
Preface

This book presents a collection of contributions concerning the task of solv-
ing geometry related problems with suitable algebraic embeddings. It is not
only directed at scientists who already discovered the power of Clifford alge-
bras for their field, but also at those scientists who are interested in Clifford
algebras and want to see how these can be applied to problems in computer
science, signal theory, neural computation, computer vision and robotics. It
was therefore tried to keep this book accessible to newcomers to applica-
tions of Clifford algebra while still presenting up to date research and new
developments.

The aim of the book is twofold. It should contribute to shift the fundamen-
tal importance of adequate geometric concepts into the focus of attention, but
also show the algebraic aspects of formulating a particular problem in terms
of Clifford algebra. Using such an universal, general and powerful algebraic
frame as Clifford algebra, results in multiple gains, such as completeness, lin-
earity and low symbolic complexity of representations. Even problems which
may not usually be classified as geometric, might be better understood by
the human mind when expressed in a geometric language.

As a misleading tendency, mathematical education with respect to geo-
metric concepts disappears more and more from curricula of technical sub-
jects. To a certain degree this is caused by the mathematicians themselves.
What mathematicians today understand as geometry or algebraic geometry
is far from beeing accessible to engineers or computer scientists. This is the
more regrettable as the Erlangen program of Felix Klein [136] on the strong
relations between algebra and geometry is of great potential also for the ap-
plied sciences.

This book is a first attempt to overcome this situation. As computer
scientists and engineers know in principle of the importance of algebra to
gain new qualities of modelling, they will profit from geometric interpreta-
tions of their models. This was also the experience the authors of this book
had made. However, it is not necessarily trivial to translate a geometry re-
lated problem into the language of Clifford algebra. Once translated, it also
needs some experience to manipulate Clifford algebra expressions. The many
applied problems presented in this book should give engineers, computer sci-

VI Preface

entists and physicists a rich set of examples of how to work with Clifford
algebra.

The term ‘geometric problem’ will at times be understood very loosely. For
instance, what relation exists between a Fourier transform or its computation
as FFT (fast Fourier transform algorithm) and geometry? It will become clear
that the Fourier transform is strongly related to symmetry as geometric entity
and that its multidimensional extension necessitates the use of an adequate
algebraic frame if all multidimensional symmetries are to be kept accessible.

William K. Clifford (1845–1879) [47] introduced what he called “geomet-
ric algebra1”. It is a generalisation of Hermann G. Grassmann’s (1809–1877)
exterior algebra and also contains William R. Hamilton’s (1805–1865) quater-
nions. Geometric or Clifford algebra has therefore a strong unifying aspect,
since it allows us to view different geometry related algebraic systems as spe-
cializations of one “mother algebra”. Clifford algebras may therefore find a
use in quite different fields of science, while still sharing the same fundamental
properties.

David Hestenes was one of the first who revived GA in the mid 1960’s and
introduced it in different fields of physics with the goal to make it a unified
mathematical language that encompasses the system of complex numbers, the
quaternions, Grassmann’s exterior algebra, matrix algebra, vector, tensor and
spinor algebras and the algebra of differential forms. In order to achieve this,
he fashioned his GA as a specialization of the general CA which is particularly
well suited for the use in physics and, as it turned out, engineering and
computer science. It is his merit that GA got widely accepted in diverse fields
of physics [116, 113] and engineering. The algebra most similar to Hestenes’s
GA is probably Grassmann’s exterior algebra which is also used by a large
part of the physics community [86]. Those readers who are interested in the
evolution of the relations between algebra and geometry can find a short
overview in [245].

I first became interested in Clifford or geometric algebra by reading a
short paper in Physics World, written by Anthony Garrett [89]. At that time
I was searching for a way to overcome some serious problems of complete
representations of local, intrinsically multidimensional structures in image
processing. I got immediately convinced that the algebraic language presented
in this paper would open the door to formulate a real multidimensional and
linear signal theory. Since then we not only learned how to proceed in that
way, but we also discovered the expressive power of GA for quite different
aspects of multidimensional signal structure [34, 85].

In the Cognitive Systems research group in Kiel, Germany, we are work-
ing on all aspects concerning the design of seeing robot systems [221]. This
includes pattern recognition with neural networks, computer vision, multi-
dimensional signal theory and robot kinematics. We found that in all these

1 Today the terms “geometric algebra” (GA) and “Clifford algebra” (CA) are
being used interchangeably.

Preface VII

fields GA is a particularly useful algebraic frame. In the process of this re-
search we made valuable experiences of how to model problems with GA.
Several contributions to this book present this work2.

Designing a seeing robot system is a task where quite a number of different
competences have to be modelled mathematically. However, in the end the
whole system should appear as one. Furthermore, all competences have to be
organized or have to organize themselves in a cycle, which has perception and
action as two poles. Therefore, it is important to have a common mathemat-
ical language to bring the diverse mathematical disciplines, contributing to
the diverse aspects of the perception-action cycle, closer together and eventu-
ally to fuse them to a general conception of behaviour based system design.
In 1997 we brought to life the international workshop on algebraic frames
for the perception-action cycle (AFPAC) [223], with the intention to further
this fusion of disciplines under the umbrella of a unified algebraic frame.
This workshop brought together researchers from all over the world, many
of whom became authors in this book. In this respect this book may be con-
sidered a collection of research results inspired by the AFPAC’97. Hopefully,
the AFPAC 2000 workshop will be of comparable success.

Another mid-range goal is the design of GA processors for real-time com-
putations in robot vision. Today we have to accept a great gap between the
low symbolic complexity on the one hand and the high numeric complexity
of coding in GA on the other hand. Because available computers cannot even
process complex numbers directly, we have to pay a high computational cost
at times, when using GA libraries. In some cases this is already compensated
by the gain achieved through a concise problem formulation with GA. Nev-
ertheless, full profit in real-time applications is only possible with adequate
processors.

The book is divided into three main sections.
Part I (A Unified Algebraic Approach for Classical Geometries) intro-

duces Euclidean, spherical and hyperbolic geometry in the frame of GA. Also
the geometric modelling capabilities of GA from a general point of view are
outlined. In this first part it will become clear that the language of GA is
developing permanently and that by shaping this language, it can be adapted
to the problems at hand.

David Hestenes, Hongbo Li and Alyn Rockwood summarize in chapter
1 the basic methods, ideas and rules of GA. This survey will be helpful for
the reader as a general reference for all other chapters. Of chapters 2, 3, and
4, written by Hongbo Li et al., I especially want to emphasize two aspects.
Firstly, the use of the so-called conformal split as introduced by Hestenes
[114] in geometric modelling. Secondly, the proposed unification of classical
geometries will become important in modelling catadioptic camera systems
(see [91]), possessing both reflective and refractive components, for robot
vision in a general framework. In chapter 6 Leo Dorst gives an introduction

2 This research was funded since 1997 by the Deutsche Forschungsgemeinschaft.

VIII Preface

to GA which will help to increase the influence of GA on many fields in
computer science. Particularly interesting is his discussion of a very general
filter scheme. Ambjörn Naeve and Lars Svensson present their own way of
constructing GA in chapter 5. Working in the field of computer vision, they
choose to demonstrate their framework in applications to geometrical optics.

Part II (Algebraic Embedding of Signal Theory and Neural Computa-
tion) is devoted to the development of a linear theory of intrinsically multidi-
mensional signals and to make Clifford groups accessible in neural computa-
tions with the aim of developing neural networks as experts of basic geometric
transformations and thus of the shape of objects.

This part is opened by a contribution of Valeri Labunets and his daugh-
ter Ekaterina Rundblad-Labunets, both representing the Russian School of
algebraists. In chapter 7 they emphasize two important aspects of image
processing in the CA framework. These are the modelling of vector-valued
multidimensional signal data, including colour signals, and the formulation of
invariants with that respect. Their framework is presented in a very general
setting and, hopefully, will be picked up by other researchers to study its
application.

The other six chapters of part II are written by the Kiel Cognitive Sys-
tems Group. In chapters 8 to 11 Thomas Bülow, Michael Felsberg and Gerald
Sommer, partially in cooperation with Vladimir Chernov, Samara (Russia)
for the first time are extensively presenting the way to represent intrinsically
multidimensional scalar-valued signals in a linear manner by using a GA em-
bedding. Several aspects are considered, as non-commutative and commuta-
tive hypercomplex Fourier transforms (chapters 8,9), fast algorithms for their
computation (chapter 10), and local, hypercomplex signal representations in
chapter 11. As a field of application of the proposed quaternion-valued Ga-
bor transform in the two dimensional case, the problem of texture analysis is
considered. In that chapter the old problems of signal theory as missing phase
concepts of intrinsically two dimensional signals, embedded in 2D space, and
the missing completeness of local symmetry representation (both problems
have the same roots) could be overcome. Thus, the way to develop a linear
signal theory of intrinsically multidimensional signals is prepared for future
research.

Quite a different topic is handled by Sven Buchholz and Gerald Sommer
in chapters 12 and 13. This is the design of neurons and neural nets (MLPs)
which perform computations in CA. The new quality with respect to mod-
elling neural computation results from the fact that the use of the geometric
product in vector spaces induces a structural bias into the neurons. Looking
onto the data through the glasses of “CA-neurons” gives valuable contraints
while learning the intrinsic (geometric) structure of the data, which results in
an excellent generalization ability. As a nearly equally important aspect the
complexity of computations is drastically reduced because of the linearization

Preface IX

effects of the algebraic embedding. These nets indeed constitute experts for
geometric transformations.

Part III (Geometric Algebra for Computer Vision and Robotics) is con-
cerned with actual topics of projective geometry in modelling computer vision
tasks (chapters 14 to 17) and with the linear modelling of kinematic chains
of points and lines in space (chapters 18 to 21).

In chapter 14, Christian Perwass and Joan Lasenby demonstrate a geo-
metrically intuitive way of using the incidence algebra of projective geometry
in GA to describe multiple view geometry. Especially the use of reciprocal
frames should be emphasized. Many relations which have been derived in
matrix algebra and Grassmann-Cayley algebra in the last years can be found
here again. An application with respect to 3D reconstruction using vanish-
ing points is laid out in chapter 15. Another application is demonstrated in
chapter 16 by Eduardo Bayro-Corrochano and Bodo Rosenhahn with respect
to the computation of the intrinsic parameters of a camera. Using the idea of
the absolute conic in the context of Pascal’s theorem, they develop a method
which is comparable to the use of Kruppa equations.

Hongbo Li and Gerald Sommer present in chapter 17 an alternative way to
chapter 14 of formulating multiple view geometry. In their approach they use
a coordinate-free representation whereby image points are given as vectors
fixed at the optical centre of a camera.

Chapters 18-21 are concerned with kinematics. In chapter 18, Eduardo
Bayro-Corrochano is developing the framework of screw geometry in the lan-
guage of motor algebra, a degenerate algebra isomorphic to that of dual
quaternions. In contrast to dual quaternions, motors relate translation and
rotation as spinors and, thus, result in some cases in simpler expressions. This
is the case especially in considering kinematic chains, as is done by Eduardo
Bayro-Corrochano and Detlev Kähler in chapter 19. They are modelling the
forward and the inverse kinematics of robot arms in that framework. The use
of dual quaternions with respect to motion alignment is studied as a tutorial
paper by Kostas Daniilidis in chapter 20. His experience with this frame-
work is based on a very successful application with respect to the hand-eye
calibration problem in robot vision.

Finally, in chapter 21, Yiwen Zhang, Gerald Sommer and Eduardo Bayro-
Corrochano are designing an extended Kalman filter for the tracking of lines.
Because the motion of lines is intrinsical to the motor algebra, the authors
can demonstrate the performance based on direct observations of such higher
order entities. The presented approach can be considered as 3D-3D pose
estimation based on lines. A more extensive study of 2D-3D pose estimation
based on geometric constraints can be found in [224].

In summary, this book can serve as a reference of the actual state of
applying Clifford algebra as a frame for geometric computing. Furthermore,
it shows that the matter is alive and will hopefully grow and mature fast.

X Preface

Thus, this book is also to be seen as a snapshot of current research and hence
as a “workbench” for further developments in geometric computing.

To complete a project like this book requires the cooperation of the con-
tributing authors. My thanks go to all of them. In particular I would like to
thank Michael Felsberg for his substantial help with the coordination of this
book project. He also prepared the final layout of this book with the help of
the student Thomas Jäger. Many thanks to him, as well.

