)
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The coordinate surfaces corresponding to constant α are tori (with minor ra-

dius r = c/ sinhα and major radiusR = c cothα, the tori are
(√

x2 + y2 −R
)2

+

z2 = r2); for constant β, the coordinate surfaces are spheres of radius a =
c/ sinβ and centre on the z-axis at (x, y, z) = (0, 0, b), where b = c cotβ; the
coordinate surfaces of constant φ are azimuthal planes containing the z-axis.
(See Figure 5.1.)

1.2 Solutions of Laplace’s equation: separation of vari-
ables

In this section we describe the solutions to Laplace’s equation generated by
the classical method of separation of variables. A knowledge of these solutions
is essential for the approach to the solution of mixed boundary value problems
described in the next section, because it depends upon the formulation of an
appropriate set of dual series equations with special function kernels.

1.2.1 Cartesian coordinates

We seek a solution to Laplace’s equation in the form

ψ (x, y, z) = X(x)Y (y)Z(z). (1. 42)

Substitution in Equation (1. 23) transforms it to

1
X

d2X

dx2
+

1
Y

d2Y

dy2
+

1
Z

d2Z

dz2
= 0. (1. 43)

Each term in this equation is a function of only one independent variable, so
there are constants (“separation constants”) ν and µ such that

1
X

d2X

dx2
= −ν2 ⇒ X ′′ + ν2X = 0, (1. 44)

1
Y

d2Y

dy2
= −µ2 ⇒ Y ′′ + ν2Y = 0, (1. 45)

and hence

1
Z

d2Z

dz2
−
(
ν2 + µ2

)
= 0 ⇒ Z ′′ −

(
ν2 + µ2

)
Z = 0. (1. 46)

Thus the original equation involving partial derivatives has been reduced to
three ordinary differential equations.

The process just described is the classical process of separation of variables
and leads to infinitely many solutions of the form (1. 42), depending on the
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parameters ν and µ, which can take real or complex values. The solution of
Equations (1. 44)–(1. 46) can be expressed in terms of elementary functions
of form

Xν(x) = Aν cos νx+Bν sin νx, (1. 47)

Yµ(y) = Cµ cosµy +Dµ sinµy, (1. 48)

and
Zν,µ(z) = Eν,µe

−
√

ν2+µ2z + Fν,µe
+
√

ν2+µ2z, (1. 49)

where Aν , Bν , Cµ, Dµ, Eν,µ, and Fν,µ are constants.
The required solution of the given physical problem is obtained by linear

superposition of the particular solutions (1. 42) formed from (1. 47)–(1. 49),
of the form∑

ν,µ

Xν(x)Yµ(y)Zν,µ(z) or
∫∫

Xν(x)Yµ(y)Zν,µ(z)dνdµ,

where the specific conditions of the problem dictate the range of parameters
ν, µ used in the summation or integration as appropriate.

1.2.2 Cylindrical polar coordinates

Applying the method of separation of variables, the Laplace Equation (1. 25)
has particular solutions of the form

ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z), (1. 50)

where
1
ρ

d

dρ
(ρ
dR

dρ
) +

(
λ2 − µ2

ρ2

)
R = 0, (1. 51)

d2Φ
dφ2

+ µ2Φ = 0, (1. 52)

d2Z

dz2
− λ2Z = 0, (1. 53)

and λ and µ are the “separation constants.” The solutions of the latter two
equations are the same as those considered above in (1. 44) and (1. 46):

Φµ(φ) = Aµ cos(µφ) +Bµ sin(µφ), (1. 54)

Zλ(z) = Cλe
−λz +Dλe

+λz. (1. 55)

Equation (1. 51) cannot be expressed in terms of elementary functions;
rescaling u = λρ, we obtain Bessel’s differential equation (see Appendix B.5),

u
d

du
(u
dR

du
) + (u2 − µ2)R = 0. (1. 56)
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Its solutions are linear combinations of Bessel functions,

Rλ,µ (ρ) = Eλ,µ Jµ(λρ) + Fλ,µ Yµ(λρ), (1. 57)

where Jµ(λρ) and Yµ(λρ) are the Bessel functions of order µ, of first and
second kind, respectively.

1.2.3 Spherical polar coordinates

In spherical polars, the Laplace Equation (1. 27) has separated solutions

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (1. 58)

where
1
r2

d

dr
(r2

dR

dr
)− ν(ν + 1)

r2
R = 0, (1. 59)

1
sin θ

d

dθ

(
sin θ

dΘ
dθ

)
+
[
ν(ν + 1)− µ2

sin2 θ

]
Θ = 0, (1. 60)

d2Φ
dφ2

+ µ2Φ = 0, (1. 61)

and µ, ν are the most conveniently chosen forms of the separation constants.
The solutions of these equations are

R(r) = Aνr
ν +Bνr

−ν−1, (1. 62)

Θ(θ) = Cν,µP
µ
ν (cos θ) +Dν ,µQ

µ
ν (cos θ), (1. 63)

Φ(φ) = Eµ cosµφ+ Fµ sinµφ, (1. 64)
where Pµ

ν (cos θ) and Qµ
ν (cos θ) are the associated Legendre functions (see Ap-

pendix B.4) of the first and second kind, respectively. When boundary condi-
tions are applied on spherical coordinate surfaces, no boundaries of which lie
along the planes φ = constant, enforcement of continuity and of periodicity
upon Φ requires that µ be zero or a positive integer, i.e., µ = m (m = 0, 1, 2...).
The Legendre functions Pm

ν (cos θ) are finite over the range 0 ≤ θ ≤ π only
when ν is an integer n, equal to m, or larger. These requirements, of period-
icity of the solution over the range 0 ≤ θ ≤ π, and of its finiteness, restrict the
separation constants so that the particular solutions of Laplace’s equation in
spherical coordinates are linear combinations of

rnY (e)
mn, r

nY (o)
mn , r

−n−1Y (e)
mn, and r−n−1Y (o)

mn ,

where

Y (e)
mn = cos(mφ)Pm

n (cos θ) and Y (o)
mn = sin(mφ)Pm

n (cos θ) (1. 65)

are the “spherical harmonics.” Those harmonics with m = 0 are zonal har-
monics (since these functions depend only on θ, the nodal lines divide the
sphere into zones), those with m = n are sectoral harmonics (since these
functions depend only on φ, the nodal lines divide the sphere into sectors),
and the rest, for 0 < m < n, are known as tesseral harmonics. Their properties
are described in the references in Appendix B.
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1.2.4 Prolate spheroidal coordinates

The separated solutions of Laplace’s equation in prolate spheroidal coordi-
nates (1. 29) are

ψ(ξ, η, φ) = X(ξ)H(η)Φ(φ),

where
d

dξ

[
(ξ2 − 1)

dX

dξ

]
−
[
n(n+ 1) +

m2

ξ2 − 1

]
X = 0, (1. 66)

d

dη

[
(1− η2)

dH

dη

]
+
[
n(n+ 1)− m2

1− η2

]
H = 0, (1. 67)

d2Φ
dφ2

+m2Φ = 0. (1. 68)

The separation constants are n and m. Admissible solutions of the third
equation, with periodic boundary conditions on Φ, are

Φm(φ) = Em cos(mφ) +Dm sin(mφ), (1. 69)

where m is zero or a positive integer. The first and second equations have
as solutions the associated Legendre functions Pm

n and Qm
n of the first and

second kind. For the second equation, if η ∈ [−1, 1], the only finite solutions
(at η = ±1) for H must be proportional to the Legendre function of the first
kind, Pm

n (η), where n is zero or a positive integer; if this restriction is removed

H(η) = Cm
n P

m
n (η) +Dm

n Q
m
n (η). (1. 70)

The maximum range of the variable ξ is [1,∞). For most values of n and m
there is no solution to (1. 66) which is finite over the whole of this interval, so
we use whatever linear combination of Pm

n (ξ) and Qm
n (ξ) that is finite inside

the boundaries of the problem,

X(ξ) = Am
n P

m
n (ξ) +Bm

n Q
m
n (ξ). (1. 71)

In this way, the partial solution of Laplace’s equation ψnm(ξ, η, φ) is the
product of (1. 69)–(1. 71).

In the alternative representation of Laplace’s Equation (1. 31), the sepa-
rated solutions take the form

ψ (α, β, φ) = A(α)B(β)Φ(φ),

where Φ satisfies (1. 68); A satisfies

1
sinhα

d

dα

(
sinhα

dA

dα

)
−
[
n (n+ 1) +

m2

sinh2 α

]
A = 0, (1. 72)

so that it is a linear combination of Pm
n (coshα) and Qm

n (coshα); and B sat-
isfies

1
sinβ

d

dβ

(
sinβ

dB

dβ

)
+
[
n (n+ 1)− m2

sin2 β

]
B = 0, (1. 73)

so that it is a linear combination of Pm
n (cosβ) and Qm

n (cosβ).
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1.2.5 Oblate spheroidal coordinates

The separated equations for the θ- and η- coordinates are the same as for
prolate spheroids, generating solutions sinmθ, cosmθ and Pm

n (η), where m
and n are positive integers (or zero). The equation for the ξ- coordinate has
solutions Pm

n (iξ) andQm
n (iξ). Thus, the partial solutions of Laplace’s equation

in this system have the form

φnm(ξ, η, θ) = [Am
n P

m
n (iξ) +Bm

n Q
m
n (iξ)]Pm

n (η) [Em cosmθ + Fm sinmθ] .
(1. 74)

In the alternative form of Laplace’s equation the separated equations have
solutions sinmθ, cosmθ,Pm

n (cosβ), and Pm
n (i sinhα), Qm

n (i sinhα). The par-
tial solutions are similar to the form of (1. 74).

1.2.6 Elliptic cylinder coordinates

The separated solutions of Laplace’s Equation (1. 38) in elliptic cylinder
coordinates are

ψ(ξ, η, z) = A(α)B(β)Z(z)

where, in general, A and B satisfy Mathieu’s equation and the modified Math-
ieu equation, respectively. For a full description of these functions and their
properties, the reader is referred to [40] and [75]. If ψ is independent of z,
Laplace’s equation becomes

∂2ψ

∂α2
+
∂2ψ

∂β2
= 0,

which has separated solutions

B (β) = B1
m cosmβ +B2

m sinmβ,

A (α) = A1
me

−mα +A2
me

mα.

1.2.7 Toroidal coordinates

Our treatment of the method of separation of variables in this system is based
on that given by N.N. Lebedev [36]. Unlike the cases considered previously,
we cannot directly separate variables in Equation (1. 40). However, define a
new function V by

ψ = V
√

2 coshα− 2 cosβ,

where
√

2 coshα− 2 cosβ may be called the “asymmetry factor;” Laplace’s
Equation (1. 40) becomes

d2V

dα2
+
d2V

dβ2
+ cothα

dV

dα
+

1
4
V +

1
sinh2 α

d2V

dφ2
= 0.
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This admits separation of variables: setting V = A(α)B(β)Φ(φ), we find that

sinh2 α

[
1
A

d2A

dα2
+

1
B

d2β

dβ2
+

cothα
A

dA

dα
+

1
4

]
= − 1

Φ
d2Φ
dφ2

= µ2,

where µ2 is a constant. This implies

d2Φ
dφ2

+ µ2Φ = 0,

1
A

d2A

dα2
+

cothα
A

dA

dα
+

1
4
− µ2

sinh2 α
= − 1

B

d2B

dβ2
= ν2,

where ν2 is another constant, so that

d2B

dβ2
+ ν2B = 0,

1
sinhα

d

dα

(
sinhα

dA

dα

)
−
(
ν2 − 1

4
+

µ2

sinh2 α

)
A = 0. (1. 75)

Thus Laplace’s equation in toroidal coordinates has infinitely many partic-
ular solutions of the form

φ =
√

2 coshα− 2 cosβAµ,ν(α)Bν(β)Φµ(φ),

where
Bν = Cν cos(νβ) +Dν sin(νβ),

Φµ(φ) = Eµ cos(µφ) + Fµ sin(µφ),

and A = Aµ,ν satisfies (1. 75). The introduction of a new variable z = coshα
into this equation transforms it to

d

dz

[
(1− z2)

dA

dz

]
+
[
(ν − 1

2
)(ν +

1
2
)− µ2

1− z2

]
A = 0,

which may be recognised as the differential equation for the associated Leg-
endre functions Pµ

ν− 1
2

or Qµ

ν− 1
2
; thus

Aν,µ(α) = Gν,µP
µ

ν− 1
2
(coshα) +Hν,µQ

µ

ν− 1
2
(coshα).

1.3 Formulation of potential theory for structures with
edges

The focus of this book is potential theory – the study of solutions of La-
place’s equation – especially for structures in which edge effects are important.
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As already indicated, the boundary conditions must be supplemented by a de-
cay condition at infinity as well as finite energy constraints near edges, so that
a unique and physically relevant solution can be found.

Since edges introduce distinctive features into the theory, let us distinguish
between closed surfaces, those possessing no boundary or edge, and open
shells, which have one or more boundaries. A spherical surface is closed, whilst
the hemispherical shell is open with a circular boundary. A more sophisti-
cated distinction can be formulated in topological terms, but this is unneces-
sary for our purposes. The smoothness of the surface, including the presence
of singularities such as corners or conical tips, is important in considering
the existence and uniqueness of solutions. This topic has been extensively
investigated by Kellogg [32]. However, the surfaces under investigation in this
book are portions of coordinate surfaces as described in the Introduction, and
both the surfaces and bounding curves are analytic or piecewise analytic. The
smoothness conditions, which must be imposed on the closed or open surfaces
in a more general formulation of potential theory, are automatically satisfied
and will be omitted from further discussion except for two cases, the conical
shells considered in Chapter 6, and the two-dimensional axially-slotted cylin-
ders of arbitrary cross-sectional profile considered in Section 7.5; appropriate
smoothness conditions are considered in the respective sections.

This section outlines generic aspects of potential theory applicable to both
open and closed surfaces, together with those features that are distinctive
for open shells. Let us begin with the conditions under which a uniqueness
theorem, assuring existence of potentials for closed surfaces, can be asserted.

A closed surface separates space into two regions, namely internal and ex-
ternal ; the internal region may be composed of two or more disconnected
parts depending upon the topology of the closed surface. Thus, we can con-
sider either the internal boundary value problem for Laplace’s equation or the
external boundary value problem. The term boundary value problem requires
an explicit definition of the type of boundary condition imposed on solutions
U(−→r ) of Laplace’s equation on the closed surface S. Either U is specified
everywhere on S (the Dirichlet problem) or its normal derivative

∂U

∂n

(in the direction of the outward normal −→n on S) is specified on S (the Neu-
mann problem), or a linear combination of U and its normal derivative is
specified. These three types, known as first-, second-, and third-kind bound-
ary value problems, respectively, may be expressed as

U = f1 onS,

∂U

∂n
= f2 onS,

or
∂U

∂n
+ h(U − f3) = 0 onS,
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where f1, f2, f3, and h are given functions on S. Thus the internal Dirichlet
boundary value problem for Laplace’s equation can be formulated as follows.

Problem 1 Let V be a given region of space which is open, and is bounded
by the closed surface S. Find the function U that (a) satisfies Laplace’s equa-
tion ∆U = 0 within the region V, (b) is continuous in the closed region V ∪S
including the boundary surface S, and (c) takes an assigned value on S.

The external Dirichlet boundary value problem for an infinite open region
V exterior to the closed surface S requires an additional constraint on the
behaviour of the solution as the observation point tends to infinity.

Problem 2 Let V be an infinite open region exterior to the closed sur-
face S. Find the function U that (a) satisfies Laplace’s equation ∆U = 0 in
the infinite region V, (b) is continuous in the closed region V ∪ S including
the bounding surface S, (c) takes on assigned value on S, and (d) converges
uniformly to zero at infinity: U(−→r ) → 0 as |−→r | → ∞.

It is proved in [32] and [60] that when these conditions are satisfied, a unique
solution providing a potential can be guaranteed. The Kelvin transform

V (−→r ) = r−1U(r−2−→r )

of U is harmonic, except at −→r =
−→
0 , if U is harmonic (see [17])). If we require

that the function U be harmonic at infinity, i.e., the function V is harmonic
at the origin, then condition (d) may be omitted; in either case, the radial
derivative ∂U/∂r = O(r−2) as r → ∞. Sometimes the conditions (a)–(c), or
(a)–(d) above are referred to as “the conditions of the uniqueness theorem.”
If U is harmonic, and its value is prescribed on the surface S, then V solves
the Dirichlet problem where its value is prescribed in the obvious way on the
surface S′, which is the image of S under the Kelvin transform −→r 7−→ r−2−→r
of inversion in a unit sphere centred at the origin.

The strict demarcation of internal and exterior regions is lost once a closed
surface is punctured and the potentials in previously disconnected regions are
coupled to one another across the aperture introduced in the closed surface.
Whilst the conditions described above are satisfactory for closed bodies, open
surfaces require a supplementary condition to deal appropriately with the sin-
gular behaviour of potentials near the edges or rims of the aperture boundary
curve.

Physical motivation for the final form and choice of this condition can be
found in the electrostatic example of an ideally conducting body with a point
or edge. When charged, a high-level electrostatic field is created near the
point or edge due to charge concentration in its vicinity; the field tends to
infinity as the point of observation approaches the point or edge. By contrast,
away from the edge, the surface charge density varies smoothly as does the
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potential. However, in the vicinity of the edge, the electrostatic field

−→
E = −∇U (1. 76)

exhibits extremely high values.
At first sight, this localized high-level electrostatic field might be considered

an “equivalent source.” Nevertheless, some care is needed in this interpreta-
tion because the energy integral attached to a real source occupying a volume
V diverges:

1
2

∫∫∫
V

ε0

∣∣∣−→E ∣∣∣2 dV = ∞. (1. 77)

(As an illustration, consider a unit charge placed at the origin of a spherical
coordinate frame. The potential is V = r−1 and the electrostatic field is
radically directed:

−→
E = −→r /r3; the energy integral is clearly divergent.)

On the other hand, the energy associated with the charged conductor might
reasonably be expected to be finite, so that the apparent or equivalent source
in the vicinity of the edge possesses a weaker (integrable) singularity than
that of a real source. The discussion of appropriate models for real physical
sources has a long history; suffice it to say that in the absence of such localized
sources, the energy associated with the structure must remain bounded.

This discussion provides a physical motivation for our additional “edge con-
straint,” namely that the gradient of the potential (electrostatic or otherwise)
must be square integrable over the whole volume V of space:∫∫∫

V

|gradU |2 dV =
∫∫∫

V

|∇U |2 dV <∞. (1. 78)

Abstracting from the particular physical problem that the potential function
U(−→r ) describes, we assume that the value |∇U |2 is proportional to the vol-
ume density of the energy, and whereas this gradient may exhibit singular
behaviour at various points of the region under consideration, the total en-
ergy within any bounded volume including the edges must be finite, as in (1.
78). We will see later that this condition ensures that the potential is uniquely
determined.

From a mathematical point of view, the condition (1. 78) is important in
establishing existence and uniqueness of solutions to Laplace’s equation. One
way of demonstrating existence of solutions is via the “Dirichlet principle,”
which asserts that any function U that minimises∫∫∫

V

|gradU |2 dV, (1. 79)

subject to the constraint U = f on S, where the continuous function f is
prescribed, satisfies Laplace’s equation ∆U = 0 subject to the boundary
condition U = f on S. This principle has had a chequered career, which
is traced in [43], but eventually it was placed on a rigorous basis for a large
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class of bounding surfaces S. The principle stimulated much careful analysis
of surfaces (there are surfaces for which Laplace’s equation cannot be solved
uniquely) and lead to the development of functional analysis through the ex-
amination of the class of functions for which the minimum of (1. 79) is actually
attained.

Accepting that Laplace’s equation, with the boundary condition U = f
on S, has at least one solution, uniqueness is established by considering the
difference U1 of any two such distinct solutions. U1 is harmonic and vanishes
on S, and the divergence theorem shows that∫∫

Σ

U1
∂U

∂r
dS −

∫∫
S

U1
∂U

∂n
dS =

∫∫∫
V

|gradU1|2 dV, (1. 80)

where Σ denotes a large spherical surface of radius R enclosing S, and −→n is
the outward normal on S; the bounds, U1 = O(R−1) and ∂U1

∂r = O(R−2) as
R → ∞, show that both sides of (1. 80) vanish as R → ∞, so that U1 is
identically zero, and the solution U is unique. This argument is not directly
valid when S is an open surface with edges (the divergence theorem is not
applicable); it may be modified by surrounding the open surface by a small
open region with a smooth bounding surface Sε whose volume ε contracts to
zero; uniqueness holds for the surface Sε, and by letting ε → 0, the same
result can be recovered for the surface S, provided the energy integral (1. 79)
is finite. The same identity can be employed to show that if S is a smooth
surface bounding an open volume, the energy integral (1. 79) is finite.

Examples of nontrivial solutions to Laplace’s equation that decay at infinity
(according to U(−→r ) → 0 as |−→r | → ∞) yet vanish on an open surface S0 may
be constructed should the requirement of finiteness of the energy integral be
disregarded. Consider, in cylindrical polars (ρ, φ, z), the half-plane φ = 0. For
any positive integer n, the functions ψn = Anρ

−n
2 sin (nφ/2) satisfy Laplace’s

equation (with arbitrary constants An) and vanish on S. The image of S under
inversion in a unit sphere located at (ρ, φ, z) = (1, π, 0) is a circular disc D.
The Kelvin transform of ψn is harmonic on D, vanishes on D, and is O(|−→r |−1)
as |−→r | → ∞.

Thus, in formulating the statement of boundary value problems for La-
place’s equation, two differences between closed and open surfaces are appar-
ent. First, the well-defined concept of internal and external boundary value
problems for closed surfaces disappears, the determination of the potential for
open surfaces becomes a mixed boundary value problem for Laplace’s equa-
tion; secondly, as well as the conditions standardly imposed in the determina-
tion of the potential field associated with a closed body, an extra boundedness
condition (1. 78) must be imposed on the energy to determine uniquely the
potential distribution associated with an open surface.

Later chapters examine potential theory for open shells that are portions
of the orthogonal coordinate surfaces described in Section 1.1. By way of
illustration, consider the particular example of a spherical shell S0 of radius a
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subtending an angle θ0 at the origin; it is defined in spherical coordinates by

r = a, 0 ≤ θ ≤ θ0, 0 ≤ φ ≤ 2π.

The spherical surface S of radius a may be regarded as the union of the shell
S0 and the “aperture” S1 given by

r = a, θ0 < θ ≤ π, 0 ≤ φ ≤ 2π.

Problem 3 Suppose the shell S is charged to unit potential. Find the
potential U(r, θ, φ) that satisfies the following conditions: (1) ∆U = 0 at all
points, except on the shell; (2) U is everywhere continuous, including all points
on the surface S = S0 ∪ S1; on S0, U takes a prescribed value: U(a, θ, φ) =
Φ(θ, φ), at all points of S0; (3) the normal or radial derivative is continuous
at all points of S1:

lim
r→a+

∂U

∂r
(r, θ, φ) = lim

r→a−

∂U

∂r
(r, θ, φ) for θ0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π;

(4) U converges uniformly to 0 at infinity: U(r, θ, φ) → 0 as r → ∞, and (5)
the energy integral must be bounded in any volume V including the edges:∫∫∫

V

|∇U |2 dV =∫∫∫
V

{∣∣∣∣∂U∂r
∣∣∣∣2 +

1
r2

∣∣∣∣∂U∂θ
∣∣∣∣2 +

1
r2 sin2 θ

∣∣∣∣∂U∂φ
∣∣∣∣ 2

}
dV <∞.

More generally, let us formally state the first-kind mixed boundary value
problem (BVP) for Laplace’s equation pertaining to an open surface S0 that
is a portion of a coordinate surface S in one of those coordinate systems
in which Laplace’s equation can be solved by the method of separation of
variables (Section 1.2). The term mixed refers to the enforcement of different
boundary conditions on the two portions comprising the surface S (namely
the shell S0 and the aperture S1).

Let (q1, q2, q3) be the curvilinear coordinates in this system, and suppose
that S is the coordinate surface on which q1 takes a fixed value, q01 . Let I2 and
I3 be the intervals over which q2 and q3 range (in the spherical cap example,
I2 = [0, π] and I3 = [0, 2π] where q2 and q3 are identified with θ and φ). Thus
S is parametrised by I = I2 × I3.

We consider shells S0 which are parametrised by I0 = I
(0)
2 × I(0)

3 where I(0)
2

is composed of one or more subintervals of I2, and I
(0)
3 is a similar subset of

I3 ; however, as a rule, either I(0)
2 = I2 or I(0)

3 = I3. The “aperture” area S1

may then be parametrised by I1, the complement of I0 in I (I = I0 ∪ I1).
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Problem 4 The first-kind mixed BVP for Laplace’s equation. Find the
potential U = U(q1, q2, q3) satisfying the following conditions: (1) ∆U = 0 at
all points, of space except on S; (2) U is everywhere continuous, including all
points on the surface S = S0 ∪ S1, that is

lim
q1→q0

1+0
U(q1,q2, q3) = lim

q1→q0
1−0

U(q1,q2, q3) (1. 81)

where (q2, q3) ∈ I; (3) the value of U is prescribed on S0, by a given continuous
function F :

lim
q1→q0

1+0
U(q1,q2, q3) = lim

q1→q0
1−0

U(q1,q2, q3) = F (q2, q3) (1. 82)

where (q2, q3) ∈ I0; (4) the normal derivative ∂U
∂q1

must be continuous on the
aperture S1:

lim
q1→q0

1+0

∂U

∂q1
(q1,q2, q3) = lim

q1→q0
1−0

∂U

∂q1
(q1,q2, q3) (1. 83)

where (q2, q3) ∈ I1; (5) U(q1,q2,q3) converges uniformly to 0 at infinity:

U(q1,q2,q3) → 0 as |(q1,q2,q3)| → ∞; (1. 84)

and (6) the energy integral must be bounded in any arbitrary volume V in-
cluding the edges:∫∫∫

V

|∇U |2 dV =
∫∫∫

V

{∣∣∣∣ 1
h1

∂U

∂q1

∣∣∣∣2 +
∣∣∣∣ 1
h2

∂U

∂q2

∣∣∣∣2 +
∣∣∣∣ 1
h3

∂U

∂q3

∣∣∣∣2
}
dV <∞

(1. 85)
(where h1, h2, h3 are the metric coefficients).

The condition (1. 85) gives rise to most of the so called edge conditions
appearing in the literature; these prescribe the singular behaviour of the po-
tential close to an edge, determining, for example, the order of the singularity.
It is worth noting that the normal derivative is continuous onto the surface
S0, but may take different values as its approaches a point on S0 from one
side or the other. Also, in the vicinity of the edge the normal derivative is
generally unbounded. The jump in normal derivative across the surface S0

is the single-layer density used in the standard integral representation of the
field (see Section 1.7). Physically, it is proportional to surface charge density.

In contrast to first-kind mixed problems are those of second kind, in which
the role of U and ∂U

∂q1
are interchanged in the boundary conditions (1. 82)

and (1. 83).

Problem 5 The second-kind mixed BVP for Laplace’s equation. Find the
potential U = U(q1,q2,q3) satisfying the following conditions: (1) ∆U = 0 at
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all points of space, except on S; (2) the normal derivative

∂U

∂n
=
∂U

∂q1

is everywhere continuous, including all points on the surface S = S0∪S1, that
is [

∂U

∂q1

]
q1=q0

1−0

=
[
∂U

∂q1

]
q1=q0

1+0

(1. 86)

where (q2, q3) ∈ I; (3) the value of the normal derivative is prescribed on S0,
by a continuous function G:

lim
q1→q0

1−0

∂U

∂q1
(q1,q2,q3) = lim

q1→q0
1+0

∂U

∂q1
(q1,q2,q3) = G(q2, q3), (1. 87)

where (q2,q3) ∈ I0; (4) U is continuous on the aperture S1:

lim
q1→q0

1−0
U(q1,q2,q3) = lim

q1→q0
1+0

U(q1,q2,q3), (1. 88)

where (q2, q3) ∈ I1; (5) U(q1,q2,q3) converges uniformly to 0 as |(q1,q2,q3)| →
∞ (cf. (1. 84)); and (6) the energy integral (1. 85) must be finite.

Succeeding chapters provide constructive methods for uniquely solving both
types of mixed boundary value problems for Laplace’s equation. Our methods
utilise the special functions associated with the orthogonal coordinate system
of relevance to the particular problem at hand to obtain a pair of functional
equations, which are enforced on S0 and on the aperture S1, respectively. A
constructive and rigorously correct mathematical method – to be explained in
the next chapter – may be applied to solve this pair, to determine completely
the unique potential satisfying the appropriate six conditions listed above.

Let us describe generally how these functional equations arise, for the first-
kind mixed boundary value problems for Laplace’s equation, under the some-
what restrictive assumption that the solution is independent of one coordinate,
say q3, so that

∂U

∂q3
(q1,q2,q3) = 0. (1. 89)

In this case the function F (see (1. 82)) is independent of q3 : F (q2, q3) ≡
F (q2).

Dual (or multiple) series equations arise when the eigenvalue spectrum of
the Sturm-Liouville problem, originating from the ordinary differential equa-
tions obtained in application of the separation of variables technique applied
to Laplace’s equation, is discrete. Separated solutions are generated for the
two regions separated by S (namely, the regions q1 < qo

1 and q1 > qo
1) in the

form

Un(q1, q2) =

{
x

(1)
n R

(1)
n (q1)An(q2), q1 < qo

1

x
(2)
n R

(2)
n (q1)An(q2), q1 > qo

1

}
(1. 90)
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(where the index n = 0, 1, 2, ... labels the spectrum), and the corresponding
total solution is the superposition

U(q1, q2) =
∞∑

n=0

Un(q1, q2) =
∞∑

n=0

{
x

(1)
n R

(1)
n (q1), q1 < qo

1

x
(2)
n R

(2)
n (q1), q1 > qo

1

}
An(q2). (1. 91)

The unknown Fourier coefficients
{
x

(1)
n

}∞
n=0

and
{
x

(2)
n

}∞
n=0

are to be deter-

mined; R(1)
n , R(2)

n are radial functions, and An is an angle function by con-
vention.

Both R(1)
n and R(2)

n satisfy the same ordinary differential equation and pro-
vide a basis for the set of all solutions of this differential equation; R(1)

n is
chosen to be regular in the domain q1 ≤ qo

1 (so determining it uniquely up
to a constant factor), whereas R(2)

n is chosen to satisfy the condition (1. 84);
thus R(2)

n is regular in the domain q1 ≥ qo
1 and determined uniquely up to a

constant factor. The infinite set of angle functions {An}∞n=0 is complete and
orthogonal on I2 with respect to a weight function, denoted h :∫

I2

h(q2)An(q2)Am(q2)dq2 = αnδnm. (1. 92)

The constants αn are necessarily positive, so that the normalised functions
Ân = An/α

1
2
n form a complete orthonormal set.

The continuity condition (1. 81), together with (1. 92), gives a relationship
between x(1)

n and x(2)
n ,

x(2)
n =

(
R(1)

n (qo
1)/R

(2)
n (qo

1)
)
x(1)

n , (1. 93)

so that (1. 91) becomes

U(q1, q2) =
∞∑

n=0

x(1)
n

{
R

(1)
n (q1), q1 < qo

1

R
(1)
n (qo

1)R
(2)
n (q1)/R

(2)
n (qo

1), q1 > qo
1

}
An(q2), (1. 94)

or, in symmetric form,

U(q1, q2) =
∞∑

n=0

Xn

{
R

(2)
n (qo

1
)R(1)

n (q1), q1 < qo
1

R
(1)
n (qo

1
)R(2)

n (q1), q1 > qo
1

}
An(q2), (1. 95)

where we have rescaled x(1)
n = R

(2)
n (qo

1)Xn. Enforcing the boundary conditions
(1. 82) and (1. 83) leads to the pair of functional equations

∞∑
n=0

XnR
(1)
n (qo

1)R
(2)
n (qo

1)An(q2) = F (q2), q2 ∈ I(0)
2 , (1. 96)
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∞∑
n=0

XnW
(
R(1)

n (qo
1), R

(2)
n (qo

1)
)
An(q2) = 0, q2 ∈ I2\I(0)

2 , (1. 97)

where the Wronskian

W
(
R(1)

n (q1), R(2)
n (q1)

)
= R(1)

n (q1)
d

dq1
R(2)

n (q1)−R(2)
n (q1)

d

dq1
R(1)

n (q1)

is evaluated at q1 = qo
1. These equations are referred to as dual series equations

if the interval I2\I(0)
2 is a simply connected subset of I2; otherwise, they

are referred to as triple- or multiple-series equations depending on the total
number of connected subintervals of I2 appearing in Equations (1. 96) and
(1. 97)

Enforcement of the finite energy condition (1. 85) provides a unique solution
to (1. 96) and (1. 97); essentially, it provides the correct functional space
setting for the coefficients Xn. The simplest but most effective choice of the
volume V of integration in (1. 85) is the interior region (q1 ≤ qo

1, q2 ∈ I2, q3 ∈
I3); it is bounded, finite, and involves the edges. Substitution of the relevant
derivatives, obtained from term-by-term differentiation of (1. 91) and (1. 94),
into the energy integral (1. 85) gives a condition which the Fourier coefficients
(x(1)

n or Xn) must satisfy. This condition will always take the form

∞∑
n=0

cn

∣∣∣x(1)
n

∣∣∣2 <∞, (1. 98)

where cn is some explicitly known coefficient.
Conversely, as we will see in succeeding sections, the condition (1. 98)

ensures that the operations of term-by-term integration and differentiation,
to be applied on the series (1. 96) and (1. 97), are justified and valid. If the
angle functions are normalised, the condition (1. 98) becomes

∞∑
n=0

|yn|2 <∞, (1. 99)

where {yn}∞n=0 is a suitably rescaled sequence related to
{
x

(1)
n

}∞
n=0

or {Xn}∞n=0 .

Thus the sequence {yn}∞n=0 belongs to the set of square summable Fourier co-
efficients l2.

When the spectrum of the relevant Sturm-Liouville problem is continu-
ous, a similar argument produces dual (or multiple) integral equations. This
schematic outline of the formulation and basic features of boundary value
problems for structures with edges will be refined and analysed more care-
fully when concrete configurations are encountered.
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1.4 Dual equations: a classification of solution methods

It is perhaps well known that a comprehensive theory to solve dual equations
does not exist, and that many treatments have been developed to obtain
solutions to such equations. Essentially, these treatments can be grouped
into three basic methods: the definition-extension method described by W.E.
Williams, [76] the substitution method described by B. Noble, [46] and the
multiplying factor method also described by B. Noble [47].

The common and distinctive feature of all these methods is the utilization,
in one form or another, of Abel’s integral equation (or transform) technique.
Let us illustrate these methods with the simple problem of determining the
potential of a charged spherical cap when its surface is held at a constant unit
value of potential. This problem produces the following dual series equations
involving Legendre polynomials Pn(cos θ),

∞∑
n=0

anPn(cos θ) = 1, θ ∈ (0, θ0), (1. 100)

∞∑
n=0

(2n+ 1)anPn(cos θ) = 0, θ ∈ (θ0, π), (1. 101)

where the unknown desired set of coefficients {an}∞n=0 must belong to the
Hilbert functional space l2. The concrete form of condition (1. 85) that
imposes this constraint on the coefficients is

∞∑
n=0

n+ 1
2n+ 1

|an|2 <∞. (1. 102)

1.4.1 The definition method

To solve Equations (1. 100) and (1. 101), let us define a function g on [0, θ0],
which provides the extension of (1. 101) to the complete interval [0, π]. That
is, let

∞∑
n=0

(2n+ 1)anPn(cos θ) =
{
g(θ), θ ∈ [0, θ0)
0, θ ∈ (θ0, π]

}
. (1. 103)

In (1. 103) the left-hand side is the Fourier-Legendre expansion for a certain
function F ; the right-hand side is the piecewise continuous expression of that
function F on [0, π].

The orthogonality property of the set of Legendre polynomials {Pn}∞n=0 on
[0, π] allows us to express {an}∞n=0 in terms of the function g :

an =
1
2

∫ θ0

0

g(θ)Pn(cos θ) sin θdθ. (1. 104)
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Substitute this expression in (1. 100), and invert the order of integration and
summation; the original Equations (1. 100) and (1. 101) are then reduced to
the first-kind Fredholm integral equation∫ θ0

0

g∗(ϑ)K(ϑ, θ)dϑ = 1, θ ∈ (0, θ0) (1. 105)

where g∗(ϑ) = sinϑg(ϑ), and the kernel is

K(ϑ, θ) =
1
2

∞∑
n=0

Pn(cosϑ)Pn(cos θ). (1. 106)

Following the idea developed by W. E. Williams [76], we solve (1. 105) by
the successive solution of two Abel integral equations. To this end, represent
the kernel (1. 106) in the form

K(ϑ, θ) =
1
2π

∫ min(ϑ,θ)

0

dφ√
(cosφ− cosϑ)(cosφ− cos θ)

(1. 107)

This representation is easily obtained from the Dirichlet-Mehler formula (see
Appendix B. 94),

Pn(cos θ) =
√

2
π

∫ θ

0

cos(n+ 1
2 )φ

√
cosφ− cos θ

dφ, (1. 108)

from which it follows that
∞∑

n=0

Pn(cosϑ) cos(n+
1
2
)φ =

{
[2(cosφ− cosϑ)]−

1
2 , 0 ≤ φ < ϑ

0, , ϑ < φ ≤ π

}
. (1. 109)

Decomposing the integration domain in (1. 105) into two parts, (0, θ)∪(θ, θ0),
and using the expression (1. 107), one obtains the repeated integral

1
2π

∫ θ

0

dφ√
cosφ− cos θ

∫ θ0

φ

g∗(ϑ)√
cosφ− cosϑ

dϑ = 1, θ ∈ (0, θ0).

(1. 110)
A double application of the inversion formulae to this iterated Abel integral

equation (see the next section) yields the solution for the function g in closed
form:

g(ϑ) =
√

2
π

{
2 cos 1

2θ0√
cosϑ− cos θ0

+
π

2
− arcsin

(
cos 1

2θ0

cos 1
2θ

)}
. (1. 111)

The substitution of this expression for the function g in (1. 104) gives, after
elementary integration, the final solution for the Fourier coefficients:

an =
1
π

[
sinnθ0
n

+
sin(n+ 1)θ0

n+ 1

]
. (1. 112)

The function g coincides with the surface charge density on the cap, and
possesses the expected singularity of order − 1

2 as ϑ→ θ0 (Formula (1. 111)).
Moreover, by construction, the solution {an}∞n=0 given in (1. 112) lies in l2.
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1.4.2 The substitution method

This method is based upon expansion of a certain discontinuous function in a
Fourier-Legendre series. Its analytic form permits us to find a representation
of the solution that automatically satisfies one of the dual equations. Con-
sidering (1. 108), let us represent the coefficients an in terms of an unknown
function U , so that

an =
∫ θ0

0

U(t) cos(n+
1
2
)t dt. (1. 113)

The functional Equation (1. 101) is automatically satisfied, but the companion
Equation (1. 100) is transformed, after an interchange of integration and
summation, to the Abel integral equation∫ θ

0

U(t)dt√
cos t− cos θ

=
√

2, θ ∈ (0, θ0). (1. 114)

This possesses the obvious solution

U(t) =
2
π

cos
t

2
, t ∈ (0, θ0)

and substitution in (1. 113) immediately leads to the previously obtained
solution (1. 112).

1.4.3 Noble’s multiplying factor method

The essence of the multiplying factor method is the following. Each of the
Equations (1. 100) and (1. 101) is multiplied by a suitable functional factor
and then an appropriate integral operator, or a combination of integral and
differential operators is applied to transform the left-hand side of (1. 100)
or (1. 101) to the same functional expression – a Fourier series (or similar)
involving the coefficients an. The coefficients an are then obtained from the
calculation of the Fourier coefficients of the piecewise continuous function
obtained by the transform of the right-hand side of (1. 100) and (1. 101)
under this process.

In our example problem, the operators are derived from the well-known
identities arising from the inversion of the Dirichlet-Mehler formulae (B. 94):

cos(n+
1
2
)θ =

1√
2
d

dθ

∫ θ

0

Pn(cosφ)√
cosφ− cos θ

sinφdφ, (1. 115)

cos(n+
1
2
)θ =

1√
2
(n+

1
2
)
∫ π

θ

Pn(cosφ)√
cos θ − cosφ

sinφdφ. (1. 116)

Let K1 and K2 denote operators defined by

(K1f)(θ) =
1√
2
d

dθ

∫ θ

0

f(φ) sinφdφ√
cosφ− cos θ

(1. 117)
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and

(K2f)(θ) =
1√
2

∫ π

θ

f(φ) sinφdφ√
cos θ − cosφ

. (1. 118)

Applying K1 to (1. 100) and K2 to (1. 101) yields

∞∑
n=0

an cos(n+
1
2
)θ =

{
cos 1

2θ, θ ∈ (0, θ0)
0, θ ∈ (θ0, π)

}
. (1. 119)

A calculation of the coefficients an, using the orthogonality property∫ π

0

cos(n+
1
2
)θ cos(m+

1
2
)θdθ =

π

2
δnm,

leads to the previously obtained form (1. 112) of the desired solution.
Thus all the three methods described above employ Abel’s integral equation

in some form or another. Noble’s multiplying factor method can be seen
as a direct application of fractional integration. The relationship between
fractional integration and integral transforms of Abel type is discussed fully
in [55].

1.4.4 The Abel integral transform method

A more direct and readily justified method of solving dual series is the Abel
integral transform method which was developed in [67], [68], [69], [70] and
[71]. It can be directly identified with the integral representation method
described in [21], the only difference being that the mathematical validity
of the operations in the first approach is properly established, whereas the
analysis of the latter approach is purely formal in manner.

This is not to assert that the Abel integral transform method is a completely
new method to solve dual, triple, and multiple series or integral equations of
this class. It is clearly rooted in the integral representation method described
in [21]. It is worth emphasizing that each of the sequences of mathematical
operations associated with the Abel integral transform method is straightfor-
wardly justified, so there is no doubt about the validity of solutions obtained
by this approach. The name of the method highlights the transform at its
core.

Various classes of dual and triple series equations are solved in a mathe-
matically rigorous manner by the application of this method in Chapter 2.
By way of illustration, let us apply the Abel integral transform method to the
charged spherical cap problem described earlier in this section. The method
transforms each functional equation (of the dual series equations) to an inte-
gral equation that is recognizable as Abel’s integral equation with zero forcing
term. It has a unique solution, namely zero, which provides the basis for the
final solution step.
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Considering (1. 100), we replace the right-hand side with the expression,
derived from (1. 108), n = 0,

1 =
√

2
π

∫ θ

0

cos 1
2φdφ√

cosφ− cos θ
.

The terms on the left-hand side are replaced by the representation (1. 108).
An interchange of integration and summation is permissible under the condi-
tion (1. 102), and leads to the homogeneous Abel integral equation∫ θ

0

f(φ)dφ√
cosφ− cos θ

= 0, θ ∈ [0, θ0), (1. 120)

where

f(φ) =
∞∑

n=0

an cos(n+
1
2
)φ− cos

1
2
φ.

Because Equation (1. 120) has the unique zero solution, we obtain

∞∑
n=0

an cos(n+
1
2
)φ− cos

1
2
φ = 0, φ ∈ [0, θ0). (1. 121)

Turning to (1. 101), term-by-term integration of this series is also permit-
ted, because the series is uniformly Abel-summable (this point is discussed in
greater detail in Section 2.2). Multiplying by sin θ and integrating over (θ, π)
(when θ > θ0), produces

∞∑
n=0

an [Pn−1(cos θ)− Pn+1(cos θ)] = 0, θ ∈ (θ0, π]. (1. 122)

Here we have used the well-known formula (see Appendix, (B. 58))

(2n+ 1)Pn(x) =
d

dx
[Pn−1(x)− Pn+1(x)] , (1. 123)

and the Dirichlet-Mehler formula (see [55]) for the Legendre polynomials

Pn(cos θ) =
√

2
π

∫ π

θ

sin(n+ 1
2 )φdφ

√
cos θ − cosφ

, (1. 124)

to derive the Abel transform representation for the difference

Pn−1(cos θ)− Pn+1(cos θ) = −2
√

2
π

∫ π

θ

cos(n+ 1
2 )φ sinφdφ

√
cos θ − cosφ

. (1. 125)

Note that both Equations (1. 122) and (1. 100) possess a common feature.
The asymptotics for the Legendre polynomials

Pn(x) = O(n−
1
2 ) as n→∞
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ensure that the asymptotic behaviour of the terms in each series is the same.
The substitution of the transform (1. 125) into (1. 122) produces the

integral equation ∫ π

θ

g(φ) sinφdφ√
cos θ − cosφ

= 0, θ ∈ (θ0, π], (1. 126)

where

g(φ) =
∞∑

n=0

an cos(n+
1
2
)φ, φ ∈ (θ0, π]; (1. 127)

it has the solution
∞∑

n=0

an cos(n+
1
2
)φ = 0, φ ∈ (θ0, π]. (1. 128)

The interchange of summation and integration is justified under condition (1.
102).

Combining the results (1. 121) and (1. 128) produces the same result as
given by Noble’s multiplying factor method, and consequently the same closed
form expression (1. 112) for the coefficients an.

In spite of its simplicity, this example illustrates all the features that are
characteristic of the Abel integral transform method. The main features that
occur in a typical application to potential theory, which requires the solution
of dual, triple, or multiple series equations, or integral equations of this type,
the kernels of which involve hypergeometric functions, are as follows.

The very first step is to determine the solution class from the edge condition.
This key point allows us to establish the validity of various mathematical
operations on series or integrals. Next, the convergence rate of each member
of the dual equations must be assessed. For example, the convergence rate
of (1. 100) is O(n−

3
2 ) as n → ∞, whereas the rate of (1. 101 ) is O(n−

1
2 ),

as n → ∞. The equation with the slower convergence is subjected to an
integration operation that equilibrates the convergence rate of both equations
(for example, see the transition from (1. 101) to (1. 122)).

Although both members of this pair of transformed functional equations
now possess the same convergence rate, each involves different kernels (Pn(cos θ)
or Pn−1(cos θ)−Pn+1(cos θ) in the example above). The third step represents
the kernel (and right-hand side) of each equation as an Abel integral trans-
form. One can then interchange the order of summation and integration (for
dual series equations), or the order of double integrals (for dual integral equa-
tions), as appropriate. As a result, one obtains two independent integral
equations of Abel type, each of which possesses a unique solution, namely
zero (see (1. 121) and (1. 128) of the example above).

The final phase is to recognize that a Fourier series (or Fourier integral)
in the unknown coefficients has been obtained by this process; the series or
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integral is equal to a known function, with a piecewise continuous representa-
tion on its complete interval of definition. Our example above produced the
representation (1. 119). Using properties of orthogonality and completeness
of terms in the series – or an inverse Fourier integral transform as appropriate
– we obtain the final solution for the unknown coefficients.

This general description provides a common formal structure to construct
solutions of multiple series or integral equations. The mathematical tools to
realise each step of this process are discussed in Chapter 2.

1.5 Abel’s integral equation and Abel integral trans-
forms

Most texts on linear integral equations invariably discuss Abel’s integral
equation in the first few pages because it is a precursor of the modern theory
of linear integral equations. Originally, Abel’s integral equation

f(x) =
∫ x

0

u(ξ)dξ√
x− ξ

(1. 129)

arose from the following problem in mechanics. A particle moving under
the influence of gravity, along a smooth curve in a vertical plane, takes the
time f(x) to move from the vertical height x to a fixed point on the curve.
The problem is to find the function u defining that curve, known as the
tautochrone.

Instead of Equation (1.129) , Abel set himself the problem of solving the
more general equation

f(x) =
∫ x

a

u(ξ)dξ
(x− ξ)λ

, (0 < λ < 1), (1. 130)

where f is a known function and u is the function to be determined. Details
of the solution of this generalised Abel’s equation can be found in several
texts, including [63], [50], and [24]; we simply state the inversion formula for
(1.130):

u(ξ) =
sinλπ
π

d

dξ

∫ ξ

a

f(x)dx
(ξ − x)1−λ

. (1. 131)

The companion form of the generalised Abel integral equation is

f(x) =
∫ b

x

u(ξ)dξ
(ξ − x)λ

, (0 < λ < 1), (1. 132)

and has the solution

u(ξ) = − sinλπ
π

d

dξ

∫ b

ξ

f(x)dx
(x− ξ)1−λ

. (1. 133)
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In the deduction of (1.131) and (1.133), the following well known formula
involving the beta function B (see Appendix, (B. 8)) is used,∫ z

ξ

dx

(z − x)1−µ(x− ξ)µ
= B(µ, 1− µ) =

π

sinµπ
, (0 < µ < 1).

(1. 134)
From the solution given in [24] we may formulate a theorem concerning

solution existence.

Theorem 1 Necessary and sufficient conditions that the integral Equation
(1.130) should have a continuous solution on (a, b) are that f(x) be continuous
in (a, b), that f(a) = 0, and that∫ x

a

f(ξ)dξ
(x− ξ)1−λ

have a continuous derivative on (a, b). If these conditions are fulfilled, (1.130)
has only one continuous solution, given by Formula (1.131).

An analogous theorem may be stated for the integral Equation (1.132).
Omitting their deduction (see [55]), let us state three results connected with
Abel’s integral equation, which will be used subsequently.

Theorem 2 If φ is finite, and has only a finite number of discontinuities in
(a, b), the function

Φ(x) =
∫ x

a

φ(ξ)dξ
(x− ξ)λ

, (λ < 1),

is continuous on (a, b), including at the point a, where it vanishes.

Theorem 3 If φ is continuous on (a, b), and has a derivative that is finite
except for a finite number of discontinuities in (a, b), and if φ(a) = 0, the
function

Φ(x) =
∫ x

a

φ(ξ)
(x− ξ)λ

dξ, (λ < 1),

has a derivative that is continuous on (a, b) and is given by the formula

Φ′(x) =
∫ x

a

φ′(ξ)
(x− ξ)λ

dξ.

Theorem 4 (Dirichlet’s extended formula). Let φ be a function of two vari-
ables. If φ is finite in the region a ≤ y ≤ x ≤ b, and its discontinuities (if
any) are regularly distributed, and if λ, µ, ν are constants satisfying

0 ≤ λ < 1, 0 ≤ µ < 1, 0 ≤ ν < 1,
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then∫ b

a

∫ x

a

φ(x, y)dydx

(x− y)λ (b− x)µ (y − a)ν
=
∫ b

a

∫ b

y

φ(x, y)dxdy

(x− y)λ (b− x)µ (y − a)ν
.

(1. 135)

Let us consider a further generalisation of Abel’s integral equation in the
form

f(x) =
∫ x

a

U(ξ)dξ
{h(x)− h(ξ)}λ

, x ∈ (a, b), 0 < λ < 1, (1. 136)

where h is a strictly monotonically increasing and continuously differentiable
function on (a, b) (so h′ > 0 in this interval). Differing terminology has been
used for this generalisation in the literature. R. P. Kanwal [31] treated the
generalised Abel integral Equation (1.130) or (1.132) as a special case of the
singular integral equation (1.136). I. N. Sneddon [55] refers to (1.136) as an
Abel-type integral equation, but usually in the context of some specific choices
of the function h. We propose to use this terminology whatever choice for h
is made.

The pairs (1.130) and (1.131), or (1.132) and (1.133), can be considered
as companion integral transforms. For example, if the transform (1.130)
is designated as the direct Abel integral transform, then integral transform
(1.131) is its inverse. Similar terminology can be applied to the pair (1.132)
and (1.133).

Let us solve Equation (1.136) , following the treatments [50] and [55] closely.
Consider the integral ∫ x

a

h′(u)f(u)du
{h(x)− h(u)}1−λ

,

and substitute for f from (1.136) to obtain∫ x

a

∫ u

a

U(ξ)h′(u)dξdu
{h(u)− h(ξ)}λ{h(x)− h(u)}1−λ

.

By changing the order of integration, this becomes∫ x

a

U(ξ)dξ
∫ x

ξ

h′(u)du
{h(u)− h(ξ)}λ{h(x)− h(u)}1−λ

.

The inner integral reduces to (1.134) under the obvious change of variable
z = h(u), so that∫ x

a

h′(u)f(u)du
{h(x)− h(u)}1−λ

=
π

sinλπ

∫ x

a

U(ξ)dξ. (1. 137)

Differentiation of both sides of (1.137) produces the solution

U(ξ) =
sinλπ
π

d

dξ

∫ ξ

a

h′(u)f(u)du
{h(ξ)− h(u)}1−λ

. (1. 138)

©2001 CRC Press LLC



Similarly, the integral equation

f(x) =
∫ b

x

U(ξ)dξ
{h(x)− h(u)}λ

, x ∈ (a, b), 0 < λ < 1 (1. 139)

has the solution

U(ξ) = − sinλπ
π

d

dξ

∫ b

ξ

h′(u)f(u)du
{h(u)− h(ξ)}1−λ

. (1. 140)

Two special cases of (1.136) and (1.139) will be of further interest. First,
let h(ξ) = ξ2: the integral equation

f(x) =
∫ x

a

U(ξ)dξ
(x2 − ξ2)λ

, (0 < λ < 1) (1. 141)

has the solution

U(ξ) =
2 sinλπ

π

d

dξ

∫ ξ

a

uf(u)du
(x2 − ξ2)1−λ

, (1. 142)

while its companion

f(x) =
∫ b

x

U(ξ)dξ
(ξ2 − x2)λ

, (0 < λ < 1) (1. 143)

has the solution

U(ξ) = −2 sinλπ
π

d

dξ

∫ b

ξ

uf(u)du
(µ2 − ξ2)1−λ

. (1. 144)

Next, consider h(ξ) = cosh ξ: the integral equation

f(x) =
∫ x

a

U(ξ)dξ
(coshx− cosh ξ)λ

, (0 < λ < 1) (1. 145)

has the solution

U(ξ) =
sinλπ
π

d

dξ

∫ ξ

a

sinhuf(u)du
(cosh ξ − coshu)1−λ

, (1. 146)

while the companion integral equation

f(x) =
∫ b

x

U(ξ)dξ
(cosh ξ − coshu)λ

, (0 < λ < 1) (1. 147)

has the solution

U(ξ) = − sinλπ
π

d

dξ

∫ b

ξ

sinhuf(u)du
(coshu− cosh ξ)1−λ

. (1. 148)
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1.6 Abel-type integral representations of hypergeomet-
ric functions

In Section 1.3 we encountered the representation of one type of hypergeo-
metric function as an integral transform of Abel type. The Dirichlet-Mehler
formulae provide an integral representation for the Legendre polynomials (see
(1. 124) and Appendix, (B. 94)), expressed in trigonometric form as

Pn(cos θ) =
√

2
π

∫ θ

0

cos(n+ 1
2 )φ

√
cosφ− cos θ

dφ, (1. 149)

Pn(cos θ) =
√

2
π

∫ π

θ

sin(n+ 1
2 )φ

√
cos θ − cosφ

dφ. (1. 150)

At first glance it seems that representations (1. 149) and (1. 150) transform
one class of functions (the Legendre polynomials Pn(cos θ)) to another, the
trigonometric functions of form cos(n+ 1

2 )θ, and sin(n+ 1
2 )θ.

From a wider perspective, these functions may be regarded as members of
one and the same class, namely the Jacobi polynomials P (α,β)

n . For each fixed
(α, β) , with α > 1, β > −1, the Jacobi polynomials P (α,β)

n are polynomials of
degree n(= 0, 1, 2 . . .) and are orthogonal on [−1, 1] with respect to the weight
function wα,β(x) = (1− x)α (1 + x)β

. Their properties are discussed in Ap-
pendix B.3. In particular, the relations between the trigonometric functions
and the Legendre polynomials are

cosnθ =
Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) P
(− 1

2 ,− 1
2 )

n (cos θ), (1. 151)

cos(n+
1
2
)θ =

Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) cos
1
2
θP

(− 1
2 , 1

2 )
n (cos θ), (1. 152)

sinnθ =
Γ
(

3
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) sin θP ( 1
2 , 1

2 )
n−1 (cos θ), (1. 153)

sin(n+
1
2
)θ =

Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) sin
1
2
θP

( 1
2 ,− 1

2 )
n (cos θ), (1. 154)

and
Pn(cos θ) = P (0,0)

n (cos θ). (1. 155)

On the other hand, the trigonometric functions cos(νx), sin(νx) with con-
tinuous parameter ν, occur in the well-known representations [19] of the Bessel
functions

J0(νρ) =
2
π

∫ ρ

0

cos νx√
ρ2 − x2

dx, (1. 156)
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J0(νρ) =
2
π

∫ ∞

ρ

sin νx√
x2 − ρ2

dx. (1. 157)

Echoing previous remarks about the representations (1. 149) and (1. 150),
an Abel-type transform of the trigonometric functions (cos νx, sin νx) pro-
duces another functional class (J0). However, upon recalling the well-known
relationships [19]

cos νx =
(πνx

2

) 1
2
J− 1

2
(νx), (1. 158)

sin νx =
(πνx

2

) 1
2
J 1

2
(νx), (1. 159)

it becomes clear that the Abel transforms (1. 156) and (1. 157) should be
considered in the wider context of Bessel functions.

In other words, the trigonometric functions cosnθ, sinnθ, cos(n+ 1
2 )θ, and

sin(n + 1
2 )θ, with integer or half-integer parameter, should be considered as

a special subclass of the Jacobi polynomials P (α,β)
n (cos θ) (for appropriate

(α, β)); whereas the trigonometric functions cos νx, sin νx, with real parame-
ter ν, should be considered as a special subclass of the Bessel functions Jµ(νx)
(for appropriate µ).

In turn, both the class of Bessel functions Jµ and the class of Jacobi poly-
nomials P (α,β)

n , with arbitrary values of the parameters (α, β) or µ, belong to
the wider class of hypergeometric functions in a very simple manner. Both
are particular examples of the generalised hypergeometric function [59]

pFq (a1, . . . , ap; b1, . . . , bq; z) ≡
∞∑

k=0

(a1)k(a2)k....(ap)k

(b1)k(b2)k...(bq)k
· z

k

k!
(1. 160)

where the notation for the Pochhammer symbol

(a)k
def
= a (a+ 1) . . . (a+ k − 1) ; (a)0

def
= 1 (1. 161)

has been used; the upper parameters −→a = (a1, . . . , ap) are unrestricted,
whereas the lower parameters

−→
b = (b1, . . . , bq) are restricted so that no bj is

zero or a negative integer. Note that when a is neither zero nor a negative
integer,

(a)k =
Γ (a+ k)

Γ (a)
. (1. 162)

When p ≤ q, the series converges for all complex z; when p = q + 1, the
series has radius of convergence 1 (its convergence on the unit disc |z| = 1
is discussed in Appendix B.2). If the one of upper parameters is equal to
zero or a negative integer, then the series terminates and is a hypergeometric
polynomial.
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The Jacobi polynomial P (α,β)
n may be recognised as a generalised hyperge-

ometric function (see Appendix, (B. 25)); it is hypergeometric polynomial

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
. (1. 163)

From the symmetry property (see Appendix, (B. 26))

P (α,β)
n (−x) = (−1)nP (β,α)

n (x),

we deduce the alternative representation

P (α,β)
n (x) = (−1)n

(
n+ β

n

)
2F1

(
−n, n+ α+ β + 1;β + 1;

1 + x

2

)
.

(1. 164)
Bessel functions of arbitrary order also have a hypergeometric representa-

tion in terms of the special confluent hypergeometric functions,

Jµ(z) =
(z/2)µ

Γ(µ+ 1) 0F1(µ+ 1;−1
4
z2), (1. 165)

Jµ(z) =
(z/2)µ

Γ(µ+ 1)
eiz

1F1(µ+
1
2
; 2µ+ 1; 2iv). (1. 166)

Let us derive the integral representation of Abel type for the Jacobi poly-
nomials. From (1. 163) and (1. 160) immediately follows the finite series
representation:

P (α,β)
n (x) =

Γ(n+ α+ 1)
n!Γ(α+ 1)

n∑
m=0

(−n)m(n+ α+ β + 1)m

m!(α+ 1)m

(
1− x

2

)m

.

(1. 167)
Fix the parameter η ∈ [0, 1); multiply both sides of (1. 167) by the factor
(1− x)α(x− t)−η and integrate over the interval (t, 1) to obtain∫ 1

t

(1− x)αP
(α,β)
n (x)

(x− t)η
dx

=
Γ(n+ α+ 1)
n!Γ(α+ 1)

n∑
m=0

(−n)m(n+ α+ β + 1)m

2mm!(α+ 1)m
Am+α

η (t), (1. 168)

where

Aq
η(t)

def
=
∫ 1

t

(1− x)q(x− t)−ηdx. (1. 169)

The change of variable by 1 − x = (1 − t)y expresses Aq
η(t) in terms of the

beta function B (see Appendix, (B. 8)):

Aq
η(t) = (1− t)q+1−η

∫ 1

0

yq(1− y)−ηdy = (1− t)q+1−ηB(q + 1, 1− η)

= (1− t)q+1−η Γ(q + 1)Γ(1− η)
Γ(q + 2− η)

. (1. 170)
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Substituting (1. 170) into (1. 168), replacing (α, β) by (α+ η − 1, β − η + 1),
and bearing in mind Definition (1. 167), one obtains, after some manipulation,
the following integral representation of Abel type:

P (α,β)
n (t) =

(1− t)−αΓ(n+ 1 + α)
Γ(1− η)Γ(n+ α+ η)

∫ 1

t

(1− x)α+η−1P
(α+η−1,β−η+1)
n (x)

(x− t)η
dx.

(1. 171)
Interchanging the role of α and β in (1. 171), changing the sign of x and

t, and taking into account Identity (1. 164), we obtain another such integral
representation:

P (α,β)
n (t) =

(1 + t)−βΓ(n+ 1 + β)
Γ(1− η)Γ(n+ β + η)

∫ t

−1

(1 + x)β+η−1P
(α−η+1,β+η−1)
n (x)

(t− x)η
dx.

(1. 172)
Formulae (1. 171) and (1. 172) have an interpretation in terms of fractional

integration operators [55]. When η = 0, the following two notable identities
corresponding to integration in conventional sense result:

(1− t)α+1
P (α+1,β−1)

n (t) = (n+ α+ 1)
∫ 1

t

(1− x)αP (α,β)
n (x)dx, (1. 173)

(1 + t)β+1
P (α−1,β+1)

n (t) = (n+ β + 1)
∫ t

−1

(1 + x)βP (α,β)
n (x)dx. (1. 174)

When expressed in algebraic form, the Dirichlet-Mehler Formulae (1. 149)
and (1. 150) are special cases of the integral representations (1. 171) and (1.
172) with α = β = 0, η = 1

2 (setting t = cos θ, and x = cosφ):

Pn(t) = π−
1
2

Γ(n+ 1)
Γ(n+ 1

2 )

∫ 1

t

(1− x)−
1
2P

(− 1
2 , 1

2 )
n (x)

(x− t)
1
2

dx, (1. 175)

Pn(t) = π−
1
2

Γ(n+ 1)
Γ(n+ 1

2 )

∫ t

−1

(1 + x)−
1
2P

( 1
2 ,− 1

2 )
n (x)

(t− x)
1
2

dx. (1. 176)

Let us now obtain the integral representations of Abel kind for the Bessel
functions. The well-known Sonine’s integrals provide a simple starting point.
Sonine’s first integral [14] is

Jν+ξ+1(z) =
zξ+1

2ξΓ(ξ + 1)

∫ π
2

0

Jν(z sin θ) sinν+1 θ cos2ξ+1 θdθ, (1. 177)

where ν > −1, ξ > −1. The trivial transformation z = xt, ρ = x sin θ produces
the desired integral representation of Abel kind :

t−ξ−1Jν+ξ+1(xt) =
x−ξ−ν−1

2ξΓ(ξ + 1)

∫ x

0

Jν(ρt)ρν+1(x2 − ρ2)ξdρ. (1. 178)
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A limiting form of Sonine’s second integral [55] is

t−η−1Jν−η−1(xt) =
xν−η−1

2ξΓ(η + 1)

∫ ∞

0

Jν [t(s2 + x2)
1
2 ](s2 + x2)−

ν
2 s2η+1ds,

(1. 179)
where ν

2 −
1
4 > η > −1. The substitution s2 + x2 = ρ2 transforms (1. 179) to

the second integral representation of Abel kind for Bessel functions:

t−η−1Jν−η−1(xt) =
xν−η−1

2ηΓ(η + 1)

∫ ∞

x

Jν(ρt)ρ−ν+1(ρ2 − x2)ηdρ. (1. 180)

Special cases of (1. 178) and (1. 180) with ξ = 0 and η = 0, respectively are

1
t
Jν+1(xt) = x−ν−1

∫ x

0

Jν(ρt)ρν+1dρ, (1. 181)

1
t
Jν−1(xt) = xν−1

∫ ∞

x

Jν(ρt)ρ−ν+1dρ. (1. 182)

The comments about fractional integration directly following Formula (1.
172) are of equal pertinence to the representations (1. 178) and (1. 180) and
their confluent forms (1. 181) and (1. 182).

These basic integral representations of Abel kind will be extensively ex-
ploited in later chapters. Other useful relationships can be found in [55].

1.7 Dual equations and single- or double-layer surface
potentials

Let S0 be an open surface, which is a portion of a larger closed surface S;
let S1 be the complementary part of S0 in S (thus S = S0∪S1) so that S1 may
be regarded as an “aperture” in S. Given S0, the choice of S (and hence S1)
may be made arbitrarily, but we shall require that it satisfies the hypotheses
for the application of Green’s theorem (see [32]).

Classical potential theory represents the solution of Laplace’s equation by
means of single- or double-layer surface potentials [32]. In Section 1.3, the for-
mulation of mixed boundary value problems for S0 and the Laplace equation
was discussed. This apparently alternative approach (which produces dual
series equations or dual integral equations) is in fact entirely equivalent, at
least in the context of the class of coordinate surfaces S discussed in Section
1.3.

Let P be an arbitrary point on S, andM be an observation point. Introduce
an origin O; let

−→
r′ and −→r denote the position vectors

−−→
OP and

−−→
OM, and denote

the distance between P and M by RPM = R
(−→
r′ ,−→r

)
=
∣∣∣−→r −−→r′ ∣∣∣ . At P , we
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shall also consider the inward- and outward-pointing unit normal vectors −→ni

and −→ne.
Let us commence by considering the first boundary value problem for La-

place’s equation, assuming that the value of potential U is specified on the
open surface S0 : U(

−→
r′ ) = F (

−→
r′ ) for some continuous function F. As already

mentioned, classical potential theory presents the solution of Laplace’s equa-
tion in terms of surface potentials. As a consequence of Green’s fundamental
theorem [32], the value of the harmonic function U at any interior point −→r of
the region bounded by S is given by

U (i)(−→r ) =
1
4π

∫∫
S

[
1

R(−→r ,
−→
r′ )

∂U (i)

∂ni
− U (i)(

−→
r′ )

∂

∂ni

(
1

R(−→r ,
−→
r′ )

)]
ds.

(1. 183)
When −→r lies outside S, the integral in (1. 183) vanishes. In the exterior
region, the solution at any point −→r exterior to S satisfies

U (e)(−→r ) =
1
4π

∫∫
S

[
1

R(−→r ,
−→
r′ )

∂U (e)

∂ne
− U (e)(

−→
r′ )

∂

∂ne

(
1

R(−→r ,
−→
r′ )

)]
ds.

(1. 184)
When −→r lies inside S, the integral in (1. 184) vanishes.

When the surface is open, the distinction between internal and external
regions disappears (see Section 1.3) and the solution at any point −→r not on
S must be considered as a sum of (1. 183) and (1. 184),

U(−→r ) = U (i)(−→r ) + U (e)(−→r ). (1. 185)

The solution and its normal derivative must be continuous at any point
−→
r′ of

the aperture surface S1 so that

U (i)(
−→
r′ )− U (e)(

−→
r′ ) = 0, (1. 186)

∂

∂n
U (i)(

−→
r′ )− ∂

∂n
U (e)(

−→
r′ ) = 0, (1. 187)

where −→n ≡ −→ne = −−→ni .
Thus the solution U of the first-kind boundary value problem is given by

U(−→r ) = − 1
4π

∫∫
S0

[
∂U (i)

∂n
− ∂U (e)

∂n

]
1

R(−→r ,
−→
r′ )

ds, (1. 188)

whereas the solution of the second-kind boundary value problem (in which
the normal derivative is specified on S0) is represented by

U(−→r ) = − 1
4π

∫∫
So

[
U (e)(

−→
r′ )− U (i)(

−→
r′ )
] ∂

∂n

(
1

R(−→r ,
−→
r′ )

)
ds. (1. 189)
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Introducing the notations for the jump functions occurring in (1. 188 ) and
(1. 189),

σD(
−→
r′ )

def
=

∂U (i)

∂n
− ∂U (e)

∂n
, (1. 190)

σN (
−→
r′ )

def
= U (e)(

−→
r′ )− U (i)(

−→
r′ ), (1. 191)

the integral formulae become

U(−→r ) = − 1
4π

∫∫
S0

σD(
−→
r′ )

1

R(−→r ,
−→
r′ )

ds, (1. 192)

and

U(−→r ) = − 1
4π

∫∫
S0

σN (
−→
r′ )

∂

∂n

(
1

R(−→r ,
−→
r′ )

)
ds. (1. 193)

The first integral (1. 192) is the potential associated with a simple or single-
layer distribution on S ; the second integral (1. 193) is the potential of a
double-layer distribution on S [32].

Thus the first-kind boundary value problem, in which the Dirichlet bound-
ary condition (prescribing the value of U on S0) is given by U |S0 = F , gives
rise to the following Fredholm integral equation of the first kind for the un-
known single-layer distribution σD:

F (
−→
r′s) = − 1

4π

∫∫
S0

σD(
−→
r′ )

1

R(−→rs ,
−→
r′ )

ds, −→rs ∈ S0. (1. 194)

In a similar way, the second-kind boundary value problem in which the Neu-
mann boundary condition (prescribing the value of ∂U

∂n on S0) is given by
∂U
∂n |S0 = G produces a Fredholm integral equation of the first kind for the
unknown double-layer distribution σN :

G(−→rs) = − 1
4π

∫∫
S0

σN (
−→
r′ )

∂2

∂ns∂n′

[
1

R(−→rs ,
−→
r′)

]
ds −→rs ∈ S0 (1. 195)

where −→ns denotes the outward-pointing unit normal at −→rs .
The distance function, between any two arbitrary points in space −→r and−→

r′ ,
R(−→r ,

−→
r′ ) ≡

∣∣∣−→r −−→r′ ∣∣∣
plays an important part in classical potential theory since the Green’s function
for Laplace’s equation in three-dimensional free space is

G(−→r ,
−→
r′ ) =

1
4π

1

R(−→r ,
−→
r′ )

. (1. 196)
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The reciprocal of the distance function, R−1(−→r ,
−→
r′ ), is often called the source

function of Laplace’s equation; it is the potential function associated with the
positive unit charge in electrostatics. It solves the non-homogeneous Laplace’s
equation (Poisson’s equation)

∇2U(−→r ) = −δ(−→r −
−→
r′ ), (1. 197)

where δ(−→r −
−→
r′ ) is the delta-function [28]; the differentiation in (1. 197) is

performed with respect to the primed variables.
We wish to investigate potential problems in coordinate systems that admit

separation of variables for Laplace’s equation. Accordingly, let us consider
Poisson’s equation in generalised curvilinear coordinates (q1, q2, q3):

∇2U(q1,q2, q3) = −h−1
q1
h−1

q2
h−1

q3
δ(q1 − q′1)δ(q2 − q′2)δ(q3 − q′3) (1. 198)

where hqi
(i = 1, 2, 3) are the metric coefficients (see Section 1.1) and, as

before, the differentiation in (1. 198) is performed with respect to the primed
variables. The metric coefficients perform a normalising function in (1. 198)
because∫

V

δ(−→r −
−→
r′ )dV =

∫∫∫
all q1,q2,q3

δ(−→r −
−→
r′ )hq1hq2hq3dq1dq2dq3 = 1, (1. 199)

which follows from the fundamental property of the δ-function,∫ x′=x+ε

x′=x−ε

δ(x′ − x)dx = 1, for ε > 0.

We wish to obtain the Fourier series, or Fourier integral representation as
appropriate, for the source function or for the Green’s function. We consider
in detail the spherical coordinate context, and simply state the final results
for other coordinate systems. In spherical coordinates (r, θ, φ) the Green’s
function G0(−→r ,

−→
r′ ) of free space must satisfy

∆G0(r, θ, φ, r′, θ′, φ′) = − 1
r2 sin θ

δ(r − r′)δ(θ − θ′)δ(φ− φ′), (1. 200)

where the Laplacian operator ∆ is given by (1. 27). Since G0(−→r ,
−→
r′ ) sat-

isfies the homogeneous Laplace’s equation when −→r 6=
−→
r′, and is a sym-

metric function of the primed and unprimed coordinates, we may expand
G0(r, θ, φ; r′, θ′, φ′) in terms of eigenfunctions of the Laplacian as

1
r′

∞∑
m=0

cosm(φ− φ′)
∞∑

n=m

AnmP
m
n (cos θ)Pm

n (cos θ′)
{

(r/r′)n, r < r′

(r/r′)−n−1, r > r′

}
.

(1. 201)
This function is finite at r = 0 and satisfies the regularity condition at infinity.
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The value Anm is determined by the inhomogeneous term of (1. 200).
Multiply both sides of this equation by r2, and integrate with respect to r
over a small interval (r′ − ε, r′ + ε) about r′. Remembering the continuity of
the terms at r = r′ and passing to the limit ε→ 0 , we obtain

r2
∂

∂r
Go(r, θ, φ; r′, θ′, φ′)|r=r′+0

r=r′−0 = − 1
sin θ

δ(θ − θ′)δ(φ− φ′). (1. 202)

Substituting (1. 201) in this expression, and utilising the Wronskian relation
for the independent solutions of (1. 59), we find

∞∑
m=0

cosm(φ− φ′)
∞∑

n=m

Anm(2n+ 1)Pm
n (cos θ)Pm

n (cos θ′)

=
δ(θ − θ′)δ(φ− φ′)

sin θ
. (1. 203)

Multiplying both sides of this equation by P k
l (cos θ) cos kφ and integrating

over the full range of the variables θ and φ produces

Anm =
1
4π

(2− δm0)
(n−m)!
(n+m)!

. (1. 204)

The representation (1. 201) of the free space Green’s function with coeffi-
cients (1. 204) is not unique in spherical coordinates. It is a representation
that is discontinuous in the coordinate r. A representation that is discontin-
uous in the coordinate θ will be derived in Chapter 6.

Similar representations of the free-space Green’s function may be deduced
by this method for those coordinate systems where the method of separation of
variables is applicable. In particular, let us now state the Green’s functions of
this type for the Laplace equation in Cartesian, cylindrical polar, and spherical
coordinates.

Cartesian coordinates.

The distance function is

R(−→r ,
−→
r′ ) =

{
(x− x′)2 + (y − y′)2 + (z − z′)2

} 1
2
, (1. 205)

and the Green’s function Go(x, y, z;x′, y′, z′), which is discontinuous in z, is

2
π2

∫ ∞

0

dν cos[ν(x− x′)]
∫ ∞

0

cos[µ(y − y′)]√
ν2 + µ2

{
e−
√

ν2+µ2(z−z′), z > z′

e
√

ν2+µ2(z−z′), z < z′

}
.

(1. 206)
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Cylindrical polar coordinates.

The distance function is

R(−→r ,
−→
r′ ) =

{
ρ2 + (ρ′)2 − 2ρρ′ cos(φ− φ′) + (z − z′)2

} 1
2
, (1. 207)

and the Green’s function Go(ρ, φ, z; ρ′, φ′, z′), which is discontinuous in ρ, is

1
π2

∫ ∞

0

dν cos[ν(z − z′)]×

∞∑
m=0

(2− δ0m) cosm(φ− φ′)
{
Im(νρ)Km(νρ′), ρ < ρ′

Im(νρ′)Km(νρ), ρ > ρ′

}
. (1. 208)

Spherical polar coordinates.

The distance function is

R(−→r ,
−→
r′ ) =

{
r2 + (r′)2 − 2rr′[cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)]

} 1
2
,

(1. 209)
and the Green’s function Go(r, θ, φ; r′, θ′, φ′), which is discontinuous in r, is
given by Formulae (1. 201) and (1. 204).

Let us now establish the equivalence of the “dual series approach” and the
method of single- or double-layer potentials in solving mixed boundary value
problems for Laplace’s equation. A constructive proof is not very complicated,
requiring the three steps outlined below.

First, the free-space Green’s function for Laplace’s equation is expanded
as a Fourier series, or represented as a Fourier integral, as in (1. 201), (1.
206), or (1. 208). Secondly, the unknown distributions σD(

−→
r′ ) or σN (

−→
r′ ) are

also expanded in a Fourier series or as a Fourier integral. On the surface,
S = S0 ∪ S1, the jump functions introduced in (1. 190) and (1. 191) satisfy

∂U (i)

∂n
− ∂U (e)

∂n
=

{
σD(

−→
r′ ), on S0

0, on S1

}
(1. 210)

and

U (e)(
−→
r′ )− U (i)(

−→
r′ ) =

{
σN (

−→
r′ ), on S0

0, on S1

}
. (1. 211)

These expansions are substituted in the integral Equations (1. 194) and
(1. 195); because of the relationships of (1. 210) and (1. 211), the surface of
integration is extended to the whole of S, which we may suppose is the coor-
dinate surface corresponding to one coordinate (say q1) being held constant,
whilst the remaining two coordinates q2, q3 are varied over their full interval
of definition. On the surface S, the harmonic functions (which are the sep-
arated solutions of Laplace’s equation) are orthogonal and form a complete
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basis. Multiplying both sides of these equations by such a surface harmonic,
and integrating over S (i.e., over the complete interval of variation of q2, q3),
we obtain functional equations in matrix or integral form; these are valid for
those values of q2, q3 such that (q1, q2, q3) ∈ So. Additional equations are de-
rived from Formulae (1. 210) and (1. 211) defining the jump functions on the
aperture surface S1.

Let us illustrate this abstractly described process with a concrete example.
Consider the first-kind boundary value problem for Laplace’s equation posed
on an open spherical surface S0 (or spherical cap) of radius a, subtending
an angle θ0 at the origin, with the boundary condition on S0 being given as
U |S0 = F . Let S and S1 denote, respectively, the complete spherical surface
of radius a, and the aperture r = a, θ < θ0 ≤ π, 0 ≤ φ ≤ 2π.

On S, the potential function U(a, θ, φ) given by the function F (θ, φ) is
expressible as a Fourier series

F (θ, φ) =
∞∑

m=0

(2− δ0m) cosmφ
∞∑

n=m

am
n P

m
n (cos θ), (1. 212)

where

am
n =

1
2π

∫ 2π

0

dφ

∫ π

0

dθ sin θ.F (θ, φ)Pm
n (cos θ) cosmφ (1. 213)

are known Fourier coefficients. We shall find the solution of the Laplace
equation in this case as single-layer potential (1. 192). Expand the jump
function (1. 210) in spherical surface harmonics[
∂U (i)

∂r
− ∂U (e)

∂r

]
r=a

=
1
a

∞∑
m=0

(2− δ0m) cosmφ′
∞∑

n=m

xm
n P

m
n (cos θ′), (1. 214)

where θ′ ∈ [0, π], φ′ ∈ [0, 2π], and {xm
n }

∞,∞
m=0,n=m denotes its unknown Fourier

coefficients. We substitute the Green’s function, G0(a, θ, φ; a, θ′, φ′) given by
(1. 201) with r = r′ = a, into (1. 194) to find

F (θ, φ) = −a2

∫ 2π

0

dφ′
∫ ∞

0

dθ′ sin θ′σD(θ′, φ′)Go(a, θ, φ; a, θ′, φ′). (1. 215)

This is valid for θ ∈ [0, θ0), φ ∈ [0, 2π].
Using (1. 210) and expansions (1. 212) and (1. 214), we obtain from (1.
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215) the Fredholm integral equation of first kind

1
4π

∫ 2π

0

dφ′
∫ π

0

dθ′ sin θ′
{ ∞∑

m=0

(2− δm0) cosmφ′
∞∑

n=m

xm
n P

m
n (cos θ′)

}

×
∞∑

s=0

(2− δs0) cos s(φ− φ′)
∞∑
l=s

(l − s)!
(l + s)!

