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Chapter 1

Differential equations of

Mathematical Physics

1.1 Differential equations of elliptic type

Let X be an Euclidean space of dimension n with a coordinate system
x1, ..., xn.

• The Laplace equation is

∆u = 0, ∆
.
=

∂2

∂x2
1

+ ...+
∂2

∂x2
n

∆ is called the Laplace operator. A solution in a domain Ω ⊂ X
is called harmonic function in Ω. It describes a stable membrane,
electrostatic or gravity field.

• The Helmholtz equation

(

∆+ ω2
)

u = 0

For n = 1 it is called the equation of harmonic oscillator. A solution is
a time-harmonic wave in homogeneous space.

• Let σ be a function in Ω; the equation

〈∇, σ∇〉 u = f, ∇
.
=

(

∂

∂x1

, ...,
∂

∂xn

)
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is the electrostatic equation with the conductivity σ. We have 〈∇, σ∇〉 u =
σ∆u+ 〈∇σ,∇u〉 .

• Stationary Schrödinger equation
(

−
h2

2m
∆+ V (x)

)

ψ = Eψ

E is the energy of a particle.

1.2 Diffusion equations

• The equation
∂u (x, t)

∂t
− d2∆xu (x, t) = f

in X × R describes propagation of heat in X with the source density
f .

• The equation

ρ
∂u

∂t
− 〈∇, p∇〉 u− qu = f

describes diffusion of small particles.

• The Fick equation

∂

∂t
c+ div (wc) = D∆c+ f

for convective diffusion accompanied by a chemical reaction; c is the
concentration, f is the production of a specie, w is the volume velocity,
D is the diffusion coefficient.

• The Schrödinger equation
(

ıh
∂

∂t
+

h2

2m
∆− V (x)

)

ψ (x, t) = 0

where h = 1.054... × 10−27 erg · sec is the Plank constant. The wave
function ψ describes motion of a particle of mass m in the exterior field
with the potential V. The density |ψ (x, t)|2 dx is the probability to find
the particle in the point x at the time t.
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1.3 Wave equations

1.3.1 The case dim X = 1

• The equation
(

∂2

∂t2
− v2 (x)

∂2

∂x2

)

u (x, t) = 0

is called D’Alembert equation or the wave equation for one spacial
variable x and velocity v.

• The telegraph equations

∂V

∂x
+ L

∂I

∂t
+R

∂I

∂x
= 0,

∂I

∂x
+ C

∂V

∂t
+GV = 0

V, I are voltage and current in a conducting line, L,C,R,G are induc-
tivity, capacity, resistivity and leakage conductivity of the line.

• The equation of oscillation of a slab

∂2u

∂t2
+ γ2∂

4u

∂x4
= 0

1.3.2 The case dim X = 2, 3

• The wave equation in an isotropic medium (membrane equation):

(

∂2

∂t2
− v2 (x)∆

)

u (x, t) = 0

• The acoustic equation

∂2u

∂t2
−
〈

∇, v2∇
〉

u = 0, ∇ = (∂1, ..., ∂n)

• Wave equation in an anisotropic medium:

(

∂2

∂t2
−
∑

aij (x)
∂2

∂xi∂xj
−
∑

bi (x)
∂u

∂xi

)

u (x, t) = f (x, t)
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• The transport equation

∂u

∂t
+ θ

∂u

∂x
+ a (x)u− b (x)

∫

S(X)

η (〈θ, θ′〉 , x) u (x, θ′, t) dθ′ = q

It describes the density u = u (x, θ, t) of particles at a point (x, t) of
space-time moving in direction θ.

• The Klein-Gordon-Fock equation
(

∂2

∂t2
− c2∆+m2

)

u (x, t) = 0

where c is the light speed. A relativistic scalar particle of the mass m.

1.4 Systems

• The Maxwell system:

div (µH) = 0, rotE = −
1

c

∂

∂t
(µH) ,

div (εE) = 4πρ, rotH =
1

c

∂

∂t
(εE) +

4π

c
I,

E and H are the electric and magnetic fields, ρ is the electric charge
and I is the current; ε, µ are electric permittivity and magnetic per-
meability, respectively, v2 = c2/εµ. In a non-isotropic medium ε, µ are
symmetric positively defined matrices.

• The elasticity system

ρ
∂

∂t
ui =

∑ ∂

∂xj
vij

where U (x, t) = (u1, u2, u3) is the displacement evaluated in the tan-
gent bundle T (X) and {vij} is the stress tensor:

vij = λδij
∂

∂xk
uk + µ

(

∂

∂xj
ui +

∂

∂xi
uj

)

, i, j = 1, 2, 3

ρ is the density of the elastic medium in a domain Ω ⊂ X; λ, µ are the
Lamé coefficients (isotropic case).
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1.5 Nonlinear equations

1.5.1 dim X = 1

• The equation of shock waves

∂u

∂t
+ u

∂u

∂x
= 0

• Burgers equation for shock waves with dispersion

∂u

∂t
+ u

∂u

∂x
− b

∂2u

∂x2
= 0

• The Korteweg-de-Vries (shallow water) equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0

• Boussinesq equation

∂2u

∂t2
−
∂2u

∂x2
− 6u

∂2u

∂x2
−
∂4u

∂x4
= 0

1.5.2 dim X = 2, 3

• The nonlinear Schrödinger equation

ıh
∂u

∂t
+

h2

2m
∆u± |u|2 u = 0

• Nonlinear wave equation
(

∂2

∂t2
− v2∆

)

u+ f (u) = 0

where f is a nonlinear function, f.e. f (u) = ±u3 or sinu.

• The system of hydrodynamics (gas dynamic)

∂ρ

∂t
+ div (ρv) = f

∂v

∂t
+ 〈v, grad v〉+

1

ρ
grad p = F

Φ (p, ρ) = 0
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for the velocity vector v = (v1, v2, v3), the density function ρ and the
pressure p of the liquid. They are called continuity, Euler and the state
equation, respectively.

• The Navier-Stokes system

∂ρ

∂t
+ div (ρV ) = f

∂v

∂t
+ 〈v, grad v〉+ α∆v +

1

ρ
grad p = F

Φ (p, ρ) = 0

where α is the viscosity coefficient.

• The system of magnetic hydrodynamics

divB = 0,
∂B

∂t
− rot (u×B) = 0

ρ
∂u

∂t
+ ρ 〈u,∇〉 u+ grad p− µ−1 rotB ×B = 0,

∂ρ

∂t
+ div (ρu) = 0

where u is the velocity, ρ the density of the liquid, B = µH is the
magnetic induction, µ is the magnetic permeability.

1.6 Hamilton-Jacobi theory

• The Hamilton-Jacobi (Eikonal) equation

aµν∂µφ∂νφ = v−2 (x)

• Hamilton-Jacobi system

∂x

∂τ
= H ′

ξ (x, ξ) ,
∂ξ

∂τ
= −H ′

x (x, ξ)

where H is called the Hamiltonian function.

• Euler-Lagrange equation

∂L

∂x
−

d

dt

∂L

∂
·
x

= 0

where L = L (t, x,
.
x) , x = (x1, ..., xn) is the Lagrange function.
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1.7 Relativistic field theory

1.7.1 dim X = 3

• The Schrödinger equation in a magnetic field

ıh
∂u

∂t
+

h2

2m

(

∂j −
e

c
Aj

)2

ψ − eV ψ = 0

• The Dirac equation
(

ı

3
∑

0

γµ∂µ −mI

)

ψ = 0

where ∂0 = ∂/∂t, ∂k = ∂/∂xk, k = 1, 2, 3 and γk, k = 0, 1, 2, 3 are
4× 4 matrices (Dirac matrices):

(

σ0 0
0 −σ0

)

,

(

0 σ1

−σ1 0

)

,

(

0 σ2

−σ2 0

)

,

(

0 σ3

−σ3 0

)

and

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −ı
ı 0

)

, σ3 =

(

1 0
0 −1

)

are Pauli matrices. The wave function ψ describes a free relativistic
particle of mass m and spin 1/2, like electron, proton, neutron, neu-
trino. We have

(

ı
∑

γµ∂µ −mI
)(

−ı
∑

γµ∂µ −mI
)

=
(

¤+m2
)

I, ¤
.
=

∂2

∂t2
− c2∆

i.e. the Dirac system is a factorization of the vector Klein-Gordon-Fock
equation.

• The general relativistic form of the Maxwell system

∂σFµν + ∂µFνσ + ∂νFσµ = 0, ∂νF
µν = 4πJµ

or F = dA, d ∗ dA = 4πJ

where J is the 4-vector, J0 = ρ is the charge density, J∗ = j is the
current, and A is a 4-potential.
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• Maxwell-Dirac system

∂µFµν = Jµ, (ıγµ∂µ + eAµ −m)ψ = 0

describes interaction of electromagnetic field A and electron-positron
field ψ.

• Yang-Mills equation for the Lie algebra g of a group G

F = ∇∇, Fµν = ∂µAν − ∂νAµ + g [Aµ, Aν ] ;

∇ ∗ F = J, ∇µFµν = Jν ; ∇µ = ∂µ − gAµ,

where Aµ (x) ∈ g, µ = 0, 1, 2, 3 are gauge fields, ∇µ is considered as a
connection in a vector bundle with the group G.

• Einstein equation for a 4-metric tensor gµν = gµν (x) , x = (x0, x1, x2, x3) ;µ, ν =
0, ..., 3

Rµν −
1

2
gµνR = Y µν ,

where Rµν is the Ricci tensor

Rµν = Γαµα,ν − Γαµν,α + ΓαµνΓ
β
αβ + ΓαµβΓ

β
να

Γµνα
.
=

1

2
(gµν,α + gµα,ν − gνα,µ)

1.8 Classification of linear differential opera-

tors

For an arbitrary linear differential operator in a vector space X

a (x,D)
.
=
∑

|j|≤m

aj (x)D
j =

∑

j1+...+jn≤m

aj1,...,jn (x)
∂j1+...+jn

∂xj11 ...∂x
jn
n

of order m the sum

am (x,D) =
∑

|j|=m

aj (x)D
j, |j| = j1 + ...+ jn

is called the principal part. If we make the formal substitution D 7→ıξ,
ξ ∈ X∗, we get the function

a (x, ıξ) = exp (−ıξx) a (x,D) exp (ıξx)
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This is a polynomial of order m with respect to ξ.
Definition. The functions σ (x, ξ)

.
= a (x, ıξ) and σm (x, ξ)

.
= am (x, ıξ)

in X ×X∗ are called the symbol and principal symbol of the operator a. The
symbol of a linear differential operator a on a manifold X is a function on
the cotangent bundle T ∗ (X) .

If a is a matrix differential operator, then the symbol is a matrix function
in X ×X∗.

1.8.1 Operators of elliptic type

Definition. An operator a is called elliptic in a domain D ⊂ X , if
(*) the principle symbol σm (x, ξ) does not vanish for x ∈ D, ξ ∈ X∗\ {0} .
For a s× s-matrix operator a we take detσm instead of σm in this defini-

tion.
Examples. The operators listed in Sec.1 are elliptic. Also

• the Cauchy-Riemann operator

a

(

g
h

)

=

(

∂g

∂x
− ∂h

∂y
∂g

∂y
+ ∂h

∂x

)t

is elliptic, since

σ1 = σ = ı

(

ξ −η
η ξ

)

, detσ1 = −ξ2 − η2

1.8.2 Operators of hyperbolic type

We consider the product space V = X × R and denote the coordinates
by x and t respectively. We have then V ∗ = X∗ × R∗; the corresponding
coordinates are denoted by ξ and τ.Write the principal symbol of an operator
a (x, t;Dx, Dt) in the form

σm (x, t; ξ, τ) = am (x, t; ıξ, ıτ) = α (x, t) [τ − λ1 (x, t; ξ)] ... [τ − λm (x, t; ξ)]

Definition. We assume that in a domain D ⊂ V
(i) α (x, t) 6= 0, i.e. the time direction τ ∼ dt is not characteristic,
(ii) the roots λ1, ..., λm are real for all ξ ∈ X∗,
(iii) we have λ1 < ... < λm for ξ ∈ X∗\ {0} .

9



The operator a is called strictly t-hyperbolic ( strictly hyperbolic in vari-
able t), if (i,ii,iii) are fulfilled. It is called weakly hyperbolic, if (i) and (ii) are
satisfied. It is called t-hyperbolic, if there exists a number ρ0 < 0 such that

σ (x, t; ξ + ıρτ) 6= 0, for ξ ∈ V ∗, ρ < ρ0

The strict hyperbolicity property implies hyperbolicity which, in its turn,
implies weak hyperbolicity. Any of these properties implies the same property
for −t instead of t.

Example 1. The operator

¤ =
∂2

∂t2
− v2∆

is hyperbolic with respect to the splitting (x, t) since

σ2 = −τ 2 + v2 (x) |ξ|2 = − [τ − v (x) |ξ|] [τ + v (x) |ξ|]

i.e. λ1 = −v |ξ| , λ2 = v |ξ| . It is strictly hyperbolic, if v (x) > 0.

Example 2. The Klein-Gordon-Fock operator ¤ + m2 is strictly t-
hyperbolic.

Example 3. The Maxwell, Dirac systems are weakly hyperbolic, but
not strictly hyperbolic.

Example 4. The elasticity system is weakly hyperbolic, but not strictly
hyperbolic, since the polynomial detσ2 is of degree 6 and has 4 real roots
with respect to τ , two of them of multiplicity 2.

1.8.3 Operators of parabolic type

Definition. An operator a (x, t;Dx, Dt) is called t-parabolic in a domain
U ⊂ X ×R if the symbol has the form σ = α (x, t) (τ − τ1) ... (τ − τp) where
α 6= 0, and the roots fulfil the condition

(iv) Im τj (x, t; ξ) ≥ b |ξ|q − c for some positive constants q, b, c.

This implies that p < m.

Examples. The heat operator and the diffusion operator are parabolic.
For the heat operator we have σ = ıτ + d2 (x, t) |ξ|2 . It follows that p = 1,
τ1 = ıd2 |ξ|2 and (iv) is fulfilled for q = 2.
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1.8.4 Out of classification

The linear Schrödinger operator does not belong to either of the above classes.

• Tricomi operator

a (x, y,D) =
∂2u

∂x2
+ x

∂2u

∂y2

is elliptic in the halfplane {x > 0} and is strictly hyperbolic in {x < 0} .
It does not belong to either class in the axes {x = 0} .

1.9 Initial and boundary value problems

1.9.1 Boundary value problems for elliptic equations.

For a second order elliptic equation

a (x,D) u = f

in a domain D ⊂ X the boundary conditions are: the Dirichlet condition:

u|∂D = v0

or the Neumann condition:
∂u

∂ν
|∂D = v1

or the mixed (Robin) condition:

(

∂u

∂ν
+ bu

)

|∂D = v

1.9.2 The Cauchy problem

u (x, 0) = u0

for a diffusion equation
a (x, t;D) u = f

For a second order equation the Cauchy conditions are

u (x, 0) = u0, ∂tu (x, 0) = u1
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1.9.3 Goursat problem

u (x, 0) = u0, u (0, t) = v (t)

1.10 Inverse problems

To determine some coefficients of an equation from boundary measurements
Examples

1. The sound speed v to be determined from scattering data of the acoustic
equation.
2. The potential V in the Schrödinger equation
3. The conductivity σ in the Poisson equation
and so on.
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Chapter 2

Elementary methods

2.1 Change of variables

Let V be an Euclidean space of dimension n with a coordinate system
x1, ..., xn. If we introduce another coordinate system, say y1, ..., yn, then we
have the system of equations

dyj =
∂yj
∂x1

dx1 + ...+
∂yj
∂xn

dxn, j = 1, ..., n

If we write the covector dx = (dx1, ..., dxn) as a column, this system can be
written in the compact form

dy = Jdx

where J
.
= {∂yj/∂xi} is the Jacobi matrix. For the rows of derivatives

Dx = (∂/∂x1, ..., ∂/∂xn) , Dy = (∂/∂y1, ..., ∂/∂yn) we have

Dx = DyJ

since the covector dx is bidual to the vector Dx. Therefore for an arbitrary
linear differential operator a we have

a (x,Dx) = a (x (y) , DyJ)

hence the symbol of a in y coordinates is equal σ (x (y) , ηJ) , where σ (x, ξ)
is symbol in x-coordinates.

Example 1. An arbitrary operator with constant coefficients is invariant
with respect to arbitrary translation transformation Th : x 7→x + h, h ∈ V.
Translations form the group that is isomorphic to V.
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Example 2. D’Alembert operator

¤ =
∂2

∂t2
− v2

∂2

∂x2
, σ = τ 2 − v2ξ2

with constant speed v can be written in the form

¤ = −4v2
∂2

∂y∂z

where y = x − vt, z = x + vt, since 2∂/∂y = ∂/∂x − v−1∂/∂t, 2∂/∂z =
∂/∂x+ v−1∂/∂t.

This implies that an arbitrary solution u ∈ C2 of the equation

¤u = 0

can be represented, at least, locally in the form

u (x, t) = f (x− vt) + g (x+ vt) (2.1)

for continuous functions f, g. At the other hand, if f, g are arbitrary con-
tinuous functions, the sum (1) need not to be a C2-function. Then u is a
generalized solution of the wave equation.

Example 3. The Laplace operator ∆ keeps its form under arbitrary
linear orthogonal transformation y = Lx.We have J = L and σ (ξ) = − |ξ|2 .
Therefore σ (η) = − |ηL|2 = − |η|2 . All the orthogonal transformations L
form a group O (n) . Also the Helmholtz equation is invariant with respect
to O (n) .

Example 4. The relativistic wave operator

¤ =
∂2

∂t2
− c2∆

is invariant with respect to arbitrary linear orthogonal transformation in X-
space. In fact there is a larger invariance group, called the Lorentz group Ln.
This is the group of linear operators in V ∗ that preserves the symbol

σ (ξ, τ) = −τ 2 + c2 |ξ|2

This is a quadratic form of signature (n, 1). The Lorentz group contains the
orthogonal group O (n) and also transformations called boosts:

2



t′ = t coshα + c−1xj sinhα, x
′
j = ct sinhα + xj coshα, j = 1, ...

Dimension d of the Lorentz group is equal to n (n+ 1) /2, in particular, d =
6 for the space dimension n = 3. The group generated by all translations
and Lorentz transformations is called Poincaré group. The dimension fo the
Poincaré group is equal 10.

2.2 Bilinear integrals

Suppose that V is an Euclidean space, dimV = n. The volume form dV
.
=

dx1∧ ...∧dxn is uniquely defined; let L2 (V ) be the space of square integrable
functions in V. For a differential operator a we consider the integral form

〈aφ, ψ〉 =

∫

V

ψ (x) a (x,D)φ (x) dV

It is linear with respect to the argument φ and is additive with respect to ψ
whereas

〈aφ, λψ〉 = λ 〈aφ, ψ〉

for arbitrary complex constant λ. A form with such properties is called
sesquilinear. It is bilinear with respect to multiplication by real constants.
We suppose that the arguments φ, ψ are smooth (i.e. φ, ψ ∈ C∞) funtcions
with compact supports. We can integrate this form by parts up to m times,
where m is the order of a. The boundary terms vanish, since of the assump-
tion, and we come to the equation

〈aφ, ψ〉 = 〈φ, a∗ψ〉 (2.2)

where a∗ is again a linear differential operator of order m. It is called (for-
mally) conjugate operator. The operation a 7→a∗ is additive and (λa)∗ =
λa∗, obviously a∗∗ = a.