Kiel, June 2000 Gerald Sommer

Table of Contents

Part I. A Unified Algebraic Approach for Classical Geometries

1. New Algebraic Tools for Classical Geometry
David Hestenes, Hongbo Li, and Alyn Rockwood 3

1.1 Introduction . 3
1.2 Geometric Algebra of a Vector Space . 4
1.3 Linear Transformations . 13
1.4 Vectors as Geometrical Points . 19
1.5 Linearizing the Euclidean Group . 23

2. Generalized Homogeneous Coordinates for
Computational Geometry
Hongbo Li, David Hestenes, and Alyn Rockwood 27

2.1 Introduction . 27
2.2 Minkowski Space with Conformal and Projective Splits 29
2.3 Homogeneous Model of Euclidean Space 33
2.4 Euclidean Spheres and Hyperspheres . 40
2.5 Multi-dimensional Spheres, Planes, and Simplexes 41
2.6 Relation among Spheres and Hyperplanes 46
2.7 Conformal Transformations . 52

3. Spherical Conformal Geometry with Geometric Algebra
Hongbo Li, David Hestenes, and Alyn Rockwood 61

3.1 Introduction . 61
3.2 Homogeneous Model of Spherical Space 62
3.3 Relation between Two Spheres or Hyperplanes 66
3.4 Spheres and Planes of Dimension r . 68
3.5 Stereographic Projection . 70
3.6 Conformal Transformations . 72

3.6.1 Inversions and Reflections . 72
3.6.2 Other Typical Conformal Transformations 73

XII Table of Contents

4. A Universal Model for Conformal Geometries of
Euclidean, Spherical and Double-Hyperbolic Spaces
Hongbo Li, David Hestenes, and Alyn Rockwood 77

4.1 Introduction . 77
4.2 The Hyperboloid Model . 79

4.2.1 Generalized Points . 79
4.2.2 Total Spheres . 83

4.3 The Homogeneous Model . 83
4.3.1 Generalized Points . 84
4.3.2 Total Spheres . 85
4.3.3 Total Spheres of Dimensional r . 89

4.4 Stereographic Projection . 90
4.5 The Conformal Ball Model . 92
4.6 The Hemisphere Model . 93
4.7 The Half-Space Model . 94
4.8 The Klein Ball Model . 97
4.9 A Universal Model for Euclidean, Spherical, and Hyperbolic

Spaces . 99

5. Geo-MAP Unification
Ambjörn Naeve and Lars Svensson . 105

5.1 Introduction . 105
5.2 Historical Background. 106
5.3 Geometric Background . 108

5.3.1 Affine Space . 108
5.3.2 Projective Space . 109

5.4 The Unified Geo-MAP Computational Framework 110
5.4.1 Geo-MAP Unification . 110
5.4.2 A Simple Example . 112
5.4.3 Expressing Euclidean Operations in the Surrounding

Geometric Algebra . 113
5.5 Applying the Geo-MAP Technique to Geometrical Optics 114

5.5.1 Some Geometric-Optical Background 114
5.5.2 Determining the Second Order Law of Reflection for

Planar Light Rays . 115
5.5.3 Interpreting the Second Order Law of Reflection

Geometrically . 121
5.6 Summary and Conclusions . 122

5.6.1 The Geo-MAP Unification Technique 122
5.6.2 Algebraic and Combinatorial Construction of a

Geometric Algebra . 123
5.7 Acknowledgements . 123
5.8 Appendix: Construction of a Geometric Algebra 123

Table of Contents XIII

6. Honing Geometric Algebra for Its Use in the Computer
Sciences
Leo Dorst . 127

6.1 Introduction . 127
6.2 The Internal Structure of Geometric Algebra 128
6.3 The Contraction: An Alternative Inner Product 134
6.4 The Design of Theorems and ‘Filters’ . 136

6.4.1 Proving Theorems . 137
6.4.2 Example: Proof of a Duality . 139
6.4.3 Filter Design to Specification . 141
6.4.4 Example: The Design of the Meet Operation 141

6.5 Splitting Algebras Explicitly . 143
6.6 The Rich Semantics of the Meet Operation 145

6.6.1 Meeting Blades . 145
6.6.2 Meets of Affine Subspaces . 146
6.6.3 Scalar Meets Yield Distances between Subspaces 148
6.6.4 The Euclidean Distance between Affine Subspaces 148

6.7 The Use and Interpretation of Geometric Algebra 150
6.8 Geometrical Models of Multivectors . 151
6.9 Conclusions . 151

Part II. Algebraic Embedding of Signal Theory and Neural
Computation

7. Spatial–Color Clifford Algebras for Invariant Image
Recognition
Ekaterina Rundblad-Labunets and Valeri Labunets 155

7.1 Introduction . 155
7.2 Groups of Transformations and Invariants 157
7.3 Pattern Recognition . 157
7.4 Clifford Algebras as Unified Language for Pattern Recognition 160

7.4.1 Clifford Algebras as Models of Geometrical and
Perceptual Spaces . 160

7.4.2 Clifford Algebra of Motion and Affine Groups of
Metric Spaces . 164

7.4.3 Algebraic Models of Perceptual Color Spaces 165
7.5 Hypercomplex–Valued Moments and Invariants 169

7.5.1 Classical R–Valued Moments and Invariants 169
7.5.2 Generalized Complex Moments and Invariants 175
7.5.3 Triplet Moments and Invariants of Color Images 177
7.5.4 Quaternionic Moments and Invariants of 3–D Images . 180
7.5.5 Hypercomplex–Valued Invariants of n–D Images 183

7.6 Conclusion . 185

XIV Table of Contents

8. Non-commutative Hypercomplex Fourier Transforms of
Multidimensional Signals
Thomas Bülow, Michael Felsberg, and Gerald Sommer 187

8.1 Introduction . 187
8.2 1-D Harmonic Transforms . 188
8.3 2-D Harmonic Transforms . 191

8.3.1 Real and Complex Harmonic Transforms 191
8.3.2 The Quaternionic Fourier Transform (QFT) 192

8.4 Some Properties of the QFT . 194
8.4.1 The Hierarchy of Harmonic Transforms 194
8.4.2 The Main QFT-Theorems . 196

8.5 The Clifford Fourier Transform . 205
8.6 Historical Remarks . 206
8.7 Conclusion . 207

9. Commutative Hypercomplex Fourier Transforms of
Multidimensional Signals
Michael Felsberg, Thomas Bülow, and Gerald Sommer 209

9.1 Introduction . 209
9.2 Hypercomplex Algebras . 210

9.2.1 Basic Definitions . 210
9.2.2 The Commutative Algebra H2 . 212

9.3 The Two-Dimensional Hypercomplex Fourier Analysis 213
9.3.1 The Two-Dimensional Hypercomplex Fourier Transform213
9.3.2 Main Theorems of the HFT2. 216
9.3.3 The Affine Theorem of the HFT2. 218

9.4 The n-Dimensional Hypercomplex Fourier Analysis 221
9.4.1 The Isomorphism between Hn and the 2n−1-Fold

Cartesian Product of C . 221
9.4.2 The n-Dimensional Hypercomplex Fourier Transform . 227

9.5 Conclusion . 229

10. Fast Algorithms of Hypercomplex Fourier Transforms
Michael Felsberg, Thomas Bülow, Gerald Sommer, and
Vladimir M. Chernov . 231

10.1 Introduction . 231
10.2 Discrete Quaternionic Fourier Transform and Fast

Quaternionic Fourier Transform . 232
10.2.1 Derivation of DQFT and FQFT . 232
10.2.2 Optimizations by Hermite Symmetry 236
10.2.3 Complexities . 240

10.3 Discrete and Fast n-Dimensional Transforms 242

Table of Contents XV

10.3.1 Discrete Commutative Hypercomplex Fourier
Transform and Fast Commutative Hypercomplex
Fourier Transform . 242

10.3.2 Optimizations and Complexities . 245
10.4 Fast Algorithms by FFT . 247

10.4.1 Cascading 1-D FFTs . 247
10.4.2 HFT by Complex Fourier Transform 250
10.4.3 Complexities . 251

10.5 Conclusion and Summary . 254

11. Local Hypercomplex Signal Representations and
Applications
Thomas Bülow and Gerald Sommer . 255

11.1 Introduction . 255
11.2 The Analytic Signal . 256

11.2.1 The One-Dimensional Analytic Signal 257
11.2.2 Complex Approaches to the Two-Dimensional

Analytic Signal . 259
11.2.3 The 2-D Quaternionic Analytic Signal 265
11.2.4 Instantaneous Amplitude . 267
11.2.5 The n-Dimensional Analytic Signal 267

11.3 Local Phase in Image Processing . 270
11.3.1 Local Complex Phase . 270
11.3.2 Quaternionic Gabor Filters . 272
11.3.3 Local Quaternionic Phase . 273
11.3.4 Relations between Complex and Quaternionic Gabor

Filters . 276
11.3.5 Algorithmic Complexity of Gabor Filtering 278

11.4 Texture Segmentation Using the Quaternionic Phase 279
11.4.1 The Gabor Filter Approach . 280
11.4.2 Quaternionic Extension of Bovik’s Approach 281
11.4.3 Experimental Results . 283
11.4.4 Detection of Defects in Woven Materials 284

11.5 Conclusion . 289

12. Introduction to Neural Computation in Clifford Algebra
Sven Buchholz and Gerald Sommer . 291

12.1 Introduction . 291
12.2 An Outline of Clifford Algebra . 292
12.3 The Clifford Neuron . 295

12.3.1 The Real Neuron . 296
12.3.2 The Clifford Neuron . 297

12.4 Clifford Neurons as Linear Operators . 299
12.4.1 The Clifford Group . 300

XVI Table of Contents

12.4.2 Spinor Neurons . 302
12.4.3 Simulations with Spinor Neurons 305

12.5 Möbius Transformations . 309
12.6 Summary . 314

13. Clifford Algebra Multilayer Perceptrons
Sven Buchholz and Gerald Sommer . 315

13.1 Introduction and Preliminaries . 315
13.2 Universal Approximation by Clifford MLPs 317
13.3 Activation Functions . 320

13.3.1 Real Activation Functions . 321
13.3.2 Activation Function of Clifford MLPs 322

13.4 Clifford Back–Propagation Algorithm . 324
13.5 Experimental Results . 327
13.6 Conclusions and Outlook . 334

Part III. Geometric Algebra for Computer Vision and Robotics

14. A Unified Description of Multiple View Geometry
Christian B.U. Perwass and Joan Lasenby . 337

14.1 Introduction . 337
14.2 Projective Geometry . 338
14.3 The Fundamental Matrix . 341

14.3.1 Derivation . 341
14.3.2 Rank of F . 343
14.3.3 Degrees of Freedom of F . 345
14.3.4 Transferring Points with F . 345
14.3.5 Epipoles of F . 346

14.4 The Trifocal Tensor . 346
14.4.1 Derivation . 346
14.4.2 Transferring Lines . 348
14.4.3 Transferring Points . 349
14.4.4 Rank of T . 350
14.4.5 Degrees of Freedom of T . 351
14.4.6 Constraints on T . 351
14.4.7 Relation between T and F . 353
14.4.8 Second Order Constraints . 356
14.4.9 Epipoles . 357

14.5 The Quadfocal Tensor . 358
14.5.1 Derivation . 358
14.5.2 Transferring Lines . 359
14.5.3 Rank of Q . 359
14.5.4 Degrees of Freedom of Q . 361

Table of Contents XVII

14.5.5 Constraints on Q . 361
14.5.6 Relation between Q and T . 362

14.6 Reconstruction and the Trifocal Tensor . 364
14.7 Conclusion . 369

15. 3D-Reconstruction from Vanishing Points
Christian B.U. Perwass and Joan Lasenby . 371

15.1 Introduction . 371
15.2 Image Plane Bases . 372
15.3 Plane Collineation . 375
15.4 The Plane at Infinity and Its Collineation 378
15.5 Vanishing Points and P∞ . 380

15.5.1 Calculating Vanishing Points . 380
15.5.2 Vanishing Points from Multiple Parallel Lines 381
15.5.3 Ψ∞ from Vanishing Points . 381

15.6 3D-Reconstruction of Image Points . 382
15.6.1 The Geometry . 382
15.6.2 The Minimization Function . 383

15.7 Experimental Results . 386
15.7.1 Synthetic Data . 387
15.7.2 Real Data . 390

15.8 Conclusions . 392

16. Analysis and Computation of the Intrinsic Camera
Parameters
Eduardo Bayro-Corrochano and Bodo Rosenhahn 393

16.1 Introduction . 393
16.2 Conics and the Theorem of Pascal . 394
16.3 Computing the Kruppa Equations in the Geometric Algebra . 396

16.3.1 The Scenario . 396
16.3.2 Standard Kruppa Equations . 398
16.3.3 Kruppa’s Equations Using Brackets 402

16.4 Camera Calibration Using Pascal’s Theorem 404
16.4.1 Computing Stationary Intrinsic Parameters 405
16.4.2 Computing Non–stationary Intrinsic Parameters 409