P s
l (cos θ′)P s

l (cos θ)

= −
∞∑

m=0

(2− δm0) cosmφ
∞∑

n=m

am
n P

m
n (cos θ). (1. 216)

This is valid for θ ∈ [0, θ0), φ ∈ [0, 2π].
Exploiting the orthogonality of spherical surface harmonics, the left-hand

side of this equation simplifies to a double series of the same format as the
right-hand side, leading finally to the series equations

∞∑
m=0

(2− δ0m) cosmφ
∞∑

n=m

xm
n

2n+ 1
Pm

n (cos θ)

= −
∞∑

m=0

(2− δ0m) cosmφ
∞∑

n=m

am
n P

m
n (cos θ). (1. 217)

This is also valid for θ ∈ [0, θ0), φ ∈ [0, 2π].
A companion equation follows directly from the definition of jump function

(1. 210) and its expansion in spherical surface harmonics:
∞∑

m=0

(2− δ0m) cosmφ
∞∑

n=m

xm
n P

m
n (cos θ) = 0. (1. 218)

This is valid for the range θ ∈ (θ0, π], φ ∈ [0, 2π].
Multiplication of both sides of Equations (1. 217) and (1. 218) by the

factor cos kφ, followed by integration with respect to φ on [0, 2π], produces a
pair of dual series equations for the unknown coefficients xm

n :
∞∑

n=m

xm
n

2n+ 1
Pm

n (cos θ) = −
∞∑

n=m

am
n P

m
n (cos θ), θ ∈ [0, θ0), (1. 219)

∞∑
n=m

xm
n P

m
n (cos θ) = 0, θ ∈ (θo, π]. (1. 220)

Conversely, it is evident that transformation of the dual series equations
(1. 217) and (1. 218) to an integral equation of Fredholm type can be easily
realised in the following way. Apply the formula (1. 214) in reverse order,
i.e., for φ′ ∈ [0, 2π],
∞∑

m=0

(2−δm0) cosmφ′
∞∑

n=m

xm
n P

m
n (cos θ′) =

{
aσD(θ′, φ′), θ′ ∈ [0, θ0)

0, θ′ ∈ (θ0, π] , (1. 221)
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from which it immediately follows that

xm
n =

a(2n+ 1)
4π

(n−m)!
(n+m)!

×∫ 2π

0

dφ′ cosmφ′
∫ θ0

0

σD(θ′, φ′)Pm
n (cos θ′) sin θ′dθ′. (1. 222)

Substitution of (1. 222) in (1. 217) and an interchange of the order of sum-
mation and integration produces the original integral Equation (1. 215), as
desired.

Thus we have demonstrated the equivalence of the integral equation formu-
lation ((1. 194) or (1. 215)) and the dual series equations formulation ((1.
219) and (1. 220)) for determining the potential.
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Chapter 2

Series and Integral Equations

The spatial distribution of the electrostatic potential surrounding a conduct-
ing surface (open or closed) is determined at the most fundamental level by
Laplace’s equation, together with the appropriate boundary conditions, decay
conditions at infinity, and, if necessary, edge conditions. The precise formu-
lation of these conditions was described in Section 1.3.

An alternative but equivalent formulation utilizes integral representations
for the potential in terms of the surface charge density (corresponding to the
jump in the normal derivative of the potential across the surface); in turn,
this density is determined as the solution of an integral equation holding at
each point of the conducting surface (see Section 1.7).

These two formulations are the basis of all analytical and numerical meth-
ods devised to solve the potential problem for bodies of arbitrary or general
shape. Certain classes of surfaces, including those that are portions of the
orthogonal coordinate surfaces described in Chapter 1, admit another formu-
lation of the potential problem, in terms of dual- (or triple- or multiple-) series
equations, or dual- (or triple- or multiple-) integral equations. Although it is
formally equivalent, this alternative approach has the benefit that, in many
cases of physical interest, these equations can be solved analytically (in closed
form), so that a direct assessment of the effect of edges and cavities in these
geometries is possible. In other cases, the analytical solution process trans-
forms or regularises the series (or integral) equations to a matrix (or integral)
Fredholm equation of the second kind. Once converted, these equations pro-
vide a basis for approximate analytical solution techniques (such as successive
approximation), or for a numerical solution procedure which is simple to im-
plement, well conditioned, rapidly converging, and of guaranteed accuracy.
Thus, edge effects and cavity contributions to the potential distribution can
be accurately quantified.

Beyond the electrostatic context, this approach finds general application
to mixed boundary value problems (of first-, second-, or third-kind) for the
Laplace equation. It also provides a basis for assessing the scattering and
diffraction by the class of bodies described above, of acoustic and electromag-
netic waves, where the interest is in accurate quantification of the scattering
process by edges, or of entrapment of wave energy by cavities.

This chapter considers various classes of series and integral equations. The
core idea is to convert the set of equations to a second-kind Fredholm matrix
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or integral equation. The Abel integral transform method provides a unified
and constructive treatment of this process. In some cases these equations can
be solved explicitly, in closed form; in the remaining cases, the transformed
system is well suited to either approximate analytical solution methods or to
numerical methods. When the second-kind matrix system is truncated to a
finite number Ntr of linear equations, the solution of the truncated system
converges to the exact solution asNtr →∞. It is possible to estimate accuracy
as a function of truncation number Ntr and so produce solutions of specified
accuracy. Precise treatments of the behaviour of second-kind systems under
truncation are given in [2] and [30].

Proofs of the validity of this method, and of the uniqueness of solutions,
are sketched in Section 2.1; readers with a deeper interest in the details are
recommended to consult the paper [64].

The problem typified by the determination of the electrostatic potential
surrounding a charged spherical cap (Section 1.3) leads to dual series equa-
tions involving the Jacobi polynomials P (α,β)

n as kernels. This general class
of equations is the first to be considered in the next section. They have the
form

∞∑
n=0

cnxnP
(α,β)
n (t) = F (t), t ∈ (−1, t0) , (2. 1)

∞∑
n=0

xnP
(α,β)
n (t) = G(t), t ∈ (t0, 1) , (2. 2)

where the functions F,G and coefficients cn are known, t0 is fixed in (−1, 1) ,
and the unknown coefficients xn are to be determined. Typically,

cn = n2η
(
1 +O(n−1)

)
, as n→∞.

The regularisation generally obtained by the Abel transform method is out-
lined, and where possible, explicit solutions are found.

Two special subclasses which merit some separate consideration are exam-
ined in the following two sections (2.2 and 2.3), dual series with trigonometric
kernels or with associated Legendre function kernels (these are closely related
to ultraspherical polynomials).

Triple series equations provide a natural generalisation of dual series equa-
tions; the kernel class examined in Section 2.4 is restricted to those kernels of
interest in subsequent chapters.

Preparatory to considering dual integral equations in their own right, the
relationship between series and integral equations is explored in Section 2.5.
The following Section (2.6) demonstrates how to apply the Abel integral trans-
form to solve some dual integral equations with Bessel function kernels; this
allows us to regularise a wide class of such dual integral equations.

The subdivision of the interval of definition for triple series equations ex-
amined in Section 2.4 is assumed to be symmetric; this restriction is removed
to cover asymmetric subdivisions in Section 2.7.
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Coupled systems of series equations are treated in the Section 2.8, and
some general remarks on so-called integro-series equations are provided in
the concluding section of the chapter.

2.1 Dual series equations involving Jacobi polynomials

This section considers dual series equations of the form (2. 1) and (2. 2).
Since the function y = P

(α,β)
n satisfies the differential equation

1
w(x)

d

dx

((
1− x2

)
w(x)

dy

dx

)
+ n(n+ α+ β + 1)y = 0,

with weight function w(x) = (1− x)α (1 + x)β , the parameter η may be as-
sumed to lie in the interval [0, 1); for if η ≥ 1, we may replace P (α,β)

n (t) by

−1
n(n+ α+ β + 1)

1
w(t)

d

dt

((
1− t2

)
w(t)

dP
(α,β)
n

dt
(t)

)

and integrate twice to obtain an equation similar to (2. 1), but with a new
coefficient cn satisfying

cn = n2(η−1)
(
1 +O(n−1)

)
, as n→∞.

It is convenient to employ the quantity λn (α, β; η) given by

λn (α, β; η) =
Γ (n+ α+ 1)Γ (n+ β + 1 + η)
Γ (n+ α+ 1− η) Γ (n+ β + 1)

(2. 3)

where Γ denotes the Gamma-function; Field’s formula (see Appendix, (B. 7))
shows that

λn (α, β; η) = n2η
[
1 +O

(
n−1

)]
.

We consider the slightly more general form of (2. 1) and (2. 2):

∞∑
n=0

λn (α, β; η)xn (1− rn)P (α,β)
n (t) = F (t), t ∈ (−1, t0) (2. 4)

∞∑
n=0

xn (1− qn)P (α,β)
n (t) = G(t), t ∈ (t0, 1) . (2. 5)

The infinite set of unknown coefficients {xn}∞n=0 are to be determined. The
parameters α, β, η are constrained to satisfy α − η > −1, β > −1, and for
our applications we may always suppose that η ∈ (0, 1) . The reason for this
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constraint will become clear once the method of regularisation is described
below. The quantities {rn}∞n=0,{qn}∞n=0 are assumed to be known sequences,
in general, of complex quantities satisfying

lim
n→∞

qn = lim
n→∞

rn = 0. (2. 6)

The right-hand sides of Equations (2.4) and (2.5) are assumed to be expand-
able in Fourier-Jacobi series of the form

F (t) =
∞∑

n=0

λn (α, β; η) fnP
(α,β)
n (t), (2. 7)

G(t) =
∞∑

n=0

gnP
(α,β)
n (t). (2. 8)

We seek solutions to (2.4) and (2.5) in an appropriate functional space.
Denote by l2 (µ) the space of sequences {xn}∞n=0 satisfying

∞∑
n=0

nµ | xn |2<∞. (2. 9)

We suppose that the coefficients fn, gn belong to l2 (2η − 1) , and the solution
will be sought in the same class:

{xn}∞n=0 ∈ l2 (2η − 1) , {fn, gn}∞n=0 ∈ l2 (2η − 1) . (2. 10)

The specification (2.9) arises very naturally in connection with the edge con-
dition of the uniqueness theorem for an open surface (see Section 1.3, (1.85)).
Thus (2. 5) and (2. 8) contain series that converge to their sums in the
weighted mean square sense with weight w.

Some care is needed in the interpretation of convergence of the series occur-
ring in (2. 4) and (2. 7). In our applications, Equation (2. 4) invariably arises
from enforcing the continuity of either the potential or of its normal derivative
across the aperture surface of the structure under consideration. Thus (2. 4)
is summable in the sense of Abel (see Appendix D.2), and moreover because
the coefficients in (2. 4) are O(nr) for some r dependent only on α, β, and
uniformly on [−1, t0], the series is uniformly Abel-summable on [−1, t0].

Let us now describe the general scheme to solve Equations (2.4) and (2.5) by
the process of regularisation. This was briefly outlined at the end of Section
1.4. First we integrate, with weight function (1 + t)β , both sides of (2.4) over
the interval (−1, t), using the integration formula (1.174) to obtain a more
rapidly converging series:

∞∑
n=0

λn (α, β; η)
(n+ 1 + β)

{xn (1− rn)− fn}P (α−1,β+1)
n (t) = 0, t ∈ (−1, t0) (2. 11)

©2001 CRC Press LLC



This process is justified because the series is uniformly Abel-summable (on
closed subintervals of (−1, t0)).

Next we use the integral representation (1.172) of Abel kind for Jacobi
polynomials P (α−1,β+1)

n , replacing index α by α− 1 and β by β + 1:

P (α−1,β+1)
n (t) =

(1 + t)−β−1Γ (n+ β + 2)
Γ (1− η) Γ (n+ β + 1 + η)

∫ t

−1

(1 + x)β+η
P

(α−η,β+η)
n (x)

(t− x)η dx (2. 12)

Substituting this representation for P (α−1,β+1)
n in (2.11) and interchanging

the order of summation and integration, we obtain the functional equation∫ t

−1

(t− x)−η
U(x)dx = 0, t ∈ (−1, t0) (2. 13)

where

U(x) = (1 + x)β+η
∞∑

n=0

Γ (n+ α+ 1)
Γ (n+ α+ 1− η)

[xn (1− rn)− fn]P (α−η,β+η)
n (x).

(2. 14)
In obtaining the last equation, definition (2.3) was used. The interchange is
justified by the weighted mean square convergence of the series (2.14) (see
Appendix D.2). The reason for the constraint α − η > −1, β > −1 is now
clear.

Equation (2.13) is the homogenous form of Abel’s integral equation. The
inverse formula (1.131) shows that (2.13) has the unique trivial solution, and
we obtain the functional equation

∞∑
n=0

Γ (n+ α+ 1)
Γ (n+ α+ 1− η)

[xn (1− rn)− fn]P (α−η,β+η)
n (x) = 0, x ∈ (−1, t0) .

(2. 15)
To obtain a second equation over the interval (t0, 1) , involving the same

Jacobi polynomials as in (2. 15), it is necessary to utilise the integral repre-
sentation (1. 171), replacing η by 1− η :

P (α,β)
n (t) =

(1− t)−α Γ (n+ 1 + α)
Γ (η) Γ (n+ α+ 1− η)

∫ 1

t

(1− x)α−η
P

(α−η,β+η)
n (x)

(x− t)1−η dx.

(2. 16)
Repeating the mathematical operations used to obtain equation (2.15) we find

∞∑
n=0

Γ (n+ α+ 1)
Γ (n+ α+ 1− η)

{xn(1− qn)− gn}P (α−η,β+η)
n (x) = 0, x ∈ (t0, 1) .

(2. 17)
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Combining Equations (2.15) with (2.17) we obtain

∞∑
n=0

cnxnP
(α−η,β+η)
n (x) =

{
F1(x), x ∈ (−1, t0)
F2(x), x ∈ (t0, 1)

}
(2. 18)

where

F1(x) =
∞∑

n=0

cn(xnrn + fn)P (α−η,β+η)
n (x),

F2(x) =
∞∑

n=0

cn(xnqn + gn)P (α−η,β+η)
n (x),

and

cn =
Γ (n+ α+ 1)

Γ (n+ α+ 1− η)
.

We recall that the coefficients {xn}∞n=0 lie in a space dependent upon η
(2.10). It simplifies the solution to modify the Fourier coefficients so that they
are square-summable sequences in l2 = l2(0). Introducing the orthonormal
Jacobi polynomials P̂ (α,β)

n , defined by

P̂ (α,β)
n (z) = P (α,β)

n (z)/ ‖ P (α,β)
n ‖ (2. 19)

where the square norm ‖ P (α,β)
n ‖2≡ h

(α,β)
n is given by Formula (B. 20) (see

Appendix), we may normalise the coefficients xn, fn, gn so that

{yn, f̂n, ĝn} =
Γ (n+ 1 + α)

Γ (n+ 1 + α− η)

[
h(α−η,β+η)

n

] 1
2 {xn, fn, gn}; (2. 20)

these sequences are square-summable:

{yn, f̂n, ĝn}∞n=0 ∈ l2 (0) ≡ l2. (2. 21)

Equation (2.18) becomes

∞∑
n=0

ynP̂
(α−η,β+η)
n (t) =

{
G1(t), t ∈ (−1, t0)
G2(t), t ∈ (t0, 1)

}
, (2. 22)

where

G1(t) =
∞∑

n=0

(ynrn + f̂n)P̂ (α−η,β+η)
n (t),

G2(t) =
∞∑

n=0

(ynqn + ĝn)P̂ (α−η,β+η)
n (t).
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Conditions (2.7), (2.8) , and (2.10) dictate that all series in (2.22) are
Fourier-Jacobi series, so that we can exploit completeness and orthogonal-
ity of the orthonormal set {P̂ (α−η,β+η)

n }∞n=0 on [−1, 1]. After multiplication of
both sides of (2.22) by the factor (1− t)α−η (1 + t)β+η

P̂
(α−η,β+η)
s (t) and inte-

gration over (−1, 1) , we obtain the following infinite system of linear algebraic
equations (i.s.l.a.e.)

(1− rs) ys +
∞∑

n=0

yn (rn − qn) Q̂(α−η,β+η)
sn (t0)

= f̂s +
∞∑

n=0

(
ĝn − f̂n

)
Q̂(α−η,β+η)

sn (t0) , (2. 23)

where s = 0, 1, 2, . . ., and

Q̂(α,β)
sn (t) =

∫ 1

t

(1− x)α (1 + x)β
P̂ (α,β)

s (x) P̂ (α,β)
n (x) dx. (2. 24)

The function Q̂(α,β)
sn (t) is termed an incomplete scalar product of normalised

Jacobi polynomials with weight function (1− x)α (1 + x)β for the following
reason. The conventional (weighted) scalar product of P̂ (α,β)

s and P̂ (α,β)
n is

Q̂(α,β)
sn (−1) =

∫ 1

−1

(1− x)α (1 + x)β
P̂ (α,β)

s (x) P̂ (α,β)
n (x) dx (2. 25)

and the “incompleteness” of (2.24) refers to the fact that integration is per-
formed over the subinterval [t, 1]. We shall also employ the unnormalised
incomplete scalar product

Q(α,β)
sn (t) =

∫ 1

t

(1− x)α (1 + x)β
P (α,β)

s (x)P (α,β)
n (x) dx (2. 26)

of unnormalised Jacobi polynomials. Some useful properties incomplete scalar
product are stated in Appendix B.6.

It can be shown that {Q̂(α,β)
sn (t)}∞s,n=0 is the matrix of a projection operator

K (t) in l2, therefore satisfying K (t)2 = K (t) . Using this property and that of
the diagonal operators dr and dq which correspond to the diagonal matrices
diag{rn}∞n=0 and diag{qn}∞n=0, one can prove that the matrix operator of
(2.23) is a completely continuous (or compact) perturbation H of the identity
operator I in l2. Thus Equation (2.23) is a Fredholm equation of the second
kind (see Appendix C.3), which we may represent in the form

(I −H) y = b (2. 27)

where the vector b ∈ l2 may be readily identified; the solution vector y =
{yn}∞n=0 lies in l2. Since projection operators have norm at most unity, the

©2001 CRC Press LLC



norm of the operator H is bounded by

‖ H ‖≤ max
n
| rn | +max

n
| qn | . (2. 28)

The Fredholm alternative (see Appendix C.3) is valid for (2.23) or (2.27);
the equations can be solved by the truncation method or, in certain cases, by
an iterative method of successive approximations. The truncation method re-
places the infinite system by a finite number (those indexed by s = 0, 1, . . . , Ntr)
of linear algebraic equations, in which all infinite sums are truncated to retain
only the variables y0, y1, . . . , yNtr

. Note that the solution is explicitly obtained
in closed analytic form when rn = qn = 0. The mixed boundary value prob-
lems considered later will either have analytic solutions of this type or have
solutions which can, in principle, be obtained by the method of successive
approximations. In any case the system (2.23) is solvable numerically in a
satisfactory manner via the truncation method. A detailed discussion of the
rate of convergence of the solution to the truncated system to the exact (infi-
nite) system is given in [30]; this makes it possible to estimate and guarantee
accuracy of numerical solutions generated in this fashion.

A companion pair to the Equations (2.4) and (2.5) is the related set of dual
series

∞∑
n=0

xn (1− qn)P (α,β)
n (t) = G (t) , t ∈ (−1, t0) (2. 29)

∞∑
n=0

λn (β, α, η)xn (1− rn)P (α,β)
n (t) = F (t) , t ∈ (t0, 1) . (2. 30)

The indices α, β, η are now constrained to satisfy α > −1, β− η > −1. Essen-
tially, the subintervals on which (2.4) and (2.5) are enforced are interchanged,
and the factor λn (β, α, η) replaces λn (α, β, η) . In contrast to (2.7), F is as-
sumed to be expandable in a Fourier-Jacobi series of the form

F (t) =
∞∑

n=0

λn (β, α, η) fnP
(α,β)
n (t) , (2. 31)

but G is assumed to possess the same expansion (2. 8).
Applying the same method used above to solve (2.4) and (2.5) , we find

∞∑
n=0

cnxnP
(α+η,β−η)
n (t) =

{
F1(t) , x ∈ (−1, t0)
F2(t) , x ∈ (t0, 1)

}
, (2. 32)

where

F1(t) =
∞∑

n=0

cn(xnqn + gn)P (α+η,β−η)
n (x),

F2(t) =
∞∑

n=0

cn(xnrn + fn)P (α+η,β−η)
n (x),
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and

cn =
Γ (n+ β + 1)

Γ (n+ β + 1− η)
.

After rescaling both known and unknown coefficients via

{yn, f̂n, ĝn} =
Γ (n+ 1 + β)

Γ (n+ 1 + β − η)

[
h(α+η,β−η)

n

] 1
2 {xn, fn, gn}, (2. 33)

we obtain
∞∑

n=0

ynP̂
(α+η,β−η)
n (t) =

{
G1(t), t ∈ (−1, t0)
G2(t), t ∈ (t0, 1)

}
, (2. 34)

where

G1(t) =
∞∑

n=0

(ynqn + ĝn)P̂ (α+η,β−η)
n (t),

G2(t) =
∞∑

n=0

(ynrn + f̂n)P̂ (α+η,β−η)
n (t).

From this, we finally obtain the i.s.l.a.e. of the second kind

(1− qs) ys +
∞∑

n=0

yn (qn − rn) Q̂(α+η,β−η)
sn (t0)

= ĝs +
∞∑

n=0

(
f̂n − ĝs

)
Q̂(α+η,β−η)

sn (t0) , (2. 35)

where s = 0, 1, 2, ... This i.s.l.a.e. possesses very similar properties to those of
(2.23).

It is not possible, in general, to solve the regularised systems (2.23) or (2.35)
explicitly in closed form, except for certain choices of qn and rn. Without loss
of generality we may suppose that qn = 0. As an example, consider

rn =
−A

n(n+ α+ β + 1)

for some constant A. Then (2.23) implies that

Y (x) =
∞∑

n=0

ynP̂
(α+η,β−η)
sn (x)

satisfies

1
w(x)

d

dx

[(
1− x2

)
w(x)

dY

dx
(x)
]

+AY (x) =

1
w(x)

d

dx

[(
1− x2

)
w(x)

dF̂

dx
(x)

]
, x ∈ (−1, t0) ,
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Y (x) = Ĝ(x), x ∈ (t0, 1)

where

F̂ (x) =
∞∑

n=0

f̂nP̂
(α+η,β−η)
sn (x) ,

Ĝ(x) =
∞∑

n=0

ĝnP̂
(α+η,β−η)
sn (x) .

The differential equation may be solved to yield, when x ∈ (−1, t0) ,

Y (x) =
∞∑

n=0

n(n+ α+ β + 1)
n(n+ α+ β + 1)−A

f̂nP̂
(α+η,β−η)
sn (x) + CH1(x) +DH2(x),

where H1,H2 are a pair of linearly independent solutions of

1
w(x)

d

dx

[(
1− x2

)
w(x)

dY

dx
(x)
]

+AY (x) = 0,

and C,D are constants. The constants are explicitly determined by enforcing
continuity of Y and its derivative at the point t0, and the expansion coefficients
of Y are then explicitly calculated.

More generally, the same argument can be applied when

rn =
A1

n(n+ α+ β + 1)
+

A2

n2(n+ α+ β + 1)2
+ . . .+

Ar

nr(n+ α+ β + 1)r

to produce a differential equation of order 2r that may be solved provided the
corresponding homogeneous differential equation is solved. Again Y is made
fully determinate by enforcing continuity on Y and its first 2r− 1 derivatives
at t0.

This idea lies behind various methods to improve the convergence of (2.23)
under truncation, by replacing it with a more rapidly convergent system. An
example of this technique will be given in Chapter 4.

Sometimes mixed-boundary value problems in potential theory or wave-
scattering theory lead to dual series equations for which the parameter con-
straints (namely α − η > −1, β > −1 on the pair (2.4) and (2.5), or α >
−1, β − η > −1 on the pair (2. 29) and (2. 30)) do not hold. We may over-
come this difficulty by transforming the initial equations to an equivalent set
which involve Jacobi polynomials with increased values of the indices.

There are two ways to effect such a transformation. One may apply the
formula deduced from Rodrigues’ formula [59] for Jacobi polynomials:

− 2n (1− x)α (1 + x)β
P (α,β)

n (x)

=
d

dx
{(1− x)α+1 (1 + x)β+1

P
(α+1,β+1)
n−1 (x)}. (2. 36)
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A second way successively applies the integration formulae (1.173) and (1.174) .
With completely arbitrary values of the parameters α or β, this construction
is rather cumbersome, so that a completely general solution of this problem
will not be presented here. However, we will treat specific examples in the fol-
lowing sections solving Equations (2.4) and (2.5) or Equations (2. 29) and (2.
30), to illustrate the merits and applicability of the abovementioned methods.

This completes our examination of dual series with Jacobi polynomial ker-
nels. The functions Q̂(α,β)

sn that appear in the final regularised system play an
extremely important role both in the analysis of and establishing the validity
of the solution, as well as a wider role in the general investigation of the single
(or double) layer potential density.

2.2 Dual series equations involving trigonometrical func-
tions

Dual equations with trigonometric kernels have been investigated by a great
many authors (see, for example, the bibliography in [55]). Apparently, Tranter
[62] was the first to solve equations of this type by the definition method
described in Section 1.4. In this section we present the original solution,
placing it in the context of the general theory developed in the previous section
for dual series equations involving Jacobi polynomials P (α,β)

n .
The fundamental connection arises from the relationships (1.151)–(1.154)

between trigonometric functions and the Jacobi polynomials with indices α =
± 1

2 and β = ± 1
2 . In applications the parameter η invariably takes the value

1
2 , so as noted at the end of the previous section, the case when α = β = − 1

2
must be considered separately, since the solution described for the pair (2.4)
and (2.5) requires α − η > −1, whilst that for the pair (2.29) and (2.30)
requires β − η > −1; an initial transformation as described at the end of the
previous section must be effected. On the other hand, when α = β = 1

2 , the
solution described in the previous section is valid.

Let us consider the following dual series equations with kernels einϑ :

bx0 − g0 +
∑
n6=0

{zn (1− qn)− ξn}einϑ = 0, | ϑ |< ϑ0 (2. 37)

ax0 − f0 +
∑
n 6=0

| n | {zn (1− rn)− ζn}einϑ = 0, | ϑ |> ϑ0 (2. 38)

where the unknown coefficient sequence {zn}n 6=0 will be assumed to lie in
l2 (1). The coefficients a, b, g0, f0 and the sequence coefficients ξn, ζn, qn, rn
are assumed to be known; in addition, we suppose that q−n = qn, rn = r−n
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and
lim

|n|→∞
qn = lim

|n|→∞
rn = 0.

Introduce the following notation:{
xn

yn

}
=
{
zn + z−n

zn − z−n

}
;
{
gn

en

}
=
{
ξn + ξ−n

ξn − ξ−n

}
;
{
fn

hn

}
=
{
ζn + ζ−n

ζn − ζ−n

}
.

Then the pair of equations (2.37) and (2.38) is equivalent to the two pairs of
functional equations in which the unknowns xn, yn are decoupled:

bx0 − g0 +
∞∑

n=1

{xn (1− qn)− gn} cosnϑ = 0, ϑ ∈ (0, ϑ0) (2. 39)

ax0 − f0 +
∞∑

n=1

n{xn (1− rn)− fn} cosnϑ = 0, ϑ ∈ (ϑ0, π) (2. 40)

and
∞∑

n=1

{yn (1− qn)− en} sinnϑ = 0, ϑ ∈ (0, ϑ0) (2. 41)

∞∑
n=1

n{yn (1− rn)− hn} sinnϑ = 0, ϑ ∈ (ϑ0, π) . (2. 42)

Let us consider first the pair (2.41) and (2.42) with sine function kernels;
the pair with cosine function kernels will be treated later. Set z = cosϕ,
z0 = cosϕ and use (1. 153) to obtain

∞∑
n=1

n{An (1− rn)− dn}P
( 1

2 , 1
2 )

n−1 (z) = 0, z ∈ (−1, z0) (2. 43)

∞∑
n=1

{An (1− qn)− cn}P
( 1

2 , 1
2 )

n−1 (z) = 0, z ∈ (z0, 1) (2. 44)

where

{An, dn, cn} =
√
π

2
Γ (n+ 1)
Γ
(
n+ 1

2

) {yn, hn, en} . (2. 45)

The rescaled unknowns {An}∞u=1 lie in l2. Equations (2.43), (2.44) are of the
form (2.4), (2.5) because λn−1

(
1
2 ,

1
2 ,

1
2

)
= n, and we may conclude that

(1− rs) Âs +
∞∑

n=1

Ân (rn − gn) Q̂(0,1)
n−1,s−1 (z0)

= d̂s +
∞∑

n=1

(
ĉn − d̂n

)
Q̂

(0,1)
n−1,s−1 (z0) , (2. 46)
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where s = 1, 2, ..., and

{Âs, d̂s, ĉs} =

√
2
n

Γ
(
n+ 1

2

)
Γ (n)

{An, ds, cs} =
√
nπ

2
{yn, hn, en} .

Notice that {Âs}∞s=1 ∈ l2.
We now turn to Equations (2.39) and (2.40) with cosine function kernels;

an initial transformation of the parameter values is needed. First, replace
the cosine terms by their Jacobi polynomial representation (1. 151). Then
integrate both sides of these equations using Formula (2. 36). (This term-by-
term integration is justified in the same way as in the previous section, using
results in Appendix D.2.) We then integrate using Formula (1.174) to obtain

(1 + t)
3
2

∞∑
n=1

Γ (n+ 1)
Γ
(
n+ 1

2

){xn (1− rn)− fn}P
(− 1

2 , 3
2 )

n−1 (t) =

2√
π

(ax0 − f0) {4 (1 + t)
1
2 − (1− t)

1
2 [π + 2 arcsin t]}, t ∈ (−1, t0) , (2. 47)

(1− t)
1
2

∞∑
n=1

Γ (n)
Γ
(
n+ 1

2

){xn (1− qn)− gn}P
( 1

2 , 1
2 )

n−1 (t) =

− 2√
π

(bx0 − g0) (1 + t)−
1
2

{π
2
− arcsin t

}
, t ∈ (t0, 1) , (2. 48)

where t = cos θ, t0 = cos θ0.
Following the standard scheme described in Section 2.1, we obtain the dual

series equations

(1 + t)
∞∑

n=1

{xn (1− rn)− fn}P (0,1)
n−1 (t)

= −2 (ax0 − f0) ln[
1
2

(1− t)], t ∈ (−1, t0) , (2. 49)

(1 + t)
∞∑

n=1

{xn (1− qn)− gn}P (0,1)
n−1 (t) = −2 (bx0 − g0) , t ∈ (t0, 1) , (2. 50)

where the unknowns {xn}∞n=1 ∈ l2 (1). The following definite integral∫ z

−1

π
2 + arcsinx
√

1− x
√
z − x

dx = −π ln
1− z

2
(2. 51)

which occurs in this process may be evaluated from the transform

−
√

2π ln
(

cos
φ

2

)
=
∫ φ

0

θ sin 1
2θ dθ√

cos θ − cosφ
. (2. 52)
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Introducing new coefficients

{x̂n, f̂n, ĝn} =

√
2
n
{xn, fn, gn} (2. 53)

we transform (2.49) and (2.50) to

F (t) =
{
F1(t), t ∈ (−1, t0)
F2(t), t ∈ (t0, 1) (2. 54)

where

F (t) = (1 + t)
∞∑

n=1

x̂nP̂
(0,1)
n−1 (t) , (2. 55)

F1 (t) = −2 (ax0 − f0) ln
[
1
2

(1− t)
]

+ (1 + t)
∞∑

n=1

(
x̂nrn + f̂n

)
P̂

(0,1)
n−1 (t) ,

(2. 56)
and

F2 (t) = −2 (bx0 − g0) + (1 + t)
∞∑

n=1

(x̂nqn + ĝn) P̂ (0,1)
n−1 (t) . (2. 57)

The rescaled solution {x̂n}∞n=1 belongs to l2 (2). Multiplying both sides of (2.
54) by P̂ (0,1)

m−1 (t) and integrating over [−1, 1] , and employing the properties of
the incomplete scalar product (see Appendix (B.6)), we obtain

(1− rm) x̂m −
∞∑

n=1

{x̂n (qn − rn) + ĝn − f̂n}Q̂(0,1)
n−1,m−1 (t0) =

f̂m + 2x0

{
−1− t0

m
P̂

(1,0)
m−1 (t0)

[
b− a ln

(
1− t0

2

)]
+ a

1 + t0
m2

P̂
(0,1)
m−1 (t0)

}
+ 2

{
1− t0
m

P̂
(1,0)
m−1 (t0)

[
g0 − f0 ln

(
1− t0

2

)]
− f0

1 + t0
m2

P̂
(0,1)
m−1 (t0)

}
,

(2. 58)

where m = 1, 2, ....
Whatever the value of the constant x0, the solution {x̂m}∞m=1 of the system

(2. 58) lies in l2; however, the value x0 must be chosen so that it also lies in
l2(2). This depends upon the smoothness of the function F, which is related
to the rate of decrease of its Fourier coefficients [49, 79]. F is continuous
everywhere on the interval [−1, 1] because (2. 55) is a uniformly convergent
series. The functions F1 and F2 are continuous on the sub-intervals [−1, t0) and
(t0, 1] respectively, so the only point where the function F may lose continuity
is at t0; observing that F is continuous at this point gives an equation for the
constant x0, namely,

F1 (t0) = F2 (t0) . (2. 59)
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From this condition we find

x0 = c

[
g0 − f0 ln

(
1− t0

2

)]
+

1 + t0
2

c
∞∑

n=1

{x̂n (qn − rn) + ĝn − f̂n}P̂ (0,1)
n−1 (t0) . (2. 60)

where

c =
[
b− a ln

(
1− t0

2

)]−1

.

Combined with (2.58) , the relationship (2.60) gives the solution of the dual
series equations involving trigonometric functions cosnϑ. Let us substitute
the expression (2.60) for x0 in Equation (2.58), keeping in mind the relation-
ship (see Appendix, (B. 171))

Q̂
(0,1)
n−1,m−1 (t0) =

(1− t0)
2

m
P̂

(0,1)
n−1 (t0) P̂

(1,0)
m−1 (t0) +

n

m
Q̂

(1,0)
n−1,m−1 (t0) . (2. 61)

As a result we obtain

(1− rm)Xm −
∞∑

n=1

{Xn (qn − rn) +Gn − Fn}×{
Q̂

(1,0)
n−1,m−1 (t0) +

a (1 + t0)
2

b− a ln
(

1
2 (1− t0)

) P̂ (0,1)
n−1 (t0)
n

P̂
(0,1)
m−1 (t0)
m

}

= Fm + 2
ag0 − f0b

b− a ln
(

1
2 (1− t0)

) 1 + t0
m

P̂
(0,1)
m−1 (t0) (2. 62)

where m = 1, 2, . . . , and

{Xm, Gm, Fm} = m{x̂m,ĝm, f̂m}. (2. 63)

Because {Xm}∞m=1 lies in l2, the solution {x̂m} lies in l2(2) as required.
This completes the regularisation of the dual series (2.39) and (2.40) or

(2.41) and (2.42) , and hence of the original system (2.37) and (2.38) . There
is a companion set of dual series, in which the sub-intervals on which the indi-
vidual equations are interchanged. It is easily shown that they reduce to the
same equations as (2.39) and (2.40) or (2.41) and (2.42) via the replacements
t0 → −t1 (ϑ1 = π − ϑ0, t1 = cosϑ1 = − cosϑ0 = −t0), Âs → (−1)s

Âs,
{Xm, Gm, Fm} → (−1)m {Xm, Gm, Fm}.

To complete our consideration of dual series equations involving trigono-
metric kernels, we now consider the pairs of functional equations{∑∞

n=0{xn (1− qn)− gn} cos
(
n+ 1

2

)
ϑ = 0, ϑ ∈ (0, ϑ0)∑∞

n=0

(
n+ 1

2

)
{xn (1− rn)− fn} cos

(
n+ 1

2

)
ϑ = 0, ϑ ∈ (ϑ0, π) (2. 64)
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and{ ∑∞
n=0{yn (1− qn)− en} sin

(
n+ 1

2

)
ϑ = 0, ϑ ∈ (0, ϑ0)∑∞

n=0

(
n+ 1

2

)
{yn (1− rn)− hn} sin

(
n+ 1

2

)
ϑ = 0, ϑ ∈ (ϑ0, π) . (2. 65)

In addition, we consider the companion equations in which the sub-intervals
of definition of these equations are interchanged:{ ∑∞

n=0

(
n+ 1

2

)
{xn (1− rn)− fn} cos

(
n+ 1

2

)
ϑ = 0, ϑ ∈ (0, ϑ0)∑∞

n=0{xn (1− qn)− gn} cos
(
n+ 1

2

)
ϑ = 0, ϑ ∈ (ϑ0, π) (2. 66)

and{ ∑∞
n=0

(
n+ 1

2

)
{yn (1− rn)− hn} sin

(
n+ 1

2

)
ϑ = 0, ϑ ∈ (0, ϑ0)∑∞

n=0{yn (1− qn)− en} sin
(
n+ 1

2

)
ϑ = 0, ϑ ∈ (ϑ0, π) . (2. 67)

However, from the elementary relationships

cos
(
n+ 1

2

)
(π − θ) = (−1)n sin

(
n+ 1

2

)
θ,

sin
(
n+ 1

2

)
(π − θ) = (−1)n cos

(
n+ 1

2

)
θ,

it is evident that the pair (2. 67) is of the same type as the pair (2. 64), and
also that the pair (2. 66) is of the same type as (2. 65). Thus, we shall consider
only the pairs (2. 64) and (2. 65) and find solutions with {xn, yn}∞n=0 ∈ l2 (1) .

Using the identities (1.152) and (1.154) , and setting t = cosϑ, t0 = cosϑ0,
we reformulate these equations in terms of Jacobi polynomials as

∞∑
n=0

(
n+ 1

2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) {xn (1− rn)− fn}P
(− 1

2 , 1
2 )

n (t) = 0, t ∈ (−1, t0) ,

(2. 68)
∞∑

n=0

Γ (n+ 1)
Γ
(
n+ 1

2

){xn (1− qn)− gn}P
(− 1

2 , 1
2 )

n (t) = 0, t ∈ (t0, 1) (2. 69)

and
∞∑

n=0

(
n+ 1

2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) {yn (1− rn)− hn}P
( 1

2 ,− 1
2 )

n (t) = 0, t ∈ (−1, t0) ,

(2. 70)
∞∑

n=0

Γ (n+ 1)
Γ
(
n+ 1

2

){yn (1− qn)− en}P
( 1

2 ,− 1
2 )

n (t) = 0, t ∈ (t0, 1) . (2. 71)

The general theory, developed in Section 2.1, is applicable to the second
pair of dual equations, (2.70) and (2.71). We set η = α = 1

2 , β = − 1
2 , so that

λn (α, β; η) = n+ 1
2 , and then represent these equations in the standard form

∞∑
n=0

λn

(
1
2
,−1

2
;
1
2

)
{y∗n (1− rn)− h∗n}P

( 1
2 ,− 1

2 )
n (t) = 0, t ∈ (−1, t0) (2. 72)
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∞∑
n=0

{y∗n (1− qn)− e∗n}P
( 1

2 ,− 1
2 )

n (t) = 0, t ∈ (t0, 1) (2. 73)

where

{y∗n, h∗n, e∗n} =
Γ (n+ 1)
Γ
(
n+ 1

2

){yn, hn, en}. (2. 74)

The regularised system from (2. 65) is thus directly obtained from (2.23): the
rescaled coefficients and unknowns

{Ys,Hs, Es} =
(
s+

1
2

) 1
2

{ys, hs, es} (2. 75)

satisfy

(1− rs)Ys +
∞∑

n=0

Yn (rn − qn) Q̂(0,0)
sn (t0) = Hs +

∞∑
n=0

(Es −Hs) Q̂(0,0)
sn (t0)

(2. 76)
where s = 0, 1, 2, . . . . Notice that in this case the incomplete inner product
Q̂

(0,0)
sn is simply an incomplete inner product of normalised Legendre polyno-

mials P̂n = P̂
(0,0)
n =

(
n+ 1

2

) 1
2 Pn:

Q̂(0,0)
sn (t0) =

∫ 1

t0

P̂s (t) P̂n (t) dt. (2. 77)

Let us now consider the remaining dual series equations, (2.64). Instead of
applying the variant (2. 36) of Rodrigues’ formula as was done previously (cf.
(2. 47),(2. 48)), we apply the integration Formulae (1.173) and (1.174). First
we use the relationship (1.173) with α = − 1

2 , β = 1
2 ,∫ 1

t

(1− x)−
1
2 P

(− 1
2 , 1

2 )
n (x) dx =

(1− t)
1
2

n+ 1
2

P
( 1

2 ,− 1
2 )

n (t) (2. 78)

and integrate both parts of Equations (2.68) and (2.69) . (The term-by-term
integration of a square-summable Fourier series is justified.) As a result, we
obtain

∞∑
n=0

Γ (n+ 1)
Γ
(
n+ 1

2

){xn (1− rn)− fn}P
( 1

2 ,− 1
2 )

n (t) = C (1− t)−
1
2 , t ∈ (−1, t0) ,

(2. 79)
∞∑

n=0

Γ (n+ 1)
Γ
(
n+ 3

2

){xn (1− qn)− gn}P
( 1

2 ,− 1
2 )

n (t) = 0, t ∈ (−1, t0) , (2. 80)

where C is a constant to be determined later. This is in standard form for the
application of the Abel integral transform method outlined in the previous
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section (with α = η = 1
2 , β = − 1

2 ). The first step is to integrate (2.79) again,
but using Formula (1.174) with α = 1

2 , β = − 1
2 :∫ t

−1

(1 + x)−
1
2 P

( 1
2 ,− 1

2 )
n (x) dx =

(1 + t)
1
2

n+ 1
2

P
(− 1

2 , 1
2 )

n (t) . (2. 81)

We find

(1 + t)
1
2

∞∑
n=0

Γ (n+ 1)
Γ
(
n+ 3

2

){xn (1− rn)− fn}P
(− 1

2 , 1
2 )

n (t)

= C
(π

2
+ arcsin t

)
, t ∈ (−1, t0) . (2. 82)

Repeating the steps of the method described in the previous section converts
Equations (2.82) and(2.80) to the equivalent pair

∞∑
n=0

xnPn (t) =
{
F1(t), t ∈ (−1, t0)
F2(t), t ∈ (t0, 1)

}
, (2. 83)

where

F1(t) =
(

2
π

) 1
2

K

(√
1 + t

2

)
C +

∞∑
n=0

(xnrn + fn)Pn (t) ,

F2(t) =
∞∑

n=0

(xnqn + gn)Pn (t) ,

and K denotes the complete elliptic integral of first kind (see Appendix, (B.
78)). The value of the constant is determined by

C =
(π

2

) 1
2

{
K

(√
1 + t0

2

)}−1 ∞∑
n=0

{xn (qn − rn) + gn − fn}P (0,0)
n (t0)

(2. 84)
and the coefficients {xn}∞n=0 satisfy

(1− rs)xs −
∞∑

n=1

{xn (qn − rn)Q(0,0)
ns (t0)

=
(

2
π

) 1
2

C

∫ t0

−1

K
(√

(1 + t) /2
)
Pn (t) dt

+ fs +
∞∑

n=1

(gn − fn)Q(0,0)
ns (t0) , (2. 85)

where s = 0, 1, 2, .... Note that Q(0,0)
ns is the unnormalised incomplete scalar

product. The integral appearing in (2. 85) may be simply expressed in terms
of complete elliptic integrals (see later, (5. 50)).
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This completes the solution of the dual series (2. 64) and concludes our
regularisation of dual series equations with various types of trigonometric
kernels.

2.3 Dual series equations involving associated Legendre
functions

The associated Legendre functions Pm
n provide another interesting and spe-

cial set of kernels for dual series equations, worthy of examination in their own
right. Because Pm

n is essentially themth derivative of the Legendre polynomial
Pn, m-fold integration of the dual series equations immediately produces dual
series equations with Legendre polynomial kernels that are readily solvable.
This section examines the solution obtained by this simple process. For large
m, however, the resulting scheme is numerically unstable; two stable modifi-
cations are therefore described. The advantages and limitations of the original
and modified systems are discussed. These results were obtained jointly with
Yu. A. Tuchkin; some of them appear in [72].

We therefore consider dual series equations involving associated Legendre
functions Pm

n (cos θ), and exploit the solution already obtained in Section 2.1.
The index m is a fixed nonnegative integer. The dual series equations

∞∑
n=m

xm
n (1− εn)Pm

n (cos θ) = G (θ) , θ ∈ (0, θ0) (2. 86)

∞∑
n=m

(2n+ 1)xm
n (1− µn)Pm

n (cos θ) = F (θ) , θ ∈ (θ0, π) (2. 87)

are to be solved for the unknown coefficients {xm
n }∞n=m. The quantities

{εn}∞n=0,{µn}∞n=0 are assumed to be known sequences of, in general, complex
quantities decreasing at least as fast as O

(
n−2

)
as n→∞ :

εn = O
(
n−2

)
;µn = O

(
n−2

)
. (2. 88)

The functions G,F are assumed to be expandable in Fourier-Legendre series

G (θ) =
∞∑

n=m

gm
n P

m
n (cos θ) ,

F (θ) =
∞∑

n=m

(2n+ 1) fm
n P

m
n (cos θ) . (2. 89)
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where the coefficients gm
n and fm

n are of the form gm
n = αnn

−m and fm
n =

βnn
−m−1 and satisfy

∞∑
n=m

|αn|2 <∞;
∞∑

n=m

|βn|2 <∞. (2. 90)

Furthermore, all the series contained in (2.86), (2.87), and (2.89) are assumed
to be the Fourier series of their respective sums, i.e., are convergent in the
weighted mean square sense with weight wm,m(x) =

(
1− x2

)m
.

When n > m, the relationship between the associated Legendre functions
Pm

n and the Jacobi polynomials P (m,m)
n−m is (see Appendix, (B. 48))

Pm
n (cos θ) = 2−m sinm θ

Γ (n+m+ 1)
Γ (n+ 1)

P
(m,m)
n−m (cos θ) . (2. 91)

The connection with Legendre polynomials is

Pm
n (x) = (−1)m

(
1− x2

)m
2 dm

dxm
Pn (x) . (2. 92)

In terms of the parameters of the dual equations considered in Section 2.1,
α = β = m, and η = 1

2 .
Because of this connection, it is natural to seek the solution of the pair

(2.86) and (2.87) in the class l2 (2m) defined by (2.9):

{xm
n }∞n=m ∈ l2 (2m) . (2. 93)

This condition which appears naturally in both potential theory and wave-
scattering theory for open spherical surfaces, is equivalent to the boundedness
condition for the energy integral, which is taken over a finite volume including
the edges.

Defining
Rn (x) = Pn+1 (x)− Pn−1 (x) ,

the Legendre polynomials obey (see (1. 123)),

(2n+ 1)Pn (x) =
d

dx
Rn (x) . (2. 94)

All series in (2.86), (2.87) are (generalised) Fourier series, so they can be in-
tegrated term-by-term (see Appendix D.2). Set x = cos θ. Divide (2.86) and
(2.87) by

(
1− x2

)m
2 ; then integrate each equation m-times; a further integra-

tion of (2.87) is made using (2. 94). As a result of this process, polynomials
(in x) of degree m− 1 and m, respectively appear on the right-hand sides of
these equations with coefficients deriving from integration constants. Express
each polynomial as a finite sum in terms of Legendre polynomials, with some
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undetermined coefficients to obtain
∞∑

n=m

xm
n (1− εn)Pn (cos θ) =

m−1∑
n=0

Cm
n Pn (cos θ) +

∞∑
n=m

fm
n Pn (cos θ) , θ ∈ (0, θ0) , (2. 95)

∞∑
n=m

xm
n (1− µu)Rn (cos θ) =

m−1∑
n=0

(Cm
n +Am

n )Rn (cos θ) +
∞∑

n=m

gm
n Rn (cos θ) , θ ∈ (θ0, π) (2. 96)

where coefficients Am
n , Cm

n denote arbitrary constants of integration.
This system has a solution in l2, i.e.,

{xm
n }∞n=m ∈ l2 (0) ≡ l2. (2. 97)

Each solution of (2.86) and (2.87) is a solution of (2.95) and (2.96) whatever
the values of the coefficients Am

n , Cm
n may be. However, any solution of (2.95)

and (2.96) depends on the 2m arbitrary constants Am
n , Cm

n and so in general
is not a solution of (2.86) and (2.87). We now show how to determine Am

n ,
Cm

n so that (2.93) is satisfied; the solution of (2.95) and (2.96) will also then
be the solution of (2.86) and (2.87). This depends upon differentiating (2.95)
and (2.96) the required number of times.

We now use the Dirichlet-Mehler integral representations for Legendre poly-
nomials (1.149) and (1.150) and observe that

Rn (cos θ) = −2
√

2
π

∫ θ

0

sin
(
n+ 1

2

)
ϕ sinϕ

(cosϕ− cos θ)
1
2
dϕ

=
2
√

2
π

∫ π

θ

cos
(
n+ 1

2

)
ϕ sinϕ

(cosϕ− cos θ)
1
2
dϕ. (2. 98)

Transfer all terms in (2.95) and (2.96) to the left-hand sides of these equa-
tions, use the Dirichlet-Mehler integrals, and substitute the expression (2.98) .
Invert the order of summation and integration (the validity of this operation
is ensured by (2.88) and (2.97)) to obtain two integral relationships, each of
which is a homogenous Abel integral equation with a unique zero solution.
As a result we obtain the following dual series equations.

∞∑
n=m

xm
n cos

(
n+

1
2

)
θ =

m−1∑
n=0

Cm
n cos

(
n+

1
2

)
θ +

{
F1(θ), θ ∈ (0, θ0)
F2(θ), θ ∈ (θ0, π)

}
, (2. 99)
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where

F1(θ) =
∞∑

n=m

(xm
n εn + fm

n ) cos
(
n+

1
2

)
θ,

F2(θ) =
∞∑

n=m

(xm
n µn + gm

n ) cos
(
n+

1
2

)
θ +

m−1∑
n=0

Am
n cos

(
n+

1
2

)
θ.

The set {cos
(
n+ 1

2

)
θ}∞n=0 is orthogonal, so multiplying both sides of Equa-

tion (2.99) by cos
(
s+ 1

2

)
θ and integrating term-by-term over [0, π], we find

Cm
s +

∞∑
n=m

{xm
n (εn − µn) + (fm

n − gm
n )}Qsn (θ0)

= −
∞∑

n=0

Am
n {δsn −Qsn (θ0)}, (2. 100)

where s = 0, 1, 2, ...,m− 1, and

xm
s (1− µs) +

∞∑
n=m

{xm
n (µn − εn)Qsn (θ0)

= gm
s +

∞∑
n=m

(fm
n − gm

n )Qsn (θ0)−
m−1∑
n=0

Am
n Qsn (θ0) , (2. 101)

where s = m,m+ 1, ..., and Qsn (θ0) = Q̂
(− 1

2 , 1
2 )

sn (cos θ0).
Equation (2.101) is an infinite system of the linear algebraic equations of

the second kind for the unknowns {xm
n }∞n=m; its solution depends on the m

constants Am
0 , . . . , A

m
m−1.

Let us introduce the formal notation Dk
m (ϑ) for the k-th derivative (with

respect to ϑ) of

∞∑
n=m

{xm
n (εn − µn) + (fm

n − gm
n )} cos

(
n+

1
2

)
ϑ−

m−1∑
n=0

Am
n cos

(
n+

1
2

)
ϑ.

(2. 102)
Recollect our assumption that the solution of (2.101) belongs to the class

l2 (2m). From standard results, which connect the smoothness of a function
with the rate of decrease of its Fourier coefficients [49, 79], the enforcement
of the aggregate of m conditions

Dk
m (ϑ0) = 0, k = 0, 1, 2, ...,m− 1 (2. 103)

on Equations (2.99) is necessary and sufficient for the solution (2.101) to
belong to the class l2 (2m). Assuming this, one can differentiate the Equations
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(2.102) term-by-term. Combining (2.101) with (2.103) (the result of term-
by-term differentiation of (2.102) at the point θ = θ0), we are led to an
infinite system of the linear algebraic equations for the aggregate of unknowns
{Am

n }m−1
n=0 and {xm

n }∞n=m ∈ l2 (2m).
It can be shown that Equations (2.86) and (2.87) are equivalent to the

set of Equations (2.101)and (2.103); thus, we have successfully converted the
original dual series equations (2.86) and (2.87) to an infinite system of linear
algebraic equations, which can be solved by various numerical methods. The
solution has asymptotic behaviour

xm
s =

Dk
m (θ0)(

s+ 1
2

)m+1 .
2
π

Ψm
s (θ0) +O

(
s−m−2

)
, (2. 104)

as s→∞, where Ψm
s (θ0) = sin

(
s+ 1

2

)
θ0 or cos

(
s+ 1

2

)
θ0 according as m is

even or odd.
The simplicity in calculating the matrix elements of the system (2.100),

(2.101) and the condition (2.103) is attractive: only trigonometric functions
are used. However, it can be shown that for large m this scheme is unstable,
and leads to significant errors in the calculation of the coefficients Am

n . But
provided m is not large, this system is very suitable for numerical calculation.
Let us therefore modify the system to improve its stability. Write (2.103) as
m equations for the unknown values Am

n :{
dk

dθk

[
m−1∑
n=0

Am
n cos

(
n+

1
2

)
θ −

∞∑
n=m

Wm
n cos

(
n+

1
2

)
θ

]}
θ=θ0

= 0,

(2. 105)
where k = 0, 1, 2, ...m− 1, and

Wm
n = xm

n (εn − µn) + fm
n − gm

n . (2. 106)

Assuming that conditions (2.103) are satisfied, we wish to obtain a nu-
merically stable algorithm. Let us consider the orthonormal family of Jacobi
polynomials (n ≥ k, k fixed),

P̂
(k− 1

2 ,k+ 1
2 )

n−k (cos θ) =
(−1)k

√
π

{
(n− k)!
(n+ k)!

} 1
2
(

1
sin θ

d

dθ

)k
[

cos
(
n+ 1

2

)
θ

cos 1
2θ

]
.

(2. 107)
The coefficients Am

n admit the representation

Am
n =

∞∑
j=m

Wm
j αj

nm, n = 0, 1, 2, ...,m− 1 (2. 108)
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where the coefficients αj
nm ( j ≥ m) are solutions of the equations

m−1∑
n=k

αj
nm

{
(n+ k)!
(n− k)!

} 1
2

P̂
(k− 1

2 ,k+ 1
2 )

n−k (cos θ)

=
{

(j + k)!
(j − k)!

} 1
2

P̂
(k− 1

2 ,k+ 1
2 )

j−k (cos θ) , (2. 109)

for k = 0, 1, 2, ...,m− 1. For every fixed j, the matrix of the system of Equa-
tions (2.109) is upper triangular, so the solution can be easily obtained by a
recursive procedure.

Now differentiate (2.99) m times to obtain an equivalent system of linear
algebraic equations. Accepting the representation (2.108) for the coefficients
Am

n , the final system is

x̂m
s (1− µs)−

∞∑
n=m

x̂m
n (εn − µn)Wm

sn (θ0)

= ĝm
s +

∞∑
n=m

(
f̂m

n − ĝm
n

)
Wm

sn (θ0) , (2. 110)

where s = m,m+ 1,m+ 2, ... and{
x̂m

n , f̂
m
n , ĝ

m
n

}
=
(
n+

1
2

)m

{xm
n , f

m
n , g

m
n } , (2. 111)

Wm
sn (θ0) = Um

sn (θ0)−
m−1∑
n=k

(
j +

1
2

)m

αn
jmU

m
sj (θ0) , (2. 112)

and

Um
sj (θ0) =

1
π

[
sin (s− j) θ0

s− j
+ (−1)m sin (s+ j + 1) θ0

s+ j + 1

]
(2. 113)

with the understanding [
sinnθ0
n

]
n=0

= θ0.

Thus, the initial dual series Equations (2.86) and (2.87), with associated
Legendre function kernels, are transformed to the equivalent system of linear
algebraic Equations (2.110); it is a second-kind equation that is a completely
continuous perturbation of the identity operator in l2. However it is signif-
icantly more stable than (2. 101) and (2. 103), albeit at the cost of rather
more complicated coefficients. Another stable form may be derived as follows.
Using the relationship (2.107), we represent (2.99) in equivalent form

∞∑
n=m

xm
n P̂

(− 1
2 , 1

2 )
n (cos θ)−

m−1∑
n=0

Cm
n P̂

(− 1
2 , 1

2 )
n (cos θ) =

{
F1(θ), θ ∈ (0, θ0)
F2(θ), θ ∈ (θ0, π) ,
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(2. 114)

where

F1(θ) =
∞∑

n=m

(xm
n εn + fm

n ) P̂ (− 1
2 , 1

2 )
n (cos θ) ,

F2(θ) =
∞∑

n=m

(xm
n µn + gm

n ) P̂ (− 1
2 , 1

2 )
n (cos θ) +

m−1∑
n=0

Am
n P̂

(− 1
2 , 1

2 )
n (cos θ) .

For these orthonormal Jacobi polynomials the following differentiation for-
mula holds when k ≤ n, [58],

dk

dxk
P̂

(− 1
2 , 1

2 )
n (x) = [(n+ k)!/ (n− k)!]

1
2 P̂

(k− 1
2 ,k+ 1

2 )
n−k (x) ; (2. 115)

the k-fold derivative vanishes when k > n. Introduce the new unknowns and
coefficients

{ym
n , F

m
n , Gm

n } =
{

(n+m)!
(n−m)!

} 1
2

{xm
n , f

m
n , g

m
n } . (2. 116)

It follows from (2.90), (2.93), and(2.111) that

{ym
n , F

m
n , Gm

n }
∞
n=m ∈ l2 = l2 (0) . (2. 117)

Assuming that condition (2.93) is valid, we may differentiate the Equation
(2.114) m times term-by-term with respect to x = cos θ. Keeping in mind the
relationship (2.105), we find (setting x0 = cos θ0),

∞∑
n=m

ym
n P̂

(m− 1
2 ,m+ 1

2 )
n−m (x) =

{
F1(x), x ∈ (−1, x0)
F2(x), x ∈ (x0, 1)

}
(2. 118)

where

F1(x) =
∞∑

n=m

(ym
n µn + Fm

n ) P̂ (m− 1
2 ,m+ 1

2 )
n−m (x) ,

F2(x) =
∞∑

n=m

(ym
n εn +Gm

n ) P̂ (m− 1
2 ,m+ 1

2 )
n−m (x) .

The polynomials P̂ (m− 1
2 ,m+ 1

2 )
s are orthonormal on [−1, 1] with weight function

w(x) = (1− x)m− 1
2 (1 + x)m+ 1

2 ; multiplying (2.118) by wP̂
(m− 1

2 ,m+ 1
2 )

s−m and
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integrating term-by-term over [−1, 1] , we obtain the infinite system of linear
algebraic equations

(1− εs) ym
s +

∞∑
n=m

ym
n (εn − µn) Q̂(m− 1

2 ,m+ 1
2 )

s−m,n−m (x0)

= Gm
n +

∞∑
n=m

(Fm
n −Gm

n ) Q̂(m− 1
2 ,m+ 1

2 )
s−m,n−m (x0) , (2. 119)

where s = m+1,m+2, ..., and the usual normalised incomplete inner product
has been employed.

Comparing (2.111) with (2.116) we have{
x̂m

n , f̂
m
n , ĝ

m
n

}
= km

n {ym
n , F

m
n , Gm

n } (2. 120)

where

km
n =

(
n+

1
2

)m [ (n−m)!
(n+m)!

] 1
2

. (2. 121)

Observe that km
n → 1 as n → ∞. In addition, it can be shown that the

following relationship holds:

Q̂
(m− 1

2 ,m+ 1
2 )

s−m,r−m (cos θ0) = km
r (km

n )−1
Wm

sr (θ0) . (2. 122)

Formula (2.122) can be used for calculations of Q̂(m− 1
2 ,m+ 1

2 )
s−m,r−m (cos θ0), employ-

ing (2.112). The systems (2.110) and (2.119) are practically identical, differing
only in the normalisation (2.120).

In summary, we have shown how to regularise the special class of dual se-
ries Equations (2.86) and (2.87) containing associated Legendre functions as
kernels. The simplest approach essentially integrated the series equations to
obtain dual series equations with Legendre polynomial kernels, together with
constants of integration that are uniquely determined by some differentiabil-
ity conditions. This produced (2.100), (2.101), and (2.103) . The simplicity
in calculating the matrix elements of this system is attractive: however, as
already noted, it is unstable for large m and leads to significant errors in the
calculation of the coefficients Am

n . But provided m is not large, this system
is quite suitable for numerical calculation. In order to rectify this instability,
the modified system (2.110) was derived, and its normalised variant (2.119) .
Both these systems are stable, but the algorithm for calculation of the matrix
coefficients is rather more complicated.
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2.4 Symmetric triple series equations involving Jacobi
polynomials

Triple series equations present an obvious extension and generalisation of
dual series equations. In this section we consider symmetric triple series
equations, the kernels of which are Jacobi polynomials P (α,β)

n . Without a
significant loss of generality, we restrict attention to kernels of most use in
subsequent chapters, the ultraspherical polynomial P (α,α)

n ; the parameter η
that occurred in Section 2.1 will be fixed to be 1

2 . Moreover, the interval [−1, 1]
is subdivided into three subintervals on which the corresponding functional
equations are enforced, so that the middle subinterval is symmetric about 0.
Thus the term symmetric equations highlights two different aspects: equality
of the parameters α and β, and a symmetric subdivision of the full interval of
definition [−1, 1]. Nonsymmetric subdivisions will be deferred to Section 2.7.

Retaining all the notation introduced in Section 2.1 we consider equations of
two types, Type A and Type B, being, respectively, the sets of triple equations

∞∑
n=0

{xn (1− qn)− gn}P (α,α)
n (t) = 0, t ∈ (−1,−t0) ,

(2. 123)
∞∑

n=0

λn(α, α; 1
2 ) {xn (1− rn)− fn}P (α,α)

n (t) = 0, t ∈ (−t0, t0) ,

(2. 124)
∞∑

n=0

{xn (1− qn)− gn}P (α,α)
n (t) = 0, t ∈ (t0, 1) ,

(2. 125)

and
∞∑

n=0

λn(α, α; 1
2 ) {xn (1− rn)− fn}P (α,α)

n (t) = 0, t ∈ (−1,−t0) ,

(2. 126)
∞∑

n=0

{xn (1− qn)− gn}P (α,α)
n (t) = 0, t ∈ (−t0, t0) ,

(2. 127)
∞∑

n=0

λn

(
α, α; 1

2

)
{xn (1− rn)− fn}P (α,α)

n (t) = 0, t ∈ (t0, 1) ,

(2. 128)
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where we recall from definition (2.3) , the coefficient

λn

(
α, α; 1

2

)
= n+ α+ 1

2 .

The solution {xn}∞n=0 is sought in the class l2; in addition, we assume that
{fn}∞n=0 , {gn}∞n=0 ∈ l2.

2.4.1 Type A triple series equations

Using the symmetry property of Jacobi polynomials (see Appendix, (B. 26),
with β = α),

P (α,α)
n (−t) = (−1)n

P (α,α)
n (t)

we may transform the Equations (2.123)–(2.125) to two sets of dual series
equations, for the odd (l = 1) and even (l = 0) unknown coefficients, re-
spectively; the interval of definition of the dual equations is halved. The
coefficients satisfy (for l = 0, 1)

∞∑
n=0

{x2n+l (1− q2n+l)− g2n+l}P (α,α)
2n+l (z) = 0, z ∈ (−1,−z0) , (2. 129)

∞∑
n=0

λ2n+l(α, α; 1
2 ) {x2n+l (1− r2n+l)− f2n+l}P (α,α)

2n+l (z) = 0, z ∈ (−z0, 0) ,

(2. 130)
In itself, this transformation does not construct an effective solution of equa-
tions of Type A. The key step is to connect the ultraspherical polynomials
with Jacobi polynomials [58]:

P
(α,α)
2n+l (z) =

Γ (n+ 1)
Γ (2n+ 1 + l)

Γ (2n+ α+ 1 + l)
Γ (n+ α+ 1)

zlP
(α,l− 1

2 )
n

(
2z2 − 1

)
. (2. 131)

This transforms the dual Equations (2.129) and (2.130), which are defined
on [−1, 0], to another set of dual equations that are defined on the complete
interval [−1, 1]. Setting u = 2z2 − 1 and u0 = 2z2

0 − 1, we obtain

∞∑
n=0

(
n+

α+ l

2
+

1
4

){
x∗2n+l (1− r2n+l)− f∗2n+l

}
P

(α,l− 1
2 )

n (u) = 0,

u ∈ (−1, u0) (2. 132)

∞∑
n=0

{
x∗2n+l (1− q2n+l)− g∗2n+l

}
P

(α,l− 1
2 )

n (u) = 0, u ∈ (u0, 1) (2. 133)

where the rescaled coefficients are{
x∗2n+l, f

∗
2n+l, g

∗
2n+l

}
=

Γ (n+ 1)Γ (2n+ α+ 1 + l)
Γ (2n+ 1 + l) Γ (n+ α+ 1)

{x2n+l, f2n+l, g2n+l} .

(2. 134)
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In order to apply the method developed in Section 2.1, rewrite the dual
equations as

∞∑
n=0

{
Λl

n (1− r2n+l)X2n+l − F2n+l

}
P̂

(α− 1
2 ,l)

n (u) = 0, u ∈ (−1, u0) (2. 135)

∞∑
n=0

{(1− q2n+l)X2n+l −G2n+l} P̂
(α− 1

2 ,l)
n (u) = 0, u ∈ (u0, 1) (2. 136)

where

X2n+l =
Γ (n+ α+ 1)
Γ
(
n+ α+ 1

2

) {h(α− 1
2 ,l)

n

} 1
2

x∗2n+l, (2. 137)

G2n+l =
Γ (n+ α+ 1)
Γ
(
n+ α+ 1

2

) {h(α− 1
2 ,l)

n

} 1
2

g∗2n+l, (2. 138)

F2n+l =
(
n+

α+ l

2
+

1
4

)
Γ
(
n+ l + 1

2

)
Γ (n+ l + 1)

{
h
(α− 1

2 ,l)
n

} 1
2

f∗2n+l, (2. 139)

and

Λl
n =

(
n+

α+ l

2
+

1
4

)
Γ
(
n+ l + 1

2

)
Γ (n+ l + 1)

Γ
(
n+ α+ 1

2

)
Γ (n+ α+ 1)

. (2. 140)

From Field’s formula for the ratio of Gamma functions (see Appendix, (B.
7)), we deduce

Λl
n = 1 +O

(
n−2

)
, as n→∞, (2. 141)

and introduce the asymptotically small parameter εl
n defined by

εl
n = 1− Λl

n = O
(
n−2

)
. (2. 142)

After some rearrangement (2.135), (2.136) become

∞∑
n=0

X2n+lP̂
(α− 1

2 ,l)
n (u) =

{
F1(u), u ∈ (−1, u0)
F2(u), u ∈ (u0, 1)

}
(2. 143)

where

F1(u) =
∞∑

n=0

{[
r2n+l + εl

n (1− r2n+l)
]
X2n+l + F2n+l

}
P̂

(α− 1
2 ,l)

n (u) ,

F2(u) =
∞∑

n=0

{q2n+lX2n+l +G2n+l} P̂
(α− 1

2 ,l)
n (u) .

As usual, multiply both sides of Equation (2.143) by the factor

(1− u)α− 1
2 (1 + u)l

P̂
(α− 1

2 ,l)
n (u)
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and integrate over [−1, 1]. The result is an infinite system of linear algebraic
equations, the matrix operator of which is a completely continuous perturba-
tion of the identity (in l2):{

1−
[
r2s+l + εl

s (1− r2s+l)
]}
X2s+l−

∞∑
n=0

X2n+l

{
q2n+l −

[
r2n+l + εl

n (1− r2n+l)
]}
Q̂

(α− 1
2 ,l)

ns (u0)

= F2s+l +
∞∑

n=0

(G2n+l − F2n+l) Q̂
(α− 1

2 ,l)
ns (u0) , (2. 144)

where s = 0, 1, 2, ... .This regularised system is valid for both even (l = 0) or
odd (l = 1) coefficients.

A remark is in order. When α = 1
2 , the kernels essentially reduce to the

trigonometric functions sinnϑ and εl
n ≡ 0 for all n. However, the procedure

above is applicable only when α > − 1
2 . To circumvent the difficulty encoun-

tered when α = − 1
2 , (corresponding to the kernels cosnθ) we may use those

devices applied to obtain solution of similar equations in previous sections
(based on Rodrigues’ formula, etc.).

2.4.2 Type B triple series equations

A similar argument to that employed in the last section transforms the triple
series (2.126)–(2.128) to the analogue of (2. 132) and (2. 133). Omitting the
preliminary steps of this deduction, we obtain (with the same notation)

∞∑
n=0

{
x∗2n+l (1− q2n+l)− g∗2n+l

}
P

(α,l− 1
2 )

n (u) = 0, u ∈ (−1, u0) (2. 145)

∞∑
n=0

(
n+

α+ l

2
+

1
4

){
x∗2n+l (1− r2n+l)− f∗2n+l

}
P

(α,l− 1
2 )

n (u) = 0,

u ∈ (u0, 1) (2. 146)

The odd case (l = 1) of the dual pair (2.145), (2.146) is solvable by means
of the general theory developed in Section 2.1, when α > −1. We obtain the
regularised system

(1− q2s+1) y2s+1+
∞∑

n=0

{q2n+1 − [r2n+1 + µn (1− r2n+1)]} y2n+1Q̂
(α+ 1

2 ,0)
ns (u0)

= ĝ2s+1 +
∞∑

n=0

(
f̂2n+1 − ĝ2n+1

)
Q̂

(α+ 1
2 ,0)

ns (u0) , (2. 147)
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where s = 0, 1, 2, ..., and

y2n+1 =
Γ
(
n+ 3

2

)
Γ (n+ 1)

{
h
(α+ 1

2 ,0)
n

} 1
2

x∗2n+1, (2. 148)

ĝ2n+1 =
Γ
(
n+ 3

2

)
Γ (n+ 1)

{
h
(α+ 1

2 ,0)
n

} 1
2

g∗2n+1,

f̂2n+1 =
Γ (n+ α+ 1)
Γ
(
n+ α+ 3

2

) (n+
α

2
+

3
4

){
h
(α+ 1

2 ,0)
n

} 1
2

f∗2n+1,

and

µn = 1−
(
n+

α

2
+

3
4

)
Γ (n+ 1) Γ (n+ α+ 1)
Γ
(
n+ 3

2

)
Γ
(
n+ α+ 3

2

) . (2. 149)

The parameter µn is asymptotically small: µn = O
(
n−2

)
as n→∞.

In the even case (l = 0) the parameters fall outside the range of applicability
of the method described in Section 2.1. This necessitates the application of
another method that was used in the analysis of Equations (2.39) and (2.40),
which can be considered as a particular case of the more general Equations
(2.145) and (2.146) with values α = − 1

2 , l = 0. Although the solution can be
obtained in this more general case, we omit the details, and confine attention
to a specific example that will be treated in Section 4.4.

2.5 Relationships between series and integral equations

This purpose of this section is to explain the relationship between some
classes of series and integral equations, and to show how the scope of the
Abel integral equation method may be expanded to establish such connec-
tions. Dual integral equations will be considered in their own right in the
next section. The results of this section are based upon those obtained by W.
E. Williams [76], [77]; A. A. Ashour [3]; and J. S. Lowndes [37].

Let m be a fixed nonnegative integer. We consider two basic kinds of dual
series equations. The kernel of the first employs associated Legendre functions

∞∑
n=m

am
n P

m
n (cos θ) = Fm (θ) , θ ∈ (0,θ0) , (2. 150)

∞∑
n=m

(2n+ 1) am
n P

m
n (cos θ) = Gm (θ) , θ ∈ (θ0, π) , (2. 151)
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whilst the second employs trigonometric kernels,

∞∑
n=1

bn sinnϕ = f (ϕ) , ϕ ∈ (0, ϕ0) , (2. 152)

∞∑
n=1

nbn sinnϕ = g (ϕ) , ϕ ∈ (ϕ0, π) . (2. 153)

In addition, we consider two types of dual integral equations. The kernel of
the first is a Bessel function of integer order m,∫ ∞

0

Am(λ)Jm (λρ) dλ = Em (ρ) , 0 ≤ ρ < a (2. 154)∫ ∞

0

λAm(λ)Jm (λρ) dλ = Hm (ρ) , ρ > a (2. 155)

whilst the second has a trigonometric kernel,∫ ∞

0

B (µ) sin (µx) dµ = e (x) , 0 ≤ x < b (2. 156)∫ ∞

0

µB (µ) sin (µx) dµ = h (x) , x > b (2. 157)

The functions Fm, Gm, f, g, Em,Hm, e and h occurring on the right-hand
sides of (2.150)–(2.157) are assumed to be known; the equations are to be
solved for the unknown coefficients am

n , bn and functions Am, B, respectively.
Let us extend the domain of definition of the functions occurring in Equations
(2.151) and (2.155) in the following way. Let

∞∑
n=m

(2n+ 1) am
n P

m
n (cos θ) =

{
Cm (θ) , θ ∈ (0, θ0)
Gm (θ) , θ ∈ (θ0, π)

}
(2. 158)

and ∫ ∞

0

λAm(λ)Jm (λρ) dλ =
{
Lm (ρ) , 0 ≤ ρ < a
Hm (ρ) , ρ > a

}
. (2. 159)

The relationship between the coefficients am
n and Cm (θ) , or between the co-

efficients Am and Lm (ρ), is found using the orthogonality of associated Leg-
endre’s functions Pm

n on [0, π] , or by using the Fourier-Bessel transform as
appropriate:

am
n =

1
2

(n−m)!
(n+m)!

∫ θ0

0

dθ sin θCm (θ)Pm
n (cos θ) +

1
2

(n−m)!
(n+m)!

∫ π

θ0

dθ sin θGm (θ)Pm
n (cos θ) , (2. 160)
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Am (λ) =
∫ a

0

rLm (r) Jm (λr) dr +
∫ ∞

a

rHm (r) Jm (λr) dr. (2. 161)

Now substitute these expressions for am
n or Am in (2.150) and (2.154). This

leads to two first-kind Fredholm integral equations involving the unknown
functions Cm and Lm:∫ θ0

0

dϑ sinϑCm (ϑ)K1 (ϑ, θ) = 2Fm (θ)−G∗m (θ) , θ ∈ (0, θ0) , (2. 162)

∫ a

0

dr.rLm(r)K2 (r, ρ) = E (ρ)−H∗ (ρ) , 0 ≤ ρ < a, (2. 163)

where

G∗m (θ) =
1
π

cotm θ

2

∫ θ

0

tan2m 1
2ϕdϕ

(cosϕ− cos θ)
1
2

∫ π

θ0

Gm (ϑ) cotm 1
2ϑ

(cosϕ− cosϑ)
1
2
dϑ, (2. 164)

H∗
m (ρ) =

2
π
ρ−m

∫ ρ

0

dz
z2m

(ρ2 − z2)
1
2

∫ ∞

a

dr
rH (r)

(r2 − z2)
1
2
, (2. 165)

and the kernels of these integral equations are

K1 (ϑ, θ) =
∞∑

n=m

(n−m)!
(n+m)!

Pm
n (cosϑ)Pm

n (cos θ) , (2. 166)

K2 (r, ρ) =
∫ ∞

0

Jm (λr) Jm (λρ) dλ. (2. 167)

These kernels admit the representation

K1 (ϑ, θ) =
1
π

cotm θ

2
cotm ϑ

2

∫ min(θ,ϑ)

0

tan2m 1
2ϕdϕ

(cosϕ− cos θ)
1
2 (cosϕ− cosϑ)

1
2
,

(2. 168)

K2 (r, ρ) =
2
π
r−mρ−m

∫ min(r,ρ)

0

z2mdz

(r2 − z2)
1
2 (ρ2 − z2)

1
2
. (2. 169)

With the change of variables

z = tan
ϕ

2
, r = tan

ϑ

2
, ρ = tan

θ

2
,

it can be shown that

K2

(
tan

ϑ

2
, tan

θ

2

)
= 2 cos

θ

2
cos

ϑ

2
K1 (ϑ, θ) , (2. 170)
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so establishing a relationship between Equations (2.162) and (2.163); they are
identical provided

Lm

(
tan

ϑ

2

)
= cos3

ϑ

2
Cm (ϑ) , (2. 171)

Em

(
tan

ϑ

2

)
= cos

ϑ

2
Fm (ϑ) , (2. 172)

H

(
tan

ϑ

2

)
= cos3

ϑ

2
Gm (ϑ) , (2. 173)

H∗
(

tan
ϑ

2

)
= cos

ϑ

2
G∗m (ϑ) . (2. 174)

Thus, we have demonstrated a one-to-one correspondence between the dual
series Equations (2.150) and (2.151) and the dual integral Equations (2.154)
and (2.155), and their solutions. If the condition (2. 172) holds, we find

∞∑
n=m

am
n P

m
n (cos θ) = sec

θ

2

∫ ∞

0

Am (λ) Jm

(
λ tan

θ

2

)
dλ. (2. 175)

In a similar way, if the condition (2. 173) holds, we find

∞∑
n=m

(2n+ 1) am
n P

m
n (cos θ) = sec3 θ

2

∫ ∞

0

λAm (λ) Jm

(
λ tan

θ

2

)
dλ. (2. 176)

We may now determine the relationship between solutions of these equa-
tions. Multiply both parts of equations (2.176) by the factor sin θPm

k (cos θ)
and integrate over [0, π], to find

am
n = 2

(n−m)!
(n+m)!

×∫ ∞

0

{∫ ∞

0

λAm (λ) Jm (λu) dλ
}

u√
1 + u2

Pm
n

(
1− u2

1 + u2

)
du. (2. 177)

On the other hand, using the Hankel transform, multiply both parts of (2.176)
by cos 1

2θ tan 1
2θJm

(
µ tan 1

2θ
)
, and integrate with respect to ρ = tan 1

2θ over
(0,∞). This gives the relation

Am (λ) =
1

2
√

2

∫ 1

−1

{ ∞∑
n=m

(2n+ 1) am
n P

m
n (x)

}
Jm

(
λ

√
1− x

1 + x

)
dx√
1 + x

.

(2. 178)
Thus the solution of dual- (or multiple-) series equations has its counterpart
in the solution of the corresponding dual- (or multiple-) integral equations,
and vice versa.
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Let us now demonstrate that the same is true for the pairs of Equations
(2.152) and (2.153) and (2.156) and (2.157). These equations are reducible to
first-kind Fredholm integral equations of the form∫ ϕ0

0

C (β)K3 (β, ϕ) dϕ =
π

2
[f (ϕ)− g∗ (ϕ)] , ϕ ∈ (0, ϕ0) , (2. 179)

and ∫ b

0

l (y)K4 (x, y) dy =
π

2
[e (x)− h∗ (x)] , 0 ≤ x < b, (2. 180)

where

h∗ (x) =
∫ x

0

dt
t

(x2 − t2)
1
2

∫ ∞

b

dy
h (y)

(y2 − t2)
1
2
, (2. 181)

g∗ (ϕ) =
1
2

cos
ϕ

2

∫ ϕ

0

dα sinα

cos2 1
2α (cosα− cosϕ)

1
2

∫ π

ϕ0

dβg (β) cos 1
2β

(cosα− cosβ)
1
2
, (2. 182)

and the kernels of the integral equations are, respectively

K3 (β, ϕ) =
∞∑

n=1

sinnβ sinnϕ
n

=
1
2

ln
∣∣∣∣ tan 1

2ϕ+ tan 1
2β

tan 1
2ϕ− tan 1

2β

∣∣∣∣ , (2. 183)

K4 (x, y) =
∫ ∞

0

sinµx sinµy
µ

dµ =
1
2

ln
∣∣∣∣x+ y

x− y

∣∣∣∣ . (2. 184)

The kernels K3 (β, ϕ), K4 (x, y) have a representation of the same form as
(2.168) and (2.169). A more general representation for this type of kernel is
derived later in this section. The relationship between the integral Equations
(2.179) and (2.180) is established by observing that under the substitution
x = tan 1

2ϕ, y = tan 1
2β,

K4 (x, y) = K3 (β, ϕ) .

Thus, the integral equations are equivalent with the identification

l

(
tan

β

2

)
= 2 cos2

β

2
C (β) , (2. 185)

e
(
tan

ϕ

2

)
= f (ϕ) , (2. 186)

h∗
(
tan

ϕ

2

)
= g∗ (ϕ) , (2. 187)

h

(
tan

β

2

)
= 2 cos2

β

2
g (β) . (2. 188)

Thus, if the following relation is valid

∞∑
k=1

bn sinnϕ =
∫ ∞

0

B (µ) sin
(
µ tan

ϕ

2

)
dµ, (2. 189)
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then so too is the relation
∞∑

k=1

nbn sinnϕ = sec2 ϕ

2

∫ ∞

0

µB (µ) sin
(
µ tan

ϕ

2

)
dµ. (2. 190)

Thus, the unknowns {bn}∞n=1 and B are connected by

bn =
2
πn

∫ π

0

dϕ sinnϕ sec2 ϕ

2

∫ ∞

0

µB (µ) sin
(
µ tan

ϕ

2

)
dµ. (2. 191)

The relationship stated above between some specific series and integral
equations is not special and exists under more general conditions, which we
now explore. The kernels of the series equations considered above are essen-
tially Jacobi polynomials with symmetrical indices (see Formulae (1.153) and
(2. 91)):

sinnϕ ∝ P
( 1

2 , 1
2 )

n−1 (cosϕ) , Pm
n (cos θ) ∝ P

(m,m)
n−m (cos θ) .