An operator a is called (formally) selfadjoint if a∗ = a.
Example 1. For an arbitrary operator a with constant coefficients we

have a∗ (D) = a (−D) .
Example 2. A tangent field b =

∑
bi (x) ∂/∂xi is a differential operator

of order 1. We have

b∗ = −b− div b, div b
.
=
∑

∂bi/∂xi

3



This is no more a tangent field unless the divergence vanishes.
Example 3. The Poisson operator

a (x,D) =
∑

∂/∂xi (aij (x) ∂/∂xj)

is selfadjoint if the matrix {aij} is Hermitian. In particular, the Laplace
operator is selfadjoint. Moreover the quadratic Hermitian form

〈−∆φ, φ〉 =
∑〈

∂φ

∂xi

,
∂φ

∂xi

〉
= ‖∇φ‖2

is always nonnegative. This property helps, f.e. to solve the Dirichlet problem
in a bounded domain. Note that the symbol of −∆ is also nonnegative:
|ξ|2 ≥ 0. In general these two properties are related in much more general
operators.

Let a, b be arbitrary functions in a domain D ⊂ V that are smooth up to
the boundary Γ = ∂D. They need not to vanish in Γ. Then the integration
by parts brings boundary terms to the righthand side of (2). In particular,
for the Laplace operator we get the equation

∫

D

b∆adV = −

∫

D

∑ ∂a

∂xi

∂b

∂xi

dV +

∫

Γ

b
∑

ni
∂a

∂xi

dS

where n =(n1, ...,nn) is the unit outward normal field in Γ and dS is the
Euclidean surface measure. The sum of the terms ni∂a/∂xi is equal to the
normal derivative ∂a/∂n. Integrating by parts in the first term, we get finally

∫

D

b∆adV =

∫

D

∆badV +

∫

Γ

b∂a/∂ndS−

∫

Γ

∂b/∂nadS (2.3)

This is a Green formula.

2.3 Conservation laws

For some hyperbolic equations and system one can prove that the ”energy”
is conservated, i.e. it does not depend on time. Consider for simplicity the
selfadjoint wave equation

(
∂2

∂t2
−

∂

∂xi

v2
∂

∂xi

)
u (x, t) = 0
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in a space-time V = X ×R. Suppose that a solution u decreases as |x| → ∞
for any fixed t and ∇u stays bounded. Then we can integrate by parts in the
X-integral

−
∑〈

∂

∂xi

v2
(
∂

∂xi

u

)
, u

〉
=
∑〈

v2
(
∂u

∂xi

)
,
∂u

∂xi

〉
= ‖v∇u‖2

Take time derivative of the lefthand side:

−
∂

∂t

〈
∂2u

∂t2
, u

〉
=

∂

∂t

∥∥∥∥
∂u

∂t

∥∥∥∥
2

At the other hand from the equation

−
∂

∂t

〈
∂2u

∂t2
, u

〉
= −

∂

∂t

∑〈
∂

∂xi

(
v2
∂u

∂xi

)
, u

〉
=

∂

∂t
‖v∇u‖2

and
∂

∂t

(∥∥∥∥
∂u

∂t

∥∥∥∥
2

+ ‖v∇u‖2
)

= 0

Integrating this equation from 0 to t, we get the equation

∫ (∥∥∥∥
∂u (x, t)

∂t

∥∥∥∥
2

+ ‖v∇u (x, t)‖2
)
dx =

∫ (∥∥∥∥
∂u (x, 0)

∂t

∥∥∥∥
2

+ ‖v∇u (x, 0)‖2
)
dx

The left side has the meaning is the energy of the wave u at the time t.

2.4 Method of plane waves

Let again V be a real vector space of dimension n <∞ and λ be a nonzero
linear functional on V. A function u in V is called a λ-plane-wave, if u (x) =
f (λ (x)) for a function f : R → C. The function f is called the profile of
u. The meaning of the term is that any u is constant on each hyperplane
λ = const .

For example both the terms in (1) are plane waves for the covectors
λ = (1,−v) and λ = (1, v) respectively. In general, if we look for a plane-
wave solution of a partial differential equation, we get an ordinary differential
equation for its profile.
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Example 1. For an arbitrary linear equation with constant coefficients

a (D)u = 0

the exponential function exp (ıξx) is a solution if and only if the covector ξ
satisfies the characteristic equation σ (ξ) = 0.

Example 2. For the Korteweg & de-Vries equation

ut + 6uux + uxxx = 0

in R× R and arbitrary a > 0 there exists a plane-wave solution for the
covector λ = (1,−a):

u (x, t) =
a

2 cosh2 (2−1a1/2 (x− at− x0))

It decreases fast out of the line x− at = λ0. A solution of this kind is called
soliton.

Example 3. Consider the Liouville equation

utt − uxx = g exp (u)

where g is a constant. For any a, 0 ≤ a < 1 there exists a plane-wave solution

u (x, t) = ln
a2 (1− a2)

2g cosh (2−1a (x− at− x0))

Example 4. For the ”Sine-Gordon” equation

utt − uxx = −g2 sinu

the function

u (x, t) = 4 arctan
(
exp

(
±g
(
1− a2

)1/2
(x− at− x0)

))

is a plane-wave solution.
Example 5. The Burgers equation

ut + uux = νuxx, ν 6= 0

It has the following solution for arbitrary c1, c2

u = c1 +
c2 − c1

1 + exp
(
(2ν)−1 (c2 − c1) (x− at)

) , 2a = c1 + c2
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2.5 Fourier transform

Consider ordinary linear equation with constant coefficients

a (D)u =

(
am

dm

dxm
+ am−1

dm−1

dxm−1
+ ...+ a0

)
u = w (2.4)

To solve this equation, we asume that w ∈ L2 and write it by means of the
Fourier integral

w (x) =

∫
exp (ıξx) ŵ (ξ) dξ

and try to solve the equation (4) for w (x) = exp (ıξx) for any ξ. Write a
solution in the form uξ = exp (ıξx) ũ (ξ) and have

ŵ (ξ) exp (ıξx) = a (D)uξ = a (D) exp (ıξx) ũ (ξ) = σ (ξ) ũ (ξ) exp (ıξx)

or σ (ξ) ũ (ξ) = ŵ (ξ) . A solution can be found in the form:

ũ (ξ) = σ−1 (ξ) ŵ (ξ)

if the symbol does not vanish. We can set

u (x) =
1

2π

∫

R∗

ŵ (ξ)

σ (ξ)
exp (ıξx) dξ

Example 1. The symbol of the ordinary operator a− = D2− k2 is equal
to σ = −ξ2 − k2 6= 0. It does not vanish.

Proposition 1 If m > 0 and w has compact support, we can find a solution
of (4) in the form

u (x) =
1

2π

∫

¡

ŵ (ζ)

σ (ζ)
exp (ıζx) dζ (2.5)

where Γ ⊂ C\ {σ = 0} is a cycle that is homologically equivalent to R in C.

Proof. The function ŵ (ξ) has the unique analytic continuation ŵ (ζ) at
C according to Paley-Wiener theorem. The integral (4) converges at infinity,
since Γ coincides with R in the complement to a disc, the function ŵ (ξ)
belongs to L2 and |σ (ξ)| ≥ c |ξ| for |ξ| > A for sufficiently big A.

Example 2. The symbol of the Helmholtz operator a+ = D2 + k2

vanishes for ξ = ±k. Take Γ+ ⊂ C+ = {Im ζ ≥ 0} . Then the solution (4)
vanishes at any ray {x > x0} , where w vanishes. If we take Γ = Γ− ⊂ C−,
these rays will be replaced by {x < x0} .
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2.6 Theory of distributions

See Lecture notes FI3.
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Chapter 3

Fundamental solutions

3.1 Basic definition and properties

Definition. Let a (x,D) be a linear partial differential operator in a vec-
tor space V and U is an open subset of V. A family of distributions Fy ∈
D ′ (V ) , y ∈ U is called a fundamental solution (or Green function, source
function, potential, propagator), if

a (x,D)Fy (x) = δy (x) dx

This means that for an arbitrary test function φ ∈ D (V ) we have

Fy (a
′ (x,D)φ (x)) = φ (y)

Fix a system of coordinates x = (x1, ..., xn) in V ; the volume form dx =
dx1...dxn is a translation invariant. We can write a fundamental solution
(f.s.) in the form Fy (x) = Ey (x) dx, where E is a generalized function.
The difference between Fy and Ey is the behavior under coordinate changes:
Ey (x

′) dx′ = Ey (x) dx, where x
′ = x′ (x) , hence Ey (x

′) = Ey (x) |det ∂x/∂x′| .
The function Ey for a fixed y is called a source function with the source point
y.

If a (D) is an operator with constant coefficients in V and E0 (x) = E (x)
is a source function that satisfies a (D)E0 = δ0, then Ey (x) dx

.
= E (x− y) dx

is a f.s in U = V. Later on we call E source function; we shall use the same
notation Ey for a f.s. and corresponding source function, if we do not expect
a confusion.

Proposition 1 Let E be a f.s. for U ⊂ V. If w is a function (or a distribution)
with compact support K ⊂ U, then the function (distribution)

u (x)
.
=

∫
Ey (x)w (y) dy

is a solution of the equation a (x,D) u = w.

1



Proof for functions E and w

a (x,D) u =

∫
a (x,D)Ey (x)w (y) dy =

∫
δy (x)w (y) dy = w (x)

The same arguments for distributions E,w and u:

a (x,D) u (φ) = u (a′ (x,D)φ) = w (Fy (a
′ (x,D)φ)) = w (φ)

¡

If E is a source function for an operator a (D) with constant coefficients,
this formula is simplified to u = E ∗ w and a (D) (E ∗ w) = a (D)E ∗ w =
δ0 ∗ w = w.

Reminder. For arbitrary distribution f and a distribution g with compact

support in V the convolution is the distribution

f ∗ g (φ) = f × g (φ (x+ y)) , φ ∈ D (V )

Here f × g is a distribution in the space Vx× Vy,where both factors are isomorphic

to V , x and y are corresponding coordinates.

If the order of a is positive, there are many fundamental solutions. If E is
a f.s. and U fulfils a (D)U = 0, then E ′ .= E + U is a f.s. too.

Theorem 2 An arbitrary differential operator a 6= 0 with constant coefficients
possesses a f.s.

Problem. Prove this theorem. Hint: modify the method of Sec.4.

3.2 Fundamental solutions for elliptic opera-

tors

Definition. A linear differential operator a (x,D) is called elliptic in an open
set W ⊂ V, if the principal symbol σm (x, ξ) of a does not vanish for ξ ∈
V ∗\ {0} , x ∈ W.

Now we construct fundamental solutions for some simple elliptic operators
with constant coefficients.

Example 1. For the ordinary operator a (D) = D2 − k2 we can find a f.s.
by means of a formula (5) of Ch.2, where w = δ0 and ŵ = 1 :

E (x) = − 1

2π

∫

R

exp (ıζx)

ζ2 + k2
dζ = − (2k)−1 exp (−k |x|)

Example 2. For the Helmholtz operator a (D) = D2 + k2 we can find a
f.s. by means of (5), Ch.2, where w = δ0 and ŵ = 1 :

E (x) =
1

2π

∫

¡

exp (ıζx)

k2 − ζ2
dζ
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If we take Γ = 1/2 (Γ+ + Γ−) , then E (x) = (2k)−1 sin (k |x|) .
Example 3. For the Cauchy-Riemann operator a = ∂z

.
= 1/2 (∂x + ı∂y)

the function

E =
1

πz
, z = x+ iy

is a f.s. To prove this fact we need to show that
∫
a′φdxdy

πz
= φ (0)

for any φ ∈ D (R2) , where a′ = −∂z. The kernel z−1 is locally integrable, hence
the integral is equal to the limit of integrals over the set U (ε) = {|z| ≥ ε} as
ε→ 0. We have a′ = −∂z; integrating by parts yields

−
∫

U(ε)

∂zφdxdy

πz
= π−1

∫

U(ε)

φ∂z

(
1

z

)
dxdy − (2π)−1

∫

∂U(ε)

φ
dy − ıdx

z

The first term vanishes since the function z−1 is analytic in U (ε) . The bound-
ary ∂U (ε) is the circle |z| = ε with opposite orientation. Take the parametriza-
tion by x = ε cosα, y = ε sinα and calculate the second term:

− (2π)−1
∫

∂U(ε)

φ
dy − ıdx

z
= (2π)−1

∫ 2π

0

φ (ε cosα, ε sinα) dα

→ (2π)−1 φ (0)

∫ 2π

0

dα = φ (0)

Example 4. For the Laplace operator ∆ in the plane V = R2 the function

E = − (2π)−1 ln |x|

is a f.s. To check it we apply the Green formula to the domain D = U (ε) (see
Ch.2)

E (∆φ) = lim
ε→0

∫

D

E∆φdV = lim
ε→0

(∫

D

∆EφdV +

∫

Γ

E∂φ/∂ndS−
∫

Γ

∂E/∂nφdS

)

Here ∆E = 0 in D, Γ = ∂U (ε) , ∂/∂n = −∂/∂r, ∂E/∂n = (2πr)−1 , r = |x|
and

E (∆φ) = (2π)−1
[
−
∫

r=ε

ln r ∂φ/∂rdS +

∫

r=ε

r−1φdS

]

The first integral tends to zero as ε→ 0, since the function ∂φ/∂r is bounded
and r ln r → 0. In the second one we have r−1dS = dα, hence the integral
tends to 2πφ (0) , which implies E (∆φ) = φ (0) . This means that ∆E = δ0,
Q.E.D.

The function E is invariant with respect to rotations. This is the only
rotation invariant f.s. up to a constant term.
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Example 5. The function E (x) = − (4π |x|)−1 is a f.s. for the Laplace
operator in R3.

Problem. To check this fact.
Here are the basic properties of elliptic operators:

Theorem 3 Let a (x,D) be an elliptic operator with C∞-coefficients in an
open set W ⊂ V. An arbitrary distribution solution to the equation

a (x,D) u = w

in W is a C∞-function, if w is such a function. If the coefficients and the
function w are real analytic, so is u.

Corollary 4 Any source function Ey (x) of an arbitrary elliptic operator a (x,D)
with real analytic coefficients is a real analytic function of x ∈ V \ {y}.

Problem. Let a be an elliptic operator with constant coefficients. To
show that the fundamental solution for a, constructed by the method of Sec.4
is an analytic function in V \ {0} .

3.3 More examples

A hyperbolic operator can not have a fundamental solution which is a C∞-
function in the complement to the source point.

Example 6. For D’Alembert operator a (D) = ¤2
.
= ∂2t − v2∂2x we can

find a fundamental solution by means of the coordinate change y = x − vt,
z = x + vt (see Ch.2): ¤2 = −4v2∂y∂z. Introduce the function (Heaviside’s
function)

θ (x) = 1, for x ≥ 0, θ (x) = 0 for x < 0

We have ∂xθ (±x) = ±δ0, hence we can take

E (y, z) =
(
4v2

)−1
θ (−y) θ (z) (3.1)

Returning to the space-time coordinate we get

E (x, t) = (2v)−1 θ (vt− |x|)

i.e. E (x, t) = (2v)−1 if vt ≥ |x| and E (x, t) = 0 otherwise. The coefficient 2v
appears because of E is a density, (or a distribution), not a function.

We can replace θ (−y) to −θ (y) and θ (z) to −θ (−z) in (1) and get three
more options for a f.s.

Example 7. Consider the first order operator a (D) =
∑
aj∂j, with

constant coefficients aj ∈ R and introduce the variables y1, ..., yn such that
a (D) y1 = 1, a (D) yj = 0, j = 2, ..., n and det ∂y/∂x = 1. Then the general-
ized function E (x) = θ (y1) δ0 (y2, ..., yn) is a fundamental solution for a.

Problem. To check this statement.
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Forward propagator in 2−space−time 

vt> |x| 
= 

E=1/2v 

3.4 Hyperbolic polynomials and source func-

tions

Definition. Let p (ξ) be a polynomial in V ∗ with complex coefficients. It is
called hyperbolic with respect to a vector η ∈ V ∗\ {0} , if there exists a number
ρη < 0 such that

p (ξ + ıρη) 6= 0, for ξ ∈ V ∗, ρ < ρη

Let pm be the principal part of p. It is called strictly hyperbolic, if the equation
π (λ) = pm (ξ + λη) = 0 has only real zeros for real ξ and these zeros are simple
for ξ 6= 0. If pm is strictly hyperbolic, then p is hyperbolic for arbitrary lower
order terms.

Definition. Let a (x,D) be a differential operator in V and t be a linear
function in V, called the time variable. The operator a is called hyperbolic with
respect to t (or t-hyperbolic) in U ⊂ V , if the symbol σ (x, ξ) is a hyperbolic
polynomial in ξ with respect to the covector η (x) = t for any point x ∈ U.

Let p be a hyperbolic polynomial with respect to η. Consider the cone
V ∗\ {pm (ξ) = 0} and take the connected component Γ (p, η) of this cone that
contains η. This is a convex cone and p is hyperbolic with respect to any
g ∈ Γ (p, η) and g ∈ −Γ (p, η) . The dual cone is defined as follows

Γ∗ (p, η) = {x ∈ V, ξ (x) ≥ 0, ∀ξ ∈ Γ (p, η)}
The dual cone is closed, convex and proper, (i.e. it does not contain a line).

Theorem 5 Let a (D) be a hyperbolic operator with constant coefficients with
respect to a covector η0. Then there exists a f.s. E of a such that

suppE ⊂ Γ∗ (p, η0)
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where p is the principal symbol of a.

Proof. Fix a covector η ∈ Γ (a, η0) , |η| = 1 and set

E (x) = (2π)−n lim
ε→0

Eρ,ε (x) (3.2)

Eρ,ε (x) =

∫

V ∗

exp (ı 〈ξ + ıρη, x〉) exp
(
−ε (ξ + ıρη)2

)

p (ξ + ıρη)
dξ

where n = dimV and p is the symbol of a. The dominator p (ξ + ıρη) does
not vanish as ξ ∈ V ∗, η ∈ Γ (p, η0) , ρ < ρη, since a is η0-hyperbolic. The
integral converges at infinity since of the decreasing factor exp (−εξ2) and
commutes with any partial derivative. The integrand can be extended to Cn

as a meromorphic differential form

ω = p−1 (ζ) exp
(
ıζx− εζ2

)
dζ

that is holomorphic in the cone V ∗ + ıΓ (a, η0) ⊂ Cn. The integral of ω does
not depend on ρ in virtue of the Cauchy-Poincaré theorem (the special case of
the general Stokes theorem). Check that it is a fundamental solution:

a (D)Eε,ρ (x, t) = ı−m

∫

V ∗

p (ξ + ıρη) exp (ı 〈ξ + ıρη, x〉) exp
(
−ε (ξ + ıρη)2

)

p (ξ + ıρη)
dξ

=

∫

V ∗

exp (ı 〈ξ + ıρη, x〉) exp
(
−ε (ξ + ıρη)2

)
dξ

=

∫

V ∗

exp (ıξx) exp
(
−εξ2

)
dξ

= (πε)−n/2 exp
(
− (4ε)−1

(
|x|2

))
→ (2π)n δ0 in S

′

For the third step we have applied again the Cauchy-Poincaré theorem. This
yields a (D)E = δ0. Estimate this integral in the halfspace {〈η, x〉 < 0} :

|Eε (x)| =
∣∣∣∣∣

∫

V ∗

exp (ı 〈ξ, x〉) exp (−ρ 〈η, x〉) exp
(
−ε (ξ + ıρη)2

)

p (ξ + ıρη)
dξ

∣∣∣∣∣

≤ exp (−ρ 〈η, x〉)
∫

V ∗

exp (−εξ2) exp (ερ2η2)
|p (ξ + ıρη)| dξ ≤ Cε−n/2 exp

(
ερ2

)
exp (−ρ 〈η, x〉)

for a constant C, since of |p (ξ + ıρη)| ≥ c0 > 0. We take ε = ρ−2;the right side
is then equal to O (ρn exp (−ρ 〈η, x〉)) . This quantity tends to zero as ρ→ −∞,
since 〈η, x〉 < 0. Therefore E (x) = 0 in the half-space Hη

.
= {〈η, x〉 < 0} .