16.5 Experimental Analysis . 411
16.5.1 Experiments with Simulated Images 411
16.5.2 Experiments with Real Images . 412

16.6 Conclusions . 414

XVIII Table of Contents

17. Coordinate-Free Projective Geometry for Computer
Vision
Hongbo Li and Gerald Sommer . 415

17.1 Introduction . 415
17.2 Preparatory Mathematics . 417

17.2.1 Dual Bases . 417
17.2.2 Projective and Affine Spaces . 418
17.2.3 Projective Splits . 419

17.3 Camera Modeling and Calibration . 421
17.3.1 Pinhole Cameras . 421
17.3.2 Camera Constraints . 423
17.3.3 Camera Calibration . 423

17.4 Epipolar and Trifocal Geometries . 424
17.4.1 Epipolar Geometry . 424
17.4.2 Trifocal Geometry . 426

17.5 Relations among Epipoles, Epipolar Tensors, and Trifocal
Tensors of Three Cameras . 429
17.5.1 Relations on Epipolar Tensors . 430
17.5.2 Relations on Trifocal Tensors I . 431
17.5.3 Relations on Trifocal Tensors II . 433
17.5.4 Relations on Trifocal Tensors III 435
17.5.5 Relations on Trifocal Tensors IV 437
17.5.6 Relations on Trifocal Tensors V . 442
17.5.7 Relations on Trifocal Tensors VI 443
17.5.8 A Unified Treatment of Degree-six Constraints 446

17.6 Conclusion . 453

18. The Geometry and Algebra of Kinematics
Eduardo Bayro-Corrochano . 455

18.1 Introduction . 455
18.2 The Euclidean 3D Geometric Algebra . 457

18.2.1 3D Rotors . 457
18.3 The 4D Geometric Algebra for 3D Kinematics 458

18.3.1 The Motor Algebra . 459
18.3.2 Motors, Rotors, and Translators . 459
18.3.3 Properties of Motors . 463

18.4 Representation of Points, Lines, and Planes Using 3D and 4D
Geometric Algebras . 465
18.4.1 Representation of Points, Lines, and Planes in the 3D

GA . 465
18.4.2 Representation of Points, Lines, and Planes in the 4D

GA . 466
18.5 Modeling the Motion of Points, Lines, and Planes Using 3D

and 4D Geometric Algebras . 467

Table of Contents XIX

18.5.1 Motion of Points, Lines, and Planes in the 3D GA 467
18.5.2 Motion of Points, Lines, and Planes in the 4D GA 468

18.6 Conclusion . 470

19. Kinematics of Robot Manipulators
in the Motor Algebra
Eduardo Bayro-Corrochano and Detlef Kähler 471

19.1 Introduction . 471
19.2 Motor Algebra for the Kinematics of Robot Manipulators . . . 472

19.2.1 The Denavit–Hartenberg Parameterization 473
19.2.2 Representations of Prismatic and

Revolute Transformations . 474
19.2.3 Grasping by Using Constraint Equations 477

19.3 Direct Kinematics of Robot Manipulators 478
19.3.1 Maple Program for Motor Algebra Computations 480

19.4 Inverse Kinematics of Robot Manipulators 481
19.4.1 The Rendezvous Method . 482
19.4.2 Computing θ1, θ2 and d3 Using a Point Representation 482
19.4.3 Computing θ4 and θ5 Using a Line Representation 485
19.4.4 Computing θ6 Using a Plane Representation 487

19.5 Conclusion . 488

20. Using the Algebra of Dual Quaternions for Motion
Alignment
Kostas Daniilidis . 489

20.1 Introduction . 489
20.2 Even Subalgebras of Non-degenerate Rp,q,r 490
20.3 Even Subalgebras of Degenerate Rp,q,r . 491
20.4 Line Transformation . 493
20.5 Motion Estimation from 3D-Line Matches 494
20.6 The Principle of Transference . 496
20.7 Relating Coordinate Systems to Each Other 498
20.8 Conclusion . 499

21. The Motor Extended Kalman Filter for Dynamic Rigid
Motion Estimation from Line Observations
Yiwen Zhang, Gerald Sommer, and
Eduardo Bayro-Corrochano . 501

21.1 Introduction . 501
21.2 Kalman Filter Techniques . 504

21.2.1 The Kalman Filter . 504
21.2.2 The Extended Kalman Filter . 506

21.3 3-D Line Motion Model . 507

XX Table of Contents

21.3.1 Geometric Algebra G+
3,0,1 and Plücker Line Model 507

21.3.2 Plücker Line Motion Model in G+
3,0,1 509

21.3.3 Interpretation of the Plücker Line Motion Model in
Linear Algebra . 513

21.4 The Motor Extended Kalman Filter . 515
21.4.1 Discrete Dynamic Model Using Motor State 515
21.4.2 Linearization of the Measurement Model 516
21.4.3 Constraints Problem . 517
21.4.4 The MEKF Algorithm . 518
21.4.5 A Batch Method of Analytical Solution 519

21.5 Experimental Analysis of the MEKF . 521
21.5.1 Simulation. 521
21.5.2 Real Experiment . 524

21.6 Conclusion . 528

References . 531

Author Index . 543

Subject Index . 545

List of Contributors

E.Bayro-Corrochano L. Dorst
Centro de Investigacion en Dept. of Computer Science
Matematicas, A.C. University of Amsterdam
Apartado Postal 402 Kruislaan 403
36000-Guanajuato 1012 VE Amsterdam
Gto. Mexico The Netherlands
edb@fractal.cimat.mx leo@wins.uva.nl

S. Buchholz M.Felsberg
Institute of Computer Science Institute of Computer Science
and Applied Mathematics and Applied Mathematics
Christian-Albrechts-University of Kiel Christian-Albrechts-University of Kiel
Preußerstr. 1-9, D-24105 Kiel Preußerstr. 1-9, D-24105 Kiel
Germany Germany
sbh@ks.informatik.uni-kiel.de mfe@ks.informatik.uni-kiel.de

T. Bülow D.Hestenes
Institute of Computer Science Dept. of Physics and Astronomy
and Applied Mathematics
Christian-Albrechts-University of Kiel Arizona State University
Preußerstr. 1-9, D-24105 Kiel Tempe, AZ 85287-1504
Germany USA
tbl@ks.informatik.uni-kiel.de hestenes@asu.edu

V. M.Chernov D.Kähler
Image Processing System Institute Institute of Computer Science

and Applied Mathematics
Russian Academy of Sciences Christian-Albrechts-University of Kiel
443001 Samara Preußerstr. 1-9, D-24105 Kiel
Russia Germany
vche@smr.ru dek@ks.informatik.uni-kiel.de

K.Daniilidis V. Labunets
GRASP Laboratory Signal Processing Laboratory
University of Pennsylvania Tampere University of Technology
3401 Walnut Street, Suite 336C
Philadelphia, PA 19104-6228 Tampere
USA Finland
kostas@grip.cis.upenn.edu lab@cs.tut.fi

XXII List of Contributors

J. Lasenby B. Rosenhahn
Engineering Department Institute of Computer Science

and Applied Mathematics
Cambridge University Christian-Albrechts-University of Kiel
Trumpington Street, Cambridge CB2 1PZ Preußerstr. 1-9, D-24105 Kiel
UK Germany
jl@eng.cam.ac.uk bro@ks.informatik.uni-kiel.de

H.Li E.Rundblad-Labunets
Institute of Systems Science Signal Processing Laboratory
Academia Sinica Tampere University of Technology
Beijing 100080 Tampere
P. R. China Finland
hli@mmrc.iss.ac.cn

A.Naeve G. Sommer
Dept. of Numerical Analysis and Institute of Computer Science
Computing Science and Applied Mathematics
Royal Institute of Technology Christian-Albrechts-University of Kiel
100 44 Stockholm Preußerstr. 1-9, D-24105 Kiel
Sweden Germany
amb@nada.kth.se gs@ks.informatik.uni-kiel.de

C.Perwass L. Svensson
Institute of Computer Science Dept. of Mathematics
and Applied Mathematics
Christian-Albrechts-University of Kiel Royal Institute of Technology
Preußerstr. 1-9, D-24105 Kiel 100 44 Stockholm
Germany Sweden
chp@ks.informatik.uni-kiel.de larss@math.kth.se

A.Rockwood Y. Zhang
Power Take Off Software, Inc. Institute of Computer Science

and Applied Mathematics
18375 Highland Estates Dr. Christian-Albrechts-University of Kiel
Colorado Springs, CO 80908 Preußerstr. 1-9, D-24105 Kiel
USA Germany

yz@ks.informatik.uni-kiel.de

Part I

A Unified Algebraic Approach for Classical

Geometries

1. New Algebraic Tools for Classical

Geometry∗

David Hestenes1, Hongbo Li1, and Alyn Rockwood2

1 Department of Physics and Astronomy
Arizona State University, Tempe

2 Power Take Off Software, Inc., Colorado Springs

1.1 Introduction

Classical geometry has emerged from efforts to codify perception of space and
motion. With roots in ancient times, the great flowering of classical geome-
try was in the 19th century, when Euclidean, non-Euclidean and projective
geometries were given precise mathematical formulations and the rich proper-
ties of geometric objects were explored. Though fundamental ideas of classical
geometry are permanently imbedded and broadly applied in mathematics and
physics, the subject itself has practically disappeared from the modern math-
ematics curriculum. Many of its results have been consigned to the seldom-
visited museum of mathematics history, in part, because they are expressed
in splintered and arcane language. To make them readily accessible and use-
ful, they need to be reexamined and integrated into a coherent mathematical
system.

Classical geometry has been making a comeback recently because it is use-
ful in such fields as Computer-Aided Geometric Design (CAGD), CAD/CAM,
computer graphics, computer vision and robotics. In all these fields there is
a premium on computational efficiency in designing and manipulating geo-
metric objects. Our purpose here is to introduce powerful new mathematical
∗ This work has been partially supported by NSF Grant RED-9200442.

4 David Hestenes, Hongbo Li, Alyn Rockwood

tools for meeting that objective and developing new insights within a unified
algebraic framework. In this and subsequent chapters we show how classical
geometry fits neatly into the broader mathematical system of Geometric Al-
gebra (GA) and its extension to a complete Geometric Calculus (GC) that
includes differential forms and much more.

Over the last four decades GC has been developed as a universal geo-
metric language for mathematics and physics. This can be regarded as the
culmination of an R & D program innaugurated by Hermann Grassmann in
1844 [98, 115]. Literature on the evolution of GC with extensive applications
to math and physics can be accessed from the GC web site

<http://ModelingNTS.la.asu.edu/GC R&D.html>.

Here, we draw on this rich source of concepts, tools and methods to enrich
classical geometry by integrating it more fully into the whole system.

This chapter provides a synopsis of basic tools in Geometric Algebra to
set the stage for further elaboration and applications in subsequent chapters.
To make the synopsis compact, proofs are omitted. Geometric interpretation
is emphasized, as it is essential for practical applications.

In classical geometry the primitive elements are points, and geometric
objects are point sets with properties. The properties are of two main types:
structural and transformational. Objects are characterized by structural rela-
tions and compared by transformations. In his Erlanger program, Felix Klein
[135] classified geometries by the transformations used to compare objects
(for example, similarities, projectivities, affinities, etc). Geometric Algebra
provides a unified algebraic framework for both kinds of properties and any
kind of geometry.

1.2 Geometric Algebra of a Vector Space

The terms “vector space” and “linear space” are ordinarily regarded as syn-
onymous. While retaining the usual concept of linear space, we enrich the
concept of vector space by defining a special product among vectors that
characterizes their relative directions and magnitudes. The resulting geomet-
ric algebra suffices for all the purposes of linear and multilinear algebra. We
refer the reader to the extensive treatment of geometric algebra in [117] and
to the GC Web site, so that we can give a more concise treatment here.

Basic Definitions

As a rule, we use lower case letters to denote vectors, lower case Greek letters
to denote scalars and calligraphic capital letters to denote sets.

First, we define geometric algebra. Let Vn be an n-dimensional vector
space over real numbers R. The geometric algebra Gn = G(Vn) is gener-
ated from Vn by defining the geometric product as a multilinear, associative
product satisfying the contraction rule:

1. New Algebraic Tools for Classical Geometry 5

a2 = εa|a|2, for a ∈ Vn, (1.1)

where εa is 1, 0 or −1, |a| ≥ 0, and |a| = 0 if a = 0. The integer εa is called
the signature of a; the scalar |a| is its magnitude. When a 6= 0 but |a| = 0, a
is said to be a null vector.