On the other hand, since sin νx ∝ J 1
2

(νx) , the corresponding integral Equa-
tions (2. 154)–(2. 157) involve the Bessel functions of order equal to 1

2 or an
integer m. We extend our considerations to series equations with ultraspher-
ical polynomial kernels P (α,α)

n , having arbitrary index α, and relate these to
integral equations with Bessel function kernels of the same order α. So fixing
α, let us examine the extended class of dual equations

∞∑
n=0

anP
(α,α)
n (x) = F (x) , x ∈ (−1, x0) , (2. 192)

∞∑
n=0

λn (α, α; η) anP
(α,α)
n (x) = G (x) , x ∈ (x0, 1) , (2. 193)

and ∫ ∞

0

λ2ηA (λ) Jα (λρ) dλ = g (ρ) , 0 ≤ ρ < 1, (2. 194)∫ ∞

0

A (λ) Jα (λρ) dλ = f (ρ) , ρ > 1, (2. 195)

where the parameter η satisfies 0 ≤ η ≤ 1
2 , and the value λn (α, α; η) defined

by (2.3) has the property

λn (α, α; η) =
Γ (n+ α+ 1 + η)
Γ (n+ α+ 1− η)

= n2η
(
1 +O(n−1)

)
as n→∞. (2. 196)

Paralleling the argument previously employed, let us extend the domain of
definition of the functions occurring in Equations (2.193) and (2.194), so that

∞∑
n=0

λn (α, α; η) anP
(α,α)
n (x) =

{
Ĝ (x) , x ∈ (−1, x0)
G (x) , x ∈ (x0, 1)

}
(2. 197)
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and ∫ ∞

0

λ2ηA (λ) Jα (λρ) dλ =
{
g (ρ) , 0 ≤ ρ < 1
ĝ (ρ) , ρ > 1

}
, (2. 198)

where Ĝ and ĝ are unknown functions to be determined. Using the orthogonal-
ity property of Jacobi polynomials P (α,α)

n (with respect to the weight function(
1− x2

)α) on [−1, 1], and using the Fourier-Hankel transform, one finds the
relationships between an and Ĝ, or between A and ĝ, respectively, to be

an = Λn

∫ x0

−1

(
1− y2

)α
Ĝ (y)P (α,α)

n (y) dy+

Λn

∫ 1

x0

(
1− y2

)α
G (y)P (α,α)

n (y) dy (2. 199)

and

A (λ) = λ1−2η

{∫ ∞

1

rĝ (r) Jα (λr) dr +
∫ 1

0

rg (r) Jα (λr) dr
}
, (2. 200)

where

Λn = 2−2α−1 (2n+ 2α+ 1)
Γ (n+ α+ 1− η)
Γ (n+ α+ 1 + η)

Γ (n+ 2α+ 1)Γ (n+ 1)
Γ2 (n+ α+ 1)

.

Substitute these expressions into (2.192) and (2.195), respectively, to obtain
first-kind Fredholm equations for the unknown functions Ĝ and ĝ:∫ x0

−1

Ĝ (y)
(
1− y2

)α
K

(η)
1 (x, y) dy = F̂ (x) , x ∈ (−1, x0) , (2. 201)

∫ ∞

1

ĝ (r) rK(η)
2 (ρ, r) dr = f̂ (ρ) , ρ ∈ (1,∞) (2. 202)

where the functions F̂ and f̂ are explicitly calculated from

F̂ (x) = F (x)−
∫ 1

x0

G (y)
(
1− y2

)α
K

(η)
1 (x, y) dy, (2. 203)

f̂ (ρ) = f (ρ)−
∫ 1

0

g (r) rK(η)
2 (ρ, r) dr, (2. 204)

and the kernels of these integral equations are

K
(η)
1 (x, y) =

∞∑
n=0

ΛnP
(α,α)
n (x)P (α,α)

n (y) (2. 205)

and
K

(η)
2 (ρ, r) =

∫ ∞

0

λ1−2ηJα (λρ) Jα (λr) dλ. (2. 206)
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Now we transform these kernels using the Abel integral representations for
Jacobi polynomials P (α,α)

n (1. 171) and Bessel functions Jα (1. 180):

P (α,α)
n (y) =

(1 + y)−α Γ (n+ α+ 1)
Γ (η) Γ (n+ α+ 1− η)

∫ y

−1

(1 + u)α−η
P

(α+η,α−η)
n (u)

(y − u)1−η du,

(2. 207)

Jα (λr) =
ληrα

2η−1Γ (η)

∫ ∞

r

v−α−η+1Jα+η (λv)
(v2 − r2)1−η dv. (2. 208)

We transform the kernel K(η)
1 by substituting (2.207) into (2.205) and in-

verting the order of summation and integration to find

K
(η)
1 (x, y) =

2−2α−1

Γ (η)
(1 + y)−α

∫ y

−1

du
(1 + u)α−η

(y − u)1−η k
(η)
1 (x, u) , (2. 209)

where

k
(η)
1 (x, u) =
∞∑

n=0

(2n+ 2α+ 1) Γ (n+ 1) Γ (n+ 2α+ 1)
Γ (n+ α+ 1)Γ (n+ α+ 1 + η)

P (α,α)
n (x)P (α,α)

n (u) . (2. 210)

The sum of the series in (2.210) is a discontinuous function; when −1 ≤ u < x,
its value is [55]

k
(η)
1 (x, u) = 22α+1 {Γ (η)}−1 (x− u)η−1 (1− u)−α−η (1 + x)−α

, (2. 211)

and when x < u ≤ 1, its value is zero. It follows that K(η)
1 has the represen-

tation

K
(η)
1 (x, y) =

(1 + x)−α (1 + y)−α

Γ2 (η)

∫ min(x,y)

−1

du
(1− u)−α−η (1 + u)α−η

(x− u)1−η (y − u)1−η .

(2. 212)
We transform the kernel K(η)

2 by substituting (2.208) into (2.206) and in-
terchanging the order of integration. The result is

K
(η)
2 (ρ, r) =

rα

2η−1Γ (η)

∫ ∞

r

dv
v−α−η+1

(v2 − r2)1−η

∫ ∞

0

λ1−ηJα (λρ) Jα+η (λv) dλ.

(2. 213)
The inner integral in (2.213) is the discontinuous Weber-Schafheitlin integral
[19], [55]; when 0 ≤ ρ < v, its value is∫ ∞

0

λ1−ηJα (λρ) Jα+η (λv) dλ = ρα21−η

{Γ (η)}−1 (
v2 − ρ2

)η−1
v−α−η,

(2. 214)
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and when ρ > v, its value is zero. Thus, the kernel K(η)
2 can be expressed as

K
(η)
2 (ρ, r) =

ραrα

22η−2Γ2 (η)

∫ ∞

max(ρ,r)

v−2α−2η+1

(v2 − ρ2)1−η (v2 − r2)1−η dv. (2. 215)

The relationship between K
(η)
1 and K

(η)
2 can now be stated. Using the

substitutions

v = (1− u)
1
2 (1 + u)−

1
2 , ρ = (1− x)

1
2 (1 + x)−

1
2 , r = (1− y)

1
2 (1 + y)−

1
2 ,

we obtain

K
(η)
2

(
(1− x)

1
2 (1 + x)−

1
2 , (1− y)

1
2 (1 + y)−

1
2

)
= (1− x)

α
2 (1 + x)

α
2 +1−η (1− y)

α
2 (1 + y)

α
2 +1−η

K
(η)
1 (x, y) . (2. 216)

The relationship between the pairs of Equations (2.192) and (2.193) and
(2.194) and (2.195) and their solutions an and A is now easily obtained, and
the details are left to the reader.

Before concluding this section, we draw the reader’s attention to one re-
markable consequence of the kernel representations (2.212) and (2.215): we
can find the analytic solution to both integral Equations (2.201) and (2.202).
If we substitute the kernel representation (2.212) into (2.201), it takes the
form∫ x0

−1

dy (1− y)α
Ĝ (y)

∫ min(x,y)

−1

(1− u)−α−η (1 + u)α−η

(x− u)1−η (y − u)1−η du

= Γ2 (η) (1 + x)α
F̂ (x) , x ∈ (−1, x0) . (2. 217)

We split the interval of integration for the external integral; symbolically, this
operation may be represented as∫ x0

−1

=
∫ x

−1

+
∫ x0

x

. (2. 218)

Considering the first integral on the right-hand side of (2.218) , the upper limit
of the inner integral in (2.217) is min (x, y) = y(< x); for the second integral
on the right-hand side of (2.218) , the upper limit of the inner integral in
(2.217) is min (x, y) = x(< y). Thus, the integral Equation (2.217) becomes∫ x

−1

dy (1− y)α
Ĝ (y)

∫ y

−1

(1− u)−α−η (1 + u)α−η

(x− u)1−η (y − u)1−η du+∫ x0

x

dy (1− y)α
Ĝ (y)

∫ x

−1

(1− u)−α−η (1 + u)α−η

(x− u)1−η (y − u)1−η du

= Γ2 (η) (1 + x)α
F̂ (x) , x ∈ (−1, x0) . (2. 219)
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Transform the first term of the left-hand side of this equation using Dirich-
let’s extended Formula (1.135); invert the order of integration in the second
term. These operations lead to∫ x

−1

du
(1− u)−α−η (1 + u)α−η

(x− u)1−η

∫ x0

u

dy
(1− y)α

Ĝ (y)
(y − u)1−η

= Γ2 (η) (1 + x)α
F̂ (x) , x ∈ (−1, x0) . (2. 220)

Equation (2.220) may be recognised as Abel’s integral equation∫ x

−1

G1 (u) du
(x− u)1−η = Γ2 (η) (1 + x)α

F̂ (x) , x ∈ (−1, x0) , (2. 221)

where the (as yet unknown) function G1 is given by

G1 (u) = (1− u)−α−η (1 + u)α−η
∫ x0

u

dy
(1− y)α

Ĝ (y)
(y − u)1−η . (2. 222)

From the inverse Formula (1.131), we deduce

G1 (u) = Γ2 (η)
sin (ηπ)

π

d

du

∫ u

−1

(1 + x)α
F̂ (x)

(x− u)η dx. (2. 223)

Recognising that (2.222) is also an Abel integral equation, the inversion
Formula (1.133) leads to the final and explicit form of the analytic solution
to (2.201):

Ĝ (y) = − sin2 (ηπ)
π2

Γ2 (η) (1− y)−α×

d

dy

∫ x0

y

du
(1− u)α+η (1 + u)α−η

(x− y)η
d

du

∫ u

−1

dx
(1 + x)α

F̂ (x)
(u− x)η . (2. 224)

The solution of Equation (2. 202) can be obtained in a similar way, and
the reader may wish to verify that

ĝ (r) = −22η−2Γ2 (η)
sin2 (ηπ)

π2
r−α−1×

d

dr

∫ r

1

dv
v2α+2η

(r2 − v2)η
d

dv

∫ ∞

v

dρ
ρ−α+1f̂ (ρ)
(ρ2 − v2)η . (2. 225)

2.6 Dual integral equations involving Bessel functions

In this section we demonstrate how to apply Abel’s integral transform to
obtain the solution of dual integral equations whose kernels are Bessel func-
tions of fixed order α. We shall treat two kinds of dual integral equations, the
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pair
∞∫
0

λ2ηA(λ)Jα(λρ)dλ = g(ρ), 0 ≤ ρ < 1, (2. 226)

∞∫
0

A(λ)Jα(λρ)dλ = f(ρ), ρ > 1, (2. 227)

and the complementary pair, in which the subintervals of definition have been
interchanged,

∞∫
0

A(λ)Jα(λρ)dλ = f(ρ), 0 ≤ ρ < 1, (2. 228)

∞∫
0

λ2ηA(λ)Jα(λρ)dλ = g(ρ), ρ > 1, (2. 229)

where A is the unknown function to be determined. The parameter η satisfies
0 < η ≤ 1

2 , and g, f are given functions, which possess Fourier-Bessel integral
expansions

g(ρ) =

∞∫
0

λ2ηG(λ)Jα(λρ)dλ, (2. 230)

f(ρ) =

∞∫
0

F (λ)Jα(λρ)dλ. (2. 231)

Denote by L2(µ) the space of functions B defined on [0,∞) satisfying

∞∫
0

λµ |B(λ)|2 dλ <∞.

We shall find the solution A of these dual integral equations in the functional
class L2(2η − 1), assuming that the functions F , G belong to the same class
as well:

A,F,G ∈ L2(2η − 1).

As we have previously remarked, the condition imposed on the solution class
is a reflection of the boundedness of the energy condition (Section 1.3).
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Using the Formula (1.181), we integrate Equation (2.226) and obtain the
dual equations

∞∫
0

λ−1+2η {A(λ)−G(λ)} Jα+1(λρ)dλ = 0, 0 ≤ ρ < 1 (2. 232)

∞∫
0

{A(λ)− F (λ)}Jα(λρ)dλ = 0, ρ > 1. (2. 233)

Now substitute for the Bessel functions occurring in these equations, the Abel
integral representations derived from (1.178) and (1.180),

Jα+1(λρ) =
λ1−ηρ−α−1

2−ηΓ (1− η)

ρ∫
0

vα+η+1Jα+η (λv)
(ρ2 − v2)η dv, (2. 234)

Jα(λρ) =
ληρα

2η−1Γ (η)

∞∫
ρ

v−α−η+1Jα+η (λv)
(v2 − ρ2)1−η dv. (2. 235)

Interchanging the order of integration, one obtains the following pair of ho-
mogeneous Abel integral equations:

ρ∫
0

vα+η+1

(ρ2 − v2)η


∞∫
0

λη {A(λ)−G(λ)} Jα+η (λv) dλ

 dv = 0, 0 ≤ ρ < 1

(2. 236)
∞∫

ρ

v−α−η+1

(v2 − ρ2)1−η


∞∫
0

λη {A(λ)− F (λ)} Jα+η (λv) dλ

 dv = 0, ρ > 1.

(2. 237)
These equations possess unique zero solutions; the expressions in brackets

therefore vanish, and we deduce a piecewise continuous representation of the
sort that has repeatedly appeared in this book:

∞∫
0

ληA(λ)Jα+η(λρ)dλ =


∞∫
0

ληG(λ)Jα+η(λρ)dλ, 0 ≤ ρ < 1
∞∫
0

ληF (λ)Jα+η(λρ)dλ, ρ > 1.

 (2. 238)

Let us use the Hankel transform to reach the final form of solution of these
equations. Multiply both sides of (2.238) by the factor ρJα+η(µρ) and inte-
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grate over (0,∞) to obtain the closed form solution

A (µ) = µ1−η

1∫
0

dρ.ρJα+η(µρ)

∞∫
0

ληG(λ)Jα+η(λρ)dλ+

µ1−η

∞∫
1

dρ.ρJα+η(µρ)

∞∫
0

ληF (λ)Jα+η(λρ)dλ. (2. 239)

Notice that this solution is valid provided α > − 1
2 .

The dual Equations (2.228) and (2.229) are solved in a similar way; the
solution is

A (µ) = µ1−η

1∫
0

dρ.ρJα−η(µρ)

∞∫
0

ληF (λ)Jα−η(λρ)dλ+

µ1−η

∞∫
1

dρ.ρJα−η(µρ)

∞∫
0

ληG(λ)Jα−η(λρ)dλ. (2. 240)

Thus, both pairs of dual integral equations possess a closed-form analytical
solution.

More complicated dual integral equations may be transformed to second-
kind Fredholm integral equations, provided some suitable and asymptotically
small parameters can be identified. For example, we may treat the dual
equations

∞∫
0

λ2ηA(λ) {1 + h(λ)} Jα (λρ) dλ = g (ρ) , 0 ≤ ρ < 1 (2. 241)

∞∫
0

A(λ) {1 + p(λ)} Jα (λρ) dλ = f (ρ) , ρ > 1 (2. 242)

where the functions h, p satisfy

lim
λ→∞

h(λ) = lim
λ→∞

p(λ) = 0.

These conditions ensure that the integral operator in the equation is compact
(completely continuous) in L2(2η − 1) (see Appendix C.2). In addition, the
expansions (2.230) , (2.231) for f, g must hold. Following the same steps used
to obtain solution of (2.226) and (2.227), we obtain the second-kind Fredholm
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integral equation

{1 + p(µ)}A (µ) + µ1−η

∞∫
0

ληA(λ) {h(λ)− p(λ)}Kα+η (λ, µ) dλ

= F (µ) + µ1−η

∞∫
0

λη {G(λ)− F (λ)}Kα+η (λ, µ) dλ (2. 243)

where the kernel is

Kα+η (λ, µ) =

1∫
0

ρJα+η(λρ)Jα+η(µρ)dρ. (2. 244)

This second kind equation enjoys the same advantages identified for the second
kind matrix systems obtained for dual series equations.

2.7 Nonsymmetrical triple series equations

In Section 2.4 we described an effective algorithm for the solution of sym-
metric triple series equations. How may one solve such equations in the more
general case when the subdivision of the complete interval [−1, 1] of defini-
tion is not symmetric? The answer has its basis in results that were derived
in Section 2.5. Moreover, the solution of triple integral equations, involving
Bessel functions, can be derived from the same results.

First, we consider some particular (but frequently occurring in practice)
equations involving associated Legendre functions Pm

n (cos θ) or Bessel func-
tions Jm (vρ) . Subsequently, we will extend the method to equations involv-
ing Jacobi polynomials P (α,α)

n or Bessel functions Jα (λx) of arbitrary order
as well.

Let m be a fixed non-negative integer, and α, β be fixed so that 0 < α <
β < π. Consider the following two sets of triple series equations.

∞∑
n=m

Am
n (2n+ 1)Pm

n (cos θ) = Fm
1 (θ) , θ ∈ (0, α)

∞∑
n=m

Am
n P

m
n (cos θ) = Fm

2 (θ) , θ ∈ (α, β)
∞∑

n=m
Am

n (2n+ 1)Pm
n (cos θ) = Fm

3 (θ) , θ ∈ (β, π)

(2. 245)
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and 

∞∑
n=m

Cm
n P

m
n (cos θ) = Gm

1 (θ) , θ ∈ (0, α)
∞∑

n=m
Cm

n (2n+ 1)Pm
n (cos θ) = Gm

2 (θ) , θ ∈ (α, β)
∞∑

n=m
Cm

n P
m
n (cos θ) = Gm

3 (θ) , θ ∈ (β, π)

(2. 246)

The solution {Am
n , C

m
n }

∞
n=m of these triple series equations is sought in the

functional class l2(2m). We consider only the first set (2.245), because the
analysis of the equations (2.246) is similar.

On the basis of the relations (2.175) and (2.176) one may show that the
triple Equations (2.245) are equivalent to the following triple integral equa-
tions, with Bessel function kernels,

∞∫
0

λ.Am(λ)Jm (λρ) dλ =
(
1 + ρ2

)− 3
2 Fm

1 (2 arctan ρ) , 0 ≤ ρ < ρ0

∞∫
0

Am(λ)Jm (λρ) dλ =
(
1 + ρ2

)− 1
2 Fm

2 (2 arctan ρ) , ρ0 < ρ < ρ1

∞∫
0

λ.Am(λ)Jm (λρ) dλ =
(
1 + ρ2

)− 3
2 Fm

3 (2 arctan ρ) , ρ1 < ρ

(2. 247)
where ρ0 = tan 1

2α, ρ1 = tan 1
2β, and ρ = tan 1

2θ. The relation between the
coefficients Am

n and the function Am is given by (2.177) , (2.178) . The trans-
form ρ = tan 1

2θ may be geometrically visualised as a stereographic projection
of the sphere onto a plane. The “symmetrisation” of equations (2.247), pro-
ducing a symmetric partition of the domain of definition for each functional
equation of the set, is realised by an “inversion in a circle.” Introduce the
new variable

r = (ρ0ρ1)
− 1

2 ρ = (ρ0ρ1)
− 1

2 tan
1
2
θ, (2. 248)

so that
θ = θ(r) = 2 arctan

[
(ρ0ρ1)

1
2 r
]
,

and transform Equations (2.247) to

∞∫
0

µ.A1(µ)Jm (µr) dµ = ρ0ρ1(1 + ρ0ρ1r
2)−

3
2Fm

1 {θ(r)} , 0 ≤ r < r0

∞∫
0

A1(µ)Jm (µr) dµ = (ρ0ρ1)
1
2
(
1 + ρ0ρ1r

2
)− 1

2 Fm
2 {θ(r)} , r0 < r < r1

∞∫
0

µ.A1(µ)Jm (µr) dµ = ρ0ρ1

(
1 + ρ0ρ1r

2
)− 3

2 Fm
3 {θ(r)} , r1 < r

(2. 249)
where µ = (ρ0ρ1)

1
2 λ, r0 = (ρ0/ρ1)

1
2 = r−1

1 , and A1(µ) = A(λ).
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After the final change of variables

r = tan
1
2
ϑ = (ρ0ρ1)

− 1
2 tan

1
2
θ, (2. 250)

so that

θ = θ(ϑ) = 2 arctan
[
(ρ0ρ1)

1
2 tan

1
2
ϑ

]
,

(which may be visualised geometrically as reconstruction of the spherical sur-
face from its stereographic projection in the plane), we obtain the following
symmetric triple series equations, involving the associated Legendre functions
Pm

n as kernels:

∞∑
n=m

(2n+ 1)Bm
n P

m
n (cosϑ) = ρ0ρ1u(ϑ)−

3
2Fm

1 (θ(ϑ)), ϑ ∈ (0, ϑ0)
∞∑

n=m
Bm

n P
m
n (cosϑ) = (ρ0ρ1)

1
2 u(ϑ)−

1
2Fm

2 (θ(ϑ)), ϑ ∈ (ϑ0, π − ϑ0)
∞∑

n=m
(2n+ 1)Bm

n P
m
n (cosϑ) = ρ0ρ1u(ϑ)−

3
2Fm

3 (θ(ϑ)), ϑ ∈ (π − ϑ0, π)

(2. 251)
where u(ϑ) = (cos2 1

2ϑ+ρ0ρ1 sin2 1
2ϑ), ϑ0 = 2 arctan (ρ0/ρ1)

1
2 , and so cosϑ0 =

(ρ1 − ρ0) / (ρ1 + ρ0) . Note that in deriving (2.251) we used a relationship
comparable to (2.176):

∞∑
s=m

(2s+ 1)Bm
s P

m
s (cosϑ) = sec3 ϑ

2

∞∫
0

µA1 (µ) Jm

(
µ tan

ϑ

2

)
dµ (2. 252)

Using (2.252) and (2.175) , the relationship between the coefficients Am
n and

Bm
n is

Am
n =

1√
2

(n−m)!
(n+m)!

1∫
−1

dx Pm
n {z(x)}√

1 + ρ0ρ1 + (1− ρ0ρ1)x

∞∑
s=m

(2s+ 1)Bm
s P

m
s (x)

(2. 253)
where

z(x) =
1− ρ0ρ1 + (1 + ρ0ρ1)x
1 + ρ0ρ1 + (1− ρ0ρ1)x

.

It is obvious that if ρ1 = ρ−1
0 , then Am

n ≡ Bm
n , and the Equations (2.251) will

be identical with (2.245) .
The relation between Jacobi polynomials P (m,m)

n−m and associated Legendre
functions Pm

n ,

Pm
n (z) = 2−m

(
1− z2

)m
2 Γ (n+m+ 1)

Γ (n+ 1)
P

(m,m)
n−m (z)
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enables us to convert (2.251) to the type of symmetric triple series equations
solved in Section 2.4. Thus, the linear-fractional transform

cos θ = z =
1− ρ0ρ1 + (1 + ρ0ρ1)x
1 + ρ0ρ1 + (1− ρ0ρ1)x

, (2. 254)

with x = cosϑ, “symmetrises” the initial Equations (2.245) and converts them
to the symmetric triple series Equations (2.251) with a new set of unknown
coefficients {Bs}∞s=m, for which the relationship with the original set of un-
knowns {Am

n }
∞
n=m is given by the Formula (2.253) .

From this derivation, one further result should be noted: the triple integral
equations involving the Bessel functions Jm (λρ) , with arbitrary fragmenta-
tion of the complete range of the variable ρ, may be transformed to a set of
triple series equations involving Pm

n (cos θ), with symmetrical fragmentation
of the corresponding interval.

Triple series equations involving the trigonometric functions (sinnϕ or cosnϕ)
can be solved in an analogous manner. Although other methods have previ-
ously been reported in the literature, the attractive approach suggested here
is based on [77], [3], and [37].

Consider the triple series equations

∞∑
n=1

nan sinnϕ = f1 (ϕ) , ϕ ∈ (0, ϕ0)
∞∑

n=1
an sinnϕ = f2 (ϕ) , ϕ ∈ (ϕ0, ϕ1)

∞∑
n=1

nan sinnϕ = f3 (ϕ) , ϕ ∈ (ϕ1, π)

(2. 255)

where f1, f2, and f3 are given functions, and φ0, φ1 are fixed so that 0 < φ0 <
φ1 < π. From (2.189) and (2.190) it can be shown that Equations (2.255) are
equivalent to the following triple integral equations:

∞∫
0

µA (µ) sin (µx) dµ =
(
1 + x2

)−1
f1 (2 arctanx) , x < x0

∞∫
0

A (µ) sin (µx) dµ = f2 (2 arctanx) , x0 < x < x1

∞∫
0

µA (µ) sin (µx) dµ =
(
1 + x2

)−1
f3 (2 arctanx) , x1 < x

(2. 256)

where x = tan 1
2ϕ, x0 = tan 1

2ϕ0, and x1 = tan 1
2ϕ1. The unknown coefficients

{an}∞n=1 and function A are related by

an =
8
πn

∞∫
0

 ∞∫
0

µA (µ) sin (µu) dµ

 u

1 + u2
Uu−1

(
1− u2

1 + u2

)
du (2. 257)
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and

A (µ) =
1
π

1∫
−1

{ ∞∑
n=1

nanUn−1 (z)

}√
1− z

1 + z
sin

(
µ

√
1− z

1 + z

)
dz (2. 258)

where Un (cosϕ) = sin (n+ 1)ϕ/ sinϕ is the Chebyshev polynomial of the
second kind. Applying the change of variables connected with inversion in a
circle

y = (x0x1)
− 1

2 x, v = (x0x1)
1
2 µ,

so that
ϕ = ϕ(y) = 2 arctan

[
(x0x1)

1
2 y
]
,

the triple Equations (2.256) become the symmetric triple integral equations

∞∫
0

vA1(v) sin(vy)dv = x0x1

(
1 + x0x1y

2
)−1

f1 {ϕ(y)} , y < y0

∞∫
0

A1(v) sin(vy)dv = (x0x1)
1
2 f2 {ϕ(y)} , y0 < y < y1

∞∫
0

vA1(v) sin(vy)dv = x0x1

(
1 + x0x1y

2
)−1

f3 {ϕ(y)} , y1 < y

(2. 259)

where y0 =
(
tan 1

2ϕ0 cot 1
2ϕ1

) 1
2 , y1 = y−1

0 and A1(v) = A(µ).
Using the transform ϑ = 2arctan y, so that

ϕ = ϕ (ϑ) = 2 arctan
[
(x0x1)

1
2 tan

1
2
ϑ

]
,

and the relationships

∞∑
n=1

nbn sinnϑ = sec2 ϑ

2

∞∫
0

vA1 (v) sin (vy) dv, (2. 260)

∞∑
n=1

bn sinnϑ =

∞∫
0

A1 (v) sin (vy) dv, (2. 261)

one may reduce Equations (2.259) to the following symmetric series equations
with trigonometric kernels, to be solved for the new set of unknowns {bn}∞n=1 :

∞∑
n=1

nbn sinnϑ = x0x1

(
cos2 1

2ϑ+ x0x1 sin2 1
2ϑ
)−1

f1 {ϕ (ϑ)} ,

ϑ ∈ (0, ϑ0)
∞∑

n=1
bn sinnϑ = (x0x1)

1
2 f2 {ϕ (ϑ)} , ϑ ∈ (ϑ0, π − ϑ0)

∞∑
n=1

nbn sinnϑ = x0x1

(
cos2 1

2ϑ+ x0x1 sin2 1
2ϑ
)−1

f3 {ϕ (ϑ)} ,

ϑ ∈ (ϑ0, π)

(2. 262)
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where ϑ0 = 2 arctan
(
tan 1

2ϕ0 cot 1
2ϕ1

)
. From (2.260) and (2.257) we obtain

the relationship between the two sets of coefficients:

an =
4
πn

1∫
−1

dz

√
1− z2

1 + x0x1 + (1− x0x1)z
×

Un−1

{
1− x0x1 + (1 + x0x1)z
1 + x0x1 + (1− x0x1)z

} ∞∑
s=1

sbsUs−1(z). (2. 263)

Due to the symmetrical subdivision of the complete interval [0, π] , the sys-
tem of Equations (2.262) may be solved by the method developed in Section
2.4, by reducing it to two decoupled dual series equations.

2.8 Coupled series equations

Coupled systems arise in several contexts including elasticity. A recent
example is the crack analysis of Martin [39]. Although coupled systems will
be briefly encountered in Section 7.5, some general consideration of them is
included for completeness. Thus, we consider coupled series equations of the
following type,

∞∑
n=0

λn (α, β; η) {a (1− rn)xn + b (1− sn) yn}P (α,β)
n (x) = F1(x),

(2. 264)
∞∑

n=0

λn (γ, δ; ε) {c (1− tn)xn + d (1− un) yn}P (γ,δ)
n (x) = F2(x),

(2. 265)

∞∑
n=0

(1− pn)xnP
(α,β)
n (x) = G1(t), (2. 266)

∞∑
n=0

(1− qn) ynP
(γ,δ)
n (x) = G2(x), (2. 267)

where the first pair holds for x ∈ (−1, x0) , and the second pair holds for x ∈
(x0, 1) . The unknowns xn, yn are to be found; the parameters α, β, η, γ, δ, ε
obey the constraint conditions of Section 2.1 and η, ε ∈ (0, 1) . The sequence
terms rn, sn, tn, un, pn, qn vanish as n → ∞. The right-hand sides of these
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equations have Fourier-Jacobi expansions

F1(x) =
∞∑

n=0

λn (α, β; η) f1
nP

(α,β)
n (x), (2. 268)

F2(x) =
∞∑

n=0

λn (γ, δ; ε) f2
nP

(γ,δ)
n (x), (2. 269)

G1(x) =
∞∑

n=0

g1
nP

(α,β)
n (x), (2. 270)

G2(x) =
∞∑

n=0

g2
nP

(γ,δ)
n (x). (2. 271)

The following regularisation procedure is justified by the same sort of argu-
ments as employed in Section 2.1, and so we omit any discussion of this aspect,
and present the formal technique. The systems are nontrivially coupled pro-
vided bc 6= 0. Without loss of generality, we may suppose that pn = qn = 0.
Multiply (2. 264) by (1 + x)β and integrate, then use the integral representa-
tion of Abel type (1. 172) to obtain

∞∑
n=0

cn
{
a (1− rn)xn + b (1− sn) yn − f1

n

}
P (α−η,β+η)

n (x) = 0,

x ∈ (−1, x0) , (2. 272)

where

cn =
Γ (α+ n+ 1)

Γ (α+ n+ 1− η)
;

similarly, multiply (2. 264) by (1 + x)δ and integrate, then use the integral
representation (1. 172) to obtain

∞∑
n=0

dn

{
c (1− tn)xn + d (1− un) yn − f2

n

}
P (γ−ε,δ+ε)

n (x) = 0,

x ∈ (−1, x0) , (2. 273)

where

dn =
Γ (γ + n+ 1)

Γ (γ + n+ 1− ε)
.

On the other hand, using the integral representation (1. 171) for P (α,β)
n

and P (γ,δ)
n , we obtain

∞∑
n=0

(
xn − g1

n

)
cnP

(α−η,β+η)
n (x) = 0, x ∈ (x0, 1) , (2. 274)
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∞∑
n=0

(
yn − g2

n

)
dnP

(γ−ε,δ+ε)
n (x) = 0, x ∈ (x0, 1) . (2. 275)

Rearrange (2. 272) and (2. 274) in the form

∞∑
n=0

axncnP
(α−η,β+η)
n (x) =

{
H1(x), x ∈ (−1, x0)
H2(x), x ∈ (x0, 1)

}
, (2. 276)

where

H1(x) =
∞∑

n=0

cn
{
arnxn − b (1− sn) yn + af1

n

}
P (α−η,β+η)

n (x),

(2. 277)

H2(x) =
∞∑

n=0

cnag
1
nP

(α−η,β+η)
n (x); (2. 278)

similarly, rearrange (2. 273) and (2. 275) in the form

∞∑
n=0

dndynP
(γ−ε,δ+ε)
n (x) =

{
H3(x), x ∈ (−1, x0)
H4(x), x ∈ (x0, 1)

}
(2. 279)

where

H3(x) =
∞∑

n=0

dn

{
dunyn − c (1− tn)xn + f2

n

}
P (γ−ε,δ+ε)

n (x),

(2. 280)

H4(x) =
∞∑

n=0

dn

{
dg2

n

}
P (γ−ε,δ+ε)

n (x). (2. 281)

A standard orthogonality argument produces the coupled i.s.l.a.e.

adiag(1− rn)Ix+ aK1x+ bK2y = f,

d diag(1− un)Ix+ cK3x+ dK4y = g,

where x = {xn}∞n=1 , y = {yn}∞n=1 , diag(1 − rn) and diag(1 − un) denote di-
agonal operators formed from the sequences {rn}∞n=1 , {un}∞n=1, I denotes the
identity operator, and K1,K2,K3,K4 denote compact operators whose ma-
trix entries are calculated in terms of unnormalised incomplete scalar products
Q

(γ−ε,δ+ε)
nm (x0) and Q

(α−η,β+η)
nm (x0); also f, g are explicitly known. Provided

ad 6= 0, the system is a Fredholm system of second kind; numerically, when
the truncation method is used, it has the same advantages as previously noted
for uncoupled systems.
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2.9 A class of integro-series equations

The approach developed in the previous sections provides a unified treat-
ment for both series and integral equations. It, therefore, provides perhaps
the most suitable foundation for investigating a certain class of functional
equations, the so-called integro-series equations (I.S.E.). This novel class
arises from mixed boundary value problems in potential theory or diffraction
for structures composed of plane or curvilinear conducting surfaces. Let us
briefly describe the type of equations in this class, but defer further descrip-
tion of solution techniques until Section 8.5, where a specific problem of this
type concerning a spherical cap and a circular disc, will be encountered.

In operator notation, the integro-series equations take the form

L11 (u) {A (µ)}+ L12 {v (u)} {Bn} = F1 (u) , a ≤ u ≤ c, (2. 282)
L22 (u) {Bn}+ L21 {u (v)} {A (µ)} = F2 (v) , α ≤ v ≤ γ, (2. 283)

where

Li1 {A (µ)} =

c∫
a

A (µ)

{
K

(1)
i1 (u, µ) , a ≤ u < b

K
(2)
i1 (u, µ) , b < u ≤ c

}
dµ, i = 1, 2 (2. 284)

and

Li2 (v) {Bn} =
∞∑

n=0

Bn

{
K

(1)
i2 (v, n) , α ≤ v < β

K
(2)
i2 (v, n) , β < v ≤ γ

}
, i = 1, 2. (2. 285)

The solution of the I.S.E. is sought in the standard functional space:

{Bn}∞n=0 ∈ l2, and A ∈ L2 (a, c) . (2. 286)

The main technical difficulty encountered in solving these equations is the
expansion of the kernels defined in (2.284) and (2.285), in terms of eigen-
functions of the Laplace operator in some other coordinate system. Using
the relations connecting different coordinate systems, in which the considered
shells are described intrinsically as parts of coordinate surfaces u = u(v),
v = v(u), these re-expansions take the form

K
(1,2)
i1 (u(v), µ) =

∞∑
n=0

C(1,2)
n (µ)K(1,2)

i2 (v, n) (2. 287)

and

K
(1,2)
i2 (v(u), u) =

c∫
a

D(1,2)
u (µ)K(1,2)

i1 (u, µ) dµ (2. 288)
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The substitution of (2.287) and (2.288) into (2.282)–(2.285), and application
of Abel’s integral equation method leads ultimately to an I.S.E. of the second
kind, which is a perturbation of the identity by a completely continuous oper-
ator, in the Cartesian product of functional spaces l2 × L2(a, c). The method
is valid for arbitrary location of shells that make no contact or intersection.

When the (imaginary) continuation of that coordinate surface that describes
the open shell intersects the real surface of another shell, some technical dif-
ficulties may appear. These difficulties are not insurmountable and can be
overcome by a correct representation of the desired solution.
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Chapter 3

Electrostatic Potential Theory for
Open Spherical Shells

Spherical geometry provides the simplest and most attractive setting for three-
dimensional potential theory. The electrostatic potential surrounding a closed
conducting sphere on which the surface potential is specified is easily calcu-
lated in terms of spherical harmonics; it has an especially simple form if the
surface is an equipotential surface. When apertures are introduced, some of
this simplicity is retained provided the surface is punctured in a rotationally
symmetric fashion.

A single circular aperture, characterised by the angle θ1 it subtends at the
centre of the spherical structure, is the topologically simplest such structure,
though rather different forms of the shell appear as θ1 varies, from the nearly
enclosed spherical cavity (θ1 → 0) through an open spherical cap (0 < θ1 < π)
to a slightly curved circular disc (θ1 → π). Closed-form solutions that can be
obtained for this family of shells by solving an appropriate set of dual series
equations, are presented in Section 3.1.

Closed-form solutions do not exist for more complicated shell structures,
such as the axisymmetric spherical barrel (in which the spherical surface is
punctured by two equal circular holes) or the complementary surface, a pair
of spherical caps. Perhaps the best criterion by which to judge a solution is its
accuracy and effectiveness for numerical calculation. The potential problem
for the barrel (or caps) may be formulated as triple series equations; the reg-
ularisation and conversion to a second-kind Fredholm matrix system provides
an excellent basis for both approximate analytical estimates as well as precise
numerical calculation because the norm of the compact operator occurring the
resulting system is small (rather less than unity). Thus, the impact of edges
and the influence of the cavity on the potential distribution can be assessed
with relative ease. Some examples of the potential distribution around these
structures are given in Section 3.2, together with capacitance estimates for
the condensor formed from an oppositely charged pair of caps. Section 3.3
extends the triple series approach to a barrel with unequal holes (but located
axisymmetrically), and to its complementary surface, a pair of unequally sized
spherical caps.

Section 3.4 considers pairs of spherical caps which lie on different but touch-
ing spheres. The classical tool of inversion (in an appropriate sphere) produces
planar structures. The potential distribution may be described by dual in-
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Figure 3.1
Spherical shell geometry: (a) the spherical cap, (b) a symmetrical
pair of spherical caps, and (c) a symmetrical spherical barrel.

tegral equations; these may be regularised to produce a system that is well
suited to effective numerical calculation.

A variant of the barrel structures already considered provides a model for
a type of electronic lens; this is discussed in some detail in Section 3.5.

The final two sections (3.6 and 3.7) provide a contrast to the previous
sections. The magnetostatic potential surrounding superconducting surfaces
gives rise to mixed boundary value problems, but Neumann (rather than
Dirichlet) boundary conditions are enforced on the spherical surface. How-
ever, the resulting series equations are amenable to the standard approach
developed in this chapter for spherical geometry, and the magnetic field is
determined inside a spherical shell.

3.1 The open conducting spherical shell

The spatial distribution of the electrostatic potential surrounding a charged
spherical cap has been investigated by many authors [41], [11], and [25].
As mentioned in the introduction, it provides one of the simplest three-
dimensional mixed boundary value problems for Laplace’s equation. In this
section, we reformulate this well-known problem in terms of dual equations in-
volving Jacobi polynomials. The techniques described in Chapter 2 provide a
standard method for the deduction of the solution; furthermore, they provide
a rational basis from which more complicated problems may be tackled.

Let U0 = U0(θ, ϕ) be the electrostatic potential that is assumed to be
known on the spherical cap, of radius a and subtending an angle θ0 at the
spherical centre (see Figure 3.1). The only requirement on the function U0 is

©2001 CRC Press LLC
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that it has a Fourier-Legendre series expansion:

U0(θ, ϕ) =
∞∑

m=0

(
2− δ0m

)
cosm (ϕ− ϕ0)

∞∑
n=m

αm
n P

m
n (cos θ) , (3. 1)

where αm
n are known (Fourier) coefficients.

We seek a potential U(r, θ, ϕ), that satisfies the Laplace equation, is contin-
uous across the closed spherical surface r = a, and decays at infinity according
to U(r, θ, ϕ) = O

(
r−1
)

as r →∞. Thus, for suitable Am
n (to be determined),

U has the form
∞∑

m=0

(
2− δ0m

)
cosm (ϕ− ϕ0)

∞∑
n=m

Am
n P

m
n (cos θ)

{
(r/a)n

, 0 ≤ r < a

(r/a)−n−1
, r > a

}
.

(3. 2)
It is clear that, with no loss of generality, we may assume ϕ0 = 0. The mixed
boundary conditions to be enforced on the spherical surface r = a are (for
ϕ ∈ (0, 2π))

U(a, θ, ϕ) = U0(θ, ϕ), θ ∈ (0, θ0) , (3. 3)[
∂

∂r
U(r, θ, ϕ)

]r=a+0

r=a−0

= 0, θ ∈ (θ0, π) . (3. 4)

The latter condition (3.4) reflects the continuity of the normal derivative of
the potential function across the aperture. Due to the completeness and
orthogonality of the set of trigonometric functions {cosmϕ}∞m=0 on (0, 2π),
the solution for each index m may be considered independently. Enforcing
the mixed boundary conditions leads to the dual series equations

∞∑
n=m

Am
n P

m
n (cos θ) =

∞∑
n=m

αm
n P

m
n (cos θ) , θ ∈ (0, θ0) , (3. 5)

∞∑
n=m

(2n+ 1)Am
n P

m
n (cos θ) = 0, θ ∈ (θ0, π) . (3. 6)

Let us determine the solution class for the coefficients Am
n , guided by the

boundedness condition for energy integral (Section 1.3). The integration re-
gion is most conveniently chosen as the sphere of radius a, so that

W =

2π∫
0

dϕ

a∫
0

dr.r2
π∫

0

dθ sin θ |gradU |2 <∞. (3. 7)

It follows from (3.7) that the solution class is defined by

∞∑
m=0

(
2− δ0m

) ∞∑
n=m

n

2n+ 1
Γ (n+m+ 1)
Γ(n−m+ 1)

|Am
n |

2
<∞. (3. 8)
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Using the well-known relationship between Pm
n and ultraspherical poly-

nomials (2. 91) we may reduce (3.5) and (3.6) to the following dual series
equations, involving Jacobi polynomials as kernels (setting n−m = s):

∞∑
s=0

Xm
s+m(s+m+

1
2
)P (m,m)

s (z) = 0, z ∈ (−1, z0) (3. 9)

∞∑
s=0

Xm
s+mP

(m,m)
s (z) =

∞∑
s=0

βm
s+mP

(m,m)
s (z), z ∈ (z0, 1) (3. 10)

where z = cos θ, z0 = cos θ0 and{
Xm

s+m

βm
s+m

}
=

Γ (s+ 2m+ 1)
Γ(s+m+ 1)

{
Am

s+m

αm
s+m

}
. (3. 11)

Equations of this kind are readily solved by the techniques outlined in
Chapter 2. Equations (3.9) and (3.10) may be recognised as equations of the
form (2.4) , (2.5) with the identification α = β = m, fn = qn = rn = 0, and
gn replaced by βn+m; furthermore, η = 1

2 , and λs

(
m,m; 1

2

)
= s+m+ 1

2 .
From (2.23) , we deduce that the analytical solution is

Y m
p+m =

∞∑
s=0

β̂m
s+mQ̂

(m− 1
2 ,m+ 1

2 )
sp (z0) (3. 12)

where p = 0, 1, 2, . . ., and{
Y m

p+m, β̂
m
p+m

}
=

Γ (p+m+ 1)
Γ(p+m+ 1

2 )

[
h

(m− 1
2 ,m+ 1

2 )
p

] 1
2 {
Xm

p+m, β
m
p+m

}
. (3. 13)

The normalised incomplete scalar product Q̂(α,β)
sp (z0) is defined by (2.24) .

In conclusion, it should be noted that the solution belongs to the required
class (3.8) ; this can be proved using the properties (B. 171) and (B. 172) of
the function Q̂(α,β)

sp (see Appendix B.6).
When the cap is an equipotential surface, only the index 0 coefficient is

nonzero, and the summation (3. 12) comprises a single term; the solution
simplifies to that already obtained in Section 1.4.

3.2 A symmetrical pair of open spherical caps and the
spherical barrel

The most striking feature of the problem considered in the previous section
is that an analytical, closed form of the electrostatic potential was obtained;
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this solution is obviously independent of the method used. Such a simple and
satisfactory solution cannot be expected for more complicated conductors,
such as a pair of charged spherical caps, or a charged spherical shell with two
holes (the so-called spherical barrel). These structures present very particular
cases of two-body problems in physics, in which the goal is to calculate effec-
tively the mutual impact of two bodies. In a general situation, the method
of successive approximations is used. However, this is effective in only a few
situations, for example, objects with dimensions very much smaller than their
separation. Such situations are somewhat exceptional. However, if the bodies
are identical there is a high degree of symmetry in their mutual impact, so
that there is some hope of describing the dominant part of their interaction
analytically, even when they are very closely coupled.

In this section we consider two examples of this highly symmetric situation;
we produce semi-analytic solutions for the electrostatic potential around a
pair of symmetrically located, charged spherical caps and around a spherical
barrel. The approach is completely based on the effective procedure of solving
triple series equations involving Legendre polynomials, described in Section
2.4.

The geometry is shown in Figures 3.1b and 3.1c. Two spherical caps occupy
the region

r = a, θ ∈ (0, θ0) ∪ (π − θ0, π) ,

whilst the barrel occupies the complementary portion of the spherical surface
defined by

r = a, θ ∈ (θ0, π − θ0) .

The conditions that the potential satisfies are similar to those for a single
spherical cap (see Section 3.1), except that the given potential is now as-
sumed to be constant over each conductor surface. We seek the rotationally
symmetric potential U in the form

U = U(r, θ) =
∞∑

n=0

xnPn(cos θ)
{

(r/a)n
, 0 ≤ r < a

(r/a)−n−1
, r > a

}
(3. 14)

where the unknown coefficients {xn}∞n=0 satisfy (cf. (3. 8))

W = 4πa
∞∑

n=1

n

2n+ 1
|xn|2 <∞, (3. 15)

so that {xn}∞n=0 lies in the solution class l2 ≡ l2(0).
First let us consider the pair of charged caps, the upper (in the region

z > 0) and lower being maintained at potentials 1 and ±1, respectively.
Enforcement of the mixed boundary conditions leads to the symmetric triple
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series equations

∞∑
n=0

xnPn (z) = (−1)l
, z ∈ (−1,−z0)

∞∑
n=0

(
n+ 1

2

)
xnPn (z) = 0, z ∈ (−z0, z0)

∞∑
n=0

xnPn (z) = 1, z ∈ (z0, 1)

(3. 16)

where z = cos θ, z0 = cos θ0, and the index l takes the values 0 or 1.
We may use the approach described in Section 2.4, to reduce (3.16) to the

following dual series equations involving the Jacobi polynomials P (0,l− 1
2 )

n
∞∑

n=0

(
n+ 1

2 l +
1
4

)
x2n+lP

(0,l− 1
2 )

n (u) = 0, u ∈ (−1, u0) ,
∞∑

n=0
x2n+lP

(0,l− 1
2 )

n (u) = (−1)l
{

1
2 (1 + u)

}− l
2 , u ∈ (u0, 1) ,

(3. 17)

where u = 2z2 − 1 and u0 = 2z2 − 1 = cos 2θ0. These equations are now
transformed in the standard way to the following infinite systems of linear
algebraic equations (i.s.l.a.e.) of the second kind. Denoting

b2n+l =
Γ (n+ 1)
Γ
(
n+ 1

2

) {h(− 1
2 ,l)

n

}− 1
2

x2n+l (3. 18)

and

εl
n = 1−

(
n+

l

2
+

1
4

)
Γ
(
n+ l + 1

2

)
Γ
(
n+ 1

2

)
Γ (n+ l + 1)Γ (n+ 1)

, (3. 19)

so that εl
n = O

(
n−2

)
as n → ∞, the system for the even (l = 0) coefficients

is (
1− ε0m

)
b2m +

∞∑
n=0

b2nε
0
nQ̂

(− 1
2 ,0)

nm (u0) =
2

3
4

√
π
Q̂

(− 1
2 ,0)

0m (u0) (3. 20)

where m = 0, 1, 2, . . . ; the system for the odd (l = 1) coefficients is

(
1− ε1m

)
b2m+1 +

∞∑
n=0

b2n+1ε
1
nQ̂

(− 1
2 ,1)

nm (u0)

= −2

{
1− u0

π
(
m+ 1

2

)
(m+ 1)

} 1
2

P̂
( 1

2 ,0)
m (u0) , (3. 21)

where m = 0, 1, 2, . . . ; recall that the incomplete scalar products Q̂(α,β)
nm are

defined by Formula (2.24).
It is convenient to rearrange these second-kind systems by replacing the

angle parameter u0 (or θ0) by u1 = −u0

(
or θ1 = π

2 − θ0
)
, and using Equation
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(B. 170) (see Appendix) to transform the incomplete scalar products. This
leads to the following equivalent i.s.l.a.e., in which the index 0 equations have
been separated out. Let

c2m+l = (−1)m
b2m+l where l = 0 or 1. (3. 22)

The even index system is{
1− ε00Q̂

(0,− 1
2 )

00 (u1)
}
c0 =

2
3
4

√
π

{
1− Q̂

(0,− 1
2 )

00 (u1)
}

+
∞∑

n=1

c2nε
0
nQ̂

(0,− 1
2 )

n0 (u1) , (3. 23)

and

c2m −
∞∑

n=1

c2nε
0
nQ̂

(0,− 1
2 )

nm (u1) = c0ε
0
0Q̂

(0,− 1
2 )

0m (u1)−
2

3
4

√
π
Q̂

(0,− 1
2 )

0m (u1) . (3. 24)

for m = 1, 2, . . . . The odd index system comprises{
1− ε10Q̂

(1,− 1
2 )

00 (u1)
}
c1 =

− 2
√

2√
π

(1 + u1)
1
2 P̂

(1,− 1
2 )

0 (u1) +
∞∑

n=1

c2n+1ε
1
nQ̂

(1,− 1
2 )

n0 (u1) , (3. 25)

and

c2m+1 −
∞∑

n=1

c2n+1ε
1
nQ̂

(1,− 1
2 )

nm (u1) =

c1ε
1
0Q̂

(1,− 1
2 )

0m (u1)− 2

{
1 + u1

π
(
m+ 1

2

)
(m+ 1)

} 1
2

P̂
(0,− 1

2 )
m (u1) . (3. 26)

for m = 1, 2, . . .. Formulae (3.23) and (3.25) provide the values of c0 and
c1 for replacement in (3.24) and (3.26) producing systems for {c2n}∞n=1 and
{c2n+1}∞n=1 . Bounds, which are uniform in the parameter u1, on the norms p
and q of the completely continuous operators of the systems (3.24) and (3.26)
are

q ≤ max
∣∣ε1n∣∣ = ∣∣ε11∣∣ = 1− 5π

16 ' 0.018 � 1,
p ≤ max

∣∣ε1n∣∣ = ∣∣ε11∣∣ = ∣∣1− 21π
64

∣∣ ' 0.031 � 1. (3. 27)

(This estimate follows from the observation that the matrix operator with

components Q̂(l,− 1
2 )

nm is a projection operator of norm at most unity.) Thus,
the systems (3.24) and (3.26) can be solved very effectively by the method of
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successive approximations for any value of the parameter u1 (or θ1). Approx-
imate analytical expressions for capacitance given at the end of this section
are derived in this way.

Let us now turn attention to the charged spherical barrel. Assume that this
doubly-connected conductor is charged to unit potential, i.e.,

U(a, θ) = 1, θ ∈ (θ0, π − θ0) . (3. 28)

Following a similar procedure to the above produces the dual series equations
∞∑

n=0

(
n+ 1

4

)
bnP

(− 1
2 ,0)

n (u) = 0, u ∈ (−1, u1)
∞∑

n=0
bnP

(− 1
2 ,0)

n (u) = 1, u ∈ (u1, 1)
(3. 29)

where bn = (−1)n
x2n and u1 = −u0 (θ1 = π

2 − θ1). A preliminary integration
is necessary to transform these equations to the standard form considered in
Section 2.1.

∞∑
n=1

n+ 1
4

n
bnP

( 1
2 ,1)

n−1 (u) =
√

2− (1− u)
1
2

(1− u)
1
2 (1 + u)

b0, u ∈ (−1, u1) (3. 30)

∞∑
n=1

bn
n
P

( 1
2 ,1)

n−1 (u) =
4

1 + u
(1− b0) , u ∈ (u1, 1) (3. 31)

The final format of the solution is deduced from the results of Section 2.1;
omitting details, it is

ds −
∞∑

n=1

dnµn

{
Q̂

(1, 1
2 )

n−1,m−1 (u1) +
2
√

2
α (u1)

Qn (u1)Qm (u1)

}

=
2
√

2
α (u1)

Qs (u1) , (3. 32)

where s = 1, 2, . . .; the coefficient b0 is computed from the formula

b0 = (α (u1))
−1

{
1 +

∞∑
n=1

dnµnQn (u1)

}
(3. 33)

Furthermore,

dn =
(
n+

1
4

)
h
(0, 3

2 )
n−1

{
h
(1, 1

2 )
n−1

}− 1
2 Γ (n+ 1)

Γ
(
n+ 3

2

)bn,
µn = 1−

n
(
n+ 1

2

)
n+ 1

4

[
Γ
(
n+ 1

2

)
Γ (n+ 1)

]2

= O
(
n−2

)
as n→∞, (3. 34)
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α (u1) = 1− 1
π

(
1 + u1

2

) 1
2

− 1
2π

ln

[
1−

√
(1 + u1) /2

1 +
√

(1 + u1) /2

]
,

and

Qn (u1) =
1√
π

(
1 + u1

2

) 3
2 P̂

(0, 3
2 )

n−1 (u1)√
n
(
n+ l

2

) .
The norm of the compact operator H associated with the system (3.32) has
the bound

‖H‖ ≤ max |µn| = µ1 = 1− 3π
10
' 0.057 � 1; (3. 35)

this estimate is uniform in the parameter u1. Hence, the solution of the system
(3.32) is effectively computed by means of successive approximations for any
value of the parameter u1.

We shall now calculate capacitances of these structures. The capacitance
C is related to the total charge q on a conductor at potential U by

q = CU.

Thus, at unit potential, the capacitance C numerically coincides with value
of the charge q. Charge is determined by integration of the surface charge
density σ on the conductor surface; it is proportional to the jump in the
normal component of the electric field

−→
E = gradU on the conductor surface

σ (θ) =
1
4π
{Er (a+ 0, θ)− Er (a− 0, θ)} .

(This follows from Equation (1. 2).) The concrete expression for σ is

σ (θ) =
1

4πa

∞∑
n=0

(2n+ 1)xnPn (cos θ) . (3. 36)

3.2.1 Approximate analytical formulae for capacitance

Let us first consider two caps at equal potential (l = 0). The charge q1,1 on
each spherical cap is determined by integration of the function σ (θ) over the
appropriate portion of the spherical surface r = a :

q1,1 =
1
2
ax0 = 2−

7
4
√
πab0. (3. 37)

From the trivial approximation
(
c02n = 0

)
one readily obtains from (3.24) the

approximation for c0 :

c
(0)
0 ≈

2
3
4

√
π

1− Q̂
(0,− 1

2 )
00 (u1)

1− ε00Q̂
(0,− 1

2 )
00 (u1)

=
2

3
4

√
π
.

cos θ1
1−

(
1− π

4

)
(1− cos θ1)

. (3. 38)
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θ1 0◦ 10◦ 20◦ 30◦ 40◦

a−1q
(0)
1,1 0.5 0.49401 0.47600 0.44583 0.40326

a−1q
(1)
1,1 0.5 0.49399 0.47583 0.44525 0.40220

θ1 50◦ 60◦ 70◦ 80◦ 90◦

a−1q
(0)
1,1 0.34807 0.28004 0.19912 0.10554 0

a−1q
(1)
1,1 0.34654 0.27835 0.19778 0.10498 0

Table 3.1 Approximate capacitances of the charged cap pair.

Substituting (3.38) in (3.37) produces the approximation

q1,1 ≈
1
2
a

cos θ1
1−

(
1− π

4

)
(1− cos θ1)

. (3. 39)

The simplest approximation for the capacitance of this pair of conductors is
thus

C
(0)
1,1 = 2q(0)1,1 = a

cos θ1
1−

(
1− π

4

)
(1− cos θ1)

. (3. 40)

It is worth noting that the same problem was solved in [42]. Despite obtain-
ing a Fredholm integral equation of the second kind (which in itself does not
guarantee solution effectiveness), further analytical investigation was impossi-
ble because the solution was highly dependent on the cap dimensions; only nu-
merical results were obtained. Let us make some comparison of results (those
of [42] are given in parentheses): when θ1 = 60◦, a−1q

(0)
1,1 = 0.280 (0.278) ;

when θ1 = 30◦, a−1q
(0)
1,1 = 0.445 (0.445) . Formula (3.40) is thus appealing in

its simplicity and relatively good accuracy, demonstrating the advantages of
the method presented here.

The first successive approximation provides a more accurate estimate of
capacitance (or charge), and an approximate analytical expression for the po-
tential distribution; we obtain the following approximation for the coefficients:

b
(1)
2m =

(
b0ε

0
0 −

2
3
4

√
π

)
(−1)m

Q̂
(0,− 1

2 )
0m (u1) , (m = 1, 2, . . .). (3. 41)

In this approximation the charge is

q
(1)
1,1 =

1
2
a

cos θ1 − β (θ1)
1−

(
1− π

4

)
{1− cos θ1 + β (θ1)}

(3. 42)

where

β (θ1) =
∞∑

n=1

ε0nQ̂
(0,− 1

2 )
n0 (u1) Q̂

(0,− 1
2 )

0n (u1) . (3. 43)
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Figure 3.2
Electrostatic potential near a pair of symmetrical spherical caps
charged to unit potential with subtended angle θ0 = 30o. Truncation
number Ntr = 11.

An approximation for the function β with relative error not exceeding
3.10−4 is

β (θ1) ≈
5∑

n=1

∆ε0n [P2n−1 (cos θ1)− P2n+1 (cos θ1)]
2
/ (4n+ 1) +

1
8

{
−2 cos θ1 (1− cos θ1) ln 2 +

1
2

sin2 θ1 −
1
2

(1− cos θ1)
2 ln (1− cos θ1)

}
+

1
8
{2 cos θ1 ln 2− cos θ1 (1− cos θ1)− cos θ1 (1 + cos θ1) ln (1 + cos θ1)}

where
∆ε0n = ε0n −

1
16n (2n+ 1)

. (3. 44)

Formulae (3.40) and (3.42) were used to calculate q(0)1,1 and q(1)1,1, respectively.
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Figure 3.3
Electrostatic potential near a symmetrical pair of spherical caps
charged to unit potential with subtended angle θ0 = 60o. Truncation
number Ntr = 11.

The values of q(1)1,1 agree perfectly with data in [42]. Some computed results
are presented in Table 3.1.

The spatial distribution of the potential U computed from (3. 14), after
solution of (3. 24) is displayed in Figures 3.2 and 3.3 for the pair of caps,
at unit potential with angle parameter θ0 = 30◦ and θ0 = 60◦, respectively.
It is evident that mutual coupling of the electrostatic fields produced by the
smaller pair of charged caps is small. The larger pair exhibits much stronger
coupling; the resultant field appears not as the composition of two individual
fields, but as a single electrostatic field surrounding the entire structure.

Furthermore, these figures illustrate that well-separated small caps might
be readily analysed by a method of successive approximations, utilising the
known potential of a single isolated charged cap. However, such an approach
will fail for larger caps (Figure 3.3); the choice of method applied is critical
in producing an efficient mathematical tool for analytical treatment of the
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Figure 3.4
Electrostatic potential near a spherical condensor with subtended
angle θ0 = 30o. Truncation number Ntr = 11.

problem.
When oppositely charged (l = 1 ), the caps form a capacitor or condensor.

The charge on the lower cap is

q−1,1 =
1
2
a

∞∑
n=0

x2n+1 [P2n(0)− P2n+2(0)] =

1
2
a
∞∑

n=0

(−1)n
c2n+1

Γ
(
n+

1
2

)
Γ (n+ 1)

[
h
(− 1

2 ,1)
n

]− 1
2

[P2n(0)− P2n+2(0)] . (3. 45)

The first approximation in solving Equations (3.25) and (3.26) produces

c
(1)
1 = −2

3
4

(
3
π

) 1
2 cos θ1

1 + (
3π
8
− 1)(1− 3

2
cos θ1 +

1
2

cos3 θ1)
,
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Figure 3.5
Electrostatic potential near a spherical condensor with subtended
angle θ0 = 60o. Truncation number Ntr = 11.

and

c
(1)
2n+1 = c1ε

1
0Q̂

(1,− 1
2 )

0n (u1)− 2

{
1 + u1

π
(
n+ 1

2

)
(n+ 1)

} 1
2

P̂
(0, 1

2 )
n (u1) . (3. 46)

Substitution of these values in the formula (3.45) yields an approximate ana-
lytical expression for q−1,1:

q
(1)
−1,1 = −1

2
a

∞∑
n=1

[P2n(0)− P2n+2(0)]2 P2n+1 (cos θ1)

− 9
8
a cos θ1

{
1−

(
3π
8
− 1
)(

1− 3
2

cos θ1 +
1
2

cos3 θ1

)}−1

×

{
1− 2

3

(
3π
8
− 1
) ∞∑

n=1

[P2n(0)− P2n+2(0)]2 Vn (cos θ1)

}
(3. 47)
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Figure 3.6
Electrostatic potential near a spherical barrel charged to unit po-
tential with aperture subtending angle θ0 = 30o. Truncation number
Ntr = 11.

where

Vn (cos θ1) = − sin2 θ1P2n+1 (cos θ1)

− 2 (4n+ 3)−1 cos θ1 [P2n+2 (cos θ1)− P2n (cos θ1)]

+ 2 (4n+ 3)−1 (4n+ 5)−1 [P2n+3 (cos θ1)− P2n+1 (cos θ1)]

− 2 (4n+ 3)−1 (4n+ 1)−1 [P2n+1 (cos θ1)− P2n−1 (cos θ1)] .

Some calculated results are reproduced in Table 3.2. A comparison of the
tabulated results with those obtained by numerical solution of (3.25) and
(3.26) shows that Formula (3.47) is accurate to three significant digits (over
the whole range of θ1). The spatial distribution of the potential around ca-
pacitors with angle parameter θ0 = 30◦ and 60◦ are shown in Figures 3.4 and
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Figure 3.7
Electrostatic potential near a spherical barrel charged to unit po-
tential with aperture subtending angle θ0 = 60o. Truncation number
Ntr = 11.

3.5, respectively. This was computed from (3. 14) after solution of (3. 26).
Finally, we calculate the capacitance of the spherical barrel. The charge q1,

and hence the capacitance of the doubly-connected spherical barrel conductor
at unit potential, is determined by q1 = ab0. In the trivial approximation
d
(0)
n = 0, and the corresponding estimate follows from (3.32) :

q
(0)
1 = c

(0)
1 = a

(
1− 1

π
cos θ1 −

1
2π

ln
[
1− cos θ1
1 + cos θ1

])−1

. (3. 48)

In the limiting case of free space (θ1 = 0), Formula (3.48) produces the
expected result that q(0)1 = 0. For the other limiting case of a closed spherical
shell

(
θ1 = π

2

)
, it produces the expected result q(0)1 = a. A thin cylindrical
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Figure 3.8
Electrostatic potential near a spherical barrel or ring charged to
unit potential with aperture subtending angle θ0 = 80o. Truncation
number Ntr = 11.

ring (θ1 � 1) has the approximate charge

q
(0)
1
∼=

πa

π − 1 + ln (2/θ1)
∼=

πa

0.07 + ln (16/θ1)

where we have employed the approximation π − 1 ∼= ln 8 + 0.07. This is very
close to the known result for the charge on a narrow cylindrical ring [29]. The
estimate of q1 improves with the next approximation. Sample calculations of
q
(0)
1 are reproduced in Table 3.3.
The distribution of the electrostatic potential surrounding three differently

shaped barrels (θ0 = 30◦, 60◦, and 80◦) is displayed in Figures 3.6, 3.7, and
3.8. This was computed from (3. 14) after solving (3. 32). As might be
expected, the potential is nearly constant inside the largest barrel. When the
angle θ0 = 80◦, the spherical barrel becomes a “ring.”
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θ1 10◦ 20◦ 30◦ 40◦

a−1q
(1)
−1,1 -1.729 -1.262 -0.967 -0.739

θ1 50◦ 60◦ 70◦ 80◦

a−1q
(1)
−1,1 -0.549 -0.391 -0.241 -0.113

Table 3.2   Total charge on the lower cap of the spherical condensor.

θ1 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

a−1q
(0)
1 0.683 0.797 0.874 0.927 0.963 0.984 0.995 0.999

Table 3.3  Approximate capacitance of the spherical barrel as a function of angle
θ1 = π

2 − θ0.

3.3 An asymmetrical pair of spherical caps and the asym-
metric barrel

In the previous section we considered two spherical caps that subtended
equal angles at the origin of the common spherical surface on which they
both lie. Retaining axial symmetry of the entire structure, we now allow the
caps to subtend different angles, α and π − β, as shown in Figure 3.9(a).
When charged to constant potential, the standard formulation of this bound-
ary value problem for Laplace’s equation produces the nonsymmetric triple
series equations (which are similar to the symmetric triple equations of the
previous section)

∞∑
n=0

anPn (cos θ) = 1, θ ∈ (0, α)
∞∑

n=0
(2n+ 1) anPn (cos θ) = 0, θ ∈ (α, β)

∞∑
n=0

anPn (cos θ) = 1, θ ∈ (β, π) .

(3. 49)

Proceeding as in Section 2.7, we may transform the Equations (3.49) to the
equivalent symmetric triple series equations

∞∑
n=0

bnPn (x) =
{

2ρ0ρ1

1 + ρ0ρ1 + (1− ρ0ρ1)x

} 1
2

,

x ∈ (−1,−x0) ∪ (x0, 1) (3. 50)
∞∑

n=0

(2n+ 1) bnPn (x) = 0, x ∈ (−x0, x0) . (3. 51)

Here
x0 =

ρ0 − ρ1

ρ0 + ρ1
=

sin∆
sin∆0

,
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Figure 3.9
(a) An asymmetrical pair of spherical caps, (b) an asymmetric
spherical barrel.

where the parameter ∆0 = 1
2 (α+ β) is the angular coordinate of the middle

of the slot and ∆ = 1
2 (β − α) is its semi-width.

The right-hand side of (3.50) has the Fourier-Legendre expansion{
2ρ0ρ1

1 + ρ0ρ1 + (1− ρ0ρ1)x

} 1
2

=
∞∑

n=0

dnPn (x) (3. 52)

where

dn =
√

cos ∆− cos ∆0

cos ∆ + cos ∆0
[1− q (∆,∆0)] qn (∆,∆0) (3. 53)

and

q (∆,∆0) =
√

cos2 ∆− cos2 ∆0 − cos ∆
cos ∆0

.

In calculating the coefficients dn we used the integral

1∫
−1

Ps (z)√
a+ bz

dz =
1

(s+
1
2
)
√
a+ b

[1− q (a, b)] qs (a, b) , a > b (3. 54)

which may be obtained from the Dirichlet-Mehler integral representation for
the Legendre polynomials Pn and the tabulated definite integral [19]

π∫
0

cos(sx)
a+ b cosx

dx =
π√

a2 − b2

(√
a2 − b2 − a

b

)s

, a > b.

In contrast to the symmetrical case where the final solution requires only
even or only odd coefficients (according as the pair of shells are equally or
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oppositely charged), the solution to the nonsymmetrical structure requires
both even (l = 0) and odd (l = 1) coefficients. The systems are solved
separately and the results are combined. Based on results obtained in the
previous section, the final form of the solution is (for l = 0, 1) :

cl

[
1− εl

0Q̂
(l,− 1

2 )
00 (u1)

]
= fl

[
1− Q̂

(l,− 1
2 )

00 (u1)
]

+

∞∑
n=1

(
c2n+lε

l
n − f2n+l

)
Q̂

(l,− 1
2 )

n0 (u1) , (3. 55)

and when m ≥ 1,

c2m+l −
∞∑

n=1

(
c2n+lε

l
n − f2n+l

)
Q̂

(l,− 1
2 )

nm (u1) =

f2m+l +
(
clε

l
0 − fl

)
Q̂

(l,− 1
2 )

0m (u1) (3. 56)

where

u1 = 1− 2
sin2 ∆
sin2 ∆0

,

{
f2n+l

c2n+l

}
= (−1)n Γ (n+ 1)

Γ
(
n+ 1

2

) {h(− 1
2 ,l)

n

} 1
2
{
d2n+l

b2n+l

}
, n = 0, 1, 2, . . . ,

and the rest of the notation coincides with that used in the previous section.
Just as for equally sized caps, this problem may be effectively solved by the
method of successive approximations because the same estimates of the norm
given by (3.27) are valid.

Suppressing some details, the electrostatic potential of the charged non-
symmetrical spherical barrel (displayed in Figure 3.9(b)) also leads to the
nonsymmetric triple series equations

∞∑
n=0

(2n+ 1) anPn (cos θ) = 0, θ ∈ (0, α) ∪ (β, π)
∞∑

n=0
anPn (cos θ) = 1, θ ∈ (α, β) ,

(3. 57)

which are converted in the usual way to the dual series equations (l = 0, 1)

∞∑
n=0

(b2n+l − d2n+l)P
(0,l− 1

2 )
n (u) = 0, u ∈ (−1, u0)

∞∑
n=0

(
n+ 1

2 l +
1
4

)
b2n+lP

(0,l− 1
2 )

n (u) = 0, u ∈ (u0, 1)
(3. 58)

where u0 = cos 2θ0. The standard solution process eventually yields a fast
converging i.s.l.a.e. of the second kind for the Fourier coefficients. The odd
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(l = 1) index system is

Bm −
∞∑

n=0

BnτnQ̂
( 1

2 ,0)
nm (u0) = Dm −

∞∑
n=0

DnQ̂
( 1

2 ,0)
nm (u0) (3. 59)

where

τn = 1−
(
n+

3
4

)[
Γ (n+ 1)
Γ
(
n+ 3

2

)]2

= O
(
n−2

)
as n→∞,

and

{Bn,Dn} =
Γ
(
n+ 3

2

)
Γ (n+ 1)

{
h
( 1

2 ,0)
n

} 1
2

{b2n+1, d2n+1} ;

the even (l = 0) index system is

Gm −
∞∑

n=1

Gnµn

{
Q̂

(1, 1
2 )

n−1,m−1 (u1) + 2
√

2 {γ (u1)}−1
Qn (u1)Qm (u1)

}
= 2

√
2 {γ (u1)}−1

D0Qm (u1) +
∞∑

n=1

Dn

{
Q̂

(1, 1
2 )

n−1,m−1 (u1) + 2
√

2 {γ (u1)}−1
Qn (u1)Qm (u1)

}
(3. 60)

where γ (u1) ≡ α (u1) ,

γ (u1) b0 = D0 +
∞∑

n=1

(Gnµn +Dn)Qn (u1) ,

Gm =
m+ 1

4

m+ 1
2

Γ (m+ 1)
Γ
(
m+ 1

2

)h(0, 3
2 )

m−1

{
h
(1, 1

2 )
m−1

}− 1
2

(−1)m
b2m,

and

Dm = (−1)m
d2m

Γ
(
m+ 1

2

)
Γ (m)

h
(0, 3

2 )
m−1

{
h
(1, 1

2 )
m−1

}− 1
2

.

The remaining notation coincides with that which we used in the solution of
the spherical barrel with equal-sized apertures (Section 3.2).

Some remarks about computation of the electrostatic fields are in order.
It is not necessary to compute the original Fourier coefficients {an}∞n=0 . Cal-
culations can be done in terms of the secondary coefficients {bn}∞n=0. For
instance, to derive formulae for capacitance and potential distribution along
the z-axis, use Formula (2.253) in which we set m = 0:

an =
√

cos ∆ + cos ∆0

2

1∫
−1

dx√
cos ∆ + cos ∆0x

×Pn

(
cos ∆0 + cos ∆x
cos ∆ + cos ∆0x

) ∞∑
s=0

(2s+ 1) bsPs (x) . (3. 61)
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The total charge accumulated on both caps is Q = a.a0; from (3.54) one finds
that

Q =
1
2
a
√

cos ∆ + cos ∆0

∞∑
s=0

(2s+ 1) bs

1∫
−1

Ps (x) dx√
cos ∆ + cos ∆0x

= a [1− q (∆,∆0)]
∞∑

s=0

bsq
s (∆,∆0) . (3. 62)

(Observe that for symmetric caps ∆ = π
2 , q

(
∆, π

2

)
= 0, and the expression

(3.62) reduces to the previously stated form, namely Q = a.a0.)
The electrostatic potential taken along the z-axis (so that cos θ = ±1) is

given by

U (t,±1) =
∞∑

n=0

an (±t)n
, (3. 63)

where t = r/a ≤ 1. Upon substituting (3.61) and taking account of the series
∞∑

n=0

Pn

(
cos ∆0 + cos ∆x
cos ∆ + cos ∆0x

)
(±t)n =

(
1∓ 2t

cos ∆0 + cos ∆x
cos ∆ + cos ∆0x

+ t2
)− 1

2

(derived from the generating function for Pn, see Appendix, (B. 59)), and
the value of the integral given by (3.54) , we obtain the final formula for the
distribution of the electrostatic potential along the z-axis in terms of the
coefficients bn:

U(t,±1) =
1

1∓ t
[1−R(∆,∆0; t)]

∞∑
s=0

bsR
s(∆,∆0; t), (3. 64)

where

R(∆,∆0; t) =

(
1− t2

)√
cos2 ∆− cos2 ∆0 −

(
1 + t2

)
cos ∆± 2t cos ∆0

(1 + t2) cos ∆0 ∓ 2t cos ∆
.

(3. 65)
When r > a, we use the formula

U (ρ,±1) =
∞∑

n=0

an (±ρ)−n−1 = t
∞∑

n=0

an (±t)n
, (3. 66)

where ρ = t−1 = r/a > 1, so that the expression (3. 64) may be employed.
Note that with the limiting values t = 0, 1 we have

R(∆,∆0; 0) = q(∆,∆0), R(∆,∆0; 1) = ±1.

Some calculations of the total charge on spherical caps of unequal size are
displayed in Table 3.4, and the similar calculations for nonsymmetrical spher-
ical barrels are displayed in Table 3.5. An illustrative example of the elec-
trostatic potential distribution along the z-axis for an asymmetrical pair of
spherical caps are shown in Figure 3.10.
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∆�∆0 75◦ 60◦ 45◦ 30◦

0◦ 1 1 1 1
5◦ 0.99710 0.99742 0.99788 0.99850
10◦ 0.98839 0.98959 0.99148 0.99405
15◦ 0.97381 0.97647 0.98076 0.98684
20◦ 0.95327 0.95800 0.96568 0.97751
25◦ 0.92673 0.93409 0.94625 0.96776
30◦ 0.89413 0.90469 0.92265 —
45◦ 0.75968 0.78368 — —
60◦ 0.57036 — — —

Normalised total charge on two nonsymmetrical spherical caps a−1Q1,1 . ∆0

is the angular coordinate of the middle of the slot, ∆ is its semiwidth.

∆�∆0 75◦ 60◦ 45◦ 30◦

0◦ 0 0 0 0
5◦ 0.58555 0.53669 0.45724 0.34964
10◦ 0.67380 0.62062 0.53415 0.41722
15◦ 0.73665 0.68163 0.59228 0.47193
20◦ 0.78640 0.73100 0.64119 0.52084
25◦ 0.82735 0.77264 0.68415 0.56621
30◦ 0.86158 0.80843 0.72264 —
45◦ 0.93426 0.88970 — —
60◦ 0.97410 — — —

Normalised total charge on a nonsymmetrical spherical barrel a−1Q1,1 . ∆0

is the angular coordinate of the middle of the slot, ∆ is its semiwidth.

©2001 CRC Press LLC
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Figure 3.10
Electrostatic potential along the z-axis for an asymmetrical pair of
spherical caps charged to unit potential and subtending angles α
and π − β .

3.4 The method of inversion

The method of inversion in a sphere is described in many classical books on
electromagnetism (see for example [54], [66]). In three-dimensional potential
(electrostatic) problems this method plays, to some extent, the same role as
conformal mapping does in two-dimensional problems. It is mainly used in
the calculation of capacitance of closed charged shells. To this end, let us
state a very useful theorem first formulated by C. J. Bouwkamp [7] in 1958.

Theorem 5 Consider an isolated (or solitary) conductor bounded by a sur-
face S. Let S′ be the image of S under inversion in the sphere of radius a,
centred at a given fixed point M . Let U0 be the free-space potential due to
a unit negative charge located at M. Let U0 + U1 be the total potential in-

©2001 CRC Press LLC
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duced by this unit charge at M in the presence of S′ when it is grounded (i.e.,
U0 + U1 = 0 on S′). If V0 is the value of the induced potential U1 at M(
V0 = U1 (M)

)
, then the capacitance C of the conductor S equals a2V0.

We introduce two well-known examples to illustrate the use of this theorem
in the simplest cases. The first example calculates the capacitance of a single
spherical cap. The second, borrowed from [7], calculates the capacitance of
two touching spherical shells.

We have already calculated the capacitance Ccap of the spherical cap in
Section 1.4: Ccap = a.a0, where a is radius of the sphere and a0 is lowest
Fourier coefficient of the expansion of the electrostatic potential in Fourier-
Legendre series; thus a0 = π−1 (θ0 + sin θ0), and Ccap = aπ−1 (θ0 + sin θ0).
Let us demonstrate an alternative way of arriving at this result via inversion.

Consider the spherical cap subtending an angle θ0 at the origin as shown in
Figure 3.11. It occupies the region 0 ≤ θ ≤ θ0 of the spherical surface r = a.
Before performing an inversion about the centre M located at r = a, θ = 0,
we relocate the cap so that it occupies the area π− θ0 ≤ θ ≤ π on the surface
r = a. Under an inversion in the sphere of centre M and inversion radius
R = 2a, the spherical cap is transformed to the circular disc shown with
centre O′. The capacitance calculation for a spherical cap is transformed to
the equivalent calculation of the potential U for the grounded circular disc of
radius b in the presence of the unit negative charge, which is placed at the
centre of inversion.

Let O′ be the origin of a cylindrical polar coordinate system (ρ, z) , so that
the coordinates of the inversion centre M are ρ = 0, z = 2a; the inversion
procedure described above is given by ρ = R tan 1

2θ, and the radius of the
circular disc image is b = R tan 1

2θ0. The potential function emanating from

the negative unit charge is U0 = −
(
ρ2 + z2

)− 1
2 . By the method of separation

of variables, we may seek the axisymmetric electrostatic potential U ≡ U (ρ, z)
as the sum U = U0 + U1, where the induced potential U1 has the form

U1 =
∫ ∞

0

f (ν) J0 (νρ) e−ν|z−a|dν (3. 67)

and the unknown function f is to be determined. Upon enforcing the mixed
boundary conditions one readily obtains the following dual series equations,
involving Bessel functions:∫ ∞

0

f (ν) J0 (νρ) dν =
(
ρ2 + 4a2

)− 1
2 , 0 ≤ ρ < b, (3. 68)∫ ∞

0

νf (ν) J0 (νρ) dν = 0, ρ > b.

We may use the results of Section 2.6 to find

f (ν) =
4a
π

∫ b

0

cos (νρ)
ρ2 + 4a2

dρ, (3. 69)
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Figure 3.11
The spherical cap and its image (the circular disc) under the inver-
sion procedure (see text).

b = 2a tan 1
2θ0. According to Bouwkamp’s theorem, the capacitance is

Ccap = R2U1 (M) = 4a2

∫ ∞

0

f (ν) e−2νadν. (3. 70)

Thus, the capacitance equals

Ccap =
4
π
a3

∫ ∞

0

dνe−2νa

∫ b

0

dρ cos (νρ)
ρ2 + 4a2

=
32
π
a4

∫ b

0

dρ

(ρ2 + 4a2)2
,

and an elementary calculation leads to

Ccap =
a

π
(θ0 + sin θ0) ,

which is in accord with the previous result.
Our second example is the calculation of capacitance of two touching spheres

of radii a and b, a ≤ b (Figure 3.12). In [7], this problem was treated by the
image method. With a view to extending it to open touching spherical shells,
we derive a solution by the method of separation of variables. The inversion
sphere has centre at the point of contact M and radius 2b. Let M be the origin
of polar cylindrical coordinates. The transformation (given by ρ = 2a tan 1

2θ)

©2001 CRC Press LLC
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Figure 3.12
Touching spheres of radii a, b.

transforms the electrostatic problem for two touching spheres that are charged
to unit potential to the equivalent electrostatic calculation for two grounded
infinite planes, separated by a distance l = 2b (1 + b/a) , in the presence of a
unit negative charge at inversion centre M.