Therefore E vanishes in the union of all half-spaces Hη, η ∈ Γ (p, η0) . The
complement to this union in V is just Γ∗ (p, η0) . This completes the proof. ¡

Proposition 6 Let W ⊂ V be a closed half-space such that the conormal η is
not a zero the symbol am. If u a solution to the equation a (D)u = 0 supported
by W, then u = 0.
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Proof. Take a hyperplane H ⊂ V \W. The distribution U vanishes in a
neighborhood ofH and by Holmgren uniqueness theorem (see Ch.4) it vanishes
everywhere.

Corollary 7 If a a hyperbolic operator with constant coefficients with respect
to a covector η, then there exists only one fundamental solution supported by
the set {〈η, x〉 ≤ 0} .

3.5 Wave propagators

The wave operator

¤n
.
=

∂2

∂t2
− v2∆x

in V = X × R with a positive velocity v = v (x) is hyperbolic with respect to
the time variable t. The symbol σ (ξ, τ) = −τ 2 + v2 |ξ|2 is strictly hyperbolic
with respect to the covector η0 = (0, 1) . Now we assume that the velocity v
is constant; the wave operator is hyperbolic and with respect to any covector
(η, 1) such that v |η| < 1 and the union of these covectors is just the cone
Γ (σ, η0) . The dual cone is

Γ∗ (σ, η0) = {(x, t) , v |x| ≥ t}

The f.s. supported by this cone is called the forward propagator. For the
opposite cone −Γ∗ = {v |x| ≤ t} the corresponding f.s. is called the backward
propagator. Both fundamental solutions are uniquely defined.

For the case dimV = 2 both propagators were constructed in Example 6
in the previous section.

Proposition 8 The forward propagator for ¤4 is

E4 (x, t) =
1

4πv2t
δ (|x| − vt) (3.3)

This f.s. acts on test functions φ ∈ D (V )as follows

E4 (φ) =
(
4πv2

)−1
∫ ∞

0

t−1
∫

|x|=vt

φ (x, t) dSdt

Proof. Write (2) for the vector η0 = (0,−1) in the form

E (x, t) = (2π)−4 lim
ε→0

Eε (x, t) (3.4)

Eε (x, t) = −
∫

X∗

∫ ∞

−∞

exp (ıξx+ ı (τ − ıρ) t) exp (−εξ2)
(τ − ıρ)2 − |vξ|2

dτdξ
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where ξ, τ are coordinates dual to x, t, respectively and we write ξx instead
of 〈ξ, x〉 . The interior integral converges, hence we need not the decreasing
factor exp (−ετ 2) . We know that E vanishes for t < 0; assume that t > 0. The
backward propagator vanishes, hence we can take the difference as follows:

Eε (x, t) = −
∫

X∗

exp
(
−εξ2

)
dξ×

∫ ∞

−∞

[
exp (ıξx+ ı (τ − ıρ) t)

(τ − ıρ)2 − |vξ|2
− exp (ıξx+ ı (τ + ıρ) t)

(τ + ıρ)2 − |vξ|2
]
dτ

The interior integral is equal to the integral of the meromorphic form ω =(
ζ2 − |vξ|2

)−1
exp (ı 〈ξ, x〉+ ıζt) over the chain {Im ζ = −ρ}−{Im ζ = ρ} , which

is equivalent to the union of circles {|ζ − |vξ|| = ρ} ∪ {|ζ + |vξ|| = ρ} . By the
residue theorem we find
∫
...dτ = 2πı exp (ıξx)

exp (ıvt |ξ|)− exp (−ıvt |ξ|)
2v |ξ| = −2π exp (ıξx) sin (vt |ξ|)

v |ξ|
consequently

Eε (x, t) = 2πv−1
∫

X∗

exp (ıξx)
sin (vt |ξ|)

|ξ| exp
(
−εξ2

)
dξ

= 2πv−1F ∗

(
sin (vt |ξ|)

|ξ| exp
(
−εξ2

))

Lemma 9 We have for an arbitrary a > 0

F
(
δS(a)

)
= 4πa

sin (a |ξ|)
|ξ| (3.5)

where δS(a) denotes the delta-density on the sphere S (a) of radius a :

δS(a) (φ) =

∫

S(a)

φdS

Proof of Lemma. For an arbitrary test function ψ ∈ D (X∗) we have

F
(
δS(a)

)
(ψ) = δS(a) (F (ψ)) = δS(a)

(∫
exp (−ıxξ)ψ (ξ) dξ

)

=

∫
ψ (ξ) δS(a) (exp (−ıxξ)) dξ

The functional δS(a) has compact support and therefore is well defined on the
smooth function exp (−ıxξ) . Calculate the value:

δS(a) (exp (−ıxξ)) =
∫

S(a)

exp (−ıxξ) dS = a2
∫ 2π

0

∫ π

0

exp (−ıa |ξ| cos θ) sin θdθdϕ

= −2πıa2 exp (ıa |ξ|)− exp (−ıa |ξ|)
a |ξ| = 4πa

sin (a |ξ|)
|ξ|
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This implies (5).

We have F ∗F = (2π)3 I, where I stands for the identity operator, hence
by (4)

F ∗

(
sin (a |ξ|)
|ξ|

)
= 2π2a−1δS(a)

We find from (5)

Eε (x, t) = 2πv−1F ∗

(
sin (vt |ξ|)

|ξ| exp
(
−εξ2

))
→ 4π3v−2t−1δS(vt)

This implies (3) in virtue of (4). ¤

Problem. Calculate the backward propagator for ¤4.

Note that the support of E4 is the conic 3-surface S = {vt = |x|} , see the
picture

Proposition 10 For n = 3 the forward propagator is equal to

E3 (x, t) =
θ (vt− |x|)

2πv
√
v2t2 − |x|2

(3.6)

Replacing θ (vt− |x|) by −θ (−vt− |x|) , we obtain the backward propagator.

The support of the convex cone {vt ≥ |x|} in E3. The profile of the function
E3 is shown in the picture

9



Profile of 3−space−time propagator 

x=vt 

E=c((vt)  −x  ) 
2   2  −1/2

Proof. We apply the ”dimension descent” method. Write x = (x1, x2, x3)
in (3) and integrate this function for fixed y = (x1, x2) against the density dx3
from −∞ to ∞. The line (x1, x2) = y meets the surface S only if t ≥ v−1 |y| .
Therefore the function

E3 (y, t)
.
=

∫
E4 (x, t) dx3 = (2πv)−1

∫
δ (vt− |x|) dx3

is supported by the cone K3
.
= {vt ≥ |y|} . Apply this equation to a test

function:

E3 (ψ) = E4 (ψ × e) =
(
4πv2t

)−1
δ (vt− |x|) (ψ × e) =

(
4πv2t

)−1
∫

y2+x2

3
=(vt)2

ψ (y, t) dS

where e = e (x3) = 1. Consider the projection p : R3 → R2, x 7→y = (x1, x2) .
The mapping p : S → K covers the cone K twice and we have n3dS = dx1dx2,

where n is the normal unit field to S and n3 = (vt)−1
(
(vt)2 − |y|2

)−1/2
. It

follows

dS =
vtdx1dx2√
v2t2 − |y|2

and

E3 (ψ) =
1

2πv

∫
ψ (y) dx1dx2√
v2t2 − |y|2

which coincides with (6). We need only to check that E3 is the forward prop-
agator for the operator ¤3. It is supported by the proper convex cone K and

¤3E3 =

∫
¤4E4dx3 =

∫
δ0 (x, t) dx3 = δ0 (y, t)

since
∫
∂23E4dx3 = 0. ¡

10



3.6 Inhomogeneous hyperbolic operators

Example 7. The forward propagator for the Klein-Gordon-Fock operator
¤4 +m2 is equal to

D (x, t) =
θ (t)

4πc2t
δ (ct− |x|)− m

4π
θ (ct− |x|)

J1

(
m
√
c2t2 − |x|2

)

√
c2t2 − |x|2

(3.7)

where J1 is a Bessel function. Recall that the Bessel function of order ν can
be given by the formula

Jν (z) =
∞∑

0

(−1)k
k!Γ (ν + k + 1)

(z
2

)ν+2k

Remark. The generalized functions in (3), (6), and (7) can be written as
pullbacks of some functions under the mapping

X × R → R2, (x, t)→ q = v2t2 − |x|2 , θ (t) (3.8)

It is obvious for (6) since θ (vt− |x|) = θ (q) θ (t) . Fix the coordinates (x0, x)
in V, where x0 = vt. In formulae (3) and (7) we can write (ct)−1 δ (ct− |x|) =
δ (q) . Indeed, we have by definition

δ (q) (α) =

∫

q=0

α

dq
=
√
1 + v2

∫ ∞

0

∫

q=0

φ

|∇q|dSdt

where α = φdxdx0 is a test density, i.e. φ ∈ D (X × R); dS is the area
in the 2-surface q = 0, t = const . We have ∇q = (2x, 2v2t) = (2x, 2v2t) ,
|∇q| = 2

√
1 + v2vt and

∫

q=0

φ

|∇q|dS =
(
2
√
1 + v2vt

)−1
∫
φdS

Then

E4 =
θ (t)

4πv2t
δ (|x| − vt) =

θ (t)

2πv
δ (q)

D = θ (t)

[
1

2πc
δ (q)− m

4π
θ (q)

J1
(
m
√
q
)

√
q

]

This fact has the following explanation. The wave operator and the Klein-
Gordon-Fock operator are invariant with respect to the Lorentz group L3 =
O (3, 1) . This is the group of linear transformations in V that preserve the
quadratic form q; the dual transformations in V ∗ preserve the dual form

11



q∗ (ξ, τ) = τ 2− c2 |ξ|2 . Any Lorentz transformation preserves the volume form
dV = dxdt too. Therefore the variety of all source functions is invariant with
respect to this group. The forward propagator is uniquely define. Therefore it
is invariant with respect to the orthochronic Lorentz group L3↑, i.e. to group of
transformations A ∈ L3 that preserves the time direction. The functions q and
sgn t are invariant of the orthochronic Lorentz group and any other invariant
function (even a generalized function) is a function of these two. We see that
is the fact for the forward propagators (as well as for backward propagators).

Example 8. The function

Dc (x, t)
.
= − (2π)−4

∫

X∗

∫

R∗

exp (ıτ t+ ı (ξ, x)) dτdξ

τ 2 − ξ2 + εı

is also a fundamental solution for the wave operator ¤4. The integral must
be regularized at infinity by introducing a factor like exp (−ε′ξ2) ; it does not
depend on ε > 0 since the dominator has no zeros in V ∗ = X∗ × R∗. This
function is called causal propagator and plays fundamental role in the tech-
niques of Feynman diagrams ? It is invariant with respect to the complete
Lorentz group L3. The causal propagator vanishes in no open set, hence it is
not equal to a linear combination of the forward and backward propagators.
The causal propagator for the Klein-Gordon-Fock operator is defined in by the
same formula with the extra term m2 in the dominator.

3.7 Riesz groups

This construction provides an elegant and uniform method for explicit con-
struction of forward propagators for powers of the wave operator in arbitrary
space dimension.

Let V be a space of dimension n with the coordinates (x1, ..., xn); set q (x) =
x21 − x22 − ...− x2n. The set K

.
= {x1 ≥ 0, q (x) ≥ 0} is a proper convex cone in

V. Consider the family of distributions

qλ+ (φ) =

∫

K

qλ (x)φ (x) dx, φ ∈ D (V ) , λ ∈ C

This family is well-defined in the halfplane {Reλ > 0} and is analytic, i.e.
qλ+ (φ) is an analytic function of λ for any φ. The family has a meromorphic
continuation to whole plane C with poles at the points

λ = 0,−1,−2, ...; λ =
n

2
− 1,

n

2
− 2, ...

and after normalization

Zλ
.
=

q
λ−n/2
+ dx

π(n−2)/222λ−1Γ (λ) Γ (λ+ 1− n/2)
,
xλ−1+ dx

Γ (λ)
(3.9)
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becomes an entire function of λ with values in the space of tempered distri-
butions. We have always suppZλ ⊂ K, hence Zλ is an element of the algebra
AK of tempered distributions with support in the convex closed cone K. The
convolution is well-defined in this algebra; it is associative and commutative.
The following important formula is due to Marcel Riesz :

Zλ ∗ Zµ = Zλ+µ (3.10)

The points λ = 0,−1,−2, ... are poles of the numerator and denominator in
(9) and the value of Zλ at these points can be found as a ratio of residues:

Z0 = δ0dx, Z−k = ¤kZ0 (3.11)

where ¤ = ∂21 − ∂22 − ...− ∂2n is the differential operator dual to the quadratic
form q. In particular, the convolution φ 7→Z0 ∗ φ is the identity operator; this
together with (10) means that the family of convolution operators {Zλ∗} is a
commutative group, which is isomorphic to the additive group of C. It is called
the Riesz group. From (11) we see that

¤
kZk = Z−k ∗ Zk = Z0 = δ0dx

This means that Zk is a fundamental solution for the hyperbolic operator
¤

k (which is not strictly hyperbolic for k > 1). Moreover it is a forward
propagator, since suppZk ⊂ K.

If the dimension n is even, the point λ = k = n/2− 1 is again a pole of the
numerator and denominator in (9), as a consequence of which the support of
Zk is contained in the boundary ∂K. This fact is an expression of the strong
Huyghens principle: for even dimension the wave initiated by a local source
has back front, whereas the forward front exists for arbitrary dimension. This
is just the case for n = 4, k = 1.
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Chapter 4

The Cauchy problem

4.1 Definitions

Let a (x,D) be a linear differential operator of order m with smooth coefficients in the
space V n and W be an open set in V. Let t be a smooth function in W such that
dt 6= 0 (called time variable) and f, g be some functions in W. The Cauchy problem for
”time” variable t for the data f, g is to find a solution u to the equation

a (x,D) u = f (4.1)

in W that fulfils the initial condition

u− g = O (tm)

in a neighborhood of W0
.
= {x ∈ W, t (x) = 0} .

First, assume that the right-hand side f and g are smooth. Introduce the coordinates
x′ = (x1, ..., xn−1) (space variables) such that (x

′, t) is a coordinate system in V. Write
the equation in the form

a (x,D) u = α0∂
m
t u+ α1∂

m−1
t u+ ...+ αmu = f (4.2)

where αj, j = 0, 1, ...,m is a differential operator of order ≤ j which does not contain
time derivatives. In particular, α0 is a function. The initial condition can be written in
the form

u|t=0 = g0, ∂tu|t=0 = g1, ..., ∂
m−1
t u|t=0 = gm−1

where gj = ∂
j
t g|t=0, j = 0, ...,m− 1 are known functions in W0. Set t = 0 in (2) and find

α0∂
m
t u|t=0 =

(
f − α1∂

m−1
t u− ...− αmu

)
|t=0 = f |t=0 − α1gm−1 − ...− αmg0

from this equation we can find the function ∂mt u|W0, if α0|W0 6= 0. Take t-derivative of
both sides of (2) and apply the above arguments to determine ∂m+1

t u|W0 and so on.
Definition. The hypersurface W0 is called non-characteristic for the operator a at

a point x ∈ W0, if α0 (x) 6= 0. Note that α0 (x) = σm (x, dt (x)) , where σm|W × V ∗ is the
principal symbol of a and η ∈ V ∗, η (x) = t. An arbitrary smooth hypersurface H ⊂ V
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is non-characteristic at a point x, if σm (x, η) 6= 0, where η is the conormal vector to H
at x.
The necessary condition for solvability of the Cauchy for arbitrary data is that the

hypersurfaceW0 is everywhere non-characteristic. This condition is not sufficient. For el-
liptic operator a an arbitrary hypersurface is non-characteristic, but the Cauchy problem
can be solved only for a narrow class of initial functions g0, ..., gm−1.

Example 1. For the equation
∂2u

∂t∂x
= 0

the variable t as well as x is characteristic, n = 2; σ2 = τξ. dt = (0, 1) ;σ2 (0, 1) = 0.
Example 2. For the heat equation

∂tu−∆x′u = 0

the variable t is characteristic, but the space variables are not. u|t = 0 = u0.

Example 3. The Poisson equation ∆u = 0 is elliptic, but the Cauchy problem

u|W0 = g0, ∂tu|W0 = g1

has no solution in W , unless g0 and g1 are analytic functions. In fact, it has no solution
in the half-space W+, if g0, g1 are in L2 (W0), unless these functions satisfy a strong
consistency condition.

4.2 Cauchy problem for distributions

The non-characteristic Cauchy problem can be applied to generalized functions as well.
First, we write our space as the direct product V = X×R by means of coordinates x′ and
t. For arbitrary test densities ψ and ρ in X and R, respectively, we can take the product
φ (x′, t) = ψ (x′) ρ (t) . It is a test density in V. Let now u an arbitrary (generalized)
function in V , fix ψ and define the function in R by

uψ (ρ) = u (ψρ) =

∫
vψρ, vψ ∈ C

∞

Definition. The function u is called weakly smooth in t-variable (or t-smooth), if the
functional uψ coincides with a smooth function for arbitrary ψ ∈ D (X) .
Any smooth function is obviously weakly smooth in any variable. A weaker sufficient

condition can be done in terms of the wave front of u.
If u is weakly smooth in t, then ∂tu is also weakly smooth in t and the restriction

operator u 7→u|t=τ is well defined for arbitrary τ :

u|t=τ (ψ) = lim
k→∞

u (ψρk)

where ρk ∈ D (R) is an arbitrary sequence of densities that weakly tends to the delta-
distribution δτ . The limit exists, because of the assumption on u.
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Theorem 1 Suppose that the operator a with smooth coefficients is non-characteristic in

t. Any generalized function u that satisfies the equation a (x,D) u = 0 is weakly smooth
in t variable. The same is true for any solution of the equation a (x,D) u = f, where f

is an arbitrary weakly t-smooth function.

It follows that for any solution of the above equation the initial data ∂jtu|t=0 are well
defined, hence the initial conditions (2) is meaningful.
Now we formulate the generalized version of the Holmgren uniqueness theorem:

Theorem 2 Let a (x,D) be an operator with real analytic coefficients, H is a non-

characteristic hypersurface. There exists an open neighborhood W of H in V such that

any function that satisfies of a (x,D) u = 0 in W that fulfils zero initial conditions in H,

vanishes in W.

4.3 Hyperbolic Cauchy problem

Theorem 3 Suppose that the operator a with constant coefficients is t-hyperbolic. Then

for arbitrary generalized functions g0, ..., gm−1 in W0 = {t = 0} and arbitrary function
f ∈ D ′ (V ) that is weakly smooth in t, there exists a unique solution of the t-Cauchy
problem.

Proof. The uniqueness follows from the Holmgren theorem. Choose linear functions
x = (x1, ..., xn−1) such that (x, t) is a coordinate system.