In the above definition, “multi-linearity” means

a1 · · · (b1 + · · · + br) · · · as = (a1 · · · b1 · · ·as) + · · · + (a1 · · · br · · · as),
(1.2)

for any vectors a1, · · · , as, b1, · · · , br and any position of b1 + · · · + br in the
geometric product. Associativity means

a(bc) = (ab)c, for a, b, c ∈ Vn. (1.3)

An element M in Gn is invertible if there exists an element N in Gn such
that MN = NM = 1. The element N , if it exists, is unique. It is called the
inverse of M , and is denoted by M−1. For example, null vectors in Vn are not
invertible, but any non-null vector a is invertible, with a−1 = 1/a = a/a2.
This capability of GA for division by vectors greatly facilitates computations.

From the geometric product, two new kinds of product can be defined. For
a, b ∈ Vn, the scalar-valued quantity

a · b = 1
2 (ab+ ba) = b · a (1.4)

is called the inner product; the (nonscalar) quantity

a ∧ b = 1
2 (ab− ba) = −b ∧ a (1.5)

is called the outer product. Therefore, the geometric product

ab = a · b+ a ∧ b (1.6)

decomposes into symmetric and anti-symmetric parts.
The outer product of r vectors can be defined as the anti-symmetric part

of the geometric product of the r vectors. It is called an r-blade, or a blade
of grade r. A linear combination of r-blades is called an r-vector. The set of
r-vectors is an

(
n
r

)
-dimensional subspace of Gn, denoted by Grn. The whole of

Gn is given by the subspace sum

Gn =

n∑

i=0

Gin. (1.7)

A generic element in Gn is called a multivector. According to (1.7), every
multivector M can be written in the expanded form

M =

n∑

i=0

〈M〉i , (1.8)

6 David Hestenes, Hongbo Li, Alyn Rockwood

where 〈M〉i denotes the i-vector part. The dimension of Gn is
n∑
i=0

(
n

i

)
= 2n.

By associativity and multi-linearity, the outer product extended to any
finite number of multivectors and to scalars, with the special proviso

λ ∧M = M ∧ λ = λM, for λ ∈ R,M ∈ Gn. (1.9)

The inner product of an r-blade a1 ∧ · · · ∧ ar with an s-blade b1 ∧ · · · ∧ bs
can be defined recursively by

(a1 ∧ · · · ∧ ar) · (b1 ∧ · · · ∧ bs)
=

{
((a1 ∧ · · · ∧ ar) · b1) · (b2 ∧ · · · ∧ bs) if r ≥ s
(a1 ∧ · · · ∧ ar−1) · (ar · (b1 ∧ · · · ∧ bs)) if r < s

,
(1.10a)

and

(a1 ∧ · · · ∧ ar) · b1
=

r∑
i=1

(−1)r−ia1 ∧ · · · ∧ ai−1 ∧ (ai · b1) ∧ ai+1 ∧ · · · ∧ ar,
ar · (b1 ∧ · · · ∧ bs)

=
s∑
i=1

(−1)i−1b1 ∧ · · · ∧ bi−1 ∧ (ar · bi) ∧ bi+1 ∧ · · · ∧ bs.

(1.10b)

By bilinearity, the inner product is extended to any two multivectors, if

λ ·M = M · λ = 0, for λ ∈ R, M ∈ Gn. (1.11)

For any blades A and B with nonzero grades r and s we have

A ·B = 〈AB 〉| r−s | , (1.12)

A ∧B = 〈AB 〉r+s . (1.13)

These relations can be adopted as alternative definitions of inner and outer
products or derived as theorems.

An automorphism f of Gn is an invertible linear mapping that preserves
the geometric product:

f(M1M2) = f(M1)f(M2), for M1,M2 ∈ Gn. (1.14)

More generally, this defines an isomorphism f from one geometric algebra to
another.

An anti-automorphism g is a linear mapping that reverses the order of
geometric products:

g(M1M2) = g(M2)g(M1), for M1,M2 ∈ Gn. (1.15)

The main anti-automorphism of Gn, also called reversion, is denoted by “†”,
and defined by

1. New Algebraic Tools for Classical Geometry 7

〈M †〉i = (−1)
i(i−1)

2 〈M〉i, for M ∈ Gn, 0 ≤ i ≤ n. (1.16)

An involution h is an invertible linear mapping whose composition with
itself is the identity map:

h(h(M)) = M, for M ∈ Gn. (1.17)

The main involution of Gn, also called grade involution or parity conjugation,
is denoted by “∗”, and defined by

〈M∗〉i = (−1)i〈M〉i, for M ∈ Gn, 0 ≤ i ≤ n. (1.18)

For example, for vectors a1, · · · , ar, we have

(a1 · · · ar)† = ar · · ·a1, (a1 · · · ar)∗ = (−1)ra1 · · · ar. (1.19)

A multivector M is said to be even, or have even parity, if M ∗ = M ; it is
odd, or has odd parity, if M∗ = −M .

The concept of magnitude is extended from vectors to any multivector M
by

|M | =

√√√√
n∑

i=0

|〈M〉i|2, (1.20a)

where

|〈M〉i| =
√
|〈M〉i · 〈M〉i|. (1.20b)

A natural scalar product on the whole of Gn is defined by

〈MN †〉 = 〈NM †〉 =

n∑

i=0

〈〈M〉i〈N〉†i 〉, (1.21)

where 〈· · · 〉 = 〈· · · 〉0 denotes the “scalar part.” When scalar parts are used
frequently it is convenient to drop the subscript zero.

In Gn, the maximal grade of a blade is n, and any blade of grade n is
called a pseudoscalar. The space Vn is said to be non-degenerate if it has
a pseudoscalar with nonzero magnitude. In that case the notion of duality
can be defined algebraically. Let In be a pseudoscalar with magnitude 1,
designated as the unit pseudoscalar. The dual of a multivector M in Gn is
then defined by

M̃ = M∼ = MI−1
n , (1.22)

where I−1
n differs from In by at most a sign. The dual of an r-blade is an

(n − r)-blade; in particular, the dual of an n-blade is a scalar, which is why
an n-blade is called a pseudoscalar.

8 David Hestenes, Hongbo Li, Alyn Rockwood

Inner and outer products are dual to one another, as expressed by the
following identities that hold for any vector a and multivector M :

(a ·M)In = a ∧ (MIn) , (1.23a)

(a ∧M)In = a · (MIn) . (1.23b)

Duality enables us to define the meet M∨N of multivectorsM,N with (grade
M) + (grade M) ≥ n by

M ∨N = M̃ ·N . (1.24)

The meet satisfies the “deMorgan rule”

(M ∨N)∼ = M̃ ∧ Ñ. (1.25)

As shown below, the meet can be interpreted as an algebraic representation
for the intersection of vector subspaces. More generally, it can be used to
describe “incidence relations” in geometry [118].

Many other products can be defined in terms of the geometric product.
The commutator product A×B is defined for any A and B by

A×B ≡ 1
2 (AB −BA) = −B ×A . (1.26)

Mathematicians classify this product as a “derivation” with respect to the
geometric product, because it has the “distributive property”

A× (BC) = (A×B)C +B(A× C) . (1.27)

This implies the Jacobi identity

A× (B × C) = (A×B) × C +B × (A× C) , (1.28)

which is a derivation on the commutator product. The relation of the com-
mutator product to the inner and outer products is grade dependent; thus,
for a vector a,

a× 〈M 〉k = a ∧ 〈M 〉k if k is odd , (1.29a)

a× 〈M 〉k = a · 〈M 〉k if k is even . (1.29b)

The commutator product is especially useful in computations with bivectors.
With any bivector A this product is grade preserving:

A× 〈M 〉k = 〈A×M 〉k . (1.30)

In particular, this implies that the space of bivectors is closed under the
commutator product. Consequently, it forms a Lie algebra. The geometric
product of bivector A with M has the expanded form

AM = A ·M +A×M +A ∧M for grade M ≥ 2 . (1.31)

1. New Algebraic Tools for Classical Geometry 9

Compare this with the corresponding expansion (1.6) for the product of vec-
tors.

Blades and Subspaces

The elements of Gn can be assigned a variety of different geometric inter-
pretations appropriate for different applications. For one, geometric algebra
characterizes geometric objects composed of points that are represented by
vectors in Vn.

To every r-dimensional subspace in Vn, there is an r-blade Ar such that
the subspace is the solution set of the equation

x ∧ Ar = 0, for x ∈ Vn. (1.32)

According to this equation, Ar is unique to within a nonzero scalar factor.
This subspace generates a geometric algebra G(Ar). Conversely, the subspace
itself is uniquely determined by Ar. Therefore, as discussed in [117], the
blades in Vn determine an algebra of subspaces for Vn. The blade Ar can be
regarded as a directed measure (or r-volume) on the subspace, with magni-
tude |Ar| and an orientation. Thus, since Ar determines a unique subspace,
the two blades Ar and −Ar determine two subspaces of the same vectors but
opposite orientation. The blades of grade r form a manifold G(r, n) called a
Grassmannian. The algebra of blades is therefore an algebraic structure for
G(r, n), and the rich literature on Grassmannians [104] can be incorporated
into GC.

3a

3a

3a

a1

a1

a1

2a

2a

2a

O

V

V

V

Fig. 1.1. Blades in the space
of a1 ∧ a2 ∧ a3, where the ai

are vectors

10 David Hestenes, Hongbo Li, Alyn Rockwood

Vectors a1, · · · , ar, are linearly dependent if and only if a1 ∧ · · · ∧ ar = 0.
The r-blade a1∧· · ·∧ar represents the r-dimensional subspace of Vn spanned
by them, if they are linearly independent. The case r = 3 is illustrated in Fig
1.1.

The square of a blade is always a scalar, and a blade is said to be null
if its square is zero. Null blades represent degenerate subspaces. For a non-
degenerate r-subspace, we often use a unit blade, say Ir , to denote it. For
any two pseudoscalars Ar, Br in G(Ir), since ArB

−1
r = B−1

r Ar is a scalar, we
can write it Ar/Br.

3a

a1

2a

O

V

(a1 2a)V ~

a1 2a V

(a1 2a)V (a1 3a)V

(a1 3a)V

a1 3a V

~

a1
~

Fig. 1.2. Dual and
meet in the space of
a1 ∧ a2 ∧ a3

Figure 1.2 illustrates duality and meet in G3 generated by vectors a1, a2, a3.
Notice the collinearity of vectors a1 and (a1 ∧ a3) ∨ (a1 ∧ a2).

In a non-degenerate space, the dual of a blade represents the orthogonal
complement of the subspace represented by the blade. The meet of two blades,
if nonzero, represents the intersection of the two subspaces represented by the
two blades respectively.

Two multivectors are said to be orthogonal or perpendicular to one an-
other, if their inner product is zero. An r-blade Ar and s-blade Bs are or-
thogonal if and only if (1) when r ≥ s there exists a vector in the space of
Bs, that is orthogonal to every vector in the space of Ar, and (2) when r < s
there exists a vector in the space of Ar that is orthogonal to every vector in
the space of Bs.

Let Ar be a non-degenerate r-blade in Gn. Then any vector x ∈ Vn has a
projection onto the space of Ar defined by

PAr (x) = (x ·Ar)A−1
r . (1.33)

Its rejection from the space of Ar is defined by

P⊥
Ar

(x) = (x ∧Ar)A−1
r . (1.34)

1. New Algebraic Tools for Classical Geometry 11

3a

a1

2a

O

V

3a
2a

a1

V

3a)
2(a .

1P (a)
3a2a

V

1P (a)
3a2a

V

Fig. 1.3. Projection, rejection and inner product in the space of a1 ∧ a2 ∧ a3

Therefore,

x = PAr (x) + P⊥
Ar

(x) (1.35)

is the orthogonal decomposition of Vn with respect to the Ar.
Figure 1.3 shows the projection and rejection of vector a1 with respect to

the space a2 ∧ a3, together with the inner product a1 · (a2 ∧ a3). Note that
the vector a1 · (a2 ∧ a3) is perpendicular to the vector Pa2∧a3(a1).

Frames

If a blade Ar admits the decomposition

Ar = a1 ∧ a2 ∧ . . . ∧ ar , (1.36)

the set of vectors {ai ; i = 1, . . . , r} is said to be a frame (or basis) for Ar
and the vector space it determines. Also, Ar is said to be the pseudoscalar
for the frame. A dual frame {ai} is defined by the equations

ai · aj = δij . (1.37)

If Ar is invertible, these equations can be solved for the ai, with the result

ai = (−1)i+1(a1 ∧ . . . ∧ ǎi ∧ . . . ∧ ar)A−1
r , (1.38)

where ǎi indicates that ai is omitted from the product. Moreover,

A−1
r = a1 ∧ a2 ∧ . . . ∧ ar. (1.39)

In this way geometric algebra greatly facilitates manipulations with frames
for vector spaces.