As before we may seek a solution in the form

U (ρ, z) = U0 + U1, (3. 71)

where
U0 = −

(
ρ2 + z2

)− 1
2 , (3. 72)

U1 =
∫ ∞

0

{
f (ν) e−νz + g (ν) eνz

}
J0 (νρ) dν, (3. 73)

with f and g to be determined. Notice U (ρ, z) → 0 as ρ→∞. The boundary
conditions U (ρ,−2b) = U

(
ρ, 2b2/a

)
= 0 (each plane is grounded) imply∫ ∞

0

{
f (ν) e2νb + g (ν) e−2νb

}
J0 (νρ) dν =

(
ρ2 + 4b2

)− 1
2 ,

0 < ρ <∞, (3. 74)

∫ ∞

0

{
f (ν) e−2νb2/a + g (ν) e2νb2/a

}
J0 (νρ) dν =

(
ρ2 + 4b2 (b/a)2

)− 1
2
,

0 < ρ <∞. (3. 75)
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A Bessel integral transform, applied to equations (3.74) and (3. 75) shows
that

f (ν) =
sinh

(
2νb2/a

)
sinh (2νb (a+ b) /a)

e−2νb, (3. 76)

g (ν) =
sinh (2νb)

sinh (2νb (a+ b) /a)
e−2νb2/a. (3. 77)

Bouwkamp’s theorem implies that the capacitance of the two touching spheres
is

Ca,b = 4b2U1 (M) = 4b2
∫ ∞

0

{f (ν) + g (ν)} dν (3. 78)

= − ab

a+ b

{
2γ + ψ

(
a

a+ b

)
+ ψ

(
b

a+ b

)}
, (3. 79)

where γ is Euler’s constant, and ψ denotes the logarithmic derivative of the
Gamma function Γ (see [1]),

ψ(−x) = −γ + x−1 − x
∞∑

n=1

1
n (n− x)

.

When the spherical radii are equal (a = b), ψ( 1
2 ) = −γ − 2 ln 2, and the

capacitance Cb,b equals 2b ln 2.
Let us extend the last example to consider open spherical caps; various

configurations are shown in Figure 3.13. We restrict ourselves to spheres of
equal radii a, and shells subtending equal angles θ0, and concentrate on the last
two configurations (c) and (d); the solution to the first two is easily deduced
from the last two (using image theory). From the symmetry after inversion,
it is sufficient to consider the problem in the upper half-space (z ≥ 0). Thus,
we find the distribution of the electrostatic potential U in R3, which is due
to the unit negative charge located at inversion centre M in presence of two
grounded circular discs, separated by a distance l = 4a.

As before, the free-space potential emanating from the negative unit charge
is U0 = −

(
ρ2 + z2

)− 1
2 . Subdivide the space into two regions. In region I ,

0 < z ≤ 2a, we seek a solution in the form

U I = U0 + U (i) (3. 80)

where
U (i) =

∫ ∞

0

f (ν) J0 (νρ) cosh (νz) dν; (3. 81)

in region II , z > 2a, we seek a solution in the form

U II = U0 + U (e) (3. 82)

©2001 CRC Press LLC



Figure 3.13
Various configurations of spherical cap pairs.

where
U (e) =

∫ ∞

0

g (ν) J0 (νρ) e−νzdν (3. 83)

and the functions f, g are to be determined. (The form of U (i) and U (e) is
a superposition of partial solutions to Laplace’s equation, which vanish at
infinity.) From the continuity condition

U I (ρ, 2a) = U II (ρ, 2a) , 0 ≤ ρ <∞

we deduce
cosh (2νa) f (ν) = e−2νag (ν) . (3. 84)

The mixed boundary conditions applied on the plane z = 2a give

U (i) (ρ, 2a) = U (e) (ρ, 2a) = −U (0) (ρ, 2a) , 0 ≤ ρ < b, (3. 85)

∂U (i)

∂z
(ρ, 2a) =

∂U (e)

∂z
(ρ, 2a) , ρ > b, (3. 86)

where b = 2a tan 1
2θ0. We therefore obtain the following dual integral equa-

tions for the unknown function f :∫ ∞

0

f (ν) cosh (2νa) J0 (νρ) dν =
(
ρ2 + 4a2

)− 1
2 , 0 ≤ ρ < b, (3. 87)∫ ∞

0

νf (ν) e2νaJ0 (νρ) dν = 0, ρ > b. (3. 88)
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It is convenient to introduce a new unknown function F by

F (ν) = e2νaf (ν) , (3. 89)

and transform the dual equations to the weighted form∫ ∞

0

(
1 + e−4νa

)
F (ν) J0 (νρ) dν = 2

(
ρ2 + 4a2

)− 1
2 , 0 ≤ ρ < b, (3. 90)

∫ ∞

0

νF (ν) J0 (νρ) dν = 0, ρ > b. (3. 91)

Following the Abel integral transform technique, these equations produce∫ ∞

0

ν
1
2F (ν) J− 1

2
(νρ) dν

=
(

2
π

) 1
2 4aρ−

1
2

ρ2 + 4a2
−
∫ ∞

0

ν
1
2F (ν) e−4νaJ− 1

2
(νρ) dν, ρ < b, (3. 92)

∫ ∞

0

ν
1
2F (ν) J− 1

2
(νρ) dν = 0, ρ > b. (3. 93)

Application of the Bessel-Fourier integral transform to both parts of this
equation produces a Fredholm integral equation of the second kind. From a
computational point of view, however, the discrete form of solution is prefer-
able. To reduce (3.92) and (3.93) to an i.s.l.a.e., we use the Hankel transform
to obtain

µ−
1
2F (µ) = 4a

(
2
π

) 1
2
∫ b

0

ρ
1
2 J− 1

2
(µρ)

ρ2 + 4a2
dρ

−
∫ b

0

ρJ− 1
2

(µρ)
{∫ ∞

0

ν
1
2F (ν) e−4νaJ− 1

2
(νρ) dν

}
dρ (3. 94)

and then represent unknown function F by a Neumann series

F (µ) =
(

2
πbµ

) 1
2 ∞∑

n=0

(4n+ 1)
1
2 xnJ2n+ 1

2
(µb) (3. 95)

where it can be shown that {xn}∞n=0 ∈ l2.
Substitute (3.95) into (3.94). Then multiply both sides of (3.94) by (4m+ 1)

1
2 J2m+ 1

2
(µb), integrate over [0,∞), and use the well-known integral formula

[19], ∫ ∞

0

t−1Jν+2n+1 (t) Jν+2m+1 (t) dt = (4n+ 2ν + 2)−1
δnm. (3. 96)
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This yields an i.s.l.a.e. of the second kind for the coefficients {xn}∞n=0 ,

xm +
∞∑

n=0

αnmxn = βm, (3. 97)

where m = 0, 1, 2, ..., and

αnm = [(4n+ 1) (4m+ 1)]
1
2

∫ ∞

0

ν−1e−4aνJ2n+ 1
2

(νb) J2m+ 1
2

(νb) dν, (3. 98)

βm = 2 tan
θ0
2

(−1)m (4m+ 1)
1
2

∫ 1

0

P2m (t)
1 + t2 tan2 1

2θ0
dt. (3. 99)

Let us determine the capacitance C of two spherical caps in terms of the
Fourier coefficients xn. As before,

C = 4a2

∫ ∞

0

f (ν) dν = 4a2

∫ ∞

0

F (ν) e−2νadν, (3. 100)

so substituting for F from (3.95) , we finally deduce that the capacitance C
equals

2a√
π

∞∑
n=0

xn (4n+ 1)
1
2

Γ (2n+ 1)
Γ
(
2n+ 3

2

) tan2n 1
2θ0

22n
×

2F1

(
n+

1
2
, n+ 1; 2n+

3
2
;− tan2 θ0

2

)
. (3. 101)

Both Formulae (3.100) and (3.101) are valid for θ0 < π
2 . For small caps

(θ0 � 1) , one can deduce approximate analytical expressions for capacitance
in powers of the small parameter ε = tan 1

2θ0 � 1. To estimate of their
accuracy, we express αnm as a hypergeometric function by direct calculation
[14] of the integral in (3.98):

αnm =
[(4n+ 1) (4m+ 1)]

1
2

24n+4m+2

(
tan

θ0
2

)2n+2m+1 Γ (2n+ 2m+ 1)
Γ
(
2n+ 3

2

)
Γ
(
2m+ 3

2

)
×4 F3

(
p, p+

1
2
, p− 1

2
, p; 2p, 2n+

3
2
, 2m+

3
2
;− tan2 θ0

2

)
(3. 102)

where p = n+m+ 1. Also we may calculate from (3.99) using the tabulated
integral [14], that

βm = (4m+ 1)
1
2

Γ (m+ 1)Γ
(
m+ 1

2

)
Γ
(
2m+ 3

2

) tan2m+1 θ0
2
×

2F1

(
m+

1
2
,m+ 1; 2m+

3
2
;− tan2 θ0

2

)
. (3. 103)
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If ε = tan 1
2θ0 � 1, then

βm = (4m+ 1)
1
2 ε2m+1 Γ

(
m+ 1

2

)
Γ (m+ 1)

Γ
(
2m+ 3

2

) ×{
1−

(
m+ 1

2

)
(m+ 1)

2m+ 3
2

ε2 +O
(
ε4
)}

. (3. 104)

We may now apply the method of successive approximations to (3. 97):

x(i+1)
m = βm −

∞∑
n=0

αnmx
(i)
n , (3. 105)

where i = 0, 1, ..., and x(0)
m = 0. So

x(1)
m = βm,

x(2)
m = βm −

∞∑
n=0

αnmx
(1)
n = βm −

∞∑
n=0

αnmβm,

and so on (for m = 0, 1, ...).
From (3. 101), it can be readily shown that accuracy of order O

(
ε2
)

is
obtained for x0 by neglecting the rest of Fourier coefficients xn (n ≥ 1) . Thus,
since

x
(1)
0 = 2ε+O

(
ε3
)
, (3. 106)

x
(2)
0 = 2ε

(
1− 1

π
ε

)
+O

(
ε3
)
,

an approximate formula for capacitance is

C =
4a
π
x

(2)
0 +O

(
ε3
)

(3. 107)

so that the capacitance of two spherical caps is approximately

C =
4θ0
π

(
1− 1

2π
θ0

)
+O

(
θ30
)
. (3. 108)

This formula has a clear physical interpretation. The first term is the sum of
the capacitances of two isolated spherical caps. The second quadratic term
reflects the interaction or mutual impact of the caps.

The capacitance of the structure shown in Figure 3.13(d) is obtained in a
similar way. This approach can be extended to consider spherical shells of
differing radii and angle.
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Figure 3.14
Spherically-shaped electronic lens.

3.5 Electrostatic fields in a spherical electronic lens

In this section another illustration of methods developed for applications in
a spherical geometry context is given. We calculate the electrostatic field of
a spherically-shaped electronic lens, shown in Figure 3.14. The spherically-
shaped lens is a variant of a widely used electronic lens that comprises two
charged, finite hollow cylinders at different potentials V1 and V2, aligned along
a common axis of rotational symmetry. The upper electrode is the spherical
shell segment given by r = a, θ0 ≤ θ ≤ π

2 − δ; the lower electrode is its mirror
image in the xy-plane. The distance between electrodes is negligibly small
compared with the electrode dimension (δ ≈ 0), so that we model the lens
by closely adjoined electrodes, electrically isolated by an infinitesimally thin
layer of dielectric.

Let the upper electrode be charged to potential V1 and the lower one charged
to potential V2. Due to the rotational symmetry of the problem we seek the
electrostatic potential V = V (r, θ) as an expansion in a Fourier-Legendre

©2001 CRC Press LLC
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series (cf. (3.14))

V =
∞∑

n=0

xnPn (cos θ)
{

(r/a)n
, r < a

(r/a)−n−1
, r > a

}
. (3. 109)

Use of the mixed boundary conditions at r = a and of symmetry, produces the
following decoupled dual series equations for the even and odd index Fourier
coefficients:

∞∑
n=0

(n+ 1
4 )x2nP2n(cos θ) = 0, θ ∈ (0, θ0)

∞∑
n=0

x2nP2n(cos θ) = 1
2 (V1 + V2) , θ ∈

(
θ0,

π
2

) . (3. 110)


∞∑

n=0
(n+ 3

4 )x2n+1P2n+1(cos θ) = 0, θ ∈ (0, θ0)
∞∑

n=0
x2n+1P2n+1(cos θ) = 1

2 (V1 − V2) , θ ∈
(
θ0,

π
2

) (3. 111)

The first pair of Equations (3.110) have essentially been solved in Section
3.2, and may be identified with Equations (3.29) once we set bn = (−1)n

x2n;
the solution given by (3.32) must be multiplied by a factor 1

2 (V1 + V2) .
The technique developed in Chapter 2 may be followed to reduce the second

pair of Equations (3.111) to the following i.s.l.a.e. with a matrix operator that
is a completely continuous perturbation of the identity (in l2 ). Temporarily,
we replace the right-hand side of the second equation in (3.111) by unity,
so that in the final solution each Fourier coefficient must be multiplied by a
factor 1

2 (V1 − V2):

(1− pm)X2m+1 +
∞∑

n=0

X2n+1pnQ̂
(0, 1

2 )
nm (u1) = Am, (3. 112)

where m = 0, 1, 2, ..., and

pn = 1−
(
n+

3
4

)[
Γ (n+ 1)
Γ
(
n+ 3

2

)]2

= O
(
n−2

)
as n→∞,

x2n+1 = (−1)n Γ (n+ 1)
Γ
(
n+ 3

2

) {h(0, 1
2 )

n

}− 1
2

X2n+1, (3. 113)

and

Am =
(

2
π

) 1
2

1∫
u1

(1− u)−
1
2 (1 + u)

1
2 P̂

(0, 1
2 )

m (u) du.
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An approximate analytical formula for the electrostatic potential along the

axis of an electronic lens may be deduced. Set θ =
{

0
π

}
in (3.109), and let

q = r/a (r < a) so that

V

(
q,

0
π

)
=

1
2

(V1 + V2)
∞∑

n=0

x2nq
2n ± 1

2
(V1 − V2) q

∞∑
n=0

x2n+1q
2n (3. 114)

(the plus and minus signs are associated with 0 and π, respectively). Then,
using the approximate analytical solution for even and odd Fourier coefficients
(see (3. 32) and (3. 33)),

x0 ' (α (u1))
−1
,

x2n ' (α (u1))
−1 (−1)n

√
π

Γ
(
n+ 1

2

)
Γ (n+ 1)

(
1 + u1

2

) 3
2

P
(0, 3

2 )
n−1 (u1) , (3. 115)

and

x2n+1 '
(−1)n

√
π

Γ
(
n+ 3

2

)
Γ (n+ 1)

1∫
u1

(1− u)−
1
2 (1 + u)

1
2 P

(0, 1
2 )

n (u) du. (3. 116)

Substituting in the formula (3.114) we obtain

V

(
q,

0
π

)
=

(V1 + V2)
2α (u1)

{
1 +

1√
π

(
1 + u1

2

) 3
2 ∞∑

n=1

(−1)n Γ
(
n+ 1

2

)
Γ (n+ 1)

q2nP
(0, 3

2 )
n−1 (u1)

}

± (V1 − V2) q
2
√
π

∞∑
n=0

(−1)n Γ
(
n+ 3

2

)
Γ (n+ 1)

q2n

1∫
u1

(1 + u)
1
2

(1− u)
1
2
P

(0, 1
2 )

n (u) du (3. 117)

The integral contained in (3.117) is tabulated in [14] so that (if u1 = −u0)

1∫
u1

(1 + u)
1
2

(1− u)
1
2
P

(0, 1
2 )

n (u) du

= (−1)n

u0∫
−1

(1− v)
1
2

(1 + v)
1
2
P

( 1
2 ,0)

n (v) dv

= 2 (1− u1)
1
2

3F2

(
−n− 1

2
, n+ 1,

1
2
; 1,

3
2
;
1− u1

2

)
. (3. 118)

©2001 CRC Press LLC



Since q < 1, we may change the order of summation and integration in the
last term of (3.117) and so are led to the series also tabulated in [14],

S(q, u) =
∞∑

n=0

Γ
(
n+ 3

2

)
Γ (n+ 1)

(
−q2

)n
P

(0, 1
2 )

n (u)

=
∞∑

n=0

Γ
(
n+ 3

2

)
Γ (n+ 1)

(
q2
)n
P

( 1
2 ,0)

n (−u)

=
√
π

2
(
1 + q2

)− 3
2

2F1

(
3
4
,
5
4
; 1;

2q2

(1 + q2)2
(1 + u)

)
. (3. 119)

This completes the derivation of an approximate formula for the potential
distribution along the axis. Note at once that the value of the electrostatic
potential at the origin (z = 0) is

V

(
0,

0
π

)
∼=

1
2

(V1 + V2)
{

1− 1
π

cos θ1 −
1
π

ln
(

tan
θ1
2

)}−1

; (3. 120)

it is uniformly valid with respect to the parameter θ1 ∈
(
0, π

2

)
.

Further approximate analytical expressions which are uniformly valid with
respect to the electrode dimensions, are rather complicated except for the lim-
iting case of short electrodes (|u1 − 1| � 1 or θ1 � 1). A crude approximation
to the electrostatic field for narrow or very short electrodes is

V

(
q,

0
π

)
∼=

1
2

(V1 + V2)
(
1 + q2

)− 1
2 π

ln (2/θ1)
+O (θ1) . (3. 121)

For general lens parameters, numerical calculations may be simply and
satisfactorily performed. If a truncation number Ntr of 6 to 8 is used to solve
systems (3.112), (3.32), and (3.33), at least four significant digits in the values
of Fourier coefficients X2n, X2n+1 can be obtained stably.

3.6 Frozen magnetic fields inside superconducting shells

In contrast to previous sections, we now consider a physical problem that
mathematically reduces to a Neumann problem. The physical situation con-
cerns a spherical thin shell with two symmetrically located circular holes
(“doubly-connected” in a topological sense), manufactured from supercon-
ducting material with critical temperature Tc. Suppose this material is a su-
perconductor of the first kind so that when T > Tc this material behaves as
normal metal, but when T ≤ Tc, it behaves as a superconductor. Place this
shell (at T > Tc ) in some region of space that is permeated by a homoge-
neous magnetic field. Cool the shell in order to make the transition to the
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superconducting state (T ≤ Tc ), and switch off the magnetic field. Assuming
a perfect (ideal) Meissner effect, the magnetic flux Φ = πa2H0 is frozen in
the shell’s cavity. The design of special magnetic field compressors that raises
the threshold sensitivity of superconducting magnetic systems exploits this
principle.

A mathematical analysis of this phenomenon requires the solution of a
mixed boundary-value problem for the magnetostatic potential Um (r, θ) with
a Neumann boundary condition given on the shell’s surface. In addition, the
frozen magnetic flux must take constant value through any arbitrarily taken
cross-section of the shell, including a contour on the surface of the shell.

Considering Laplace’s equation, together with the continuity condition for
the normal derivative of Um at r = a and the O

(
r−1
)

behaviour of the
potential at infinity (r →∞) , one may seek a solution in the form

Um (r, θ) =
Φ
πa

∞∑
n=1

AnPn (cos θ)
{

(r/a)n
, r < a

− (n/ (n+ 1)) (r/a)−n−1
, r > a

}
,

(3. 122)
where Φ = πa2H0 is the frozen magnetic flux, H0 is the effective mean value of
the magnetic field taken at cross-section z = 0, and {An}∞n=1 are the unknown
coefficients to be determined; the finiteness of energy condition (see Section
1.3) requires

∞∑
n=1

|An|2 <∞.

Superconducting shells are usually modelled by ideal diamagnetic mate-
rials of zero relative permeability; the normal component of magnetic field
vanishes at the shell surface. The boundary conditions on the potential are
determined by continuity of radial and tangential components of the magnetic
field

−→
H = − gradUm on the superconducting portion of the shell (specified

by the angular segment (θ0, π − θ0)) and aperture, respectively:

Hm
r (a− 0, θ) = Hm

r (a+ 0, θ) = 0, θ ∈ (θ0, π − θ0) ,
Hm

θ (a− 0, θ) = Hm
θ (a+ 0, θ), θ ∈ (0, θ0) ∪ (π − θ0, π) .

The constancy of the magnetic flux through any arbitrarily taken cross-section
of the shell requires that if θ ∈ (θ0, π − θ0) ,

2πa2

θ∫
0

Hm
r (a, θ) sin θdθ = Φ.

Applying these conditions to (3.122) , we obtain the following triple sym-
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metric equations for the modified Fourier coefficients xn = An/(n+ 1),
∞∑

n=1

(2n+ 1)xnP
1
n(cos θ) = 0, θ ∈ (0, θ0) ∪ (π − θ0, π) (3. 123)

∞∑
n=1

xnP
1
n(cos θ) = −1

2
cosec θ, θ ∈ (θ0, π − θ0) . (3. 124)

Because of the symmetry, x2n ≡ 0 and these triple equations are equivalent
to the dual pair

∞∑
n=0

(
n+

3
4

)
x2n+1P

1
2n+1 (z) = 0, z ∈ (−1,−z0) (3. 125)

∞∑
n=0

x2n+1P
1
2n+1 (z) =

−1
2
√

1− z2
, z ∈ (−z0, 0) (3. 126)

where z = cos θ, and z0 = cos θ0.
As previously done, (see Sections 3.2 and 3.3), we use the substitutions

u = 2z2 − 1 and

P 1
2n+1 (z) =

√
2(n+

1
2
) (1− u)

1
2 P

(1,− 1
2 )

n (u) (3. 127)

in Equations (3.125) and (3.126) , and integrate them to obtain dual series

equations with Jacobi polynomials P (0, 1
2 )

n ,

∞∑
n=0

x2n+1P
(0, 1

2 )
n (u) = 2−

3
2 (1 + u)−

1
2 ln

[
1−

√
(1 + u) /2

1 +
√

(1 + u) /2

]
, u ∈ (−1, u0)

(3. 128)

∞∑
n=0

(
n+

3
4

)
x2n+1P

(0, 1
2 )

n (u) = 2
1
2 (1 + u)−

1
2 C, u ∈ (u0, 1) (3. 129)

where u0 = 2z2
0 − 1 = cos 2θ0, and C is an integration constant determined

by the condition
∞∑

n=1
|An|2 <∞.

Equations similar to this were solved in Section 3.3; omitting details of its
deduction, the final system is

X2m+1 −
∞∑

n=0

X2n+1τnΠnm (u0) = Am, (3. 130)

where m = 0, 1, 2, ..., and

X2m+1 = 2
1
4

[(
m+ 1

2

)
(m+ 1)

m+ 3
4

] 1
2 Γ

(
m+ 3

2

)
Γ (m+ 1)

x2m+1. (3. 131)
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Furthermore,

Πnm (u0) =

Q̂
(− 1

2 ,1)
nm (u0)−

√
2

Rn (u0)Rm (u0)

ln
[(

1 + ((1− u0) /2)
1
2

)
/
(
((1 + u0) /2)

1
2

)] ,
Rs (u0) =

(
1− u0

2
(
s+ 1

2

)
(s+ 1)

) 1
2

P̂
( 1

2 ,0)
s (u0) , (3. 132)

Am = −2−
3
2

π
1
2Rm (u0)

ln
[(

1 + ((1− u0) /2)
1
2

)
/
(
((1 + u0) /2)

1
2

)] ,
and

τn = 1−
(
n+

3
4

)[
Γ (n+ 1)
Γ
(
n+ 3

2

)]2

= O
(
n−2

)
, as n→∞.

In the same way as in Sections 3.2 and 3.3, the system (3. 130) has an
approximate analytical solution for the Fourier coefficients X2n+1 that is uni-
formly valid with respect to the dimension of the circular holes. In fact, the
norm of the completely continuous part H is bounded by the estimate

‖H‖ ≤ max |τn| = τ0 = 1− 3
π
< 0.046 � 1;

this is uniformly valid in the parameter u0. The method of successive ap-
proximations may be used to solve (3. 130); remarkably, only one step of
the iteration process is needed to obtain an approximate analytical solution
of high accuracy (3 to 4 correct digits in values of An). The result of one
iteration is

A2n+1 ' −2−
1
2π

1
2 sin θ0

Γ
(
n+ 1

2

)
Γ (n+ 1)

P
( 1

2 ,0)
n (cos 2θ0)

ln [1 + sin θ0]− ln [cos θ0]
. (3. 133)

We may use (3. 133) to derive the magnetic field distribution along the
shell axis (z-axis). Due to symmetry we need only consider the positive z-axis
(z ≥ 0, θ = 0) and obtain

Hm
r (q, 0) = − Φ

πa2

∞∑
n=0

(2n+ 1)A2n+1q
2n (3. 134)

where q = r/a. Use the tabulated value of the series [14] to rewrite (3. 134)
in the form

Hm
r (q, 0) =

Φ
πa2

.
π

2
.

sin θ0
ln [1 + sin θ0]− ln [cos θ0]

×

(
1 + q2

)− 3
2

2F1

(
3
4
,
5
4
; 1;

4q2 cos2 θ0
(1 + q2)2

)
. (3. 135)
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The hypergeometric function in (3. 135) admits a quadratic transformation
to the Legendre function

2F1

(
3
4
,
5
4
; 1;

4q2 cos2 θ0
(1 + q2)2

)
=
[

1 + q2

R(q, θ0)

] 3
2

P 1
2

[
1 + q2

R(q, θ0)

]
(3. 136)

where R(q, θ0) =
(
1− 2q2 cos 2θ0 + q4

) 1
2 ; the Legendre function P 1

2
is related

to the complete elliptic integral of the second kind E by (see Appendix, (B.
82))

P 1
2

[
1 + q2

R(q, θ0)

]
=

2
π

R0(q, θ0)
R

1
2 (q, θ0)

E

[√
4q cos θ0
R0(q, θ0)

]
, (3. 137)

where R0(q, θ0) =
(
1 + 2q cos θ0 + q2

) 1
2 .

It can easily be shown that if θ0 � 1 the value of the magnetic field increases
in proportion to θ−2

0 . Representative calculations of H−1
0 H (q, 0) are plotted

in Figure 3.15. Computations based upon Formulae (3. 135)–(3. 137) and on
the numerical solution of System (3. 130) were found to be in almost perfect
agreement.

In conclusion we remark that the growth of the magnetic field concentra-
tion at the apertures is restricted by some threshold value of the magnetic
field, the so-called critical value, Hc. (This is characteristic for superconduc-
tors of the first kind, such as lead, tin, and niobium.) It is interesting that
this phenomenon could be used for quite different purposes, such as localised
concentration of the magnetic field, or attenuation (i.e., suppression) of the
magnetic field in some localised region of space.

If the transition of the shell (T > Tc) to the superconducting state (T ≤ Tc)
is induced by a refrigeration process that starts from the equatorial zone of
the shell, the initial frozen magnetic flux is Φe = πa2H0. As the supercon-
ducting state occupies a larger part of the surface of the shell, the magnitude
of the magnetic field increases, attaining its largest value on the aperture
planes where the refrigeration process terminates. By contrast, if the refrig-
eration process starts at the shell rims, the initial frozen magnetic flux is
Φr = πa2 sin2 θ0.H0, and the movement of the superconducting phase to the
equatorial zone leads to the attenuation of the mean value of the magnetic
field because the frozen magnetic flux has a constant value at any cross-section
of the shell.

3.7 Screening number of superconducting shells

In this section, we consider another example of a mixed boundary-value
problem for Laplace’s equation in which Neumann boundary conditions are
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Figure 3.15
Frozen magnetic field along z-axis, for various angles θ0.

specified on a spherical shell surface. We consider a superconducting shell,
shaped as a thin spherical shell with a single circular hole. It is placed in an

external magnetostatic homogeneous field
→
H0, directed at angle α relative to

the z-axis (see Figure 3.16), which is the axis of rotational symmetry of the
shell.

With no loss of generality, we may suppose that vector
−→
H0 lies in a plane

xOz, so that its vertical and horizontal components are

H0
z = H0 cosα ≡ H0

‖ , H0
x = H0 sinα ≡ H0

⊥. (3. 138)

The magnetostatic potential function Ψ0 (r, θ, ϕ) describing this magnetic field
−→
H0 = −∇Ψ0 in spherical coordinates is

Ψ0 (r, θ, ϕ) = −H0.r (cosα cos θ + sinα sin θ cosϕ) (3. 139)
= −H0

‖ .r cos θ −H0
⊥.r sin θ cosϕ. (3. 140)
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Figure 3.16
Spherically-shaped superconducting shell.

In the interior region 0 ≤ r < a, the total potential has the form

Ψ(i) = H0
‖ .a

∞∑
n=0

a(i)
n

( r
a

)n

Pn (cos θ) +H0
⊥.a

∞∑
n=1

b(i)n

( r
a

)n

P 1
n (cos θ) cosϕ,

(3. 141)
whereas in the unbounded region r > a, the total potential has the form

Ψ(e) = Ψ0 +H0
‖ .a

∞∑
n=0

a(e)
n

( r
a

)−n−1

Pn (cos θ)

+H0
⊥.a

∞∑
n=1

b(e)n

( r
a

)−n−1

P 1
n (cos θ) cosϕ. (3. 142)

As mentioned in the previous section, superconducting shells are modelled
by ideal diamagnetic materials of zero relative permeability, so that the normal
component of magnetic field (in this case, Hr) vanishes at the shell surface.
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The continuity condition at r = a takes the form

H(i)
r (a, θ, ϕ) = H(e)

r (a, θ, ϕ) , θ ∈ (0, π) , ϕ ∈ (0, 2π) , (3. 143)

where the superscripts i and e refer to the interior and exterior regions, re-
spectively. Furthermore, on the screen surface, the normal components satisfy

H(i)
r (a, θ, ϕ) = H(e)

r (a, θ, ϕ) = 0, θ ∈ (θ0, π) , ϕ ∈ (0, 2π) . (3. 144)

Also we require continuity on the aperture (r = a, θ ∈ (0, θ0) , ϕ ∈ (0, 2π))
for the other magnetic field components:

H
(i)
θ (a, θ, ϕ) = H

(e)
θ (a, θ, ϕ) , (3. 145)

H(i)
ϕ (a, θ, ϕ) = H(e)

ϕ (a, θ, ϕ) . (3. 146)

To these conditions are added the finiteness of the energy integral∫∫∫
V

∣∣∣∇Ψ(i)
∣∣∣2 dV <∞, (3. 147)

which determines the solution class for Fourier coefficients a(i,e)
n and b(i,e)n .

Condition (3.143) implies (for n = 1, 2, 3, ...)

na(i)
n = −δ1n − (n+ 1) a(e)

n , (3. 148)

nb(i)n = −δ1n − (n+ 1) b(e)n . (3. 149)

Enforcing the conditions (3.144)− (3.146) leads to two independent systems
of dual series equations for the internal Fourier coefficients,

∞∑
n=1

2n+ 1
n+ 1

a(i)
n P 1

n (cos θ) = −3
2

sin θ, θ ∈ (0, θ0, ) (3. 150)

∞∑
n=1

na(i)
n P 1

n (cos θ) = 0, θ ∈ (θ0, π) , (3. 151)

and
∞∑

n=1

2n+ 1
n+ 1

b(i)n P 1
n (cos θ) = −3

2
sin θ, θ ∈ (0, θ0) , (3. 152)

∞∑
n=1

nb(i)n P 1
n (cos θ) = 0, θ ∈ (θ0, π) , (3. 153)

The finite energy condition (3.147) requires

∞∑
n=1

n

2n+ 1

∣∣∣a(i)
n

∣∣∣2 <∞,
∞∑

n=1

n2 (n+ 1)
2n+ 1

∣∣∣b(i)n

∣∣∣2 <∞, (3. 154)
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so that
{
a
(i)
n

}∞
n=1

∈ l2 (0) and
{
b
(i)
n

}∞
n=0

∈ l2 (2) .

To solve Equations (3.152) and (3.153), set xn = nb
(i)
n and integrate (3.153)

using Formula (B. 49) (see Appendix) to obtain

∞∑
n=1

2n+ 1
n(n+ 1)

xnP
1
n (cos θ) = −3

2
sin θ, θ ∈ (0, θ0) (3. 155)

∞∑
n=1

xnPn (cos θ) = c1, θ ∈ (θ0, π) (3. 156)

where c1 is the constant of integration. From the Dirichlet-Mehler represen-
tation for Legendre polynomials (1. 149) we readily deduce representations of
the same type for associated Legendre functions:

P 1
n(cos θ) =

2
√

2
π

1
sin θ

n(n+ 1)
2n+ 1

θ∫
0

sin(n+ 1
2 )ϕ sinϕ

√
cosϕ− cos θ

dϕ. (3. 157)

Now, following the well-established procedure described in Section 2.1,
transform (3.155) and (3.156) to the equations

∞∑
n=1

xn sin
(
n+

1
2

)
θ =

{
− sin 3

2θ, θ ∈ (0, θ0)
c1 sin 1

2θ, θ ∈ (θ0, π) . (3. 158)

Exploit orthogonality of the trigonometric functions on (0, π) to obtain, for
m = 1, 2, ...,

xm = −R1m (θ0)− c1R0m (θ0) (3. 159)

and, corresponding to m = 0, an equation for c1,

0 = −R10 (θ0) + [1−R00 (θ0)] c1, (3. 160)

where
Rnm (θ0) = 2Q̂( 1

2 ,− 1
2 )

n−1,m−1 (cos θ0) , (3. 161)

with Q̂(− 1
2 , 1

2 )
nm denoting the usual normalised incomplete scalar product.

Thus, the final analytical form of the solution is

xm = −
{
R1m (θ0) +

R10 (θ0)
1−R00 (θ0)

R0m (θ0)
}
. (3. 162)

From (3. 161), it is evident that xm = O
(
m−1

)
as m → ∞; hence b(i)m =

O(m−2) as m→∞, and the obtained solution does in fact lie in l2 (2) .
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The dual Equations (3.150) and (3.151) for the remaining coefficients a(i)
n

may be solved in various ways. We start by integrating both equations:
∞∑

n=1

2n+ 1
n+ 1

a(i)
n Pn (cos θ) = −3

2
cos θ + c2, θ ∈ (0, θ0) (3. 163)

∞∑
n=1

a
(i)
n

n+ 1
P 1

n (cos θ) = 0, θ ∈ (θ0, π) (3. 164)

where c2 is an integration constant to be determined. In deducing (3.164) we
used the well-known formula (see Appendix, (B. 49) and (B. 58))

Pn+1(x)− Pn−1(x) = − 2n+ 1
n(n+ 1)

√
1− x2P 1

n(x).

Integrate Equation (3.164) again to obtain

∞∑
n=1

a
(i)
n

n+ 1
Pn (cos θ) = c3, θ ∈ (θ0, π) (3. 165)

where c3 is another constant of integration to be determined.
The dual series Equations (3.163) and (3.165) may be solved in various

ways. We use a standard Abel integral transform to convert to equations
with trigonometric kernels:

∞∑
n=1

2n+ 1
n+ 1

a(i)
n cos

(
n+

1
2

)
θ = −3

2
cos

3
2
θ + c2 cos

θ

2
, θ ∈ (0, θ0) (3. 166)

∞∑
n=1

a
(i)
n

n+ 1
sin
(
n+

1
2

)
θ = c3 sin

θ

2
, θ ∈ (θ0, π) . (3. 167)

The dual Equations (3.166) and (3.167) are equivalent to two systems of
functional equations,

∞∑
n=1

2n+ 1
n+ 1

a(i)
n cos

(
n+

1
2

)
θ =

{
− 3

2 cos 3
2θ + c2 cos 1

2θ, θ ∈ (0, θ0)
c3 cos 1

2θ, θ ∈ (θ0, π)
(3. 168)

and
∞∑

n=1

a
(i)
n

n+ 1
sin
(
n+

1
2

)
θ =

{
− 1

2 sin 3
2θ + c2 sin 1

2θ, θ ∈ (0, θ0)
c3 sin 1

2θ, θ ∈ (θ0, π) . (3. 169)

A retrospective justification for the differentiation process in obtaining (3.168)
is needed, but none is needed for (3.169). It is obvious that the solution of
the first equation lies in the required class (l2),

2m+ 1
m+ 1

a(i)
m = −3

2
Q1m (θ0) + c2Q0m (θ0)− c3Q0m (θ0) , m ≥ 1 (3. 170)
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where Qnm (θ0) = Q̂
(− 1

2 , 1
2 )

nm (cos θ0) is the usual normalised incomplete scalar
product.

By considering the product of (3.168) with cos 1
2θ, the constants c2 and c3

are related by

−3
2
Q10 (θ0) + c2Q00 (θ0) = c3 [1−Q00 (θ0)] . (3. 171)

If the constants c2 and c3 are arbitrarily chosen, the solution of Equation
(3.169) does not lie in the required class. The correct solution is found by
requiring the function to be continuous at the point θ = θ0, leading to

−1
2

sin
3
2
θ0 + c2 sin

θ0
2

= c3 sin
θ0
2
. (3. 172)

From (3. 170), (3. 171), and (3. 172) we finally deduce

a(i)
m = −3

2
m+ 1
2m+ 1

{
Q1m (θ0)−

sin 3
2θ0

3 sin 1
2θ0

Q0m (θ0)
}
. (3. 173)

The closed form for the magnetostatic potential Ψ(i) (r, θ, ϕ) is

Ψ(i) (r, θ, ϕ) = −3
2
H0
‖ .a

∞∑
n=1

n+ 1
2n+ 1

Q
(1)
1n (θ0)

( r
a

)n

Pn (cos θ)

−H0
⊥.a cosϕ

∞∑
n=1

1
n
R

(1)
1n (θ0)

( r
a

)n

P 1
n (cos θ) (3. 174)

where

R
(1)
1n (θ0) = R1n (θ0) +

R10 (θ0)
1−R00 (θ0)

R0n (θ0) ,

and

Q
(1)
1n (θ0) = Q1n (θ0)−

sin 3
2θ0

3 sin 1
2θ0

Q0n (θ0) .

A measure of screening effectiveness of the superconducting open spherical
shell is the screening number (recall that α defines the direction of the external
magnetic field),

K = H−1
0 H (0, θ, ϕ) =

(
K2
‖ cos2 α+K2

⊥ sin2 α
) 1

2
, (3. 175)

where H (0, θ, ϕ) is the magnetic field at the centre of the shell, and K‖,K⊥
are screening numbers of the longitudinal and transverse magnetic field, re-
spectively. It is evident that

K‖ = Q
(1)
11 (θ0) , K⊥ = R

(1)
11 (θ0) . (3. 176)
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Figure 3.17
Longitudinal (KL) and transversal (KT ) screening numbers for the
spherically-shaped superconducting shell.

Suppressing rather bulky details, the distribution of the magnetic field,
which penetrates into the screen, when taken along the axis of the screen
(with q = r/a ≤ 1) has components

H
(i)
r

(
q,

{
0
π

}
, ϕ

)
= ±H‖L (±q, θ0) ,

H
(i)
θ

(
q,

{
0
π

}
, ϕ

)
= ∓H⊥R (±q, θ0) cosϕ,

H
(i)
ϕ

(
q,

{
0
π

}
, ϕ

)
= H⊥R (±q, θ0) sinϕ,

(3. 177)
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where

2πt2R (t, θ0)

= − t
2

sin 2θ0 − t−1 arctan
[

t sin θ0
1− t cos θ0

]
+ (1− t)3

sin θ0
1− 2t cos θ0 + t2

+ 2t2 arctan
[

sin θ0
t− cos θ0

]
+

R10 (θ0)
1−R00 (θ0)

t

{
πR00 (θ0) +

(1− t) sin θ0
1− 2t cos θ0 + t2

+ arctan
[

sin θ0
t− cos θ0

]}
,

and

2π
3
t2L (t, θ0)

= − 2
3t

arctan
[

t sin θ0
1− t cos θ0

]
+

(
1 + t3

)
sin θ0

2 (1− 2t cos θ0 + t2)
+

1 + t

6
sin θ0

+
2
3
t2 arctan

[
sin θ0

cos θ0 − t

]
−

sin 3
2θ0

3 sin 1
2θ0

t (1 + t)
2

sin θ0
1− 2t cos θ0 + t2

.

It follows from the last formula that L(−1, θ0) = 0; this implies that
Hr (1, π, ϕ) = 0, i.e., the boundary condition (3.144) holds at this point.

Some calculations using the Formula (3.176) are shown in Figure 3.17.
These show that the transverse magnetic field is less well shielded compared
with the longitudinal magnetic field. For instance, the shielding numbers of
a cavity with θ0 = 5◦ have ratio K⊥/K‖ v 103 (note the vertical scale is in
decibels).
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Chapter 4

Electrostatic Potential Theory for
Open Spheroidal Shells

After spherical geometry, spheroidal geometry provides the simplest setting
for three-dimensional potential theory. This chapter considers the potential
surrounding various open spheroidal shell structures. It presents a significant
extension and generalisation of the spherical shell studies because various
combinations of cavity size and aspect ratio of the shell produce extremely
interesting structures for physical and engineering applications; the hollow
cylinder is one example.

As the ratio between the minor and major axes increases, a closed spheroidal
surface takes widely differing shapes ranging from the disk through the oblate
spheroid, to the sphere, through the prolate spheroid, to the limiting form of
a thin cylinder of finite length or of a needle-shaped structure.

Whilst cutting slots in the spheroidal shell expands the possibilities of mod-
elling of real physical objects, it increases the analytical complexity of the
corresponding boundary-value problem. This accounts for the fact that, un-
til now, only the simplest problems for conductors described in spheroidal
coordinates have been analysed in detail, namely closed spheroids (see, for
example, [26]) and spheroidal caps [12].

Nevertheless, significant progress can be made for axially symmetric struc-
tures in this setting. The Laplace operator separates in this coordinate system,
so that dual or triple series equations can be constructed by enforcement of
mixed boundary conditions on the conducting surface or the aperture as ap-
propriate. As explained in Chapter 1, these equations are equivalent to (and
can be reformulated as) a certain first-kind Fredholm integral equation. The
original first-kind equations may be transformed to a Fredholm second-kind
infinite matrix equation by the method of regularisation. As we have already
seen, the regularised system of equations possesses many desirable features
including rapid convergence of the solution, obtained by truncation methods,
to the exact one, and guaranteed accuracy of computations.

As for the open spherical shell studies, we will consider spheroidal shells in
which one or two apertures are introduced in an axisymmetric fashion. Prolate
and oblate spheroids with such apertures will be discussed. After an intro-
ductory formulation (Section 4.1) of mixed boundary value problems in the
spheroidal coordinate systems, we first examine the thin, perfectly conduct-
ing, prolate spheroidal shell with one circular hole (Section 4.2). The prolate
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spheroidal shell in which a longitudinal slot is introduced to produce a pair
of equally sized spheroidal caps is then considered (Section 4.3). When the
caps are oppositely charged, we may calculate the capacitance of the resulting
condensor. The complementary structure, a prolate spheroidal shell with two
symmetrically disposed circular holes, or spheroidal barrel is discussed in the
following section (4.4); the hollow right circular cylinder may be viewed as a
limiting case.

The next two sections examine the analogous structures for oblate spheroi-
dal shells with two apertures: the oblate shell with a longitudinal slot, which
produces a pair of equally sized spheroidal caps (Section 4.5), and the oblate
spheroidal barrel (Section 4.6). In the final section, the capacitance of the var-
ious shells (when positively charged) and condensors (comprising oppositely
charged components) are examined as a function of aspect ratio and aperture
size.

In contrast to closed structures, there have been relatively few analytical
studies of the electrostatic potential distribution surrounding three dimen-
sional open structures with cavities and edges. Viewed as an example of a
three-dimensional finite open conductor with a cavity, these canonical prob-
lems and their solutions can be used for the development and testing of ap-
proximate methods of general applicability in potential calculations.

4.1 Formulation of mixed boundary value problems in
spheroidal geometry

As stated in the Introduction, we consider infinitely thin, perfectly con-
ducting, open axisymmetric spheroidal shells (see Figure 4.1) charged to some
electrostatic potential U. We shall use prolate and oblate spheroidal coordi-
nates in the trigonometric coordinate form (α, β, ϕ) described in Sections 1.1.4
and 1.1.5. In both coordinate systems, the surface of each shell S0 lies on a
coordinate surface α = const = α0 (which is a spheroid), whilst the interval
of β defining S0 depends on the particular structure. Thus, S0 is defined by

α = α0, ϕ ∈ [0, 2π] , and β ∈ I,

where I is a subinterval, or several disjoint subintervals of [0, π]; the comple-
mentary interval I ′ = [0, π] \I allows us to define the aperture or slot S1 in
the spheroidal surface by

α = α0, ϕ ∈ [0, 2π] , and β ∈ I ′.

Our aim is to construct the solution for electrostatic field potential distribu-
tion U(α, β, ϕ) near the charged open shell S0 when the potential is specified
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Figure 4.1
Spheroidal shell geometry: prolate and oblate

in the form U(α0, β, ϕ) = f(β, ϕ) (for β ∈ I) on the surface of the shell; we
shall also calculate its associated capacitance and surface charge distribution.

This boundary value problem of potential theory for spheroidal conductors
may be formulated as described in Section 1.3. Thus, we seek an electrostatic
potential U(α, β, ϕ) that is harmonic in R3,

∆U(α, β, ϕ) = 0, (4. 1)

which satisfies the Dirichlet boundary condition on the surface of the conduc-
tor S0,

U(α0 − 0, β, ϕ) = U(α0 + 0, β, ϕ) = f(β, ϕ) for β ∈ I, ϕ ∈ [0, 2π] , (4. 2)

which has a normal derivative that is continuous across the slot S1,

d

dα
U(α, β, ϕ)|α=α0+0

α=α0−0 = 0 for β ∈ I ′, ϕ ∈ [0, 2π] , (4. 3)
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and which vanishes at infinity according to

U(α, β, ϕ) = O(r−1) = O(e−α) as α→∞. (4. 4)

Finally, the potential U must have bounded electrostatic energy in any finite
volume of space including the edges of the conductor:

W =
1
2

∫∫∫
V

|gradU |2 dV <∞. (4. 5)

As noted in Section 1.3, any solution that satisfies all these conditions is nec-
essarily unique and provides the physically relevant solution to this problem.

In spheroidal coordinates, the method of separation of variables for La-
place’s equation leads to partial solutions of the form (1. 31) or (1. 35) in
prolate or oblate coordinates, respectively.

We confine attention to axisymmetric potential distributions (so ∂
∂ϕU = 0).

Thus, the separation constant m of (1. 72) or (1. 74) is 0; furthermore the
boundedness of the potential U(α, β) = U(α, β, φ) requires that the separation
constant n be zero or a positive integer n = 0, 1, 2, ....

Thus, the solution that satisfies Laplace’s equation, the continuity condi-
tions on the boundary α = α0 between the interior and exterior regions, and
the decay condition at infinity, takes the following form in prolate spheroidal
coordinates,

U(α, β) =
∞∑

n=0

C(p)
n Pn(cosβ)

{
Pn(coshα), 0 ≤ α ≤ α0,
Qn(coshα)Pn(coshα0)/Qn(coshα0), α > α0,

(4. 6)

whilst in oblate spheroidal coordinates it takes the form

U(α, β) =
∞∑

n=0

C(o)
n Pn(cosβ)

{
pn(i sinhα), 0 ≤ α ≤ α0,
qn(i sinhα)pn(i sinhα0)/qn(i sinhα0), α > α0.

(4. 7)

Here, Pn(z), Qn(z) (z ≥ 1) are the Legendre functions of the first and second
kind, respectively, Pn(cosβ) is a Legendre polynomial (with trigonometrical
argument) and

pn(z) = i−nPn(z), qn(z) = in+1Qn(z).

The unknown (Fourier) coefficients
{
C

(p)
n

}∞
n=0

and
{
C

(o)
n

}∞
n=0

are to be found.

Selecting the volume for integration V in (4. 5) as the internal region of
the spheroid (α ≤ α0), the prolate geometry coefficients must satisfy

W = π
d

2
sinhα0

∞∑
n=0

1
2n+ 1

∣∣∣C(p)
n

∣∣∣2 d

dα
[Pn(coshα)]2 |α=α0 <∞, (4. 8)
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whereas the oblate geometry coefficients must satisfy

W = π
d

2
coshα0

∞∑
n=0

1
2n+ 1

∣∣∣C(o)
n

∣∣∣2 d

dα
[pn(i sinhα)]2 |α=α0 <∞. (4. 9)

Taking into account the asymptotic behaviour of Legendre functions as
n→∞ (see Appendix, (B. 72) and (B. 73)), it follows from (4. 8) and (4. 9)
that the rescaled coefficients

A(p)
n = C(p)

n Pn(coshα0), A(o)
n = C(o)

n pn(i sinhα0) (4. 10)

belong to the functional space of square summable sequences l2:{
A(p)

n

}∞
n=0

,
{
A(o)

n

}∞
n=0

∈ l2. (4. 11)

Thus, solutions to the potential problem will be sought in the following
form for prolate spheroidal coordinates,

U(α, β) =
∞∑

n=0

A(p)
n Pn(cosβ)

{
Pn(coshα)/Pn(coshα0), α ≤ α0

Qn(coshα)/Qn(coshα0), α > α0

}
(4. 12)

and for oblate spheroidal coordinates in the form

U(α, β) =
∞∑

n=0

A(o)
n Pn(cosβ)

{
pn(i sinhα)/pn(i sinhα0), α ≤ α0

qn(i sinhα)/qn(i sinhα0), α > α0

}
. (4. 13)

Once the coefficients A(p)
n and A

(o)
n are found, the electrostatic field po-

tential U(α, β) is fully determined at any point of the space. Recall that
axisymmetric problems are considered. The rigorous solution to be developed
in the following sections makes it possible to analyse in detail the potential
and electrostatic field near the conductor’s edges.

The surface charge density σ accumulated on the conductor surface (α =
α0, β ∈ I) is defined by the jump in the normal component Eα of the electric
field across the surface (cf. Equation (1. 2)),

σ(β) =
1
4π
{Eα(α0 + 0, β)− Eα(α0 − 0, β)} . (4. 14)

The normal component of the electric field
−→
E = − gradU is

Eα(α, β)|α=α0 = h−1
α

d

dα
U(α, β)|α=α0

(where hα is the metric coefficient), so using (4. 12), (4. 13), and metric
coefficients in spheroidal coordinates (see Section 1.1.4), the expression for σ
in the prolate spheroidal system is

σ(β) =
1
4π

1
d
2

√
sinh2 α0 + sin2 β

∞∑
n=0

Λn(α0)A(p)
n Pn(cosβ), (4. 15)
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where

Λn (α0) =
[
sinhα0

(
Q′n(coshα0)
Qn(coshα0)

− P ′n(coshα0)
Pn(coshα0)

)]−1

. (4. 16)

Employing the value of the Wronskian (B. 69)

W (Pn, Qn)(z) = P ′n(z)Qn(z)− Pn(z)Q′n(z) =
(
1− z2

)−1
,

we may simplify

Λn (α0) = [sinhα0Pn(coshα0)Qn(coshα0)]
−1
. (4. 17)

In the oblate spheroidal system, the charge density is

σ(β) =
1
4π

1
d
2

√
cosh2 α0 − sin2 β

∞∑
n=0

λn(α0)A(o)
n Pn(cosβ), (4. 18)

where the factor

λn(α0) = {coshα0qn(i sinhα0)pn(i sinhα0)}−1 (4. 19)

arises from employing the value of the Wronskian of the pair pn, qn. It is worth
noting that the surface charge density expressions (4. 15) and (4. 18) vanish
for the range of β corresponding to the aperture surface.

The total charge Q on each isolated component of the conducting surface
is obtained by integration of surface charge density σ over the component
surface.

In considering particular problems, we will suppress the subscripts (p) and
(o) on An when the context is unambiguous. In all calculations presented
below, the semi-axial distance b is taken to be unity; thus, if the ratio a/b is
specified, the interfocal distance d may be determined.

4.2 The prolate spheroidal conductor with one hole

Let us consider a prolate spheroidal shell S0 with one circular hole deter-
mined by an angle β0 so that S0 is defined by

α = α0, 0 ≤ β ≤ β0, and φ ∈ [0, 2π] .

When charged to unit potential, enforcement of the mixed boundary condi-
tions upon Equations (4. 12) determining the potential on the spheroidal shell
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produces the dual series equations
∞∑

n=0

AnPn(cosβ) = 1, β ∈ [0, β0], (4. 20)

∞∑
n=0

AnΛn (α0)Pn(cosβ) = 0, β ∈ (β0, π]. (4. 21)

Equation (4. 20) describes the potential on S0, whereas (4. 21) follows from
the continuity of the normal derivative on the slot S1 and

Λn (α0) =
[
sinhα0

(
Q′n(coshα0)
Qn(coshα0)

− P ′n(coshα0)
Pn(coshα0)

)]−1

. (4. 22)

As noted in Section 4.1, this simplifies to

Λn (α0) = [sinhα0Pn(coshα0)Qn(coshα0)]
−1
. (4. 23)

Let us introduce the parameter

εn = 1− (2n+ 1) sinhα0Pn(coshα0)Qn(coshα0). (4. 24)

The asymptotics of the Legendre functions (see (B. 70) and (B. 71)) show
that εn is asymptotically small (as n→∞)

εn = O(n−2) as n→∞.

Define the new coefficients

xn =
Λn (α0)An

(2n+ 1)
=

An

1− εn
, (4. 25)

so that {xn}∞n=0 ∈ l2. The system (4. 20), (4. 21) is thus converted to the
standard form:

∞∑
n=0

xn(1− εn)Pn(cosβ) = 1, β ∈ [0, β0], (4. 26)

∞∑
n=0

(2n+ 1)xnPn(cosβ) = 0, β ∈ [β0, π]. (4. 27)

This set of dual series equations has already been considered in Chapter 1;
it is a special case of the general set considered in Section 2.1 with α = β = 0,
m = 0, rn = εn, qn = 0, η = 1

2 . For these specific parameters, the Abel
integral transform method essentially employs the Mehler-Dirichlet integrals,
and the following pair of equations is obtained:

∞∑
n=0

xn(1− εn) cos(n+
1
2
)β = cos

β

2
, β ∈ [0, β0], (4. 28)

∞∑
n=0

xn cos(n+
1
2
)β = 0, β ∈ [β0, π]. (4. 29)
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We may rewrite (4. 28) and (4. 29) as a Fourier series expression for a
single function F that is piecewise defined on two subintervals of [0, π],

F (β) =
∞∑

n=0

xn cos(n+
1
2
)β =

{
F1(β) β ∈ [0, β0]
0, β ∈ [β0, π]

}
, (4. 30)

where

F1(β) = cos
1
2
β +

∞∑
n=0

xnεn cos(n+
1
2
)β.

A standard argument utilising completeness and orthogonality properties of
the trigonometric functions produces a second-kind system of linear algebraic
equations for the coefficients {xn}∞n=0,

xs −
∞∑

n=0

xnεnQns(β0) = Q0s(β0), (4. 31)

where s = 0, 1, 2, ..., and Qns(β0) ≡ Q̂
(− 1

2 , 1
2 )

ns (cosβ0) is the usual normalised
incomplete scalar product.

The system (4. 31) has the form

(I −H)x = b

where H is a completely continuous operator on l2; the norm of H may be
bounded uniformly with respect to β0 by

‖H‖ ≤ max
n
|εn| = ε0 = |1− sinhα0Q0(coshα0)| . (4. 32)

Considering that

Q0(coshα0) =
1
2

log
[
coshα0 + 1
coshα0 − 1

]
>

1
coshα0

, (4. 33)

the norm is bounded by

N ≤ 1− tanhα0 < 1. (4. 34)

One or two iterations of the method of successive approximations provide
an approximate analytical solution that is more accurate when α0 is larger,
i.e., the spheroid is closer in form to the sphere. When the eccentricity e
is small (e � 1, α0 → ∞) it is possible to show, using the hypergeometric
representations of Pn, Qn (see Appendix, (B. 70) and (B. 71)), that

εn = − e2

2(2n− 1)(2n+ 3)
+O(e4), (4. 35)
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as n→∞. Accepting (4. 35), the solution to (4. 31) obtained by the method
of successive approximations is

xs = Q0s(β0)−
e2

8
Q0s(β0)

(s− 1
2 )(s+ 3

2 )
−

1
2π

e2

8

(
2 sin

β0

2
+

2
3

sin
3
2
β0

)[
cos(s− 1

2 )β0

s− 1
2

−
cos(s+ 3

2 )β0

s+ 3
2

]
+O(e4). (4. 36)

The corresponding approximation for the capacity C = bx0 of the open
charged spheroidal conductor is

C =
b

π
(β0 + sinβ0) +

be2

24π

(
4β0 + sinβ0 − 2 sin 2β0 −

1
3

sin 3β0

)
+O(e4).

(4. 37)
The expression (4. 37) coincides with the result [12] obtained by a different
method. It agrees with the capacitance of a spherical shell when e = 0.

If the value of the eccentricity e is unrestricted, the solution to (4. 31) is
found by truncation to a finite system of linear algebraic equations that can
be efficiently solved numerically. From a methodological point of view, it is
worth demonstrating how to accelerate the convergence of the solution of the
truncated system to the exact solution. The convergence rate depends upon
the behaviour of the parameter εn. A more precise statement of its asymptotic
behaviour is

εn = −δ2
(
n+

1
2

)−2

+O(n−4), as n→∞, (4. 38)

where δ2 = (8 sinhα0)
−1
. With the aim of modifying the System (4. 31), we

introduce the new parameter

ε∗n = εn + δ2(n+
1
2
)−2, (4. 39)

so that ε∗n = O(n−4) as n → ∞. The transformation to be obtained is mo-
tivated by the observation that, if one neglects ε∗n, the resulting dual series
equations can be solved exactly. As explained in Section 2.1, the dual equa-
tions are then equivalent to a certain ordinary differential equation.

Let

g(β) =
∞∑

n=0

xn(n+
1
2
)−2 cos(n+

1
2
)β, (4. 40)

and

f(β) = − cos
β

2
−

∞∑
n=0

xnε
∗
n cos(n+

1
2
)β. (4. 41)
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From Equation (4. 28) we deduce the second order differential equation

g′′(β)− δ2g(β) = f(β), β ∈ [0, β0] . (4. 42)

Solving this equation (with g(0) = A, g′(0) = 0) produces the following ex-
pression for g :

g(β) = A cosh(δβ)−
cosh(δβ)− cos β

2

δ2 + 1
4

−
∞∑

n=0

xnε
∗
n

cosh(δβ)− cos(n+ 1
2 )β

δ2 + (n+ 1
2 )2

,

(4. 43)
where

A =
∞∑

n=0

xn

(n+ 1
2 )2

. (4. 44)

With the aid of these transformations, we may rewrite (4. 28) and (4. 29)
in the final form

xm −
∞∑

n=0

xnε
∗
nSnm(β0, δ) = S0m(β0, δ), (4. 45)

where m = 0, 1, 2, ..., and

Snm(β0, δ) =
{
Qnm(β0) +

τn(β0)
γ(β0, δ)

δ2Vm(β0)
}

(n+ 1
2 )2

(n+ 1
2 )2 + δ2

,

τn(β0) =
1

(n+ 1
2 )2

{
cos(n+

1
2
)β0 − (π − β0)(n+

1
2
) sin(n+

1
2
)β0

}
,

γ(β0, δ) = cosh(δβ0) + (π − β0)δ sinh(δβ0),

and

Vm(β0) =
2
π

1
(m+ 1

2 )2 + δ2
δ cos(m+

1
2
)β0 sinh(δβ0)+

2
π

1
(m+ 1

2 )2 + δ2
(m+

1
2
) sin(m+

1
2
)β0 cosh(δβ0).

The truncation of the System (4. 45) is much more rapidly convergent
than the truncation of the System (4. 31) because ε∗n decays more rapidly
to zero than does εn. By determining the asymptotic behaviour of ε∗n, to
O(n−6) terms, this procedure may be repeated to obtain another system with
a further accelerated convergence rate; however, the complicated form of the
system coefficients hardly warrants the effort since satisfactory solutions can
be derived from the systems already obtained.

We have computed the electrostatic field distribution surrounding infinitely
thin prolate spheroidal conductors charged to unit potential by solving the
system (4. 31) numerically (taking into account (4. 6) and (4. 25)). An
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Figure 4.2
Electrostatic potential near a prolate spheroidal cap, charged to unit
potential, with parameters a/b = 0.2, β0 = 1300. Truncation number
Ntr = 11.

example is shown in Figure 4.2; the ratio of minor to major axes, a/b =
sinhα0/ coshα0 = 0.2, and the angular size β0 of the aperture equals to 130o.
The truncation number Ntr was chosen to be 11.

Computationally, the system (4. 31) is very attractive. The solution of
the truncated system converges to the exact solution (the solution of the
infinite system) as Ntr → ∞. The accuracy of calculations under truncation
is illustrated in Figure 4.3, where normalised error is plotted as a function of
truncation number. The error is estimated in the maximum norm sense as

e (Ntr) =
maxn≤Ntr

∣∣xNtr+1
n − xNtr

n

∣∣
maxn≤Ntr

∣∣∣xNtr
n

∣∣∣ ,

where
{
xNtr

n

}Ntr

n=0
denotes the solution to (4. 31) truncated to Ntr equations.

A study of truncated solution accuracy confirms that, in practice, for a wide
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Figure 4.3
Normalised error e(Ntr) as a function of truncation number Ntr for
the prolate spheroidal cap: (top) with aspect ratio a/b = 0.5 and
varying β0; and (bottom) with β0 = 130o and varying aspect ratio
a/b.

range of geometrical parameters describing the conductor, the truncated coef-
ficient set {xn}Ntr

n=0 may be obtained correctly to three digits, provided Ntr is
approximately equal to 10. This accuracy is satisfactory for most calculations
concerning the potential.

A correspondingly accurate calculation of the surface charge distribution
requires more terms than for the potential, as is evident by comparing Equa-
tions (4. 12) and (4. 15), and taking into account the asymptotics (4. 24) of
the small parameter εn. Since the series is much less rapidly convergent than
that for the potential, techniques to accelerate the convergence of the series are
useful. An example of the surface charge distribution is shown in Figure 4.4
for the shell with ratio of minor to major axes, a/b = sinhα0/ coshα0 = 0.5,
and the angular size of the aperture β0 = 60◦. The truncation number Ntr

was chosen to be 60, and the values were computed by a simple summation
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Figure 4.4
Surface charge density σ of a prolate spheroidal cap, charged to unit
potential, with parameters a/b = 0.5, β0 = 60o. Truncation number
Ntr = 60. The density was computed by simple summation of the
Fourier series.

of the truncated Fourier series, so that a continuous approximation to the
surface charge is obtained. The oscillatory results are a manifestation of the
familiar Gibbs’ phenomenon; the surface charge should be zero outside the
interval [−β0, β0]. If Cesàro summation is applied (see [9]), the oscillations
are much suppressed, and one obtains the results of Figure 4.5. Except in
the immediate vicinity of the edge a satisfactory representation of the surface
charge is obtained.

It is possible to improve the situation by estimating the leading order of the
coefficients in the infinite system and exploiting a known infinite sum which
represents the discontinuity exactly. In terms of the coefficients xn defined in
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Figure 4.5
Surface charge density σ of a prolate spheroidal cap, charged to unit
potential, with parameters a/b = 0.5, β0 = 60o. Truncation number
Ntr = 60. The density was computed by Cesàro summation of the
Fourier series.

(4. 25), the surface charge is

σ =
1
4π

1
d
2

√
sinh2 α0 + sin2 β

∞∑
n=0

(2n+ 1)xnPn(cosβ), (4. 46)

where the coefficients xn satisfy the System (4. 31); in accordance with (4.
27), σ vanishes when β ∈ [β0, π]. Upon writing

Qsn (β0) =
2
π

cos
(
s+ 1

2

)
β0 sin

(
n+ 1

2

)
β0

n+ 1
2

+
2
π

s+ 1
2

n+ 1
2

Rsn (β0) , (4. 47)

where

Rsn (β0) =
1
π

[
sin (s− n)β0

s− n
− sin (s+ n+ 1)β0

s+ n+ 1

]
,
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Figure 4.6
Surface charge density σ of a prolate spheroidal cap, charged to unit
potential, with parameters a/b = 0.5, β0 = 60o. Truncation number
Ntr = 11. The density was computed from Formula (4. 53).

it is obvious that

Qsn (β0) =
2
π

cos
(
s+ 1

2

)
β0 sin

(
n+ 1

2

)
β0

n+ 1
2

+O
(
n−2

)
(4. 48)

as n→∞.
Consider the system derived from (4. 31) by replacing Qsn (β0) with the

leading term in (4. 48), i.e., neglecting the O
(
n−2

)
term:

x̃n =
∞∑

s=0

x̃sεs
2
π

cos
(
s+ 1

2

)
β0 sin

(
n+ 1

2

)
β0

n+ 1
2

+
2
π

cos 1
2β0 sin

(
n+ 1

2

)
β0

n+ 1
2

,

(4. 49)
where n = 0, 1, 2, . . .. Its solution provides an asymptotic estimate for xn as
n→∞; it may be established that

xn − x̃n = O
(
n−2

)
.
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The special form of this asymptotic system allows us to determine its solution
explicitly:

x̃n =
2
π

sin
(
n+ 1

2

)
β0

n+ 1
2

D (α0, β0) (4. 50)

where

D (α0, β0) = cos
1
2
β0 +

∞∑
s=0

x̃sεs cos
(
s+

1
2

)
β0 (4. 51)

is determined by the substitution of (4. 50) in (4. 51).
Rearrange the summation in (4. 46) as

∞∑
n=0

(2n+ 1)xnPn(cosβ0) =

∞∑
n=0

(2n+ 1) x̃nPn(cosβ0) +
∞∑

n=0

(2n+ 1) (xn − x̃n)Pn(cosβ0). (4. 52)

The first term on the right-hand side is

∞∑
n=0

(2n+ 1) x̃nPn(cosβ0) =
4
π
D (α0, β0)

∞∑
n=0

Pn(cosβ0) sin
(
n+

1
2

)
β0

and may be evaluated from the well-known discontinuous series

∞∑
n=0

Pn(cosβ0) sin
(
n+

1
2

)
β0 =

H (β0 − β)√
2 (cosβ − cosβ0)

derived from the Dirichlet-Mehler Formula (1. 124). (H denotes the Heaviside
function defined in Appendix A.) Thus the surface charge equals

σ =
1
4π

1
d
2

√
sinh2 α0 + sin2 β

×{
2
√

2
π

D (α0, β0)√
cosβ − cosβ0

H (β0 − β) +
∞∑

n=0

(2n+ 1) (xn − x̃n)Pn(cosβ)

}
(4. 53)

A calculation of the surface charge density using (4. 53) is shown in Figure
4.6, using the coefficients {xn}Ntr

n=0 obtained by solving the system (4. 31)
by the truncation method with a truncation number Ntr equal to 11. Two
features are apparent. The current singularity at the edges is accurately
represented; and the summation in (4. 53) has converged well. A sensitive
test of the accuracy of this result with 11 terms is the magnitude of the
calculated surface charge away from the conductor surface where the true
surface charge vanishes. The maximum error (or deviation from zero) in
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this region is less than 0.5% of the value at the top of the cap. There is
no visible improvement to the graphical results as Ntr is increased. Thus
subtraction of an asymptotically correct estimate of the solution to the System
(4. 31) provides a much more rapidly convergent series than the first estimate
obtained simply by truncation; this observation also remains true if the first
estimate is replaced by an estimate obtained by Cesàro summation.

4.3 The prolate spheroidal conductor with a longitudinal
slot

In this section we consider a prolate spheroidal surface in which a longitu-
dinal slot has been cut, to produce two spheroidal caps of equal size; they are
specified by

α = α0, β ∈ (0, β0) ∪ (π − β0, π) , φ ∈ (0, 2π) .

The geometry is shown in Figure 4.1b. Assume that these two segments are
charged to constant potentials U1 and U2, respectively.

Enforcement on (4. 13) of the boundary conditions

U(α0 − 0, β) = U(α0 + 0, β) = U1, for β ∈ [0, β0] , (4. 54)

U(α0 − 0, β) = U(α0 + 0, β) = U2, for β ∈ [π − β0, π] , (4. 55)

and of the continuity of the normal derivative of the potential on the slot,

d

dα
U(α, β)|α=α0+0

α=α0−0 = 0, for β ∈ (β0, π − β0) , (4. 56)

leads to the following symmetric triple series equations with Legendre poly-
nomial kernels,

∞∑
n=0

AnPn(t) = U1, t ∈ (t0, 1],

∞∑
n=0

Λn (α0)AnPn(t) = 0, t ∈ (−t0, t0), (4. 57)

∞∑
n=0

AnPn(t) = U2, t ∈ [−1,−t0),

where t = cosβ, t0 = cosβ0. The system (4. 57) is particular case of the
equations of Type A described in Section 2.4.1 (Legendre polynomials are
Jacobi polynomials P (α,α)

n with α = 0), so the method described may be
exploited to solve (4. 57).
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We now consider two particular cases, U1 = U2 = 1 and U1 = −U2 = 1.
Obviously, cases with any other constant values of the potentials U1 and U2

can be deduced from these solutions. From a practical point of view, when
U1 = U2, the two parts of the prolate spheroidal conductor with a longitudinal
slot must to connected by a thin wire in order to allow charging to equal
potential; however, we may assume that this wire is so thin that the influence
of its electric field can be neglected. When U1 = −U2 this structure models a
condensor or capacitor with plates in the form of spheroidal caps.

The symmetry property of Legendre polynomials,

Pn(−t) = (−1)nPn(t),

may be applied to establish two decoupled systems of dual series equations
for the even (l = 0) and odd (l = 1) index coefficients, respectively, defined
on [−1, 0]:

∞∑
n=0

A2n+lP2n+l(t) = (−1)l, t ∈ [−1,−t0),

∞∑
n=0

Λ2n+l (α0)A2n+lP2n+l(t) = 0, t ∈ (−t0, 0). (4. 58)

The relation (2. 131) connects Jacobi polynomials and Legendre polynomi-
als,

P2n+l(t) = tlP
(0,l− 1

2 )
n (2t2 − 1),

so setting u = 2t2 − 1, u0 = 2t20 − 1 we may transform (4. 58) to dual series
equations defined over the complete range [−1, 1] of the new variable :

∞∑
n=0

Λ2n+l (α0)A2n+lP
(0,l− 1

2 )
n (u) = 0, u ∈ (−1, u0), (4. 59)

∞∑
n=0

A2n+lP
(0,l− 1

2 )
n (u) = (−1)l

(
1 + u

2

)− l
2

, u ∈ (u0, 1). (4. 60)

The dual series Equations (4. 59) and (4. 60) were considered in Section 2.1.
Omitting some details let us illustrate the main stages of the argument in this
particular case. The Abel integral representations for the Jacobi polynomials
(1. 171)–(1. 174) are∫ u

−1

(1 + t)l− 1
2P

(0,l− 1
2 )

n (t)dt =
Γ(n+ l + 1

2 )
√
πΓ(n+ l + 1)

∫ u

−1

(1 + x)lP
(− 1

2 ,l)
n (x)dx

(u− x)
1
2

(4. 61)
and

P
(0,l− 1

2 )
n (u) =

Γ(n+ 1)
√
πΓ(n+ 1

2 )

∫ 1

u

(1− x)−
1
2P

(− 1
2 ,l)

n (x)dx
(x− u)

1
2

. (4. 62)
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The functional equations are then converted to the following form:

∞∑
n=0

Λ2n+l (α0)A2n+l

Γ(n+ l + 1
2 )

Γ(n+ l + 1)
P

(− 1
2 ,l)

n (u) = 0, u ∈ (−1, u0), (4. 63)

∞∑
n=0

A2n+l
Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 ,l)

n (u) =
(−1)l

√
π

(
1 + u

2

)−l

, u ∈ (u0, 1). (4. 64)

A suitable small parameter may now be identified in the Equation (4. 63)
as

ε2n+l = 1− Λ2n+l (α0)
4

Γ(n+ 1
2 )Γ(n+ l + 1

2 )
Γ(n+ 1)Γ(n+ l + 1)

. (4. 65)

It is asymptotically small: ε2n+l = O(n−2) as n → ∞. The unknowns are
rescaled according to

x2n+l = A2n+l
Γ(n+ 1)
Γ(n+ 1

2 )

{
h

(− 1
2 ,l)

n

} 1
2
, (4. 66)

where
{
h

(− 1
2 ,l)

n

} 1
2

is the norm of the Jacobi polynomials; thus {x2n+l}∞n=0 ∈
l2.

Equations (4. 63) and (4. 64) may now be written in the form

F (u) =
∞∑

n=0

x2n+lP̂
(− 1

2 ,l)
n (u) =

{
F1(u), u ∈ (−1, u0)
F2(u), u ∈ (u0, 1)

}
, (4. 67)

where

F1(u) =
∞∑

n=0

x2n+lε2n+lP̂
(− 1

2 ,l)
n (u),

F2(u) = (−1)lπ−
1
2 2l (1 + u)−l

.

Exploiting orthogonality of the normalized Jacobi polynomials P̂ (− 1
2 ,l)

n leads,
as usual, to the second-kind infinite system of linear algebraic equations for
the unknowns {x2n+l}∞n=0,

(1− ε2m+l)x2m+l +
∞∑

n=0

x2n+lε2n+lQ̂
(− 1

2 ,l)
nm (u0)

=

{
2

3
4π−

1
2 Q̂

(− 1
2 ,0)

0m (u0), if l = 0

−2π−
1
2
{
(m+ 1)(m+ 1

2 )
}− 1

2
√

1− u0P̂
( 1
2 ,0)

m (u0), if l = 1
(4. 68)

where m = 0, 1, 2, . . ., and Q̂
(− 1

2 ,l)
nm (u0) is the incomplete scalar product of

normalised Jacobi polynomials.
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Figure 4.7
Electrostatic potential near a slotted prolate spheroidal shell, both
components charged to unit potential. The geometrical parameters
are a/b = 0.5, β0 = 60o. Truncation number Ntr = 11.

Because the matrix operator of the system (4. 68) is a completely continu-
ous perturbation of the identity, the sequence {x2n+l}∞n=0 is rapidly convergent
and the truncation method is very efficient in solving this system numerically.
The behaviour of the normalised error as a function of truncation number
is very similar to that considered in the previous section (see Figures 4.3);
typically, Ntr = 10 equations suffice to produce coefficient solutions with 3
correct digits for a wide range of aspect ratios (independent of aperture size).
As an illustration of the numerical process, the distribution of electrostatic
field potential near the spheroidal conductor with a longitudinal slot charged
to unit potential (U1 = U2 = 1, l = 0 in (4. 68)) is shown in Figure 4.7; the
ratio of minor to major axes, a/b = sinhα0/ coshα0 = 0.5 and the angular
size of each cap is β0 = 60◦; and the system truncation number Ntr was taken
to be 11.

The potential near the spheroidal condensor in which the upper and lower
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Figure 4.8
Electrostatic potential near the prolate spheroidal condenser, the
plates charged to unit positive and negative potential. The geomet-
rical parameters are a/b = 0.5, β0 = 60o. Truncation number Ntr = 11.

plates are charged to potentials U1 = 1 and U2 = −1 (so l = 1 in (4. 68)) is
displayed in Figure 4.8; the geometrical parameters are a/b = 0.5, β0 = 60◦,
and a truncation number Ntr = 11 was used.

When β0 = π
2 (u0 = −1) the aperture in the conductor closes, becoming a

closed spheroidal shell charged to unit potential (l = 0), the system (4. 68)
has the explicit solution

x2m = (−1)m 2
3
4

√
π
Q̂

(− 1
2 ,0)

0m (−1) = 0 (m > 0), x0 =
2

3
4

√
π
, (4. 69)

from which follows the representation of the electrostatic potential in closed
form:

U(α, β) =
Q0(coshα)
Q0(coshα0)

for α ≥ α0, β ∈ [0, π] . (4. 70)

It is readily verified that this is indeed the correct potential.
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Let us consider the transition from spheroid to sphere of radius a. Spheroi-
dal coordinates (α, β, ϕ) degenerate to spherical coordinates (r, θ, ϕsp) if the
identifications

θ = β, ϕsp ≡ ϕ, r =
1
2
d

2
eα, a =

1
2
d

2
eα0

are made in such a way that as d
2 → 0, α → ∞, and α0 → ∞, the products

remain finite. It may be checked that the solution reduces to that for the
spherical conductor (analysed in Section 3.2). In fact, the limits

lim
α0→∞

sinhα0Q2n+l(coshα0)P2n+l(coshα0) = (4n+ 2l + 1)−1,

lim
α0→∞

sinhα0Q0(coshα0) = 1, (4. 71)

are valid (see Appendix, (B. 70) and (B. 71)), so a comparison of (4. 68) with
the similar system in the Section 3.2 shows the identity of the solutions. In
calculating the electrostatic field it should be noted that as α, α0 → ∞, the
following replacement are made:

P2n+l(coshα)
P2n+l(coshα0)

→
( r
a

)2n+l

,
Q2n+l(coshα)
Q2n+l(coshα0)

→
( r
a

)−2n−l−1

. (4. 72)

The limiting representations (4. 71) and (4. 72) follow from the asymptotic
behaviour of the Legendre functions (when α, α0 →∞, see [1]).

4.4 The prolate spheroidal conductor with two circular
holes

In this section we consider the complementary structure to the slotted
spheroid of the previous section, and suppose that the spheroidal conductor
has two circular holes (see Figure 4.1(c)). The shell S0 is defined by

α = α0, β ∈ (β0, π − β0) , φ ∈ (0, 2π) ;

when a/b� 1, it may be visualised as a spheroidal cylinder. It is charged to
unit potential, so

U(α0 − 0, β) = U(α0 + 0, β) = 1, β ∈ [β0, π − β0] , (4. 73)

whereas the normal derivative of the potential is continuous on the apertures,

d

dα
U(α, β)|α=α0+0

α=α0−0 = 0, β ∈ (0, β0) ∪ (π − β0, π) . (4. 74)

Enforcing the boundary conditions (4. 73) and (4. 74) on (4. 12) produces a
set of symmetric triple series equations of Type B (2. 126)–(2. 128) from which
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may be deduced (in the same way as for Equations (4. 58)) the dual series
equations defined over the half range [−1, 0] (setting t = cosβ, t0 = cosβ0):

∞∑
n=0

Λ2n (α0)A2nP2n(t) = 0, t ∈ (−1,−t0),

∞∑
n=0

A2nP2n(t) = 1, t ∈ (−t0, 0). (4. 75)

Following the same argument as in Section 4.3, we may reduce the Equations
(4. 75) to dual series equations involving Jacobi polynomials defined over
the interval [−1, 1]. Setting u = 2t2 − 1, u0 = 2t20 − 1, and β1 = π

2 − β0,
u1 = cos 2β1 = −u0, we obtain

∞∑
n=0

(−1)nΛ2n (α0)A2nP
(− 1

2 ,0)
2n (u) = 0, u ∈ (−1, u1), (4. 76)

∞∑
n=0

(−1)nA2nP
(− 1

2 ,0)
2n (u) = 1, u ∈ (u1, 1). (4. 77)

The general treatment expounded in Section 2.4.2 of dual equations of this
type, arising from Type B triple series, did not cover the pair (4. 76), (4.
77). Let us specifically demonstrate how to treat these equations. Before
employing the integral representations of Abel’s type for Jacobi polynomials,
integrate the Equation (4. 76) with the weight (1 − u)−

1
2 , using the variant

(2. 36) of Rodrigues’ formula. (Although this integration complicates the
solution process, it is absolutely necessary because a direct application of the
integral representations of Abel type would result in the occurrence of the
Jacobi polynomial kernels P (−1, 1

2 )
n for which the theory developed in Section

2.1 is not valid.)
The transform method may now be applied in a standard manner, similar

to that in the previous section, to obtain the expansion of some function F
in a Fourier series over the complete orthogonal system of Jacobi polynomials{
P̂

(0, 3
2 )

n

}∞
n=1

, piecewise defined over two subintervals of [−1, 1] :

F (u) =
∞∑

n=1

x2nP̂
(0, 3

2 )
n−1 (u) =

{
F1(u), u ∈ (u1, 1)
F2(u), u ∈ (−1, u1)

}
, (4. 78)

where

F1(u) = 2
√

2π(1−A0)(1 + u)−
3
2 +

∞∑
n=1

x2nε2nP̂
(0, 3

2 )
n−1 (u),

F2(u) = −A0Λ0 (α0)√
π

{
2

(1 + u)
+

√
2

(1 + u)
3
2

ln

[√
2−

√
1 + u√

2 +
√

1 + u

]}
.
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Here

x2n =
(−1)n

4
A2nΛ2n (α0)

Γ(n+ 1)
Γ(n+ 3

2 )
h

(0, 3
2 )

n−1

[
h

(1, 1
2 )

n−1

]− 1
2
, (4. 79)

and the asymptotically small parameter is

ε2n = 1− 4
Λ2n (α0)

n(n+
1
2
)
[
Γ(n+ 1

2 )
Γ(n+ 1)

]2
= O(n−2) as n→∞. (4. 80)

The constant A0 is determined by enforcing continuity on F (u) at u1,

A0 =
1

g(u1)

[
1 +

∞∑
n=1

x2nε2nQn(u1)

]
, (4. 81)

where

g(u1) = 1− 1
π sinhα0Q0(coshα0)

{√
1 + u1

2
+

1
2

log

[√
2−

√
(1 + u1)√

2 +
√

(1 + u1)

]}

and

Qn(u1) =
1√
π

[
1
2

(1 + u1)
] 3

2
[
n(n+

1
2
)
]− 1

2

P̂
(0, 3

2 )
n−1 (u1).