Lemma 4 The forward propagator E for a possesses the properties

∂
j
tE|t=ε →

δ
j
m−1

σm (η)
δ0 (x) as ε↘ 0, j = 0, ...,m− 1 (4.3)
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Proof of Lemma. Apply the formula (2) of Ch.3

E (x, t) = (2π)−n lim
ε→0

Eρ,ε (x, t)

Eρ,ε (x, t) =

∫

X∗

∫ ∞

−∞

exp ((ıτ + ρ) t)

a (ıξ, ıτ + ρ)
dτ exp

(
ıξx− ε |ξ|2

)
dξ, ρ < ρη

We use here the notation V ∗ = X∗ × R and the corresponding coordinates (ξ, τ) . We
assume that m ≥ 2, therefore the interior integral converges without the auxiliary de-
creasing factor exp (−ετ 2) . We can write the interior integral as follows

−ı

∫

γ

exp (ζt) dζ

a (ıξ, ζ)

where γ = {Re ζ = ρ} . All the zeros of the dominator are to the left of γ. By Cauchy
Theorem we can replace γ by a big circle γ ′ that contains all the zeros, since the numerator
is bounded in the halfplane {Re ζ < ρ} . The integral over γ ′ is equal to the residue of the
form ω = a−1 (ıξ, ζ) exp (ζt) dζ at infinity times the factor (2πı)−1

. The residue tends to
the residue of the form a−1 (ıξ, ζ) dζ as t→ 0. The later is equal to zero since order of a
is greater 1. This implies (4) for j = 0. Taking the j-th derivative of the propagator, we
come to the form ζja−1 (ıξ, ζ) dζ. Its residue at infinity vanishes as far as j < m− 1. In
the case j = m−1 the residue at infinity is equal to α−1

0 , where α0 is as in (3). Therefore
the m− 1-th time derivative of the interior integral tends to 2πα−1

0 , hence

∂m−1
t Eρ,ε (x, t)→ 2πα−1

0

∫

X∗

exp (ıξx) dξ = (2π)n−1
α−1

0 δ0 (x)

Taking in account that α0 = am (η) , we complete the proof. ¡
Note that for any higher derivative ∂jtE the limit as (4) exists and can be found from

(4) and the equation a (D)E = 0 for t > 0.
Proof of Theorem. First we define a solution ũ of (1) by

ũ = E ∗ f

The convolution is well defined, since supp f ⊂ H+ and suppE ⊂ K, the cone K is
convex and proper. The distribution ũ is weakly smooth in t, hence the initial data of it
are well defined. Therefore we need now to solve the Cauchy problem for the equation

a (D) u = 0 (4.4)

with the initial conditions

u|t=0 = g0, ∂ηu|t=0 = g1, ..., ∂
m−1u|t=0 = gm−1 (4.5)

where gj = uj − ∂
j
t ũ|t=0, j = 0, ...,m− 1. Take first the convolution

e0
.
= α0

(
∂m−1
t E ∗ g0

)
(t, x) = α0

∫
∂m−1
t E (t, x− y) g0 (y) dy (4.6)

This is a solution of (5); according to Lemma and e0|t=0 = g0. The derivatives ∂
j
t e0|t=0

can be calculated by differentiating (7), since any time derivative of E has a limit as
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t→ 0. Therefore we can replace the unknown function u by u′
.
= u− e0. The function u

′

must satisfies the conditions like (6) with g0 = 0. Then we take the convolution

e1
.
= α0

(
∂m−2
t E ∗ g1

)

By Lemma we have e1|t=0 = 0 and ∂te1|t=0 = g1. Then we replace u′ by u
′′ = u′ − e1 and

so on. ¡

4.4 Solution of the Cauchy problem for wave equa-

tions

Applying the above Theorem to the wave equations with the velocity v, we get the
classical formulae:

Case n = 2. The D’Alembert formula

2vu (x, t) =

∫ t

0

∫ x+v(t−s)

x−v(t−s)

f (y, s) dyds

+

∫ x+vt

x−vt

g1 (y) dy + v [g0 (x+ vt) + g0 (x− vt)]

Case n = 3. The Poisson formula

2πvu (x, t) =

∫ t

0

∫

B(x,v(t−s))

f (y, s) dyds√
v2 (t− s)2 − |x− y|2

+

∫

B(x,vt)

g1 (y) dy√
v2t2 − |x− y|2

+ ∂t

∫

B(x,vt)

g0 (y) dy√
v2t2 − |x− y|2

Case n = 4. The Kirchhof formula

4πv2u (x, t) =

∫

B(x,vt)

f (y, t− v−1 |x− y|) dy

|x− y|

+

∫

S(x,vt)

g1 (y) dS + ∂t

(
t−1

∫

S(x,vt)

g0 (y) dS

)

Here B (x, r) denotes the ball with center x, radius r; S (x, r) is the boundary of this ball.

4.5 Domain of dependence

Assume for simplicity that the right side vanishes: f = 0. The solution in a point (x, t)
does not depend on the initial data out of the ball B (x, vt) , i.e. a wave that is initiated
by the initial functions g0 and g1 is propagated with the finite velocity v. This is called
the general Huygens principle. In the case n = 3 the wave propagating from a compact
source has back front (see the picture). This is called the special Huygens principle
(Minor premiss).
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The special Huygens principle holds for the wave equation with constant velocity in
the space of arbitrary even dimension n ≥ 4.
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Chapter 5

Helmholtz equation and

scattering

5.1 Time-harmonic waves

Let a (x,Dx, Dt) be a linear differential operator of order m with smooth coeffi-
cients in the space-time V = Xn × R with coordinates (x, t) , whose coefficients
do not depend on the time variable t. Consider the equation

a (x,Dx, Dt)U (x, t) = F (x, t) (5.1)

A function of the form F (x, t) = exp (ıωt) f (x) is called time-harmonic of fre-
quency ω, the function f is called the amplitude. If a solution is also time-
harmonic function U (x, t) = exp (ıωt)u (x), we obtain the time-independent
equation for the amplitudes

a (x,Dx, ıω)u (x) = f (x)

Example 1. For the Laplace operator in space-time a (Dx, Dt) = D2
t + ∆X we

have
a (Dx, ıω) = −ω2 +∆

This is a negative operator. Therefore any solutions of the equation (ω2 −∆)u =
0 in X of finite energy i.e. u ∈ L2 (X) decreases fast at infinity.
Example 2. If a = D2

t − v2 (x)∆ is the wave operator and the velocity v does
not depend on time, then

−a (x,Dx, ıω) = ω2 + v2 (x)∆

is the Helmholtz operator. The Helmholtz equation with f = 0 is usually written
in the form (

∆+ n2ω2
)
u = 0

where the function n
.
= v−1 is called the refraction coefficient. The Helmholtz

operator is not definite; there are many oscillating bounded solutions of the form
u (x) = exp (ıξx) , where σ

.
= n2ω2− ξ2 = 0, ξ ∈ Rn. This solution is unbounded,

when ξ ∈ Cn\Rn.
Find a fundamental solution for the time-independent equation:
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Proposition 1 Let E (x, t) be a fundamental solution for (1) that can be repre-
sented by means of the Fourier integral

Ey (x, t) =
1

2π

∫
exp (ıωt) Êy (x, ω) dω (5.2)

for a tempered (Schwartz) distribution Ê. Then

a (x,Dx, ıω) Êy (x, ω) = δy (x) (5.3)

i.e. Ê (x, ω) is a source function for the operator a (x,Dx, ıω) for any ω such that
Ê is weakly ω-smooth.

Proof. We have

δy (x, t) = a (x,Dx, Dt)Ey (x, t) =
1

2π

∫
exp (ıωt) a (x,Dx, ıω) Êy (X,ω) dω

At the other hand

δ0 (t) =
1

2π

∫
exp (ıωt) dω, δy (x, t) = δ (t) δy (x) =

1

2π

∫
exp (ıωt) dωδy (x)

Comparing, we get

∫
exp (ıωt) a (x,Dx, ıω) Ê (x, ω) dω =

∫
exp (ıωt) dωδ (x)

which implies (3) in the sense of generalized functions in V ×R∗. If Êy (x, ω) is ω-
smooth for some ω0 we can consider the restriction of both sides to the hyperplane
ω = ω0. Then we obtain (3).

5.2 Source functions for Helmholtz equation

Apply this method to the wave operator with a constant velocity v. Take the
forward propagator E. It is supported in {t ≥ n |x|} and bounded as t → ∞.
Therefore it can be represented by means of the Fourier integral (2) for the
tempered distribution

Ê (x, ω) =

∫ ∞

n|x|

E (x, t) exp (−ıωt) dt (5.4)

The corresponding source function for the Helmholtz operator is equal Fn (x, ω)
.
=

−v2Ên+1 (x,−ω) . Calculate it:
Case n = 1. We have E2 (x, t) = (2v)

−1 θ (vt− |x|) and

F1 (x, ω) = −
∫ ∞

n|x|

exp (ıωt) dt =
−ı
2ωn

exp (ıωn |x|)
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Case n = 3. We have

F3 (x, ω) = −
1

4πn |x|

∫ ∞

0

δ (|x| − vt) exp (ıωt) dt = −exp (ıωn |x|)
4π |x|

Case n = 2. We have

F2 (x, ω) =
1

2π

∫ ∞

n|x|

exp (ıωt)√
t2 − n2 |x|2

dt

This integral is not an elementary function; it is equal to c0H
(1)
0 (ωn |x|) , where

H
(1)
0 is a Hankel function. The equation F2 (x) = − (2π)−1 ln |x|+R (x, ω) , where

R is a C1-function in a neighbourhood of the origin.

Proposition 2 The function Fn (x, ω) is the boundary value at the ray {ω > 0}
of a function Fn (x, ζ) that is holomorphic in the half-plane {ζ = ω + ıτ, τ > 0} .

Proof. The integral (4) has holomorphic continuation at the opposite half-
plane.

5.3 Radiation condition

Let K be a compact set in X3 with smooth boundary and connected complement
X\K. Consider the exterior boundary problem

(
∆+ k2

)
u (x) = 0, x ∈ X\K, k = ωn (5.5)

u (x) = f (x) , x ∈ ∂K (Dirichlet condition)

where f is a function on the boundary. Any solution is a real analytic function
u = u (x) since the Helmholtz operator is of elliptic type. A solution is not
unique, unless an additional condition is imposed. The radiation (Sommerfeld)
condition is as follows

ur − ıku = o
(
r−1

)
as r = |x| → ∞; ur = ∂u/∂r (5.6)

Theorem 3 If k > 0 and f = 0, there is only trivial solution u = 0 to the
exterior problem satisfying the radiation condition.

Proof. Let S (R) denote the sphere {|x| = R} in X.We have S (R) ⊂ X\K
for large R ≥ R0. Write for an arbitrary solution u :
∫

S(R)

|ur − ıku|2 dS =
∫

S(R)

(
|ur|2 + k2 |u|2

)
dS − ık

∫

S(R)

(uru− uur) dS (5.7)

By (6) the left side tends to zero as R → ∞. At the other hand, by Green’s
formula ∫

S(R)

(uru− uur) dS =

∫

∂K

(∂νuu− u∂νu) dS
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where ∂ν stands for the normal derivative on ∂K. The right side vanishes, since
u|∂K = 0, hence (7) implies

∫

S(R)

|u|2 dS → 0, R→∞ (5.8)

Lemma 4 [Rellich] For k > 0 any solution u of the Helmholtz equation in X\K
satisfying (8) equals identically zero.

Proof. Consider the integral

U (r)
.
=

∫

S2

u (rs)φ (s) ds

where φ is a continuous function and ds is the Euclidean area density in the unit
sphere S2. We prove that U (r) = 0 for r > R0 and for each eigenfunction φ of
the spherical Laplace operator ∆S:

∆Sφ = λφ

R (λ)
.
= (∆S − λId)−1 . In view of the formula

∆ = ∂2
r + 2r

−1∂r + r−2∆S

it follows that U (r) satisfies the ordinary equation

Urr + 2r
−1Ur +

(
k2 + λr−2

)
U = 0, r > R0

This differential equation has two solutions of the form

U± (r) = C±r
−1 exp (±ıkr) + o

(
r−1

)
, r →∞

Clearly, no nontrivial linear combination of U+ and U− is o (r
−1) . A the other

hand the hypothesis implies that U (r) = o (r−1) ; we deduce that U = 0. The
operator ∆S is self-adjoint non-positive and the resolvent is compact. The set of
eigenfunctions is a complete system in L2 (S

2) by Hilbert’s theorem. This implies
that u = 0 for |x| > R0. The function u is real analytic, consequently it vanishes
everywhere in X\K. ¤
Now we state existence of a solution of the problem (5).

Theorem 5 [Kirchhof-Helmholtz] If the function f is sufficiently smooth, then
there exists a solution of (5) satisfying the radiation condition. This solution is
of the form

u (x) =

∫

∂K

[
f (y) ∂ν

exp (ık |x− y|)
|x− y| − g (y)

exp (ık |x− y|)
|x− y|

]
dSy, g = ∂νu

(5.9)
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Sketch of a proof. First we replace the Helmholtz operator by ∆ +
(k + ıε)2 . The function F3 (x, k + εı)

.
= − (4π |x|)−1 exp ((ık − ε) |x|) is a funda-

mental solution which coincides with F3 (x, k) for ε = 0. The symbol equals
σε = − |ξ|2+(k + εı)2 and |σε| ≥ ε2 > 0. Therefore there exists a unique function
uε ∈ L2 (X\K) that satisfies the conditions

(
∆+ (k + ıε)2

)
uε = 0 in X\K

uε|∂K = f

(This fact follows from standard estimates for solutions of a elliptic boundary
value problem.) Moreover the sequence uε has a limit u in X\K and on ∂K as
ε → 0 and ∂νuε → ∂νu. This is called limiting absorption principle. By Green’s
formula

uε (x) =

∫

∂K

−
∫

S(R)

[
f (y) ∂ν

exp ((ık − ε) |x− y|)
|x− y| − g (y)

exp ((ık − ε) |x− y|)
|x− y|

]
dSy

for x ∈ B (R) \K, where B (R) is the ball of radius R. Take R→∞; the integral
over S (R) tends to zero, hence it can be omitted in this formula. Passing to the
limit as ε → 0, we get (9). It is easy to see that right side of (9) satisfies the
radiation condition. Indeed, we have for any y ∈ ∂K the kernel in the second
term (simple layer potential) fulfils this condition, since

∂r
exp (ık |x− y|)

|x− y| =

(
x

|x| ,∇
)
exp (ık |x− y|)

|x− y|

=
(x, x− y)

|x| |x− y|
ık exp (ık |x− y|)

|x− y| +O
(
|x|−2)

=
ık exp (ık |x− y|)

|x− y| +O
(
|x|−2)

The kernel in the first term (double-layer) equals

∂ν
exp ((ık − ε) |x− y|)

|x− y| =
(ν, x− y)

|x− y|
exp (ık |x− y|)

|x− y| +O
(
|x|−2)

and fulfils this condition too. ¤
The equation (9) is called the Kirchhof representation. The functions f, g are

not arbitrary, in fact, g = Λf, where Λ is a first order pseudodifferential operator
on the boundary.

Exercise. Check the formula ∆S = (sin θ)
−1 ∂θ sin θ∂θ + sin

2 θ∂2
φ.

Problem. Show that the operator ∆S is self-adjoint non-positive and the
resolvent is compact.

Remark. The radiation condition is a method to single out a unique solution
of the exterior problem. The real part of this solution is physically relevant, in
particular,

<F3 =
cos (k |x|)
4π |x|

is also a source function. Therefore we can replace ı to −ı simultaneously in (4),
(6) and (9).
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5.4 Scattering on an obstacle

The plane wave ui (x) = exp (ık (θ, x)) is a solution of the Helmholtz equation
in the free space X for arbitrary (incident) unit vector θ. Let K be a compact
set in X, called obstacle. It impose a boundary value condition to any solution.
There are several types of such conditions. We suppose that the obstacle is
impenetrable and the field u satisfies the Dirichlet condition u|∂K = 0. In this
case the boundary ∂K is called also soft or pressure release surface in the context
of the acoustic wave theory. In the case of Neumann condition ∂νu|∂K = 0 it is
called hard surface, the third condition appears for impedance surface. The total
field u = ui + us is the sum of the incident plane wave and the scattered field
us (θ;x) in X\K such that u satisfies the Dirichlet condition

us|∂K = − exp (ık (θ, x)) |∂K

and us fulfils the radiation condition. According to the above theorem the scat-
tered field exists and unique. Moreover, by (9) it can be represented in the form

us (θ;x) =
exp (ık |x|)
4π |x| A

(
θ;

x

|x|

)
+O

(
1

|x|2
)
as |x| → ∞ (5.10)

for a function A defined on the product S2 × S2. This function is called the
scattering amplitude.

The inverse obstacle problem: to determine the obstacle K from knowl-
edge of the scattering amplitude (or from a partial knowledge).
Application: radar imaging.
Another kind of obstacle without sharp boundary surface is a non-homogeneity

in the medium, i.e. a variable wave velocity and hence variable refraction coeffi-
cient n = n (x) . Suppose that the function n is smooth and is equal to a constant
n0 in X\K. Then again, for arbitrary unit vector θ there exists a field u = ui+us
satisfying the Helmholtz equation

(
∆+ ω2n2 (x)

)
u = 0

where k = ωn0 and the scattered field us is of the form (9)-(10).
The inverse acoustic problem: to determine the function n from knowl-

edge of a.
Application: ultrasound tomography.
Uniqueness theorems are proved. There is no analytic solution. For the inverse

obstacle problem there are various reconstruction algorithms.

5.5 Interferation and diffraction

Take Helmholtz-Kirchhof formula

u (x) =

∫

∂K

[
f (y) ∂ν

exp (ık |x− y|)
|x− y| + g (y)

exp (ık |x− y|)
|x− y|

]
dSy = v+w, f = u, g = −∂νu
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Suppose that ∂K is the half-plane {y1 ≥ 0, y2 ∈ R} and study the behaviour of
the wave field near the light-shadow plane L

.
= {x1 = 0} . Consider the second

integral

w (x) =

∫ ∞

−∞

∫ ∞

0

g (y)
exp (ık |x− y|)

|x− y| dy1dy2

We observe the amplitude |w|2 of the wave field w on the screen S = {x3 = r} .
Suppose that g is a C1-function decreasing at infinity. We can write g (y) =
g0 (y) + y1h (y) for a continuous functions g0 and h such that g0 does not depend
on y1 for o ≤ y1 ≤ 1

w (x) =

∫ ∫ ∞

0

g0
exp (ık |x− y|)

|x− y| dy1dy2 +W (x)

whereW has a smoother singularity at L.We have |x− y| = 1+1/2
(
(x1 − y1)

2 + (x2 − y2)
2)+

O
(
(x− y)4

)
. The above integral can be aproximated by the product

∫ ∞

−∞

exp
(
ık/2 (y2 − x2)

2) g (0, y2) dy2

∫ ∞

0

exp
(
ık/2 (y1 − x1)

2) dy1

where
∫∞
0
exp

(
ık/2 (y1 − x1)

2) dy1 is called the Fresnel integral. The first factor
is a smooth function of x2 according to the stationary phase formula:

∫ ∞

−∞

exp
(
ık/2 (y2 − x2)

2) g0 (y2) dy2 =

√
2πı

k
g0 (x2) +O

(
1

k
√
k

)

A similar representation is valid for the first term v, hence the amplitude |u| =
|v + w| oscilates near the light-shadow border: the Fresnel diffraction:

Huygens-Fresnel Principle: the wave field generated by a hole in a screen
can be obtained by superposition of elementary fields with the source points in
the hole
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Chapter 6

Geometry of waves

6.1 Wave fronts

The wave equation in a non-homogeneous non-isotropical time independent medium in
V = X × R is

a (x,Dx, Dt) u = f, where (6.1)

a (x,Dx, Dt)
.
= ∂2t −

∑

ij

gij (x) ∂i∂j +
∑

bi (x) ∂i + c (x)

where ∂i = ∂/∂xi, i = 1, 2, 3, the functions gij, bi, c are smooth in a domain D ⊂ X and
fulfil the condition

gij (x) ξiξj ≥ v20 (x) |ξ|2 , |ξ|2
.
=
∑

ξ2i

for a positive function v0. The medium is called isotropic if this is an equation for a
function v0 which is called the local velocity of the wave. The principal symbol of the
equation is

σ2 (x; ξ, τ) = −τ 2 + gij (x) ξiξj

A wave front is a hypersurface W ⊂ D that is equal to the singularity set of a solution
u of (1) for some f ∈ C∞ (D) , i.e. W is the smallest closed subset of D such that
u ∈ C∞ (D\W ) . Take in account the following statement (Ch.4):

Theorem 1 Suppose that the operator a with smooth coefficients is non-characteristic in
y. Any generalized function u that satisfies the equation a (x,D) u = 0 is weakly smooth
in y variable. The same is true for any solution of the equation a (x,D) u = f, where f
is an arbitrary weakly y-smooth.