Differentiation

Let a =
∑
i α

iai be a vector variable with coordinates αi = a · ai defined on
the space of Ar as specified by (1.36). The vector derivative with respect to

12 David Hestenes, Hongbo Li, Alyn Rockwood

a on Ar can be defined by

∂a =
∑

i

ai
∂

∂αi
. (1.40)

It can be defined without introducing coordinates, but this approach relates
it to standard partial derivatives. The following table of derivatives is easily
derived. For any vector b in Vn:

∂a(a · b) = b · ∂aa =
∑

i a
i(ai · b) = PAr (b), (1.41a)

∂aa
2 = 2a, (1.41b)

∂aa = ∂a · a = r, (1.41c)

∂a ∧ a = 0. (1.41d)

Of course Ar could be the pseudoscalar for Vn.
[117] generalizes differentiation to any multivector variable defined on Gn

or any of its subspaces. The derivative ∂X with respect to a multivector
variable X is characterized by the basic identity

∂X〈XA 〉 = 〈A 〉X = 〈A∂X 〉X , (1.42)

where A is independent of X , 〈 . . . 〉 means scalar part, and 〈A 〉X means
“select from A only those grades which are contained in X .” If A has the
same grade as X then 〈A 〉X = A. It follows that

∂X〈 X̃A 〉 = 〈 Ã 〉X . (1.43)

The operator 〈A∂X 〉 is a kind of generalized directional derivative defined
by

〈A∂X 〉F (X) ≡ d

dε
F (X + εA)

∣∣
ε=0

, (1.44)

where ε is a scalar parameter and F is any differentiable function of X .
Applied to F (X) = X , this yields the right equality in (1.42). If A has the
same grade as X , then the left equality in (1.42) gives

∂X = ∂A〈A∂X 〉 , (1.45)

so the general multivector derivative ∂XF (X) can be obtained from the “di-
rectional derivative” (1.44). From (1.44) one derives the sum, product and
chain rules for differential operators. Of course, the vector derivative with its
properties (1.40) to (1.41d) is a special case, as is the usual scalar derivative.

Signature

So far, a particular signature has not been attributed to Vn to emphasize
the fact that, for many purposes, signature is inconsequential. To account

1. New Algebraic Tools for Classical Geometry 13

for signature, we introduce the alternative notation Rp,q,r to denote a real
vector space of dimension n = p + q + r, where p, q and r are, respectively,
the dimensions of subspaces spanned by vectors with positive, negative and
null signatures. Let Rp,q,r = G(Rp,q,r) denote the geometric algebra of Rp,q,r,
and let Rkp,q,r denote the

(
n
r

)
-dimensional subspace of k-vectors, so that

Rp,q,r =
n∑

k=0

Rkp,q,r . (1.46)

A pseudoscalar In for Rp,q,r factors into

In = ApBqCr , (1.47)

where the factors are pseudoscalars for the three different kinds of subspaces.
The algebra is said to be non-degenerate if In is invertible. That is possible

only if r = 0, so n = p+ q and

In = ApBq . (1.48)

In that case we write Rp,q = Rp,q,0 and Rp,q = Rp,q,0. The algebra is said to
be Euclidean (or anti-Euclidean) if n = p (or n = q). Then it is convenient
to use the notations Rn = Rn,0, R−n = R0,n, etcetera.

Any degenerate algebra can be embedded in a non-degenerate algebra of
larger dimension, and it is almost always a good idea to do so. Otherwise,
there will be subspaces without a complete basis of dual vectors, which will
complicate algebraic manipulations. The n-dimensional vector spaces of every
possible signature are subspaces of Rn,n. For that reason, Rn,n is called the
mother algebra of n-space. As explained in [63], it is the proper arena for the
most general approach to linear algebra.

1.3 Linear Transformations

The terms “linear function,” “linear mapping” and “linear transformation”
are usually regarded as synonymous. To emphasize an important distinction
in GA, let us restrict the meaning of the last term to “linear vector-valued
functions of a vector variable.” Of course, every linear function is isomorphic
to a linear transformation. The special importance of the latter derives from
the fact that the tools of geometric algebra are available to characterize its
structure and facilitate applications. Geometric algebra enables coordinate-
free analysis and computations. It also facilitates the use of matrices when
they are desired or needed.

To relate a linear transformation f on Vn to its matrix representation f ji ,

we introduce a basis {ei} and its dual {ej}, so that

14 David Hestenes, Hongbo Li, Alyn Rockwood

fei = f(ei) =
∑

j

ejf
j
i , (1.49a)

and

f ji = ej · fei = (f ej) · ei . (1.49b)

The last equality defines the adjoint f of f , so that

f ej =
∑

i

f ji e
i . (1.50)

Without reference to a basis the adjoint is defined by

b · fa = a · f b , (1.51a)

whence,

f b = ∂a(b · fa) =
∑

i

ei(b · f ei) . (1.51b)

Within geometric algebra, it seldom helps to introduce matrices unless they
have been used in the first place to define the linear transformations of in-
terest, as, for example, in a computer graphics display where coordinates are
needed. Some tools to handle linear transformations without matrices are
described below.

Outermorphism

Every linear transformation f on Vn extends naturally to a linear function
f on Gn with

f(A ∧ B) = (fA) ∧ (fB) . (1.52)

This extension is called an outermorphism because it preserves the outer
product. Any ambiguity in using the same symbol f for the transformation
and its extension can be removed by displaying an argument for the function.
For any blade with the form (1.36) we have

fAr = (fa1) ∧ (fa2) ∧ · · · ∧ (far) . (1.53)

This shows explicitly how the transformation of vectors induces a transfor-
mation of blades. By linearity it extends to any multivector.

The outermorphism of the adjoint f is easily specified by generalizing
(1.51a) and (1.51b); thus, for any multivectors A and B,

〈BfA〉 = 〈AfB〉 . (1.54)

By multivector differentiation,

1. New Algebraic Tools for Classical Geometry 15

f B = f (B) = ∂A〈Af (B)〉 . (1.55)

We are now equipped to formulate the fundamental theorem:

A · (fB) = f [(f A) · B] or (fB) · A = f [B · f A] . (1.56)

for (grade A) ≤ (grade B).
This theorem, first proved in [117], is awkward to formulate without ge-

ometric algebra, so it seldom appears (at least in full generality) in the liter-
ature on linear algebra. It is important because it is the most general trans-
formation law for inner products.

Outermorphisms generalize and simplify the theory of determinants. Let
I be a pseudoscalar for Vn. The determinant of f is the eigenvalue of f on
I , as expressed by

f I = (det f)I . (1.57)

If I is invertible, then

I−1f I = I−1 · (fI) = det f = det f = det f ji . (1.58)

To prove the last equality, we can write I = e1 ∧ e2 ∧ . . . ∧ en so that

det f = (en ∧ . . . ∧ e1) · [(fe1) ∧ . . . ∧ f(en)] . (1.59)

Using the identities (1.10a) and (1.10b), the right side of (1.14) can be ex-
panded to get the standard expression for determinants in terms of matrix
elements f ji . This exemplifies the fact that the Laplace expansion and all
other properties of determinants are easy and nearly automatic consequences
of their formulation within geometric algebra.

The law (1.56) has the important special case

Af I = f [(fA)I] . (1.60)

For det f 6= 0, this gives an explicit expression for the inverse outermorphism

f−1A =
f (AI)I−1

det f
. (1.61)

Applying this to the basis {ei} and using (1.38) we obtain

f−1ei =
(−1)i+1f (e1 ∧ · · · ∧ ǎi ∧ · · · ∧ en) · (e1 ∧ · · · ∧ en)

det f
. (1.62)

Again, expansion of the right side with the help of (1.10a) and (1.10b) gives
the standard expression for a matrix inverse in terms of matrix elements.

The composition of linear transformations g and f can be expressed as
an operator product:

16 David Hestenes, Hongbo Li, Alyn Rockwood

h = g f . (1.63)

This relation extends to their outermorphism as well. Applied to (1.57), it
immediately gives the classical result

det h = (det g) det f , (1.64)

from which many more properties of determinants follow easily.

Orthogonal Transformations

A linear transformation U is said to be orthogonal if it preserves the inner
product of vectors, as specified by

(Ua) · (Ub) = a · (UUb) = a · b . (1.65)

Clearly, this is equivalent to the condition U−1 = U. For handling orthogonal
transformations geometric algebra is decisively superior to matrix algebra,
because it is computationally more efficient and simpler to interpret geomet-
rically. To explain how, some new terminology is helpful.

A versor is any multivector that can be expressed as the geometric product
of invertible vectors. Thus, any versor U can be expressed in the factored form

U = uk · · ·u2u1 , (1.66)

where the choice of vectors ui is not unique, but there is a minimal number
k ≤ n. The parity of U is even (odd) for even (odd) k.

Every versor U determines an orthogonal transformation U given by

U(x) = UxU∗−1 = U∗xU−1, for x ∈ Vn . (1.67)

Conversely, every orthogonal transformation U can be expressed in the canon-
ical form (1.67). This has at least two great advantages. First, any orthogonal
transformation is representable (and therefore, visualizable) as a set of vec-
tors. Second, the composition of orthogonal transformations is reduced to
multiplication of vectors.

The outermorphism of (1.67) is

U(M) = UMU−1 for U∗ = U , (1.68a)

or

U(M) = UM∗U−1 for U∗ = −U , (1.68b)

where M is a generic multivector.
An even versor R = R∗ is called a spinor or rotor if

RR† = |R |2 , (1.69a)

1. New Algebraic Tools for Classical Geometry 17

so that

R−1 =
1

R
=

R†

RR† =
R†

|R |2
. (1.69b)

Alternative, but closely related, definitions of “spinor” and “rotor” are com-
mon. Often the term rotor presumes the normalization |R |2 = 1. In that
case, (1.67) takes the simpler form

Rx = RxR† (1.70)

and R is called a rotation. Actually, the form with R−1 is preferable to the
one with R†, because R is independent of |R |, and normalizing may be
inconvenient.

Note that for U = u2u1, the requirement |U |2 = u2
2u

2
1 for a rotation

implies that the vectors u1 and u2 have the same signature. Therefore, when
they have opposite signature U is the prime example of an even versor which
is not a spinor, and the corresponding linear operator U in (1.67) is not a
rotation.

In the simplest case where the versor is a single vector u1 = −u∗1, we can
analyze (1.67) with the help of (1.35) as follows:

u1(x) = u∗1xu
−1
1 = −u1(Pu1(x) + P⊥

u1
(x))u−1

1

= −Pu1(x) + P⊥
u1

(x) . (1.71)

The net effect of the transformation is to re-verse direction of the component
of x along u1, whence the name versor (which dates back to Hamilton). Since
every invertible vector is normal to a hyperplane in Vn, the transformation
(1.71) can be described as reflection in a hyperplane. In view of (1.66), every
orthogonal transformation can be expressed as the composite of at most n
reflections in hyperplanes. This is widely known as the Cartan-Dieudonné
Theorem.

The reflection (1.71) is illustrated in Fig. 1.4 along with the next simplest
example, a rotation u3u2 induced by two successive reflections. The figure
presumes that the rotation is elliptic (or Euclidean), though it could be hy-
perbolic (known as a Lorentz transformation in physics), depending on the
signature of the plane.

Given that a rotation takes a given vector a into b = Ra, it is often of
interest to find the simplest spinor R that generates it. It is readily verified
that the solution is

R = (a+ b)a = b(a+ b) . (1.72)

Without loss of generality, we can assume that a and b are normalized to
a2 = b2 = ±1, so that

|R |2 = a2(a+ b)2 = 2 | a · b± 1 | . (1.73)

18 David Hestenes, Hongbo Li, Alyn Rockwood

This is a case where normalization is inconvenient. Besides destroying the
simplicity of the unnormalized form (1.72), it would require taking the square
root of (1.73), an unnecessary computation because it does not affect R . Note
that |R | = 0 and R−1 is undefined when a and b are oppositely directed. In
that case a and b do not define a unique plane of rotation.

3u
2u

O

2u3u

u1

1u x

(x)

(x)

Fig. 1.4. Versor (vector and
rotor) actions. Here u1 is or-
thogonal to both u2, u3

Although it is helpful to know that rotors can be “parameterized” by
vectors as in (1.66) and (1.70), there are many other parameterizations, such
as Euler angles, which are more suitable in certain applications. A detailed
treatment of alternatives for 3-D rotations is given in [116].

The versors in Gn form a group under the geometric product, called the
versor group. The versors of unit magnitude form a subgroup, called the pin
group. Since U in (1.67) is independent of the sign and magnitude of U , the
two groups are equivalent double coverings of the orthogonal group O(p, q),
where the signature of Vn = Rp,q is displayed to enable crucial distinctions.
At first sight the pin group seems simpler than the versor group, but we have
already noted that it is sometimes more efficient to work with unnormalized
versors.