The Equation (4. 78) is now transformed in the same way as (4. 67), taking
into account (4. 81). The final form of the i.s.l.a.e. is

x2m +
∞∑

n=1

x2nε2n

{
Q̂

(1, 1
2 )

n−1,m−1(u1)−
2
√

2Qn(u1)Qm(u1)
g(u1) sinhα0Q0(coshα0)

}

=
2
√

2Qm(u1)
g(u1) sinhα0Q0(coshα0)

, (4. 82)

where m = 1, 2, . . .. The system (4. 82) possesses the same features as the
system (4. 68). The norm of the completely continuous part H of the matrix
operator in (4. 82) is uniformly bounded (with respect to the parameters) by
the estimate

‖H‖ ≤ max
n
|εn| = ε1.

The i.s.l.a.e. (4. 82) is effectively solved numerically by the truncation
method. The behaviour of solution accuracy as a function of truncation num-
ber is very similar to that described in the previous sections. Computed results
of the potential distribution near the prolate spheroidal conductor with two
holes when charged to the unit potential are shown in Figure 4.9. The geo-
metrical parameters are a/b = 0.5, β0 = 30◦; a truncation number Ntr = 11
was used.
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Figure 4.9
Electrostatic potential near a prolate spheroidal barrel charged to
unit potential with geometrical parameters a/b = 0.5, β0 = 30o. Trun-
cation number Ntr = 11.

If β0 = 0 (so that β1 = π
2 , u1 = −1), the limiting case of a closed spheroidal

shell is obtained; from (4. 81) and (4. 82) we see that

x2m = 0 (m = 1, 2, ...), A0 = 1.

Thus, the electrostatic potential near the closed spheroidal shell has the form

U(α, β) =
Q0(coshα)
Q0(coshα0)

for α ≥ α0, β ∈ [0, π] . (4. 83)

This expression (4. 83) agrees with the expression (4. 70) that was obtained
for the limiting case of the spheroidal shell with a closing narrow slot.
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4.5 The oblate spheroidal conductor with a longitudinal
slot

In this section we consider an oblate spheroidal surface in which a longitu-
dinal slot has been cut to produce two spheroidal caps of equal size; they are
specified by

α = α0, β ∈ (0, β0) ∪ (π − β0, π) , φ ∈ (0, 2π)

The shell S0 (see Figure 4.1(d)) is the oblate analogue of the structure consid-
ered in Section 4.3, and comprises two symmetrical oblate spheroidal segments
that are assumed to be charged to the constant potential values U1 = 1 and
U2 = (−1)l (l = 0, 1). Then the mixed boundary conditions (similar to (4.
54)–(4. 56)) take the form

U(α0 − 0, β) = U(α0 + 0, β) = 1, β ∈ [0, β0] , (4. 84)

U(α0 − 0, β) = U(α0 + 0, β) = (−1)l, β ∈ [π − β0, π] , (4. 85)

d

dα
U(α, β)|α=α0+0

α=α0−0 = 0, β ∈ (β0, π − β0) . (4. 86)

Enforcing these boundary conditions on (4. 13) produces the following
functional equations on [−1, 0]:

∞∑
n=0

A2n+lP2n+l(t) = (−1)l, t ∈ [−1,−t0), (4. 87)

∞∑
n=0

λ2n+l(α0)A2n+lP2n+l(t) = 0, t ∈ (−t0, 0) (4. 88)

where, as noted in Section 4.1, the factor

λn(α0) = {coshα0qn(i sinhα0)pn(i sinhα0)}−1 (4. 89)

arises from employing the value of the Wronskian of the pair pn, qn. This
system is identical to the prolate spheroidal shell system (4. 58) except for
the replacement of the factor

Λ2n+l(α0) = {sinhα0Q2n+l(coshα0)P2n+l(coshα0)}−1

by
λ2n+l(α0) = {coshα0q2n+l(i sinhα0)p2n+l(i sinhα0)}−1 (4. 90)

in (4. 88). With this replacement, the solution of the dual series Equations
(4. 87)–(4. 88) is identical to that obtained in the prolate case yielding the
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i.s.l.a.e.

(1− ε2m+l)x2m+l +
∞∑

n=0

x2n+lε2n+lQ̂
(− 1

2 ,l)
nm (u0)

=

{
2

3
4π−

1
2 Q̂

(− 1
2 ,0)

0m (u0), if l = 0,

−2π−
1
2
{
(m+ 1)(m+ 1

2 )
}− 1

2
√

1− u0P̂
( 1
2 ,0)

m (u0), if l = 1,
(4. 91)

where m = 0, 1, 2, . . . ,

ε2n+l = 1− λ2n+l(α0)
4

Γ(n+ 1
2 )Γ(n+ l + 1

2 )
Γ(n+ 1)Γ(n+ l + 1)

= O(n−2) as n→∞, (4. 92)

and all the other definitions and relations are the same as in (4. 68). The
validity of the asymptotic estimate (4. 92) is established by the behaviour
of the functions qn(i sinhα0), pn(i sinhα0) as n → ∞ (see Appendix, (B. 70)
and (B. 71)).

Switching to the complementary angle β1 = π
2 − β0, with u1 = cos 2β1 =

−u0, we set y2n+l = (−1)nx2n+l, and use (B. 170) to obtain another conve-
nient form of the system,

y2m+l −
∞∑

n=0

y2n+lε2n+lQ̂
(l,− 1

2 )
nm (u1)

=

2
3
4π−

1
2

[
δ0m − Q̂

(0,− 1
2 )

0m (u1)
]
, if l = 0,

−2π−
1
2
√

1 + u1

[
(m+ 1)(m+ 1

2 )
]− 1

2 P̂
(0, 1

2 )
m (u1), if l = 1.

(4. 93)

As an illustration of the numerical process, the spatial distribution of elec-
trostatic field potential near the longitudinally slotted conductor, with both
components charged to unit potential (U1 = U2 = 1, l = 0 in (4. 93)), is shown
in Figure 4.10; the ratio of major to minor axes is a/b = coshα0/ sinhα0 = 2.0,
and the angular size of each component is β0 = 60◦; the system truncation
number Ntr was chosen to be 11. As a function of truncation number, the
accuracy of solutions to the system (4. 93) after truncation has the same
general behaviour as described for the prolate spheroidal shells considered in
earlier sections.

When the components are oppositely charged, the structure acts as a con-
densor. The potential near the slotted oblate spheroidal shell, in which the
upper and lower plates are charged to potentials U1 = 1 and U2 = −1 (so
l = 1 in (4. 93)), is displayed in Figure 4.11; the geometrical parameters are
a/b = 2 and β0 = 60◦, and a truncation number Ntr = 11 was used. As
expected, the electrostatic field is strongly confined to the interior.

The closed oblate spheroidal shell (β0 = π
2 , l = 0), charged to unit potential,

has the explicit solution obtained from (4. 93):

y2m =
1√
π

2
3
4 δ0m, m ≥ 0,
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Figure 4.10
Electrostatic potential near a slotted oblate spheroidal shell, both
components charged to unit potential. The geometrical parameters
are a/b = 2, β0 = 60o. Truncation number Ntr = 11.

so the closed form of the potential distribution is

U(α, β) =
q0(i sinhα)
q0(i sinhα0)

, for α ≥ α0, β ∈ [0, π] .

This is in accord with the known solution [26].
Let us consider the transition from oblate spheroid to sphere of radius

a. In a similar way to that discussed for the prolate case, oblate spheroi-
dal coordinates (α, β, ϕ) degenerate to spherical coordinates (r, θ, ϕsp) if the
identifications

θ = β, ϕsp ≡ ϕ, r =
1
2
d

2
eα, a =

1
2
d

2
eα0

are made in such a way that, as d
2 → 0, α → ∞ and α0 → ∞, the products

remain finite. It may be checked that the same solution as obtained for the
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Figure 4.11
Electrostatic potential near the oblate spheroidal condenser, the
plates charged to unit positive and negative potential. The geomet-
rical parameters a/b = 2, β0 = 60o. Truncation number Ntr = 11.

spherical conductor (Section 3.2) is found. In fact, the limits

lim
α0→∞

coshα0q2n+l(i sinhα0)p2n+l(i sinhα0) = (4n+ 2l + 1)−1,

lim
α0→∞

coshα0q0(i sinhα0) = 1, (4. 94)

are valid (see Appendix, (B. 70) and (B. 71)), so a comparison of (4. 93)
with the similar system in Section 3.2 shows the identity of the solutions. In
calculating the electrostatic field it should be noted that as α, α0 → ∞, the
following replacements are made:

p2n+l(i sinhα)
p2n+l(i sinhα0)

→
( r
a

)2n+l

,
q2n+l(i sinhα)
q2n+l(i sinhα0)

→
( r
a

)−2n−l−1

. (4. 95)

The limiting representations (4. 94) and (4. 95) follow from the asymptotic
behaviour of the Legendre functions (when α, α0 →∞, see [1]).
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4.6 The oblate spheroidal conductor with two circular
holes

In this section we consider the structure complementary to the slotted oblate
spheroid of the previous section. The geometry of an oblate spheroidal shell
with two equal circular holes is shown in Figure 4.1(e). The shell S0 is defined
by

α = α0, β ∈ (β0, π − β0) , φ ∈ (0, 2π) ;

and is assumed to be charged to unit potential. The mixed boundary condi-
tions are

U(α0 − 0, β) = U(α0 + 0, β) = 1, β ∈ (β0, π − β0) (4. 96)

and
d

dα
U(α, β)|α=α0+0

α=α0−0 = 0, β ∈ (0, β0) ∪ (π − β0, π) . (4. 97)

Enforcement of the boundary conditions (4. 96) and (4. 97) on (4. 13)
produces symmetric triple series equations; a standard argument reduces these
to the following dual series equations defined over [−1, 0], where t = cosβ,
t0 = cosβ0:

∞∑
n=0

λ2n(α0)A2nP2n(t) = 0, t ∈ (−1,−t0), (4. 98)

∞∑
n=0

A2nP2n(t) = 1, t ∈ (−t0, 0) (4. 99)

where the factor

λ2n(α0) = {coshα0q2n(i sinhα0)p2n(i sinhα0)}−1 (4. 100)

arises from employing the value of the Wronskian of the pair pn, qn.
This system is identical to the prolate spheroidal shell system (4. 75),

except for the replacement of the factor Λ2n(α0) by λ2n(α0) in (4. 98). With
this replacement, the solution of the dual series Equations (4. 98) and (4. 99)
is identical to that obtained in the prolate case. Thus, mutatis mutandis, we
obtain the i.s.l.a.e.

x2m +
∞∑

n=1

x2nε2n

{
Q̂

(1, 1
2 )

n−1,m−1(u1)−
2
√

2Qn(u1)Qm(u1)
g(u1) coshα0q0(i sinhα0)

}

=
2
√

2Qm(u1)
g(u1) coshα0q0(i sinhα0)

, (4. 101)
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Figure 4.12
Electrostatic potential near an oblate spheroidal barrel charged to
unit potential with geometrical parameters a/b = 2, β0 = 30o. Trun-
cation number Ntr = 11.

where m = 1, 2, . . ., u1 = cos 2β1, β1 = π
2 − β0, and

x2n =
(−1)n

4
A2nλ2n(α0)

Γ(n+ 1)
Γ(n+ 3

2 )
h

(0, 3
2 )

n−1 (u)
{
h

(1, 1
2 )

n−1 (u)
}− 1

2
, (4. 102)

ε2n = 1− 4
λ2n(α0)

n(n+
1
2
)
[
Γ(n+ 1

2 )
Γ(n+ 1)

]2
= O(n−2) as n→∞,

g(u1) = 1− 1
π coshα0q0(i sinhα0)

{√
1 + u1

2
+

1
2

ln

[√
2−

√
1 + u1√

2 +
√

1 + u1

]}
,

A0 =
1

g(u1)

[
1 +

∞∑
n=1

x2nε2nQn(u1)

]
, (4. 103)
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Figure 4.13
Capacitance of the prolate spheroidal barrel, as a function of aspect
ratio a/b, for varying aperture sizes β0.

and

Qn(u1) =
1√
π

[
1
2

(1 + u1)
] 3

2
[
n(n+

1
2
)
]− 1

2

P̂
(0, 3

2 )
n−1 (u1).

Solving the system (4. 101) numerically by the truncation method, and
employing the rescaling (4. 102), we may find the distribution of the electro-
static potential near the conductor by the formula (4. 13). An example of the
computed potential near an oblate spheroidal conductor with two apertures
and charged to unit potential is shown in Figure 4.12. The ratio of major to
minor axes is a/b = coshα0/ sinhα0 = 2 and the angular size of the aperture
is β0 = 30o; the system truncation number Ntr was chosen to be 19. The
potential decreases rather uniformly with distance from the structure.
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Figure 4.14
Capacitance of the oblate spheroidal barrel, as a function of aspect
ratio a/b, for varying aperture sizes β0.

4.7 Capacitance of spheroidal conductors

The surface charge density σ accumulated on the conductor surface (α =
α0) is defined by the jump (4. 14) in the normal component Eα of the electric
field across the surface, and is given by the expressions (4. 15) and (4. 18) for
the prolate and oblate systems, respectively. As noted in Section 4.1, the total
charge Q on each isolated component of the conducting surface is obtained
by integration of surface charge density σ over the component surface.
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Figure 4.15
Capacitance of the slotted prolate spheroidal shell, as a function
of aspect ratio a/b, for varying angular size β0 of components, each
charged to unit potential.

4.7.1 Open spheroidal shells

The total charge on an open spheroidal shell comprising a single component
S is, in prolate coordinates, equal to

Q =
∫∫

S

σdS =
∫ π

β=0

∫ 2π

φ=0

σhφhβdφdβ =
d

2
A

(p)
0

Q0(coshα0)
, (4. 104)

or, in oblate coordinates, equal to

Q =
∫∫

S

σdS =
∫ π

β=0

∫ 2π

φ=0

σhφhβdφdβ =
d

2
A

(o)
0

q0(i sinhα0)
. (4. 105)

In calculating these integrals we may take the range of β to be [0, π] without
affecting the result of integration because, as noted above, the expression for
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Figure 4.16
Capacitance of the slotted oblate spheroidal shell, as a function of
aspect ratio a/b, for varying angular size β0 of components, each
charged to unit potential.

surface charge density vanishes over the aperture region. We recall that if the
potential of an isolated conductor is equal to unity (U(α0, β)|β∈S0 = 1), its
capacitance C and the charge Q are numerically equal.

The capacitance C (4. 104) of the prolate spheroidal shell with two sym-
metrical circular holes (the barrel) was computed over a wide range of the ge-
ometrical parameters a/b and β0 (the coefficient A(p)

0 was found from Formula
(4. 81)); representative results are presented in Figure 4.13 (the geometrical
scale is set by b = 1, and so d

2 = sechα0).
In the oblate case, the capacitance C (4. 105) was computed from (4. 103);

representative results are presented in Figure 4.14 (where the geometrical scale
is set by b = 1, and so d

2 = cosechα0). We recall that a/b is the ratio of minor
to major semi-axes of the prolate spheroid, or the ratio of major to minor semi-
axes of the oblate spheroid; in both prolate and oblate systems, β0 defines the
angular size of each aperture surface S1(α0, β) : β ∈ [0, β0] ∪ [π − β0, π]. The
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capacitance is an increasing function of aspect ratio and an increasing function
of component size.

The total charge on a pair of open spheroidal caps composed of two compo-
nents S0 both charged to unit potential (U1 = U2 = 1) may also be calculated
from (4. 104) and (4. 105) for the prolate and oblate cases, respectively.
Numerical results for the capacitance C are presented in Figure 4.15 for the
prolate case (the coefficient A(p)

0 is found by solving (4. 68)) and in Figure
4.16 for the oblate case (the coefficient A(o)

0 is found from (4. 93)). β0 defines
the angular size of the each component of S0 (β ∈ [0, β0]), and b = 1. The
capacitance is an increasing function of aspect ratio and of cap size.

When the spheroidal shell with a longitudinal slot degenerates to a closed
spheroidal shell (β0 = π

2 ), the capacitances of the prolate and oblate closed
shells obtained from (4. 104) and (4. 105) are explicitly calculated to be,
respectively,

C(p) =
d

2
1

Q0(coshα0)
, C(o) =

d

2
1

q0(i sinhα0)
. (4. 106)

It is easy to show that this is identical to that obtained in [26] by another
method.

4.7.2 Spheroidal condensors

Consider the condensor formed from oppositely charged plates in the form
of spheroidal segments (Figure 4.1(b), 4.1(d)); the upper and lower surfaces
are charged to potentials U1 = 1 and U2 = −1, respectively. The charge Q+

of the positively charged plate is found by the integration of surface charge
density σ, given in (4. 104) and (4. 105) for the prolate and oblate shells,
respectively, over the plate surface S0 = S0(α0, β, ϕ), where the intervals for
integration over β, φ are, respectively, [0, β0] and [0, 2π]. However, we may
take the interval for integration over β to be [0, π

2 ] because over the slot
(defined by β ∈ [β0, π − β0]), the charge equals zero.

As a result in the prolate case we obtain,

Q+ =
d

2
1√
π

∞∑
n=0

(−1)nA2n+1

4Q2n+1(coshα0)P2n+1(coshα0)
Γ(n+ 1

2 )
Γ(n+ 2)

(4. 107)

where {A2n+1}∞n=0 is the solution of the system (4. 68) with l = 1 and
employing the rescaling (4. 66); in the oblate case, we obtain

Q+ =
d

2
1√
π

∞∑
n=0

(−1)nA2n+1

4q2n+1(i sinhα0)p2n+1(i sinhα0)
Γ(n+ 1

2 )
Γ(n+ 2)

(4. 108)

where {A2n+1}∞n=0 is the solution of the system (4. 91) with l = 1 and
employing the same rescaling (4. 66). The capacitance of the condensor C is
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Figure 4.17
Capacitance of the prolate spheroidal condenser, as a function of
aspect ratio a/b, for varying plate size β0.

then given by the expression

C =
∣∣∣∣ Q+

U1 − U2

∣∣∣∣ .
The computed capacitance C of various prolate spheroidal condensors is

presented in Figure 4.17, whilst that of the oblate spheroidal condensors is
presented in Figure 4.18; β0 is the angular size of each capacitor plate. In
both cases, the capacitance is an increasing function of aspect ratio and of
angular size of the capacitor plates.
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Figure 4.18
Capacitance of the oblate spheroidal condenser, as a function of
aspect ratio a/b, for varying plate size β0.
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Chapter 5

Charged Toroidal Shells

Toroidal surfaces provide an interesting canonical class of conductors that
illustrate methods for determining potential distributions and the surrounding
electrostatic fields when they are charged. The field surrounding a closed
torus and its associated capacitance has previously been calculated [36, 26].
However, our interest is in the effect of slots or apertures that might be opened
in the surface. If some degree of symmetry is retained, substantive progress
with analytic and semi-analytic methods can be made.

Thus, we first consider charged toroidal conductors with slots introduced
so that axial symmetry is preserved, as shown in Figure 5.2. The potential
is then determined by solving dual or triple series equations with trigono-
metric kernels. The standard tools provided by the Abel integral transform
approach allow us to regularise the series equations and calculate the electro-
static potential by solving an infinite system of linear algebraic equations of
the second kind. Surface charge density and capacitance of these conductors
are then readily computed. The matrix operator of this system is a completely
continuous perturbation of the identity (in the sequence space l2); this guar-
antees fast convergence of the truncated system solution to that of infinite
system, as has already been demonstrated by similar systems arising from
spherical and spheroidal shells (Chapters 3 and 4).

The toroidal coordinate system (α, β, ϕ) introduced in Section 1.1.7 pro-
vides a convenient system for formulating the potential distribution generated
by open charged toroidal surfaces as a mixed boundary value problem. If c
is the scale factor, the coordinate surface α = α0 defines a torus with minor
radius r = c cosechα0 and major radius R = c cothα0,(√

x2 + y2 − c cothα
)2

+ z2 = c2 cosec2 α;

its interior and exterior are respectively specified by the intervals (α0,∞) and
[0, α0) for α, whilst β and ϕ range over their full intervals of definition [−π, π].
(See Figure 5.1.) In all our numerical calculations the scale factor c is chosen
so that r = 1.

We consider the potential distribution surrounding toroidal surfaces with
various types of slots or apertures. Fix α0 and consider the toroidal surface
α = α0 (see Figure 5.2(a)). First, we calculate the potential surrounding
various axially symmetric structures obtained by cutting axisymmetric slots
in this surface. In Section 5.2, the single slot (see Figure 5.2(b)) is examined.
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Figure 5.1
The toroidal coordinate system in cross-section.

The slot may be described by a fixed parameter β0; the connected portion
of the toroidal surface given by β ∈ [−π,−β0] ∪ [β0, π] is removed from the
complete torus. The introduction of two types of (axisymmetric) slots is
considered in the following two sections: transversal slots (Section 5.3, see
Figure 5.2(c)) that remove part of the conductor surface so that the remaining
segments are specified by

α = α0, β ∈ [−β0, β0] ∪ [π − β0, π] ∪ [−π,− (π − β0)], (5. 1)

and longitudinal slots (Section 5.4, see Figure 5.2(d)), in which the segment (5.
1) is removed from the full torus α = α0. Capacitances are briefly examined
in Section 5.5.

The calculation becomes more complicated when apertures are introduced
so that axial symmetry is broken. The final Section (5.6) describes one such
structure that can be solved semi-analytically – the degenerate toroidal shell,
with equal major and minor radii, from which an azimuthal sector is removed
(see Figure 5.6). In cylindrical polars (ρ, θ, φ) , this toroid has equation

(ρ− a)2 + z2 = a2, ϕ ∈ [−π, π],
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and the azimuthal sector of angular semi-width φ0,

(ρ− a)2 + z2 = a2, ϕ ∈ [−φ0, φ0],

is removed. The potential distribution is determined for this structure, as
well as for the degenerate toroidal surface from which multiple azimuthal
sectors are removed (see Figure 5.7). The approach invokes the principle of
Kelvin inversion (in a sphere) to transform the problem to a set of dual series
equations dependent upon a continuous spectral parameter.

This final calculation is a very significant extension of analytic and semi-
analytic techniques to the determination of the three-dimensional potential
distribution surrounding nonsymmetric open conducting surfaces.

5.1 Formulation of mixed boundary value problems in
toroidal geometry

We consider the potential distribution surrounding the toroidal surface α =
α0 into which one or more axisymmetric slots are introduced; such a surface
may be specified by

α = α0, β ∈ I0, ϕ ∈ [0, 2π],

where I0 is a subinterval, or disjoint union of several subintervals of [0, 2π].
The mixed boundary value problem for the potential theory surrounding such
a slotted toroidal conductor is formulated as follows. Find the function U
that is harmonic in R3,

∆U(α, β, ϕ) = 0, (5. 2)

that satisfies the Dirichlet boundary conditions on that part of toroidal surface
S0 occupied by the conductor, specifying the potential f on S0,

U(α0 − 0, β, ϕ) = U(α0 + 0, β, ϕ) = f(β, ϕ), for β ∈ I0, ϕ ∈ [−π, π], (5. 3)

that has continuous normal derivative on the aperture surface S1,

d

dα
U(α, β, ϕ)|α=α0+0

α=α0−0 = 0, for β ∈ [−π, π]\I0, ϕ ∈ [−π, π], (5. 4)

and that vanishes at infinity,

U(α, β, ϕ) = O
(
|−→r |−1

)
as |−→r | =

(
x2 + y2 + z2

) 1
2 →∞,

i.e., U vanishes as α → 0 and β → 0. Also, the electrostatic energy in any
volume of space including edges of the conductor must be bounded:

W =
∫∫∫

V

|gradU |2 dV <∞. (5. 5)
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In toroidal coordinates, the Laplace equation (see Section 1.2.7) admits
separation of variables and has solution in the form:

U(α, β, ϕ)√
2 coshα− 2 cosβ

=

∞∑
m=0

∞∑
n=m

[
AnmP

m
n− 1

2
(coshα) +BnmQ

m
n− 1

2
(coshα)

]{ cosnβ cosmϕ
sinnβ sinmϕ (5. 6)

where Pm
n− 1

2
(coshα), Qm

n− 1
2
(coshα) are toroidal functions, and Anm, Bnm are

constants to be determined by the mixed boundary conditions. The separation
constants n,m are integers because U is periodic in the coordinates β and
ϕ. We restrict attention to axisymmetric problems so that only those terms
with m = 0 are retained in (5. 6); moreover, the open shell structure will
be assumed to be symmetric about the xy plane, so that any dependence
upon terms involving sinnβ in (5. 6) is avoided (the interval I0 is therefore
symmetric about the origin). Considering the asymptotic behaviour of the
functions Pn− 1

2
(coshα) and Qn− 1

2
(coshα) at the singular points (α = 0, α→

∞), solutions of the type (5. 6), which decay appropriately at infinity and are
continuous across the toroidal surface α = α0, have the following form in the
interior (α ≥ α0) and exterior (0 ≤ α < α0) regions

U(α, β)√
2 coshα0 − 2 cosβ

=

∞∑
n=0

Cn cosnβ
{
Qn− 1

2
(coshα), α ≥ α0,

Qn− 1
2
(coshα0)Pn− 1

2
(coshα)/Pn− 1

2
(coshα0), α < α0.

(5. 7)

The constants Cn are to be determined by enforcement of the mixed boundary
conditions (5. 3) and (5. 4).

5.2 The open charged toroidal segment

The toroidal shell with one slot or toroidal segment is shown in Figure
5.2(b); it occupies the region α = α0, β ∈ [−β0, β0] whilst the slot is defined
by α = α0, β ∈ [−π,−β0) ∪ (β0, π]. If the segment is charged to unit poten-
tial, enforcement of the boundary conditions (5. 3) and (5. 4) produces the
following ,

∞∑
n=0

CnQn− 1
2
(coshα0) cosnβ = (2 coshα0 − 2 cosβ)−

1
2 , β ∈ [0, β0] , (5. 8)
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Figure 5.2
The torus (a), and various toroidal shells: (b) single slot, (c) two
transversal slots and (d) two longitudinal slots.

∞∑
n=0

Cn
1

sinhα0Pn− 1
2
(coshα0)

cosnβ = 0, β ∈ (β0, π], (5. 9)

where the value of the Wronskian of Pn− 1
2

and Qn− 1
2

(see Appendix, (B. 69))
has been employed.

The toroidal asymmetry factor appearing on the right-hand side of (5. 8)
has an expansion in a Fourier series

(2 coshα0 − 2 cosβ)−
1
2 =

1
π

∞∑
n=0

(2− δn0)Qn− 1
2
(coshα0) cosnβ. (5. 10)

Substituting (5. 10) in (5. 8) and extracting the zero index terms in (5. 8)
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and (5. 9) gives

∞∑
n=1

CnQn− 1
2
(coshα0) cosnβ =

(
1
π
− C0

)
Q− 1

2
(coshα0) +

2
π

∞∑
n=1

Qn− 1
2
(coshα0) cosnβ, β ∈ [0, β0] , (5. 11)

∞∑
n=1

Cn cosnβ
sinhα0Pn− 1

2
(coshα0)

= − C0

sinhα0P− 1
2
(coshα0)

, β ∈ (β0, π]. (5. 12)

The asymptotics of the Legendre functions allows us to estimate

lim
n→∞

2n sinhα0Pn− 1
2
(coshα0)Qn− 1

2
(coshα0) = 1; (5. 13)

we therefore introduce the asymptotically small parameter

εn = 1− 2n sinhα0Pn− 1
2
(coshα0)Qn− 1

2
(coshα0) = O(n−2) as n→∞.

(5. 14)
Rescaling the unknowns

xn =
Cn

2nPn− 1
2
(coshα0)

=
sinhα0

1− εn
CnQn− 1

2
(coshα0),

we convert Equations (5. 8) and (5. 9) to the form

∞∑
n=1

{
xn (1− εn)− 2

π
sinhα0Qn− 1

2
(coshα0)

}
cosnβ

= sinhα0

(
1
π
− C0

)
Q− 1

2
(coshα0), β ∈ [0, β0] , (5. 15)

∞∑
n=1

nxn cosnβ = − C0

2P− 1
2
(coshα0)

, β ∈ (β0, π]. (5. 16)

The standard procedure for solving such series equations involving cosine
kernels has been described in Section 2.2 in some detail (see Equations (2.
39) and (2. 40)). Making the necessary identification of terms, the solution
may directly be deduced from (2. 62) to be as stated below in (5. 21). Let
us sketch briefly some of the main steps in its deduction. It employs the
replacement of cosine functions by Jacobi polynomials given by (1. 151) and
(1. 152). A necessary preliminary step is the integration of both equations to
increase the indices of the Jacobi polynomials so that the methods of Chapter
2 are applicable. The variant (2. 36) of Rodrigues’ formula may be applied
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after the insertion of (1. 151) in (5. 15) and (5. 16); equivalently, we may
directly integrate these equations to obtain

∞∑
n=1

{
xn (1− εn)− 2

π
sinhα0Qn− 1

2
(coshα0)

}
sinnβ
n

= β sinhα0

(
1
π
− C0

)
Q− 1

2
(coshα0), β ∈ [0, β0] , (5. 17)

∞∑
n=1

xn sinnβ = (π − β)
C0

2P− 1
2
(coshα0)

, β ∈ (β0, π]. (5. 18)

Setting z = cosβ, z0 = cosβ0, and employing the formula (1. 153) produces

∞∑
n=1

xn
Γ(n+ 1)
Γ(n+ 1

2 )
P

( 1
2 , 1

2 )
n−1 (z)

=
C0

P− 1
2
(coshα0)(1− z2)

1
2
√
π

[
arcsin z +

π

2

]
, z ∈ (−1, z0) , (5. 19)

∞∑
n=1

[
xn (1− εn)− 2

π
sinhα0Qn− 1

2
(coshα0)

]
Γ(n)

Γ(n+ 1
2 )
P

( 1
2 , 1

2 )
n−1 (z)

=
2 sinhα0

(1− z2)
1
2
√
π

(
1
π
− C0

)
Q− 1

2
(coshα0)

[π
2
− arcsin z

]
, z ∈ (z0, 1) .

(5. 20)

From the Abel integral representation (1. 171) expressing P ( 1
2 , 1

2 )
n−1 in terms of

P
(0,1)
n−1 , and its companion (1. 172) expressing P

(0,1)
n−1 in terms of P ( 1

2 , 1
2 )

n−1 , we
derive the infinite system of linear algebraic equations of the second kind for
the rescaled unknowns yn =

√
2nxn in the standard way described previously:

ym −
∞∑

n=1

ynεnQnm(z0) =

2 sinhα0

π

∞∑
n=1

√
2nQn− 1

2
(coshα0)Qnm(z0)+

2 sinhα0Q− 1
2
(coshα0)

(1 + z0)
πt

P̂
(0,1)
m−1(z0)
m

. (5. 21)

Here

t = t1 − ln
(

1− z0
2

)
(5. 22)
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where
t1 = 2 sinhα0P− 1

2
(coshα0)Q− 1

2
(coshα0), (5. 23)

Qnm(z0) =

[
Q̂

(1,0)
n−1,m−1(z0) +

(1 + z0)2

t

P̂
(0,1)
n−1 (z0)P̂

(0,1)
m−1(z0)

nm

]
(5. 24)

and

C0 =
t1
tπ

+
1
t

∞∑
n=1

[
1
n
ynεn +

2
π

√
2
n

sinhα0Qn− 1
2
(coshα0)

]
×

P− 1
2
(coshα0) (1 + z0) P̂

(0,1)
n−1 (z0). (5. 25)

Note that C0 is found by enforcement of a continuity condition of the function
at the point z = z0.

From the solution of the system of Equations (5. 21), we may find the
Fourier coefficients of the series (5. 7) and thus calculate the potential U
and the associated electrostatic field near the charged toroidal segment. An
example is shown in Figure 5.3. Recall that the scale factor c is chosen so
that the minor radius r = c cosechα0 equals 1.

5.3 The toroidal shell with two transversal slots

This section begins the examination of toroidal surfaces with two axially
symmetric slots. The geometry of a toroidal shell with two transversal slots
is shown in Figure 5.2(c). The conducting surface is specified by

α = α0, β ∈ [−π,− (π − β0)] ∪ [−β0, β0] ∪ [π − β0, π] .

If the toroidal segments are charged to unit potential, enforcement on (5. 7)
of the boundary conditions (5. 3) (unit potential on the surface), and (5. 4)
(continuity of the normal derivative on the slots) leads to the following triple
series equations with the trigonometric kernels to be solved for the unknown
coefficients Cn,

∞∑
n=0

CnQn− 1
2
(coshα0) cosnβ = (2 coshα0 − 2 cosβ)−

1
2 ,

β ∈ [0, β0] ∪ [π − β0, π] , (5. 26)

∞∑
n=0

Cn
1

sinhα0Pn− 1
2
(coshα0)

cosnβ = 0, β ∈ (β0, π − β0). (5. 27)
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Figure 5.3
Electrostatic potential surrounding the charged toroidal segment
with radii r = 1, R = 2, and β0 = 60o.

The property, cosn(π − β) = (−1)n cosnβ, allows us to decouple even and
odd index coefficients and obtain the following pair of dual series equations
defined on the half interval

[
0, π

2

]
. The system for the even coefficients is

∞∑
n=0

C2nQ2n− 1
2
(coshα0) cos 2nβ =

1
2

{
(2 coshα0 − 2 cosβ)−

1
2 + (2 coshα0 + 2 cosβ)−

1
2

}
, β ∈ (0, β0) (5. 28)

∞∑
n=0

C2n

P2n− 1
2
(coshα0)

cos 2nβ = 0, β ∈ (β0,
π

2
), (5. 29)
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whilst that for the odd coefficients is

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0) cos(2n+ 1)β =

1
2

{
(2 coshα0 − 2 cosβ)−

1
2 − (2 coshα0 + 2 cosβ)−

1
2

}
, β ∈ (0, β0) (5. 30)

∞∑
n=0

C2n+1

P2n+ 1
2
(coshα0)

cos(2n+ 1)β = 0, β ∈ (β0,
π

2
). (5. 31)

Introduce the new variable θ = 2β and set θ0 = 2β0. Use the expansions
(cf. (5. 10))

(2 coshα0 − 2 cosβ)−
1
2 − (2 coshα0 + 2 cosβ)−

1
2

=
4
π

∞∑
n=0

Q2n+ 1
2
(coshα0) cos(n+

1
2
)θ, (5. 32)

(2 coshα0 − 2 cosβ)−
1
2 + (2 coshα0 + 2 cosβ)−

1
2

=
2
π
Q− 1

2
(coshα0) +

4
π

∞∑
n=1

Q2n− 1
2
(coshα0) cosnθ, (5. 33)

to obtain the following pair of dual equations defined on the full interval of
the variable [0, π] . The system for the even coefficients is

∞∑
n=1

C2nQ2n− 1
2
(coshα0) cosnθ

=
(

1
π
− C0

)
Q− 1

2
(coshα0) +

2
π

∞∑
n=1

Q2n− 1
2
(coshα0) cosnθ, θ ∈ (0, θ0),

(5. 34)

∞∑
n=1

C2n

P2n− 1
2
(coshα0)

cosnθ = − C0

P− 1
2
(coshα0)

, θ ∈ (θ0, π), (5. 35)

whilst that for the odd coefficients is

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0) cos(n+

1
2
)θ

=
2
π

∞∑
n=0

Q2n+ 1
2
(coshα0) cos(n+

1
2
)θ, θ ∈ (0, θ0), (5. 36)
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∞∑
n=0

C2n+1

P2n+ 1
2
(coshα0)

cos(n+
1
2
)θ = 0, θ ∈ (θ0, π). (5. 37)

The Equations (5. 34) and (5. 35) are very similar to the equations (5. 8)
and (5. 9) considered in the previous section. Setting z = cos θ, z0 = cos θ0, we
may immediately deduce that the regularised system for the even coefficients
is

y2m −
∞∑

n=1

y2nε2nQnm(z0) =

4 sinhα0

π

∞∑
n=1

√
2nQ2n− 1

2
(coshα0)Qnm(z0)+

4 sinhα0Q− 1
2
(coshα0)

(1 + z0)
πt

P̂
(0,1)
m−1(z0)
m

(5. 38)

where t, t1 and Qnm(z0) are defined by (5. 22)–(5. 24),

y2n =
C2n√

2nP2n− 1
2
(coshα0)

,

C0 =
t1
tπ

+ P− 1
2
(coshα0)

(1 + z0)
t

×
∞∑

n=1

[
1
n
y2nε2n +

4
π

√
2
n

sinhα0Q2n− 1
2
(coshα0)

]
P̂

(0,1)
n−1 (z0),

and

ε2n = 1− 4n sinhα0P2n− 1
2
(coshα0)Q2n− 1

2
(coshα0) = O(n−2) as n→∞.

Let us now turn to the equations (5. 36) and (5. 37). The latter series (5.
37) is nonuniformly convergent and we integrate it to obtain the uniformly
convergent series equations

∞∑
n=0

C2n+1

P2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 3

2 )
P

( 1
2 ,− 1

2 )
n (z) =

a√
1− z

, z ∈ (−1, z0) (5. 39)

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 , 1

2 )
n (z) =

2
π

∞∑
n=0

Q2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 , 1

2 )
n (z), z ∈ (z0, 1) (5. 40)
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where we have replaced sin
(
n+ 1

2

)
θ by its representation (1. 154) in terms of

the Jacobi polynomial P (− 1
2 , 1

2 )
n ; a is a constant that will be determined later.

Now apply the Abel integral transform technique, employing the integral rep-
resentation (1. 172) for P (0,0)

n ≡ Pn in terms of P ( 1
2 ,− 1

2 )
n , and the companion

representation (1. 171) for Pn in terms of P (− 1
2 , 1

2 )
n ; from Equations (5. 39)

and (5. 40) we may deduce

∞∑
n=0

C2n+1(
n+ 1

2

)
P2n+ 1

2
(coshα0)

Pn(z) = a

√
2
π
Q− 1

2
(z), z ∈ (−1, z0) , (5. 41)

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0)Pn(z) =

2
π

∞∑
n=0

Q2n+ 1
2
(coshα0)Pn(z), z ∈ (z0, 1) .

(5. 42)
Let

x2n+1 =
C2n+1

2(n+ 1
2 )P2n+ 1

2
(coshα0)

.

As shown previously, the parameter

ε2n+1 = 1− 2(2n+ 1) sinhα0P2n+ 1
2
(coshα0)Q2n+ 1

2
(coshα0) (5. 43)

is asymptotically small as n → ∞: ε2n+1 = O(n−2). The rescaled unknowns
satisfy

∞∑
n=0

x2n+1Pn(z) =
1
2
a

√
2
π
Q− 1

2
(z), z ∈ (−1, z0) , (5. 44)

∞∑
n=0

(1− ε2n+1)x2n+1Pn(z) =
sinhα0

π

∞∑
n=0

Q2n+ 1
2
(coshα0)Pn(z),

z ∈ (z0, 1) . (5. 45)

Rearranging (5. 41) and (5. 42) gives

∞∑
n=0

x2n+1Pn(z) =
{
F1(z), z ∈ (−1, z0)
F2(z), z ∈ (z0, 1)

}
, (5. 46)

where

F1(z) = a (2π)−
1
2 sinhα0Q− 1

2
(z),

F2(z) =
∞∑

n=0

x2n+1ε2n+1Pn(z) + 4π−1 sinhα0

∞∑
n=0

Q2n+ 1
2
(coshα0)Pn(z).
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The constant a is determined by the continuity requirement on the function
on the left-hand side of (5. 46) at the point z = z0:

a =
√

2π
sinhα0Q− 1

2
(z0)

∞∑
n=0

[
x2n+1ε2n+1 +

4
π

sinhα0Q2n+ 1
2
(coshα0)

]
Pn(z0).

(5. 47)

After rescaling the unknowns via y2n+1 =
(
n+ 1

2

)− 1
2 x2n+1, we obtain the

following infinite system of linear algebraic equations

y2m+1 −
∞∑

n=0

y2n+1ε2n+1

[
Q̂(0,0)

nm (z0) +Rnm(z0)
]

=

4
π

sinhα0

∞∑
n=0

Q2n+ 1
2
(coshα0)(n+

1
2
)−

1
2

[
Q̂(0,0)

nm (z0) +Rnm(z0)
]
, (5. 48)

where m = 0, 1, 2, . . .,

Rnm(z0) =
P̂n(z0)
Q− 1

2
(z0)

Im, Im =
∫ z0

−1

Q− 1
2
(z)P̂m(z)dz, (5. 49)

and P̂n is the normalised Legendre polynomial. The integrals Im are readily
computed (see Appendix, (B. 97)):

I0 = −2
(
Q 1

2
(z0)− z0Q− 1

2
(z0)

)
, (5. 50)

Im =
z2
0 − 1

m(m+ 1) + 1
4

(
Q− 1

2
(z0)P ′m(z0)−Q′− 1

2
(z0)Pm(z0)

)
, m > 0,

where we note that the Legendre functions Q± 1
2

are simply expressed in term
of complete elliptic integrals (see Appendix, (B. 80) and (B. 82)).

The solution of the systems (5. 38) and (5. 48) yields the Fourier coefficients
of the series (5. 7), and thus the potential and the associated electrostatic
field may be calculated.

Computationally, the systems (5. 38) and (5. 48) enjoy the same advan-
tages as the regularised systems considered in Chapter 4. As noted above,
the Legendre functions of half-integer index P± 1

2
, Q± 1

2
are simply expressed

in terms of complete elliptic integrals (see Appendix, (B. 77)–(B. 82)). Recur-
rence relations for the matrix elements of these systems are readily developed,
so numerical values of the unknown Fourier coefficients and the electrostatic
field may be computed very efficiently. Four correct digits in the values of
the coefficients {xn}∞n=0 are guaranteed by a choice of truncation number Ntr

not exceeding 20. Some computed examples of the electrostatic potential are
given in Figures 5.4 and 5.5 for the toroidal conductor with two transversal
slots having radii r = 1, R = 2, and angular parameter β0 equal to 60◦ and
30◦, respectively.
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Figure 5.4
The charged toroidal shell with two transversal slots; the radii are
r = 1, R = 2, and β0 = 60o.

5.4 The toroidal shell with two longitudinal slots

This section continues the examination of toroidal surfaces with two axially
symmetric slots. In particular, we consider the surface complementary to that
of the previous section, where the locations of conducting surface and slots
are interchanged and consider a toroidal surface with longitudinal slots (see
Figure 5.2(d)) defined by

α = α0, β ∈ [− (π − β0) ,−β0] ∪ [β0, π − β0] ,

so that the slots occupy the region

α = α0, β ∈ [−π,− (π − β0)] ∪ [−β0, β0] ∪ [π − β0, π] .
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Figure 5.5
The charged toroidal shell with two transversal slots; the radii are
r = 1, R = 2, and β0 = 30o.

Assume that the segments are charged to unit potential. Then enforcement
of the boundary conditions on (5. 7) produces the symmetric triple series
equations

∞∑
n=0

CnQn− 1
2
(coshα0) cosnβ = (2 coshα0 − 2 cosβ)−

1
2 , β ∈ [β0, π − β0],

(5. 51)
∞∑

n=0

Cn

sinhα0Pn− 1
2
(coshα0)

cosnβ = 0, β ∈ (0, β0) ∪ (π − β0, π). (5. 52)

As in the previous section, these triple series equations may be converted
to a decoupled pair of dual series equations for even and odd coefficients.
Introducing the new variable θ = 2β and setting θ0 = 2β0, the even coefficients
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satisfy

∞∑
n=1

C2nQ2n− 1
2
(coshα0) cosnθ =

(
1
π
− C0

)
Q− 1

2
(coshα0) +

2
π

∞∑
n=1

Q2n− 1
2
(coshα0) cosnθ, θ ∈ (θ0, π),

(5. 53)

∞∑
n=1

C2n

P2n− 1
2
(coshα0)

cosnθ = − C0

P− 1
2
(coshα0)

, θ ∈ (0, θ0), (5. 54)

whilst the odd coefficients satisfy

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0) cos(n+

1
2
)θ =

2
π

∞∑
n=0

Q2n+ 1
2
(coshα0) cos(n+

1
2
)θ, θ ∈ (θ0, π), (5. 55)

∞∑
n=0

C2n+1

P2n+ 1
2
(coshα0)

cos(n+
1
2
)θ = 0, θ ∈ (0, θ0). (5. 56)

We first consider the system (5. 55)–(5. 56) for the odd coefficients and

convert it to dual series equations involving the Jacobi polynomials P (− 1
2

1
2 )

n

with z = cos θ, (z0 = cos θ0),

∞∑
n=0

C2n+1

P2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 , 1

2 )
n (z) = 0, z ∈ (z0, 1) , (5. 57)

∞∑
n=0

C2n+1Q2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 , 1

2 )
n (z) =

2
π

∞∑
n=0

Q2n+ 1
2
(coshα0)

Γ(n+ 1)
Γ(n+ 1

2 )
P

(− 1
2 , 1

2 )
n (z), z ∈ (−1, z0) . (5. 58)

The Abel transform technique may be employed with the integral representa-
tion (1. 172) for P (0,0)

n ≡ Pn in terms of P ( 1
2 ,− 1

2 )
n , its companion representa-

tion (1. 171) for Pn in terms of P (− 1
2 , 1

2 )
n , and the representation (1. 172) for

P
(− 1

2 , 1
2 )

n in terms of Pn. The asymptotically small parameter ε2n+1 defined by
(5. 43), appears and, arguing as in the last section, we obtain

∞∑
n=0

x2n+1P̂n(z) =
{

0, z ∈ (z0, 1)
F2(z), z ∈ (−1, z0)

}
, (5. 59)
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where

F2(z) =
∞∑

n=0

x2n+1ε2n+1P̂n(z) +
4
π

sinhα0

∞∑
n=0

Q2n+ 1
2
(coshα0)P̂n(z),

and the rescaled Fourier coefficients

x2n+1 = C2n+1

{
2

√
n+

1
2
P2n+ 1

2
(coshα0)

}−1

(5. 60)

belong to l2. Invoking completeness and orthogonality of the normalised Leg-
endre polynomials, we deduce from (5. 59) the following infinite system of
linear algebraic equations of the second kind (its matrix operator is a com-
pletely continuous perturbation of the identity in l2):

(1− ε2m+1)x2m+1 +
∞∑

n=0

x2n+1ε2n+1Q̂
(0,0)
nm (z0) = dm −

∞∑
n=0

dnQ̂
(0,0)
nm (z0),

(5. 61)
where m = 0, 1, 2, . . . , and

dn =
4
π

sinhα0

√
n+

1
2
Q2n+ 1

2
(coshα0).

The system (5. 53)–(5. 54) for even coefficients is solved in a similar way,
and the rescaled coefficients

x2n = (−1)nC2n

{√
2nP2n− 1

2
(coshα0)

}−1

satisfy the i.s.l.a.e.

x2m −
∞∑

n=1

x2nε2nQnm(z0) =

4 sinhα0

π

∞∑
n=1

(−1)n
√

2nQ2n− 1
2
(coshα0)Qnm(z0)+

4 sinhα0

πt
Q− 1

2
(coshα0)(1 + z0)

P̂
(0,1)
m−1(z0)
m

(5. 62)

where z0 = cos θ0, and t, t1 and Qnm(z0) are defined by (5. 22) and (5. 24),
and

C0 =
t1
tπ

+ P− 1
2
(coshα0)

(1 + z0)
t

×
∞∑

n=1

[
1
n
x2nε2n +

4
π

√
2
n

sinhα0Q2n− 1
2
(coshα0)

]
P̂

(0,1)
n−1 (z0),
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and

ε2n = 1− 4n sinhα0P2n− 1
2
(coshα0)Q2n− 1

2
(coshα0) = O(n−2) as n→∞.

The closed toroidal shell is a special limiting case. It corresponds to setting
β0 = π

2 in (5. 26) and (5. 27) for the conductor with transversal slots, or to
setting β0 = 0 in (5. 51) and (5. 52) for the conductor with longitudinal slots.
In these cases, the corresponding regularised systems (5. 38), (5. 48), or (5.
61), (5. 62) have solutions in explicit form.

Noting that Q̂(1,0)
nm (−1) = δnm, the solution to (5. 48) with β0 = π

2 (z0 =
−1) is

y2m+1 =
{
π(m+

1
2
)

3
2P2m+ 1

2
(coshα0)

}−1

, m ≥ 0,

and the solution to (5. 38) is

y2m =
√

2
{
π
√
mP2m− 1

2
(coshα0)

}−1

, m ≥ 0.

Thus
C0 = π−1, Cn = 2π−1, for n = 1, 2, ... (5. 63)

Substituting this solution in (5. 7) produces a potential that coincides with
the earlier published solution of [36]. Identical results are obtained by solving
the systems (5. 61) and (5. 62).

The computational properties of the systems (5. 38) and (5. 48) and (5.
61)–(5. 62) are rather similar, and as for the transversal slots, numerical
values of the unknown Fourier coefficients and the electrostatic field may be
computed very efficiently, correct to four digits with a choice of truncation
number Ntr not exceeding 20.

5.5 Capacitance of toroidal conductors

Following the same argument as in Section 4.7, the capacitance of the open
toroidal conductor in terms of the Fourier coefficients Cn in (5. 7) is

C = 2c

{
C0

Q− 1
2
(coshα0)

P− 1
2
(coshα0)

+
∞∑

n=1

Cn

Qn− 1
2
(coshα0)

Pn− 1
2
(coshα0)

}
. (5. 64)

Substitution of the explicit solution (5. 63) for the closed toroidal conductor
in (5. 64) produces an expression for capacitance that coincides with the
published result of [26].
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Figure 5.6
A degenerate toroidal shell with one azimuthal cut.

5.6 An open toroidal shell with azimuthal cuts

The determination of the potential distribution surrounding the slotted tor-
oidal conductors considered in previous sections was significantly facilitated
by their axial symmetry. The symmetry permitted the problem to be formu-
lated in terms of an appropriate set of dual or triple series equations. The
situation becomes more complicated when slots are cut in the shell so that
axial symmetry is broken. In this section we derive some new results for a
class of conductors without axial symmetry, in particular for the perfectly
conducting shell that is part of a degenerate torus (in which the major and
minor radii are equal) that may be viewed as an incomplete body of revolution
(see Figure 5.6).

An essential preliminary step is provided by the method of inversion in
a sphere, so that Bouwkamp’s theorem (see Chapter 3) may be exploited.
Some axially symmetric situations are relatively easily analysed by this ap-
proach, such as the spherical cap (Section 3.4). Also, potential problems for
asymmetric spherical conductors (such as the asymmetric barrel or the pair
of asymmetric caps) may be symmetrised by an inversion process prior to
solution of the electrostatic problem (Section 3.3). Moreover, the connec-
tion formally described in [77] and [3] between some classes of dual integral
equations and dual series equations has the inversion method at its root.

Inversion has previously been used for studying charged closed conductors
of rather exotic form, such as degenerate tori [7] or spindles [51]. Cutting
holes in these surfaces of revolution, without breaking axial symmetry, leads,
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Figure 5.7
A degenerate toroidal shell with four azimuthal cuts.

under inversion, to the determination of the electrostatic field produced by
a negative unit charge, located on the inversion centre, in the presence of
finite or semi-infinite grounded cylinders (in the case of the torus), or of open
semi-infinite grounded cones (in the case of the spindle). These problems are
thereby reduced to the solution of certain well-studied dual series or integral
equations.

In this section, we focus on conductors with azimuthal openings that break
the axial symmetry, and thereby demonstrate an essential and significant ex-
tension to the class of three-dimensional open conducting surfaces whose po-
tential is obtainable by these semi-analytic techniques.

The degenerate toroidal surface is the body of revolution generated by re-
volving a circle about a given tangent. Fixing this tangent to be the z-axis in
the cylindrical coordinate system (ρ, ϕ, z ), and taking the circle radius to be
a units, the closed surface has the equation (ρ − a)2 + z2 = a2, ϕ ∈ [−π, π] .
We first consider open toroidal shells having one azimuthal cut, or hole, of
semi-width ϕ1, specified by

(ρ− a)2 + z2 = a2;ϕ ∈ [−π,−ϕ1] ∪ [ϕ1, π] .

(See Figure 5.6.) Subsequently, open toroidal shells with multiple azimuthal
cuts symmetrically disposed as shown in Figure 5.7 will be examined.

We wish to determine the electrostatic potential when such open shells are
charged to unit constant potential. Let M denote the origin of the coordi-
nate system and consider inversion of the toroidal shell in a sphere of radius
2a centred at M . From Bouwkamp’s theorem (Section 3.4), the problem is
equivalent to the determination of the electrostatic field produced by a neg-
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Figure 5.8
(a) The degenerate toroid with one azimuthal cut (top view) and
(b) the slotted infinite cylinder, its image under inversion.

ative unit charge, located at M , in the presence of a semi-infinite grounded
cylinder having one or more longitudinal slots. (See figure 5.8.)

The equivalent problem may be formulated as a set of dual series equations
involving trigonometric functions with unknown Fourier coefficients. However,
in contrast to the axially symmetric problems previously investigated, the
coefficients depend on some spectral parameter ν. For apertures of arbitrary
angle size, regularisation of the dual series equations transforms them to an
infinite system of linear algebraic equations of the second kind for the modified
Fourier coefficients. The Fredholm nature of the matrix operator, at each fixed
value of the spectral parameter ν, makes it possible to use a truncation method
effectively to obtain a finite number of Fourier coefficients numerically.

An approximate formula for capacitance can be obtained for three limiting
cases: the narrow cut (ϕ1 � 1 ), a narrow skew ring (ϕ0 = π − ϕ1 � 1),
and a large number of cuts (N � 1). Some representative numerical results
are presented to demonstrate the efficacy of the analysis, and to check the
accuracy of the approximate formulae derived in the limiting cases.

5.6.1 The toroidal shell with one azimuthal cut.

Consider first the toroidal shell with a single opening arising from an az-
imuthal cut. Let U be the potential associated with the field induced by a
unit negative charge, located atM , on the infinite circular cylinder of radius 2a
with a longitudinal slot of angular semi-width ϕ1. The potential must satisfy
Laplace’s equation, together with the boundary conditions, edge conditions,
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and a decay condition at infinity. In cylindrical coordinates, the potential
therefore has the form

U(ρ, ϕ, z) = U0+∫ ∞

0

dν cos νz
∞∑

n=0

An(ν) cos(nϕ)
{
In(νρ), 0 ≤ ρ < 2a
In(2νa)Kn(νρ)/Kn(2νa), ρ > 2a

(5. 65)

where In,Kn are the modified Bessel functions, U0 = −(ρ2 + z2)−
1
2 is the

electrostatic potential of the free space negative unit charge located at M ,
and {An(ν)}∞n=0 is the sequence of unknown Fourier coefficients, which are
functions of the spectral parameter ν.

Using the mixed boundary conditions for the surface

U(2a− 0, ϕ, z) = U(2a+ 0, ϕ, z) = 0, ϕ ∈ (ϕ1, π), (5. 66)

and on the aperture

∂U

∂ρ
(2a− 0, ϕ, z) =

∂U

∂ρ
(2a− 0, ϕ, z), ϕ ∈ (0, ϕ1), (5. 67)

and applying the Fourier cosine transform, the following dual series equations
result:

∞∑
n=0

An(ν)
cos(nϕ)
Kn(2νa)

= 0, ϕ ∈ (0, ϕ1), (5. 68)

∞∑
n=0

An(ν)In(2νa) cos(nϕ) =
2
π
K0(2νa), ϕ ∈ (ϕ1, π). (5. 69)

We now proceed, as usual, to transform this basic set of equations, which
are of first kind, to a Fredholm matrix equation of the second kind. The main
difference to previous analysis is that the coefficients An are functions of the
spectral parameter ν.

The standard approach is to replace the cosine kernels cos(nϕ) by Jacobi

polynomials P (− 1
2 ,− 1

2 )
n . It is then necessary to integrate these equations, using

the variant (2. 36) Rodrigues’ formula, so that the techniques described in
Chapter 2 are applicable. Equivalently, we may first integrate the pair (5.
68) and (5. 69), and then replace the sine kernels by the Jacobi polynomials

P
( 1
2 , 1

2 )
n to obtain

∞∑
n=1

An(ν)In(2νa)
Γ(n)

Γ(n+ 1
2 )
P

( 1
2 , 1

2 )
n−1 (t) =

2
[
2I0(2νa)A0 − 4

πK0(2νa)
]

√
π (1− t2)

1
2

(
arcsin t+

π

2

)
, t ∈ (−1, t1), (5. 70)
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∞∑
n=1

An(ν)
nKn(2νa)

Γ(n+ 1)
Γ(n+ 1

2 )
P

( 1
2 , 1

2 )
n−1 (t) =

− A0 (π − 2 arcsin t)

K0(2νa)
√
π (1− t2)

1
2

t ∈ (t1, 1), (5. 71)

where t = cos(ϕ) and t1 = cos(ϕ1). Define the new unknown quantities

Mn = An/ {nKn(2νa)}

that are to be determined. The asymptotics of the modified Bessel functions
(see Appendix, (B. 159) and (B. 160)) show that the parameter

εn = 1− 2nIn(2νa)Kn(2νa) (5. 72)

is asymptotically small: εn = O(n−2) as n→∞. The Equations (5. 70) and
(5. 71) become

(
1− t2

) 1
2
√
π

∞∑
n=1

Mn
Γ(n+ 1)
Γ(n+ 1

2 )
P

( 1
2 , 1

2 )
n−1 (t)

= − A0

K0(2νa)
(π − 2 arcsin t) , t ∈ (t1, 1), (5. 73)

(
1− t2

) 1
2
√
π

∞∑
n=1

Mn(1− εn)
Γ(n)

Γ(n+ 1
2 )
P

( 1
2 , 1

2 )
n−1 (t)

= 2
[
2I0(2νa)A0 −

4
π
K0(2νa)

](
arcsin t+

π

2

)
, t ∈ (−1, t1). (5. 74)

The Abel transform method may now be applied. To make the rate of
convergence of the terms in series (5. 73) and (5. 74) equal, Equation (5. 73)
is integrated using the particular case of (1. 171),

(1− t)
3
2 P

( 3
2 ,− 1

2 )
n−1 (t) =

(
n+

1
2

)∫ 1

t

(1− x)
1
2 P

( 1
2 , 1

2 )
n−1 (x)dx, (5. 75)

to obtain

(1− t)
3
2
√
π

∞∑
n=1

Mn
Γ(n+ 1)
Γ(n+ 3

2 )
P

( 3
2 ,− 1

2 )
n−1 (t) =

A0

K0(2νa)

[
2 (π − 2 arcsin t) (1 + t)

1
2 − 8 (1− t)

1
2

]
, t ∈ (t1, 1). (5. 76)

Using the Abel-type integral representation (1. 172) for Jacobi polynomials

P
( 1
2 , 1

2 )
n−1 in terms of P (1,0)

n−1 and the particular case of (1. 171),

P
( 3
2 ,− 1

2 )
n−1 (t) = (1− t)−

3
2

Γ(n+ 3
2 )

√
πΓ(n+ 1)

∫ 1

t

(1− x)P (1,0)
n−1 (x)

(x− t)
1
2

dx,
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a standard argument shows that

∞∑
n=1

Mn(1− t)P (1,0)
n−1 (t) =

{
F1(t), t ∈ (−1, t1)
F2(t), t ∈ (t1, 1) (5. 77)

where

F1(t) =
∞∑

n=1

Mnεn(1− t)P (1,0)
n−1 (t) + 2

[
2I0(2νa)A0 −

4
π
K0(2νa)

]
,

F2(t) = 2 ln
(

1
2

(1 + t)
)
A0/K0(2νa).

A familiar orthogonality argument produces the matrix equation

Mm (1− εm) +m
∞∑

n=1

MnεnQ
(1,0)
n−1,m−1(t1) =

2
[
2I0(2νa)A0 −

4
π
K0(2νa)

]
(1 + t1)P

(0,1)
m−1(t1)−

2A0

K0(2νa)

[
(1 + t1) ln

(
1 + t1

2

)
P

(0,1)
m−1(t1) +

1− t1
m

P
(1,0)
m−1(t1)

]
(5. 78)

holding for all indices m = 1, 2, ....
The system (5. 78) has an infinite number of solutions if the constant A0

has an arbitrary value. A unique solution is obtained by requiring that the
function on the left-hand side of (5. 77) is continuous at the point t = t1.
Hence

A0 =
4π−1K2

0 (2νa)− 1
2 (1− t1)K0(2νa)

∑∞
n=1MnεnP

(1,0)
n−1 (t1)

2I0(2νa)K0(2νa)− ln
(

1
2 (1 + t1)

) . (5. 79)

A combination of (5. 78) and (5. 79) yields the final form of the Fredholm
matrix equation of second kind for the unknown Fourier coefficients Mn:

Mm (1− εm) +
∞∑

n=1

MnεnBnm(t1)

= − 4
π

(1− t1)K0(2νa)
2I0(2νa)K0(2νa)− ln

(
1
2 (1 + t1)

) P (1,0)
m−1(t1)
m

(5. 80)

where m = 1, 2, ..., and

Bnm(t1) =
n

2

{
Q

(0,1)
n−1,m−1(t1)−

(1− t1)2P
(1,0)
n−1 (t1)P

(1,0)
m−1(t1)

nm
(
2I0(2νa)K0(2νa)− ln

(
1
2 (1 + t1)

))} .
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Here it should be noted that we used the relationship (cf. (B. 172))

Q
(1,0)
n−1,m−1(t1) = − (1− t1)(1 + t1)

m
P

(1,0)
n−1 (t1)P

(0,1)
m−1(t1) +

n

m
Q

(0,1)
n−1,m−1(t1).

This completes the regularisation of the original pair of dual series equations
(5. 68) and (5. 69). Computationally, system (5. 80) is very attractive; it
may be rapidly solved by a truncation method with predetermined accuracy
for every value of ν, whatever the angular measure of the hole may be. The
electrostatic field is then found from (5. 65) as a Fourier cosine transform of
the coefficients An(ν).

Finally, the capacitance of the conductor, as a function of the angular semi-
width ϕ1, is

C = C(ϕ1) = 4a2

∫ ∞

0

A0(ν)dν. (5. 81)

The logarithmic singularity of K0 affects the numerical calculations, and the
expression should be transformed to

C =
4a
π

∫ ∞

0

{I0(x)}−2
dx+

2a
π

ln
(

1 + t1
2

)∫ ∞

0

{I0(x)L0(x)}−1
dx

− a(1− t1)
∫ ∞

0

{ ∞∑
n=1

Mn(x)εn(x)P (1,0)
n−1 (t1)

}
{L0(x)}−1

dx, (5. 82)

where

L0(x) = I0(x)−
1

2K0(x)
ln
(

1 + t1
2

)
.

This depends upon the identity (derived by an integration by parts)∫ ∞

0

K0(x)
I0(x)

dx =
∫ ∞

0

dx

I2
0 (x)

.

5.6.2 The toroidal shell with multiple cuts

The potential surrounding a toroidal conductor having 2N (N = 1, 2, ...) equal
azimuthal cuts may be analysed in the same way. The structure is displayed
in Figure 5.7. Let ϕ1 be the semi-width of each cut: thus ϕ1 + ϕ0 = 2−Nπ,
where ϕ0 is the angular semi-width of each of the 2N conducting sectors.
Taking into account the symmetrical location of the cuts and the identity
cosnϕ = (−1)n cos(n(π − ϕ)), it is easy to show that the pair of equations
corresponding to (5. 68) and (5. 69) take the special form

∞∑
n=1

A2N n(ν)
cos(nθ)

K2N n(2νa)
= − A0(ν)

K0(2νa)
, θ ∈ (0, θ1) (5. 83)
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∞∑
n=1

A2N n(ν)I2N n(2νa) cos(nθ) =
2
π
K0(2νa)− I0(2νa)A0(ν), θ ∈ (θ1, π)

(5. 84)
where θ = 2Nϕ and θ1 = 2Nϕ1. Note that Ak = 0 unless k is an integral
multiple of 2N .

Using the same solution scheme considered above, and introducing the
rescaled unknowns

M2N n = A2N n/ {nK2N n(2νa)} ,

we obtain the following matrix equation of second kind,

M2N m (1− ε2N m) +
∞∑

n=1

M2N nε2N nBn,m(u1)

=
−4(1− u1)K0(2νa)P

(1,0)
m−1(u1)

2Nmπ
(
2I0(2νa)K0(2νa)− ln

(
1
2 (1 + u1)

)) , (5. 85)

where m = 1, 2, ..., u = cos θ, u1 = cos θ1, and

Bn,m(u1) =
n

2
Q

(0,1)
n−1,m−1(u1)−

n(1− u1)2P
(1,0)
n−1 (u1)P

(1,0)
m−1(u1)

2N+1m
(
2I0(2νa)K0(2νa)− ln

(
1
2 (1 + u1)

)) ,
A0 =

4π−1K2
0 (2νa)− 1

2 (1− u1)K0(2νa)
∑∞

n=1M2N nε2N nP
(1,0)
n−1 (u1)

2I0(2νa)K0(2νa)− 2−N ln
(

1
2 (1 + u1)

) ,

(5. 86)
and

ε2N n = 1− 2n.2NI2N n(2νa)K2N n(2νa) = O(
(
2Nn

)−2
), as n→∞. (5. 87)

When N = 0 (a single cut), the pairs of Equations (5. 79) and (5. 80) and
(5. 85) and (5. 86) are equivalent. It is clear that (5. 85) enjoys the same
mathematical and computational properties as obtained for (5. 80), arising
from its form as a Fredholm matrix equation of second kind.

5.6.3 Limiting cases

The pairs of Equations (5. 79) and (5. 80) and (5. 85) and (5. 86) have
approximate analytical solutions in three limiting cases: the toroidal surface
with a narrow single cut (ϕ1 � 1 ), the toroidal surface with a large number
of cuts (N � 1), and the narrow skew ring (in which the angle ϕ0 = π − ϕ1

satisfies ϕ0 � 1).
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When the cut in the torus is narrow (ϕ1 � 1, t1 = cosϕ1 → 1 ), the Fourier
coefficients of the system (5. 80) have the behaviour Mn ∼ O(ϕ2

1), and it
follows that

C = C0

(
1− 1

8
ϕ2

1

)
+O

(
ϕ4

1

)
, (5. 88)

where

C0 =
4a
π

∫ ∞

0

K0(x)
I0(x)

dx =
4a
π

∫ ∞

0

dx

I2
0 (x)

= 1.74138027a (5. 89)

is the capacity of the closed toroidal conductor [51]. Capacitance values ob-
tained from this formula agree well with results of computations on the system
(5. 78), at least for cuts of angle ϕ1 not exceeding 30◦.

When the toroidal shell has a large number of symmetrically placed cuts
(N � 1 ) it is easy to show that its capacitance is

C = C0

[
1 +

1
2N

ln
(

cos
θ1
2

)] [
1 +O

(
2−2N

)]
. (5. 90)

When N → ∞, expression (5. 90) reduces to the expression for the capacity
C0 of the fully closed conductor. When the cuts are narrow, formula (5. 90)
is computationally very accurate because both approximations for multiple
holes and for narrow cuts work together.

When the angular semi-width ϕ0 = π − ϕ1 of the ring is small (ϕ0 � 1),
the approximate expression for capacity of this skew ring is

Cring(ϕ0) =
4a
π

∫ ∞

0

K2
0 (x)

I0(x)K0(2νa)− ln
(

1
2ϕ0

)dx. (5. 91)

We make two remarks about the expression (5. 91). First, it has a logarithmic
singularity near x = 0 which should be addressed in any numerical integration.
Second, the infinite range of integration may be truncated to (0, 4e−γ−1ϕ−1

0 )
with an error O(exp

(
−2ϕ−1

0

)
). Values of capacity computed according to (5.

91) agree well, in the range 0 < ϕ0 ≤ 10◦, with the numerical results obtained
from (5. 82) (employing the solution of the system (5. 80)).

Numerical values for the capacity of a toroidal conductor having radius
a = 1 and k = 2N cuts may be obtained by solution of (5. 78) or (5. 85)
as appropriate. These systems are truncated to a finite number of equations
and, after numerical solution, the value of A0 may be determined from (5.
79) or (5. 86) as appropriate. The capacity C is then calculated according
to (5. 82) by repeating the calculation for A0(ν) for a suitable range of ν.
Selected results are shown in Table 5.1 (ϕ1 is the angular semi-width of each
cut in degrees); for single cut (k = 1), a graph of capacity C as a function of
ϕ0 = π−ϕ1 is shown in Figure 5.9. It was found that the maximum size of a
system to be solved did not exceed 10 equations. In the case of a multiply-cut
conductor, it was enough to solve only one equation, provided k = 2N ≥ 4.
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Figure 5.9
Capacitance of an open toroidal shell with azimuthal cuts.

By examining systems of respective orders one and ten, the seven decimal
place results displayed in Table 5.2 exemplify, when k = 4, how the accuracy
of the computed capacity Ct depends upon the number t of equations solved
after truncation of system (5. 85) to a finite system. As a consequence, an
iteration method may be successfully used to refine accuracy.
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ϕ1(deg .) k = 1 k = 2 k = 4 k = 16 k = 64
0.1 1.741380 1.741379 1.741378 1.741370 1.741338
1.0 1.74131 1.74125 1.74112 1.74032 1.73692
10 1.7349 1.7285 1.7154 1.5804
30 1.6893 1.6358 1.5095
90 1.3912

150 0.9173
170 0.6749
175 0.5800
179 0.4397

179.9 0.3282
179.99 0.26194

Computed capacity of a toroid with k azimuthal cuts of angular semi-width
ϕ1.

ϕ1 C1 C10 |C10 − C1|
300 1.5094431 1.5095232 ≈ 8 · 10−5

10 1.7411151 1.7411151 < 10−7

Computed capacitance values for a toroidal shell with k = 4 cuts.
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Chapter 6

Potential Theory for Conical
Structures with Edges

Conical structures are distinctively different from the spheroidal and toroidal
structures considered in previous chapters. Electrostatic fields induced by a
point source in the vicinity of the conical tip possess singularities unique to
this class. On the other hand, the open or hollow conical frustrum produced
by removal of the tip region exhibits an interesting range of geometries, from
the flat, annular disc to the hollow, circular cylinder. In this chapter, we treat
a selection of potential problems that are most distinctive of conically-shaped
thin conductors with edges. The selection is not exhaustive, but is intended
to indicate the class of conical structures that might be successfully analysed
by this approach.

By way of introduction, we first consider the related two-dimensional calcu-
lation of the electrostatic field generated by a pair of oppositely charged strips
that are not coplanar or parallel; the structure is a two-dimensional analogue
of the conical frustrum. After considering the infinitely long cone, the elec-
trostatic field of the open conical frustrum is investigated in Section 6.2. The
potential is determined by a set of dual integral equations: a notable aspect
of their solution is the use of the Mehler-Fock transform in the regularisation
process. The resultant second-kind Fredholm integral equations are well con-
ditioned and possess the familiar properties conducive to the straightforward
application of standard numerical methods.

The next section (6.3) examines the spindle, which is the image of the
cone under inversion in a centre located on the conical axis (but not on the
vertex). The potential of both spindle and cone are intimately related by
Bouwkamp’s theorem. Cutting a sectoral slot in the cone corresponds to
opening an azimuthal or longitudinal slot on the spindle surface. Both struc-
tures are interesting because of the departure from the axial symmetry evident
in previously considered conductors. The dual series equations describing the
potential of the slotted cone are regularised; the capacitance of the associ-
ated slotted spindle is obtained. Whilst these potential problems have been
studied previously, their solutions are rather less well known, especially when
the slots break the axial symmetry of the conductor. As for the toroid with
azimuthal slots considered in Chapter 5, this represents a significant extension
of analytic and semi-analytic techniques to determining the potential distri-
bution surrounding nonsymmetric open conducting surfaces. In this context,
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Figure 6.1
Oppositely charged infinite strips, not coplanar.

the hollow spindle with a slot is particularly instructive, because it uses most
of the mathematical tools set forth in this book.

The final section (6.4) considers the confluent case of the slotted spindle in
which the open conducting surface becomes a spherical shell with a longitu-
dinal slot. This class of nonsymmetric apertures on the sphere complements
the earlier studies on axially symmetric open spherical conductors.

6.1 Non-coplanar oppositely charged infinite strips

Let us consider the electrostatic field due to a pair of oppositely charged
infinite strips that are not coplanar or parallel. This may be viewed as a
conducting wedge with sections removed symmetrically from each arm, as
shown in Figure 6.1. The strips lie on half-planes emanating from the origin
and are symmetric with respect to the x-axis. In cylindrical polar coordinates
(ρ, ϕ, z), the positively charged strip is described by ρ ∈ (a, b) , ϕ = ϕ0, and the
negatively charged strip by ρ ∈ (a, b) ; ϕ = 2π−ϕ0. The electrostatic potential
ψ (ρ, ϕ, z) is independent of z; the problem to be solved is two-dimensional,
ψ ≡ ψ (ρ, ϕ) .

It is convenient to introduce the dimensionless radial coordinate r = ρ/ (ab)
1
2 ;

Laplace’s equation becomes

1
r

∂

∂r

(
r
∂ψ (r, ϕ)

∂r

)
+

1
r2
∂2ψ (r, ϕ)
∂ϕ2

= 0. (6. 1)
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The geometry of the problem forces us to seek discontinuous solutions in
the variable ϕ, and imposes conditions on the separation constants when the
method of separation of variables is used to construct total solutions of the
Laplace equation. In particular, the boundedness of the potential at the origin
and at infinity imply that in each of the regions ϕ < ϕ0 and ϕ > ϕ0 it has
the form

ψ (r, ϕ) =
∫ ∞

0

{C (τ) cos τσ +D (τ) sin τσ}
{
A (τ) e−τϕ +B (τ) eτϕ

}
dτ,

(6. 2)
where

σ = log r, (6. 3)

and A,B,C, and D are unknown functions to be determined.
Due to the symmetry it is clear that

ψ (r, 0) = ψ (r, π) = 0, r ∈ (0,∞) .

Enforcing a continuity condition at ϕ = ϕ0, the desired form of solution is

ψ (σ, ϕ) =
∫ ∞

0

dτ {f (τ) cos τσ + g (τ) sin τσ}F (τ, ϕ) , (6. 4)

where

F (τ, ϕ) =
{

sinh (τϕ) , ϕ < ϕ0

sinh (τϕ0) sinh [τ (π − ϕ)] / sinh [τ (π − ϕ0)] , ϕ > ϕ0

and f, g are unknown functions to be determined.
The mixed boundary conditions to be enforced on the representation are

∂ψ

∂ϕ
(σ, ϕ0 − 0) =

∂ψ

∂ϕ
(σ, ϕ0 + 0), σ ∈ (−∞,−σ0) ∪ (σ0,∞) , (6. 5)

ψ (σ, ϕ0 − 0) = ψ (σ, ϕ0 + 0) = 1, σ ∈ (−σ0, σ0) , (6. 6)

where σ0 = 1
2 log (b/a) . It is readily justified that g (τ) ≡ 0, so the problem

reduces to finding the function f that satisfies the dual integral equations∫ ∞

0

sinh (τϕ0) f (τ) cos (τσ) dτ = 1, σ ∈ (0, σ0) , (6. 7)

∫ ∞

0

τ sinh (πτ)
sinh [(π − ϕ0) τ ]

f (τ) cos (τσ) dτ = 0, σ ∈ (σ0,∞) . (6. 8)

When the strips are coplanar
(
ϕ0 = 1

2π
)
, the potential may be found ana-

lytically [54, 55]. (See also Chapter 7.) The parameter ϕ1 = 1
2π−ϕ0 measures

the deviation of the structure from the confluent geometry of coplanar strips.
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To quantify this effect, let us solve (6.7) and (6.8) by the definition method
(Section 1.4). Introduce the auxiliary function g by∫ ∞

0

τ sinh (πτ)
sinh [(π − ϕ0) τ ]

f (τ) cos (τσ) dτ =
{
g (σ) , σ ∈ (0, σ0) ,
0, σ ∈ (σ0,∞) . (6. 9)

An inverse Fourier cosine transform yields

f (τ) =
2
π

sinh [(π − ϕ0) τ ]
τ sinh (πτ)

∫ σ0

0

g (σ′) cos (τσ′) dσ′, (6. 10)

and inserting this expression in (6.7) leads to the first-kind Fredholm integral
equation for g, ∫ σ0

0

g (σ′)K (σ, σ′) dσ′ =
π

2
, σ ∈ (0, σ0) , (6. 11)

where the kernel K is defined by

K (σ, σ′) =
∫ ∞

0

sinh [(π − ϕ0) τ ] sinh τϕ0

τ sinh (πτ)
cos (τσ) cos (τσ′) dτ. (6. 12)

One can readily transform K to a logarithmic type kernel using the cosine-
Fourier transform [14] (Vol. 1), valid for |Reα| < π, |Reβ| < π,∫ ∞

0

cosh (βy)− cosh (αy)
y sinh (πy)

cosxydy =
1
2

log
[
coshx+ cosα
coshx+ cosβ

]
. (6. 13)

By means of some algebraic manipulation K (σ, σ′) is transformed to

K (σ, σ′) =

1
8

log

[
(coshσ + coshσ′)2 − 4

(
coshσ coshσ′ + cos2 ϕ1

)
sin2 ϕ1

(coshσ − coshσ′)2

]
. (6. 14)

The kernel that corresponds to the coplanar structure (ϕ1 = 0) is

K0 (σ, σ′) =
1
4

log
∣∣∣∣coshσ + coshσ′

coshσ − coshσ′

∣∣∣∣ . (6. 15)

Following the basic idea of the method of regularisation, we now split the
kernel into two parts, one of which (K0) is singular and the other (K1) is
regular,

K (σ, σ′) = K0 (σ, σ′) +K1 (σ, σ′) , (6. 16)

where

K1 (σ, σ′) = K (σ, σ′)−K0 (σ, σ′) (6. 17)

=
1
8

log

{
1− 4

coshσ coshσ′ + cos2 ϕ1

(coshσ + coshσ′)2
sin2 ϕ1

}
.
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It is evident that the kernel K1 is regular in both variables σ and σ′ within the
interval [0, σ0]. The parameter ϕ1 measures the deviation of solutions from
that for coplanar strips.

In the coplanar case (ϕ1 = 0) the integral equation is∫ σ0

0

g0 (σ′) log
∣∣∣∣coshσ + coshσ′

coshσ − coshσ′

∣∣∣∣ dσ′ = 2π, σ ∈ (0, σ0) (6. 18)

where function g0 refers to the coplanar structure. Integral equations with
logarithmic kernels are well studied; many with canonical kernels have closed
form solutions (see, for example, [48]). In particular, the solution of (6.18) is

g0 (σ′) =
2 coshσ0

K (sechσ0)
(
cosh2 σ0 − cosh2 σ

)− 1
2 ,

(6. 19)

where K(x) denotes the complete elliptic integral of the first kind. The cor-
responding function f0 is found from (6.10), using the integral representation
(B. 100) (see Appendix),

f0 (τ) =
coshσ0

K (sechσ0)

P− 1
2+i τ

2
(cosh 2σ0)

τ cosh
(

π
2 τ
) . (6. 20)

The line charge density may now be calculated (recall ρ = (ab)
1
2 eσ) to be

l(ρ) =
1
4π

{
Eϕ

(
ρ,
π

2
+ 0
)
− Eϕ

(
ρ,
π

2
− 0
)}

(6. 21)

=
1
2π

∫ ∞

0

τf0 (τ) cosh
(π

2
τ
)

cos τσdτ.

After substitution of the expression (6.20) for f0 in (6.21) we may use the
well-known integral [19]∫ ∞

0

P− 1
2+iτ (coshα) cos (τt) dτ =

H(α− t)√
2 (coshα− cosh t)

, (6. 22)

to deduce the line charge density equals (in agreement with [48])

l(ρ) =
1
4π
.

b

K (a/b)
{(
ρ2 − a2

) (
b2 − ρ2

)}− 1
2 . (6. 23)

In order to examine the potential distribution for non-coplanar strips, we
make extensive use of the Mehler-Fock transform [36, 56].

Theorem 6 Let f be a real valued function defined on the interval (1,∞) ,
which is piecewise continuous and of bounded variation on every finite subin-
terval of (1,∞) . Then providing the integrals∫ a

1

|f(x)| (x− 1)−
3
4 dx and

∫ ∞

a

|f(x)|x− 1
2 lnx dx
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are finite for every a > 1, the representation

f(x) =
∫ ∞

0

τ tanh(πτ)P− 1
2+iτ (x) dτ

∫ ∞

1

f(ξ)P− 1
2+iτ (ξ) dξ (6. 24)

is valid at every point x ∈ (1,∞) where f is continuous. Thus, if f has
transform

F (τ) =
∫ ∞

1

f(ξ)P− 1
2+iτ (ξ) dξ,

the inverse transform is

f(x) =
∫ ∞

0

τ tanh(πτ)P− 1
2+iτ (x)F (τ)dτ.