It follows that any wave front W is characteristic at each point, i.e. satisfies the
condition σ2 (x; ξ, τ) = 0 for any point (x, t) ∈ W and conormal vector (ξ, τ) to W at
this point. If W is locally given by the equation φ (x, t) = 0, then the covector (∇φ, ∂tφ)
is conormal and the function φ has to fulfil the nonlinear equation in W :

σ2 (x;∇φ, ∂tφ) = gij (x) ∂iφ∂jφ− (∂tφ)
2 = 0

This is called the eikonal equation, any function satisfying this equation such that ∂tφ 6= 0
is called an eikonal function. In particular, if φ (x, t) = t+ϕ (x) , the eikonal equation is
gij (x) ∂iϕ∂jϕ = 1. For isotropical case |∇ϕ| = n (x) .
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6.2 Hamilton-Jacobi theory

Consider the first order equation in space-time V = X × R of dimension n

h (x, t;∇φ) = 0 (6.2)

where h (x, t; η) is a function that is homogeneous in η = (ξ, τ) .Write the initial condition
as follows φ (x, t0) = φ0 (x) .

To solve this equation we consider the system of equations in the phase space V ×V ∗

:
h (x, t; η) |Λ = 0, α|Λ = 0 (6.3)

where α = ξdx+τdt is the contact 1-form, Λ is unknown n-dimensional conical submani-
fold in the phase space. (A submanifold in V ×V ∗ is called conical, if it is invariant under
the mapping (x, η) 7→(x, λη) for any λ > 0. The unknown manifold Λ is Lagrangian, since
of the second equation. Suppose that the form dt does not vanishes in Λ and the following
initial condition is satisfied:

Λ|t=t0 = Λ0, where Λ0 ⊂ X × V ∗

is a submanifold of dimension n− 1 such that h|Λ0 = 0, α|Λ0 = 0.

Proposition 2 1 Let Λ be a solution of (3) such that the projection p : Λ → X is of
rank n− 1 at a point (x0, t0, η0) . Then there exists a solution of (2) in a neighborhood of
(x0, t0) such that dφ (x0, t0) = η0 and φ (x, t) = 0 in W.

Proof. We can assume that τ 6= 0 in Λ. The intersection Λ1 = Λ∩{τ = 1} is a manifold
of dimension n− 1 and the projection p : Λ1 → X is a diffeomorphism in a neighborhood
Λ0 of the point (x0, t0, η0/τ0) ∈ Λ1. Therefore we have ξj = ξj (x) in Λ0 for some smooth
functions ξj, j = 1, ..., n. We have ξdx + dt = 0 in Λ1, hence dξ ∧ dx = 0. It follows that
there exists a function ϕ = ϕ (x) in a neighborhood of the point (x0, t0) ∈ p (Λ0) such
that dϕ = ξjdx

j|Λ0:
ϕ (x) = −t0 +

∫

ζ

ξj (x) dx
j

where ζ is an arbitrary 1-chain that joins x0 with x (i.e. ∂ζ = [x] − [x0]). Therefore
α = d (ϕ (x) + t) . This form vanishes in Λ0, hence t + ϕ (x) = const in Λ and in the
image of Λ in V. We have t0 + ϕ (x0) = 0, hence t + ϕ (x) = 0 in Λ0. Then the first
equation (3) implies (2). Now we solve (3)

h (x, t; η) |Λ = 0, α|Λ = 0 (6.4)

Reminder: The contraction of a 2-form β by means of a field w is the 1-form w ∨ β such
that w ∨ β (v) = β (w, v) for arbitrary v.
The Hamiltonian tangent field v is uniquely defined by the equation

v ∨ dα = −dh

Since dα = dξ ∧ dx, this is equivalent to

v = (hξ, hτ ,−hx,−ht)
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which is the standard form of the Hamiltonian field. We have v (h) = 0. Assume that
hτ 6= 0 and consider the union Λ ⊂ V ×V ∗ of all trajectories of the Hamiltonian field that
start in Λ0 this is a manifold and dt (v) = hτ 6= 0. We have dh = 0 in Λ, since v (h) = 0
and by the assumption h|Λ0 = 0. Show that the Lie derivative of α = ξdx+ τdt along v
vanishes: Lv (α) = 0. Really, we have

Lv (α) = d (v ∨ α) + v ∨ dα = d (ξhξ + τhτ )− d (dh) = d (ξhξ + τhτ ) = mdh = 0

We have ξhξ + τhτ = mh, where m is the degree of homogeneity of h. Therefore the right
side equals mdh and vanishes too. We have α|Λ0 = 0 by the assumption, hence α|Λ = 0.
¤

Write the Hamiltonian system in coordinates

d

ds
(x, t; ξ, τ) = v (x, t; ξ, τ) , i.e.

dx

ds
= hξ,

dt

ds
= hτ ;

dξ

ds
= −hx,

dτ

ds
= −ht (6.5)

where hξ = ∇ξh and so on. A trajectory of this system, for which h = 0 is called also
the (zero) bicharacteristic strip; the projection of the strip to V is called a ray.

The covector η = (ξ, τ) is always orthogonal to the tangent dx/ds of the ray, since

ξ
dx

ds
+ τ

dt

ds
= ξhξ (x; ξ, τ) + τhτ (x; ξ, τ) = ηhη (x; η) = mh (x; η) = 0

If the Hamiltonian function does not depend on time, we have dτ/ds = 0.
Construction of wave fronts. Take a wave front W0 at the time t = t0 and

consider all the trajectories of the Hamiltonian system that start at a point (x, t0; ξ, 1) ,
where x ∈ W0, ξ is a covector that vanishes in Tx (W0) and fulfils the eikonal equation,
i.e. h (x, t0; ξ, 1) = 0. The union of these trajectories is just the front W in the domain
{t > 0} .

The condition p : Λ → X is of maximal rank may be violated somewhere. Then the
wave front get singularity and the corresponding solution has a caustic.

Proposition 3 2 If a characteristic surface W is tangent to another characteristic sur-
face W ′ at a point p, then they are tangent along a ray γ ⊂ W ∩W ′ that contains p.

Proof. Let η = (ξ, 1) the normal covector at p to both surfaces. According to the
above construction the front W is the projection of a conic Lagrange manifold Λ, which
is a union of trajectories of (5) and W is the union of rays. The point (p, η) belongs to
Λ, since the form ξdx + dt vanishes in T (W ) . Let γ be the ray through p and Γ be the
corresponding bicharacteristic strip through (p, η) . It is contained in Λ since any solution
of (5) is defined uniquely by initial data. Therefore γ ⊂ W and similarly γ ⊂ W ′. ¤

6.3 Geometry of rays

If h does not depend on x and t, the trajectories are straight lines. One more case when
the rays can be explicitly written is the following

Proposition 4 If the velocity v is a linear function in X, the rays in the half-space
{v > 0} are circles with centers in the plane {v = 0} .

Problem. To check this fact.
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6.4 Legendre transformation and geometric duality

Definition. Let f : X → R be a continuous function; the function g defined in X∗ by

g (ξ)
.
= sup

x

ξx− f (x)

is called Legendre transformation of f. If f is convex, g is defined in a convex subset
of the dual space and is also convex. If g is defined everywhere in X∗, the Legendre
transformation of g coincides with f, provided f is convex. This means that the graph
of f is the envelope of hyperplanes t = ξx− g (ξ) , ξ ∈ X∗.

If f ∈ C1 (X) an arbitrary function, the Legendre transformation is defined as follows

g (ξ) = ξx− f (x) as ξ = ∇f (x)

If f ∈ C2 (X) and det∇2f 6= 0 the equation ∇f (x) = ξ can be solved, at least, locally
and the Legendre transform is defined as a multivalued function.

Example. For a non-singular quadratic form q (x) = qijx
ixj/2 the Legendre trans-

form is again a quadratic form, namely, q̃ (ξ) = qijξiξj/2, where {qij} is the inverse
matrix to {qij} . Indeed, the system ξi = ∂iq (x) = qijx

j is solved by xi = qijξj. Then the
Legendre transform equals

ξiq
ijξj − qijq

ikqjlξkξl/2 = ξiq
ijξj/2 = q̃ (ξ)

Definition. Let K be a compact set in X. The function

p∗K (ξ) = max
K

ξx

is called Minkowski functional of K. If K is convex and simmetric with respect to the
origin, the functional p∗K is a norm in X∗ and the Minkowski functional of the unit ball
{p∗K (ξ) ≤ 1} is equal to the norm pK in X generated by K.

Problem. Show that the Legendre transform of the function (pK)
2 /2 is equal to

(p∗K)
2 /2, provided K is convex.
Definition. Let Y be a smooth conic hypersurface in X (i.e. Y is smooth in X\ {0}).

The set Y ∗ of conormal vectors to Y \ {0} is a cone in X∗. It is called the dual conic
surface. If Y is strictly convex, i.e. the intersection H ∩Y is strictly convex for any affine
hypersurface in X\ {0} , then Y ∗ is smooth strictly convex hypersurface too.

Exercise. To check that, if Γ is the interior of the convex hypersurface Y, then the
dual cone Γ∗ as in Chapter 3 (MP3) is the interior of the Y ∗.

Problem. Let f be a smooth homogeneous function in V of degree d > 1 such
that ∇f does not vanish in Y

.
= {f = 0} . Show that the Legendre transform g is a

homogeneous function of degree d/ (d− 1) that vanishes in the dual cone Y ∗.

6.5 Fermát principle

We have σ2 (x; ξ, τ) = q (x; ξ)− τ 2, where q is positive quadratic form of ξ. The Legendre
transform of q/2 form with respect to ξ is the quadratic form q̃ (x; y) /2, where

q̃ (x; y) = gij (x) y
iyj
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Let γ be a smooth curve in the Euclidean space X given by the equation x = x (r) , a ≤
r ≤ b; the integral

T (γ) =

∫ b

a

√

q̃ (x (r) , x′ (r))dr

is called the optical length of the curve γ (or the action). It is equal to the time of a
motion along γ with the velocity

√

q̃ (x (r) , x′ (r)) (v = n−1 in the isotropical case).

Proposition 5 3 Each ray of the system (5) for the Hamiltonian function h = σ2/2 is
an extremal of the optical length integral T (γ) .

Proof. We compare the Euler-Lagrange equation

d

dr

∂F

∂x′
− ∂F

∂x
= 0 (6.6)

for F =
√

q̃ (x, x′) with the system (5). Suppose for simplicity that the medium is

isotropic, i.e.
√

q̃ (x, x′) = n (x) |x′| , h (x; ξ, τ) =
(

v2 (x) |ξ|2 − τ 2
)

/2. Set

ξ =
∂F

∂x′
= n (x)

x′

|x′| ,
d

ds
=

1

n |x′|
d

dr

The Euler-Lagrange equation turns to

dξ

ds
=

1

n |x′|
d

dr

∂F

∂x′
=

1

n |x′|
∂F

dx
=
∇n
n |x′| = −∇v

2 |ξ|2 /2 = −h′x

since |ξ| = n, whereas
dx

ds
=

x′

n |x′| = v2ξ = h′ξ

These equations together with τ = 1, dt/ds = 1 give (5). ¤
Exercise. To generalize the proof for the case of anisotropic medium.

Corollary 6 Snell’s law of refraction: n1 sinϕ1 = n2 sinϕ2.

Problem. To verify the Snell’s law by means of the Fermát principle.

Corollary 7 Rays of the equation (1) are geodesics of the metric g = gijdx
idxj and vice

versa.

6.6 The major Huygens principle

The function
σ2 (x; η) = gij (x) ξiξj − τ 2, η = (ξ, τ)

is the principal symbol of the equation (1). Fix x and consider the coneK∗
x

.
= {σ2 (x; η) = 0}

in V ∗. It is called the cone of normals at x. The dual cone Kx in V ; it is called the cone
of velocities at x. It is given by the equation h̃ (x, y, y0) = 0, where

h̃ (x; y, y0) =
(

gij (x) y
iyj − y02

)

/2

5



is the Legendre transform of h
.
= σ2/2 and (y, y0) stands for a tangent vector to V at

(x, t) .
The major Huygens principle. Let W0 be a smooth wave front at a moment

t = t0. For a small time interval ∆t and an arbitrary point x ∈W0 take the ellipsoid

Sx
.
=
{

h̃ (x; ∆x,∆t) = 0
}

(6.7)

Let W̃ be the envelope of these ellipsoids. The claim: the wave front W∆t at the moment
t = t0 +∆t coincides with a component of W̃ up to O (∆t2) .

This means, in fact, that the distance between the hypersurfaces is O (∆t2) in the
standard C1-metric.

Proof. An arbitrary point x ∈ W0 is the end of a ray γ given by an equation
x = x (t) , 0 ≤ t ≤ t0. According to (5), the extension of this ray for the time interval
[t0, t0 +∆t] is approximated by the line interval [x, x̃] , where x̃ = x + ∆t x′, x′ =
hξ (x; ξ, 1) up to a term O (∆t2) and the point (x; ξ, 1) belongs to the bicharacrestic strip
that projects to γ. Check that the point x̃ belongs to Sx; we have ∆t−2h̃ (x,∆t x′,∆t) =
h̃ (x, x′, 1) , since h̃ is a homogeneous quadratic function. By the involutivity of the
Legendre transform, h̃ is the Legendre transform of h, i.e.

h̃ (x, x′, 1) = ξ̃x′ + τ̃ − h
(

x; ξ̃, τ̃
)

where the point
(

ξ̃, τ̃
)

satisfies hξ

(

x; ξ̃, τ̃
)

= x′, hτ (x; ξ, τ) = 1. We find τ̃ = 1 form the

second equation and ξ̃ = ξ from the first equation. Therefore

h̃ (x, x′, 1) = ξx′ + 1− h (x; ξ, 1) = ξhξ (x; ξ, 1) + hτ (x; ξ, 1)− h (x; ξ, 1) = h (x; ξ, 1) = 0

since h is homogeneous of degree 2. Therefore the point x̃ ∈ Sx is close to the front W∆t.
Take another point y = x+∆x ∈ Sx; consider the piecewise curve γy = γ ∪ ly where

ly denotes the interval [x, x+∆x] . The optical length of γy is equal the sum of optical
lengths of the pieces, i.e. T (γy) = t0 +∆t = t. It is the same as for the front W∆t. The
point x+∆x belongs to a ray γ ′ that is close to γ. The time coordinate of this point in γ ′

is less that t+∆t since of the Fermát principle. Therefore this point is behind the front
W∆t. This completes the proof. ¤

6.7 Geometrical optics

This is the ray method (Debay’s method) and similar methods for construction of high
frequency approximations to solutions of the wave equation:

auω = O
(

ω−q
)

where a is a wave operator (1) or a similar operator. One looks for an approximate
solution of the form (WKB-form)

uω(x, t) = exp(ıω(ϕ(x) + t))(a0(x) + ω−1a1(x) + ...+ ω−kak(x)) = exp (ıωt)U (x, ω)
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where the time frequency ω is a big parameter. Then the function

U(x, ω) = exp(ıω(ϕ(x)))(a0(x) + (ıω)−1 a1(x) + ...+ (ıω)−k ak(x)) (6.8)

is an approximate solution of the Helmholtz equation
(

ω2 + gij∂i∂j + bj∂j + c
)

U (x, ω) = O
(

ω−k
)

The phase function ϕ satisfies the eikonal equation 1− gij∂iϕ∂jϕ = 0 and the amplitude
functions a0, a1, ..., ak fulfil the recurrent differential equations, called transport equations

2gij∂iϕ∂ja0 +
(

∂ig
ij∂j (ϕ) + bj∂jϕ

)

a0 = 0 :Ta0 = 0 (6.9)

2gij∂iϕ∂ja1 +
(

∂ig
ij∂jϕ+ bj∂jϕ

)

a1 = −
(

∂ig
ij∂j + bj∂j + c

)

a0

...

Tak = Lk (a0, ..., ak−1)

where the operator T = 2gij∂iϕ∂j + (∂ig
ij∂j (ϕ) + bj∂jϕ) acts along geodesic curves of

the metric g. The principal term of (8) is called the approximation of geometrical optics.
A caustic is an obstruction of the ray method.

6.8 Caustics

Take the manifold Λ in the phase space that is solution of the system (3)

h (x, t; η) |Λ = 0, α|Λ = 0

If dimΛ = n = dimV, it is called Lagrange manifold. Consider the projection p : Λ→ V ;
the image W = p (Λ) is called wave front. A point (x, t) ∈ W is regular, if (x, t) =
p (λ) , λ ∈ Λ and rank of p in λ is equal n − 1 for any λ. The set of singular points is
closed; its projection to X called the caustic of Λ.

6.9 Geometrical conservation law

We have found the conservation law for the global energy of a field u satisfying the
selfadjoint wave equation (MP2) by means of

− ∂

∂t

〈

∂2u

∂t2
, u

〉

= − ∂

∂t

∑

〈

∂

∂xi

(

v2
∂u

∂xi

)

, u

〉

This identity can be written in the form

div Ix,t = 0, where Ix,t
.
=
(

v2 (∇xuut − ut∇u) , utut

)

The space-time field Ix,t is interpreted as the energy current. For a time-harmonic solution
u (x, t) = exp (ıωt)U (x, ω) the last component drops out and ut = ıωu. Therefore the
energy current is represented by the field Ix = v2 (∇xuut − ut∇u) . For the arbitrary
selfadjoint wave operator

(

∂2t − ∂ig
ij∂j − c

)

u = 0

7



the energy current is

I i =
ω

2
√
−1

gij
(

∂jUU − U∂jU
)

, i = 1, 2, 3

Substitute the WKB-development for (8) and take in account that the phase and ampli-
tude functions are real:

I i = ω2gij∂jϕa0 +O (ω)

The vector gij∂jϕ = hξi
(x,∇ϕ) = hξi

(x, ξ) = dxi/ds is equal to the tangent to the ray
through a point x ∈ X. It follows

Corollary 8 The energy flows along the rays in the approximation of geometrical optics.

This fact can be explained in a different way. Consider the transport equation for the
main term of the amplitude

Ta0
.
= 2gij∂iϕ∂ja0 + ∂ig

ij∂j (ϕ) a0 = 0

and write it in the form
2da0/ds+ ∂i

(

vi
)

a0 = 0 (6.10)

where ∂iv
i = div v (s) , and vi

.
= hξi

= gij∂jϕ is the X-component of Hamiltonian field
that generates the geodesic flow (5). We have div v (s) = (V (s))−1 dV (s) /dswhere V (s)
is the image of the volume element dx in X. Indeed, we have

Lv (dx) = d (v ∨ dx) = div (v) dx

Therefore (10) is equavalent to
d

ds

(

a0
√
dx
)

= 0

i.e. the halfdensity a0
√
dx is preserved by the geodesic flow. The square of this haldehsity

is the energy density
∣

∣

∣
a0
√
dx
∣

∣

∣

2

= |a0|2 dx of the wave field.

Corollary 9 The energy density is preserved by the geodesic flow.