For any U

detU = ±1 , (1.74)

where the sign corresponds to the parity of the versor U which generates
it. Those with positive determinant compose the special orthogonal group
SO(p, r). It is doubly covered by the subgroup of even versors. The subgroup of

1. New Algebraic Tools for Classical Geometry 19

elements in SO(p, r) which are continuously connected to the identity is called
the rotation group SO+(p, r). The versor group covering SO(p, r) is called
the spin group Spin(p, r). Let us write Spin+(p, r) for the group of rotors
covering SO+(p, r). This group is distingiushed by the condition (1.68a) on
its elements, and that ensures that the rotations are continuously connected
to the identity. The distinction between SO and SO+ or between Spin and
Spin+ is not always recognized in the literature, but that seldom creates
problems. For Euclidean or anti-Euclidean signature there is no distinction.

The spin groups are more general than anyone suspected for a long time.
It has been proved in [63] that every Lie group can be represented as a spin
group in some Geometric Algebra of suitable dimension and signature. The
corresponding Lie algebra is then represented as an algebra of bivectors under
the commutator product (1.26). All this has great theoretical and practical
advantages, as it is computationally more efficient than matrix representa-
tions. Engineers who compute 3-D rotations for a living are well aware that
quaternions (the rotors in R3) are computationally superior to matrices.

1.4 Vectors as Geometrical Points

The elements of Gn can be assigned a variety of geometric interpretations
appropriate for different applications. The most common practice is to iden-
tify vectors with geometric points, so that geometric objects composed of
points are represented by point sets in a vector space. In this section we show
how geometric algebra can be used to characterize some of the most basic
geometric objects. This leads to abstract representations of objects by their
properties without reference to the points that compose them. Thus we ar-
rive at a kind of “algebra of geometric properties” which greatly facilitates
geometric analysis and applications. We have already taken a large step in
this direction by constructing an “algebra of vector subspaces” in Section 1.2.
Here we take two more steps. First, we displace the subspaces from the origin
to give us as algebra of k-planes. Second, we break the k-planes into pieces
to get a “simplicial algebra.” In many applications, such as finite element
analysis, simplexes are basic building blocks for complex structures. To that
end, our objective here is to sharpen the tools for manipulating simplexes.
Applications to Geometric Calculus are described in [219].

In physics and engineering the vector space R3 is widely used to represent
Euclidean 3-space E3 as a model of “physical space.” More advanced applica-
tions use R1,3 as a model for spacetime with the “spacetime algebra” R1,3 to
characterize its properties. Both of these important cases are included in the
present treatment, which applies to spaces of any dimension and signature.

20 David Hestenes, Hongbo Li, Alyn Rockwood

r-planes

An r-dimensional plane parallel to the subspace of Ar and through the point
a is the solution set of

(x− a) ∧ Ar = 0, for x ∈ Vn . (1.75)

It is often called an r-plane, or r-flat. It is called a hyperplane when r = n−1.
As detailed for R3 in [116], Ar is the tangent of the r-plane, and Mr+1 =

a∧Ar is the moment. When Ar is invertible, d = Mr+1A
−1
r is the directance.

Let n be a unit vector collinear with d, then d ·n is the signed distance of the
r-plane from the origin in the direction of n, or briefly, the n-distance of the
r-plane.

An r-plane can be represented by

Ar +Mr+1 = (1 + d)Ar , (1.76)

where Ar is the tangent,Mr+1 is the moment, and d is the directance. A point
x is on the r-plane if and only if x ∧Mr+1 = 0 and x ∧ Ar = Mr+1. This
representation, illustrated in Fig 1.5, has applications in rigid body mechanics
[116]. The representation (1.76) is equivalent to the Plücker coordinates for
an r-plane [192].

2A

2A
a

O

n

d=

2A2A +a V

P (a)

Fig. 1.5. A 2-plane in the
space of a ∧A2

A linear transformation f of points in Vn induces a transformation of
(1.75) via its outermorphism: thus,

f [(x − a) ∧ Ar] = (fx− fa) ∧ (fAr) = (x′ − a′) ∧A′
r = 0 . (1.77)

This proves that every nonsingular linear transformation maps straight lines
into straight lines and, more generally, k-planes into k-planes. This generalizes
trivially to affine transformations.

Simplexes

An r-dimensional simplex (r-simplex) in Vn is the convex hull of r+1 points,
of which at least r are linearly independent. A set {a0, a1, a2, . . . ar} of
defining points is said to be a frame for the simplex. One of the points, say
a0, is distinguished and called the base point or place of the simplex. It will

1. New Algebraic Tools for Classical Geometry 21

be convenient to introduce the notations

Ar ≡ a0 ∧ a1 ∧ a2 ∧ · · · ∧ ar = a0 ∧Ar , (1.78a)

Ar ≡ (a1 − a0) ∧ (a2 − a0) ∧ · · · ∧ (ar − a0)

= a 1 ∧ a 2 ∧ · · · ∧ a r , (1.78b)

a i ≡ ai − a0 for i = 1, . . ., r . (1.78c)

Ar is called the tangent of the simplex, because it is tangent for the
r-plane in which the simplex lies (See Fig 1.6.). It must be nonzero for the
simplex to have a convex hull. We also assume that it is non-degenerate, so we
don’t deal with complications of null vectors. The tangent assigns a natural
directed measure Ar/r! to the simplex. As shown by Sobczyk [219], this is
the appropriate measure for defining integration over chains of simplexes and
producing a generalized Stokes Theorem. The scalar content (or volume) of
the simplex is given by (r!)−1|Ar |. For the simplex in Fig 1.6 this is the area
of the triangle (3-hedron) with sides a 1 and a 2. In general, it is the volume
of an (r + 1)-hedron. The tangent Ar assigns a definite orientation to the
simplex, and interchanging any two of the vectors a i in (1.78b) reverses the
orientation. Also, Ar is independent of the choice of origin, though Ar is not.

a0
a1

_

a2

_

Fig. 1.6. Simplex at a0 with tangent A2 = a1 ∧ a2

In accordance with (1.75), the equation for the plane of the simplex is

x ∧ Ar = a0 ∧ Ar = Ar . (1.79)

Thus Ar is the moment of the simplex. It will be convenient to use Ar as a
name for the simplex, since the expanded form (1.78a) displays all the defining
points of the simplex. We also assume Ar 6= 0, since it greatly facilitates
analysis of simplex properties. However, when the simplex plane (1.79) passes
through the origin, its moment a0 ∧Ar vanishes. There are two ways to deal
with this problem. One is to treat it as a degenerate special case. A better
way is to remove the origin from Vn by embedding Vn as an n-plane in a
space of higher dimension. Then all points will be treated on equal footing
and the moment a0 ∧ Ar never vanishes. This is tantamount to introducing
homogeneous coordinates, an approach which is developed in Chapter 2. Note
that the simplex Ar is oriented, since interchanging any pair of vectors in
(1.78a) will change its sign.

22 David Hestenes, Hongbo Li, Alyn Rockwood

Since (1.78a) expresses Ar as the pseudoscalar for the simplex frame {ai}
it determines a dual frame {ai} given by (1.36). The face opposite ai in
simplex Ar is represented by its moment

Fr
i Ar ≡ Air ≡ ai · Ar = (−1)i+1a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar . (1.80)

This defines a face operator Fi (as illustrated in Fig 1.7). Of course, the face
Air is an (r − 1)-dimensional simplex. Also

Ar = ai ∧Air , for any 0 ≤ i ≤ r . (1.81)

The boundary of simplex Ar can be represented formally by the multivector
sum

/∂Ar =

r∑

i=0

Air =

r∑

i=0

FiAr . (1.82)

This defines a boundary operator /∂. Obviously,

Ar = ai ∧ /∂Ar , for any 0 ≤ i ≤ r . (1.83)

Comparing the identity

(a1 − a0) ∧ (a2 − a0) ∧ · · · ∧ (ar − a0) =

r∑

i=0

(−1)ia0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar

(1.84)

with (1.78b) and (1.80) we see that

Ar = /∂Ar . (1.85)

Also, note the symmetry of (1.84) with respect to the choice of base point.

a0

a1

a2

a3

1F

2F

0F

F 33
A

3
A

3
A

3
A

Fig. 1.7. Simplex a1 ∧ a2 ∧ a3 ∧ a4

1. New Algebraic Tools for Classical Geometry 23

For the two operators Fi and /∂ we have

FiFi = 0 , (1.86a)

FiFj = −FjFi , for i 6= j , (1.86b)

Fi/∂ = −/∂Fi , (1.86c)

/∂/∂ = 0 . (1.86d)

These operator relations are strongly analogous to relations in algebraic
topology.

If a point x lies in the r-plane of the simplex, we can write

x =

r∑

i=0

αiai , (1.87)

where αi = x · ai. The point lies within the simplex if and only if

r∑

i=0

αi = 1 and 0 ≤ αi ≤ 1 . (1.88)

Subject to these conditions the αi are known as barycentric coordinates of
the point.

From (1.80) it follows that

ai ·Air = (ai ∧ ai) · Ar = 0 (1.89a)

and

aiAir = ai ∧ Air = Ar . (1.89b)

Thus, ai is normal to the (moment of) the ith face Air and is contained in
Ar. In view of (1.88), ai can be regarded as an outward normal to the face.

Precisely analogous relations hold for the tangent Ar and its faces. By
virtue of (1.78b), the frame {a i} has a dual frame {a i} of outward normals to
the faces of Ar. These normals play a crucial role in an invariant formulation
of Stokes Theorem that has the same form for all dimensions ([117, 219]).

1.5 Linearizing the Euclidean Group

The Euclidean group is the group of rigid displacements on En. With En

represented as Rn in Rn, any rigid displacement can be expressed in the
canonical form

D̂c : x → x′ = D̂cx = T̂ cRx = RxR−1 + c , (1.90)

where, in accordance with (1.67), R is a rotor determining a rotation R

about the origin and T̂ c is a translation by vector c. The composition of

24 David Hestenes, Hongbo Li, Alyn Rockwood

displacements is complicated by the fact that rotations are multiplicative
but translations are additive. We alleviate this difficulty with a device that
makes translations multiplicative as well.

We augment Rn with a null vector e orthogonal to Rn. In other words, we
embed Rn in a vector space Vn+1 = Rn,0,1, so the degenerate geometric alge-
bra Rn,0,1 is at our disposal. In this algebra we can represent the translation

T̂ c as a spinor

Tc = e
1
2 ec = 1 + 1

2ec , (1.91a)

with inverse

T−1
c = 1 − 1

2ec = T ∗
c , (1.91b)

where “∗” is the main involution in Rn, so c∗ = −c but e∗ = e. If we represent
the point x by

X = 1 + ex , (1.92)

the translation T̂ c can be replaced by the equivalent linear operator

T c : X → X ′ = TcXT
∗−1
c = Tc(1 + ex)Tc = 1 + e(x+ c) . (1.93)

Consequently, any rigid displacement D̂c has the spinor representation

Dc = TcR , (1.94a)

and the linear representation

Dc(X) = DcXD
∗−1
c (1.94b)

in conformity with (1.67).
We call the representation of points by (1.92) the affine model for Eu-

clidean space, because it supports affine transformations, which are com-
posites of linear transformations (Section 1.3) with translations. It has the
advantage of linearizing the Euclidean group through (1.94b). More impor-
tant, it gives us the spinor representation (1.94a) for the group elements. This
has the great advantage of reducing the group composition to the geometric
product. For example, let us construct the spinor Rc for rotation about an
arbitrary point c. We can achieve such a rotation by translating c to the
origin, rotating about the origin, and then translating back. Thus

Rc = TcRT
−1
c = R+ ec×R , (1.95)

where × denotes the commutator product.
In R3 any rigid displacement can be expressed as a screw displacement,

which consists of a rotation about some point composed with a translation

1. New Algebraic Tools for Classical Geometry 25

along the rotation axis. This is known as Chasles Theorem. It is useful in
robotics and other applications of mechanics. The theorem is easily proved
with (1.94a), which shows us how to find the screw axis at the same time.
Beginning with the displacement (1.94a), we note that the vector direction
n for the rotation axis R satisfies

RnR−1 = n or Rn = nR . (1.96)

This suggests the decomposition c = c‖+c⊥ where c‖ = (c ·n)n. The theorem
will be proved if we can find a vector b so that

Dc = Tc‖Tc⊥R = Tc‖Rb , (1.97)

where Rb is given by (1.95). From the null component of Tc⊥R = Rb we
obtain the condition

1
2c⊥R = b×R = 1

2b(R−R†) .

With R normalized to unity, this has the solution

b = c⊥(1 − R−2)−1 = 1
2c⊥

1−R2

1 − 〈R2 〉 . (1.98)

This tells us how to find a point b on the screw axis.
Everything we have done in this section applies without change for reflec-

tions as well as rotations. Thus, for any invertible vector n, (1.94a) gives us
the versor

nc = n+ ec · n , (1.99)

which represents a reflection in the hyperplane through c with normal n. Note
that we have a symmetric product c · n = n · c in (1.99) instead of the skew-
symmetric product c×R = −R×c in (1.95); this is an automatic consequence
of the fact that e anticommutes with vectors n and c but commutes with R.