We shall apply the Mehler-Fock transform particularly in the form

f(α) =
1
2

∫ ∞

0

τ tanh(
π

2
τ)P− 1

2+i τ
2

(cosh 2α) dτ×∫ ∞

0

f(σ)P− 1
2+i τ

2
(cosh 2σ) sinh(2σ) dσ, (6. 25)

and use the representations (derived from (B. 100) of the Appendix)

P− 1
2+i τ

2
(cosh 2x) =

2
π

∫ x

0

cos τt dt√
cosh2 x− cosh2 t

,

=
2
π

coth(
π

2
τ)
∫ ∞

x

sin τt dt√
cosh2 t− cosh2 x

. (6. 26)

Now integrate (6. 8) to obtain∫ ∞

0

sinh (πτ)
sinh [(π − ϕ0) τ ]

f (τ) sin τσ dτ = C, σ ∈ (σ0,∞) , (6. 27)

where C is a constant of integration to be determined. Rescale the function
f so that

f (τ) = τ
sinh [(π − ϕ0) τ ]

sinh (πτ)
F (τ). (6. 28)

After some manipulation, we obtain the dual integral equations∫ ∞

0

τ tanh
(π

2
τ
)

[1−N(τ)]F (τ) cos τσ dτ = 2, σ ∈ (0, σ0) , (6. 29)

∫ ∞

0

τF (τ) sin τσ dτ = C, σ ∈ (σ0,∞) (6. 30)

where

N(τ) =
sinh2 τϕ1

sinh2
(

π
2 τ
) , 0 ≤ ϕ1 <

π

2
. (6. 31)

©2001 CRC Press LLC



The function N has the asymptotic behaviour

N(τ) = e−(π−2ϕ1)τ (1 +O(e−2ϕ1τ )), (6. 32)

and plays the role of the asymptotically small parameter in the regularisation
method; its magnitude is determined by the ratio 2ϕ1/π. Making use of the
integral representations (6. 26), we may obtain the equivalent form∫ ∞

0

τ tanh
(π

2
τ
)

[1−N(τ)]F (τ)P− 1
2+i τ

2
(cosh 2σ) dτ

=
4
π

sechσK(tanhσ), σ ∈ (0, σ0) , (6. 33)

∫ ∞

0

τ tanh
(π

2
τ
)
F (τ)P− 1

2+i τ
2

(cosh 2σ) dτ

=
2
π
C sechσK(sechσ), σ ∈ (σ0,∞) . (6. 34)

We rearrange (6. 33) and (6. 34) so that a suitably chosen singular part may
be inverted via the Mehler-Fock transform:

Φ(σ) =
∫ ∞

0

τ tanh
(π

2
τ
)
F (τ)P− 1

2+i τ
2

(cosh 2σ) dτ

=
{
F1(σ), σ ∈ (0, σ0) ,
F2(σ), σ ∈ (σ0,∞) , (6. 35)

where

F1(σ) =
∫ ∞

0

τ tanh
(π

2
τ
)
N(τ)F (τ)P− 1

2+i τ
2

(cosh 2σ) dτ

+
4
π

sechσK(tanhσ), (6. 36)

F2(σ) =
2
π
C sechσK(sechσ). (6. 37)

The as yet unknown constant C is determined by invoking the principle that
the potential must satisfy the edge condition. This means that the function
Φ defined in (6. 35) must be continuous, particularly at σ0, so

C =
π

2
coshσ0

K(sechσ0)

∫ ∞

0

τ tanh
(π

2
τ
)
N(τ)F (τ)P− 1

2+i τ
2

(cosh 2σ) dτ

+ 2
K(tanhσ0)
K(sechσ0)

. (6. 38)

It will be seen later that this value is exactly the capacitance per unit length
of the non-coplanar strips. Before applying the Mehler-Fock transform, it is
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advantageous to insert this value for C (6. 37), and to replace the complete
elliptic integrals thus occurring in (6. 36) and (6. 37) by their expression in
terms of Legendre functions (see Appendix, (B. 88)–(B. 92)). The application
of the Mehler-Fock transform produces the following second-kind Fredholm
integral equation for the function F,

F (τ)−
∫ ∞

0

F (µ)K(µ, τ)dµ = G(τ), τ ∈ (0,∞) , (6. 39)

where the kernel is

K(µ, τ) =
µ

4
tanh

(π
2
µ
)
N (µ)

∫ z0

1

P− 1
2+i µ

2
(z)P− 1

2+i τ
2

(z) dz+

µ

4
tanh

(π
2
µ
)
N (µ)

P− 1
2+i µ

2
(z0)

Q− 1
2

(z0)

∫ ∞

z0

Q− 1
2

(z)P− 1
2+i τ

2
(z) dz, (6. 40)

with z0 = cosh (2σ0) , and

G(τ) =
1
2

∫ z0

1

P− 1
2

(z)P− 1
2+i τ

2
(z) dz+

1
2

P− 1
2

(z0)

Q− 1
2

(z0)

∫ ∞

z0

Q− 1
2

(z)P− 1
2+i τ

2
(z) dz. (6. 41)

The integrals occurring in the definition of G may be explicitly evaluated
by using a differential equation for the Legendre functions Pν , Qν and their
Wronskian (see Appendix, (B. 63) and (B. 69)), so that

G(τ) =
2
τ2

P− 1
2+i τ

2
(z0)

Q− 1
2

(z0)
. (6. 42)

In a similar fashion, the explicit closed form for the kernel may be seen to
equal

K(µ, τ) =
µ

τ2
tanh

(π
2
µ
)
N (µ)

(
1− z2

0

)
P− 1

2+i τ
2

(z0)P− 1
2+i µ

2
(z0)×{

q (z0)−
µ2pτ (z0)− τ2pµ (z0)

µ2 − τ2

}
, (6. 43)

where

q (z0) =
Q′− 1

2
(z0)

Q− 1
2

(z0)
=
[
d

dz
lnQ− 1

2
(z)
]

z=z0

,

pτ (z0) =
P ′− 1

2+i τ
2

(z0)

P− 1
2+i τ

2
(z0)

=
[
d

dz
lnP− 1

2+i τ
2

(z)
]

z=z0

.
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Notice that in the limiting case of coplanar strips, the function N vanishes,
and the explicit solution is

F (τ) = G(τ) =
2
τ2

P− 1
2+i τ

2
(z0)

Q− 1
2

(z0)
,

which coincides exactly with the result stated in Equation (6. 20). When the
strips are not coplanar (0 ≤ ϕ1 <

1
2π), the integral Equation (6. 39) may be

satisfactorily solved by standard numerical methods.
We have implied at various points in this book that the same equations

may be solvable in different ways. The integral equation (6. 39) should be
transformed to some discrete form for this process. At the outset, one may
ask if there is a regular basis to construct a satisfactory numerical solution.
This question was originally answered affirmatively by C.J. Tranter (see [55]).
We describe a similar approach, commencing from (6. 7) and (6. 8). With
the rescaling

f∗ (τ) =
τ sinh(πτ)

sinh [(π − ϕ0) τ ]
f(τ), (6. 44)

we obtain the dual integral equations∫ ∞

0

M(τ)f∗ (τ) cos(τσ) dτ = 1, σ ∈ (0, σ0) , (6. 45)∫ ∞

0

f∗ (τ) cos(τσ) dτ = 0, σ ∈ (σ0,∞) , (6. 46)

where

M(τ) =
sinh (τϕ0) sinh [(π − ϕ0) τ ]

τ sinh(πτ)
→ 1, as τ →∞. (6. 47)

Now represent f∗ as a Neumann series

f∗ (τ) = a0J0 (τσ0) + 2
∞∑

n=1

√
nAnJ2n (τσ0) (6. 48)

and substitute in (6. 45) and (6. 46). After interchanging of integration and
summation, and using the discontinuous integral∫ ∞

0

J2n (τσ0) cos(τσ) dτ = H (σ0 − σ)
(
σ2

0 − σ2
)− 1

2 T2n

(√
1− σ2/σ2

0

)
,

(6. 49)
it may be verified that Equation (6. 46) is satisfied automatically, whilst
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Equation (6. 45) leads to

1
2

∞∑
n=1

n−
1
2AnT2n

(√
1− z2

)
(6. 50)

= 1− a0

∫ ∞

0

M(τ)J0 (τσ0) cos(τσ0z) dτ (6. 51)

+
∞∑

n=1

n
1
2An

∫ ∞

0

τ−1µ(τ)J2n (τσ0) cos(τσ0z) dτ, (6. 52)

where z ∈ (0, 1) and µ(τ) = 1− 2τM(τ) = O
(
e−2τϕ0

)
as τ →∞. Employing

the orthogonality of the Chebyshev polynomials T2n the Equation (6. 52) is
easily transformed to the i.s.l.a.e. of the second kind

Am −
∞∑

n=1

αnmAn = −αma0, (6. 53)

where m = 1, 2, . . . and

a0 =

(
1 +

∞∑
n=1

βnAn

)
/β∗0 ; (6. 54)

the coefficients are defined by

αnm = 4 (nm)
1
2

∫ ∞

0

τ−1µ(τ)J2n (τσ0) J2m (τσ0) dτ,

αm = 4m
1
2

∫ ∞

0

M(τ)J0 (τσ0) J2m (τσ0) dτ,

βn = n
1
2

∫ ∞

0

τ−1µ(τ)J2n (τσ0) J0 (τσ0) dτ,

β∗0 =
∫ ∞

0

M(τ)J2
0 (τσ0) dτ. (6. 55)

Making use of (6. 14), the integral representation for M is

M(τ) =
1
2π

∫ ∞

0

cos (τz) ln

[
1 +

sin2 ϕ0

sinh2 1
2z

]
dz, (6. 56)

so that

µ(τ) = 1− τ

π

∫ ∞

0

cos (τz) ln

[
1 +

sin2 ϕ0

sinh2 1
2z

]
dz. (6. 57)

An integration by parts shows that

µ(τ) =
2
π

∫ ∞

0

sin (τz) Φ1 (z) dz, (6. 58)
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where

Φ1 (z) =
1
z

+
1
2
d

dz
ln

[
1 +

sin2 ϕ0

sinh2 1
2z

]

=
1
z
− 1

2
sin2 ϕ0

sinh2 1
2z + sin2 ϕ0

coth
(z

2

)
. (6. 59)

Since Φ1 (z) → 0 as z → 0, we may integrate by parts again to obtain

µ(τ) =
2
πτ

∫ ∞

0

cos (τz) Φ′1 (z) dz. (6. 60)

This process may be reiterated; it is clear that the asymptotics for µ decrease
faster than any power, as µ has exponentially decreasing behaviour. The
representations (6. 58) and (6. 60) are satisfactory for numerical calculations
of the coefficients αnm, αm, βn, β

∗
0 .

6.2 Electrostatic fields of a charged axisymmetric finite
open conical conductor

We have previously exploited solutions of Laplace’s equations in spherical
coordinates (r, θ, ϕ) , which are discontinuous in the radial variable r, to solve
various potential problems such as spherical caps. In this chapter we examine
finite open conducting surfaces that are part of the conical surface

0 ≤ r <∞, θ = θ0 = constant, 0 ≤ ϕ ≤ 2π.

In this context, it is necessary to construct the total solution of Laplace’s
equation that is discontinuous in the angular variable θ; it is described in [23].
It may then be employed to construct solutions satisfying Dirichlet boundary
conditions on the conductor surface.

The form of separated solutions to Laplace’s equations in spherical coor-
dinates is given by (1. 62), (1. 63), and (1. 64). Since solutions must be
periodic in ϕ, the separation constant µ must be an integer m ≥ 0, and Φ has
the form (am, bm constants),

Φ (ϕ) = am cosmθ + bm sinmθ. (6. 61)

An appropriate choice for the separation constant ν appearing in (1. 60) is
ν = − 1

2 + iτ, (τ real) so that the solution for Θ in (1. 60) may be written

Θ(θ) = Cm(τ)Pm
− 1

2+iτ (cos θ) +Dm(τ)Qm
− 1

2+iτ (cos θ), (6. 62)
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where Cm, Dm are to be determined. This choice of ν is dictated by the
requirement that the energy integral (1. 85) is finite; this may be verified by
considering the form of the separated solutions for the radial coordinate listed
below (6. 65). Alternatively, the solution Θ may be expressed in terms of the
pair Pm

− 1
2+iτ

(cos θ) and Pm
− 1

2+iτ
(− cos θ), which are also linearly independent

solutions of (1. 60); the relation

Qm
− 1

2+iτ (x) = −iπ
2

tanh (πτ)Pm
− 1

2+iτ (x) + (−1)m π

2
sech (πτ)Pm

− 1
2+iτ (−x)

(6. 63)
is valid for |x| ≤ 1. Thus, we seek solutions for Θ in the form

Θ(θ) = Cm(τ)Pm
− 1

2+iτ (cos θ) +Dm(τ)Pm
− 1

2+iτ (− cos θ). (6. 64)

The separated solutions (1. 62) for the radial coordinate take the form

R(r) = r−
1
2
(
E(τ)riτ + F (τ)r−iτ

)
= e−

σ
2 (e(τ) cos(τσ) + f(τ) sin(τσ)) , (6. 65)

where σ = ln r. The separated solution ψτ
m (r, θ, ϕ) for Laplace’s equation

corresponding to parameters m and τ is the product of (6. 62), (6. 64), and
(6. 65), and the general solution is the superposition

ψ (r, θ, ϕ) =
∞∑

m=−∞

∫ ∞

−∞
ψτ

m (r, θ, ϕ) dτ. (6. 66)

Solutions of Laplace’s equations in regions bounded by the conical surface
θ = θ0 must take account of the singular behaviour of the associated Legendre
functions in (6. 64) at the singular points θ = 0, π. The function Pm

− 1
2+iτ

(cos θ)
is bounded at θ = 0, yet unbounded at θ = π. Thus internal conical harmon-
ics in the region 0 ≤ θ ≤ θ0 involve Pm

− 1
2+iτ

(cos θ) (and Dm(τ) = 0 in (6.
64)), whereas external conical harmonics in the region θ0 ≤ θ ≤ π involve
Pm
− 1

2+iτ
(− cos θ) (and Cm(τ) = 0). If the conductor is formed from the bi-

conical surface θ = θ0, θ = θ1, conical harmonics for the intermediate region
θ0 ≤ θ ≤ θ1 employ both terms in (6. 64).

Let us consider the Dirichlet boundary value problem for Laplace’s equation
for an open hollow finite conical conductor of the type shown in Figure 6.2.
The boundary condition on the single cone θ = θ0, or on the frustrum lying
on this surface, is

ψ (σ, θ0 − 0, ϕ) = ψ (σ, θ0 + 0, ϕ) , −∞ < σ <∞, 0 ≤ ϕ ≤ 2π. (6. 67)
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Figure 6.2
Various conical structures: (a) the bicone, (b) the cone, (c) a pair
of hollow conical frustra, and (d) a hollow conical frustrum of finite
length.

The particular solution (6. 64) takes the form

Θ (θ) =

Cm(τ)

{
Pm
− 1

2+iτ
(cos θ), θ ∈ (0, θ0) ,

Pm
− 1

2+iτ
(− cos θ)Pm

− 1
2+iτ

(cos θ0)/Pm
− 1

2+iτ
(cos θ0), θ ∈ (θ0, π) .

(6. 68)

For the finite hollow biconical conductor lying on the bicone θ = θ0, θ = θ1,
the particular solution (6. 64) takes the form

Θ (θ) =


Am(τ)Pm

− 1
2+iτ

(cos θ), θ ∈ (0, θ0) ,

∆−1
m (τ)

[
∆(1)

m (τ)Pm
− 1

2+iτ
(cos θ) + ∆(2)

m (τ)Pm
− 1

2+iτ
(− cos θ)

]
,

θ ∈ (θ0, θ1) ,
Dm(τ)Pm

− 1
2+iτ

(− cos θ), θ ∈ (θ1, π) ,
(6. 69)
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where

∆m(τ) = Pm
− 1

2+iτ (cos θ0)Pm
− 1

2+iτ (− cos θ1)

−Pm
− 1

2+iτ (− cos θ0)Pm
− 1

2+iτ (cos θ1),

∆(1)
m (τ) = Am(τ)Pm

− 1
2+iτ (− cos θ1)Pm

− 1
2+iτ (cos θ0)

−Dm(τ)Pm
− 1

2+iτ (− cos θ1)Pm
− 1

2+iτ (− cos θ0),

∆(2)
m (τ) = −Am(τ)Pm

− 1
2+iτ (cos θ0)Pm

− 1
2+iτ (cos θ1)

+Dm(τ)Pm
− 1

2+iτ (cos θ0)Pm
− 1

2+iτ (− cos θ1). (6. 70)

The fundamental solution of Laplace’s equation is the inverse distance func-

tion
∣∣∣−→r −−→r′ ∣∣∣−1

given by (1. 209); in terms of the notation introduced it takes
the form∣∣∣−→r −−→r′ ∣∣∣−1

= e−
1
2 (σ+σ′) {2 (cosh (σ − σ′)− cosψ)}−

1
2 , (6. 71)

where σ = ln r, σ′ = ln r′ and

cosψ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

It is representable as the integral transform [23]∣∣∣−→r −−→r′ ∣∣∣−1

= e−
1
2 (σ+σ′)

∫ ∞

0

sech (πτ)P− 1
2+iτ (cosψ) cos τ (σ − σ′) dτ.

(6. 72)
Employing the addition formula for the Legendre function [1]

Pν(cosx cos y ± sinx sin y cos a) =
∞∑

k=0

(±1)k cos kaP k
ν (cosx)P−k

ν (cos y),

(6. 73)
where x ≥ 0, y < π, and x+ y < π, and the relation [1]

P−k
ν (y) = (−1)k Γ (ν − k + 1)

Γ (ν + k + 1)
P k

ν (y), |y| < 1, (6. 74)

we finally obtain the representation which is discontinuous in θ :∣∣∣−→r −−→r′ ∣∣∣−1

= e−
1
2 (σ+σ′)

∞∑
m=0

(2− δ0m) cosm(φ− φ′)×

∫ ∞

0

sech (πτ)
Γ
(

1
2 + iτ −m

)
Γ
(

1
2 + iτ +m

)P (θ, θ′) cos τ (σ − σ′) dτ (6. 75)

where

P (θ, θ′) =

{
Pm
− 1

2+iτ
(− cos θ)Pm

− 1
2+iτ

(cos θ′), θ < θ′

P0)



The function (6. 75) describes the potential generated by an elementary
point charge located at the point (r′, θ′, ϕ′) . When it is located on the z-axis
at points with θ′ = 0, π, this expression simplifies because Pm

− 1
2+iτ

(1) = δ0m,

to

ψ0(σ, θ) = e−
1
2 (σ+σ′)

∫ ∞

0

sech (πτ)P− 1
2+iτ (∓ cos θ) cos τ (σ − σ′) dτ,

(6. 76)
where the minus (respectively plus) sign refers to the choice θ′ = 0 (respec-
tively π).

Let us consider the simplest problem, the earthed semi-infinite cone θ = θ0
in the presence of an elementary positive charge located on the z-axis at σ =
σ′, θ′ = 0. This is a standard internal boundary value problem with Dirichlet
boundary conditions given on the conical surface. The total electrostatic
potential ψ is sought as the sum

ψ = ψ0 + ψ1

of the primary potential ψ0 given by (6. 76) and an induced potential ψ1,
subject to the boundary condition

ψ(σ, θ0) = 0, −∞ < σ <∞. (6. 77)

The induced potential ψ1 is constructed as a superposition of internal conical
harmonics

ψ1(σ, θ) = e−
1
2 (σ+σ′)

∫ ∞

0

sech (πτ) f (τ)P− 1
2+iτ (cos θ) cos τ (σ − σ′) dτ,

(6. 78)
where the function f is found by the boundary condition to be

f (τ) = −
P− 1

2+iτ (− cos θ0)

P− 1
2+iτ (cos θ0)

. (6. 79)

The surface charge density S(σ) is easily deduced to be

S(σ) =
[
−e−σ ∂

∂θ
ψ(σ, θ)

]
θ=θ0

=
2
π
e−

1
2 (3σ+σ′) cosec θ0

∫ ∞

0

cos τ (σ − σ′)
P− 1

2+iτ (cos θ0)
dτ. (6. 80)

When θ0 = 1
2π, the cone degenerates to the plane z = 0. Using the value

[36]

P− 1
2+iτ (0) =

√
π

∣∣∣∣Γ(3
4

+ i
τ

2

)∣∣∣∣−2

, (6. 81)
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and the tabulated integral [14]∫ ∞

0

|Γ (a+ ix)|2 cosxy dx = πΓ (2a) 2−2a sech2a (y/2) , (a, y > 0), (6. 82)

we may verify that the surface charge density S(ρ) due to the point charge lo-
cated on the z-axis at a distance d from the origin of the cylindrical coordinate
system is

S(ρ) = 2d
(
ρ2 + d2

)− 3
2 ;

this is in accord with results obtained by elementary methods.
When θ0 � 1, the structure becomes a very sharp hollow cone. In this case

it is convenient to use the hypergeometric representation (see Appendix, (B.
98))

P− 1
2+iτ (cos θ0) = 2F1

(
1
2

+ iτ,
1
2
− iτ ; 1; sin2 1

2
θ0

)
= 1 +

(
1
4

+ τ2

)
sin2 1

2
θ0 +O

(
sin4 1

2
θ0

)
. (6. 83)

Inserting this approximation in (6. 80) produces the approximation for surface
charge density

S(σ) ' 1
r

3
2 r′

1
2

cosec θ0 cosec
1
2
θ0

( r
r′

)2/θ0

, r < r′. (6. 84)

Thus S(σ) → 0 as r → 0.
If the elementary charge is located outside the cone (at σ = σ′, θ′ = π),

then Equation (6. 80) is replaced by

S(σ) =
2
π
e−

1
2 (3σ+σ′) cosec θ0

∫ ∞

0

cos τ (σ − σ′)
P− 1

2+iτ (− cos θ0)
dτ. (6. 85)

For the same limiting structure of the very sharp hollow cone (θ0 � 1), the
approximation

P− 1
2+iτ (− cos θ0) '

2
π

cosh(τπ) ln
(

2
θ0

)
(6. 86)

is relevant and

S(σ) ' (r + r′)−1

r

cosec θ0
ln (2/θ0)

. (6. 87)

The approximation (6. 87) has a singularity at the vertex of the cone. This
phenomenon is discussed in some detail by Hobson [23].

Remove the lower and upper parts of the infinite hollow cone to form the
finite hollow frustrum

a ≤ r ≤ b, θ = θ0,
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shown in Figure 6.2. It is convenient to introduce the normalised radial coor-
dinate

ρ = r/
√
ab,

so that the frustrum is given by

ρ−1
0 ≤ r ≤ ρ0, θ = θ0,

where ρ0 = (b/a)
1
2 . Also replace the variable σ = ln r previously introduced by

σ = ln ρ, so the frustrum is described by σ ∈ (−σ0, σ0) , where σ0 = 1
2 ln (b/a) .

The partial solutions for the variable σ may still be described by Equation
(6. 65). Accordingly, let us consider the Dirichlet boundary value problem
for the frustrum. The axisymmetric potential ψ (σ, θ) must satisfy the mixed
boundary conditions

∂

∂θ
ψ(σ, θ0 − 0) =

∂

∂θ
ψ(σ, θ0 + 0), σ ∈ (−∞,−σ0) ∪ (σ0,∞) (6. 88)

ψ(σ, θ0 − 0) = ψ(σ, θ0 + 0) = Φ(σ), σ ∈ (−σ0, σ0) , (6. 89)

where Φ is the given value of the potential on the conductor. We consider the
simplest case where the frustrum is charged to unit potential (Φ = 1). Using
the superposition (6. 66), the solution for ψ is sought in the form

ψ(σ, θ) = e−
σ
2

∫ ∞

0

dτ {fc (τ) cos τσ + fs (τ) sin τσ}F (τ, θ) , (6. 90)

where

F (τ, θ) =
{
P− 1

2+iτ (cos θ), 0 ≤ θ ≤ θ0,

P− 1
2+iτ (cos θ0)P− 1

2+iτ (cos θ)/P− 1
2+iτ (− cos θ0), θ0 ≤ θ ≤ π

and fc, fs are unknown functions to be determined. Because of the symmet-
ric subdivision of the real line, the integral equations for fc and fs can be
decoupled to the following sets of dual integral equations:∫ ∞

0

fc (τ)P− 1
2+iτ (cos θ0) cos τσdτ = cosh(σ/2), σ ∈ (0, σ0) , (6. 91)

∫ ∞

0

fc (τ)
cosh(πτ)

P− 1
2+iτ (− cos θ0)

cos τσdτ = 0, σ ∈ (σ0,∞) , (6. 92)

and ∫ ∞

0

fs (τ)P− 1
2+iτ (cos θ0) sin τσdτ = sinh(σ/2), σ ∈ (0, σ0) , (6. 93)

∫ ∞

0

fs (τ)
cosh(πτ)

P− 1
2+iτ (− cos θ0)

sin τσdτ = 0, σ ∈ (σ0,∞) . (6. 94)
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When θ0 = 1
2π, these equations describe the nontrivial geometry of the

charged annular disc [55].
The first step is to integrate (6. 92) and to differentiate (6. 93), respectively,

obtaining∫ ∞

0

fc (τ)
cosh(πτ)

τP− 1
2+iτ (− cos θ0)

sin τσdτ = C, σ ∈ (σ0,∞) , (6. 95)

where C is a constant of integration to be determined and∫ ∞

0

τfs (τ)P− 1
2+iτ (cos θ0) cos τσdτ =

1
2

cosh(σ/2), σ ∈ (0, σ0) . (6. 96)

Rescale the unknown functions

fc (τ) = τ2 sech(πτ)P− 1
2+iτ (− cos θ0)Fc (τ) , (6. 97)

fs (τ) = τ sech(πτ)P− 1
2+iτ (− cos θ0)Fs (τ) , (6. 98)

so that∫ ∞

0

τ tanh(πτ)M(τ ; θ0)Fc (τ) cos τσdτ = cosh(σ/2), σ ∈ (0, σ0) (6. 99)

∫ ∞

0

τFc (τ) sin τσdτ = C, σ ∈ (σ0,∞) , (6. 100)

and∫ ∞

0

τ tanh(πτ)M(τ ; θ0)Fs (τ) cos τσdτ =
1
2

cosh(σ/2), σ ∈ (0, σ0) (6. 101)

∫ ∞

0

τFs (τ) sin τσdτ = 0, σ ∈ (σ0,∞) , (6. 102)

where the function M is defined by

M(τ ; θ0) = τ cosech(πτ)P− 1
2+iτ (cos θ0)P− 1

2+iτ (− cos θ0). (6. 103)

The asymptotics for the conical functions (see Appendix, (B. 101)) show that

lim
τ→∞

M(τ ; θ0) =
1
π

cosec θ0,

and the function

N(τ ; θ0) = 1− π sin θ0M(τ ; θ0)

= 1− πτ
sin θ0

sinh(πτ)
P− 1

2+iτ (cos θ0)P− 1
2+iτ (− cos θ0)

= O(τ−2) as τ →∞. (6. 104)
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Equations (6. 99) and (6. 100) may be rearranged in the form

Φc(σ) =
∫ ∞

0

τ tanh(πτ)Fc (τ)P− 1
2+iτ (coshσ)dτ

=
{
F1(σ), σ ∈ (0, σ0) ,
F2(σ), σ ∈ (σ0,∞) , (6. 105)

where

F1(σ) = π sin θ0 +
∫ ∞

0

τ tanh(πτ)Fc (τ)N(τ ; θ0)P− 1
2+iτ (coshσ)dτ,

F2(σ) =
2
π
CQ− 1

2
(coshσ).

Likewise, (6. 101) and (6. 102) may be rearranged in the form

Φs(σ) =
∫ ∞

0

τ tanh(πτ)Fs (τ)P− 1
2+iτ (coshσ)dτ

=
{
F3(σ), σ ∈ (0, σ0) ,
0, σ ∈ (σ0,∞) , (6. 106)

where

F3(σ) =
π

2
sin θ0 +

∫ ∞

0

τ tanh(πτ)Fs (τ)N(τ ; θ0)P− 1
2+iτ (coshσ)dτ.

Note that in deriving (6. 105), we also used the relation (B. 89) of the Ap-
pendix. As shown previously, the value of the constant C is determined by
enforcing the requirement of continuity on Φc at σ0, giving

C =
π

2

∫ ∞

0

τ tanh(πτ)Fc (τ)N(τ ; θ0)
P− 1

2+iτ (coshσ0)

Q− 1
2
(coshσ0)

dτ

+
π2

2
sin θ0

Q− 1
2
(coshσ0)

. (6. 107)

The final step uses the inverse of the Mehler-Fock transform to convert both
(6. 105) and (6. 106) to second-kind Fredholm integral equations to be solved
for the functions Fc and Fs, respectively, obtaining

Fs (τ) =
∫ ∞

0

Fs (ξ)Ks(ξ, τ)dξ = Gs(τ) (6. 108)

and
Fc (τ) =

∫ ∞

0

Fc (ξ)Kc(ξ, τ)dξ = Gc(τ). (6. 109)

The inhomogeneous terms are

Gs(τ) =
π

2
sin θ0
1
4 + τ2

(
1− z2

0

)
P ′− 1

2+iτ (z0), (6. 110)
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Gc(τ) = τ−2π sin θ0
(
1− z2

0

)
P− 1

2+iτ (z0)×{
Q′− 1

2
(z0)

Q− 1
2
(z0)

− 1
1 + 4τ2

P ′− 1
2+iτ

(z0)

P− 1
2+iτ (z0)

}
, (6. 111)

and the kernels, respectively, are defined to be

Ks(ξ, τ) = ξ tanh (πξ)N(ξ; θ0)R(ξ, τ ; z0), (6. 112)

Kc(ξ, τ) = ξ tanh (πξ)N(ξ; θ0)R(ξ, τ ; z0)

+ ξ tanh (πξ)N(ξ; θ0)
P− 1

2+iξ(z0)

Q− 1
2
(z0)

R∗(τ ; z0), (6. 113)

where

R(ξ, τ ; z0) =
∫ z0

−1

P− 1
2+iξ(z)P− 1

2+iτ (z)dz,

R∗ (τ ; z0) =
∫ ∞

z0

Q− 1
2
(z)P− 1

2+iτ (z)dz.

Both R and R∗ may be readily evaluated in closed form (in the same way as
Formula (B. 97) of the Appendix):

R(ξ, τ ; z0) =(
1− z2

0

)
(τ2 − ξ2)

{
P− 1

2+iξ(z0)P
′
− 1

2+iτ (z0)− P ′− 1
2+iξ(z0)P− 1

2+iτ (z0)
}
, (6. 114)

R∗(τ ; z0) =(
1− z2

0

)
τ2

{
P− 1

2+iτ (z0)Q′− 1
2
(z0)− P ′− 1

2+iτ (z0)Q− 1
2
(z0)

}
. (6. 115)

For an effective numerical solution, the kernels of (6. 108) and (6. 109)
must converge sufficiently fast as ξ → ∞. This depends completely on the
asymptotics of the function N. It is convenient to examine the function

N∗(τ ; θ0) = tanh(πτ)N(τ ; θ0) = (tanh(πτ)− 1) +N∗
1 (τ ; θ0), (6. 116)

where

N∗
1 (τ ; θ0) = 1− πτ

sin θ0
cosh (πτ)

P− 1
2+iτ (cos θ0)P− 1

2+iτ (− cos θ0). (6. 117)

Since tanh(πτ)−1 = −2e−2πτ
(
1 +O

(
e−2πτ

))
as τ →∞, it is quite clear that

the major contribution to the asymptotic behaviour of N∗ is dominated by
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that of N∗
1 . The asymptotic behaviour of N∗

1 can be determined by examining
an integral representation for the product of conical functions appearing in (6.
117). Integrate both sides of (6. 75) twice. Assuming σ′ = 0, ϕ′ = 0, θ′ = θ0,
first integrate w.r.t. ϕ over the interval [0, 2π] . Multiply the result of the first
integration by cosµσ and integrate w.r.t. σ over the interval (0,∞) to obtain

1√
2

∫ ∞

0

dσ cos τσ
∫ 2π

0

{coshσ − cos θ cos θ0 − sin θ sin θ0 cosϕ}−
1
2 dϕ

= π2 sech(πτ)
{
P− 1

2+iτ (− cos θ)P− 1
2+iτ (cos θ0), θ < θ0

P− 1
2+iτ (cos θ)P− 1

2+iτ (− cos θ0), θ > θ0.
(6. 118)

Using the tabulated integral [14]∫ π

0

dx√
a± b cosx

=
2√
a+ b

K

(√
2b
a+ b

)
, a > b > 0, (6. 119)

and the relation

Q− 1
2
(1 + 2x2) =

1√
1 + x2

K

(
1√

1 + x2

)
, (6. 120)

we obtain the desired result

2
π2

cosh(πτ)√
sin θ sin θ0

∫ ∞

0

Q− 1
2

(
cosh z − cos θ cos θ0

sin θ sin θ0

)
cos τz dz

=
{
P− 1

2+iτ (− cos θ)P− 1
2+iτ (cos θ0), θ < θ0

P− 1
2+iτ (cos θ)P− 1

2+iτ (− cos θ0), θ > θ0.
(6. 121)

Setting θ = θ0, the value of N∗
1 (τ ; θ0) is deduced to be

N∗
1 (τ ; θ0) = 1− 2τ

π

∫ ∞

0

Q− 1
2

(
1 + 2

sinh2 (z/2)
sin2 θ0

)
cos τz dz. (6. 122)

After a single integration by parts this may be written as

N∗
1 (τ ; θ0) =

2
π

∫ ∞

0

S1(z) sin τz dz, (6. 123)

where

S1(z) =
1
z

+
d

dz
Q− 1

2

(
1 + 2

sinh2 (z/2)
sin2 θ0

)
.

Since S1(z) v z ln z when z � 1, and S1(z) → 0 as z → 0, another integration
by parts produces

N∗
1 (τ ; θ0) =

2
πτ

∫ ∞

0

S2(z) cos τz dz (6. 124)

where S2(z) = S′1(z); it may now be deduced that N∗
1 (τ ; θ0) = O(τ−2) as

τ →∞.
Thus, standard methods for second-kind Fredholm equations may be em-

ployed effectively to obtain numerical solutions to (6. 108) and (6. 109).
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Figure 6.3
The spindle. The semi-infinite cone is its image under an inversion
with centre A.

6.3 The slotted hollow spindle

The electrostatic potential of several structures related to the spindle can
be deduced from the solutions already obtained for conical structures. The
basic structure of the spindle is the surface of revolution obtained by revolving
an arc of a circle about the chord OA joining its end points A and O. The
vector

−→
OA may be chosen to lie along the positive direction of the z-axis; the

coordinate origin may be located at O. (See Figure 6.3.)
Under inversion in the sphere of radius R = OA centred at A, the image

of the spindle is the infinite (right circular) cone with vertex O and axis
coinciding with the z-axis. The half-angle α of the cone equals half the angle
subtended by the chord OA at the centre of its circle.

Bouwkamp’s theorem (see Chapter 3) may be used to calculate the capac-
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itance of the spindle (see, for example, [51]). The calculation is equivalent
to the calculation of the electrostatic field surrounding the grounded semi-
infinite cone in the presence of a unit negative charge located at A; in the
usual spherical coordinates the charge is located at (r, θ, φ) = (R, π, 0) .

The potential ψ0 due to this charge is given by (6. 76), with σ = ln r and
σ′ = lnR,

ψ0(σ, θ) = −e−
1
2 (σ+σ′)

∫ ∞

0

sech (πτ)P− 1
2+iτ (cos θ) cos τ (σ − σ′) dτ.

(6. 125)
The induced potential has the form

ψ1(σ, θ) = e−
1
2 (σ+σ′)

∫ ∞

0

sech (πτ) f(τ)P− 1
2+iτ (− cos θ) cos τ (σ − σ′) dτ,

(6. 126)
where the function f is to be determined. The total potential vanishes on the
grounded conical surface,

ψ0(σ, α) + ψ1(σ, α) = 0, σ ∈ (−∞,∞) , (6. 127)

so that

f(τ) =
Pm
− 1

2+iτ
(cosα)

Pm
− 1

2+iτ
(− cosα)

. (6. 128)

The capacitance C of the spindle is deduced from the value of the induced
potential at the point of inversion A,

C = R2ψ1(σ′, π) = R

∫ ∞

0

sech (πτ)
P− 1

2+iτ (cosα)

P− 1
2+iτ (− cosα)

dτ. (6. 129)

When α = 1
2π, the spindle degenerates to a sphere of radius a = 1

2R, and
the value of the capacitance given by (6. 129) coincides with the well-known
capacitance C0 of the sphere: C0 = a. It will be convenient to normalise the
capacitance given by (6. 151) against C0. When α� 1,

Pm
− 1

2+iτ (cosα) ' 1, Pm
− 1

2+iτ (− cosα) ' 2
π

cosh(πτ) ln
(

2
α

)
, (6. 130)

so that the normalised capacitance is approximately

C/C0 ' 1/ ln
(

2
α

)
, α� 1. (6. 131)

It should be noted that the calculations above are valid when 0 < α ≤ 1
2π.

When α > 1
2π, the image of the spindle under inversion is a spherical shell

with circular apertures centred at its poles.
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Figure 6.4
The spindle with various apertures. The conical structures that are
their images under inversion are also shown. (a) An axisymmetric
circular hole, (b) a pair of axisymmetric circular holes, and (c) a
nonsymmetric azimuthal slot.

Some structures formed by removing part of the spindle surface are shown
in Figure 6.4. Under inversion the spindle with a symmetrically placed cir-
cular aperture is equivalent to the semi-infinite frustrum, whilst the spindle
with two symmetrically placed circular apertures is equivalent to the finite
conical frustrum. Perhaps the most interesting open spindle-shaped conduc-
tor is obtained by introducing an azimuthal slot. Under inversion its image is
the semi-infinite cone with an azimuthal sector removed. The introduction of
this aperture breaks the axial symmetry present in all the conical structures
considered above. Together with the toroid with azimuthal cuts analysed in
Chapter 5, this structure allows us to illustrate a very significant extension
of analytic and semi-analytic techniques to the determination of the three di-
mensional potential distribution surrounding nonsymmetric open conducting
surfaces.
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Consider, therefore, the problem of determining the electrostatic field sur-
rounding a charged hollow spindle with an azimuthal slot. The equivalent
problem is to find the electrostatic field induced on the grounded semi-infinite
cone with an azimuthal (or sectoral) slot by a unit negative charge, located
at the inversion centre. Let 2ϕ0 be the angular width of the sectoral slot.

The free-space potential ψ0 is given by (6. 125). Based on previous results,
the induced potential ψ1 may be represented as

ψ1(σ, θ, ϕ) = e−
1
2 (σ+σ′)

∫ ∞

0

Fτ (θ, ϕ) cos τ (σ − σ′) dτ, (6. 132)

where

Fτ (θ, ϕ) = sech(πτ)
∞∑

m=0

(2− δ0m) fm(τ) cos(mϕ)H (τ, θ) , (6. 133)

with

H (τ, θ) =

{
Pm
− 1

2+iτ
(cos θ), θ < θ0,

Pm
− 1

2+iτ
(cos θ0)Pm

− 1
2+iτ

(− cos θ)/Pm
− 1

2+iτ
(− cos θ0), θ > θ0,

and the functions fm (m = 0, 1, 2, . . .) are unknowns to be found. The free-
space potential may also be written in the analogous form

ψ0(σ, θ) = e−
1
2 (σ+σ′)

∫ ∞

0

F 0
τ (θ) cos τ (σ − σ′) dτ, (6. 134)

where
F 0

τ (θ) = − sech(πτ)P− 1
2+iτ (cos θ).

For all σ ∈ (−∞,∞) , the following boundary conditions apply to the total
potential ψ = ψ0 + ψ1,

∂

∂θ
ψ(σ, θ0 − 0, ϕ) =

∂

∂θ
ψ(σ, θ1 + 0, ϕ), ϕ ∈ (0, ϕ0) , (6. 135)

ψ(σ, θ0 − 0, ϕ) = ψ(σ, θ1 + 0, ϕ) = 0, ϕ ∈ (ϕ0, π) . (6. 136)

Because these boundary conditions apply for the complete interval (−∞,∞) ,
we may apply a Fourier transform to express them in terms of Fτ and its
derivative,

∂

∂θ
Fτ (θ0 − 0, ϕ) =

∂

∂θ
Fτ (θ0 + 0, ϕ), ϕ ∈ (0, ϕ0) , (6. 137)

Fτ (θ0 − 0, ϕ) = Fτ (θ0 + 0, ϕ) = −F 0
τ (θ0), ϕ ∈ (ϕ0, π) . (6. 138)

Enforcement of these conditions produces the following dual series equations

∞∑
m=0

(−1)m (2− δ0m)
Pm
− 1

2+iτ
(− cos θ0)

fm(τ)
Γ
(

1
2 + iτ +m

)
Γ
(

1
2 + iτ −m

) cos(mϕ) = 0,

ϕ ∈ (0, ϕ0) , (6. 139)
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∞∑
m=0

(2− δ0m) fm(τ)Pm
− 1

2+iτ (cos θ0) cos(mϕ) = P− 1
2+iτ (cos θ0),

ϕ ∈ (ϕ0, π) , (6. 140)

where the value of the Wronskian W of Pm
− 1

2+iτ
(x) and Pm

− 1
2+iτ

(−x) has been
employed. We introduce the functions

Fm(τ) =
(−1)m

m

Γ
(

1
2 + iτ +m

)
Γ
(

1
2 + iτ −m

) fm(τ)
Pm
− 1

2+iτ
(− cos θ0)

, (6. 141)

and separate in (6. 139) and (6. 140) the terms with index m = 0 to obtain
∞∑

m=1

mFm(τ) cos(mϕ) = − f0(τ)
2P− 1

2+iτ (− cos θ0)
,

ϕ ∈ (0, ϕ0) , (6. 142)
∞∑

m=1

Gm(τ, θ0)Fm(τ) cos(mϕ) =
1
2

[1− f0(τ)]P− 1
2+iτ (cos θ0),

ϕ ∈ (ϕ0, π) , (6. 143)

where

Gm(τ, θ0) = (−1)m
m

Γ
(

1
2 + iτ −m

)
Γ
(

1
2 + iτ +m

)Pm
− 1

2+iτ (cos θ0)Pm
− 1

2+iτ (− cos θ0).

(6. 144)
We now investigate the asymptotic behaviour of the function Gm(τ, θ0) as

m → ∞. For these purposes τ is fixed. From the definition of the associated
Legendre functions (B. 102),

Gm(τ, θ0) = m
cosh(πτ)

π

Γ
(

1
2 + iτ +m

)
Γ
(

1
2 − iτ +m

)
Γ2 (m+ 1)

×

2F1(
1
2
− iτ,

1
2

+ iτ ;m+ 1; sin2 θ0
2

)×

2F1(
1
2
− iτ,

1
2

+ iτ ;m+ 1; cos2
θ0
2

). (6. 145)

Rearrange the Gamma function factors as

Γ
(

1
2 + iτ +m

)
Γ
(

1
2 − iτ +m

)
Γ2 (m+ 1)

=
Γ2
(
m+ 1

2

)
Γ2 (m+ 1)

∣∣Γ ( 1
2 + iτ +m

)∣∣2
Γ2
(
m+ 1

2

)
=

Γ2
(
m+ 1

2

)
Γ2 (m+ 1)

∞∏
n=0

[
1 +

τ2(
n+m+ 1

2

)2
]−1

. (6. 146)
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From Field’s formula (see Appendix, (B. 7)) we may deduce that, as m→∞,

Γ2
(
m+ 1

2

)
Γ2 (m+ 1)

=
1
m

(
1− 1

4m
+O(m−2)

)
. (6. 147)

Moreover, it is easy to make the estimate

∞∏
n=0

[
1 +

τ2(
n+m+ 1

2

)2
]−1

= 1− τ2
∞∑

n=0

1(
n+m+ 1

2

)2 +O(m−2)

= 1− τ2

m
+O(m−2), (6. 148)

as m→∞. Finally, from the definition of the Gaussian hypergeometric series
it is easily verified that the product of the hypergeometric factors occurring
in (6. 145) is

1 +
(

1
4

+ τ2

)
m−1 +O(m−2) (6. 149)

as m→∞. Combining these estimates shows that

Gm(τ, θ0) = π−1 cosh(πτ)
(
1 +O(m−2)

)
, (6. 150)

as m→∞.
We therefore introduce the parameter

εm(τ) = 1− π sech(πτ)Gm(τ, θ0) = O(m−2), (6. 151)

and rewrite the dual series (6. 142) and (6. 143) in the form

∞∑
m=1

mFm(τ) cos(mϕ) = − f0(τ)
2P− 1

2+iτ (− cos θ0)
, ϕ ∈ (0, ϕ0) , (6. 152)

∞∑
m=1

Fm(τ) cos(mϕ) =
π

2
sech(πτ) [1− f0(τ)]P− 1

2+iτ (cos θ0)

+
∞∑

m=1

εm(τ)Fm(τ) cos(mϕ), ϕ ∈ (ϕ0, π) .

(6. 153)

When the slot in the spindle closes (ϕ0 → 0), it may be verified that

f0(τ) = 1, fm(τ) = 0 (m > 0)

and the solution reduces to that which was previously obtained (see (6. 126)
and (6. 128)). It is clear that the dual series (6. 152) and (6. 153) may
be solved by the standard technique for trigonometric kernels outlined in
Section 2.2. It is conveniently done by substituting ϕ = π − ϑ and replacing
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Fm(τ) = (−1)m
F ∗m(τ). Then ϑ0 = π − ϕ0 is the angular half-width of the

conductor surface (rather than the slot).
The solution may now be deduced from the dual series (2. 39), (2. 40) and

their solution (2. 61), (2. 62) with the following identification of values:

m = n, F ∗m(τ) = xn, f0(τ) = x0, qn = εn(τ);

a =
{

2P− 1
2+iτ (− cos θ0)

}−1

, b =
π

2
sech(πτ)P− 1

2+iτ (cos θ0);

g0 =
π

2
sech(πτ)P− 1

2+iτ (cos θ0); (6. 154)

the remaining parameters (gn, rn, fn, f0) all vanish.
The capacitance of the slotted spindle may now be deduced. According to

Bouwkamp’s theorem, it is

C = e2σ′ψ(σ′, π, 0) = R

∫ ∞

0

P− 1
2+iτ (cos θ0)

cosh(πτ)P− 1
2+iτ (− cos θ0)

f0(τ)dτ. (6. 155)

Some further details about the calculation of this value are provided in the
next section where the slotted charged sphere is considered.

6.4 A spherical shell with an azimuthal slot

As remarked in the previous section, when θ0 = 1
2π, the slotted spindle

degenerates to a spherical shell with an azimuthal slot. The image under the
inversion described in that section is not a cone with a sectoral slot but is,
more simply, a plane with a sectoral cut of half-width ϕ0. (See Figure 6.5.) A
case of particular interest is the hemispherical shell and its image, the half-
plane (occurring when ϕ0 = 1

2π). The capacitance of the hemisphere was
computed in Section 1.4 to be

C = a

(
1
2

+
1
π

)
.

It provides a benchmark value for spherical shells with sectoral slots of arbi-
trary angle. When θ0 = 1

2π, the parameter εm(τ) introduced in (6. 151) may
be written in the form

εm(τ) = 1− 1
2
m

∣∣Γ ( 1
4 + 1

2 iτ + 1
2m
)∣∣2∣∣Γ ( 3

4 + 1
2 iτ + 1

2m
)∣∣2 . (6. 156)

Although the parameter has a simpler form than when 0 < θ0 <
1
2π, it is

still not possible to solve the associated potential problem in a closed form.
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Figure 6.5
A spherical shell with an azimuthal slot; its image under inversion
is the xOy plane with a sectoral slot removed.

However, it is possible to obtain some analytical approximations in two lim-
iting cases: the narrow cut (ϕ0 � 1) and the narrow sectoral conductor
(ϑ0 = π − ϕ0 � 1). The problem has some similarities with the azimuthally
slotted degenerate torus treated in Chapter 5, and so some repetitious details
will be suppressed.

Setting θ0 = 1
2π, it follows from (6. 155) that the capacitance for a spherical

shell with an azimuthal slot is

C = R

∫ ∞

0

sech(πτ)f0(τ)dτ. (6. 157)
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Making use of the identification (6. 154), we may recognise that

f0(τ) =
{
b(τ)− a(τ) ln

[
1− t0

2

]}−1

×{
b(τ) +

1 + t0
2

∞∑
n=1

(
2
n

) 1
2

F ∗n(τ)εn(τ)P̂ (0,1)
n−1 (t0)

}
(6. 158)

where the parametric dependence of a = a(τ) and b = b(τ) in (6. 154) is
made explicit; t0 = cosϑ0.

When ϕ0 = π − ϑ0 � 1, it is readily observed from (6. 158) that

f0(τ) = b(τ)
{
b(τ)− 2a(τ) ln cos

ϕ0

2

}−1

+O(ϕ2
0). (6. 159)

When the spindle closes, the function f0(τ) becomes 1; thus if we define

ε = − ln cos
ϕ0

2
,

then

f0(τ) = 1− 2a(τ)ε
{b(τ) + 2a(τ)ε}

+O(ϕ2
0) = 1− 2

a(τ)
b(τ)

ε {1 +O(ε)} (6. 160)

when the slot is logarithmically narrow (ε� 1).
When the conductor is a narrow sector (ϑ0 � 1), we may deduce from (6.

158) that

f0(τ) =
{
b(τ)− 2a(τ) ln sin

ϑ0

2

}−1
{
b(τ) +

∞∑
n=1

F ∗n(τ)εn(τ) +O(ϑ2
0)

}
,

(6. 161)
where the functions F ∗n may be approximated as the solution of the infinite
system (with a confluent matrix)

F ∗m(τ)− 2a(τ)
b(τ)− 2a(τ) ln sin 1

2ϑ0

1
m

∞∑
n=1

F ∗n(τ)εn(τ)

=
1
m

2a(τ)b(τ)
b(τ)− 2a(τ) ln sin 1

2ϑ0

. (6. 162)

This system can be solved by multiplying both sides of (6. 162) by εm(τ) and
summing over m. Thus

∞∑
n=1

F ∗n(τ)εn(τ) =
2a(τ)b(τ)A(τ)

b(τ)− 2a(τ)
{
A(τ) + ln sin 1

2ϑ0

} , (6. 163)
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where

A(τ) =
∞∑

m=1

εm(τ)
m

. (6. 164)

Insertion of (6. 163) in (6. 161) shows that

f0(τ) =
b(τ)

b(τ)− 2a(τ)
{
A(τ) + ln sin 1

2ϑ0

} {1 +O(ϑ2
0)
}
. (6. 165)

If we introduce the parameter

ε′ = −
{

ln sin
1
2
ϑ0

}−1

,

then

f0(τ) =
b(τ)
2a(τ)

ε′ {1 +O(ε′)} , (6. 166)

when the sector is logarithmically narrow (ε′ � 1). Thus the capacitance of
the logarithmically narrow slot is

C1 = C0 −
2
π
εR

∫ ∞

0

{
P− 1

2+iτ (− cos θ0)
}−2

dτ +O(ε2), (6. 167)

where C0 is the capacitance of the corresponding closed spindle (see (6. 129)),
and the capacitance of the logarithmically narrow sector is

C2 =
π

2
ε′R

∫ ∞

0

sech2(πτ)
{
P− 1

2+iτ (cos θ0)
}2

dτ +O(ε′2). (6. 168)

When θ0 = 1
2π, tabulated values of the integrals occurring in (6. 167) and

(6. 168) are 1
16π

2 and 1
2 , respectively (see [15]), so that

C1/C0 = 1− π

4
ε+O(ε2), C2/C0 =

π

2
ε′ +O(ε′2). (6. 169)

Now consider the needle-shaped spindle (θ0 � 1) with a logarithmically
narrow slot (ε� 1) and, in addition, suppose that ϕ0 � θ0. The approxima-
tion for the capacitance is

C1

C0
' 1

ln(2/θ0)

{
1− ε

ln(2/θ0)

}
. (6. 170)

When θ0 � 1 and ϑ0 � 1, the structure very nearly becomes a straight
finite strip with some variable width and its capacitance is approximately

C2

C0
' ε′. (6. 171)

Comparing (6. 169) and (6. 171), we may recognise the difference of a factor
of 1

2π in capacitance between the spherically curved crescent-shaped strip (6.
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169) and its flat analogy (6. 171). On the other hand, the characteristic
factor of {ln(2/θ0)}−1 present in (6. 170) is notably absent in (6. 171). It is
therefore important to recognise that these approximations are not uniformly
valid in the problem parameters, and that the regime of their validity is best
delineated by numerical methods; nonetheless, the approximations are useful
at the extreme limit of the parameter range.
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Chapter 7

Two-dimensional Potential Theory

Historically, two-dimensional potential problems have been studied more ex-
tensively than have three-dimensional problems. Apart from the apparent
simplicity of lower dimension, the main reasons are that powerful methods,
based upon conformal mapping techniques and the well-developed theory of
analytic functions, are available in the plane; these provide rather clear proce-
dures to facilitate the solution of mixed boundary value problems in potential
theory.

Basically, analytic function theory techniques reduce the potential problem
to the well-known Riemann-Hilbert problem of the determination of an an-
alytical function on some contour bounding a domain [45]; various concrete
applications of this technique can be found in [18] and [53]. Applications of the
conformal mapping method are so numerous that classic texts on electromag-
netic theory invariably describe and solve a variety of electrostatic problems
with this technique (see, for example, [54, 66]).

Despite the lower dimension, it should be observed that boundary value
problems in two-dimensional potential theory involve an additional abstrac-
tion compared to that for three-dimensional bodies of finite extent, even for
open surfaces with sharp edges. Whilst it is reasonable to imagine an ex-
tremely long, but at the same time finite conductor charged to some poten-
tial, its extension to infinity, at the same constant potential as for the finite
conductor, raises some questions about the physical reality or relevance of the
model. A physicist might reasonably question the source of infinite energy
needed to charge this infinitely long conductor.

It is not surprising, then, that two-dimensional potential problems, even
properly stated, require some nonphysical behaviour of the potential function
at infinity. This manifests itself as a logarithmic dependence on distance from
the conductors, so the potential is unbounded at infinity. Although strange
from the physical perspective, the mathematical issue simply concerns the
choice of the class of functions required for a satisfactory two-dimensional
potential theory. Generally speaking, if the conductor is modelled as an in-
finitely long object of constant cross-section, the basic postulates of potential
theory force a logarithmic increase to solutions at large distances from the
conductor.

Some simple illustrative examples will indicate distinctive features of two-
dimensional potentials. The electrostatic potential ψ (−→r ), due to some elec-
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trified conductor held at unit potential in two dimensions, is defined by the
single-layer potential [66]

ψ (−→r ) = − 1
2π

∫
L

log
∣∣∣−→r −−→r′ ∣∣∣σ (−→r′) dl (7. 1)

where G2 (−→r ,−→r ′) = − (1/2π) log |−→r −−→r ′| is two-dimensional Green’s func-
tion, σ is the linear charge density on the cross-sectional contour L, dl is the
element of the contour integral, and −→r ,−→r ′ are position vectors of observation
points and points on L, respectively.

We will consider a variety of canonical structures that are infinite cylin-
ders of constant cross-section, into which apertures are introduced to produce
longitudinally slotted cylinders (the edges of the slots are parallel to the cylin-
drical axis).

By way of introduction, we consider the circular arc (Section 7.1), and then
circular cylinders with multiple slots (Section 7.2), various configurations of
thin strips (Section 7.3), and elliptic cylinders with multiple slots (Section 7.4).
In Section 7.5, a singly-slotted cylinder with arbitrary cross-section is consid-
ered. Although this structure is noncanonical, our purpose is to demonstrate
how to regularise the integral equations of potential theory in a rather more
general setting than the simpler canonical structures discussed in the earlier
sections. The process transforms the integral equations to a second-kind sys-
tem of equations with its attendant benefits: a well-conditioned system of
equations for numerical solution after truncation.

7.1 The circular arc

Consider an infinitely long, singly-slotted circular cylinder whose cross-
section is an arc L of a circle of radius a (see Figure 7.1). Polar coordinates
(r, ϕ), where r = ρ/a, are convenient for this configuration. Assume that
the right half of the arc (given by ϕ ∈ (0, ϕ0)) is charged to unit potential,
but the left half (given by ϕ ∈ (−ϕ0, 0)) is charged either to unit positive
or negative value, i.e., ψ(1, ϕ) = (−1)l

, (l = 0, 1) . If σl denotes the charge
distribution on L, it is evident that σl(−ϕ) = (−1)lσl (ϕ) . (When l = 1, an
infinitesimally small insulating gap is placed at ϕ = 0.) Then the potential
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Figure 7.1
The circular arc.

can be represented as

ψl (r, ϕ) = − 1
4π

ϕ0∫
−ϕ0

log
∣∣1− 2r cos(ϕ− ϕ′) + r2

∣∣σl (ϕ′) dϕ′

= − 1
4π

ϕ0∫
0

Kl(r, ϕ, ϕ′)σl (ϕ′) dϕ′, (7. 2)

where

Kl(r, ϕ, ϕ′) = log
∣∣1− 2r cos(ϕ− ϕ′) + r2

∣∣
+ (−1)l log

∣∣1− 2r cos(ϕ+ ϕ′) + r2
∣∣ . (7. 3)

When l = 0, it can be readily shown that

ψl (r, ϕ)− 1
2π
q log

(
r−1
)

is a regular harmonic function, as r →∞, where

q = 2

ϕ0∫
0

σ0 (ϕ′) dϕ′
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is the (total) charge per unit length; when l = 1, ψl (r, ϕ) behaves as a regular
harmonic function, as r →∞.

First consider the uniformly charged strip (l = 0) . Using the expansion [19],

log(1− 2t cos (ϕ− ϕ′) + t2) = −2
∞∑

k=1

tk

k
cos kx, (7. 4)

the kernel of 7. 2 has the cosine Fourier series

K0(r, ϕ, ϕ′) =


−4

∞∑
n=1

n−1rn cosnϕ cosnϕ′, r < 1,

4 log r − 4
∞∑

n=1
n−1r−n cosnϕ cosnϕ′, r > 1.

(7. 5)

Extend the domain of definition of σ0, defining

σ0
tot (ϕ′) =

{
σ0 (ϕ′) , ϕ′ ∈ (0, ϕ0)
0, ϕ′ ∈ (ϕ0, π) ; (7. 6)

this even function has a Fourier series expansion

σ0
tot =

∞∑
m=0

(
2− δ0m

)
xm cosmϕ′, (7. 7)

with unknown Fourier coefficients xm to be determined. Substitute these
expansions into (7.2) to obtain

ψ (r, ϕ) =


∞∑

n=1
n−1xnr

n cosnϕ, r < 1

−x0 log r +
∞∑

n=1
n−1xnr

−n cosnϕ, r > 1
. (7. 8)

This representation can also be obtained by the method of separation of vari-
ables applied directly to Laplace’s equation.

The boundary condition at r = 1, ϕ ∈ (0, ϕ0) is

ψ (1 + 0, ϕ) = ψ (1− 0, ϕ) = 1; (7. 9)

on the slot r = 1, ϕ ∈ (ϕ0, π) , the boundary condition, which follows directly
from the definition (7.6) , is

σ0
tot (ϕ) =

∂ψ (r, ϕ)
∂r

∣∣∣∣r=1+0

r=1−0

= 0. (7. 10)

Enforcement of these boundary conditions produces the following dual series
equations:

∞∑
n=1

1
n
xn cosnϕ = 1, ϕ ∈ (0, ϕ0) (7. 11)

∞∑
n=1

xn cosnϕ = −1
2
x0, ϕ ∈ (ϕ0, π) . (7. 12)
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The method developed in Section 2.2 shows that the closed form solution
is

x0 = −
{

log
(
sin

ϕ0

2

)}−1

,

xm = −1
2

{
log
(
sin

ϕ0

2

)}−1

(1 + cosϕ0)P
(0,1)
m−1 (cosϕ0)

= −1
2

{
log
(
sin

ϕ0

2

)}−1

{Pm (cosϕ0) + Pm−1 (cosϕ0)} , (7. 13)

when m > 0. The capacitance of the cylindrically shaped strip (per unit
length) is thus

C = 2

π∫
0

σ0
tot (ϕ′) dϕ′ = 2πx0 = −2π

{
log
(
sin

ϕ0

2

)}−1

. (7. 14)

On the interval [0, ϕ0] , the line charge density equals

σ0
tot (ϕ) =

1
4π

∂ψ (r, ϕ)
∂r

∣∣∣∣r=1+0

r=1−0

=
1
4π

∞∑
n=0

(
2− δ0n

)
xn cosmϕ, (7. 15)

and its value is easily deduced from the discontinuous series (1. 109) to be

σ0
tot (ϕ) = − 1

2
√

2π
cos

ϕ

2

{
log
(
sin

ϕ0

2

)}−1

(cosϕ− cosϕ0)
− 1

2 , ϕ < ϕ0;

(7. 16)
it vanishes when ϕ > ϕ0.

When the circular arc comprises oppositely charged halves (Figure 7.1), the
potential is bounded; there is no logarithmic term. Physically, the structure
is a two-dimensional dipole. Set l = 1 in (7.2) and again use expansion (7.4)
to obtain

K1(r, ϕ;ϕ′) = −4
∞∑

n=1

n−1 sinnϕ sinnϕ′
{
rn, r < 1.
r−n, r > 1. (7. 17)

As before, introduce the extended or total line charge density

σ1
tot (ϕ′) =

{
σ0 (ϕ′) , ϕ′ ∈ (0, ϕ0)
0, ϕ′ ∈ (ϕ0, π) , (7. 18)

and represent this odd function as a Fourier sine series

σ1
tot (ϕ′) =

∞∑
m=1

ym sinmϕ′. (7. 19)

Substitute (7.17) and (7.19) into (7.2) to obtain

ψ1 (r, ϕ) =
∞∑

n=1

n−1yn sinnϕ
{
rn, r < 1.
r−n, r > 1. (7. 20)
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Enforcing the mixed boundary conditions on the arc r = 1 produces the dual
series equations for the unknown coefficients yn:

∞∑
n=1

n−1yn sinnϕ = 1, ϕ ∈ (0, ϕ0) (7. 21)

∞∑
n=1

yn sinnϕ = 0, ϕ ∈ (ϕ0, π) . (7. 22)

The solution of these equations (see Section 2.2) is (with z0 = cosϕ0),

yn =
√

2
π
n

∫ 1

z0

P
(0,1)
n−1 (t)

(1− t)
1
2
dt =

√
2
π
n

∫ 1

z0

Pn (t) + Pn−1 (t)

(1 + t) (1− t)
1
2
dt. (7. 23)

The format of this solution (7.23) has some rather satisfactory features. For
example, one may conveniently calculate the distribution of the potential on
the circle r = 1 to be

ψ (1, ϕ) = 2π−1 arctan
[√

2 sin
1
2
ϕ0 cos

1
2
ϕ {cosϕ0 − cosϕ}−

1
2

]
(7. 24)

when ϕ > ϕ0; when 0 < ϕ < ϕ0, ψ (1, ϕ) = 1.

7.2 Axially slotted open circular cylinders

In this section, slotted circular cylinders with multiple apertures are con-
sidered. A restricted selection of electrostatic problems that are distinctive
of this geometry are examined. Our first calculation is of the electrostatic
field due to a pair of charged circular arcs, asymmetrically placed as shown in
Figure 7.2. The second calculation is of the field generated by the quadrupole
lens also shown in Figure 7.2; for the sake of simplicity, when the arcs are all
positively charged we restrict attention to the symmetrical case (ϕ1 = π−ϕ0).

As in the previous section, the conductors lie on the contour of the unit
circle and are charged to potentials V1 = 1 and V2 = (−1)l as shown in Figure
7.2; the index l = 0 or 1. The potential associated with the pair of charged
circular arcs, at potentials V1 (defined by ϕ ∈ (ϕ0, ϕ1)) and V2 (defined by
ϕ ∈ (−ϕ1,−ϕ0)) is

ψl (r, ϕ) = − 1
4π

∫ ϕ1

ϕ0

Kl
1 (r, ϕ, ϕ′)σl (ϕ′) dϕ′, (7. 25)

where Kl
1 = Kl is defined by (7. 3). For the two-dimensional quadrupole lens

in which the pair of arcs defined by ϕ ∈ (ϕ0, ϕ1) ∪ (− (π − ϕ0) ,− (π − ϕ1))
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Figure 7.2
The circular arc (left) and quadrupole (right).

is held at potential V1, and the pair of arcs defined by ϕ ∈ (−ϕ0,−ϕ1) ∪
(π − ϕ0, π − ϕ1) is held at potential V2, the potential is

ψl (r, ϕ) = − 1
4π

∫ ϕ1

ϕ0

K2 (r, ϕ, ϕ′)σl (ϕ′) dϕ′ (7. 26)

where

K2 (r, ϕ, ϕ′) = log
[(
r2 + 1

)2 − 4r2 cos2 (ϕ− ϕ′)
]

+ (−1)l log
[(
r2 + 1

)2 − 4r2 cos (ϕ+ ϕ′)
]
.

First consider the pair of charged arcs. Enforcement of the boundary con-
dition

ψl (1 + 0, ϕ) = ψl (1− 0, ϕ) = 1, ϕ ∈ (ϕ0, ϕ1) ,

(and the corresponding condition on the arc at potential V2) produces a
first-kind Fredholm integral equation for the unknown charge density σl. On
equicharged arcs (l = 0), the density σ0 satisfies

− 1
2π

∫ ϕ1

ϕ0

σ0 (ϕ′) ln 4
∣∣∣∣sin2 1

2
ϕ− sin2 1

2
ϕ′
∣∣∣∣ dϕ′ = 1, ϕ ∈ (ϕ0, ϕ1) , (7. 27)
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whereas on oppositely charged arcs (l = 1), the density σ1 satisfies

1
2π

∫ ϕ1

ϕ0

σ1 (ϕ′) log
∣∣∣∣ tan 1

2ϕ+ tan 1
2ϕ

′

tan 1
2ϕ− tan 1

2ϕ
′

∣∣∣∣ dϕ′ = 1, ϕ ∈ (ϕ0, ϕ1) . (7. 28)

Following the argument of Section 7.1, these integral equations may be
replaced by the triple series equations

∞∑
n=1

xn cosnϕ = − 1
2x0, ϕ ∈ (0, ϕ0) ∪ (ϕ1, π) ,

∞∑
n=1

n−1xn cosnϕ = 1, ϕ ∈ (ϕ0, ϕ1) ,
(7. 29)

and 
∞∑

n=1
yn sinnϕ = 0, ϕ ∈ (0, ϕ0) ∪ (ϕ1, π) ,
∞∑

n=1
n−1yn sinnϕ = 1, ϕ ∈ (ϕ0, ϕ1) ,

(7. 30)

where the densities σ0 and σ1 are respectively expanded in cosine and sine
Fourier series,

σ0 (ϕ′) =
∞∑

m=0

(
2− δ0m

)
xm cosmϕ′, (7. 31)

σ1 (ϕ′) =
∞∑

n=1

yn sinnϕ′, (7. 32)

with unknown coefficients {xn}∞n=0 and {yn}∞n=1 .
The symmetric situation (ϕ1 = π − ϕ0) is quickly solved. The odd index

coefficients all vanish, and the Equations (7.29) reduce to the following dual
series equations for the even index coefficients x2n,

∞∑
n=1

x2n cosnϑ = − 1
2x0, ϑ ∈ (0, ϑ0) ,

∞∑
n=1

n−1x2n cosnϑ = 2, ϑ ∈ (ϑ0, π) ,
(7. 33)

where ϑ = 2ϕ and ϑ0 = 2ϕ0. The substitution ϑ = π − θ transforms (7. 33)
to

∞∑
n=1

n−1Xn cosnθ = 2, θ ∈ (0, θ0) ,
∞∑

n=1
Xn cosnθ = − 1

2x0, θ ∈ (θ0, π) ,
(7. 34)

where Xn = (−1)n
x2n, θ0 = π − ϑ0 = π − 2ϕ0, and θ = π − 2ϕ. Comparing

Equations (7.11) and (7.12) with (7.34), the solution of this symmetric case
is

x0 = −2 {log (cosϕ0)}−1
,

x2n = −{log (cosϕ0)}−1 {Pn (cosϕ0)− Pn−1 (cosϕ0)} .
(7. 35)
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Now consider (7.30) in the more general case, in which the parameters ϕ0

and ϕ1 are unrelated, taking arbitrary values in (0, π), with ϕ0 < ϕ1. The
standard form of triple series equations involving the trigonometrical kernels
{sinnϕ}∞n=1 is obtained by setting yn = nan; Equations (7.30) become

∞∑
n=1

nan sinnϕ = 0, ϕ ∈ (0, ϕ0) ∪ (ϕ1, π) ,
∞∑

n=1
an sinnϕ = 1, ϕ ∈ (ϕ0, ϕ1) .

(7. 36)

From the results of Section 2.7, Equations (7.36) are equivalent to the sym-
metric triple equations

∞∑
n=1

nbn sinnϑ = 0, ϑ ∈ (0, ϑ0) ∪ (π − ϑ0, π) ,
∞∑

n=1
bn sinnϑ =

(
tan 1

2ϕ0 tan 1
2ϕ1

) 1
2 , ϑ ∈ (ϑ0, π − ϑ0) ,

(7. 37)

where tan 1
2ϑ0 = tan 1

2ϕ0 cot 1
2ϕ1.

In turn these equations may be reduced to the following dual series equa-
tions for the odd index Fourier coefficients b2n+1,

∞∑
n=0

(
n+ 1

2

)
b2n+1 sin

(
n+ 1

2

)
θ = 0, θ ∈ (0, θ0)

∞∑
n=0

b2n+1 sin
(
n+ 1

2

)
θ =

(
tan 1

2ϕ0 tan 1
2ϕ1

) 1
2 , θ ∈ (θ0, π)

(7. 38)

where θ = 2ϑ, and θ0 = 2ϑ0; all the even index coefficients b2n vanish.
It should be noted that original coefficients {an}∞n=1 are related to {bn}∞n=1

by (2.263) . By means of the Abel integral transform, we deduce from Equa-
tions (7.38) that

∞∑
n=0

b2n+1Pn (z) =
2
π

(
tan

ϕ0

2
tan

ϕ1

2

) 1
2
{
F1(z), z ∈ (−1, z0) ,
F2(z), z ∈ (z0, 1) , (7. 39)

where z = cos θ and z0 = cos θ0, and

F1(z) = K

(√
1 + z

2

)
,

F2(z) = K

(√
1− z

2

)
K

(√
1 + z0

2

)
/K

(√
1− z0

2

)
.

(K is the complete elliptic integral of the first kind.) Orthogonality of the
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Legendre polynomials on [−1, 1] instantly implies

b2n+1 =
2
π

(
tan

ϕ0

2
tan

ϕ1

2

) 1
2
(
n+

1
2

)
×

z0∫
−1

F1(z)Pn (z) dz +

1∫
z0

F2(z)Pn (z) dz

 . (7. 40)

The integrals occurring in (7.40) are readily calculated, if one recalls the
relationship between the complete elliptic integrals and the Legendre functions

P− 1
2

(z) =
2
π
K

(√
1− z

2

)
, Q− 1

2
(z) = K

(√
1 + z

2

)
. (7. 41)

An integration by parts and use of the differential equation for the Legendre
functions produces the compact result

b2n+1 =
(
tan

ϕ0

2
tan

ϕ1

2

) 1
2

{(
n+

1
2

)
K

(√
1− z0

2

)}−1

Pn (z0) . (7. 42)

The capacitance of these oppositely charged circular arcs equals

C =
1
4π

∞∑
n=0

a2n+1 =
1
4π

(
tan

ϕ0

2
tan

ϕ1

2

) 1
2
∞∑

n=0

b2n+1

=
1
2π
K

(√
1 + z0

2

)
/K

(√
1− z0

2

)
. (7. 43)

In terms of the original parameters this capacitance is

C =
1
2π
K

(
1− q

1 + q

)
/K

(
2
√
q

1 + q

)
=

1
2π
K (t) /K

(√
1− t2

)
, (7. 44)

where q = tan 1
2ϕ0 cot 1

2ϕ1, and t = sin 1
2 (ϕ1 − ϕ0) / sin 1

2 (ϕ1 + ϕ0) .
The calculation of the line charge density σ based on the evident relationship

between the transformed series (see Section 2.7) is

σ (ϕ) =
1
4π

∞∑
n=1

nan sinnϕ

=
1
4π

(
sin2 ϕ

2
+ tan

ϕ0

2
tan

ϕ1

2
cos2

ϕ

2

)−1 ∞∑
n=1

nbn sinnϑ (7. 45)

where

tan
1
2
ϑ = tan

ϕ

2

{
tan

ϕ0

2
tan

ϕ1

2

}− 1
2
.
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Suppressing the details of an uncomplicated but bulky transformation, we
deduce the final formula for the charge density on the asymmetric disposed
arcs to be

σ (ϕ) =
1

K
(√

1− t2
) sin 1

2 (ϕ1 + ϕ0)√
(cosϕ0 − cosϕ) (cosϕ− cosϕ1)

(7. 46)

where the parameter t was defined above.
Finally, consider the quadrupole lens charged so that the potentials V1 =

−V2 = 1 (l = 1) . From (7.26) the electrostatic potential is

ψ1 (r, ϕ) = − 1
4π

∫ ϕ1

ϕ0

log
[
1− 2r2 cos (2ϕ− 2ϕ′) + r4

1− 2r2 cos (2ϕ+ 2ϕ′) + r4

]
σ1 (ϕ′) dϕ′. (7. 47)

We expand the kernel of Equation (7. 47) as

−4
∞∑

n=1

n−1 sin 2nϕ sin 2nϕ′
{
r2n, r < 1
r−2n, r > 1 (7. 48)

and line charge density as a Fourier sine series

σ (ϕ′) =
∞∑

n=1

y2n sin 2nϕ′, (7. 49)

so that (cf. (7.20))

ψ1 (r, ϕ) =
∞∑

n=1

n−1y2n sin 2nϕ
{
r2n, r < 1
r−2n, r > 1. (7. 50)

By the same argument as above, we obtain triple series equations for the
coefficients {y2n}∞n=1 ,

∞∑
n=1

y2n sin 2nφ = 0, φ ∈ (0, φ0) ∪ (φ1, π) ,
∞∑

n=1
n−1y2n sin 2nφ = 1, φ ∈ (φ0, φ1) ,

(7. 51)

where φ = 2ϕ, φ0 = 2ϕ0, and φ1 = 2ϕ1.
Equations (7.30) and (7.51) are the same, so that the solution of (7.51) is

given by (7.42) with replacement of the parameters φ0 and φ1 by 2ϕ0 and 2ϕ1

respectively. With this replacement, Formulae (7.44) and (7.46) hold for the
quadrupole lens.

In principle, more complicated configurations of cylindrical strips lying on
the contour of a circle may be tackled by this approach. The resulting series
equations are naturally more complex, but considerable simplification occurs
if the components are symmetrically located.
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Figure 7.3
Pairs of charged thin strips.

7.3 Electrostatic potential of systems of charged thin
strips

In many respects, potential problems for flat strips are similar to those for
cylindrically-shaped strips. A notable difference is the extraction of zero terms
in the functional equations with continuous spectrum (integral equations),
which is analogous to the extraction of zero-order Fourier coefficients in series
equations.

Let us consider the canonical example of the pair of charged coplanar flat
strips shown in Figure 7.3; the strips occupy the regions a ≤ y′ ≤ b, −b ≤
y′ ≤ −a and are charged to potentials V1 = 1, V2 (−1)l respectively, where
l = 0 or 1.

It is convenient to solve this problem in rescaled Cartesian coordinates (ρ, z)
derived from standard coordinates (y′, z′) by ρ = y′/ (ab)

1
2 ; z = z′/ (ab)

1
2 .

Thus the strips occupy the regions ρ0 ≤ ρ ≤ ρ1,−ρ1 ≤ ρ ≤ −ρ0, where
ρ0 = (a/b)

1
2 and ρ1 = ρ−1

0 = (b/a)
1
2 .

The total potential ψ is the sum of single-layer potentials ψ1, ψ2 derived
from the right-half plane and left-half plane strips, respectively:

ψ (ρ, z) = ψ1 (ρ, z) + ψ2 (ρ, z) , (7. 52)

where

ψ1 (ρ, z) = − 1
4π

∫ ρ1

ρ0

ln
[
(ρ− ρ′)2 + z2

]
σ1 (ρ′) dρ′, (7. 53)

ψ2 (ρ, z) = − 1
4π

∫ −ρ0

−ρ1

ln
[
(ρ− ρ′)2 + z2

]
σ2 (ρ′) dρ′. (7. 54)
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The symmetry of the problem instantly implies

σ1 (ρ′) = σ2 (−ρ′) def
= σ0 (ρ′) if l = 0,

σ1 (ρ′) = −σ2 (−ρ′) def
= σ1 (ρ′) if l = 1,

so that a single representation for the potential is

ψl (ρ, z) = − 1
4π

∫ ρ1

ρ0

K(ρ, z; ρ′, z′)σl (ρ′) dρ′ (7. 55)

where the kernel

K(ρ, z; ρ′) = log
[√

(ρ− ρ′)2 + z2

]
+ (−1)l log

[√
(ρ+ ρ′)2 + z2

]
.

A first-kind Fredholm integral equation for the line charge density σl is
obtained by enforcement of the boundary condition on the strips,

ψl (ρ,+0) = ψl (ρ,−0) = 1, ρ ∈ (ρ0, ρ1) , (7. 56)

yielding

− 1
2π

∫ ρ1

ρ0

σ0 (ρ′) log
∣∣ρ2 − ρ′2

∣∣ dρ′ = 1, ρ ∈ (ρ0, ρ1) , (7. 57)

and
1
2π

∫ ρ1

ρ0

σ1 (ρ′) log
∣∣∣∣ρ+ ρ′

ρ− ρ′

∣∣∣∣ dρ′ = 1, ρ ∈ (ρ0, ρ1) . (7. 58)

We now use familiar mathematical tools to reduce both equations to triple
integral equations for some unknown Fourier coefficients. First, represent the
logarithmic kernels by their Fourier transforms

log
∣∣ρ2 − ρ′2

∣∣ = 2 log ρ+ log
∣∣∣∣1− ρ′2

ρ2

∣∣∣∣
= 2 log ρ+ 2

∫ ∞

0

1− cos ξρ′

ξ
cos ξρdξ, (7. 59)

and

log
∣∣∣∣ρ+ ρ′

ρ− ρ′

∣∣∣∣ = 2
∫ ∞

0

sin ξρ′

ξ
sin ξρdξ. (7. 60)

Then extend the domain of σl by introducing the functions σl
tot with their

associated Fourier transforms,

σ0
tot =

{
0, ρ ∈ (0, ρ0) ∪ (ρ1,∞)
σ0 (ρ) , ρ ∈ (ρ0, ρ1)

}
=
∫ ∞

0

g (λ) cos (λρ) dλ, (7. 61)
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σ1
tot =

{
0, ρ ∈ (0, ρ0) ∪ (ρ1,∞)
σ1 (ρ) , ρ ∈ (ρ0, ρ1)

}
=
∫ ∞

0

f (λ) sin (λρ) dλ. (7. 62)

Equations (7.57) and (7.58) can be replaced by the equivalent integral equa-
tions on an extended range of integration,

− 1
2π

∫ ∞

0

σ0
tot (ρ′) log

∣∣ρ2 − ρ′2
∣∣ dρ′ = 1, ρ ∈ (ρ0, ρ1) (7. 63)

and
1
2π

∫ ∞

0

σ1
tot (ρ′) log

∣∣∣∣ρ+ ρ′

ρ− ρ′

∣∣∣∣ dρ′ = 1, ρ ∈ (ρ0, ρ1) . (7. 64)

Substitution of the Fourier transforms for the kernels (7.59) and (7.60), and
unknown functions σl ((7.61) and(7.62)), produces the integral equations∫ ∞

0

ξ−1 [g (ξ)− g (0)] cos (ξρ) dξ = 2 + g (0) log ρ, ρ ∈ (ρ0, ρ1) , (7. 65)

∫ ∞

0

ξ−1f (ξ) sin (ξρ) dξ = 2, ρ ∈ (ρ0, ρ1) . (7. 66)

Equations (7.61) and (7.62) provide the complementary part of the triple
integral equations for unknown functions g and f , respectively: for oppositely
charged flat strips (l = 1),∫ ∞

0

f∗ (ξ) sin (ξρ) dξ = 0, ρ ∈ (0, ρ0) ∪ (ρ1,∞) ,∫ ∞

0

ξ−1f∗ (ξ) sin (ξρ) dξ = 1, ρ ∈ (ρ0, ρ1) , (7. 67)

whereas for positively charged strips (l = 0),∫ ∞

0

g∗ (ξ) cos (ξρ) dξ = 0, ρ ∈ (0, ρ0) ∪ (ρ1,∞) ,∫ ∞

0

ξ−1 [g∗ (ξ)− g∗ (0)] cos (ξρ) dξ = 1 + g∗ (0) log ρ, ρ ∈ (ρ0, ρ1) ,

(7. 68)

where g∗ (ξ) = 1
2g (ξ) , and f∗ (ξ) = 1

2f (ξ) .
Equations (7.67) are easily reduced to those solved in the previous section

by means of the transform ϕ = 2arctan (ρ) (see (7.36)), and we deduce

σ1 (y) = b

{
K

(
2q

1
2

1 + q

)}−1
1 + q√

(y2 − a2) (b2 − y2)
, a < y < b, (7. 69)

where q = r20 = a/b. It is interesting to compare this result with that for the
cylindrically-shaped strips, given by (7.46). Apart from a factor of 1

4π, which
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is due to a different definition of σ1, the result also coincides with that of
Sneddon [55], once the complete elliptic integral identity [1]

K

(
2
√
q

1 + q

)
= (1 + q)K (q) (7. 70)

is taken into account. As might be expected, the expression for the capacitance
per unit length for flat strips has a similar format to that for cylindrically-
shaped strips (7.44) :

C = 2
K (κ)
K ′ (κ)

, (7. 71)

where κ = (1− q) / (1 + q) .
The solution of the Equations (7.68) may be approached in many ways. One

approach is to reduce (7.64) to triple integral equations with sine function ker-
nels, and then to use the relationship between integral and series equations.
A second way is to find the relationship between integral and series equa-
tions involving the cosine functions. Both approaches require rather bulky
transforms. However, a simpler way exploits the well-known mathematical
device employed in [55]. First, rescale the standard coordinates (y′, z′), set-
ting r = y′/b, z = z′/b, so that Equations (7.68) become∫ ∞

0

g (λ) cos (λr) dλ = 0, r ∈ (0, r0) ∪ (1,∞) , (7. 72)

∫ ∞

0

λ−1 [g (λ)− g (0)] cos (λr) dλ = 2 + g (0) log r, r ∈ (r0, 1) , (7. 73)

where r0 = a/b. The mathematical device is a variant of the substitution
method, and assumes that the unknown function g has an expansion in a
Neumann series

g (λ) =
∞∑

n=0

anJ2n (λ) , (7. 74)

where {an}∞n=0 are the unknown coefficients to be determined. The well-
known discontinuous integral [19]

∞∫
0

J2n (ξ) cos (ξr) dξ =
(
1− r2

)− 1
2 T2n

(√
1− r2

)
H (1− r) (7. 75)

shows that the integral Equation (7.72) is satisfied automatically, for r ∈
(1,∞). Substitution of (7.74) into (7.73) , and use of another identity [19]
(valid when n > 0),

∞∫
0

ξ−1J2n (ξ) cos (ξr) dξ =
1
2n
T2n

(√
1− r2

)
, r < 1,
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leads to the following dual series equations for the unknown coefficients an:
∞∑

n=0
anT2n

(√
1− r2

)
= 0, r ∈ (0, r0) ,

∞∑
n=1

n−1anT2n

(√
1− r2

)
= 4 + 2a0 log r, r ∈ (r0, 1) .