Another conclusion is: a solution of the Helmholtz equation can be considered a half-
density, whose square is the energy density. Also the halfdensity a0

√
dx ∧ dt is preserved

by this flow since dt is constant, since vt = ht = 0. Therefore a solution of the wave
equation is a halfdensity in space-time.
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Chapter 7

The method of Fourier integrals

7.1 Elements of simplectic geometry

Cotangent bundle. Let M be a manifold. Consider the set T ∗(M) = ∪MT
∗
x (M)

together with the mapping p : T ∗(M) → M that maps the fibre T ∗x (M) to the point
x. It maps an arbitrary element ω ∈ T ∗x (M) to the point x. The pair T ∗(M), p) is
called cotangent bundle of the manifold M . The bundle possesses a smooth atlas: for an
arbitrary chart (U, ϕ) in M one takes the set T ∗(U) as the domain of a chart in T ∗(M).
Each element ω ∈ T ∗x (M) can be written in the form ω =

∑m

1 ξjdxj, where the coefficients
ξi ∈ are uniquely defined. The mapping

ϕ ◦ p× ξ : p−1(U) → Rm × Rm, ξ(ω) = (ξ1, ..., ξm) (7.1)

is a chart in T ∗(M). For another chart (U ′, ϕ′) of this kind holds the relation ψϕ′ = ϕ,
where the transition mapping ψ is of the form ψ((ξ1, ..., ξn), x) = (ξ′1, ..., ξ

′
n), x). Here ξ′i

are coefficients of cotangent vectors in the second chart: ω =
∑

ξ′idx
′
i. They are related

to the coefficients in the first charts:

ξj(ω) =
∑ ∂x′i

∂xj
ξ′i(ω)

Here J = {∂x′i/∂xj} is again the Jacobi matrix of the transition mapping ψ. Consequently
the relation between the coefficients is linear and smooth with respect to the coordinates
in U (as well as in U ′). Therefore the transition mapping belongs to the class C∞ and
T ∗(M) has a smooth structure. The natural projection p : T ∗(M) → M is a mapping
of smooth manifolds. Each fibre p−1(x) = T ∗x (M) is a vector space (hence T ∗(M) is a
vector bundle).
Remark. The union of sets Tx(M), x ∈ M has a structure of vector bundle too. It is
called tangent bundle.
Canonical forms. The 1-form αU =

∑

ξidxi is defined for each chart (1). For another
chart in p−1(U ′) the forms αU and αU ′ coincide in the intersection p−1(U)∩p−1(U ′). This
follows from (2). Therefore there is well-defined a 1-form α in T ∗(M) such that α = αU

for each chart U . It is called canonical 1-form in T ∗(M).
The form σ = dα is called canonical 2-form in the simplectic manifold T ∗(M). It is
closed: dσ = 0. In local coordinates σ =

∑m

1 dξi ∧ dxi.

1



Definition. Let M be a manifold of dimension m. A submanifold Λ ⊂ T ∗(M) is called
Lagrange manifold, if it satisfies the conditions dim Λ = m and σ|N = 0.

Proposition 1 1 Let Λ be a Lagrange manifold in T ∗(M) and λ ∈ Λ be a point that
is not a critical point of the projection p : Λ → M . There exists a neighborhood U of
y = π(λ) and a real smooth function f in U such that the set of solutions of the system

ξi =
∂f

∂xi
, i = 1, ...,m (7.2)

coincides with Λ in a neighborhood of λ.

Proof. Let U be a simply connected neighborhood U of y such that the projection
p is a diffeomorphism pU : Λ(U) → U , where we denote Λ(U) = Λ ∩ π−1(U). Take a
point ξ ∈ Λ(U) and join the point x = p(ξ) with the point y by a curve γx ⊂ U . We lift
this curve by means of the mapping (pU)−1 and get a curve Γ ⊂ Λ(U), which join the
point ξ with λ. The integral f(λ) =

∫

Γ
α does not depend on the choice of the curve γx,

because of the set Λ(U) ∼ U is simply connected and the form σ = dα vanishes in Λ.
The function f is a primitive of the form α in U , i.e. df = (pU)−1∗α. This is equivalent
to (2). ¤
Definition. We call the image of projection p : Λ → M of a Lagrange manifold Λ the
locus (or front) of this manifold. In the case of previous Proposition the locus is an open
set in M . In the general case it is subset with singularities.
Definition. Denote by T ∗0 (M) the open subset in T ∗(M) of pairs (x, ξ), ξ 6= 0 .The
multiplicative group of positive numbers + = {t > 0} acts in T ∗0 (M) as follows t :
(x, ξ) 7→(x, tξ). A trajectory of the group + is called ray. A subset K ⊂ T ∗0 (M) is called
conic, if K is invariant with respect to the group, i.e. is a union of rays. We note that no
conic Lagrange manifold can satisfy the conditions of Proposition 1. We generalize this
proposition in the next section.

Proposition 2 2 A conic submanifold Λ of dimension dimM is a Lagrange manifold if
and only if the canonic 1-form α vanishes in Λ.

Proof. The part ”if” is obvious: σ|K = dα|K = d(α|K) = 0. We need to check that
the equation σ|Λ = 0 implies α|Λ = 0. Consider the field e =

∑

ξi∂/∂ξi (Euler field)
in the cotangent bundle. It satisfies the equation e ∨ σ = α. The Euler field is tangent
to rays and hence to any conic submanifold. Therefore for any field v in T ∗(M) that is
tangent to Λ we have

α(v) = v ∨ α = v ∨ (e ∨ σ) = σ(e, v) = 0

Example. Let P be a submanifold of manifold M . Consider the set N ∗
P (M) ⊂ T ∗(M) of

points (x, ξ), x ∈ P such that the form
∑

ξidxi vanishes in Tx(P ). It is called conormal
bundle to P . This is obviously a conic Lagrange manifold.
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7.2 Generating functions

We state a generalization of Proposition 1 for the case of critical point of the projection
p : Λ →M . First we state

Proposition 3 3 Let Λ be Lagrange manifold in T ∗(M), λ a point in the manifold and r
is the rank of the mapping Dp : Tλ(Λ) → Ty(M) Suppose that the forms p∗(dx1), ..., p

∗(dxr)
are independent in Tλ(Λ). The projection

ρ = (x1, ..., xr; ξr+1, ..., ξm) : Λ → Rr × Rm−r (7.3)

is a diffeomorphism of a neighborhood Λ′ of the point λ.

Proof. The statement follows from the implicit function theorem, if we show that
the point λ is not critical for the mapping ρ. Suppose the opposite. Then there exists a
tangent vector t ∈ Tλ(Λ), t 6= 0 such that Dρ(t) = 0. We write

t =
m
∑

r+1

ai
∂

∂xi
+

r
∑

1

bj
∂

∂ξj

Show that the coefficients ai are equal zero. In virtue of the assumption for each i =
r + 1, ..., n the restriction of the form dxi to the space Tλ(Λ) depends on the forms
dx1, ..., dxr, i.e. we have τ |Tλ(Λ) = 0, where τ

.
= dxi −

∑r

1 cjdxj. Therefore we have
0 = τ(t) = ai.
The form t ∨ σ =

∑

bjdxj is vanishes in Tλ(Λ) too, since Λ is a Lagrange manifold.
Therefore t = 0, which contradicts to the assumption. ¤

Theorem 4 4 Let (3) be a coordinate system in a Lagrange manifold in a point λ0.
There exist smooth function f = f(x1, ..., xr, ξr+1, ..., ξm) in a neighborhood of ρ(λ0) such
that the set Λ coincides with the manifold

ξ1 =
∂f

∂x1
, ..., ξr =

∂f

∂xr
(7.4)

xr+1 = −
∂f

∂ξr+1
, ..., xm = −

∂f

∂ξm

in a neighborhood of the point λ0.

Proof. We have σ = dα′, where α′ =
∑r

1 ξidxi −
∑m

r+1 xjdξj. Choose a simply
connected open set W ⊂ Rr × Rm−r such that the projection ρ : ρ−1(W ) → W is a
diffeomorphism and set

f(x′, ξ′′) =

∫

γ

α′, x′ = (x1, ..., xr), ξ
′′ = (ξr+1, ..., ξn)

where γ is an arbitrary curve in ρ−1(W ) ⊂ Λ that connects λ0 and λ
.
= ρ−1(x′, ξ′′). The

integral does not depend on the curve γ in virtue of the equation dα′|Λ = σ|Λ = 0. We
have df = α′, which implies the equations (4). ¤
We call f generating function for Λ in the point λ0. It is unique up to an additive constant
term.
Remark. The inverse statement is also true, since the set given by the equations (4) is
a Lagrange manifold for arbitrary smooth f .
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Proposition 5 5 The Lagrange manifold generated by a function f is conic if f is
homogeneous function of coordinates ξr+1, ..., ξm of degree 1. Inversely any conic Lagrange
manifold is generated by a homogeneous function of degree 1 in a conic neighborhood of
a given point λ0.

Proof. Let f be homogeneous function of degree 1. Each derivative ∂f/∂xj is homo-
geneous of degree 1 too and any derivative ∂f/∂ξi is homogeneous of degree 0. Therefore
for arbitrary solution (x, ξ) any point (x, tξ), t > 0 satisfies the system (4).
Inversely, if Λ is conic, we can take a conic neighborhood W of the projection of the point
λ0 = (x0, ξ0). Define a generating function f by means of the integral as above taken
over a curve γ from the point (x0, 0) to λ. This is a generating function too. Check that
it is homogeneous. Really for any λ = (x, ξ) we can take the curve γ = g ∪ r, where g
joins the points x0 and x and r is the ray {(x, tξ), 0 ≤ t ≤ 1}. Therefore

f(ρ(λ)) =

∫

γ

α′ =

∫

r

α′ =
m
∑

r+1

xjξj,

where xr+1, ..., xm are functions of x1, ..., xr.

7.3 Fourier integrals

Fourier integral in an open set X ⊂ Rn is a functional of the form

I(φ, a){ψ} =

∫

X

∫

Θ

exp(2πıφ(x, θ))a(x, θ)dθψ(x)dx, ψ ∈ D(X) (7.5)

The function φ is called phase and a amplitude. They are defined in X ×Θ, where X is
an open set in Rn and Θ = RN \ {0} is named ancillary space. The group R+ of positive
numbers acts in the space X × Θ by (x, θ) 7→(x, tθ). Any set {(x, tθ), t > 0} is called
ray ; a conic set is a union of rays. A function f defined in X×Θ is termed homogeneous
of degree d, if f(x, tθ) = tdf(x, θ) for t > 0. The phase function is supposed to be real
and homogeneous of degree 1.
We suppose that the amplitude satisfies the estimate a(x, θ) = O(|θ|µ) for some µ that
is locally uniform with respect to x ∈ X. If µ + N < 0, the integral over the ancillary
space converges and

|I(φ, a)(ψ)| ≤

∫

C(x)|ψ(x)|dx (7.6)

for some positive continuous function C. If the integral Fourier does not converges
absolutely we apply a regularization procedure to turn it to a continuous functional in
the space D(X). For this we suppose that the amplitude satisfies some special conditions.
Definition. Let µ, ρ ∈ R, 0 < ρ ≤ 1. The class Sµ

ρ = Sµ
ρ (X × Θ) is the set of functions

a in X ×Θ that satisfy for arbitrary i ∈ Zn
+, j ∈ ZN

+

∣

∣Di
xD

j
θa(x, θ)

∣

∣ ≤ Cij(x)(|θ|+ 1)µ−ρ|j|, (7.7)

with a continuous function Cij that does not depend on θ. We call the number ν
.
= µ+N/2

order of the Fourier integral I(φ, a).
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Example. An arbitrary smooth homogeneous amplitude a of degree µ belongs to Sµ
1 .

Definition. We say that an amplitude a is asymptotical homogeneous of order µ, if it
has for any q the following development:

a = aµ + aµ−1 + ...+ aµ−q + rq,

where each term aν is a smooth homogeneous amplitude of degree ν and rq ∈ S
µ−q−1
1 .

We regularize the Fourier integral in following way:

I(φ, a)(ψ) = lim
ε↘0

∫

X

∫

Θ

exp(2πıφ(x, θ)− ε|θ|)a(x, θ)ψ(x)dθdx (7.8)

The integral in righthand side obviously converges to any ε > 0.
Let q ≥ 0 be an integer; we say that a distribution u ∈ D′(X) is of singular order ≤ q, if

|u(ψdx)| ≤
∑

|i|≤q

∫

X

C(x)
∣

∣Diψ(x)
∣

∣ dx

for a continuous function C. In particular, (6) implies that the distribution I(φ, a) is of
singular order ≤ 0.

Theorem 6 Let φ be arbitrary smooth real homogeneous of degree 1 function in X ×Θ
without critical points and a ∈ Sµ

ρ . The limit (8) exists for any test function ψ. The
functional I(φ, a) is a distribution of singular order ≤ q, if µ+N < qρ.

Remark. At this stage we can consider the Fourier integral as a functional in the
space D(X) of test densities ρ = ψdx as well. From this point of view the Fourier
integral is a generalized function. A more natural approach is to handle it as a generalized
halfdensity.

Proof. We call a differential operator A in X × Θ homogeneous of degree α, if the
function Af is homogeneous of degree d+ α for an arbitrary homogeneous function f of
arbitrary degree d. In particular, the fields

b(x, θ)
∂

∂xi
, i = 1, ..., n, c(x, θ)

∂

∂θj
, j = 1, ..., N

are homogeneous operators of degree −1, if the functions b(x, θ) and c(x, θ) are homo-
geneous of degree −1 and 0 respectively. The condition (7) implies that for arbitrary
homogeneous operator A of degree −1 and amplitude a ∈ Sµ

ρ we have Aa ∈ Sµ−ρ
ρ .

Pick out a function χ ∈ D(RN) such that χ(θ) = 1 for |θ| ≤ 1. Write (5) in the form
of sum of two integrals with the extra factors χ and 1 − χ. The first one is a proper
integral which converges to [I0dx](ψ) as ε→ 0, where

I0(x) =

∫

exp(2πıφ(x, θ))χ(θ)a(x, θ)dθ

is a continuous function. Set φε = 2πφ+ ıε|θ|.
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Lemma 7 There exists a smooth family of tangent fields vε, ε ≥ 0 of degree −1 in X×Θ
such that vε(φε) = −ı.

We postpone a proof of this Lemma. Write the second integral as follows
∫ ∫

exp(ıφε)(1− χ)aψdxdθ =

∫ ∫

vε(exp(ıφε))(1− χ)aψdxdθ

Integrating by parts the right side, we get the integral
∫ ∫

exp(ıφ)v∗((1− χ)aψ)dxdθ,

where v∗ denotes the conjugated differential operator. This is an operator of degree −1
and we have

v∗ε((1− χ)aψ) = [vε(χ)− div(vε)(1− χ)]aψ − (1− χ)(vε(a)ψ + avε(ψ)),

whence

∫ ∫

exp(ıφε)(1− χ)aψdxdθ =

∫ ∫

exp(ıφε)

[

a0ψ +
∑

j

aj
∂ψ

∂xj

]

dxdθ, (7.9)

and
a0 = [vε(χ)− div(vε)(1− χ)]a+ vε(a), aj = −avε(xj), j = 1, ..., n

The amplitude aj, j = 1, ..., n belong to the class Sµ−1
ρ and satisfy (7) with constants

Cij that do not depend on ε, since the function vε(xj) is smooth and homogeneous of
degree −1. The same is true for the function [vε(χ) − div(vε)(1 − χ)]a since div(vε) is
homogeneous of degree −1 and vε(χ) has compact support. The function vε(a) belongs to
the space Sµ−ρ

ρ and satisfy the corresponding inequality (7) with some constants that do
not depend on ε. Taking in account the inequality ρ ≤ 1, we conclude that the functions
a0, ..., an satisfy (7) with some uniform constants and with the exponent µ− ρ instead of
µ. If µ+N < ρ, the integrals

∫

exp(ıφε)|aj|dθ, j = 0, 1, ..., n

converges uniformly with respect to ε and we can pass on to the limit in (9). Thus we
get the inequality

| lim
ε↘0

∫

Θ

∫

X

exp(ıφε)a(x, θ)ψ(x)dxdθ ≤ C

[

∫

|ψ|dx+
n
∑

1

∫
∣

∣

∣

∣

∂ψ

∂xj

∣

∣

∣

∣

dx

]

where the constant C does not depend on ε. It follows that I(φ, a) is a distribution of
order ≤ 1.
If the opposite inequality µ + N ≥ ρ holds, we apply the same method to each term of
(9) and get

I(φε, a)(ψ) =

∫

exp(ıφε)
∑

ij

[

a00ψ +
∑

a0j
∂ψ

∂xj
+
∑

aij
∂2ψ

∂xi∂xj

]

dxdθ,
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where the amplitudes aij belong to Sµ−2ρ
ρ and satisfy (7) uniformly with respect to ε. We

repeat these arguments q times until we reach the inequality µ+N < qρ. ¡

Proof of Lemma 1. We set

v =
∑

bj
∂

∂xj
+
∑

ci
∂

∂θi
,

where

bj = −
ı

σ

∂φ

∂xj
, ci = −

ı|θ|2

σ

∂φ

∂θi
, σ =

∑

∣

∣

∣

∣

∂φ

∂xj

∣

∣

∣

∣

2

+ |θ|2
∑

∣

∣

∣

∣

∂φ

∂θi

∣

∣

∣

∣

2

The dominator σ does not vanish. We have v(φε) = −ı−εv(|θ|) where the function v(|θ|)
is homogeneous of degree 0. We set vε = (1 + εıv(|θ|))−1v. ¡

Lemma 8 Let u be an arbitrary homogeneous tangent field in X×Θ of degree −1 and Ω
a smooth differential form of the highest degree in X×Θ that vanishes in the complement
of K × Θ for a compact set K ⊂ X such that the forms Ω and LuΩ are integrable. We
have

∫

Lu(Ω) = 0 (7.10)

Proof. Suppose that the form Ω has compact support and state the equation

∫

Φ∗t (ω) =

∫

ω (7.11)

for small t, where Φt means the flow generated by the field u. The integral of a form of
the highest degree is invariant with respect to any isomorphism of the manifold. Take the
t-derivative of (11) and get (10). For the given form Ω we consider the product Ωk = hkΩ
where hk(θ) = h(k−1θ). The integral

∫

Ωk converges to
∫

Ω as k →∞. We have

0 =

∫

Lu(Ωk) =

∫

u(hk)Ω +

∫

hkLu(Ω)

We have
∫

hkLu(Ω) →
∫

Lu(Ω) as k → ∞. At the other hand u(hk) =
∑

cj∂hk/dθj =
O(k−1) uniformly in X ×Θ, since the functions cj = u(θj), i = 1, ..., N are homogeneous
of degree 0. Therefore

∫

u(hk)Ω → 0. ¤
Example. Let X be an open set in Rn, x1, ..., xn are coordinate functions. Take Ω =
fgdx ∧ dθ in (10) and get

∫

u(f)gdxdθ =

∫

fu∗(g)dxdθ, (7.12)

where the sum

u∗ = −u− div u, div u ≡
Lu(dx ∧ dθ)

dx ∧ dθ
=
∑ ∂bj

∂xj
+
∑ ∂ci

∂θi

7



is the conjugated differential operator to the field u. We check the last equation by means
of (4.4.8):

Lu(fgdx ∧ dθ) = u(f)gdx ∧ dθ + fu(g)dx ∧ dθ + fgLu(dx ∧ dθ)

Lu(dx ∧ dθ) = d(u ∨ (dx ∧ dθ)) =
∑

j

(−1)j−1d(bjdx1 ∧ ...̂... ∧ dxn ∧ dθ)

+
∑

i

(−1)n+i−1d(cidx ∧ dθ1 ∧ ...̂ı... ∧ dθN) = div(u) dx ∧ dθ

Remark. We can use instead of Eε = exp(−ε|θ|) another sequence of decreasing func-
tions, f.e. Eε = exp(−ε|θ|2) in (8) . We get the same limit.
Non-degenerate phase. Let φ be a phase function in X ×Θ. Consider the set

C(φ) = {(x, θ) : dθφ = 0, ⇐⇒ φ′θ1 = ... = φ′θN
= 0}

where φ′θj

.
= ∂φ/∂θj. This is the critical set of the projection {φ = 0} → X.

Definition. The phase function φ is called non-degenerate, if it has no critical points
and the differential forms

d
(

φ′θ1
)

, ..., d
(

φ′θN

)

are linearly independent in each point of the set C(φ). Suppose that φ is a non-degenerate
phase. The critical set C(φ) is a conic subset of X × Θ of dimension n + N −N = n =
dimX. This follows from the Implicit function theorem. Recall that T ∗◦ (X) means the
subset of T ∗(X) of nonzero cotangent vectors. Consider the mapping

φ∗ : C(φ) → T ∗◦ (X), (x, θ) 7→(x, dxφ(x, θ))

It is well-defined since dxφ does not vanish in the set, where dθφ = 0. This mapping is
homogeneous of degree 1, since dxφ(x, tθ) = tdxφ(x, θ) for t > 0.