We have shown how the degenerate model for Euclidean space simplifies
affine geometry. In Chapter 2 we shall see how it can be generalized to a
more powerful model for Euclidean geometry.

Dual Quaternions

Clifford originated the idea of extending the real number system to include
an element ε with the nilpotence property ε2 = 0. Then any number can be
written in the form α+ εβ, where α and β are ordinary numbers. He called
them dual numbers. Clearly, this has no relation to our use of the term “dual”
in geometric algebra, so we employ it only in this brief subsection to explain
its connection to the present work.

A dual quaternion has the form Q1 + εQ2, where, Q1 and Q2 are ordinary
quaternions. There has been renewed interest in dual quaternions recently,

26 David Hestenes, Hongbo Li, Alyn Rockwood

especially for applications to rigid motions in robotics. A direct relation to the
present approach stems from the fact that the quaternions can be identified
with the spinors in R3. To demonstrate, it will suffice to consider (1.94a). The
so-called “vector part” of a quaternion actually corresponds to a bivector in
R3. The dual of every vector c in R3 is a bivector C = cI† = −cI , where I is
the unit pseudoscalar. Therefore, writing ε = eI = −Ie, we can put (1.94a)
in the equivalent “dual quaternion form”

Rc = R + εC ×R , (1.100)

where ε2 = 0, and ε commutes with both C and R. In precisely the same
way, for E3 the representation of points by (1.92) can be reexpressed as a
dual quaternion, so we have a dual quaternion model of E3.

The drawback of quaternions is that they are limited to 3-D applications,
and even there they fail to make the important distinction between vec-
tors and bivectors. This can be remedied somewhat by resorting to complex
quaternions, because they are isomorphic to the whole algebra R3. However,
the quaternion nomenclature (dual complex or otherwise) is not well-tailored
to geometric applications, so we advise against it. It should be clear that
geometric algebra retains all of the advantages and none of the drawbacks of
quaternions, while extending the range of applications enormously.

2. Generalized Homogeneous

Coordinates for Computational

Geometry∗

Hongbo Li1, David Hestenes1, and Alyn Rockwood2

1 Department of Physics and Astronomy
Arizona State University, Tempe

2 Power Take Off Software, Inc., Colorado Springs

2.1 Introduction

The standard algebraic model for Euclidean space En is an n-dimensional
real vector space Rn or, equivalently, a set of real coordinates. One trouble
with this model is that, algebraically, the origin is a distinguished element,
whereas all the points of En are identical. This deficiency in the vector space
model was corrected early in the 19th century by removing the origin from
the plane and placing it one dimension higher. Formally, that was done by
introducing homogeneous coordinates [114]. The vector space model also lacks
adequate representation for Euclidean points or lines at infinity. We solve
both problems here with a new model for En employing the tools of geometric
algebra. We call it the homogeneous model of En.

Our “new model” has its origins in the work of F. A. Wachter (1792–
1817), a student of Gauss. He showed that a certain type of surface in hyper-
bolic geometry known as a horosphere is metrically equivalent to Euclidean
space, so it constitutes a non-Euclidean model of Euclidean geometry. With-
out knowledge of this model, the technique of comformal and projective splits

∗ This work has been partially supported by NSF Grant RED-9200442.

28 Hongbo Li, David Hestenes, Alyn Rockwood

needed to incorporate it into geometric algebra were developed by Hestenes
in [114]. The conformal split was developed to linearize the conformal group
and simplify the connection to its spin representation. The projective split
was developed to incorporate all the advantages of homogeneous coordinates
in a “coordinate-free” representation of geometrical points by vectors.

Andraes Dress and Timothy Havel [65] recognized the relation of the con-
formal split to Wachter’s model as well as to classical work on distance ge-
ometry by Menger [173], Blumenthal [23, 24] and Seidel [210, 209]. They also
stressed connections to classical invaraint theory, for which the basics have
been incorporated into geometric algebra in [118] and [117]. The present work
synthesizes all these developments and integrates conformal and projective
splits into a powerful algebraic formalism for representing and manipulating
geometric concepts. We demonstrate this power in an explicit construction of
the new homogeneous model of En, the characterization of geometric objects
therein, and in the proofs of geometric theorems.

The truly new thing about our model is the algebraic formalism in which
it is embedded. This integrates the representational simplicity of synthetic
geometry with the computational capabilities of analytic geometry. As in syn-
thetic geometry we designate points by letters a, b, . . . , but we also give
them algebraic properties. Thus, the outer product a ∧ b represents the line
determined by a and b. This notion was invented by Hermann Grassmann
[98] and applied to projective geometry, but it was incorporated into geomet-
ric algebra only recently [118]. To this day, however, it has not been used
in Euclidean geometry, owing to a subtle defect that is corrected by our ho-
mogeneous model. We show that in our model a ∧ b ∧ c represents the circle
through the three points. If one of these points is a null vector e representing
the point at infinity, then a ∧ b ∧ e represents the straight line through a
and b as a circle through infinity. This representation was not available to
Grassmann, because he did not have the concept of null vector.

Our model also solves another problem that perplexed Grassmann though-
out his life. He was finally forced to conclude that it is impossible to define a
geometrically meaningful inner product between points. The solution eluded
him because it requires the concept of indefinite metric that accompanies
the concept of null vector. Our model supplies an inner product a · b that
directly represents the Euclidean distance between the points. This is a boon
to distance geometry, because it greatly facilitates computation of distances
among many points. Havel [110] has used this in applications of geometric
algebra to the theory of molecular conformations. The present work provides
a framework for significantly advancing such applications.

We believe that our homogeneous model provides the first ideal frame-
work for computational Euclidean geometry. The concepts and theorems of
synthetic geometry can be translated into algebraic form without the un-
necessary complexities of coordinates or matrices. Constructions and proofs
can be done by direct computations, as needed for practical applications

2. Generalized Homogeneous Coordinates for Computational Geometry 29

in computer vision and similar fields. The spin representation of conformal
transformations greatly facilitates their composition and application. We aim
to develop the basics and examples in sufficient detail to make applications in
Euclidean geometry fairly straightforward. As a starting point, we presume
familiarity with the notations and results of chapter 1

We have confined our analysis to Euclidean geometry, because it has the
widest applicability. However, the algebraic and conceptual framework applies
to geometrics of any signature. In particular, it applies to modeling spacetime
geometry, but that is a matter for another time.

2.2 Minkowski Space with Conformal and Projective

Splits

The real vector space Rn,1 (or R1,n) is called a Minkowski space, after the
man who introduced R3,1 as a model of spacetime. Its signature (n, 1) (1,
n) is called the Minkowski signature. The orthogonal group of Minkowski
space is called the Lorentz group, the standard name in relativity theory. Its
elements are called Lorentz transformations. The special orthogonal group
of Minkowski space is called the proper Lorentz group, though the adjective
“proper” is often dropped, especially when reflections are not of interest. A
good way to remove the ambiguity is to refer to rotations in Minkowski space
as proper Lorentz rotations composing the proper Lorentz rotation group.

As demonstrated in many applications to relativity physics (beginning
with [113]) the ”Minkowski algebra” Rn,1 = G(Rn,1) is the ideal instru-
ment for characterizing geometry of Minkowski space. In this paper we study
its surprising utility for Euclidean geometry. For that purpose, the simplest
Minkowski algebra R1,1 plays a special role.

The Minkowski plane R1,1 has an orthonormal basis {e+, e−} defined by
the properties

e2± = ±1 , e+ · e− = 0 . (2.1)

A null basis {e0, e} can be introduced by

e0 = 1
2 (e− − e+) , (2.2a)

e = e− + e+ . (2.2b)

Alternatively, the null basis can be defined directly in terms of its properties

e20 = e2 = 0 , e · e0 = −1 . (2.3)

A unit pseudoscalar E for R1,1 is defined by

E = e ∧ e0 = e+ ∧ e− = e+ e− . (2.4)

30 Hongbo Li, David Hestenes, Alyn Rockwood

We note the properties

E2 = 1 , E† = −E , (2.5a)

Ee± = −e∓ , (2.5b)

Ee = −eE = −e , Ee0 = −e0E = e0 , (2.5c)

1 −E = −ee0 , 1 +E = −e0e . (2.5d)

The basis vectors and null lines in R1,1 are illustrated in Fig. 2.1. It will be
seen later that the asymmetry in our labels for the null vectors corresponds
to an asymmetry in their geometric interpretation.

.
e

e+

e0

e-

null cones

E

Fig. 2.1. Basis vectors null lines in
the Minkowski plane. The shaded area
represents the unit pseudoscalar E

The Lorentz rotation group for the Minkowski plane is represented by the
rotor

Uϕ = e
1
2ϕE , (2.6)

where ϕ is a scalar parameter defined on the entire real line, and use of the
symbol e to denote the exponential function will not be confused with the
null vector e. Accordingly, the Lorentz rotation U of the basis vectors is given
by

Uϕe± = Uϕe±U
−1
ϕ = U2

ϕe±

= e± cosh ϕ− e∓ sinh ϕ ≡ e′± , (2.7)

Uϕe = eϕEe = ee−ϕE ≡ e′ , (2.8)

Uϕe0 = eϕEe0 ≡ e′0 . (2.9)

The rotation is illustrated in Fig 2.2. Note that the null lines are invariant,
but the null vectors are rescaled.

2. Generalized Homogeneous Coordinates for Computational Geometry 31

The complete spin group in R1,1 is

Spin(1, 1) = {eλE, E} . (2.10)

Note that E cannot be put in exponential form, so it is not continuously con-
nected to the identity within the group. On any vector a ∈ R1,1 it generates
the orthogonal transformation

E(a) = EaE = −a = a∗ . (2.11)

Hence E is a discrete operator interchanging opposite branches of the null
cone.

.

e

e+

e0

e-

e'+

e'

e'0

e'-

Fig. 2.2. Fig 2.2. Lorentz rotations
slide unit vectors along hyperbolas in
the Minkowski plane, and they rescale
null vectors

It is of interest to know that the Minkowski algebra R1,1 is isomorphic to
the algebra L2(R) of real 2×2 matrices. The general linear and special linear
groups have the following isomorphisms to multiplicative subgroups in R1,1

{G ∈ R1,1 | G∗G† 6= 0} ' GL2(R) , (2.12)

{G ∈ R1,1 | G∗G† = 1} ' SL2(R) . (2.13)

The matrix representations are worked out in [114], but they have little
practical value when geometric algebra is available. The group (2.13) is a
3-parameter group whose structure is revealed by the following canonical
decomposition:

G = KαTβUϕ , (2.14)

where Uϕ = U∗
ϕ is defined by (2.6), and

Kα ≡ 1 + αe0 = K†
α , (2.15a)

Tβ ≡ 1 + βe = T †
β . (2.15b)

The form (2.14) holds for all values of the scalar parameters α, β, ϕ in the in-
terval [−∞,∞]. Our interest in (2.14) stems from its relation to the conformal
group described later.

32 Hongbo Li, David Hestenes, Alyn Rockwood

Throughout the rest of this paper we will be working with Rn+1,1, often
decomposed into the direct sum

Rn+1,1 = Rn ⊕ R1,1 . (2.16)

This decomposition was dubbed a conformal split in [114], because it relates
to the conformal group on Rn in an essential way. It will be convenient to
represent vectors or vector components in Rn by boldface letters and employ
the null basis {e0, e} for R1,1. Accordingly, any vector a ∈ Rn+1,1 admits the
split

a = a + αe0 + βe . (2.17)

The conformal split is uniquely determined by the pseudoscalar E for R1,1.
Let I denote the pseudoscalar for Rn+1,1, then

Ẽ = EI−1 = −EI† (2.18)

is a unit pseudoscalar for Rn, and we can express the split as

a = PE(a) + P⊥
E (a) , (2.19)

where the projection operators PE and P⊥
E are given by

PE(a) = (a ·E)E = αe0 + βe ∈ R1,1 , (2.20a)

P⊥
E (a) = (a · Ẽ)Ẽ† = (a ∧ E)E = a ∈ Rn . (2.20b)

The Minkowski plane for R1,1 is referred to as the E-plane, since, as (2.20b)
shows, it is uniquely determined by E. The projection P⊥

E can be regarded
as a rejection from the E-plane.

It is worth noting that the conformal split was defined somewhat differ-
ently in [114]. There the points a in Rn were identified with trivectors (a∧E)
in (2.20b). Each of these two alternatives has its own advantages, but their
representations of Rn are isomorphic, so the choice between them is a minor
matter of convention.