(7. 76)

In deducing (7.76) , we have used the obvious relationship a0 = g(0).
The remaining steps are now obvious; the substitution cos 1

2ϕ =
√

1− r20
converts these equations to trigonometric form

∞∑
n=1

an cosnϕ = −A0, ϕ ∈ (0, ϕ0) , (7. 77)

∞∑
n=1

n−1an cosnϕ = 4 + 2a0 log
(
sin

ϕ

2

)
, ϕ ∈ (ϕ0, π) ,

where cos 1
2ϕ0 =

√
1− r20. Following the general scheme outlined in Section

2.2 we obtain
∞∑

n=1

n−1anP
(−1,0)
n (cosϕ) =

{
−2a0 log

(
cos 1

2ϕ
)
, ϕ ∈ (0, ϕ0)

4 + 2a0 log
[
1
2

(
1 + sin ϕ

2

)]
, ϕ ∈ (ϕ0, π) .

(7. 78)
A standard continuity argument establishes that

a0 = −2
{

log
[
1
2

(
1 + sin

ϕ0

2

)
cos

ϕ0

2

]}−1

, (7. 79)

so the final solution for the coefficients is

am = −2a0P
(−1,0)
m (cosϕ0) + a0m

∫ x0

−1

P
(−1,0)
m (x) dx(

1 +
√

1
2 (1− x)

)√
1
2 (1− x)

,

(7. 80)
where x0 = cosϕ0. The capacitance of the two strips is C = π

2 g (0) = π
2 a0, so

that

C = −π
{

log
[
1
2

(
1 + sin

ϕ0

2

)
cos

ϕ0

2

]}−1

= −π
{

log
[
1
2

(1 + r0)
√

1− r20

]}−1

, (7. 81)

where we recall that r0 = a/b.
Finally let us consider the quadrupole lens system of four charged electrodes,

each of which is a flat strip (see Figure 7.4). Use coordinates r, z so that the
strips are separated by a distance 2t = 2d/b and comprise the four segments
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Figure 7.4
The charged thin-strip quadrupole.

specified by r ∈ (−1,−r0)∪(r0, 1) , z = ±1. The segments in the first and third
quadrants are positively charged to unit potential, whilst the remaining strips
are negatively charged (to unit potential). The potential may be constructed
as a sum of two dipole-like potentials in two ways. Group upper and lower
pairs of strips, as dipole-like structures, so that

ψ (r, z) = ψup (r, z) + ψlow (r, z) (7. 82)

where

ψup (r, z) =
1
4π

∫ 1

r0

log

[
(r + r′)2 +

(
z − t

2

)2
(r − r′)2 +

(
z − t

2

)2
]
σ (r′) dr′, (7. 83)

ψlow (r, z) = − 1
4π

∫ 1

r0

log

[
(r + r′)2 +

(
z + t

2

)2
(r − r′)2 +

(
z + t

2

)2
]
σ (r′) dr′, (7. 84)

σ being the line charge density on that electrode in the first quadrant (r > 0, z > 0) .
A variant grouping of the electrodes is vertical; however, both representations
provide the same quadrupole potential distribution.

We now construct the Fourier integral representation of the function ψ, in
the three domains z > 1

2 t, |z| <
1
2 t, and z < − 1

2 t. First, use the Fourier
transform representation [19] of the logarithmic function,

1
4

log
(a+ b)2 + p2

(a− b)2 + p2
=
∫ ∞

0

ξ−1e−ξp sin (ξa) sin (ξb) dξ, (7. 85)
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valid when Re p > |Im a|+ |Im b| . Also, as before, extend the domain of σ to
obtain a function σtot, defined on (0,∞) by

σtot (r′) =
{

0, r′ ∈ (0, r0) ∪ (1,∞) ,
σ (r′) , r′ ∈ (0, 1) , (7. 86)

with Fourier sine transform representation

σtot (r′) =
∫ ∞

0

f (λ) sinλr′dλ. (7. 87)

The desired representation is

ψ (r, z) =
∫ ∞

0

λ−1f (λ) sinh
(
λ
t

2

)
e−λz sin (λr) dλ, z >

t

2
, (7. 88)

ψ (r, z) =
∫ ∞

0

λ−1f (λ) sinh (λz) e−λ t
2 sin (λr) dλ, |z| < t

2
, (7. 89)

ψ (r, z) = −
∫ ∞

0

λ−1f (λ) sinh
(
λ
t

2

)
eλz sin (λr) dλ, z <

−t
2
. (7. 90)

It is evident that the electrostatic potential defined by (7.88)–(7.90) is con-
tinuous, including across the interfaces |z| = t/2, so the following triple inte-
gral equations for the unknown function f hold:∫ ∞

0

f (λ) sinλrdλ = 0, r ∈ (0, r0) ∪ (1,∞) , (7. 91)∫ ∞

0

λ−1
(
1− e−λt

)
f (λ) sinλrdλ = −2, r ∈ (r0, 1) . (7. 92)

The value of the discontinuous integral [19]
∞∫
0

J2n+1 (λ) sinλrdλ = r
(
1− r2

)− 1
2 U2n

(√
1− r2

)
H (1− r) (7. 93)

suggests the following Neumann series representation for f,

f (λ) =
∞∑

n=0

bnJ2n+1 (λ) ; (7. 94)

it satisfies (7.91) automatically when r > 1. The remaining two integral equa-
tions are transformed to the following dual series equations for the unknown
coefficients bn,

∞∑
n=0

bn sin (2n+ 1) θ = 0, θ ∈ (0, θ0) , (7. 95)

∞∑
n=0

(2n+ 1)−1
bn sin (2n+ 1) θ = −2 + F (θ) , θ ∈

(
θ0,

π

2

)
, (7. 96)
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where cos θ =
√

1− r2, cos θ0 =
√

1− r20,

F (θ) =
∞∑

n=0

bnαn (θ) (7. 97)

and

αn (θ) =

∞∫
0

λ−1e−λtJ2n+1 (λ) sin (λ sin θ) dλ.

Using the expansion [1]

sin (λ sin θ) = 2
∞∑

k=0

J2k+1 (λ) sin (2k + 1) θ, (7. 98)

we may write

αn (θ) = 2
∞∑

k=0

βnk sin (2k + 1) θ, (7. 99)

F (θ) = 2
∞∑

n=0

bn

∞∑
k=0

βnk sin (2k + 1) θ,

where

βnk =

∞∫
0

λ−1e−λtJ2n+1 (λ) J2k+1 (λ) dλ. (7. 100)

After the trivial substitution ϕ = 2θ (and ϕ0 = 2θ0) one obtains the follow-
ing dual series equations on the standard domain (0, π) ,

∞∑
n=0

bn sin
(
n+

1
2

)
ϕ = 0, ϕ ∈ (0, ϕ0) , (7. 101)

∞∑
n=0

(
n+

1
2

)−1

bn sin
(
n+

1
2

)
ϕ = −4 + 4

∞∑
n=0

bn

∞∑
k=0

βnk sin
(
k +

1
2

)
ϕ,

ϕ ∈ (ϕ0, π) . (7. 102)

It should be noted that in the limiting case when t → 0, the conjunction of
oppositely charged strips eliminates sources to produce electrostatic field. In
this case βnk = 1

4

(
k + 1

2

)−1
δnk.

Equations (7.101) and (7.102) have a clear physical interpretation. The left-
hand side of these equations represents field terms for a single dipole pair of
oppositely charged strips. The mutual coupling between the two dipoles is
reflected in the presence of coupling terms on the right-hand side of (7.102) .
The coefficients βnk measure the strength of this coupling. The situation
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simplifies when two pairs of strips are well separated, so that t � 1. The
coefficients βnk may be expanded as a rapidly convergent power series in t−1,
equalling

∞∑
m=0

(−1)m Γ (2n+ 2k + 2m+ 3)Γ (2n+ 2k + 2m+ 2) (2t)−2n−2k−2m−2

Γ (m+ 1) Γ (2k +m+ 2)Γ (2m+ n+ 2)Γ (2n+ 2k +m+ 3)
.

(7. 103)
The expansion is valid for t ≤ 1

2 , and converges rapidly for large t.

7.4 Axially-slotted elliptic cylinders

In this section, we consider cylinders of elliptic cross-section with one or
two apertures; these structures are analogues of the slotted circular cylin-
ders considered in previous sections. Elliptic cylinder coordinates (α, β, z)
were defined in Section 1.1.6 (see Figure 7.5); briefly, in terms of Cartesian
coordinates, the coordinates satisfy

x = c coshα cosβ, y = c sinhα sinβ, z = z, (7. 104)

where the range of parameters is 0 ≤ α ≤ ∞, and −π ≤ β ≤ π, the coordinate
surfaces α = α0 = constant form a family of confocal elliptic cylinders with
semifocal distance c = d

2 , and the z-independent solutions ψ of Laplace’s
equation satisfy

∆ψ (α, β) =
1

c2
(
cosh2 α− cos2 β

) [∂2ψ

∂α2
+
∂2ψ

∂β2

]
= 0. (7. 105)

The geometry of various slotted elliptic cylinders to be considered are shown
in Figure 7.6. The first two (Figures 7.6(a) and 7.6(b)) are portions of coor-
dinate surfaces. The last two are better described as portions of coordinate
surfaces in a variant of elliptic cylinder coordinates to be described later in
this section.

The general solution of the Laplace equation, given by a single-layer po-
tential representation, is used to derive the basic series equations for these
structures, shown in Figure 7.6 (a)–(d).

First, consider the electrostatic field surrounding a single elliptic arc charged
to unit potential (Figure 7.6 (a)). The potential has a single-layer represen-
tation

ψ (α, β) = − 1
4π

∫ β0

−β0

log
{

(x− x′)2 + (y − y′)2
}
σ (β′) dlβ , (7. 106)

where it is to be understood that (x, y) and (x′, y′) depend on (α, β) and
(α′, β′) according to (7.104) , dlβ = c

√
cosh2 α′ − cos2 β′dβ′ is the length dif-
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Figure 7.5
The elliptic cylinder coordinate system.

ferential on the elliptic contour, and σ = σ (β′) is the line charge density.
Simple algebra transforms the kernel in (7.106) to the form

log
{

(x− x′)2 + (y − y′)2
}

= 2 log (c/2) + log {2 [cosh (α+ α′)− cos (β + β′)]}
+ log {2 [cosh (α− α′)− cos (β − β′)]} . (7. 107)

The expansion of the logarithmic function in Fourier series [19]

log (2 cosh y − 2 cosx) = y − 2
∞∑

n=1

e−ny cosnx
n

, y > 0 (7. 108)

shows that the kernel (7.107) is

log
{

(x− x′)2 + (y − y′)2
}

= 2 log
(

1
2
cemax(α,α′)

)
−

2
∞∑

n=1

n−1
{
e−n|α−α′| cosn (β − β′) + e−n(α+α′) cosn (β + β′)

}
. (7. 109)

As before, introduce the function σtot, which extends the domain of σ via

σtot (β′) =
{
c
√

cosh2 α′ − cos2 β′σ (β′) , β′ ∈ (0, β0)
0, β′ ∈ (β0, π)

(7. 110)
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Figure 7.6
Various configurations of charged elliptic strips.

with the understanding σtot (−β′) = σtot (β′); assume that σtot can be repre-
sented as a Fourier cosine series

σtot (β′) =
∞∑

m=0

(
2− δ0m

)
xm cosmβ′. (7. 111)

Thus, (7.106) has the equivalent representation

ψ (α, β) = − 1
4π

∫ π

0

K (α, β;α′, β′)σtot (β′) dβ′, (7. 112)

where

K (α, β;α′, β′) = −4
∞∑

n=1

n−1
{
e−n|α−α′| + e−n(α+α′)

}
cosnβ cosnβ′

+ 4 log
(

1
2
cemax(α,α′)

)
. (7. 113)

©2001 CRC Press LLC



By substitution of (7.111) and (7.113) into (7.112), the form of the potential
function ψ in terms of unknown coefficients xn is

ψ (α, β) =
∞∑

n=1

n−1xn

[
e−n|α−α′| + e−n(α+α′)

]
cosnβ

− x0 log
(

1
2
cemax(α,α′)

)
. (7. 114)

The major and minor semi-axes are a = c coshα′ and b = c sinhα′, so
that 1

2ce
α′ = 1

2 (a+ b) . When the elliptic arc degenerates to a circular arc
(b→ a), representation (7.114) transforms to (7.8) . The only difference is the
reference point, from which the potential is calculated. In order to make both
representations compatible, redefine ψ (α, β) as

ψ (α, β) = −x0 (α− α′) +
∞∑

n=1

n−1xn

[
e−n|α−α′| + e−n(α+α′)

]
cosnβ.

(7. 115)
Now use the obvious mixed boundary conditions to obtain the following

dual series equations for the unknown Fourier coefficients xn :
∞∑

n=1

n−1xn

(
1 + e−n2α′

)
cosnβ = 1, β ∈ (0, β0) ,

∞∑
n=1

xn cosnβ = −1
2
x0, β ∈ (β0, π) . (7. 116)

It is instructive to compare (7.116) with its circular analogue (7.11)–(7.12).
Formally, the difference is the appearance of a new term (e−n2α′), which is a
measure of deviation between elliptic and circular strips. Equation (7.116) is
transformed in the usual way to the following second-kind Fredholm matrix
equation,

Xm −
∞∑

n=1

Xnκnm = γm, (7. 117)

where m = 1, 2, . . ., Xm = (2/m)
1
2 xm,

κnm = −e−2nα′ {log [(1− z0) /2]}−1 P̂
(0,−1)
n (z0) P̂

(0,−1)
m (z0)

nm

+ e−2nα′Q̂(−1,0)
nm (z0) (7. 118)

γm = −2 {log [(1− z0) /2]}−1 P̂
(0,−1)
m (z0)

m
, (7. 119)

and z0 = cosβ0. Furthermore, for these values of parameters, the normalised
Jacobi polynomials P̂ (0,−1)

n and P̂ (−1,0)
n are defined by

P̂ (0,−1)
n (x) = (2n)

1
2 P (0,−1)

n (x) , P̂ (−1,0)
n (x) = (2n)

1
2 P (−1,0)

n (x) ,
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and the incomplete scalar products are

Q̂(−1,0)
nm (z0) =

1∫
z0

(1− z)−1
P̂ (−1,0)

n (z) P̂ (−1,0)
m (z) dz.

This second-kind system may be solved numerically in the usual way, employ-
ing a truncation method that is rapidly convergent.

The field of the slotted elliptic cylinder shown in Figure 7.6(b), in which
the slots are symmetrically located and both charged to unit positive poten-
tial, may be derived from the solution obtained above for the single elliptic
strip. Taking into consideration the charge on both strips, the Fourier series
representation for the potential takes the form

ψ (α, β) =
∞∑

n=1

n−1x2n

[
e−2n|α−α′| + e−2n(α+α′)

]
cos 2nβ

−
{

2x0 (α− α′) , (α > α1)
0, (α < α1)

}
. (7. 120)

Satisfaction of the boundary conditions produces the dual series equations

∞∑
n=1

n−1x2n

[
1 + e−4nα′

]
cosnϑ = 1, ϑ ∈ (0, ϑ0) (7. 121)

∞∑
n=1

x2n cosnϑ = −1
2
x0, ϑ ∈ (ϑ0, π) (7. 122)

where ϑ = 2β and ϑ0 = 2β0.
The solution is readily derived from (7.117) with the following changes: in

the matrix elements κnm, the factor e−2nα′ is replaced by e−4nα′ , the parame-
ter z0 is replaced by 2z2

0−1 = cos 2β0, and the unknown xm is replaced by x2m.
This completes the solution for the slotted elliptic cylinder with identically
charged components.

The field of the slotted elliptic cylinder shown in Figure 7.6(b) in which
the slots are symmetrically located, but are oppositely charged (each to unit
potential), may be derived from the representation

ψ (α, β) =
∞∑

n=0

x2n+1(
n+ 1

2

) [e−(2n+1)|α−α′| + e−(2n+1)(α+α′)
]
cos(2n+ 1)β,

(7. 123)
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where the coefficients x2n+1 satisfy the dual series equations
∞∑

n=0

x2n+1(
n+ 1

2

) [1 + e−(4n+2)α′
]
cos
(
n+

1
2

)
ϑ = 1, ϑ ∈ (0, ϑ0) ,

(7. 124)
∞∑

n=0

x2n+1 cos
(
n+

1
2

)
ϑ = 0, ϑ ∈ (ϑ0, π) ,

(7. 125)

and the variable ϑ and parameter ϑ0 are the same as in Equations (7.121).
It can be readily shown that by replacing ϑ by π − θ and identifying bn with
(−1)n

x2n+1, Equations (7.124) reduce to equations of the same type as (7.94)
and (7.95); however, the term on the right-hand side of (7.124) has a much
simpler analytical structure.

Suppressing the intermediate steps, the final form of the system is

x2m+1 +
∞∑

n=0

x2n+1e
−(4n+2)α′Rnm (z0) = Cm, (7. 126)

where m = 0, 1, 2, . . .,

Cm = Pm (z0) /Q− 1
2

(z0) , (7. 127)

Rnm (z0) =

(
m+ 1

2

)2
n+ 1

2

{
Pn (z0)
Q− 1

2
(z0)

∫ z0

−1

Q− 1
2

(z)Pm (z) dz +Q(0,0)
nm (z0)

}
,

(7. 128)
and z0 = cosϑ0 = cos 2β0. The integrals appearing in (7. 128) may be easily
evaluated (see Appendix, (B. 97)).

The configurations of the charged elliptic strips shown in Figures 7.6 (c) and
7.6 (d) are best described by oblate elliptic cylinder coordinates (see Figure
7.7); this system is obtained by replacing the parameter β by π

2 − β in the
prolate variant of elliptic cylinder coordinates defined at the beginning of this
section. Thus,

x = coshα sinβ, y = c sinhα sinβ, z = z,

where the range of parameters is 0 ≤ α <∞, −π ≤ β ≤ π, and the Laplacian
for z-independent potentials is

4ψ(α, β) =
1

c2
(
cosh2 α− sin2 β

) [∂2ψ

∂α2
+
∂2ψ

∂β2

]
. (7. 129)

By simple algebra, one may verify that representation of the potential is given
by (cf. (7.115))

ψ(α, β) = −x0(α− α′) +
∞∑

n=1

n−1xn

[
e−n|α−α′| + (−1)ne−n(α+α′)

]
cos 2nβ

(7. 130)
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Figure 7.7
The oblate elliptic cylinder coordinate system.

where the expansion (7.111) remains true for the modified definition for σtot,

σtot (β′) =
{
c
√

cosh2 α′ − sin2 β′ σ (β′) , β′ ∈ (0, β0) ,
0, β′ ∈ (β0, π) .

(7. 131)

The potential function for the elliptic strips shown in Figures 7.6(c) and
7.6(d) may be readily derived from the solutions already obtained in this
section with a few simple modifications. For the single elliptic strip (Fig-
ure 7.6(c)), multiply the matrix elements κnm (7.118) by a factor of (−1)n

.
For the pair of symmetrically located strips (Figure 7.6(d)) both positively
charged to unit potential, no changes are needed; however, if the pair of sym-
metrically located strips (Figure 7.6(d)) are oppositely charged, change the
sign of the term containing e−(4n+2)α′ , replacing it by −e−(4n+2)α′ . The line
charge density σ can now be calculated using definition (7.131).

7.5 Slotted cylinders of arbitrary profile

The study of the slotted elliptical cylinder suggests that the idea of regu-
larisation might beneficially be extended to determine the potential of more
general two-dimensional, thin, charged conductors. In examining the elliptic
cylinder, we analytically inverted that part of the series equations (see (7.
116)) that definitely corresponds to a circular profile. From the perspective of
the method of regularisation a singular part of the operator associated with
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the series equations formulation was inverted. The remaining contributions
(visible as the terms proportional to e−n2α′) are regular (analytic) perturba-
tion terms that measure the deviation of the elliptic profile from the circular.

The purpose of this section is to show how a regularisation approach may
be extended to open (slotted) hollow cylinders with arbitrarily profiled cross-
section. Although we do not aim to compute the electrostatic fields of all
possible configurations, nevertheless we wish to demonstrate how the meth-
ods developed for canonical conductors work in the wider context. In par-
ticular, the regularised system of equations for an open cylinder of arbitrary
cross-section with one slot or aperture will be obtained. This approach has
been developed by Tuchkin [52, 65] in the context of a rigorous treatment of
diffraction by open thin cylinders of arbitrary cross-section.

The starting point is the construction of the solution to the Dirichlet bound-
ary problem for Laplace equation on an arc of a hollow circular cylinder of
unit radius. In cylindrical polar coordinates (r, ϕ) the electrostatic potential
ψ produced by such a thin strip with (as yet unknown) charge density σ is
given by the single-layer potential of the type (7. 2),

ψ(r, ϕ) = − 1
4π

∫ ϕ0

−ϕ0

log
∣∣1− 2r cos(ϕ− ϕ′) + r2

∣∣σ(ϕ′)dϕ′. (7. 132)

If the conductor is charged to potential ψ0(ϕ) (as a function of position),
enforcement of the boundary condition

ψ(1, ϕ) = ψ0(ϕ), ϕ ∈ [−ϕ0, ϕ0] , (7. 133)

produces the first-kind Fredholm equation

− 1
2π

∫ ϕ0

−ϕ0

log
∣∣∣∣2 sin

ϕ− ϕ′

2

∣∣∣∣σ(ϕ′)dϕ′ = ψ0(ϕ), ϕ ∈ [−ϕ0, ϕ0] . (7. 134)

Extend the domain of definition of the line charge density σ to a function

σ∗(ϕ′) =
{
σ(ϕ′), ϕ′ ∈ [−ϕ0, ϕ0]
0, ϕ′ ∈ [−π, π] \ [−ϕ0, ϕ0]

, (7. 135)

so that the function σ∗ satisfies

− 1
2π

∫ π

−π

log
∣∣∣∣2 sin

ϕ− ϕ′

2

∣∣∣∣σ∗(ϕ′)dϕ′ = ψ0(ϕ), ϕ ∈ [−ϕ0, ϕ0] . (7. 136)

The logarithmic kernel has a Fourier series expansion

log
∣∣∣∣2 sin

ϕ− ϕ′

2

∣∣∣∣ = −1
2

n=−∞∑
n=−∞

′ 1
|n|
ein(ϕ−ϕ′), (7. 137)
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where prime indicates omission of the zero index (n = 0) term. Assume that
both σ∗ and ψ0 have Fourier series expansions

σ∗(ϕ′) =
∞∑

n=−∞
xne

inϕ′ , (7. 138)

2ψ0(ϕ) =
∞∑

n=−∞
fne

inϕ, (7. 139)

where {xn}∞n=−∞ are unknown coefficients to be determined, but the coeffi-
cients {fn}∞n=−∞ are known. Substitution of these expansions produces the
following dual series equations,

∞∑
n=−∞

′ 1
|n|
xne

inϕ =
∞∑

n=−∞
fne

inϕ, ϕ ∈ [−ϕ0, ϕ0] , (7. 140)

∞∑
n=−∞

xne
inϕ = 0, ϕ ∈ [−π, π] \ [−ϕ0, ϕ0] , (7. 141)

where the prime in Equation (7. 140) means that the index zero term is
omitted from the summation.

As shown in Section 2.2, the canonical equations (7. 140) and (7. 141) are
solvable analytically, and thus provide a starting point for the generalisation
to slotted cylinders of arbitrary cross-section.

Let L denote the two-dimensional cross-section in the xy plane of the ar-
bitrarily shaped, infinitely thin, slotted conductor (see Figure 7.8). It will
be assumed to be sufficiently smooth; the precise degree of smoothness will
become apparent below. Let p = p(x, y) denote a point on the contour L. If
the conductor is charged to the potential ψ0(p) (at each p ∈ L), the Dirichlet
boundary conditions to be enforced at each point p ∈ L are

ψ(p− 0) = ψ(p+ 0) = ψ0(p). (7. 142)

The potential ψ(q) of the electrostatic field produced by this conductor has
a single-layer potential representation (7. 1) in terms of the surface charge
density σ,

ψ(q) = − 1
2π

∫
L

log(|p− q|)σ(p)dlp, q ∈ R2, (7. 143)

where dlp is the differential of arc length at the point p ∈ L, q is a point at
which the electrostatic potential is considered, and R = |p− q| is the distance
between the point p on the conductor and the observation point q .

Applying the boundary condition (7. 142) to Equation (7. 143) yields the
integral equation

1
2π

∫
L

log(|p− q|)σ(p)dlp = −ψ0(q), q ∈ L (7. 144)
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Figure 7.8
Cross-section of the arbitrarily shaped, infinitely thin, slotted con-
ductor.

for the unknown surface charge density σ. Once this is found, the electrostatic
potential at any point q can be found from (7. 143), and all the relevant
physical quantities such as charge and capacitance are easily calculated.

Our reformulation of the integral Equation (7. 144) begins by regarding the
open contour L as part of a larger closed structure S, which is parametrised by
the functions x(θ), y(θ) where θ ∈ [−π, π]; the parametrising functions are pe-
riodic so that x (−π) = x (π) , y (−π) = y (π). The contour L is parametrised
by the subinterval [−θ0, θ0],

L = {(x(θ), y(θ)) , θ ∈ [−θ0, θ0]} ,

and the aperture is created by the removal from S of the segment

L′ = {(x(θ), y(θ)) , θ ∈ [−π,−θ0] ∪ [θ0, π]} .

In order to employ the regularisation procedure to be described, the param-
etrisation of the contour S must be continuous and twice differentiable at
each point p of S. Moreover, the computational effectiveness of the numeri-
cal algorithm derived from the regularised system increases as the degree of
contour smoothness (differentiability) increases.

With this parametrisation, the differential of arc length is

l(τ) =
√

(x′(τ))2 + (y′(τ))2,
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and the integral Equation (7. 144) takes the form

1
2π

∫ θ0

−θ0

log(R)σ0(τ)dτ = −ψ0(θ), θ ∈ [−θ0, θ0], (7. 145)

whereR(θ, τ) =
√

[x(θ)− x(τ)]2 + [y(θ)− y(τ)]2 is the distance between points
of the contour parametrised by θ and τ , σ0(τ) = σ(x(τ), y(τ)) l(τ), and
ψ0(θ) = −ψ0(x(θ), y(θ)).

Introduce the new unknown function z, extending the domain of σ0 and
defined by

z(τ) =
{
σ0(τ), τ ∈ [−θ0, θ0],
0, τ ∈ [−π,−θ0] ∪ [θ0, π]. (7. 146)

Transform (7. 145) to an integral equation for this new unknown over the full
interval [−π, π] of the angular coordinate θ:

1
2π

∫ π

−π

log(R)z(τ)dτ = −Ψ0(θ), θ ∈ [−θ0, θ0]. (7. 147)

Equation (7. 147), together with the requirement that z vanishes outside the
interval [−θ0, θ0], is completely equivalent to Equation (7. 145).

We now convert Equation (7. 147) to a dual series with a trigonometric
kernel. The function z is represented by its Fourier series, whilst the kernel
of (7. 147) is expanded as a double Fourier series. The semi-inversion and
regularisation of dual series with trigonometric functions kernels described in
Chapter 2 is the key technical idea upon which this method relies.

The first stage is to obtain the integral equation in the equivalent form of
a dual series equation with exponential functions einθ. Split the kernel of the
integral Equation (7. 147) into singular and regular parts:

log(R(θ, τ)) = ln(2
∣∣∣∣sin θ − τ

2

∣∣∣∣) +H(θ, τ). (7. 148)

The singular part of the kernel (7. 148) has the expansion (7. 137). Our as-
sumptions about the surface S imply that H(θ, τ) is smooth and continuously
differentiable with respect to θ and τ ; this allows its expansion in a double
Fourier series,

H(θ, τ) =
∞∑

p=−∞

∞∑
n=−∞

hnpe
i(nθ+pτ), θ, τ ∈ [−π, π], (7. 149)

where
∞∑

p=−∞

∞∑
n=−∞

(1 + |p|2)(1 + |n|2) |hnp|2 <∞.
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Here the coefficients hnp are given by

hnp =
1

4π2

∫ π

−π

∫ π

−π

H(θ, τ)e−i(nθ+pτ)dθdτ. (7. 150)

Represent the conductor potential function ψ0 and the unknown z in their
Fourier series:

2ψ0(θ) =
∞∑

n=−∞
gne

inθ, θ ∈ [−π, π] (7. 151)

z(τ) =
∞∑

n=−∞
ςne

inτ , τ ∈ [−π, π]. (7. 152)

Inserting (7. 137) and (7. 148)–(7. 152) into Equation (7. 147) and recalling
that z(τ) vanishes outside the interval [−θ0, θ0], we obtain the following dual
series equations with exponential kernels:

∞∑
n=−∞

′ |n|−1
ςne

inθ − 2
∞∑

n=−∞
einθ

∞∑
p=−∞

hn,−pςp =
∞∑

n=−∞
gne

inθ,

θ ∈ [−θ0, θ0], (7. 153)

∞∑
n=−∞

ςne
inθ = 0, θ ∈ [−π,−θ0] ∪ [θ0, π]. (7. 154)

Thus the integral Equation (7. 147) is converted to equivalent dual series
equations defined on two subintervals of [−π, π], with unknowns {ςn}∞n=−∞ to
be found.

Following the procedure of Section 2.2, we convert this system one with real
trigonometric kernels. Introduce the new unknowns

xn = (ζn + ζ−n)/ |n| , yn = (ζn − ζ−n)/ |n| , (7. 155)

where n = 1, 2, . . .. Set

g+
n = gn + g−n, g−n = gn − g−n, (n = 1, 2, ...), (7. 156)

and define the matrices from the coefficients {hnp}∞n,p=−∞ (7. 150) by

k(++)
np = [(hn,p + hn,−p) + (h−n,p + h−n,−p)] /(2 + 2δn0), n, p ≥ 0;

k(+−)
np = [(hn,p − hn,−p) + (h−n,p − h−n,−p)] /(2 + 2δn0), n ≥ 0, p ≥ 1;

k(−+)
np = [(hn,p + hn,−p)− (h−n,p + h−n,−p)] /2, n ≥ 1, p ≥ 0;

k(−−)
np = [(hn,p − hn,−p)− (h−n,p − h−n,−p)] /2, n, p ≥ 1.

(7. 157)
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We may therefore reduce the system of Equations (7. 154) to two coupled
systems of dual series equations with trigonometric function kernels,

∞∑
n=1

xn cosnθ = a0 +
∞∑

n=1

an cosnθ, θ ∈ [0, θ0],

∞∑
n=1

nxn cosnθ = −ζ0, θ ∈ [θ0, π], (7. 158)

and
∞∑

n=1

yn sinnθ =
∞∑

n=1

cn sinnθ, θ ∈ [0, θ0],

∞∑
n=1

nyn sinnθ = 0, θ ∈ [θ0, π], (7. 159)

where

a0 = g0 + 2k(++)
00 ζ0 + 2

∞∑
p=1

p(k(++)
0p xp − k

(+−)
0p yp),

an = g+
n + 2k(++)

n0 ζ0 + 2
∞∑

p=1

p(k(++)
np xp − k(+−)

np yp),

cn = g−n + 2k(−+)
n0 ζ0 − 2

∞∑
p=1

p(k(−−)
np yp − k(−+)

np xp). (7. 160)

These equations are now in standard form to apply the results of Section
2.2, and we write down the regularised system of linear equations obtained by
this process. It produces two coupled matrix equations (of second kind) with
the rescaled unknowns

Xn = xn

√
2n, Yn = yn

√
2n, X0 = 2ζ0. (7. 161)

Setting t0 = cos θ0, the systems are

Ym +
∞∑

p=1

√
2p

∞∑
n=1

√
2n
[
Ypk

(−−)
np −Xpk

(−+)
np

]
Q̂

(0,1)
n−1,m−1(t0)

=
∞∑

n=1

√
2n(X0k

(−+)
np + g−n )Q̂(0,1)

n−1,m−1(t0), (7. 162)

and

Xm −
∞∑

p=1

√
2p

∞∑
n=1

√
2n
[
Xpk

(++)
np − Ypk

(+−)
np

]
Q̂

(1,0)
n−1,m−1(t0)

=
∞∑

n=1

√
2n(X0k

(++)
n0 + g+

n )Q̂(1,0)
n−1,m−1(t0) +X0(1 + t0)

1
m
P̂

(0,1)
m−1(t0), (7. 163)
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where m = 1, 2, . . .; an additional equation, which is to be solved together
with the Equations (7. 162) and (7. 163), is

∞∑
p=1

√
2p(Xpk

(++)
0p − Ypk

(+−)
0p )+

(1 + t0)
2

∞∑
p=1

√
2p

∞∑
n=1

√
2
n

[
Xpk

(++)
np − Ypk

(+−)
np

]
P̂

(0,1)
n−1 (t0)

= − (1 + t0)
2

∞∑
n=1

√
2
n

(X0k
(++)
n0 + g+

n )P̂ (0,1)
n−1 (t0)

− g0 −X0

[
k

(++)
00 +

1
2

ln(
(1− t0)

2
)
]
. (7. 164)

Here

Q̂(0,1)
n,m (t0) =

∫ 1

t0

(1 + t)P̂ (0,1)
n (t)P̂ (0,1)

m (t)dt

is the usual normalised incomplete scalar product.
This regularised system of equations is a coupled Fredholm matrix system

of second kind, which may be satisfactorily solved by the usual process of trun-
cation. In addition to the standard considerations about truncation number,
some attention must be paid to the rate of convergence of the double Fourier
series representation (7. 149) of the distance between points on the cylinder
profile. With this proviso, the regularisation approach and the resulting sys-
tem of equations provides a satisfactory basis for numerical computations of
the electrostatic fields surrounding open (singly-slotted) hollow cylinders with
arbitrarily profiled cross-sections.
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Chapter 8

More Complicated Structures

In this chapter, we consider a class of structures which, from a technical
point of view, is more complicated than those classes examined in previous
chapters. The class comprises plates, some of simple geometric or canonical
shape, and others with a greater degree of complexity. Complexity is a relative
notion. The determination of the potential for an electrified circular disc is not
complicated, and its solution has been known for a long time [8]; however, the
analogous problem for an electrified elliptic plate seems to be more complex,
and its rigorous solution has been obtained only comparatively recently [5].
In the same way, the potential associated with a charged thin spherical shell,
with an elliptic hole, or with the charged spherically conformal elliptic plate,
provides problems of equal complexity. Rather more complex are problems
generated by crossed plates, or by polygon plates, etc. In this hierarchy,
arbitrarily-shaped flat plates present the most complex problem structures
for analytical methods.

In this chapter we outline how the integral methods may be used for a
unified treatment of determining the potential for all these charged structures,
from the electrified disc to arbitrarily-shaped charged flat plates. The circular
and elliptic discs are considered in Sections 8.1 and 8.2, respectively; this
forms the basis for calculating the capacitance of a spherically-curved elliptic
plate. Plates that are regular polygons are examined in Section 8.3. The
finite rectangular strip is considered in Section 8.4; considerable manipulation
is required to demonstrate that the regularised system is indeed dominantly
diagonal. In the final section (8.5) we calculate the capacitance of a coupled
pair of charged conductors, the spherical cap and the circular disc. This
example is interesting because the components are parts of coordinate surfaces
belonging to different coordinate systems, and the resultant equations are
particular cases of the integro-series equations briefly described in Section
2.9.
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Figure 8.1
The flat plate S0 with arbitrarily-shaped boundary Γ. It lies on the
xOy plane and has complement S1.

8.1 Rigorous solution methods for charged flat plates

In this section we examine the canonical problem of an electrified circular
disc; it provides a starting point for the generalisation of integral methods to
more general structures.

Consider an arbitrarily-shaped flat plate occupying the finite surface region
S0 in the plane z = 0 (see Figure 8.1); let S1 be the (unbounded) comple-
mentary part of this plane and Γ be its boundary contour. The potential
generated by the structure may be represented in the form of the single-layer
potential,

ψ (x, y, z) = − 1
4π

∫∫
S0

σ (x′, y′) dx′dy′√
(x− x′)2 + (y − y′)2 + z2

, (x, y, z) ∈ R3\Γ

(8. 1)
where σ is surface charge density induced when the structure is immersed in
a known potential field ψ0; enforcement of the boundary condition

ψ = ψ0 (−→r ) , −→r ∈ S0

provides an integral equation determining σ.
Recall that the inverse distance∣∣∣−→r −−→r′ ∣∣∣−1

=
{

(x− x′)2 + (y − y′)2 + (z − z′)2
}− 1

2
(8. 2)
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is a fundamental solution of the Laplace equation in R3. In order to represent
ψ as a double Fourier transform, we employ the representation (1. 206) of the
inverse distance that is discontinuous in z,{

(x− x′)2 + (y − y′)2 + z2
}− 1

2

=
1
2π

∫ ∞

−∞
dν cos ν (x− x′)

∫ ∞

−∞
dµ

cosµ (y − y′)√
ν2 + µ2

e−
√

ν2+µ2|z|. (8. 3)

Then extend to domain of definition of σ to the whole of the plane z = 0 via

σt (x′, y′) =
{
σ (x′, y′) , (x′, y′) ∈ S0,
0, (x′, y′) ∈ S1.

(8. 4)

For the most general structures, the double Fourier transform of the function
σt may be expressed in terms of four unknown functions f, g, h, and t,

σt (x, y) =
∫ ∞

−∞
dν cos νx

∫ ∞

−∞
dµ {f (ν, µ) cosµy + h (ν, µ) sinµy}

+
∫ ∞

−∞
dν sin νx

∫ ∞

−∞
dµ {g (ν, µ) cosµy + t (ν, µ) sinµy} . (8. 5)

The boundary condition

ψ (x, y,+0) = ψ (x, y,−0) = ψ0 (x, y) , (x, y) ∈ S0 (8. 6)

now provides an integral equation for the extended surface charge density σt,

− 1
4π

∫ ∞

−∞

∫ ∞

−∞

σt (x′, y′)√
(x− x′)2 + (y − y′)2

dx′dy′ = ψ0 (x, y) , (x, y) ∈ S0.

(8. 7)
Substitution of the double Fourier transforms (8.5) and (8. 3) for the func-

tions σt and inverse distance, respectively, together with the recognition that
σt vanishes on S1, produces the dual integral equations

− π

4

∫ ∞

−∞
dν cos νx

∫ ∞

−∞

dµ

(ν2 + µ2)
1
2
{f (ν, µ) cosµy + h (ν, µ) sinµy}

− π

4

∫ ∞

−∞
dν sin νx

∫ ∞

−∞

dµ

(ν2 + µ2)
1
2
{g (ν, µ) cosµy + t (ν, µ) sinµy}

= ψ0 (x, y) , (x, y) ∈ S0, (8. 8)

and∫ ∞

−∞
dν cos νx

∫ ∞

−∞
dµ {f (ν, µ) cosµy + h (ν, µ) sinµy}

+
∫ ∞

−∞
dν sin νx

∫ ∞

−∞
dµ {g (ν, µ) cosµy + t (ν, µ) sinµy}

= 0, (x, y) ∈ S1. (8. 9)
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Equations (8.8) and (8.9) describe the most general electrostatic field for an
arbitrarily-shaped charged flat plate. To consider the special case of a charged
circular disc, introduce the parametrisation by x = ρ cosφ, y = ρ sinφ, so
that the bounding contour Γ is ρ = 1. Then, setting τ =

√
ν2 + µ2, use the

expansions in series (derived from the generating series, see Appendix, (B.
139)–(B. 142)),

cos (νx) cos (µy) = cos (νρ cosφ) cos (µρ sinφ)

=
∞∑

m=0

(
2− δ0m

)
J2m (τρ)T2m

(
µτ−1

)
T2m (cosφ) , (8. 10)

cos (νx) sin (µy) = cos (νρ cosφ) sin (µρ sinφ)

= 2ντ−1 sinφ
∞∑

m=0

J2m+1 (τρ)U2m

(
µτ−1

)
U2m (cosφ) , (8. 11)

sin (νx) cos (µy) = sin (νρ cosφ) cos (µρ sinφ)

= 2ντ−1
∞∑

m=0

J2m+1 (τρ)U2m

(
µτ−1

)
T2m+1 (cosφ) , (8. 12)

sin (νx) sin (µy) = sin (νρ cosφ) sin (µρ sinφ)

= 2ντ−1 sinφ
∞∑

m=0

J2m+2 (τρ)U2m+1

(
µτ−1

)
U2m+1 (cosφ) . (8. 13)

If the given potential ψ0 (x, y) is representable as a trigonometric series
(or equivalently as a series in the Chebyshev polynomials Tm(cosφ) and
Um(cosφ)), then using the orthogonality of the even or odd Chebyshev poly-
nomials on

(
0, π

2

)
as appropriate, one may deduce dual integral equations,

involving the Bessel function kernels of the form Jm

(√
ν2 + µ2ρ

)
for the

unknowns f, g, h, and t.
In the simplest case, suppose that the circular disc is raised to unit potential

so that ψ◦ (x, y) = 1 on S0. The bivariate dual integral equations become∫ ∞

0

dν

∫ ∞

0

dµF (ν, µ) J0

(√
ν2 + µ2ρ

)
= 1, 0 ≤ ρ < 1

(8. 14)∫ ∞

0

dν

∫ ∞

0

dµ
√
ν2 + µ2F (ν, µ) J0

(√
ν2 + µ2ρ

)
= 0, ρ > 1 (8. 15)

where the as yet unknown function F represents the electrostatic potential by

ψ (x, y) =
∫ ∞

0

dν cos νx
∫ ∞

0

dµF (ν, µ) e−
√

ν2+µ2|z| cos (µy) . (8. 16)
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For a circular disc, it is obvious that F depends only upon τ =
√
ν2 + µ2,

so that F (ν, µ) = F
(√

ν2 + µ2
)

= F (τ) , and the dual integral equations
become ∫ ∞

0

dτ.τF (τ) J0 (τρ) =
2
π
, 0 ≤ ρ < 1, (8. 17)∫ ∞

0

dτ.τ2F (τ) J0 (τρ) = 0, ρ > 1. (8. 18)

The solution is given by (see Section 2.6) F (τ) = 4π−2τ−2 sin τ, so

F (ν, µ) =
4
π2

(
ν2 + µ2

)−1
sin
(√

ν2 + µ2
)
. (8. 19)

The substitution method provides an alternative and very useful method for
solving Equations (8.14) and (8.15). Seek the solution F as an expansion in
the Neumann series

F (ν, µ) =
(
ν2 + µ2

)− 3
4

∞∑
k=0

xkJ2k+ 1
2

(√
ν2 + µ2

)
(8. 20)

where the coefficients xk are to be found. Insertion of (8.20) into (8.14) and
(8.15) yields (using again the substitution τ =

√
ν2 + µ2)

∞∑
k=0

xk

∫ ∞

0

τ−
1
2 J0 (τρ) J2k+ 1

2
(τ) dτ =

2
π
, 0 ≤ ρ < 1, (8. 21)

∞∑
k=0

xk

∫ ∞

0

τ
1
2 J0 (τρ) J2k+ 1

2
(τ) dτ = 0, ρ > 1. (8. 22)

The integrals occurring in (8.21) and (8.22) have the values [14]∫ ∞

0

τ−
1
2 J0 (τρ) J2k+ 1

2
(τ) dτ = 2−

1
2
Γ
(
k + 1

2

)
Γ (k + 1)

P2k

(√
1− ρ2

)
, (8. 23)

when 0 ≤ ρ < 1, and

∫ ∞

0

τ
1
2 J0 (τρ) J2k+ 1

2
(τ) dτ = 2

1
2

Γ (k + 1)
Γ
(
k + 1

2

) P2k

(√
1− ρ2

)
√

1− ρ2
H (1− ρ) .

(8. 24)
When ρ > 1, the integrals occurring in (8.22) therefore vanish identically
for each k, so that the equation is satisfied automatically; when 0 ≤ ρ < 1,
Equation (8.21) becomes

∞∑
k=0

Γ
(
k + 1

2

)
Γ (k + 1)

xkP2k

(√
1− ρ2

)
=

2
√

2
π

. (8. 25)
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Figure 8.2
The charged elliptic disc.

Because the even order Legendre polynomials are orthogonal on (0, 1) ,∫ 1

0

ρ
(
1− ρ2

)− 1
2 P2k

(√
1− ρ2

)
P2n

(√
1− ρ2

)
dρ = (4n+ 1)−1

δkn,

(8. 26)
we may deduce

xn = (2/π)
3
2 δn0 (n = 1, 2, . . .) . (8. 27)

Thus
F (τ) = τ−

3
2 (2/π)

3
2 J 1

2
(τ) = 4π−2τ−2 sin τ,

in agreement with the previously obtained result (8.19).

8.2 The charged elliptic plate

As well as its own intrinsic interest, the calculation of electrostatic potential
due to a charged elliptic plate demonstrates basic steps of a more general
method to calculate the potential of a flat charge plate of arbitrary shape.
The fundamental idea is to use a parametrisation that reduces the original
problem to disc-like equations with disc-like solutions.

Guided by the results of the previous section, let us consider the problem
in Cartesian coordinates (see Figure 8.2). When the plate is charged to unit
potential (ψ0 = 1 on S0), the form of the potential to be found is also given

©2001 CRC Press LLC
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by (8.16). It should be noted that this simpler form is the result of symmetry.
If a and b denote the minor and major semi-axes, respectively, introduce the
coordinates

x = bρ cosφ, y = aρ sinφ (8. 28)

so that the boundary of the elliptic plate Γ is given by ρ = 1. Let q = a/b, so
that q ≤ 1.

Use the boundary conditions (8. 6) to obtain the dual integral equations
for the unknown function F (ν, µ) , valid for φ ∈

(
0, 1

2π
)
,∫ ∞

0

dν cos (νbρ cosφ)
∫ ∞

0

dµF (ν, µ) cos (µaρ sinφ) = 1, 0 ≤ ρ < 1,

(8. 29)∫ ∞

0

dν cos (νbρ cosφ)
∫ ∞

0

dµ
√
ν2 + µ2F (ν, µ) cos (µaρ sinφ) = 0, ρ > 1.

(8. 30)
Again, use the series expansion (cf.(8. 10)) involving even Chebyshev poly-

nomials T2m(cosφ) with τ =
√
ν2 + q2µ2,

cos (νbρ cosφ) cos (µaρ sinφ)

=
∞∑

m=0

(
2− δ0m

)
J2m (bρτ)T2m

(
qµτ−1

)
T2m(cosφ), (8. 31)

to reduce (8.29) and (8.30) to the equivalent dual integral equations involving
the Bessel function kernel of form J0 (τbρ) ,∫ ∞

0

dν

∫ ∞

0

dµF (ν, µ) J0 (τbρ) = 1, 0 ≤ ρ < 1, (8. 32)∫ ∞

0

dν

∫ ∞

0

dµ
√
ν2 + µ2F (ν, µ) J0 (τbρ) = 0, ρ > 1. (8. 33)

When elliptic plate degenerates into circular disc (q = 1, b = 1 ), equations
identical to those obtained in the previous section are obtained. As before,
we may use the substitution method to solve these disc-like equations. The
modified form of the desired solution (cf. (8. 20)) that takes into account the
elliptic shape is (with τ =

√
ν2 + q2µ2)

F (ν, µ) =
(
ν2 + µ2

)− 1
2 τ−

1
2

∞∑
k=0

xkJ2k+ 1
2

(τb) (8. 34)

where the coefficients xk are to be found. Insertion of this representation into
Equations (8.32) and (8.33) produces the dual equations

κ (q)
∞∑

k=0

xk

∫ ∞

0

τ−
1
2 J0 (τbρ) J2k+ 1

2
(τb) dτ = 1, 0 ≤ ρ < 1, (8. 35)

∞∑
k=0

xk

∫ ∞

0

τ
1
2 J0 (τbρ) J2k+ 1

2
(τb) dτ = 0, ρ > 1, (8. 36)
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where

κ (q) =
∫ 1

0

dt√
(1− t2) [1− (1− q2) t2]

= K
(√

1− q2
)

(8. 37)

is a complete elliptic integral of first kind.
As before, (8. 24) shows that the second Equation (8.36) is automatically

satisfied; from (8.23) one may transform (8.35) to

∞∑
k=0

Γ
(
k + 1

2

)
Γ (k + 1)

xkP2k

(√
1− ρ2

)
= (2b)

1
2 /K

(√
1− q2

)
, 0 ≤ ρ < 1.

(8. 38)
This has the closed form solution

xk = δ0k (2b)
1
2 /K

(√
1− q2

)
(k = 0, 1, 2, . . .) . (8. 39)

The solution for the unknown function F (ν, µ) is deduced from (8.34) to be

F (ν, µ) =
2
π

sin
(√

ν2 + q2µ2b
)

√
(ν2 + q2µ2) (ν2 + µ2)

.
1

K
(√

1− q2
) . (8. 40)

When the elliptic disc is circular (q = 1) the solution (8.40) coincides with
(8.19) on the assumption that b = 1.

We may now calculate the capacitance C of the elliptic plates. At unit
potential, the value of C numerically coincides with the total charge Q ac-
cumulated on the elliptic plate. This may be calculated by integration over
the surface of the surface charge density, which equals the jump in normal
component of the electrostatic field across the plate,

σ (x, y) =
1
4π
{Ez (x, y,−0)− Ez (x, y,+0)} .

The capacitance is readily found to be

C = b/K
(√

1− q2
)
. (8. 41)

8.2.1 The spherically-curved elliptic plate

The method of inversion allows us to calculate the capacitance of a curved el-
liptic plate. From the perspective of inversion, we are naturally led to consider
the spherically-curved elliptic plate, conformal with the surface of a sphere,
shown in Figure 8.3. Let M be the centre of inversion of a sphere of radius
2R; consider the plane tangent to this sphere at the point O′ antipodal to
M . Under inversion, the image of this tangent plane is a sphere of radius R
and centre O located at the midpoint of the segment MO′. The image of an
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Figure 8.3
(a) The spherically conformal elliptic plate; its image under inver-
sion is the elliptic disc. (b) The sphere with elliptic aperture; its
image under inversion is the plane with the elliptic disc removed.

ellipse lying in the tangent plane and centred at O′ is spherically conformal;
it is an elliptically-shaped region of the spherical surface. The image of the
tangent plane with the elliptic disc removed is a spherical shell with an elliptic
aperture. Introduce axes as shown in Figure 8.3: the z-axis coincides with
OM, and the usual spherical polars (r, θ, φ) and cylindrical polars (ρ, φ, z) are
centred at O. The elliptic disc lies in the plane z = −R. The map given by

ρ = 2R tan
1
2
θ

corresponds to inversion in the sphere of radius 2R centred at M, followed
by the antipodal map (r, θ, φ) 7−→ (r, π − θ, 2π − φ) ; it is the image of the
elliptic disc under this map that is shown in Figure 8.3.

The boundary of the elliptic plate is specified

ρ(ϕ) = b/

√
1 + κ2 sin2 ϕ,

where κ = q−1
√

1− q2, q = a/b; thus, the boundary of the spherically con-
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formal elliptic region is given by

θ(ϕ) = 2 arctan
{
b

2R
(
1 + κ2 sin2 ϕ

)− 1
2

}
. (8. 42)

The angles

θb = 2arctan
(
b

2R

)
, θa = 2arctan

( a

2R

)
(8. 43)

corresponding to the image of end-points of the semi-axes of the plane ellipse
measure the angular spread of the curved plate.

First consider the conformal plate charged to unit potential. According
to Bouwkamp’s theorem, the problem to be solved is equivalent to the elec-
trostatic problem for the grounded planar elliptic plate in the presence of a
unit negative charge located at M . The free-space potential generated by this
charge is

ψ0 (x, y, z) = −
{
x2 + y2 + (z − 2R)2

}− 1
2
. (8. 44)

Based upon previous results we are led to the following dual integral equations
to be solved for the unknown function f ,∫ ∞

0

dν cos νx
∫ ∞

0

dµf(ν, µ) cosµx =
{
x2 + y2 + 4R2

}− 1
2 , (8. 45)

∫ ∞

0

dν cos νx
∫ ∞

0

dµ
√
ν2 + µ2f(ν, µ) cosµx = 0. (8. 46)

The first equation holds for points (x, y) lying inside the disc, whilst the second
holds for those points outside. Substituting (8. 28), we obtain∫ ∞

0

dν cos (νbρ cosφ)
∫ ∞

0

dµf(ν, µ) cos (µaρ sinφ)

= b−1
{
ρ2 + γ2 − k2ρ2 sin2 φ

}− 1
2 , 0 ≤ ρ < 1, (8. 47)∫ ∞

0

dν cos (νbρ cosφ)
∫ ∞

0

dµ
√
ν2 + µ2f(ν, µ) cos (µaρ sinφ) = 0, ρ > 1,

(8. 48)
where γ = 2R/b and k =

√
1− q2; this holds for 0 ≤ φ < 1

2π.
Expand the right-hand side of (8. 47) in a Chebyshev series

{
ρ2 + γ2 − k2ρ2 sin2 φ

}− 1
2 =

∞∑
m=0

(2− δ0m)α2mT2m(cosφ), (8. 49)

where

α2m = α2m (ρ) =
2
π

∫ π
2

0

T2m(cosφ)dφ√
ρ2 + γ2 − k2ρ2 sin2 φ

. (8. 50)
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In particular,

α0 = α0 (ρ) =
2

π
√
ρ2 + γ2

K

(
kρ√
ρ2 + γ2

)
, (8. 51)

where K denotes the complete elliptic integral of first kind. It is evident that
(8. 47) and (8. 48) imply that∫ ∞

0

dν

∫ ∞

0

dµf2m(ν, µ)J2m(
√
ν2 + q2µ2bρ) = b−1α2m (ρ) , ρ < 1, (8. 52)

∫ ∞

0

dν

∫ ∞

0

dµ
√
ν2 + µ2f2m(ν, µ)J2m(

√
ν2 + q2µ2bρ) = 0, ρ > 1, (8. 53)

where m = 0, 1, 2, . . ., and

f2m(ν, µ) = T2m

(
qµ√

ν2 + q2µ2

)
f(ν, µ). (8. 54)

To find the solution use the extended form of the representation (8. 34)

f2m(ν, µ) =
(
ν2 + µ2

)− 1
2 (ν2 + q2µ2)−

1
4

∞∑
n=0

xm
k J2k+2m+ 1

2
(
√
ν2 + q2µ2b).

(8. 55)
Its substitution in (8. 52) and (8. 53) produces

κ (q)
∞∑

k=0

xm
k

∫ ∞

0

τ−
1
2 J2k+2m+ 1

2
(τb) J2m (τbρ) dτ = b−1α2m, 0 ≤ ρ < 1,

(8. 56)
∞∑

k=0

xm
k

∫ ∞

0

τ
1
2 J2k+2m+ 1

2
(τb) J2m (τbρ) dτ = 0, ρ > 1. (8. 57)

We employ the generalisation of the integrals given in (8. 23) and (8. 24),∫ ∞

0

τ
1
2 J2k+2m+ 1

2
(τb) J2m (τbρ) dτ

=
2−2m+ 1

2

b
3
2

Γ (k + 1)
Γ
(
k + 2m+ 1

2

) P 2m
2k+2m

(√
1− ρ2

)
√

1− ρ2
H (1− ρ) , (8. 58)

∫ ∞

0

τ−
1
2 J2k+2m+ 1

2
(τb) J2m (τbρ) dτ

=
2−2m− 1

2

b
1
2

Γ
(
k + 1

2

)
Γ (k + 2m+ 1)

P 2m
2k+2m

(√
1− ρ2

)
, 0 ≤ ρ < 1, (8. 59)
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to deduce
∞∑

k=0

Γ
(
k + 1

2

)
Γ (k + 2m+ 1)

xm
k P

2m
2k̄+2m

(√
1− ρ2

)
=

22m+ 1
2

b
1
2 κ (q)

α2m(ρ), 0 ≤ ρ < 1,

(8. 60)
where m = 0, 1, 2, . . .. The solution of this equation immediately follows by
exploiting the orthogonality property of the associated Legendre functions on
(0, 1):∫ 1

0

ρ√
1− ρ2

P 2m
2k+2m

(√
1− ρ2

)
P 2m

2s+2m

(√
1− ρ2

)
dρ

=
1

4k + 4m+ 1
Γ (2k + 4m+ 1)

Γ (2k + 1)
δks. (8. 61)

As a result we obtain

xm
s =

(
2
b

) 1
2

2−2m (4s+ 4m+ 1)Γ (s+ 1)
Γ
(
s+ 2m+ 1

2

)
Γ
(
s+ 1

2

) βsm

κ (q)
, (8. 62)

where

βsm =
∫ 1

0

ρ√
1− ρ2

α2m(ρ)P 2m
2s+2m

(√
1− ρ2

)
dρ. (8. 63)

We may now calculate the capacitance C of the spherically conforming
elliptic plate. By Bouwkamp’s theorem, it is proportional to the value of the
induced potential at the centre of inversion M :

C = 4R2ψ(0, 0, 2R). (8. 64)

It is readily seen that the calculation of C only requires a knowledge of the
function f0(ν, µ) = f(ν, µ). Let us now demonstrate the solution of Equations
(8. 52) and (8. 53) (with m = 0) by the Abel integral transform method.
Based on the results at the beginning of this section (see also (8. 55)), let us
seek the unknown function f in the form

f(ν, µ) =
(
ν2 + µ2

)− 1
2 F (

√
ν2 + q2µ2). (8. 65)

After some evident manipulation, we obtain the dual integral equations

∫ ∞

0

F (τ)J0(τρb)dτ =
2
πb

1√
ρ2 + γ2

1

K
(√

1− q2
)K (√1− q2ρ√

ρ2 + γ2

)
,

0 ≤ ρ < 1, (8. 66)∫ ∞

0

τF (τ)J0(τρb)dτ = 0, ρ > 1. (8. 67)
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Use the method described in Section 2.7 to transform these dual equations to
the Fourier cosine form∫ ∞

0

F (τ) cos τρb dτ =
b−1γ

K
(√

1− q2
) (γ2 + ρ2

)− 1
2
(
γ2 + q2ρ2

)− 1
2 H (1− ρ) ,

(8. 68)
and invert this expression to obtain

F (τ) =
2
π

b−1γ

K
(√

1− q2
) ∫ 1

0

cos τρb√
(γ2 + ρ2) (γ2 + q2ρ2)

dρ. (8. 69)

According to (8. 64) the capacitance of the spherically-conforming elliptic
plate is

C = 4R2

∫ 1

0

{(
1− t2

) [
1−

(
1− q2

)
t2
]}− 1

2 ×∫ ∞

0

F (τ)e−τ
√

1−(1−q2)t22R/qdτdt. (8. 70)

Remarkably, substitution of (8. 69) into (8. 70) produces the closed form
expression

C =
2R

K
(√

1− q2
) {arctan γ−1 − q arctan qγ−1

1− q2

}
, (8. 71)

which may be written in terms of the angles θa, θb (defined by (8. 43)) as

C =
R

K
(√

1− q2
) {θb − qθa

1− q2

}
. (8. 72)

When the elliptic plate degenerates to a circular disc (q → 1), the conforming
plate becomes a spherical cap; since K (0) = 1

2π and

lim
q→1

arctan γ−1 − q arctan qγ−1

1− q2
=

1
2

{
arctan γ−1 + γ

(
1 + γ2

)−1
}

=
1
4
{θb + sin θb} (8. 73)

the expression for its capacitance reduces to the well-known value previously
calculated for the spherical cap, namely π−1(θb + sin θb).

This completes our discussion of the capacitance of the spherically conform-
ing elliptic plate. The complementary structure – the spherical shell with an
elliptic aperture – may be analysed in a similar fashion.
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Figure 8.4
The polygonal plate and circumscribing circle.

8.3 Polygonal plates

In contrast to the plates with smooth boundaries considered in previous
sections, this section examines polygonal plates, particularly regular polygons
of N equal sides (N = 3, 4, . . .). As shown in Figure 8.4, the angle subtended
by each side at the centre O of the polygon is 2α = 2π/N. If the circle
circumscribing the polygon has radius a, the difference in length between an
edge AB of the polygon and the circular arc AB of the circumscribing circle is
a (2π/N − 2 sinπ/N) ; as n→∞, this difference is 1

3π
3/N3+O(N−5), and the

circle approximates the polygon in some sense. When the plate is charged,
symmetry implies that we may concentrate on the right-angled triangular
sector OAC, where the angle ÔAC = α.

The potential on the charged circular plate S0 =
{
(x, y, 0) : x2 + y2 < a2

}
is determined by the dual equations of the form (see (8. 16))∫ ∞

0

dν cos νx
∫ ∞

0

dµf(µ, ν) cosµy = 1, (x, y) ∈ S0, (8. 74)∫ ∞

0

dν cos νx
∫ ∞

0

dµ
√
ν2 + µ2f(µ, ν) cosµy = 0, (x, y) /∈ S0. (8. 75)
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These dual integral equations were solved in Section 8.1. The same equations
hold for the polygon charged to unit potential, except the region S0 is differ-
ently defined. It is sufficient to consider the triangular region OAC and the
associated unbounded sector defined by angle α.

In the limit when N → ∞, this sector degenerates to a half-line or ray. If
we consider the ray y = 0, the equations (8. 74), (8. 75) are∫ ∞

0

dµ

∫ ∞

0

dνf(µ, ν) cos νx = 1, 0 < x < a, (8. 76)∫ ∞

0

dµ

∫ ∞

0

dν
√
ν2 + µ2f(µ, ν) cos νx = 0, x > a. (8. 77)

The substitution τ =
√
ν2 + µ2 leads to the readily solvable equations for the

potential distribution on the circular disc,∫ ∞

0

τf(τ)J0(τx)dτ =
2
π
, 0 < x < a, (8. 78)∫ ∞

0

τ2f(τ)J0(τx)dτ = 0, x > a. (8. 79)

We shall solve the potential problem by transforming the dual equations to
a form that may be recognised as a perturbation of the equations describing
the circular disc.

Setting y = x tanφ, we concentrate on the sector defined by φ ∈ (0, π/N).
The dual equations corresponding to (8. 74) and (8. 75) are∫ ∞

0

dν cos νx
∫ ∞

0

dµf(µ, ν) cos (µx tanφ) = 1, (8. 80)∫ ∞

0

dν cos νx
∫ ∞

0

dµ
√
ν2 + µ2f(µ, ν) cos (µx tanφ) = 0, (8. 81)

where the first equation hods for x ∈ (0, a cos (π/N)) , and the second for
x ∈ (a cos (π/N) ,∞) respectively. The substitutions

ρ = x sec (π/N) , u = tanφ cot (π/N) , (8. 82)

transform these dual equations to∫ ∞

0

dν cos
(
νρ cos

π

N

)∫ ∞

0

dµf(µ, ν) cos
(
µρu sin

π

N

)
= 1,

(8. 83)∫ ∞

0

dν cos
(
νρ cos

π

N

)∫ ∞

0

dµ
√
ν2 + µ2f(µ, ν) cos

(
µρu sin

π

N

)
= 0,

(8. 84)
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where the first equation holds for ρ ∈ (0, a) , u ∈ (0, 1) and the second for
ρ ∈ (a,∞) , u ∈ (0, 1) . Arguing as in Section 8.1, the dependence upon u in
these equations can be eliminated by transformation to the form∫ ∞

0

dν cos
(
νρ cos

π

N

)∫ ∞

0

dµf(µ, ν)J0

(
µρ sin

π

N

)
= 1,

(8. 85)∫ ∞

0

dν cos
(
νρ cos

π

N

)∫ ∞

0

dµ
√
ν2 + µ2f(µ, ν)J0

(
µρ sin

π

N

)
= 0,

(8. 86)

holding for ρ ∈ (0, a) and ρ ∈ (a,∞) , respectively. It should be observed that
when N → ∞, Equations (8. 85) and (8. 86) degenerate to (8. 76) and (8.
77).

When the plate is a circular or elliptic disc, the dual equations analogous
to (8. 85) and (8. 86) have particularly simple solutions of the form f(µ, ν) =
f(τ) (where τ =

√
ν2 + µ2 for the circular disc, and τ =

√
ν2 + q2µ2 for the

elliptic disc). It is not obvious a priori that the solution f(µ, ν) to (8. 85)
and (8. 86) has a solution of a similarly simple form. However, it turns out
that the form is exactly the same as that for the circular disc; thus, we shall
assume

f(µ, ν) = f(τ), where τ =
√
ν2 + µ2, (8. 87)

and justify this assumption retrospectively by showing that the solution so
constructed satisfies all equations and associated conditions. With this as-
sumption, the dual equations become∫ ∞

0

F (τ)SN (τρ)dτ = 1, ρ ∈ (0, a) , (8. 88)∫ ∞

0

τF (τ)SN (τρ)dτ = 0, ρ ∈ (a,∞) , (8. 89)

where F (τ) = τf(τ) and the kernel SN is defined by

SN (τρ) =
∫ τ

0

J0

(√
τ2 − ν2ρ sin π

N

)
√
τ2 − ν2

cos
(
νρ cos

π

N

)
dτ

=
∫ τ

0

cos
(√
τ2 − ν2ρ cos π

N

)
√
τ2 − ν2

J0

(
νρ sin

π

N

)
dτ

=
π

2
J0

(
τρ cos2

π

2N

)
J0

(
τρ sin2 π

2N

)
. (8. 90)

When N →∞, the kernel becomes

S∞(τρ) = lim
N→∞

SN (τρ) =
π

2
J0 (τρ) , (8. 91)

which is identical with that encountered for the circular disc.
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This construction justifies our assumption of the form (8. 87) for f . We
may therefore seek the solution to the dual equations in the form

F (τ) =
∫ a

0

G(τ) cos
(
τt cos

π

N

)
dt (8. 92)

where both the function G and its derivative G′ are continuous on (0, a) .
Integrating by parts, F is representable as

F (τ) = sec
π

N

{
G(a)

sin
(
aτ cos π

N

)
τ

− 1
τ

∫ a

0

G′(τ) sin
(
τt cos

π

N

)
dt

}
.

(8. 93)
Now substitute (8. 93) into (8. 89) and invert the order of integration. Then
when ρ > a,

G(a)
∫ ∞

0

SN (τρ) sin
(
aτ cos

π

N

)
dτ−∫ a

0

G′(t)
{
SN (τρ) sin

(
tτ cos

π

N

)
dτ
}
dt = 0. (8. 94)

However, it is well known (see [19]) that∫ ∞

0

Jν(ax)Jν(bx) sinxy dx = 0, 0 < y < b− a, (8. 95)

when b > a,Re ν > −1, so that the equation (8. 94) holds identically.
Following the basic idea of regularisation, we split the kernel SN as a sum of

its limiting value S∞ and a correction term and analytically invert that part
of the equation containing the limiting kernel contribution, corresponding to
the circular disc problem. This is most naturally done in the present context
by using the result derived from the addition theorem for Bessel functions
[14],

J0

(
τρ cos2

π

2N

)
J0

(
τρ sin2 π

2N

)
= J0 (τρ)− 2

∞∑
n=1

(−1)n
Jn

(
τρ cos2

π

2N

)
Jn

(
τρ sin2 π

2N

)
. (8. 96)

We may now construct the representation of the function to be determined.
First expand G in a series with Gegenbauer polynomials C( 1

2 )

2k = P2k,

G(t) =
∞∑

k=1

bkC
( 1
2 )

2k (t/a). (8. 97)

Substitute this expression in (8. 92), invert the order of summation and
integration and obtain

F (τ) =
∞∑

k=1

bk

∫ a

0

cos
(
τt cos

π

N

)
C

( 1
2 )

2k (t/a)dt. (8. 98)
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Using the tabulated integral [14] (Vol. 1)∫ a

0

cos
(
τt cos

π

N

)
C

( 1
2 )

2k (t/a)dt

= (−1)k
(πa

2
sec

π

N

) 1
2
τ−

1
2 J2k+ 1

2

(
τa cos

π

N

)
, (8. 99)

we deduce that

F (τ) = τ−
1
2

∞∑
k=1

b∗kJ2k+ 1
2

(
τa cos

π

N

)
, (8. 100)

where

b∗k = (−1)k
(πa

2
sec

π

N

) 1
2
bk. (8. 101)

Substitute (8. 100) into (8. 88) and change the order of integration and
summation to obtain

∞∑
k=1

b∗k

∫ ∞

0

τ−
1
2SN (τρ)J2k+ 1

2

(
τa cos

π

N

)
dτ = 1, ρ ∈ (0, a) . (8. 102)

We recall that Equation (8. 89) is satisfied automatically with the repre-
sentation (8. 92) or its equivalent form (8. 100). After some manipulation,
we deduce from (8. 100) that

∞∑
k=0

b∗k
Γ
(
k + 1

2

)
Γ (k + 1)

P2k

(√
1− ρ2/a2

)
=

2
π

(
2a cos

π

N

) 1
2

+
∞∑

k=0

b∗k
Γ
(
k + 1

2

)
Γ (k + 1)

Fk (ρ) , ρ ∈ (0, a) , (8. 103)

where
Fk (ρ) = P2k

(√
1− ρ2/a2

)
−
∫ π

0

℘k (ρ, x) dx, (8. 104)

℘k (ρ, x) =

{
π−1P2k

(√
1− ρ2/ρ2

c

)
, ρ < ρc,

2π−
1
2 arcsin (ρ/ρc) Γ

(
k + 1

2

)
/Γ (k + 1) , ρ > ρc,

(8. 105)

and the value of ρc is defined by the relation

a

ρc
= sec

π

N

(
1− sin2 π

N
cos2

π

N

) 1
2
. (8. 106)

It is evident that as N →∞, Fk (ρ) → 0.
Apply the usual principle of orthogonality of Legendre polynomials on the

interval [0, 1] to obtain the i.s.l.a.e. of the second kind,

xs −
∞∑

k=0

γksxk =
2
π
δ0s, (8. 107)

©2001 CRC Press LLC



for s = 0, 1, 2, . . ., where

b∗k =
(
2a cos

π

N

) 1
2 Γ (k + 1)

Γ
(
k + 1

2

) (4k + 1)
1
2 xk, (8. 108)

and

γks = [(4k + 1) (4s+ 1)]
1
2

∫ 1

0

t√
1− t2

Fk (t)P2s

(√
1− t2

)
dt. (8. 109)

The solution of this system of equations {xk}∞k=0 is sought in l2. The
computation of the integrals defining the matrix elements is straightforward.
Furthermore, as N →∞, Fk (ρ) → 0 and estimates of the difference between
the potential distribution for a circular disc and a polygonal disc with many
vertices (N � 1) are readily derived from (8. 107).

8.4 The finite strip

In Section 7.2 we examined the potential associated with charged infinitely
long thin strips. Although this two-dimensional problem has its own intrinsic
interest, it is worth examining the more physically realistic structure of a
finitely long strip. Consider the flat strip of width 2a and length 2b > 2a
lying in the plane z = 0 as shown in Figure 8.5. The centre lies at the origin
and the edges are aligned with the x and y axes. Suppose the strip is charged
to unit potential. The mixed boundary conditions satisfied by the electrostatic
potential ψ are

ψ (x, y,+0) = ψ (x, y,−0) = 1, |x| ≤ a, |y| ≤ b, (8. 110)

and by its normal derivative are

∂

∂z
ψ (x, y,+0) =

∂

∂z
ψ (x, y,+0) , |x| > a or |y| > b. (8. 111)

The symmetry of the structure leads to the familiar form (8. 16) for the
solution, and enforcement of the mixed boundary conditions leads to dual
integral equations for the unknown function F = F (ν, µ) ,∫ ∞

0

dν cos νbx′
∫ ∞

0

dµF (ν, µ) cos (µay′) = 1, |x′| ≤ 1, |y′| ≤ 1, (8. 112)

∫ ∞

0

dν cos νbx′
∫ ∞

0

dµ
√
ν2 + µ2F (ν, µ) cos (µay′) = 0, |x′| > 1 or |y′| > 1

(8. 113)
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Figure 8.5
The finite strip.

where x′ = x/a, y′ = y/b.
The distinctive feature of these equations is the apparent lack of coupling

between the rescaled variables x′ and y′. This dictates a special choice for
the form of the solution to be found by the substitution method. In order
to satisfy (8. 113) automatically, it is sufficient to represent the unknown
function F by an expansion in Bessel functions of even order,

F (ν, µ) =
(
ν2 + µ2

)− 1
2

∞∑
n=0

∞∑
m=0

xnmJ2n(νb)J2m(µa), (8. 114)

where the coefficients xnm are to be determined. Substitution of this form in
(8. 113) leads to

∞∑
n=0

∞∑
m=0

xnm

∫ ∞

0

dν cos νbx′J2n(νb)
∫ ∞

0

dµ cos (µay′) J2m(µa) = 0, (8. 115)

when |x′| > 1 or |y′| > 1. The product of integrals occurring in (8. 115) vanish
because [19]∫ ∞

0

J2n(αx) cosxydx = (−1)n (
α2 − y2

)− 1
2 T2n(y/α)H

(
α2 − y2

)
. (8. 116)
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Moreover, it is apparent from (8. 116) that the behaviour of the surface charge
density σ (x′, y′) near the edges will be in accord with physical expectation,
namely

σ (x′, y′) v σ0

(
b2 − x2

)− 1
2
(
a2 − y2

)− 1
2 (σ0 constant).

Now substitute (8. 114) into (8. 112). Using the expansions

cos (νbx′) =
∞∑

s=0

(−1)s (2− δ0s) J2s(νb)T2s(x′),

cos (µay′) =
∞∑

p=0

(−1)p (2− δ0p) J2p(µa)T2p(y′),

and the orthogonality of the Chebyshev polynomials on [0, 1], we obtain the
i.s.l.a.e. for the unknowns xnm(n,m = 0, 1, 2, . . .),

∞∑
n=0

∞∑
m=0

xnmRnmsp = δ0sδ0p, (8. 117)

where s, p = 0, 1, 2, . . . , and matrix elements Rnmsp are given by

(−1)s+p
∫ ∞

0

∫ ∞

0

dνdµ
(
ν2 + µ2

)− 1
2 J2n(νb)J2m(µa)J2s(νb)J2p(µa)

=
(−1)s+p

b

∫ ∞

0

duJ2n(u)J2s(u)
∫ ∞

0

dv
(
u2 + v2

)− 1
2 J2m(qv)J2p(qv),

(8. 118)

with q = a/b. This reduction to the i.s.l.a.e. (8. 117) is a very formal proce-
dure. The representation (8. 118) of the matrix elements Rnmsp in terms of
slowly convergent iterated integrals makes numerical procedures problematic.

Let us transform (8. 118), where for convenience we will set b = 1. Making
use of the representation for the product of Bessel functions [14]

J2n(u)J2s(u) =
2
π

∫ π
2

0

J2n+2s(2u cos θ) cos [(2s− 2n) θ] dθ, (8. 119)

valid when Re (ν + µ) > −1, and the tabulated integral [14]∫ ∞

0

Jν(cx)dx√
x2 + z2

= I 1
2 ν

(cz
2

)
K 1

2 ν

(cz
2

)
, (8. 120)

valid when c > 0,Re z > 0,Re ν > −1, the expression for the matrix element
Rnmsp becomes

Rnmsp =
2
π

(−1)s+p
∫ π

2

0

cos (2n− 2s)φ×{∫ ∞

0

J2m(qv)J2p(qv)In+s (v cosφ)Kn+s(v cosφ)dv
}
dφ. (8. 121)
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Using the Mellin transform one may represent the product of modified Bessel
functions occurring in (8. 121) in the form (see [61])

In+s (v cosφ)Kn+s(v cosφ) =

=
1

8π
3
2 i

∫ c+i∞

c−i∞

Γ
(
n+ s+ t

2

)
Γ
(

t
2

)
Γ
(

1
2 −

t
2

)
Γ
(
n+ s+ 1− t

2

) cos−t φv−tdt, (8. 122)

where 0 < c < 1. After substitution of (8. 122) into (8. 121) and some obvious
rearrangement, the expression for the matrix element takes the form

Rnmsp =
(−1)s+p

4π
5
2 i

∫ c+i∞

c−i∞

Γ
(
n+ s+ t

2

)
Γ
(

t
2

)
Γ
(

1
2 −

t
2

)
Γ
(
n+ s+ 1− t

2

) Ans (t)Bmp (t) dt

(8. 123)
where

Ans (t) =
∫ π

2

0

cos−t φ cos (2n− 2s)φdφ, (8. 124)

Bmp (t) =
∫ ∞

0

v−tJ2m(qv)J2p(qv)dv. (8. 125)

Both integrals occurring in (8. 124) and (8. 125) are tabulated in [19], and so

Ans (t) =
√
π

2
Γ
(

1
2 −

t
2

)
Γ
(
1− t

2

)
Γ
(
s− n+ 1− t

2

)
Γ
(
n− s+ 1− t

2

) , (8. 126)

Bmp (t) =
qt−1

2
√
π

Γ
(

t
2

)
Γ
(

1
2 + t

2

)
Γ
(
p+m+ 1

2 −
t
2

)
Γ
(
m− p+ 1

2 + t
2

)
Γ
(
p+m+ 1

2 + t
2

)
Γ
(
p−m+ 1

2 + t
2

) .
(8. 127)

Insert (8. 126) and (8. 127) into (8. 123), make the substitution t = 2r + 1,
and replace r by t, to obtain

Rnmsp =
(−1)s+p

4π
3
2

1
2πi

∫
L

Γ2
(

1
2 + t

)
Γ2 (−t) Γ

(
1
2 − t

)
Γ (1 + t)

Γ
(
n+ s+ 1

2 − t
)
Γ
(
s− n+ 1

2 − t
) ×

Γ
(
n+ s+ 1

2 + t
)
Γ (p+m− t)

Γ
(
n− s+ 1

2 − t
)
Γ (m− p+ 1 + t)

×

1
Γ (p+m+ 1 + t) Γ (p−m+ 1 + t)

q2tdt (8. 128)

where the contour L runs from −i∞ to +i∞, intersecting the real axis at
a point t0 satisfying the inequality − 1

2 < t0 < 0. It is evident that all the
poles of Γ (−t) and Γ (λ− t) lie to the right of L, whereas all the poles of
Γ (1 + t) ,Γ

(
1
2 + t

)
and Γ (µ+ t) lie to the left of L. We may express the
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contour integral in terms of Meijer’s G-function, as defined in [14], via

Rnmsp =

(−1)s+p

4π
3
2

G4,4
7,7

(
q2|

1
2 ,

1
2 , 0,−n− s+ 1

2 , n+ s+ 1
2 , s− n+ 1

2 , n− s+ 1
2

0, 0, 1
2 , p+m, p−m, − p−m, m− p

)
.