Proposition 9 The differential Dφ∗ : T (C(φ)) → T (T ∗◦ (X)) of the mapping φ∗ is injec-
tive in each point of C(φ).

Proof. The injectivity of Dφ in a point (x, θ) ∈ C(φ) is equivalent to the following
implication:

v ∈ T(x,θ)(C(φ)), Dφ∗(v) = 0 =⇒ v = 0

Write v = t+ τ, t ∈ Tx(X), τ ∈ Tθ(Θ) and calculate by means of local coordinates in X:

0 = Dφ∗(v) =
(

t; v(φ′x1
), ..., v(φ′xn

)
)

∈ Tω(T ∗◦ (X)) (7.13)

We denote here ω = (x, dxφ(x, θ)) and use the natural isomorphism

Tω(T ∗(X)) ∼= Tx(X)⊕ Rn

From (12) we conclude that t = 0 and τ(φ′xj
) = 0, j = 1, ..., n At the other hand the

vector τ = v is tangent to C(φ), which means

τ(φ′θi
) = 0, i = 1, ..., N

8



Extend the vector τ to the constant vector field τ̃ in Θ. It commutes with the coordinate
derivatives in X × Θ, consequently the last equations are equivalent to the following
dθτ̃φ(ω) = 0. This is a linear relation between the forms dφ′θ1 , ..., dφ

′
θN

. This relation is
in fact trivial, since the phase φ is non-degenerate. ¤

Denote by Λ(φ) the image of the mapping Dφ∗. Take an arbitrary point (x0, θ0) ∈
X ×Θ. In virtue of Implicit function theorem there exists a neighborhood X0 of x0 and
a neighborhood Θ0 of θ0 such that the restriction of Dφ∗ to X0×Θ0 is a diffeomorphism
to its image Λ0. We can take for Θ0 a conic neighborhood since the mapping Dφ∗ is
homogeneous. The image Λ0 is a conic submanifold of dimension n = dimX; it is closed
in a conic neighborhood of the point ω0 = φ∗(x0, θ0). The variety Λ(φ) is a union of
pieces Λ0, hence it is a conic set too. If a neighborhood X1 ×Θ1 overlaps with X0 ×Θ0,
then its image Λ1 is a continuation of the manifold Λ0. Taking a chain of continuations
Λ0,Λ1, ... we can reach a self-intersection point, if the mapping Dφ∗ is not an injection.
In this case the set ÃL(φ) may have singular points and we call it variety.

Proposition 10 The set Λ(φ) is closed and locally equal a finite union of conic Lagrange
manifolds.

Proof. Show that the canonical 1-form α vanishes in any vector w ∈ T(x,ξ)(T
∗(X)),

which belongs to the image of a tangent space T(x,θ)(C(φ)). We have ξ = dxφ(x, θ) and
w = Dφ∗(v) for a tangent vector v to C(φ) at the point (x, θ). Therefore v(f) = 0 for
arbitrary function f that vanishes in C(φ). Let t be the projection of w to X; it is equal
the projection of v. We calculate

α(w) = ξdx(t) = dxφ(t) = t(φ) = v(φ),

where the righthand side is taken at the point (x, θ) ∈ C(φ). It is equal zero, because of
the function φ vanishes in C(φ). The last fact follows form the Euler identity φ =

∑

θiφ
′
θi

.
It follows that any piece Λ0 of the set Λ(φ) is a Lagrange manifold.
Take an arbitrary point ω ∈ Λ(φ), a neighborhood U of the point x = p(ω) such that its
closure K is compact and check the set ΛK

.
= Λ(φ)∩p−1(K) is closed. For this we take the

unit sphere S(Θ) in the ancillary space and consider the mapping φ∗ : C(φ)∩ (K×S(Θ))
→ LK). It is continuous and the first topological space is compact. Therefore the image
is a closed subset of Λ(φ). The conic set Lk(φ) is generated by this subset and hence is
also closed.
Show that ΛK is covered by a finite number of Lagrange manifolds. The set K ×Θ can
be covered by a finite number of conic neighborhoods Xq × Θq, q = 1, ..., Q as above.
The restriction of the mapping φ∗ to each neighborhood of this form is a diffeomorphism
to its image in virtue of the Implicit function theorem. The set ΛK is contained in the
union of Lagrange manifolds φ∗(Xq ×Θq), which implies our assertion. ¤

Proposition 11 Let Λ be a conic Lagrange manifold. For any point λ ∈ Λ there exists
a non-degenerate phase function φ such that λ ∈ Λ(φ) ⊂ Λ.

Proof. Take the generating function f =
∑m

k+1 fjξj at λ constructed in Proposition
4.8.2 and consider θ = (ξk+1, ..., ξm) as ancillary variables. Here fj = fj(x

′, θ), j =
k + 1, ..., n are smooth functions in W such that the equations

xj = fj(x
′, θ), j = k + 1, ...,m (7.14)
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are satisfied in Λ. We set

φ(x, θ)
.
=
∑

xjξj − f(x′, θ) =
m
∑

k+1

(xj − fj)ξj

and have ∂φ/∂ξj = xj − ∂f/∂ξj = xj − fj(x
′, θ), hence the critical set C(φ) coincides

with (13) and φ is non-degenerate. Calculate the x-derivatives:

dxφ(x, θ) = (−dx′f, θ) = (ξ′(x′, θ), θ) = ξ|Λ

7.4 Lagrange distributions

Definition. Let X be an open set in Rn and Λ be a closed conic Lagrange submanifold
in T ∗◦ (X). We call an element u ∈ D′(X) Λ-distribution, (or Lagrange distribution), if it
can written as a locally finite sum of Fourier integrals:

u =
∑

I(φj, aj) + v, v ∈ C∞,

where for each j the phase φj is non-degenerate in X ×Θj and

Λ(φj) ⊂ Λ, aj ∈ S
µj

ρ (X ×Θj)

Definition. Suppose that all amplitudes are asymptotical homogeneous. We shall say
that the Lagrange distribution u is of order ≤ ν, if u admits such a representation where
all the Fourier integrals I(φj, aj) are of the order ≤ ν.

Example 5.2. Let Y be a closed submanifold of X given by the equations f1(x) =
... = fm(x) = 0 such that the forms df1, ..., dfm are independent in each point of Y .
Consider the functional

δY (ρ) =

∫

Y

ρ

df1 ∧ ... ∧ dfm

on the space D(X) of test densities. The quotient is a density σ in Y such that df1∧ ...∧
dfm ∧ σ = ρ, hence the integral is well-defined. It is called the delta-function in Y .
Show that the delta-function is a Fourier integral with N = m if X is an open set in
Rn. Take the phase function φ(x, θ) =

∑m

1 θjfj(x) and the amplitude a = 1. In the case
n = 1 we have for any test density ρ = ψdx

I(ρ) =

∫ ∫

exp(2πıθf(x))dθψ(x)dx =

∫

exp(2πıθy)dθ
ψ

f ′
dy,

if we take y = f(x) as an independent variable. The θ-integral is equal the delta-function,
hence I{ρ} = ρ/df |f = 0, where ρ/df is a smooth function. In the case m > 1 we use
this formula m times and get

I{ρ} =

∫ ∫

exp(2πıφ(x, θ))dθρ =

∫

Y

ρ

df1 ∧ ... ∧ dfm
= δY (ρ)

where δY is the delta-function in the manifold Y . This is a Λ-distribution of order
(dimX − dimY )/2 for Λ = N ∗

Y .

10



Properties. For a conic Lagrange manifold Λ we denoteD′(Λ) the space of Λ-distributions.
I. We have WF (u) ⊂ Λ for any u ∈ D′(Λ) according to Theorem 5.2.1.
Problem. Let Λ be an arbitrary closed conic Lagrange manifold and λ ∈ Λ be an arbi-
trary point. To show that there is an element u ∈ D′Λ such that λ ∈WF (u).
II. For any u ∈ D′(Λ) and any smooth differential operator a in X we have au ∈ D′(Λ).
If u is of order ≤ ν, then Pu is of order ν +m, where m is the order of a.
III. Restriction to a submanifold. Let Y be a closed submanifold in X such that
Λ ∩N ∗(Y ) = ∅. Denote

ΛY = {(y, η) : y ∈ Y, η = ξ|Ty(Y ), (y, ξ) ∈ Λ}

This is a conic Lagrange submanifold in T ∗(Y ).

Proposition 12 Any Λ-distribution u has a restriction uY that is a ΛY -distribution. If
u is of order ≤ ν, the distribution uY is of order ≤ ν too.

IV. Product. If Λ′ is another conic Lagrange manifold with no common points with
−Λ, then for any Λ-distribution u and any Λ′-distribution u′ the product uu′ is well-
defined as a distribution in X.

7.5 Hyperbolic Cauchy problem revisited

Consider a hyperbolic differential equation of order m in a space-time X = X0×R, where
X0 is an open set in Rn

a(x, t;Dx, Dt)u = w (7.15)

with smooth coefficients in X; x = (x1, ..., xn) are spacial coordinates, t is the time
variable. We denote by ξ, τ the corresponding coordinates for cotangent spacial and time
vectors respectively. The principal symbol σm = σm(x, t; ξ, τ) of (14) is a polynomial in
variables ξ, τ . We suppose that it has order m with respect to τ , which means that any
hypersurface t = const is non-characteristic for P . Consider the Cauchy problem in the
domain t > 0 with the initial data

u(x, 0) = v0(x),
∂u(x, 0)

∂t
= v1(x), ...,

∂m−1u(x, 0)

∂tm−1
= vm−1(x), (7.16)

where v0, ..., vm−1 are some distributions.

Theorem 13 (Uniqueness) Any strictly hyperbolic Cauchy problem (14),(15) has no
more than one solution.

Fix a point y ∈ X0; let Ej
y ∈ D

′(X×R+), j = 0, ...,m−1 be the solution of the initial
problem with w = 0, vi = δijδy. The set of distributions E0

y , E
1
y , ..., E

m−1
y in X ×+ ×X

is called fundamental solution of the Cauchy problem. Then one can solve the Cauchy
problem with w = 0 and arbitrary distributions u0, ..., um−1 by means of integration:

u =
∑

k

∫

X0

Ek
yvk(y)dy

11



This formula is valid, at least, for distributions vk with compact support. In the global
case we need an assumption on domain of dependence (see below). The general case is
reduced to the case w = 0 by means of the Duhamel’s method.
Remark. If the coefficients of the operator a do not depend on time, it is sufficient to
construct the distribution Em−1

y only, since we have Ek
y = qm−1−k(y,D)Em−1

y , k < m− 1,
where qj is an appropriate differential operator of order j. Then the distribution Ey =
Em−1
y is called the fundamental solution.

We describe now a more general construction. Therefore we can represent the symbol
as the product of binomials:

σm(x, t; ξ, τ) = q0(x, t)
m
∏

1

[τ − τj(x, t; ξ)],

where τ1, ..., τm are homogeneous functions of variables ξ of degree 1 and q0 6= 0. Let
Λ0 ⊂ T ∗◦ (X0) be an arbitrary Lagrange manifold. For any number j = 1, ...,m we consider
the Hamiltonian function hj(x, t; τ, ξ) = τ − τj(x, t; ξ) in T ∗(X × R+). We ”lift” Λ0 to
the bundle T ∗(X × R) taking the manifold

Wj = {(x, 0; ξ, τj(x, 0; ξ)), (x, ξ) ∈ Λ}

which is contained in the hypersurface hj = 0. The canonical form α vanishes in Wj.
Now we take the Hamiltonian flow generated by hj

dx

dt
=
∂hj
∂ξ

,
dξ

dt
= −

∂hj
∂x

dτ

dt
= −

∂hj
∂t

(7.17)

with initial data from Wj. Denote by Λj the union of trajectories of this flow. This is a
Lagrange manifold Λj in T ∗(X×)R in virtue of Proposition ?4.7.1. The union Λ = ∪m

1 Λj

is also a Lagrange manifold possibly with self-intersection. Note that hj vanishes in Wj

and hence in Λj, since it is constant on any trajectory of (16).

Theorem 14 There exists a neighborhood Y of the hyperplane X0 in X such that for
arbitrary Λ0-distributions v0, ..., vm−1 the Cauchy problem (14),(15) has a solution u that
is a Λ-distribution in Y . If vk is a Λ0-distribution of order ≤ ν + k for some ν and
k = 0, 1...,m− 1, then the solution u is of order ≤ ν.

Proof. We describe in short the construction of u. Take an arbitrary point λ ∈ Λ0,
a local coordinate system (x′, θ) for Λ0, where x′ = (x1, ..., xr) and θ = (ξr+1, ..., ξn),
N = n−r. Let (x′0, θ0) be the coordinates of λ and x0

.
= p(λ) ∈ X0. Take a phase function

φ0 = φ0(x, θ) in a conic neighborhood of (x0, θ0) that generates Λ0 in a neighborhood of λ.
We can write the initial data v0, ..., vm−1 as Fourier integrals with the phase function φ0
and some asymptotical homogeneous amplitudes b0, ..., bm−1 in a neighborhood of (x0, θ0),
where bk is of order ≤ ν − N/2 + k for k = 0, ...,m − 1. The functions (x′, t; θ) form a
local coordinate system in Λj for any j and we can choose a generating phase function in
the form φj such that φj(x, 0; θ) = φ0(x, θ). Set uj,λ

.
= I(φj, aj), where aj are unknown

homogeneous amplitudes of degree ν −N/2 and substitute it in the equation. We get a
Λ-distribution w = auj,λ with the symbol

σ(w) =
∑

j

(−ıL+ s)σ(uj,λ),
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where L = Lpm
is the Lie derivative. The term of degree ν + m vanishes according to

Proposition 5.6.1 since the symbol σm =
∏

hk vanishes in Λj. The next term is calculated
by means of Theorem 6.1.1. where s is the subprincipal symbol of P . The degree of this
term is equal ν + m − 1. We choose the amplitudes aj in such a way that the symbol
of w vanishes. For this we solve first the equations (−ıL+ s)σ(uj) = 0. According to
(5.5.1) we have σ(u) = ajψj, where ψj is a non-vanishing halfdensity depending only on
the phase function φj and aj be the principal homogeneous term of Aj of degree ν−N/2.
Dividing the above equation by this halfdensity we get an equation

L(aj) + gjaj = 0 (7.18)

where gj is a known function. This is an ordinary equation along the trajectories of the
field (16). It has a unique solution for an arbitrary initial data aj(x, 0; θ). We specify
these data to satisfy the initial condition (15) for the Cauchy problem. This gives the
equations

(2πı)k
∑

j

(φ′j)
kaj,λ(x, 0; θ) = gλ(x, θ)bk(x, θ), k = 0, ...,m− 1, (7.19)

where we denote φ′ = ∂φ/∂t and introduce a factor gλ that is a smooth homogeneous
function of degree 0 supported by a compact conic neighborhood V of (x0, θ0) (i.e. the
intersection supp gλ ∩ S

∗(X0) is compact). In the k-the equation both sides are homo-
geneous of the same degree ν − N/2 + k. To solve this system we consider the matrix
W = {(φ′j)

k}, where φ′ = dφ/dt. We have

detW =
∏

j<k

(φ′j − φ′k),

hence the matrix W is invertible, if φ′j 6= φ′k for j < k. We have φ′j = τj(x, t; dxφj),
since the function hj vanishes in Λj. Therefore dxφj(x, 0; θ) = dxφ0(x; θ) 6= 0 in C(φ0).
The functions τj(x, 0; dxφ0), j = 1, ...,m are different, because of the operator is strictly
hyperbolic and dxφ0 6= 0. Therefore the matrix is invertible and the system (18) has
a solution a1,λ(x, θ), ..., am,λ(x, θ), whose components are smooth and homogeneous of
degree ν − N/2 and compactly supported in V . Then we solve the transport equations
(17) with the initial condition aj,λ(x, θ) for the j-th equation. The solution aj,λ(x, t; θ)
exists and is uniformly bounded in a conic neighborhood of λ in Λj. The Fourier integral
uj,λ

.
= I(φj, aj,λ), j = 1, ...,m satisfies the equation in the first and second highest orders,

i.e. the amplitude of Puj,λ is of of order ≤ ν − N/2 + m − 2. Set uν =
∑

uj,λ for an
appropriate partition of unity {gλ} in a neighborhood of Λ0. This distribution satisfies
the equation auν = w1, where w1 is a Λ-distribution of order ≤ ν + m − 2 and initial
conditions vk − ∂kt uν |t = v′k, where v′k is a Λ0-distribution of order ≤ ν + k − 1 for
k = 0, ...,m− 1.
For the next approximation we look for a new homogeneous amplitudes a′j,λ of degree
ν −N/2− 1 and take u′j,λ = I(φj, a

′
j,λ). Calculating the symbol, we find

σ(a(uj,λ + u′j,λ)) = (−ıL+ s)σ(u′j,λ) + q1,
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where q1 is a asymptotically homogeneous halfdensity of order ≤ ν + m − 2 that only
depends on uj,λ. We need to solve the equation

(−ıL+ s)σ(u′j,λ) = −q1

in Λj with the initial data taken from the system

(2πı)k
∑

j

(φ′j)
ka′j,λ(x, 0; θ) = gλ(x, θ)b′k(x, θ), k = 0, ...,m− 1

Here b′k are some homogeneous amplitudes of degree ν − N/2 + k − 1, k = 0, ...m −
1. In fact we take for b′k the principal homogeneous terms of amplitudes of Fourier
integrals representing new initial data v′k = vk − ∂kt uν |t = 0. Solving these systems
we get amplitudes a′j and set uν−1 =

∑

g,λu
′
j,λ. The sum uν + uν−1 is the second

approximation. It satisfies the equation P (uν + uν−1) = w2, where w2 is a Λ-distribution
of order ≤ ν+m−3 and initial conditions v′k−∂

k
t uν−1|t = v′′k , where v′′k is Λ0-distribution

of order ≤ ν + k − 2.
Iterating these arguments we construct an infinite series

uν + uν−1 + uν−2 + ...

of Λ-distributions of orders ν, ν − 1, .... We can modify the above construction in such
a way that all the amplitudes in the the term Uν−k vanish in the ball |θ| ≤ k. Then
this series converges to a Λ-distribution u. It satisfies the conditions: Pu is smooth in
Y and the initial conditions are satisfied up to smooth functions. Such distribution u is
called parametrix of the problem. To get an exact solution from a parametrix one need
to find a smooth solution u∞ to the Cauchy problem with smooth righthand side and
initial functions. This can be done by means of reduction to an integral equation. ¤
Global existence. To prove the global existence in Y = X0×R+ more conditions on
behavior of bicharacteristics are necessary.
Definition. Let (x, t) ∈ X×+. The domain of dependence D(x, t) is the union of
trajectories of the systems (17), where j = 1, ...,m going in the backward direction, i.e.
for times in the interval [0, t]. For a set K ⊂ X we call the union ∪D(x, t), (x, t) ∈ K
domain of dependence of K.

Theorem 15 Suppose that X0 = Rn for an arbitrary compact set K ⊂ X0 × [0, T ) its
domain of dependence is also a compact set. Then the statement of the above theorem
holds for Y = X0 × [0, T ).

Proof. The construction of the previous theorem gives a solution u that exists in
a neighborhood Y of X0. Choose a hypersurface Xf = {t = f(x)} in Y such that
f is a smooth positive function and P is strictly hyperbolic with respect to conormal
bundle N ∗(Xf ). This means that the polynomial σm(x, f(x); ξ, τdf(x)) is of degree m
with respect to τ and all his roots are real and different. If ∇f decrease sufficiently fast
at infinity the bundle N ∗(Xf ) has no common points with Λ. Therefore our solution u
has restriction to Xf and this restriction is a Λf -distribution as well as restrictions of its
conormal derivatives. We take the restriction of the derivatives as new initial conditions
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in Xf and solve again the Cauchy problem in a neighborhood Yf of Xf . This solution uf
agrees with u. They make together a solution of the Cauchy problem in Y0 ∪ Yf . Then
we choose a hypersurface Xg = {t = g(x)} in Yf such that g > f and so on. From the
condition of theorem follows that we can regulate this construction in such a way that
the union of all neighborhoods Y0, Yf , Yg, ... coincides with X0 × [0, T ). ¡
Take an arbitrary point y ∈ X0 and consider the Lagrange variety T ∗y (X0). Apply the
construction of Theorem 6.2.1 taking for Λ0 this manifold. Let Λy be the corresponding
Lagrange manifold over X.

Corollary 16 Suppose that for any compact set K ⊂ X its domain of dependence is
again a compact set. Then for any y ∈ X0 there exist fundamental system E0

y , E
1
y , ..., E

m−1
y ,

where Ek
y is a Λy-distribution of order ≤ (n− 1)/2− k.

For each k, 0 ≤ k < m we apply Theorem 6.2.1 to the initial data vk = δy, vj =
0, j 6= k. The delta-distribution δy is a Λy-distribution of order (n− 1)/2. Therefore the
solution of the Cauchy problem is a Λy-distribution of order (n− 1)/2− k. ¡
Remark. We have WF (Ek

y ) ⊂ Λy according to Property I of Sec.5.3. Therefore suppEk
y

is contained in the locus Ly = p(Λy). The locus is the union of all bicharacteristic curves
γ starting at y. If the coefficients of the symbol σm are constant, these curves are straight
lines and Ly is a cone with the vertex at y. In general case the locus Ly is called ray
conoid.
Another geometrical construction of the conoid can be done in ”dual” terms. Take
coordinates x1, ..., xn in X0 that vanish at y and consider the phase function φ0 = ξx

.
=

ξ1x1 + ... + ξnxn. It generates the Lagrange manifold T ∗y (X0). Any phase function φj
has the form φj(x, t; ξ) = ξx + τj(x, 0; ξ)t + O(t2), since hj(x, t;φ

′
j,∇φj) = 0. For any

ξ 6= 0 the hypersurface Hj(ξ) = {φj = 0} is smooth and tangent to the hyperplane
ξx + τ(y, 0; ξ)t = 0 at y. Consider the family of varieties Hj(ω) where ω ranges in the
unit sphere in T ∗y (X0) and j runs from 1 to m.

Proposition 17 The conoid Ly is contained in the envelope of the family {Hj(ω)}.

Proof. Apply Proposition 5.4.1 to the fundamental distributions:

Ek
y =

∑

j

∫

S(Θ)

(φj(x, ω) + 0ı)k+1−naj(x, ω)dω,

Here aj are smooth functions in U ×S(Θ), where U is a neighborhood of y. This is true,
if n > k + 1. We see that the kernel (φj + 0ı)k+1−n is singular only in Hj(ω), hence the
integral is smooth in the compliment to the envelope of the family as above. If n ≤ k+ 1
a similar formula holds with the extra factor log |φj| in the integrand. This implies the
same conclusion.
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Chapter 8

Electromagnetic waves

8.1 Vector analysis

Vector operations: Let X be an oriented Euclidean 3-space X with a frame (e1, e2, e3) .
For vectors U = u1e1 + u2e2 + u3e3, V = ..,W = ... ∈ X

U × V = det





u1 u2 u3

v1 v2 v3

e1 e2 e3



 = −V × U

(U × V,W ) = det





u1 u2 u3

v1 v2 v3

w1 w2 w3





U × (V ×W ) = − (U, V )W + (U,W )V 6= (U × V )×W

For a smooth vector field V and a function a

∇× V = rotV = curlV = det





∂1 ∂2 ∂3

v1 v2 v3

e1 e2 e3





= (∂2v3 − ∂3v2)e1 + (∂3v1 − ∂1v3)e2 + (∂1v2 − ∂2v1)e3

(∇, V ) = div V = ∂1v1 + ∂2v2 + ∂3v3

(∇,∇× V ) = 0

∇× (∇× V ) = −∆V −∇ (∇, V )

(∇, aV ) = (∇a, V ) + a (∇, V )

∇× aV = ∇a× V + a∇× V

(∇, V × U) = (∇× V, U)− (V,∇× U)

Orthogonal transformations. Let U, V be vectors, i.e. they transform as the frame
vectors ej by means of the group O (X) . Then U × V is a pseudovector (axial) vector,
i.e. A (U × V ) = sgn (detA) (AU × AV ) , A ∈ O (X) . A pseudovector is covariant for
the subgroup SO (X) and does not change under the symmetry x 7→−x. If U is a vector,
U is a pseudovector, then U × V is a vector.
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8.2 Maxwell equations

The electric field E, the magnetic field H, the electric induction D and the magnetic
induction B in the Euclidean space-time X × R are related by the Maxwell system of
equations

∇×H =
4π

c
j +

1

c

∂D

∂t
(Ampère, Biot-Savart-Laplace’s law) (8.1)

∇× E = −1

c

∂B

∂t
(Faraday’s law) (8.2)

(∇, B) = 0 (Gauss’s law) (8.3)

(∇, D) = 4πρ (corollary of Coulomb’s law) (8.4)

with the sources: the charge density ρ and the current j. The term ∂D/∂t is called the
Maxwell displacement current. The Gauss’ units system - centimeter, gram, second - is
used; c ≈ 3 · 1010 cm / sec .

E,D are vector fields, i.e. they are covariant to the orthogonal group O (X) and
H,B are pseudovector field (axial vectors), i.e. they are covariant to the special

orthogonal group SO (X) and do not change under the symmetry x 7→−x.
dimE = dimD = dimH = dimB = L−1/2M1/2T−1.
Integral form of the Maxwell system in the oriented space-time

∫

∂S

(H, dl) =
4π

c

∫

S

(j, ds) +
1

c

∂

∂t

∫

S

(D, ds)
∫

∂S

(E, dl) = −1

c

∂

∂t

∫

S

(B, ds)
∫

∂U

(B, ds) = 0
∫

∂U

(D, ds) = 4π

∫

U

ρdx

where
ds is the oriented surface element: ds = t1 × t2 |ds| ; (t1, t2) is an orthonormal basis

of tangent fields in the surface S that define the orientation of S;
dx is the volume form (not a density!) in X.
Conservation law for charge. The charge and the current are not arbitrary:

applying ∇× to the first equation and ∂t to the forth one, we get (∇, j) + ∂tρ = 0 and in
the integral form

∫

∂U

(j, ds) +
∂

∂t

∫

U

ρdx = 0

This is a conservation law for charge: if there is now current through the boundary ∂U,
then the charge

∫

U
ρdx is constant.

Symmetry. The system is invariant for the transformations:

E ′ = cos θ · E + sin θ · H, H ′ = cos θ · H − sin θ · E

i.e. with respect to the group U (1) . This is a very simple example of gauge invariant
system. Another example: the Dirac-Maxwell system; the group is infinite.
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Potentials. The equation (2) with constant coefficients can be solved:

B = ∇× A, E = −∇A0 − 1

c

∂A

∂t

A,A0 are the vector and the scalar potentials. Physical sense: Aharonov-Bohm’ quantum
effect.

Material equations. To complete the Maxwell system one use material equations
D = D (E,H) , B = B (E,H) . In the simplest form:

D = εE, B = µH

ε is the (scalar) electric permittivity, µ is the (scalar) magnetic permeability. They are
dimensionless positive coefficients depending on the medium; ε = µ = 1 for vacuum,
otherwise ε ≥ 1, µ ≥ 1. The velocity of electromagnetic waves is equal to v = c/

√
εµ.

The principal symbol of the Maxwell system is the 8× 6-matrix

σ1 =









−ε̃τI3 ξ × ·
ξ × · µ̃τI3

0 µ (ξ, ·)
ε (ξ, ·) 0









where ξ = (ξ1, ξ2, ξ3) and I3 stands for the unit 3×3 matrix and ε̃ = ε/c, µ̃ = µ/c. There
are 28 6× 6-minors. One of them is

det

















ε̃τ 0 0 0 −γ β
0 ε̃τ 0 γ 0 −α
0 0 ε̃τ −β α 0
0 γ −β µ̃τ 0 0
−γ 0 α 0 µ̃τ 0
β −α 0 0 0 µ̃τ

















= τ̃ 2 (τ̃ 2 − ξ2)
2
,

where ξ = (α, β, γ) , ξ2 = α2 + β2 + γ2, τ̃ = (ε̃µ̃)1/2 τ.
Let A = C [α, β, γ, τ ] be the algebra of polynomials and J be the ideal generated by all

6× 6-minors of σ1. We have J = (v2 (x) ξ2 − τ 2)
2 ·m2, where v

.
= (ε̃µ̃)−1/2 is the velocity

of electro-magnetic waves in the medium and m ⊂ A is the maximal ideal of the point
(0, 0) . Note that h = v2 (x) ξ2−τ 2 is the Hamiltonian function of the wave equation with
the velocity v. On the other hand, each component of the field (E,H) satisfies the wave
equation with the principal symbol h(x; ξ, τ).

8.3 Harmonic analysis of solutions

Consider, first, the wave equation in X × R with a constant velocity v
(

∂2

∂t2
− v2∆

)

u = 0

The symbol is σ2 = h = v2ξ2− τ 2. The characteristic variety is the cone {h (ξ, τ) = 0} ⊂
C4.A general solution is equal to a superposition of exponential solutions exp (ı ((ξ, x) + τt));
the algebraic condition is that h (ξ, τ) = 0.
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Theorem 1 Let Ω be a convex open set in space-time. An arbitrary generalized solution
of the wave equation in Ω can be written in the form

u (x) =

∫

h=0

exp (ı ((ξ, x) + τt))m, (8.5)

where m is a complex-valued density supported by the variety {h = 0} such that for an
arbitrary compact K ⊂ Ω we have

∫

exp (pK (Im (ξ, τ)))
(

|ξ|2 + |τ |2 + 1
)−q |m| <∞

for some q = q (K) . Vice versa, for any density that fulfils this condition the integral (5)
is a generalized solution of the wave equation in Ω.

The function pK is the Minkowski functional of K. The density m is not unique.
Maxwell system. Suppose that the coefficients ε and µ are constant and j = 0, ρ =

0. The plane waves

E = exp (ı ((ξ, x) + τt)) e, H = exp (ı ((ξ, x) + τt))h (8.6)

If the vectors e, h satisfying

ε̃τe+ ξ × h = 0, ξ × e− µ̃τh = 0, (ξ, h) = 0, (ξ, e) = 0

then the plane wave (5) satisfies the Maxwell system in the free medium. Moreover, an
arbitrary solution is a superposition of the plane waves. Take the 6× 6-matrix

(

ξ × ξ × · −ε̃τξ × ·
µ̃τξ × · ξ × ξ × ·

)

(8.7)

=

















−β2 − γ2 αβ αγ 0 ε̃τγ −ε̃τβ
αβ −α2 − γ2 βγ −ε̃τγ 0 ε̃τα
αγ βγ −α2 − β2 ε̃τβ −ε̃τα 0
0 −µ̃τγ µ̃τβ −β2 − γ2 αβ αγ

µ̃τγ 0 −µ̃τα αβ −α2 − γ2 βγ
−µ̃τβ µ̃τα 0 αγ βγ −α2 − β2

















Each line of this matrix satisfies (6), since ξ × ξ × V = − |ξ|2 V + ξ (ξ, V ) .

Theorem 2 Let (ej, hj) , j = 1, 2 be arbitrary lines of the matrix (7) and Ω be an
arbitrary convex domain in the space-time X × R. An arbitrary generalized solution of
the Maxwell system without sources in Ω can be written in the form

E =

∫

h=0

exp (ı ((ξ, x) + τt))
[

e1m
1 (ξ, τ) + e2m

2 (ξ, τ)
]

,

H =

∫

h=0

exp (ı ((ξ, x) + τt))
[

h1m
1 (ξ, τ) + h2m

2 (ξ, τ)
]

,

where m1,m2 are some complex-valued densities supported in the variety {h = 0} such
that

∫

exp (pK (Im (ξ, τ)))
(

|ξ|2 + |τ |2 + 1
)−q (∣

∣m1
∣

∣+
∣

∣m2
∣

∣

)

<∞

for an arbitrary compact set K ⊂ Ω and some constant q = q (K) .
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8.4 Cauchy problem

Write the Maxwell system with sources: j̃ = 4πc−1j, ρ̃ = 4πc−1ρ :

∇×H − ∂t (ε̃E) = j̃ (8.8)

∇× E + ∂t (µ̃H) = 0

(∇, µ̃H) = 0

(∇, ε̃E) = ρ̃

and variable coefficients ε = ε (x) , µ = µ (x) . This is a overdetermined system: the
conservation law (∇, j)+∂tρ = 0 is a necessary condition for existence of a solution. The
system is hyperbolic in a sense; we can solve for the Cauchy problem for this system

E (x, 0) = E0 (x) , ∂tE (x, 0) = E1 (x) , H (x, 0) = H0 (x) , ∂tH (x, 0) = H1 (x)

provided more necessary conditions are satisfied:

∇×H0 − ε̃E1 = j (x, 0) , ∇× E0 + µ̃H1 = 0,

∇ (µ̃H0) = ∇ (µ̃H1) = 0, (∇, εE0) = ρ (x, 0) , (∇, εE1) = ∂tρ (x, 0)

These equations together with the conservation law are the consistency conditions.

Theorem 3 Suppose that the coefficients ε, µ are smooth functions in X and the sources
j, ρ ∈ D′ (X × R) and the functions E0, E1, H0, H1 ∈ D′ (X) satisfy the consistency con-
ditions. Then the Cauchy problem for the Maxwell system has unique solution in the
space D′ (X × R) .

Proof. For unknown E,H we denote by Fi, i = 1, 2, 3, 4 the left sides of the equations
(8) respectively. We find

−∂tF1 +∇× µ̃−1F2 ≡ ε̃∂2
t E +∇×

(

µ̃−1∇× E
)

= −∂tj̃

∂tF2 +∇× ε̃−1F1 ≡ µ̃∂2
t H +∇×

(

ε̃−1∇×H
)

= ∇× ε̃−1j̃

We have

∇× µ̃−1∇× E ≡ µ̃−1 (−∆E +∇ (∇, E)) +∇µ̃−1 × (∇× E)

= µ̃−1
(

−∆E +∇
(

ε̃−1F4

)

−∇
(

ε̃−1 (∇ε̃, E)
))

+∇µ̃−1 × (∇× E)

Therefore

− ∂tF1 +∇× µ̃−1F2 + µ̃−1∇
(

ε̃−1F4

)

≡ ε̃∂2
t E − µ̃−1∆E − µ̃−1∇

(

ε̃−1 (∇ε̃, E)
)

+∇µ̃−1 ×∇× E

= −∂tj − µ̃−1∇ (ε̃ρ)

which implies the equation for the electric field

ε̃∂2
t E − µ̃−1∆E − µ̃−1∇

(

ε̃−1 (∇, ε̃E)
)

+∇µ̃−1 ×∇× E = SE
.
= −∂tj̃ − µ̃−1∇ (ε̃ρ̃)
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The principal part is the wave operator with velocity since v = (ε̃µ̃)−1/2 . The Cauchy
problem for this equation and initial data E0, E1 has unique generalized solution E in
X×R. Apply the operator (∇, ) to this equation and get by the consistency of the source

−∂t (∇, F1)−
(

∇, µ̃−1∇
(

ε̃−1F4

))

=
(

∇, ∂tj̃ − µ̃−1∇ (ε̃ρ̃)
)

= −Wρ̃,

where
Wρ̃

.
= ∂2

t ρ̃−
(

∇, µ̃−1∇ (ε̃ρ̃)
)

On the other hand

−∂t (∇, F1)+
(

∇, µ̃−1∇
(

ε̃−1F4

))

= ∂2
t (∇, ε̃E)+

(

∇, µ̃−1∇ (∇, ε̃E)
)

= W (∇, ε̃E) = WF4

hence W (F4 − ρ̃) = 0. The function F4− ρ̃ vanishes for t = 0 together with the first time
derivative in virtue of the consistency conditions.

Lemma 4 The Cauchy problem for the operator W has no more than one solution

From the Lemma we conclude that F4 = ρ̃, which proves the forth equation.
Similarly we find

∂tF2 +∇× ε̃−1F1 − ε̃−1∇
(

µ̃−1F3

)

≡
µ̃∂2

t H − ε̃∆H − ε̃−1∇
(

µ̃−1 (∇µ̃, H)
)

+∇ε̃−1 ×∇×H = SH
.
=
(

∇, ε̃−1j̃
)

This equation has the same principal part up to a scalar factor and we can solve the
Cauchy problem for initial data H0, H1. Arguing as above, we check that this solution
fulfils the third equation. Then we have the system

−∂tF1 +∇× µ̃−1F2 = SE

∂tF2 +∇× ε̃−1F1 = SH

Apply the operator −∂t to the first equation and the operator ∇× µ̃−1 to the second and
take the sum

∂2
t F1 +∇× µ̃−1

(

∇× ε̃−1F1

)

= ∂tSE +∇× µ̃−1SH (8.9)

= −∂t

(

∂tj̃ + µ̃−1∇ (ε̃ρ̃)
)

+∇× µ̃−1
((

∇, ε̃−1j̃
))

We have

∇× µ̃−1
(

∇× ε̃−1F1

)

= ∇
(

µ̃−1
)

×
(

∇× ε̃−1F1

)

+ µ̃−1∇×∇× ε̃−1F1

= ...− µ̃−1∆+∇
(

∇, ε̃−1F1

)

= ...− µ̃−1∆ε̃−1F1 +∇
(

∇
(

ε̃−1
)

, F1

)

+∇
(

ε̃−1 (∇, F1)
)

and the last term vanishes since (∇, F1) = 0. Therefore the left side of (9) is equal to
UF1, where

U
.
= ∂2

t − µ̃−1∆ε̃−1 +∇
(

µ̃−1
)

×
(

∇× ε̃−1·
)

+∇
(

∇
(

ε̃−1
)

, ·
)
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The principal part is again the wave operator with the velocity v. The right side of (9)
is equal to Uρ̃ in virtue of the conservation law. Thus we have U (F1 − ρ̃) = 0. We argue
as above and check the first equation. The second one can verified in the same way. ¤

Proof of Lemma. We will to show that Wu = 0 and u (x, 0) = ut (x, 0) = 0 implies
u = 0. Suppose for simplicity that u (·, t) ∈ H2

2 (X) for any value of time. Then we can
show the integral conservation law

∂t

∫

(

ε̃u2
t + µ̃−1 |∇ (ε̃u)|2

)

dx = 2

∫

ε̃ut

(

utt −
(

∇µ̃−1,∇
)

(ε̃u)
)

dx = 0

It follows that integral of
(

ε̃u2
t + µ̃−1 |∇ (ε̃u)|2

)

dx does not depend of time. It vanishes
for t = 0, hence vanishes for all times. To remove the assumption we continue u = 0 for
t < 0 and change the variables t′ = t + δ |x− x0|2 , x′ = x, where δ > 0, x0 is arbitrary.
The function u has compact support in each hypersurface t′ = τ for any τ. ¤

8.5 Local conservation laws

The quadratic forms

εE2 = ε (E,E) , µH2 = µ (H,H) , S
.
=

v

4π
E ×H

are called electric energy, magnetic energy and energy flux (Poynting vector), respec-
tively. We have dim (εE2dx) = dim (µH2dx) = dimSdx = M (L/T )2 which equals the
dimension of energy.

Consider the Hamiltonian flow F generated by the function h. Its projection to X×R
is the geodesic flow of the metric g = v−2ds2.

Theorem 5 The densities εE2dx, µH2dx are equal and is preserved by the flow F in the
approximation of geometrical optics. The vector field E is orthogonal to H and both are
orthogonal to any trajectory of F. Moreover the halfdensities

µ−1/2E
√
dx, ε−1/2H

√
dx

keep parallel along any trajectory of F .
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