(8. 129)

When s = n and p = m, simple identities satisfied by Meijer’s G-function
show that the “diagonal” matrix elements Rnmnm are given by

Rnmnm =
(−1)n+m

4π
3
2

G3,3
5,5

(
q2
∣∣∣∣ 1

2 ,
1
2 , −2n+ 1

2 , 2n+ 1
2 ,

1
2

0, 0, 2m, 0, −2m

)
. (8. 130)

Using the well-known relations for the Gamma function (see Appendix, (B.
3))

Γ (−t) Γ (1 + t) = − π

sin (πt)
,

Γ (λ− t) Γ (−λ+ 1 + t) = − (−1)λ π

sin (πt)
,

Γ
(
µ+

1
2
− t

)
Γ
(
−µ+

1
2

+ t

)
= (−1)µ π

cos (πt)
,

we may derive the expression

Rnmsp = − (−1)p+m

4
√
π

1
2πi

∫
L

cos2 (πt)
sin3 (πt)

Γ
(

1
2 + t

)
Γ (1 + t)

Γ
(
n+ s+ 1

2 + t
)

Γ (−p+m+ 1 + t)
×

Γ
(
−n− s+ 1

2 + t
)
Γ
(
−s+ n+ 1

2 + t
)
Γ
(
s− n+ 1

2 + t
)

Γ (m− p+ 1 + t) Γ (p+m+ 1 + t) Γ (p−m+ 1 + t)
q2tdt. (8. 131)

Evaluation of the contour is thus reduced to the evaluation of residues at
the poles t = 0, 1, 2, . . .. After some manipulation, this yields

Rnmsp =
(−1)µ

8π

∞∑
k=0

(
1
2

)
k

(
κ+ 1

2

)
k

(
−κ+ 1

2

)
k

(
λ+ 1

2

)
k

(
−λ+ 1

2

)
k

k! (µ+ k)! (ν + k)!
×

q2kNk
κλµν (8. 132)

where κ = n+ s, λ = s− n, µ = p+m, ν = p−m, and the coefficients Nk
κλµν
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are defined as follows. When µ ≤ k and ν ≤ k,

Nk
κλµν =

(−1)k

(−µ+ k)! (−ν + k)!
{
π2 + ψ′ (1 + k)+

ψ′ (µ+ 1 + k) + ψ′ (−µ+ 1 + k) +
ψ′ (ν + 1 + k) + ψ′ (−ν + 1 + k)−

ψ′
(

1
2

+ k

)
− ψ′

(
κ+

1
2

+ k

)
− ψ′

(
−κ+

1
2

+ k

)
−

ψ′
(
λ+

1
2

+ k

)
− ψ′

(
−λ+

1
2

+ k

)
−

(ψ
(

1
2

+ k

)
+ ψ

(
κ+

1
2

+ k

)
+ ψ

(
−κ+

1
2

+ k

)
+

ψ

(
λ+

1
2

+ k

)
+ ψ

(
−λ+

1
2

+ k

)
+ 2 log q − ψ (1 + k)−

ψ (µ+ 1 + k)− ψ (−µ+ 1 + k)− ψ (ν + 1 + k)− ψ (−ν + 1 + k))2
}
.

(8. 133)

When µ > k and ν ≤ k, or µ ≤ k and ν > k, it is necessary to remove the
indeterminacy which appears in this formula arising from the product of zero
and infinite terms by use of the formulae

ψ (x)
Γ (x)

∣∣∣∣
x=−j

= − d

dx

[
1

Γ (x)

]∣∣∣∣
x=−j

= (−1)j−1 Γ (j + 1) , (8. 134)

ψ′ (x)− ψ2 (x)
Γ (x)

∣∣∣∣
x=−j

= 2 (−1)j Γ (j + 1)ψ (j + 1) (8. 135)

where j = 0, 1, 2, . . .. Thus when µ > k and ν ≤ k, the expression becomes

Nk
κλµν = 2 (−1)µ Γ (µ− k)

Γ (−ν + 1 + k)
{
F k

κλµν − ψ (µ− k)− ψ (−ν + 1 + k)
}

(8. 136)
where

F k
κλµν = ψ

(
1
2

+ k

)
+ ψ

(
κ+

1
2

+ k

)
+ ψ

(
−κ+

1
2

+ k

)
+

ψ

(
λ+

1
2

+ k

)
+ ψ

(
−λ+

1
2

+ k

)
+ 2 log q−

ψ (1 + k)− ψ (µ+ 1 + k)− ψ (ν + 1 + k) ; (8. 137)

when µ ≤ k and ν > k, the expression becomes

Nk
κλµν = 2 (−1)ν Γ (ν − k)

Γ (−µ+ 1 + k)
{
F k

κλµν − ψ (ν − k)− ψ (−µ+ 1 + k)
}
.
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Finally when µ > k and ν > k, Formulae (8. 135) may be used to show that

Nk
κλµν = 2 (−1)k+1 Γ (ν − k) Γ (µ− k) .

From this final form it may be shown that the diagonal terms of the matrix
elements Rnmsp dominate so that the system (8. 117) is satisfactory for
computation. It may be verified that for narrow strips at least (q � 1),
this i.s.l.a.e. is non-singular, and an analytic solution can be developed. In
the general case (0 < q < 1) numerical techniques may be employed. This
completes our regularisation of the dual integral equations associated with the
finite strip.

8.5 Coupled charged conductors: the spherical cap and
circular disc

In Section 2.9, we briefly described techniques for calculating the potential
distribution surrounding coupled charged conductors with components that
are parts of coordinate surfaces belonging to different coordinate systems.
One of the simplest examples is the combination of a spherical cap and circular
disc.

Suppose the circular disc of radius a is located in the plane z = 0 with
centre at the origin O; the spherical cap also has its centre at O, subtends an
angle θ0 ≤ 1

2π at O, and has radius b > a; let q = a/b. (See Figure 8.6.) Both
disc and cap are charged to unit potential.

Following the usual principle of superposition, the total potential U may
be expressed as the sum of two contributions

U = U c + Ud, (8. 138)

where the cap contribution may be represented in the form

U c =
∞∑

n=0

xnPn(cos θ)
{

(r/b)n, r < b,
(r/b)−n−1, r > b,

(8. 139)

whilst the disc contribution may be represented as

Ud =
∫ ∞

0

G(ν)J0(νρ)e−ν|z|dν. (8. 140)

The unknown coefficients {xn}∞n=0 and function G are to be found.
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Figure 8.6
The coupled disc and spherical cap.

The obvious boundary conditions to be enforced are

U(b, θ) = 1, θ ∈ (0, θ0) , (8. 141)[
∂

∂r
U(r, θ)

]r=b+0

r=b−0

= 0, θ ∈ (θ0, π) , (8. 142)

U(ρ, 0) = 1, ρ ∈ (0, a) , (8. 143)[
∂

∂z
U(ρ, z)

]r=b+0

r=b−0

= 0, ρ ∈ (a,∞) , (8. 144)

where (8. 141) and (8. 142) have been expressed in terms of the standard
spherical coordinate system (r, θ, φ) centred at O, whereas (8. 143) and (8.
144) have been expressed in terms of the standard cylindrical coordinate sys-
tem (ρ, φ, z) centred at O (so that ρ = r sin θ, z = r cos θ).

Enforcement of the boundary conditions (8. 141)–(8. 144) leads to the
integro-series equations for the unknowns

∞∑
n=0

xnPn(cos θ) = 1−
∫ ∞

0

G(ν)J0(νb sin θ)e−νb|cos θ|dν, θ ∈ (0, θ0) , (8. 145)

∞∑
n=0

(2n+ 1)xnPn(cos θ) = 0, θ ∈ (θ0, π) , (8. 146)

∫ ∞

0

G(ν)J0(νρ)dν = 1−
∞∑

n=0

x2nP2n(0)(ρ/b)2n, ρ ∈ (0, a) , (8. 147)
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∫ ∞

0

νG(ν)J0(νρ)dν = 0, ρ ∈ (a,∞) . (8. 148)

In deriving (8. 147), the property P2n+1(0) = 0 was used. Using the method
described in Section 2.6, and noting the value

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

,

we may transform (8. 147) and (8. 148) to the form∫ ∞

0

G(ν) cos νρ dν =

{
1−

∞∑
n=0

(−1)n
x2n(ρ/b)2n

}
H(a− ρ). (8. 149)

The application of an inverse cosine Fourier transform to (8. 149) produces
our first integro-series equation in algebraic form,

G(ν) +
∞∑

n=0

x2nRn(ν) =
2
π

sin νa
ν

, (8. 150)

where

Rn(ν) =
a

π
(−1)n q2n

2n+ 1 1F1(2n+ 1; 2n+ 2; iνa)+

a

π
(−1)n q2n

2n+ 1 1F1(2n+ 1; 2n+ 2;−iνa). (8. 151)

The sum of the Kummer functions may be simplified to

1F1(2n+ 1; 2n+ 2; iνa) + 1F1(2n+ 1; 2n+ 2;−iνa)

= −i (−1)n (2n+ 1)!
2n∑

k=0

ik (νa)k−2n−1

k!

{
(−1)k

eiνa − e−iνa
}
. (8. 152)

Before turning to the analysis of (8. 145), we expand that part of the
integrand appearing in (8. 145) in a series of Legendre polynomials (see [14])

J0(νb sin θ)e±νb cos θ =
∞∑

n=0

(νb)n

n!
(−1)n

Pn(cos θ). (8. 153)

By the methods developed in Section 2.1, Equations (8. 145) and (8. 146)
may be transformed to

∞∑
n=0

xn cos
(
n+

1
2

)
θ

=
{

cos 1
2θ −

∫∞
0
G(ν)e−νb cos θ sin

(
1
2θ − νb sin θ

)
dν, θ < θ0

0, θ > θ0
(8. 154)
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where we have used the series (derived the generating function, see Appendix,
(B. 138))

∞∑
n=0

(−1)n

n!
(νb)n cos

(
n+

1
2

)
θ = e−νb cos θ sin

(
1
2
θ − νb sin θ

)
. (8. 155)

From (8. 154) we may derive the companion integro-series equation in alge-
braic form

xm +
∫ ∞

0

G(ν)Sm(ν)dν = Q0m(θ0), (8. 156)

where m = 0, 1, 2 . . ., and

Sm(ν) =
2
π

∫ θ0

0

e−νb cos θ sin
(

1
2
θ − νb sin θ

)
cos
(
m+

1
2

)
θ dθ. (8. 157)

The structure of Equations (8. 150) and (8. 156) is interesting. If the
contribution from the functions Rm and Sm are neglected, then the closed
form solutions are precisely those previously obtained for the isolated disc
and isolated spherical cap, respectively. The contribution from the functions
Rm and Sm may be regarded as perturbation terms (though, as we shall see,
not necessarily small in magnitude).

The simultaneous solution of Equations (8. 150) and (8. 156) provides the
potential of the coupled two-component structure. It is clear that a second-
kind Fredholm equation for G may be obtained by elimination of the terms
involving xn; equally, a second-kind i.s.l.a.e. for the sequence {xn}∞n=0 may
be obtained by elimination of the function G. Using (8. 150) to eliminate G,
this i.s.l.a.e. is

xm −
∞∑

n=0

x2nαnm(q, θ0) = Q0m(θ0)− βm(q, θ0), (8. 158)

where m = 0, 1, 2, . . ., and

αnm(q, θ0) =

4 (−1)n

π2

∫ θ0

0

cos
(
m+

1
2

)
θ

{∫ q

0

t2n t2 sin 3
2θ − sin 1

2θ

t4 + 2t2 cos 2θ + 1
dt

}
dθ, (8. 159)

βm(q, θ0) =
1
π2

∫ θ0

0

cos
(
m+

1
2

)
θ×{

2 arctan
[
2q cos θ
1− q2

]
sin

1
2
θ − cos

1
2
θ ln

[
1 + 2q cos θ + q2

1− 2q cos θ + q2

]}
dθ. (8. 160)

In a similar way, we may deduce that G satisfies the second-kind integral
equation

G(µ)−
∫ ∞

0

G(ν)H(ν, µ; q, θ0) =
2
π

sinµa
µ

− L(µ; q, θ0), (8. 161)
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where

H(ν, µ; q, θ0) =
4
π2
b

∫ q

0

dt cosµbt×∫ θ0

0

dθe−νb cos θ sin
(

1
2
θ − νb sin θ

)
t2 cos 3

2θ + cos 1
2θ

t4 + 2t2 cos 2θ + 1
, (8. 162)

and

L(µ; q, θ0) = − b

π2

∫ q

0

dt cosµbt×{
θ0 + arctan

[
1− t2

1 + t2
tan θ0

]
+

1
2t

ln
[
1 + 2t sin θ0 + t2

1− 2t sin θ0 + t2

]}
. (8. 163)

When the disc is much smaller than the radius of curvature of the cap
(q � 1), it is possible to obtain an approximate analytical solution. In this
limiting case the matrix elements can be factored as

αnm = ξnβ
∗
m(q, θ0)

(
1 +O(q3)

)
, (8. 164)

where

ξn = (−1)n q2n

2n+ 1
, β∗m(q, θ0) =

2
π2
q

[
cos(m+ 1)θ0 − 1

m+ 1
− cosmθ0 − 1

m

]
.

(8. 165)
It should be noted that βm = β∗m(q, θ0)+O(q3). For the given approximation
(q � 1, θ0 arbitrary), the solution of the i.s.l.a.e. (8. 158) is

xm = (C − 1)β∗m(q, θ0) +Q0m(θ0) +O(q3), (8. 166)

where C =
∑∞

n=0 x2nξn. The value of C is readily computed from (8. 166);
the final solution is

xm = Q0m(θ0)−
2
π2
q

1−Q00(θ0)
1 + 4

π2 q sin2 1
2θ0

[
cos(m+ 1)θ0 − 1

m+ 1
− cosmθ0 − 1

m

]
.

(8. 167)
The total charge Q accumulated on both components is the sum of that

accumulated on the disc
(
Qd
)

and of that accumulated on the cap (Qc) ;
these are simply

Qc = bx0, Q
d = G(0). (8. 168)

Using (8. 167) and (8. 150) at ν = 0, we deduce

Qc = b

{
Q00(θ0) +

2
π2
q

1− cos θ0
1 + 2

π2 q (1− cos θ0)
+O(q3)

}
(8. 169)
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θ0 (deg.) Qc/b Qd/a Q/b
0◦ 0 0.6366 0.0636
10◦ 0.1111(0.1108) 0.5661 0.1677
20◦ 0.2209(0.2200) 0.4963 0.2705
30◦ 0.3276(0.3258) 0.4285 0.3722
40◦ 0.4294(0.4268) 0.3636 0.4683
50◦ 0.5248(0.5216) 0.3028 0.5582
60◦ 0.6125(0.6090) 0.2467 0.6407
70◦ 0.6916(0.6880) 0.1961 0.7147
80◦ 0.7613(0.7579) 0.1514 0.7797
90◦ 0.8213(0.8183) 0.1131 0.8354

Table 8.1 Normalised value of total charge Q/b = (Qc +Qd)/b. The parameter
q = a/b = 0.1.

and

Qd =
2
π
a

{
1−Q00(θ0)−

2
π2
q (1−Q00(θ0)) (1− cos θ0)

}
+

2
π
aq2

{
4
π2

(1− cos θ0)
2 (1−Q00(θ0)) +

1
3
Q02(θ0)

}
+O(q3). (8. 170)

Some results of calculation based on these approximate formulae for q = 0.1
are shown in Table 8.1. The results for an isolated spherical cap are shown
for comparison in brackets in the first column of the table.

The presence of the charged disc has a discernible effect on the spherical
cap even when it is small, increasing the charge on the cap. Rather more
noticeable is the decrease in charge on the disc as the cap size increases; as
the angle θ0 increases, the disc is increasingly shielded by the larger charged
conductor, and its surface charge distribution is correspondingly modified.

More generally, whatever the values of the parameters q and θ0, the reg-
ularised second-kind Equations (8. 158) and (8. 161) are readily solved by
standard numerical methods, and the behaviour of the coupled disc-cap struc-
ture can be determined as a function of the parameters. If recursion formulae
for the coefficients αnm and βm are exploited, a highly efficient computational
algorithm can be obtained for computation.
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Appendix A

Notation

The Kronecker symbol is defined by

δnm =
{

1, n = m
0, n 6= m

.

The order notation f(x) = O(g(x)) as x → a, means that |f(x)/g(x)|
remains bounded as x → a. (This includes the possibilities a = ±∞.) Simi-
larly, the notation an = O(bn) as n→∞ means |an/bn| remains bounded as
n→∞.

The Heaviside function is defined by

H (x) =
{

1, x > 0
0, x < 0 .
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Appendix B

Special Functions

Only the most important relations for the special functions employed in this
book are included in this section. For more detailed information, the reader
is referred to standard works on the special functions including, for example,
[59, 1, 57, 58], and a summary treatment in [27].

B.1 The Gamma function

The Gamma function Γ defined by

Γ(z) =
∫ ∞

0

tz−1e−tdt, Re(z) > 0 (B. 1)

is a generalization of the factorial: when n is a nonnegative integer

Γ(n+ 1) = n!

The recurrence formula for the factorial is

Γ(z + 1) = zΓ(z), (B. 2)

and the reflection formula is

Γ(z)Γ(1− z) =
π

sin(πz)
, (B. 3)

from which it follows that Γ(1
2 ) =

√
π; the duplication formula is

Γ(2z) = (2π)−
1
2 22z− 1

2 Γ(z)Γ(z +
1
2
). (B. 4)

Two asymptotic formulae are widely used. Stirling’s formula states

Γ(z) v e−zzz− 1
2 (2π)

1
2

[
1 +

1
12z

+
1

288z2
− 139

51840z3
− 571

2488320z4
+ ...

]
,

(B. 5)
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when z → ∞ in |arg z| < π; Field’s formula states that the ratio of Gamma
functions has an asymptotic expansion of the form for suitable cn,

Γ(z + a)
Γ(z + b)

v za−b
∞∑

n=0

cn
Γ(b− a+ n)

Γ(b− a)
1
zn
, (B. 6)

when z →∞ and z 6= −a,−a− 1, . . . ; z 6= −b,−b− 1, . . .. The first few terms
in the expansion are

Γ(z + a)
Γ(z + b)

= za−b(1 +
(a− b)(a+ b− 1)

2z
+

1
12

(
a− b

2

)
(3(a+ b− 1)2 − a+ b− 1)

1
z2

+ . . .). (B. 7)

Closely connected with the Gamma function is the Beta function defined
for Re(p) > 0,Re(q) > 0; it equals

B(p, q) =
∫ 1

0

tp−1(1− t)q−1dt =
Γ(p)Γ(q)
Γ(p+ q)

. (B. 8)

B.2 Hypergeometric functions

The generalised hypergeometric function is defined by

pFq (a1, . . . , ap; b1, . . . , bq; z) ≡
∞∑

k=0

(a1)k(a2)k....(ap)k

(b1)k(b2)k...(bq)k
· z

k

k!
(B. 9)

where the notation for the Pochhammer symbol

(a)k
def
= a (a+ 1) . . . (a+ k − 1) ; (a)0

def
= 1 (B. 10)

has been used; the upper parameters −→a = (a1, . . . , ap) are unrestricted,
whereas the lower parameters

−→
b = (b1, . . . , bq) are restricted so that bj 6=

0,−1,−2, . . .. Note that when a 6= 0,−1,−2, . . .,

(a)k =
Γ (a+ k)

Γ (a)
. (B. 11)

When p ≤ q, the series converges for all complex z. When p = q + 1, the
series has radius of convergence 1, converging inside the unit disc |z| < 1; it
converges on the unit disc |z| = 1 provided

Re

 q∑
k=1

bk −
q+1∑
j=1

aj

 > 0, (B. 12)
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or alternatively, it converges everywhere on the unit disc, except at the point
z = 1, provided

−1 < Re

 q∑
k=1

bk −
q+1∑
j=1

aj

 ≤ 0. (B. 13)

If the one of upper parameters is equal to zero or a negative integer, then the
series terminates and is a hypergeometric polynomial.

The function 1F1(a; b; z) ≡M(a, b, z) is known as Kummer’s function; many
special functions are expressible as Kummer’s function with particular param-
eters [1, 59].

The Gaussian hypergeometric series is a special case of the hypergeometric
function with p = 2, q = 1,

2F1(a,b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k
· z

k

k!
. (B. 14)

It satisfies the differential equation

z(1− z)
d2U

dz2
+ [c− (a+ b+ 1)z]

dU

dz
− abU = 0. (B. 15)

When a or b is equal to a negative integer, then the series (B. 14) terminates
and is a hypergeometric polynomial; if a = −m (m a positive integer),

F (−m, b; c; z) =
m∑

n=0

(−m)n(b)n

(c)n

zn

n!
. (B. 16)

This formula is also well defined when c = −m− l, l = 0, 1, 2, . . .

F (−m, b;−m− l; z) =
m∑

n=0

(−m)n(b)n

(−m− l)n

zn

n!
. (B. 17)

Many special functions are particular examples of the Gaussian hypergeo-
metric series (B. 14) with appropriate arguments, including the Jacobi poly-
nomials discussed in the next section. Hypergeometric functions satisfy a
great number of transformation rules (see [1]) that provide many interesting
and useful connections between the various special functions.

B.3 Orthogonal polynomials: Jacobi polynomials, Leg-
endre polynomials

Jacobi polynomials and Legendre polynomials are two families of classical
orthogonal polynomials whose properties are extensively described in [58].
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For each fixed (α, β) with α > −1, β > −1, the Jacobi polynomials P (α,β)
n

are polynomials of degree n (= 0, 1, 2, . . .), and are orthogonal with respect to
the weighted scalar product on [−1, 1] employing the weight function wα,β(x) =
(1− x)α (1 + x)β :

(P (α,β)
n , P (α,β)

m ) =
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx = h(α,β)
n δnm.

(B. 18)
The polynomials are normalised by their value at x = 1,

P (α,β)
n (1) =

(
n+ α

n

)
=

Γ(n+ α+ 1)
Γ(n+ 1)Γ(α+ 1)

, (B. 19)

so that their squared norm is

h(α,β)
n =

∥∥∥P (α,β)
n

∥∥∥2

=
2α+β+1

2n+ α+ β + 1
Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
. (B. 20)

Jacobi polynomials may also be normalised by the requirement that the
weighted scalar product be equal to unity when n = m; the members of

this orthonormal family are denoted P̂ (α,β)
n =

{
h

(α,β)
n

}− 1
2
P

(α,β)
n .

In common with all the families of classical orthogonal polynomials, the
Jacobi polynomials satisfy a recurrence relation of form

pn+1 − (anx+ bn)pn + cnpn−1 = 0, n = 1, 2, ... (B. 21)

For the Jacobi polynomials pn = P
(α,β)
n , the coefficients an, bn, cn and the two

lowest degree polynomials are

an =
(2n+ α+ β + 1)(2n+ α+ β + 2)

(2n+ 2)(n+ α+ β + 1)
,

bn =
(2n+ α+ β + 1)(α2 − β2)

(2n+ 2)(n+ α+ β + 1)(2n+ α+ β)
, (B. 22)

cn =
2(n+ α)(n+ β)(2n+ α+ β + 2)

(2n+ 2)(n+ α+ β + 1)(2n+ α+ β)
,

and

P
(α,β)
0 (x) = 1, P (α,β)

1 (x) =
1
2
(α− β) +

[
1 +

1
2
(α+ β)

]
x. (B. 23)

They satisfy the differential equation

(1− x2)
d2y

dx2
+ [β − α− (α+ β + 2)x]

dy

dx
+ n(n+ α+ β + 1)y = 0. (B. 24)
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Comparing this with the differential Equation (B. 15) for the Gaussian hy-
pergeometric series and making the transformation z = 1

2 (1− x) leads us to
make the identification

a = −n, b = n+ α+ β + 1, c = α+ 1

and to recognise that P (α,β)
n (x) is the hypergeometric polynomial

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
. (B. 25)

Thus, an explicit form for P (α,β)
n (x) is

Γ(n+ α+ 1)
n!Γ(α+ 1)

n∑
m=0

(−n)m(n+ α+ β + 1)m

m!(α+ 1)m

(
1− x

2

)m

=
Γ(n+ α+ 1)

n!Γ(n+ α+ β + 1)

n∑
k=0

Γ(n+ 1)Γ(n+ k + α+ β + 1)
Γ(k + 1)Γ(n− k + 1)Γ(k + α+ 1)

(
x− 1

2

)k

.

From the symmetry property

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), (B. 26)

one obtains the alternative representation

P (α,β)
n (x) = (−1)n

(
n+ β

n

)
2F1

(
−n, n+ α+ β + 1;β + 1;

1 + x

2

)
. (B. 27)

Many other representations are possible because of the great number of trans-
formation relations that the hypergeometric function satisfies.

The Jacobi polynomials satisfy Rodrigues’ formula

P (α,β)
n (x) =

(−1)n

2nn!
1

(1− x)α(1 + x)β

(
d

dx

)n [
(1− x)α+n(1 + x)β+n

]
,

(B. 28)
from which follows the useful relation

−2n(1− x)α(1 + x)βP (α,β)
n (x) =

d

dx

[
(1− x)α+1(1 + x)β+1P

(α+1,β+1)
n−1 (x)

]
.

(B. 29)
The differential relation expresses derivatives in terms of polynomials of the

same parameters (α, β) :

(2n+ α+ β)(1− x2)
d

dx
P (α,β)

n (x)

= n [α− β − (2n+ α+ β)x]P (α,β)
n (x) + 2(n+ α)(n+ β)P (α,β)

n−1 (x). (B. 30)
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Other recurrence relations connect polynomials with indices (α, β) to those
with indices (α+ 1, β) and (α, β + 1) ,(

n+
α

2
+
β

2
+ 1
)

(1− x)P (α+1,β)
n (x)

= (n+ α+ 1)P (α,β)
n (x)− (n+ 1)P (α,β)

n+1 (x), (B. 31)

(
n+

α

2
+
β

2
+ 1
)

(1 + x)P (α,β+1)
n (x)

= (n+ β + 1)P (α,β)
n (x) + (n+ 1)P (α,β)

n+1 (x), (B. 32)

2P (α,β)
n (x) = (1− x)P (α+1,β)

n (x) + (1 + x)P (α,β+1)
n (x); (B. 33)

also recurrence relations between polynomials with indices (α, β) and those
with indices (α− 1, β) and (α, β − 1)

(2n+ α+ β)P (α−1,β)
n (x) = (n+α+β)P (α,β)

n (x)− (n+β)P (α,β)
n−1 (x), (B. 34)

(2n+ α+ β)P (α,β−1)
n (x) = (n+α+β)P (α,β)

n (x)+ (n+α)P (α,β)
n−1 (x), (B. 35)

P (α,β−1)
n (x)− P (α−1,β)

n (x) = P
(α,β)
n−1 (x). (B. 36)

These relations may be used to extend the definition of Jacobi polynomials
for parameters (α, β) where α ≤ −1 or β ≤ 1; in the text, the most commonly
encountered examples are

P (−1,0)
n (x) =

1
2

(Pn (x)− Pn−1 (x)) , (B. 37)

P (0,−1)
n =

1
2

(Pn (x) + Pn−1 (x)) . (B. 38)

The generating function is

F (z, x) =
∞∑

n=0

P (α,β)
n (x)zn = 2α+βR−1(1− z +R)−α(1 + z +R)−β , (B. 39)

where R =
√

1− 2xz + z2, the branch being fixed by specifying R = 1 when
z = 0; the power series is convergent when |z| < 1. For particular values of
α, β there are other generating functions.

An asymptotic formula with α, β, x fixed and n→∞ is

P (α,β)
n (cos θ) =

cos
([
n+ 1

2 (α+ β + 1)
]
θ − π

4 (2α+ 1)
)

√
πn
(
sin 1

2θ
)α+ 1

2
(
cos 1

2θ
)β+ 1

2
+O

(
n−

3
2

)
(B. 40)

where 0 < θ < π.
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Many of the classical orthogonal polynomials are particular examples of
Jacobi polynomials, including the Legendre polynomials Pn = P

(0,0)
n , the

Chebyshev polynomials of first kind

Tn =
Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) P
(− 1

2 ,− 1
2 )

n , (B. 41)

the Chebyshev polynomials of second kind

Un =
Γ
(

3
2

)
Γ (n+ 1)

Γ
(
n+ 3

2

) P
( 1
2 , 1

2 )
n , (B. 42)

and the Gegenbauer polynomials

Cγ
n =

(2γ)n(
γ + 1

2

)
n

P
(γ− 1

2 ,γ− 1
2 )

n . (B. 43)

Thus if n is a nonnegative integer,

cosnθ =
Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) P
(− 1

2 ,− 1
2 )

n (cos θ), (B. 44)

sinnθ =
Γ
(

3
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) sin θP ( 1
2 , 1

2 )
n−1 (cos θ). (B. 45)

Explicit forms for other trigonometric functions are

cos(n+
1
2
)θ =

Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) cos
1
2
θP

(− 1
2 , 1

2 )
n (cos θ), (B. 46)

sin(n+
1
2
)θ =

Γ
(

1
2

)
Γ (n+ 1)

Γ
(
n+ 1

2

) sin
1
2
θP

( 1
2 ,− 1

2 )
n (cos θ). (B. 47)

B.3.1 The associated Legendre polynomials.

When n > m, the relationship between the associated Legendre functions Pm
n

and the Jacobi polynomials P (m,m)
n−m is

Pm
n (cos θ) = 2−m sinm θ

Γ (n+m+ 1)
Γ (n+ 1)

P
(m,m)
n−m (cos θ) (B. 48)

and the connection with Legendre polynomials is

Pm
n (x) =

(
1− x2

)m
2 dm

dxm
Pn (x) . (B. 49)

Another orthonormal family of Jacobi polynomials (n ≥ k, k fixed), considered
in Chapter 2 has the form

P̂
(k− 1

2 ,k+ 1
2 )

n−k (cos θ) =
(−1)k

√
π

{
(n− k)!
(n+ k)!

} 1
2
(

1
sin θ

d

dθ

)k
[

cos
(
n+ 1

2

)
θ

cos 1
2θ

]
.

(B. 50)
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B.3.2 The Legendre polynomials.

The Legendre polynomials Pn(x) form a subclass of the associated Legendre
functions Pm

ν (z) (where m = 0 , ν = n = 0, 1, 2, . . . and z = x is real,
−1 ≤ x ≤ 1 ) that are considered in the next subsection and so all properties
of these functions are valid for the Legendre polynomials. In the context
of classical orthogonal polynomials, the Legendre polynomials are the Jacobi
polynomials with α = β = 0. Thus, they are orthogonal with respect to
the constant (unit) function, are normalised by the condition Pn(1) = 1, and
have square norm where hn = h

(0,0)
n = ‖Pn‖2 = 2 (2n+ 1)−1. They satisfy

the recurrence relation

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, n = 1, 2, . . . (B. 51)

where P0(x) = 1, P1(x) = x. Thus P2(x) = 3
2x

2 − 1
2 . They satisfy the differ-

ential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0, (B. 52)

and have the hypergeometric polynomial representation

Pn(x) = 2F1

(
−n, n+ 1; 1;

1− x

2

)
. (B. 53)

The Rodrigues’ formula is simply

Pn(x) =
1

2nn!

(
d

dx

)n [
(x2 − 1)n

]
. (B. 54)

Useful differential and integration relations are

(1− x2)
d

dx
Pn(x) = n [Pn−1(x)− xPn(x)]

= (n+ 1) [xPn(x)− Pn+1(x)] (B. 55)

nPn(x) = x
d

dx
Pn(x)− d

dx
Pn−1(x) (B. 56)

(n+ 1)Pn(x) =
d

dx
Pn+1(x)− x

d

dx
Pn(x) (B. 57)

(2n+ 1)
∫
Pn(x)dx = Pn+1(x)− Pn−1(x). (B. 58)

Two generating functions are

∞∑
n=0

Pn(x)zn = (1− 2xz + z2)−1, − 1 < x < 1, |z| < 1, (B. 59)

∞∑
n=0

1
n!
Pn(cos θ)zn = ez cos θJ0(z sin θ) (B. 60)
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The asymptotic formula for the Legendre polynomials when n→∞ is

Pn(cos θ) =
Γ(n+ 1)
Γ(n+ 3

2 )
(
1
2
π sin θ)−

1
2 cos

[(
n+

1
2

)
θ − π

4

]
+O

(
n−1

)
(B. 61)

where x = cos θ is fixed and 0 < θ < π.

B.4 Associated Legendre functions

Associated Legendre functions of degree ν and order µ are solutions of
complex argument z of the differential equation

(1− z2)
d2y

dz2
− 2z

dy

dz
+
[
ν(ν + 1)− µ2

1− z2

]
y = 0. (B. 62)

The constants ν and µ are in general arbitrary complex numbers. The singu-
larities of the differential equation are located at z = ±1,∞ and are regular.
We shall consider first the ordinary Legendre functions of degree ν correspond-
ing to the choice µ = 0, and subsequently consider the associated Legendre
functions of nonzero order µ, restricting it to be integral.

B.4.1 Ordinary Legendre functions

When µ = 0, the differential equation becomes

(1− z2)
d2y

dz2
− 2z

dy

dz
+ ν(ν + 1)y = 0. (B. 63)

A pair of linearly independent solutions is the first-kind and second-kind Leg-
endre functions denoted Pν(z) and Qν(z); they are entire functions of z in the
plane cut along (−∞, 1]. The first-kind function is defined by

Pν(z) = 2F1

(
−ν, ν + 1; 1;

1− z

2

)
, |arg(z + 1)| < π. (B. 64)

It possesses the symmetry property P−ν−1 = Pν . An alternative representa-
tion for Pν that is useful for large z is

Pν(z) =
(2z)−ν−1 Γ(− 1

2 − ν)
√
πΓ(−ν) 2F1

(
ν

2
+ 1,

ν + 1
2

; ν +
3
2
;

1
z2

)
+

(2z)ν Γ(ν + 1
2 )

Γ(ν + 1) 2F1

(
1− ν

2
,−ν

2
;
1
2
− ν;

1
z2

)
, (B. 65)
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valid when |z| > 1, |arg z| < π, ν 6= ± 1
2 ,±

3
2 , . . .. Another useful representation

is

Pν(z) =
Γ
(

ν
2 + 1

2

)
√
πΓ
(

ν
2 + 1

) cos
νπ

2 2F1

(
1 + ν

2
,−ν

2
;
1
2
− ν; z2

)
+

2Γ
(

ν
2 + 1

)
√
πΓ
(

ν
2 + 1

2

) sin
νπ

2
z 2F1

(
1− ν

2
,
ν

2
+ 1;

3
2
; z2

)
, (B. 66)

valid when |z| < 1, and ν is arbitrary.
The second-kind Legendre function is defined by

Qν(z) =
√
πΓ (ν + 1)

Γ
(
ν + 3

2

)
(2z)ν+1 2F1

(
ν

2
+ 1,

ν

2
+

1
2
; ν +

3
2
; z−2

)
, (B. 67)

where ν 6= −1,−2, . . . ; it possesses an analytic continuation in the entire
complex plane, excluding the points z = ±1, with a branch cut along (−∞, 1].
Another useful expansion is

Qν(z) = e∓iνπ/2

√
πΓ
(

ν
2 + 1

)
Γ
(

ν
2 + 1

2

) z 2F1

(
1− ν

2
, 1 +

ν

2
;
3
2
; z2

)
∓

e∓iνπ/2i

√
πΓ
(

ν
2 + 1

2

)
2Γ
(

ν
2 + 1

) 2F1

(
1 + ν

2
,−ν

2
;
1
2
; z2

)
, (B. 68)

valid when |z| < 1, ν 6= −1,−2, ..., the upper sign being taken when Im z > 0,
and the lower sign when Im z < 0.

The Wronskian is

W {Pν(z), Qν(z)} = P ′ν(z)Qν(z)− Pν(z)Q′ν(z) =
(
1− z2

)−1
. (B. 69)

The following formulae are particularly useful for estimation of the asymp-
totically small parameters encountered in Chapters 3 and 4.

Qν(coshα) =
√
πΓ(ν + 1)
Γ(ν + 3

2 )
e−(ν+1)αF

(
ν + 1,

1
2
; ν +

3
2
; e−2α

)
(B. 70)

Pν(coshα) =
Γ(ν + 1)

√
πΓ(ν + 3

2 )
tan (νπ) e−(ν+1)αF

(
ν + 1,

1
2
; ν +

3
2
; e−2α

)
+

Γ(ν + 1
2 )

√
πΓ(ν + 1)

eναF

(
−ν, 1

2
;
1
2
− ν; e−2α

)
, (B. 71)

where ν 6= ± 1
2 ,±

3
2 , . . ..

Asymptotic expansions valid when |ν| → ∞, |arg ν| ≤ π
2 − δ, and α is fixed

(0 < α <∞) are

Pν(coshα) =
e(ν+ 1

2 )α

√
2νπ sinhα

[
1 +O

(
|ν|−1

)]
(B. 72)
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Qν(coshα) =
√
π√

2ν sinhα
e−(ν+ 1

2 )α
[
1 +O

(
|ν|−1

)]
; (B. 73)

when ν is real and ν → ∞, and θ is fixed in the interval δ ≤ θ ≤ π − δ (for
some δ > 0),

Pν(cos θ) =

√
2

νπ sin θ
sin
[
(ν +

1
2
)θ +

1
4
π

] [
1 +O

(
|ν|−1

)]
, (B. 74)

Qν(cos θ) =

√
2

νπ sin θ
cos
[
(ν +

1
2
)θ +

1
4
π

] [
1 +O

(
|ν|−1

)]
. (B. 75)

Explicit expressions are

P0(z) = 1, Q0(z) =
1
2

ln
(
z + 1
z − 1

)
, (B. 76)

P1(z) = z, Q1(z) =
z

2
ln
(
z + 1
z − 1

)
− 1; (B. 77)

these are valid when z takes real values x ∈ (−1, 1) .
P± 1

2
and Q± 1

2
are closely related to complete elliptic integrals of the first

kind

K (k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

(B. 78)

and of the second kind

E (k) =
∫ π

2

0

√
1− k2 sin2 θdθ, (B. 79)

the properties of which are discussed in [59, 1]; in particular [14]

P− 1
2
(z) =

2
π

√
2

z + 1
K

(√
z − 1
z + 1

)
, (B. 80)

Q− 1
2
(z) =

√
2

z + 1
K

(√
2

z + 1

)
, (B. 81)

P 1
2
(z) =

2
π

(
z +

√
z2 − 1

) 1
2
E

(√
2(z2 − 1)1/2

z + (z2 − 1)1/2

)
, (B. 82)

Q 1
2
(z) = z

√
2

z + 1
K

(√
2

z + 1

)
−
√

2(z + 1)E

(√
2

z + 1

)
.

(B. 83)
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When z = x is real and −1 < x < 1, these become

P− 1
2
(x) =

2
π
K

(√
1− x

2

)
, (B. 84)

Q− 1
2
(x) = K

(√
1 + x

2

)
, (B. 85)

P 1
2
(x) =

2
π

[
2E

(√
1− x

2

)
−K

(√
1− x

2

)]
, (B. 86)

Q 1
2
(x) = K

(√
1 + x

2

)
− 2E

(√
1 + x

2

)
. (B. 87)

When z = coshα is real and exceeds 1, these become

P− 1
2
(coshα) =

(π
2

cosh
α

2

)−1

K
(
tanh

α

2

)
, (B. 88)

Q− 1
2
(coshα) = 2e−α/2K

(
e−α

)
, (B. 89)

P 1
2
(coshα) =

2
π
eα/2E

(√
1− e−2α

)
, (B. 90)

Q 1
2
(coshα) =

(
2 cosh

α

2
− sech

α

2

)
K
(
sech

α

2

)
−2 cosh

α

2
E
(
sech

α

2

)
, (B. 91)

Another useful result is

Q− 1
2

(cosh 2σ) = sechσK(sechσ). (B. 92)

Integral representations valid for any complex ν and Re coshα > 0 are

Pν(coshα) =
∫ α

0

cosh
(
ν + 1

2

)
θ

√
2 coshα− 2 cosh θ

dθ, (B. 93)

and the Mehler-Dirichlet formula ([55])

Pν(cosβ) =
2
π

∫ β

0

cos
(
ν + 1

2

)
θ

√
2 cos θ − 2 cosβ

dθ. (B. 94)

When α > 0, and −1 < Re ν < 1,

Pν(coshα) =
2
π

cot
(
ν +

1
2

)
π

∫ ∞

α

sinh
(
ν + 1

2

)
θ

√
2 cosh θ − 2 coshα

dθ. (B. 95)

Also, when Re ν > −1,

Qν(coshα) =
∫ ∞

α

e−(ν+ 1
2 )θ

√
2 cosh θ − 2 coshα

dθ. (B. 96)
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A definite integral that frequently occurs is∫ z0

−1

Q− 1
2

(z)Pm (z) dz =

1− z2
0(

m+ 1
2

)2 {Pm (z0)Q′− 1
2

(z0)− P ′m (z0)Q− 1
2

(z0)
}
. (B. 97)

(It is evaluated using integration by parts and the defining differential equa-
tions for these functions.)

B.4.2 Conical functions

The Legendre functions P− 1
2+iτ and Q− 1

2+iτ with real τ occur in boundary
value problems in conical geometry. The function P− 1

2+iτ (cosφ) = P− 1
2−+iτ (cosφ)

is real for real φ, as may be seen from its hypergeometric representation de-
rived from (B. 64),

P− 1
2+iτ (cosφ) = 2F1

(
1
2

+ iτ,
1
2
− iτ ; 1; sin2 1

2
φ

)
(B. 98)

Although P− 1
2+iτ and Q− 1

2+iτ are linearly independent solutions of the dif-
ferential equation, the functions P− 1

2+iτ (x) and P− 1
2+iτ (−x) are also linearly

independent. The Wronskians are

W
(
P− 1

2+iτ (x), P− 1
2+iτ (−x)

)
= P− 1

2+iτ (x)P ′− 1
2+iτ (−x)− P− 1

2+iτ (−x)P ′− 1
2+iτ (x)

=
2
π

cosh (πτ)W
(
P− 1

2+iτ (x), Q− 1
2+iτ (x)

)
=

2
π

cosh (πτ)
(
1− x2

)−1
. (B. 99)

P− 1
2+iτ has the integral representation

P− 1
2+iτ (coshx) =

√
2
π

∫ x

0

cos τt dt√
coshx− cosh t

,

=
√

2
π

coth(πτ)
∫ ∞

x

sin τt dt√
cosh t− coshx

. (B. 100)

When as τ →∞,

P− 1
2+iτ (cos θ) v

eτθ

√
2πτ sin θ

, (B. 101)

uniformly in the sector δ ≤ θ ≤ π − δ.
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B.4.3 Associated Legendre functions of integer order

The conventional choice for a pair of linearly independent solutions to the
differential Equation (B. 62) employs the first-kind and second-kind associated
Legendre functions denoted Pµ

ν (z) and Qµ
ν (z) and defined by

Pµ
ν (z) =

1
Γ (1− µ)

(
z + 1
z − 1

) 1
2 µ

2F1

(
−ν, ν + 1; 1− µ;

1− z

2

)
, (B. 102)

and

Qµ
ν (z) =

√
πeµπiΓ (ν + µ+ 1)

(
z2 − 1

) 1
2 µ

2ν+1zν+µ+1Γ
(
ν + 3

2

) ×

2F1

(
1
2
ν +

1
2
µ+ 1,

1
2
ν +

1
2
µ+

1
2
; ν +

3
2
; z−2

)
. (B. 103)

This is valid for the complex plane with a branch cut along (−∞, 1]. When
µ is a positive integer, the Gamma function factor creates some difficulty;
in this case the definitions of the associated Legendre functions of degree
m (= 1, 2, . . .) are taken to be

Pm
ν (z) =

(
z2 − 1

) 1
2 m dm

dzm
Pν(z) (B. 104)

and
Qm

ν (z) =
(
z2 − 1

) 1
2 m dm

dzm
Qν(z). (B. 105)

When z = x ∈ (−1, 1) is real, it is convenient to modify these definitions in
the fashion described in [27]. Pm

ν , Qm
ν are generalisations of the Legendre

polynomials Pn, Qn, reducing to them when m = 0 and ν = n = 0, 1, 2, . . ..
Pm

ν (z) is an entire function of ν, while Qm
ν (z) is a meromorphic function

of ν with poles at the points ν = −1,−2, . . .. They have the hypergeometric
function representations

Pm
ν (z) =

Γ(ν +m+ 1)
2mΓ(m+ 1)Γ(ν −m+ 1)

(z2 − 1)
1
2 m×

2F1

(
m− ν, ν + 1 +m;m+ 1;

1− z

2

)
, (B. 106)

valid when |z − 1| < 2, |arg(z − 1)| < π, and ν is arbitrary, and

Qm
ν (z) =

(−1)m
√
πΓ(ν +m+ 1)(z2 − 1)

1
2 m

2ν+1zν+m+1Γ(ν + 3
2 )

×

2F1

(
ν +m

2
+ 1,

ν +m+ 1
2

; ν +
3
2
;

1
z2

)
, (B. 107)
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valid when |z| >; |arg(z ± 1)| < π, and ν 6= −1,−2, . . .. When x ∈ (−1, 1) is
real,

Pm
ν (x) =

(−1)mΓ(ν +m+ 1)
2mΓ(m+ 1)Γ(ν −m+ 1)

(1− x2)
1
2 m×

2F1

(
m− ν, ν +m+ 1;m+ 1;

1− x

2

)
. (B. 108)

Both functions Pµ
ν (z) and Qµ

ν (z) satisfy the same recurrence relations:

Pµ+1
ν (z) = (z2 − 1)−

1
2
[
(ν − µ)zPµ

ν (z)− (ν + µ)Pµ
ν−1(z)

]
, (B. 109)

(ν − µ+ 1)Pµ
ν+1(z) = (2ν + 1)zPµ

ν (z)− (ν + µ)Pµ
ν−1(z), (B. 110)

(z2 − 1)
dPµ

ν (z)
dz

= νzPµ
ν (z)− (ν + µ)Pµ

ν−1(z). (B. 111)

Transformation formulae relate negative and positive indices:

Pµ
−ν−1(z) = Pµ

ν (z),
Pµ
−ν−1(x) = Pµ

ν (x), − 1 < x < 1; (B. 112)

P−m
ν (z) =

Γ(ν −m+ 1)
Γ(ν +m+ 1)

Pm
ν (z),

P−m
ν (x) = (−1)m Γ(ν −m+ 1)

Γ(ν +m+ 1)
Pm

ν (x), − 1 < x < 1; (B. 113)

Qµ
−ν−1(z) =

1
sinπ(ν − µ)

[
−πeµπi cos νπPµ

ν (z) + sinπ(ν + µ)Qµ
ν (z)

]
;

(B. 114)

Q−µ
ν (z) = e−2µπi Γ(ν − µ+ 1)

Γ(ν + µ+ 1)
Qµ

ν (z), (B. 115)

Q−m
ν (x) = (−1)m Γ(ν −m+ 1)

Γ(ν +m+ 1)
Qm

ν (x). (B. 116)

The Formulae (B. 114)–(B. 116) require that −1 < x < 1 and ν 6= m− 1,m−
2, . . .. Finally we note that when m > n,

Pm
n (z) = Pm

n (x) = 0. (B. 117)

Also
Pm

n (−x) = (−1)m+nPm
n (x), − 1 < x < 1. (B. 118)

The Wronskian is

W {Pm
ν (z), Qm

ν (z)} =
(−1)m

(1− z2)
Γ (ν +m+ 1)
Γ (ν −m+ 1)

, (B. 119)
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W {Pm
ν (x), Qm

ν (x)} =
1

(1− x2)
Γ (ν +m+ 1)
Γ (ν −m+ 1)

, − 1 < x < 1. (B. 120)

Some explicit expressions are

P−1
0 (z) = P−1

−1 (z) =

√
z − 1
z + 1

, (B. 121)

P 1
1 (x) = −

√
1− x2, P 1

2 (x) = −3x
√

1− x2. (B. 122)

For fixed z /∈ (−∞,−1) ∪ (1,∞) and fixed µ, as Re(ν) →∞

Pµ
ν (z) =

1√
2π(z2 − 1)1/4

Γ(ν + µ+ 1)
Γ(ν + 3

2 )

[
z +

√
z2 − 1

]ν+ 1
2 ×

2F1

(
1
2

+ µ,
1
2
− µ;

3
2

+ ν;
z +

√
z2 − 1

2
√
z2 − 1

)
+

1√
2π(z2 − 1)1/4

Γ(ν + µ+ 1)
Γ(ν + 3

2 )
ie−iµπ

[
z −

√
z2 − 1

]ν+ 1
2 ×

2F1

(
1
2

+ µ,
1
2
− µ;

3
2

+ ν;
−z +

√
z2 − 1

2
√
z2 − 1

)
, (B. 123)

and for fixed z /∈ (−∞,−1) and fixed µ, as Re(ν) →∞

Qµ
ν (z) = eiµπ

√
π

2
1

(z2 − 1)1/4

Γ(ν + µ+ 1)
Γ(ν + 3

2 )

[
z −

√
z2 − 1

]ν+ 1
2 ×

2F1

(
1
2

+ µ,
1
2
− µ;

3
2

+ ν;
−z +

√
z2 − 1

2
√
z2 − 1

)
. (B. 124)

B.5 Bessel functions

The commonly employed solutions of Bessel’s differential equation

z2 d
2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0 (B. 125)

are the Bessel functions of the first kind Jν(z), of the second kind Yν(z) (also
called the Neumann function), and of the third kind H

(1)
ν (z), H(2)

ν (z) (also
called the Hankel functions of the first and second kind, respectively), defined
below; ν, z are in general complex. The classic treatise is Watson [73]. Each
is a regular (holomorphic) function of z in the entire z - plane cut along the
negative real axis; for fixed z (6= 0) each is an entire function of ν. When ν is
integral, Jν(z) has no branch point and is an entire function of z.
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The series representation for Jν is

Jν(z) =
1

Γ(ν + 1)

(z
2

)ν

0F1

(
ν + 1;−z

2

4

)
=

∞∑
k=0

(−1)k(z/2)2k+ν

k!Γ(k + ν + 1)
. (B. 126)

When ν = −n is a negative integer, and J−n(z) = (−1)nJn(z), for all z. The
Neumann function is defined by

Yν(z) =
1

sin (νπ)
[Jν(z) cos (νπ)− J−ν(z)] (B. 127)

where the right-hand side of this equation is replaced by its limiting value if
ν is an integer or zero. When ν = n is a nonnegative integer,

Yn(z) =
2
π
Jn(z) ln

(z
2

)
− 1
π

(z
2

)−n n−1∑
k=0

(n− k − 1)!
k!

(z
2

)2k

−

1
π

(z
2

)n ∞∑
k=0

[ψ(k + 1) + ψ(n+ k + 1)]
(−1)k

k!(n+ k)!

(z
2

)2k

(B. 128)

where ψ(k) = −γ+
∑∞

n=0 (1/ (n+ 1)− 1/ (k + n)) ; also Y−n(z) = (−1)nYn(z).
The Hankel functions are defined to be

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z). (B. 129)

The set {Jν , Yv} is a linearly independent pair of solutions of Bessel’s differ-
ential equation. The same is true of the pair

{
H

(1)
ν ,H

(2)
ν

}
. The Wronskians

are
W {Jν(z), Yν(z)} = J ′ν(z)Yν(z)− Jν(z)Y ′ν(z) =

2
πz

(B. 130)

and

W
{
H(1)

ν (z),H(2)
ν (z)

}
= H(1)′

ν (z)H(2)
ν (z)−H(1)

ν (z)H(2)′
ν (z) = − 4i

πz
. (B. 131)

The functions Jν , Yν ,H
(1)
ν ,H

(2)
ν all satisfy the same recurrence relations

zFν−1(z) + zFν+1(z) = 2νFν(z) (B. 132)

2
d

dz
Fν(z) = Fν−1(z)− Fν+1(z) (B. 133)

z
d

dz
Fν(z) = ±νFν(z)∓ zFν±1(z) (B. 134)

d

dz

[
z±νFν(z)

]
= ±z±νFν∓1(z) (B. 135)
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and the differentiation formulae(
1
z

d

dz

)m [
z±νFν(z)

]
= (±1)mz±ν−mFν∓m(z) (B. 136)

dm

dzm
Fν(z) =

1
2m

m∑
k=0

(−1)k

(
m

k

)
Fν−m+2k(z). (B. 137)

In particular, J ′0 = −J1, Y
′
0 = −Y1 and H(i)′

0 (z) = −H(i)
1 (z), (i = 1, 2).

The generating function is

exp
[(
t− t−1

) z
2

]
=

∞∑
n=−∞

tnJn(z) (B. 138)

from which is derived

cos (z sin θ) = J0(z) + 2
∞∑

k=1

J2k(z) cos(2kθ) (B. 139)

sin (z sin θ) = 2
∞∑

k=0

J2k+1(z) sin {(2k + 1)θ} (B. 140)

cos (z cos θ) = J0(z) + 2
∞∑

k=1

(−1)kJ2k(z) cos(2kθ) (B. 141)

sin (z cos θ) = 2
∞∑

k=0

(−1)kJ2k+1(z) cos(2k + 1)θ (B. 142)

Asymptotics. When |z| → 0 with ν fixed, the power series expansions (B.
126)–(B. 128) serve as asymptotic relations,

Jν(z) ∼
(z

2

)ν 1
Γ(ν + 1)

, ν 6= −1,−2, . . . (B. 143)

and when Re(ν) > 0,

Yν(z) ∼ −iH(1)
ν (z) ∼ iH(2)

ν (z) ∼ − 1
π

Γ(ν)
(z

2

)−ν

. (B. 144)

When z is fixed and ν →∞,

Jν(z) ∼ 1√
2πν

( ez
2ν

)ν

, Yν(z) ∼ −
√

2
πν

( ez
2ν

)−ν

. (B. 145)
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When ν is fixed and |z| → ∞,

Jν(z) =

√
2
πz

{
cos
(
z − 1

2
νπ − 1

4
π

)
+O

(
|z|−1

)}
, |arg z| < π

(B. 146)

Yν(z) =

√
2
πz

{
sin
(
z − 1

2
νπ − 1

4
π

)
+O

(
|z|−1

)}
, |arg z| < π

(B. 147)

H(1)
ν (z) ∼

√
2
πz

exp
[
i

(
z − 1

2
νπ − 1

4
π

)]
,−π < arg z < 2π. (B. 148)

B.5.1 Spherical Bessel functions

The spherical Bessel functions jn, yn, h
(1,2)
n are defined for integral n to be

jn(z) =
√

π

2z
Jn+1/2(z),

yn(z) =
√

π

2z
Yn+1/2(z),

h(1,2)
n (z) =

√
π

2z
H

(1,2)
n+1/2(z), (B. 149)

and can be expressed in terms of elementary functions as

jn(z) = (−z)n

(
1
z

d

dz

)n( sin z
z

)
, (B. 150)

yn(z) = −(−z)n

(
1
z

d

dz

)n (cos z
z

)
. (B. 151)

B.5.2 Modified Bessel functions

Bessel functions with argument ±iz are known as modified Bessel functions
and are solutions of the differential equation

z2 d
2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0. (B. 152)

The first-kind and second-kind modified Bessel functions are defined by

Iν(z) = e−
1
2 νπiJν

(
ze

1
2 πi
)
, − π < arg z ≤ 1

2
π, (B. 153)

Iν(z) = e
3
2 νπiJν

(
ze−

3
2 πi
)
,

1
2
π < arg z ≤ π, (B. 154)
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and

Kν(z) =
1
2
πie

1
2 νπiH(1)

ν

(
ze

1
2 πi
)
, − π < arg z ≤ 1

2
π, (B. 155)

Kν(z) = −1
2
πie−

1
2 νπiH(2)

ν

(
ze−

1
2 πi
)
,

1
2
π < arg z ≤ π. (B. 156)

Each is a regular function of z throughout the z-plane cut along the negative
real axis, and for fixed z (6= 0) each is an entire function of ν; when ν is inte-
gral, Iν(z) is an entire function of z. They constitute a linearly independent
pair of solutions to the differential equation with Wronskian

W {Iν(z),Kν(z)} = −1
z
. (B. 157)

Also
Kν(z) =

π

2 sin (νπ)
[I−ν(z)− Iν(z)] (B. 158)

where the right of this equation is replaced by its limiting value if ν is an
integer or zero. The series expansions are

Iν(z) =
∞∑

k=0

(z/2)2k+ν

k!Γ(k + ν + 1)
, (B. 159)

and

Kn(z) = (−1)n+1In(z) ln
(z

2

)
+

1
2

(z
2

)−n n−1∑
k=0

(n− k − 1)!
k!

(z
2

)2k

+

(−1)n 1
2

(z
2

)n ∞∑
k=0

[ψ(k + 1) + ψ(n+ k + 1)]
k!(n+ k)!

(z
2

)2k

, (B. 160)

where ψ(k) was defined above. Also

I−n(z) = In(z),K−ν(z) = Kν(z). (B. 161)

Recurrence relations satisfied by modified Bessel functions include

2νIν(z) = zIν−1(z)− zIν+1(z), (B. 162)

2νKν(z) = −zKν−1(z) + zKν+1(z). (B. 163)

Asymptotics. When ν is fixed and z →∞,

Iν(z) ∼ 1√
2πz

ez
∞∑

n=0

(−1)n (2z)−n Γ( 1
2 + ν + n)

n!Γ( 1
2 + ν − n)

, |arg z| < π

2
, (B. 164)

and

Kν(z) ∼
√

π

2z
e−z

∞∑
n=0

(2z)−n Γ( 1
2 + ν + n)

n!Γ( 1
2 + ν − n)

, |arg z| < 3π
2
. (B. 165)
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B.6 The incomplete scalar product

The incomplete scalar product for the family of Jacobi polynomials is de-
fined by

Q(α,β)
sn (t) =

∫ 1

t

(1− x)α (1 + x)β
P (α,β)

s (x)P (α,β)
n (x)dx, (B. 166)

whilst its normalised counterpart is defined by

Q̂(α,β)
sn (t) =

∫ 1

t

(1− x)α (1 + x)β
P̂ (α,β)

s (x)P̂ (α,β)
n (x)dx. (B. 167)

Elementary properties of the normalised incomplete scalar product valid for
all s, n = 0, 1, . . . are

Q̂(α,β)
sn (1) = 0, (B. 168)

an index symmetry
Q̂(α,β)

sn (t) = Q̂(α,β)
ns (t) , (B. 169)

and
Q̂(α,β)

sn (−t) = δsn − (−1)s−n
Q̂(β,α)

sn (t) . (B. 170)

Two other relationships frequently used are

Q̂(α,β)
sn (t) =

(1− t)α+1 (1 + t)β

[(s+ α+ 1) (s+ β)]
1
2
P̂ (α+1,β−1)

s (t)P̂ (α,β)
n (t)

+
[
(n+ α+ 1) (n+ β)
(s+ α+ 1) (s+ β)

] 1
2

Q̂(α+1,β−1)
sn (t) , (B. 171)

valid when α > −1, β > 0, and

Q̂(α,β)
sn (t) =

− (1− t)α (1 + t)β+1

[(s+ α) (s+ β + 1)]
1
2
P̂ (α−1,β+1)

s (t)P̂ (α,β)
n (t)

+
[
(n+ α) (n+ β + 1)
(s+ α) (s+ β + 1)

] 1
2

Q̂(α−1,β+1)
sn (t) , (B. 172)

valid when α > 0, β > −1. Formulae (B. 171) and (B. 172) are deduced from
the relationships (1.173) and (1.174). Finally, the property

∞∑
l=0

Q̂
(α,β)
sl (t) Q̂(α,β)

l n (t) = Q̂(α,β)
sn (t) (B. 173)

allows us to interpret the matrix operator K(t) with elements Q̂(α,β)
sn (t) as a

projection operator on l2.
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Employ the following differentiation formulae, which follow from the index
recurrence relations and the differential recurrence relations

− d

dz

[
(1− z)α+1P̂ (α+1,β−1)

n (z)
]

=
√

(n+ α+ 1)(n+ β)(1− z)αP̂ (α,β)
n (z), (B. 174)

d

dz

[
(1 + z)β+1P̂ (α−1,β+1)

n (z)
]

=
√

(n+ β + 1)(n+ α)(1 + z)βP̂ (α,β)
n (z), (B. 175)

and apply integration by parts to obtain two equivalent expressions for the
incomplete scalar product, valid when s 6= l,

Q̂
(α,β)
sl (z0) =

(1− z0)α+1(1 + z0)β

[(s+ α+ 1)(s+ β)− (l + α+ 1)(l + β)]
×{√

(s+ α+ 1)(s+ β)P̂ (α+1,β−1)
s (z0)P̂

(α,β)
l (z0)−√

(l + α+ 1)(l + β)P̂ (α,β)
s (z0)P̂

(α+1,β−1)
l (z0)

}
(B. 176)

and

Q̂
(α,β)
sl (z0) =

−(1− z0)α(1 + z0)β+1

[(s+ β + 1)(s+ α)− (l + β + 1)(l + α)]
×{√

(s+ β + 1)(s+ α)P̂ (α−1,β+1)
s (z0)P̂

(α,β)
l (z0)−√

(l + β + 1)(l + α)P̂ (α,β)
s (z0)P̂

(α−1,β+1)
l (z0)

}
. (B. 177)

Thus, when s 6= l, the incomplete scalar products Q̂(α,β)
sl (z0) may be calculated

in terms of the normalized Jacobi polynomials P̂ (α,β)
n . These polynomials are

efficiently evaluated by a normalised form of the recurrence relation (B. 21)
on the polynomial order:

P̂
(α,β)
n+1 (x) = (b̂n + xân)P̂ (α,β)

n (x)− ĉnP̂
(α,β)
n−1 (x) (B. 178)

with initialisation

P̂
(α,β)
0 (x) =

{
h

(α,β)
0

}− 1
2
,

P̂
(α,β)
1 (x) =

1
2

{
h

(α,β)
1

}− 1
2

[α− β + x(α+ β + 2)] .
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The recurrence coefficients are defined by

ân = an

(
h(α,β)

n /h
(α,β)
n+1

) 1
2
, (B. 179)

b̂n = bn

(
h(α,β)

n /h
(α,β)
n+1

) 1
2
, (B. 180)

ĉn = cn

(
h

(α,β)
n−1 /h

(α,β)
n+1

) 1
2
. (B. 181)

The ratio of norm values in (B. 179), (B. 180), and (B. 181) are simple rational
expressions in n, α, and β; also

b̂n =
(α2 − β2)ân

(2n+ α+ β)(2n+ α+ β + 2)
. (B. 182)

When s = l, the following recurrence relation for the incomplete scalar
product may be employed. Consider (B. 178) with n = s and n = l:

P̂
(α,β)
s+1 (x) = (b̂s + xâs)P̂ (α,β)

s (x)− ĉsP̂
(α,β)
s−1 (x), (B. 183)

P̂
(α,β)
l+1 (x) = (b̂l + xâl)P̂

(α,β)
l (x)− ĉlP̂

(α,β)
l−1 (x). (B. 184)

Multiply (B. 183) by âlP̂
(α,β)
l (x), (B. 184) by âsP̂

(α,β)
s (x) and subtract to

eliminate the term containing x. Now multiply by the factor (1−x)α(1+x)β

and integrate over (z0, 1) to deduce the following recurrence relation:

âlQ̂
(α,β)
s+1,l(z0)− âsQ̂

(α,β)
l+1,s(z0)

= (âlb̂s − âsb̂l)Q̂
(α,β)
sl (z0)− ĉsâlQ̂

(α,β)
s−1,l(z0) + ĉlâsQ̂

(α,β)
l−1,s(z0). (B. 185)

Setting s = l + 1 in (B. 185) produces a recurrence formula involving Q̂(α,β)
ll ,

and three other incomplete scalar products of form Q̂
(α,β)
nm with n 6= m.

Q̂
(α,β)
l+1,l+1(z0) =

âl

âl+1
Q̂

(α,β)
l+2,l (z0) +

(
b̂l − b̂l+1

âl

âl+1

)
Q̂

(α,β)
l+1,l (z0)

+ ĉl+1
âl

âl+1
Q̂

(α,β)
ll (z0)− ĉlQ̂

(α,β)
l−1,l+1(z0). (B. 186)

It may be initialised by the value

Q̂
(α,β)
00 (z0) =

{
h

(α,β)
0

}−1
∫ 1

z0

(1− x)α (1 + x)β
dx. (B. 187)
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Special cases commonly encountered are

Q̂
(− 1

2 ,− 1
2 )

nm (cos θ0) =
1
π

[
sin (n−m) θ0

n−m
+

sin (n+m) θ0
n+m

]
, (B. 188)

Q̂
( 1
2 , 1

2 )
nm (cos θ0) =

1
π

[
sin (n−m) θ0

n−m
− sin (n+m) θ0

n+m

]
, (B. 189)

Q̂
(− 1

2 , 1
2 )

nm (cos θ0) =
1
π

[
sin (n−m) θ0

n−m
+

sin (n+m+ 1) θ0
n+m+ 1

]
,

(B. 190)

Q̂
( 1
2 ,− 1

2 )
n−1,m−1(cos θ0) =

1
π

[
sin (n−m) θ0

n−m
− sin (n+m+ 1) θ0

n+m+ 1

]
.

(B. 191)

These are valid when n 6= m; when n = m, the term

sin (n−m) θ0
n−m

occurring in (B. 188)–(B. 191) is replaced by θ0.
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Appendix C

Elements of Functional Analysis

C.1 Hilbert spaces

In this section we collect some concepts from functional analysis. There are
many standard introductory texts on this material, including [34, 33, 78, 10].

A Hilbert space is a vector space H over a field of either real or com-
plex scalars, endowed with an inner product. The inner product is a bi-
linear map that associates to each pair of elements f, g in H a complex
number denoted (f, g) with the following properties: (1) (α1f1 + α2f2, g) =
α1 (f1, g)+α2 (f2, g) for all f1, f2, g ∈ H, and scalars α1, α2; (2) (f, g) = (g, f)
for all f, g ∈ H, where the bar denotes complex conjugate; and (3) (f, f) ≥ 0
and (f, f) = 0 ⇔ f = 0. We normally deal with real Hilbert spaces with a
real inner product. The third property allows us to define the norm of an el-
ement f ∈ H to be ‖f‖ = (f, f)

1
2 . It satisfies the properties (1) ‖f‖ ≥ 0

and ‖f‖ = 0 ⇔ f = 0; (2) ‖αf‖ = |α| ‖f‖ for all scalars α; and (3)
‖f + g‖ = ‖f‖ + ‖g‖ for all f, g ∈ H. Moreover, the Cauchy-Schwarz in-
equality |(f, g)| ≤ ‖f‖ ‖g‖ holds. The Hilbert space H is complete with re-
spect to this norm, i.e., every sequence {fn}∞n=1 in H that is Cauchy (so
that ‖fn − fm‖ → 0 as n,m → ∞) is also convergent to an element f of H
(‖fn − f‖ → 0 as n→∞).

A basis for H is a set of elements {e1, e2, . . .} of H such that every element
f of H is a unique linear combination of the basis elements: there exist scalars
α1, α2, . . . such that

f =
∑

n

αnen. (C. 1)

If the basis can be ordered as a countably infinite sequence {en}∞n=1 H is
called separable, and the sum (C. 1) is interpreted to mean that∥∥∥∥∥f −

N∑
n=1

αnen

∥∥∥∥∥→ 0 as N →∞. (C. 2)

(If the basis is not countable, then only countably many scalars in the sum
(C. 1) may be nonzero and the sum is interpreted in the sense of (C. 2) for
the nonzero scalar elements sequentially ordered.) The basis is orthogonal if
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(fn, fm) = hnδnm, where hn = ‖fn‖2 is necessarily positive. If hn = 1 for all
n, the basis is orthonormal; this may always be arranged by replacing each
basis element fn by fn/ ‖fn‖ .

Examples of Hilbert spaces.

1. Let l2 denote the space of (real or complex) sequences {an}∞n=1 such that∑∞
n=1 |an|2 converges. It is a Hilbert space with the inner product of sequences

a = {an}∞n=1 and b = {bn}∞n=1 defined to be

(a, b) =
∞∑

n=1

anbn. (C. 3)

An orthonormal basis is the set of sequences S = {en, n = 1, 2, . . .} where
en = {δnm}∞m=1 .

2. Let w = {wn}∞n=1 be a positive real sequence, and define l2 (w) to
be space of (real or complex) sequences {an}∞n=1 such that

∑∞
n=1 wn |an|2

converges. It is a Hilbert space with the inner product of sequences a =
{an}∞n=1 and b = {bn}∞n=1 defined to be

(a, b) =
∞∑

n=1

wnanbn. (C. 4)

The set S defined above is an orthogonal basis, and is orthonormal only if
wn = 1 for all n. A particular example of interest is the choice wn = nµ where
µ is a fixed real number; this space is denoted l2 (µ) .

3. Let L2 (a, b) denote the set of (real or complex) valued functions f
defined on the interval (a, b) such that

∫ b

a
|f |2 converges. It is a separable

Hilbert space with the inner product of functions f, g defined to be

(f, g) =
∫ b

a

fg. (C. 5)

The Lebesgue integral is used for this purpose with the understanding that
two functions f, g are regarded as equal if they differ only on a set of Lebesgue
measure zero (f, g are said to be equal almost everywhere); this allows us to
assert that the only function of norm zero is the function that is zero almost
everywhere.

4. Let w be a real valued positive function defined on (a, b) . Let L2,w (a, b)
denote the set of (real or complex) valued functions f defined on (a, b) such
that

∫ b

a
w |f |2 converges. It is a separable Hilbert space with the inner product

of functions f, g defined to be

(f, g) =
∫ b

a

wfg, (C. 6)
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with derived norm

‖f‖ =

(∫ b

a

w |f |2
) 1

2

. (C. 7)

If α and β are real numbers exceeding −1, and w is defined by w (x) =

(1− x)α (1 + x)β
, then the Jacobi polynomials

{
P

(α,β)
n

}∞
n=1

form an orthogo-

nal basis for L2,w (−1, 1) , and the normalised Jacobi polynomials
{
P̂

(α,β)
n

}∞
n=1

form an orthonormal basis. The cosine functions {cosnθ}∞n=1 and the com-
plex exponential functions

{
einθ

}∞
n=1

form orthogonal bases for L2 (0, π) and
L2 (0, 2π), respectively.

C.2 Operators

A linear operator T onH is a function T : H → H that is linear: T (α1f1 + α2f2) =
α1T (f1) + α2T (f2) for all f1, f2, g ∈ H, and scalars α1, α2. T is bounded if
there exists a positive constant M such that ‖T (f)‖ ≤ M ‖f‖ for all f ∈ H;
the norm of the operator is then defined to be

‖T‖ = sup
f 6=0

‖T (f)‖
‖f‖

= sup
‖f‖=1

‖T (f)‖ . (C. 8)

The null space N (T ) of T is the set {f ∈ H : T (f) = 0} ; the range of T is
the image T (H) of H under the action of T.

An example is the integral operator K formed from a real or complex valued
kernel function k of two variables defined on (a, b)× (a, b) via

K (f) (x) =
∫ b

a

k(x, t)f(t)dt (C. 9)

for each function f ∈ L2 (a, b) ; the condition∫ b

a

∫ b

a

|k(x, t)|2 dxdt <∞ (C. 10)

ensures that K is a bounded linear operator on L2 (a, b) with norm ‖K‖ not

exceeding
(∫ b

a

∫ b

a
|k(x, t)|2 dxdt

) 1
2
. A discrete analogue is the operator K with

associated matrix (knm)∞n,m=1 defined via

(Ka)n =
∞∑

m=1

knmam, (m = 1, 2, . . .), (C. 11)
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for each sequence {an}∞n=1 in l2; the condition

∞∑
m=1

∞∑
n=1

|knm|2 <∞ (C. 12)

ensures that K is a bounded linear operator on l2 with norm ‖K‖ not exceed-

ing
(∑∞

m=1

∑∞
n=1 |knm|2

) 1
2
.

Of particular importance in numerical methods are projection operators P
that may be characterised by the requirement that

P 2 = P.

In practice, such an operator is often associated with a finite dimensional space
and is used to convert operator equations of the form Kf = g to systems of
finitely many linear equations; the relation between the (computed) solution
to the finite system and the original (infinite dimensional) system is important
in determining the success of numerical solution methods (see below).

The adjoint K∗ of a linear operator K on H is uniquely defined by the
requirement that

(K∗f, g) = (f,Kg) (C. 13)

for all f, g ∈ H. The adjoint of the integral operator defined in (C. 9) is an
integral operator of the same form with kernel h defined by

h(x, t) = k(t, x). (C. 14)

The adjoint of the matrix operator defined in (C. 11) is a matrix operator of
the same form with matrix h defined by

hnm = kmn, (C. 15)

for all n,m = 1, 2, . . .
The operator K on H is compact (also called completely continuous) if for

every bounded sequence {fn}∞n=1 in H, the image sequence {K (fn)}∞n=1 has
a convergent subsequence (in H). Bounded finite rank operators (those with
finite dimensional range) are necessarily compact. The integral operator and
matrix operator defined by (C. 9) and (C. 11) are compact. By contrast, the
identity operator I is never compact in infinite dimensional spaces. If {en}∞n=1

is a basis for H, and {λn}∞n=1 is a sequence of scalars, the diagonal operator
defined by

K(en) = λnen (C. 16)

for all n is compact if and only if λn → 0 as n→∞.
Properties of compact operators are discussed in [34, 33]. In particular,

the set of eigenvalues of a compact operator K (those values of λ for which
the equation (λI −K)x = 0 has nontrivial solutions x) is countable (perhaps
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finite or even empty); 0 is the only possible point of accumulation of this set.
The Abel integral operator A defined on L2 (0, 1) by

A (f) (x) =
∫ x

0

f (t) dt√
x2 − t2

, x ∈ (0, 1) (C. 17)

has norm ‖A‖ = π
2 and is not compact; for, as observed in [4], the functions

fα (t) = tα (with α ≥ 0), are eigenfunctions of A satisfying Afα = λαfα,
where the eigenvalues λα vary continuously between 0 and π

2 as α ranges
from 0 to ∞, so that A cannot be compact.

The dimension of each eigenspace of K is finite; for each λ 6= 0, there is a
unique smallest integer r so that the null spaces satisfy

N ((λI −K)r) = N
(
(λI −K)r+1

)
= N

(
(λI −K)r+1

)
= . . . (C. 18)

and the range spaces satisfy

(λI −K)r
H = (λI −K)r+1

H = (λI −K)r+1
H = . . . . (C. 19)

The space H has the orthogonal decomposition

H = N ((λI −K)r)⊕ (λI −K)r
H (C. 20)

(every element of H is a unique sum of two orthogonal elements lying in
N ((λI −K)r) and (λI −K)r

H).

C.3 The Fredholm alternative and regularisation

The following result, known as the Fredholm alternative, is very important in
establishing the solubility of second-kind equations of the form (λI −K)x =
y, where λ is a scalar and K is a compact operator on a Hilbert space H
(λ−1K is a compact perturbation of the identity operator I). We consider
the four equations

(λI −K)x = y (C. 21)
(λI −K)x = 0 (C. 22)

(λI −K∗)u = v (C. 23)
(λI −K∗)u = 0 (C. 24)

where y and v are given elements of H.

Theorem 7 (The Fredholm alternative.) The Equation (C. 21) has a solu-
tion x ∈ H if and only if (y, u) = 0 for all solutions u of the homogeneous
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Equation (C. 24). Thus if the zero solution u = 0 is the only solution of
(C. 24), then for every y, the Equation (C. 21) is solvable, i.e., the range of
λI − K is H; the solution x depends continuously on y. Likewise, Equation
(C. 23) has a solution u ∈ H if and only if (x, v) = 0 for all solutions x of
the homogeneous Equation (C. 22). Equations (C. 22) and (C. 24) have the
same number of linearly independent solutions.

These and allied properties of second-kind equations permit the construc-
tion of relatively simple numerical methods that are stable and well-conditioned
and for which error analyses are possible. Atkinson’s book [4] is a comprehen-
sive survey of methods particularly appropriate to integral equations, paying
attention to error estimates. In a similar way, Kantorovich [30] discusses error
estimates for second-kind matrix systems that are solved by the truncation
method; Kress [33] also discusses such estimates in the context of projection
methods.

By contrast, first-kind equations, such as

Kx = y (C. 25)

where K is a compact operator (for example the matrix operator defined
by (C. 9) or the integral operator given by (C. 11)), are generally unstable,
and simple numerical methods are ill-conditioned and yield poor results. It
is necessary to employ some method of regularising the equation. One such
method is Tikhonov regularisation, that consists of replacing (C. 25) by(

ε2I +K∗K
)
x = K∗y. (C. 26)

For small ε, solutions to (C. 26) approximately equal those of (C. 25) (and
are identical when ε = 0), but the precise selection of ε is rather problem
dependent and requires some care in achieving acceptably accurate numerical
solutions [22].

Many problems of diffraction theory and potential theory give rise to sys-
tems of matrix equations or integral equations of the form

Ax = y, (C. 27)

which are singular in the sense that they are not of the second kind involving
a compact operator. From a theoretical point of view it can be difficult to
establish whether such equations have solutions, even though there may be
good physical reasons to expect the existence of a solution. Moreover, the
continuous dependence of the solution x on y is not obvious, though clearly
necessary for any physically plausible model of potential or diffraction. From
a computational point of view, the equation is likely to be unstable, i.e., small
perturbations to y result in large (and physically implausible) changes in the
computed solution x. It is not difficult to see how this effect arises for the
first-kind Equation (C. 25) when the compact operator K is given by (C. 16).
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It is therefore desirable, wherever possible, to convert the singular Equation
(C. 27) to one of second kind with a compact operator for which the Fredholm
alternative holds so that the associated benefits described above are obtained.
This process is known as (analytical) regularisation. It may be described
formally as follows. The bounded linear operator R is called a (left) regulariser
of A if

RA = I −K

where K is a compact operator on H. Some general properties of regularisers
are described in [33]. Application of the regulariser R to (C. 27) produces an
equation of the desired format:

(I −K)x = Ry.

In general, the construction of R may be difficult, if not impossible. How-
ever, the dual series equations arising from the potential problems and diffrac-
tion problems considered in this book and its companion volume can indeed
be regularised; the regularisation process is explicitly described in Section 2.1,
although the regulariser appears only implicitly in the analytical treatment of
the dual series equations. The regularised equations enjoy all the advantages
of second-kind equations for which the Fredholm alternative holds, includ-
ing precise estimates of the error or difference of any solution computed to a
truncated system, from the true solution (as a function of truncation number
Ntr). The error decays to zero as Ntr → ∞ (and in practice quite rapidly
beyond a certain cutoff point, usually related to the electrical size of the body
in diffraction problems).

The same remarks apply to triple series equations, as well as to the dual
and triple integral equations arising from the mixed boundary value problems
associated with Laplace’s equation, the Helmholtz equation, and Maxwell’s
equations for the various canonical structures described in these volumes.
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Appendix D

Transforms and Integration of Series

D.1 Fourier and Hankel transforms

The Fourier transform of the function f defined on (−∞,∞) is

F (y) =
∫ ∞

−∞
f(x)e−2πixydx, (D. 1)

and its inverse is given by

f (x) =
∫ ∞

−∞
F (y)e2πixydy. (D. 2)

Precise conditions on the validity of the inversion formula is given in [9]; a
particular useful class for which it holds is Lp (−∞,∞) with 1 ≤ p ≤ 2.

The Hankel transform of the function f defined on (0,∞) is

F (y) =
∫ ∞

0

Jν (xy) f(x) (xy)
1
2 dx, (D. 3)

and its inverse is given by

f (x) =
∫ ∞

0

Jν (xy)F (y) (xy)
1
2 dy. (D. 4)

The inversion formula is valid for parameter ν > − 1
2 when f is integrable on

(0,∞) and of bounded variation near the point x, and is continuous at x; if
f has a jump discontinuity at x, the left-hand side of (D. 4) is replaced by
1
2 (f (x+ 0) + f (x− 0)) (see [61]).

D.2 Integration of series

In this section we present some results on the validity of term-by-term
integration of series.
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Theorem 8 Let {fn}∞n=1 be a sequence in L2 (a, b) , converging to f in the
L2 norm, i.e.,

‖f − fn‖ =

(∫ b

a

|f − fn|2
) 1

2

→ 0, as n→∞.

Let g be a function in L2 (a, b) and define

h (x) =
∫ x

a

fg, hn (x) =
∫ x

a

fng.

Then hn converges uniformly to h on [a, b] .

Proof Fix x ∈ [a, b] ; from the Cauchy-Schwarz inequality,(∫ x

a

|f − fn| |g|
)2

≤
∫ x

a

|f − fn|2
∫ x

a

|g|2 .

Let A = 1 +
∫ b

a
|g|2 . Then, given ε > 0, there exists N such that when n > N,∫ b

a

|f − fn|2 < ε2/A, so that
∫ x

a

|f − fn| |g| < ε.

Thus, hn converges uniformly to h on [a, b] .

Corollary Let
∑∞

n=1 fn be a series with fn ∈ L2 (a, b) and converging to f
in the L2 norm, i.e.,

∥∥∥∥∥f −
n∑

r=1

fr

∥∥∥∥∥ =

∫ b

a

∣∣∣∣∣f −
n∑

r=1

fr

∣∣∣∣∣
2
 1

2

→ 0, as n→∞.

Then the series
∞∑

n=1

∫ x

a

fng

is uniformly convergent to
∫ x

a
fg on [a, b] .

In particular, the Fourier series of any function in L2 (a, b) can be integrated
term-by-term over the interval [a, x] .

The series
∑∞

n=1 an of real terms is Abel-summable if

lim
r→1−0

∞∑
n=1

anr
n
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exists. The series
∑∞

n=1 fn of real valued functions on [a, b] is uniformly Abel-
summable on [a, b] to the function f, if for all ε > 0, there is some δ > 0 such
that for all x ∈ [a, b],∣∣∣∣∣

∞∑
n=1

fn(x)rn − f(x)

∣∣∣∣∣ < ε for 1− δ < r < 1.

For each fixed r with 0 < r < 1, the power series
∑∞

n=1 fn(x)rn is uniformly
convergent on [a, b] to its sum, and may be integrated term by term. It imme-
diately follows that term-by-term integration of a uniformly Abel-summable
series is justified.
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