The idea underlying homogeneous coordinates for “points” in Rn is to re-
move the troublesome origin by embedding Rn in a space of higher dimension.
An efficient technique for doing this with geometric algebra is the projective
split introduced in [114]. We use it here as well. Let e be a vector in the
E-plane. Then for any vector a ∈ Rn+1,1 with a · e 6= 0, the projective split
with respect to e is defined by

ae = a · e+ a ∧ e = a · e
(
1 +

a ∧ e
a · e

)
. (2.21)

This represents vector a with the bivector a ∧ e/a · e. The representation
is independent of scale, so it is convenient to fix the scale by the condition

2. Generalized Homogeneous Coordinates for Computational Geometry 33

a · e = e0 · e = −1. This condition does not affect the components of a in
Rn. Accordingly, we refer to e ∧ a = −a ∧ e as a projective representation
for a. The classical approach to homogeneous coordinates corresponds to a
projective split with respect to a non-null vector. We shall see that there are
great advantages to a split with respect to a null vector. The result is a kind
of “generalized” homogeneous coordinates.

A hyperplane Pn+1(n, a) with normal n and containing point a is the
solution set of the equation

n · (x− a) = 0 , x ∈ Rn+1,1 . (2.22)

As explained in chapter 1, this can be alternatively described by

ñ ∧ (x− a) = 0 , x ∈ Rn+1,1 . (2.23)

where ñ = nI−1 is the (n+ 1)-vector dual to n.
The “normalization condition” x · e = e · e0 = −1 for a projective split

with respect to the null vector e is equivalent to the equation e · (x− e0) = 0;
thus x lies on the hyperplane

Pn+1(e, e0) = {x ∈ Rn+1,1 | e · (x− e0) = 0} . (2.24)

This fulfills the primary objective of homogeneous coordinates by displacing
the origin of Rn by e0. One more condition is needed to fix x as representation
for a unique x in Rn.

2.3 Homogeneous Model of Euclidean Space

The set Nn+1 of all null vectors in Rn+1,1 is called the null cone. We complete
our definition of generalized homogeneous coordinates for points in Rn by
requiring them to be null vectors, and lie in the intersection of Nn+1 with the
hyperplane Pn+1(e, e0) defined by (2.24). The resulting surface

Nne = Nn+1 ∩ Pn+1(e, e0) = {x ∈ Rn+1,1 | x2 = 0, x · e = −1} (2.25)

is a parabola in R2,1, and its generalization to higher dimensions is called a
horosphere in the literature on hyperbolic geometry. Applying the conditions
x2 = 0 and x · e = −1 to determine the parameters in (2.17), we get

x = x + 1
2x

2e+ e0 . (2.26)

This defines a bijective mapping of x ∈ Rn to x ∈ Nne . Its inverse is the
rejection (2.20b). Its projection onto the E-plane (2.20a) is shown in Fig. 2.3.

Since Rn is isomorphic to En, so is Nne , and we have proved

34 Hongbo Li, David Hestenes, Alyn Rockwood

Theorem 2.3.1.

En ' Nne ' Rn . (2.27)

We call Nne the homogeneous model of En (or Rn), since its elements are (gen-
eralized) homogeneous coordinates for points in En (or Rn). In view of their
isomorphism, it will be convenient to identify Nne with En and refer to the
elements of Nne simply as (homogeneous) points. The adjective homogeneous
will be employed when it is necessary to distinguish these points from points
in Rn, which we refer to as inhomogeneous points. Our notations x and x in
(2.26) are intended to maintain this distinction.

.
 e

e0

x

horosphere x + ee0 + x2–
2

1

Fig. 2.3. The horosphere
� n

e

and its projection onto the E-
plane

We have framed our discussion in terms of “homogeneous coordinates”
because that is a standard concept. However, geometric algebra enables us
to characterize a point as a single vector without ever decomposing a vector
into a set of coordinates for representational or computational purposes. It
is preferable, therefore, to speak of “homogeneous points” rather than “ho-
mogeneous coordinates.”

By setting x = 0 in (2.26) we see that e0 is the homogeneous point
corresponding to the origin of Rn. From

x

−x · e0
= e+ 2

(x + e0
x2

)
−−−−−→
x2→∞ e , (2.28)

we see that e represents the point at infinity.
As introduced in (2.21), the projective representation for the point (2.26)

is

e ∧ x =
e ∧ x
−e · x = ex + e ∧ e0 . (2.29)

Note that e ∧ x = ex = −xe since e · x = 0. By virtue of (2.5a) and (2.5c),

2. Generalized Homogeneous Coordinates for Computational Geometry 35

(e ∧ x)E = 1 + ex . (2.30)

This is identical to the representation for a point in the affine model of En

introduced in chapter 1. Indeed, the homogeneous model maintains and gen-
eralizes all the good features of the affine model.

Lines, planes and simplexes

Before launching into a general treatment of geometric objects, we consider
how the homogeneous model characterizes the simplest objects and relations
in Euclidean geometry. Using (2.26) we expand the geometric product of two
points a and b as

ab = ab + (a − b)e0 − 1
2

[
(a2 + b2) + (ba2 − ab2)e+ (b2 − a2)E

]
.

(2.31)

From the bivector part we get

e ∧ a ∧ b = e ∧ (a + e0) ∧ (b + e0) = ea ∧ b + (b− a)E . (2.32)

From chapter 1, we recognize a ∧ b = a ∧ (b − a) as the moment for a
line through point a with tangent a − b, so e ∧ a ∧ b characterizes the line
completely. Accordingly, we interpret e∧a∧b as a line passing through points
a and b, or, more specifically, as a 1-simplex with endpoints a and b.

The scalar part of (2.31) gives us

a · b = − 1
2 (a − b)2 . (2.33)

Thus, the inner product of two homogeneous points gives directly the squared
Euclidean distance between them. Since a2 = b2 = 0, we have

(a− b)2 = −2 a · b = (a − b)2 . (2.34)

Incidentally, this shows that the embedding (2.26) of Rn in Nne is isometric.
The squared content of the line segment (2.32) is given by

(e ∧ a ∧ b)2 = −(b ∧ a ∧ e) · (e ∧ a ∧ b)
= [(b ∧ a) · e] · [e · (a ∧ b)]
= [a− b] · [a− b] = (a− b)2 , (2.35)

which equals the squared Euclidean length of the segment, as it should. In
evaluating (2.35) we used identities from chapter 1 as well as the special
properties e2 = 0 and e · a = e · b = −1. Alternatively, one could use (2.32)
to evaluate (e ∧ a ∧ b)2 in terms of inhomogeneous points.

Again using (2.26) we find from (2.32)

e ∧ a ∧ b ∧ c = ea ∧ b ∧ c +E(b − a) ∧ (c − a) . (2.36)

36 Hongbo Li, David Hestenes, Alyn Rockwood

We recognize a∧b∧c as the moment of a plane with tangent (b−a)∧(c−a).
Therefore e ∧ a ∧ b ∧ c represents a plane through points a, b, c, or, more
specifically, the triangle (2-simplex) with these points as vertices. The squared
content of the triangle is obtained directly from

(e ∧ a ∧ b ∧ c)2 = [(b − a) ∧ (c − a)]2 , (2.37)

the negative square of twice the area of the triangle, as anticipated.

Spheres

The equation for a sphere of radius ρ centered at point p in Rn can be written

(x − p)2 = ρ2 . (2.38)

Using (2.33), we can express this as an equivalent equation in terms of ho-
mogeneous points:

x · p = − 1
2ρ

2 . (2.39)

Using x · e = −1, we can simplify this equation to

x · s = 0 , (2.40)

where

s = p− 1
2ρ

2e = p + e0 +
p2 − ρ2

2
e . (2.41)

The vector s has the properties

s2 = ρ2 > 0 , (2.42a)

e · s = −1 . (2.42b)

From these properties the form (2.41) and center p can be recovered. There-
fore, every sphere in Rn is completely characterized by a unique vector s
in Rn+1,1. According to (2.42b), s lies in the hyperplane Pn+1,1(e, e0), but
(2.42a) says that s has positive signature, so it lies outside the null cone. Our
analysis shows that every such vector determines a sphere.

Alternatively, a sphere can be described by the (n + 1)-vector s̃ = sI−1

dual to s. Since

I† = (−1)εI = −I−1 , (2.43)

where ε = 1
2 (n+2)(n+1), we can express the constraints (2.42a) and (2.42b)

in the form

s2 = −s̃†s̃ = ρ2 , (2.44a)

s · e = e · (s̃I) = (e ∧ s̃)I = −1 . (2.44b)

2. Generalized Homogeneous Coordinates for Computational Geometry 37

The equation (2.40) for the sphere has the dual form

x ∧ s̃ = 0 . (2.45)

As seen later, the advantage of s̃ is that it can be calculated directly from
points on the sphere. Then s can be obtained by duality to find the center of
the sphere. This duality of reprentations for a sphere is very powerful both
computationally and conceptually. We do not know if it has been recognized
before. In any case, we doubt that it has ever been expressed so simply.

Euclidean Plane Geometry

The advantages of the homogeneous model for E2 are best seen in an example:

Simson’s Theorem. Let ABC be a triangle and D be a point in the plane.
Draw lines from D perpendicular to the three sides of the triangle and inter-
secting at points A1, B1, C1. The points A1, B1, C1 lie on a straight line if
and only if D lies on the circle circumscribing triangle ABC.

Analysis and proof of the theorem is facilitated by constructing Simson’s
triangle A1, B1, C1 as shown in Fig. 4. Then the collinearity of points is
linked to vanishing area of Simson’s triangle.

.
.

...

..

.

A

AB C

C

D

P

1

B1

1

Fig. 2.4. Construction of Simson’s Triangle

Suspending for the moment our convention of representing vectors by
lower case letters, we interpret the labels in Fig. 2.4 as homogeneous points
in E2. We have geometric algebra to express relations and facilitate analysis.
We can speak of triangle e∧A∧B ∧C and its side e∧A∧B. This fuses the
expressive advantages of synthetic geometry with the computational power
of geometric algebra, as we now show.

Before proving Simson’s theorem, we establish some basic results of gen-
eral utility in Euclidean geometry. First, the relation between a triangle
e ∧ A ∧ B ∧ C and its circumcircle is

38 Hongbo Li, David Hestenes, Alyn Rockwood

s̃ = A ∧B ∧ C . (2.46)

A general proof that this does indeed represent a circle (=sphere in E2)
through the three points is given in the next section, so we take it for granted
here. However, (2.46) is an unnormalized representation, so to calculate the
circle radius ρ we modify (2.44a) and (2.44b) to

ρ2 =
s2

(s · e)2 =
s̃†s̃

(e ∧ s̃)2 =
(C ∧ B ∧A) · (A ∧ B ∧ C)

(e ∧A ∧ B ∧ C) · (e ∧ A ∧ B ∧ C)
. (2.47)

The right side of (2.47) is the ratio of two determinants, which, when ex-
panded, express ρ2 in terms of the distances between points, in other words,
the lengths of the sides of the triangle. Recalling (2.34), the numerator gives

(A ∧ B ∧ C)2 = −

∣∣∣∣∣∣

0 A · B A · C
B · A 0 B · C
C · A C ·B 0

∣∣∣∣∣∣
= −2A ·B B · C C ·A

= 1
4 (A−B)2(B − C)2(C −A)2

= 1
4 (A −B)2(B −C)2(C −A)2 . (2.48)

The denominator is obtained from (2.37), which relates it to the area of the
triangle and expands to

(e ∧ A ∧ B ∧ C)2 = −4(area)2

= [(B −A) · (C −A)]2 − (B −A)2(C−A)2

= [(B −A) · (C −A)]2 − 4(A · B)2(A · C)2 . (2.49)

By normalizing A ∧ B ∧ C and taking its dual, we find the center P of the
circle from (2.41); thus

−(A ∧B ∧ C)∼

(e ∧ A ∧ B ∧ C)∼
= P − 1

2ρ
2 e . (2.50)

This completes our characterization of the intrinsic properties of a triangle.
To relate circle A ∧B ∧ C to a point D, we use

(A ∧ B ∧ C) ∨D = (A ∧B ∧ C)˜ ·D = −(A ∧B ∧ C ∧D)˜

with (2.50) to get

A ∧B ∧ C ∧D =
ρ2 − δ2

2
e ∧ A ∧ B ∧ C , (2.51)

where

δ2 = −2P ·D (2.52)

2. Generalized Homogeneous Coordinates for Computational Geometry 39

is the squared distance between D and P . According to (2.45), the left side
of (2.51) vanishes when D is on the circle, in conformity with δ2 = ρ2 on the
right side of (2.51).

To construct the Simson triangle algebraically, we need to solve the prob-
lem of finding the “perpendicular intersection” B1 of point D on line e∧A∧C
(Fig. 2.4). Using inhomogeneous points we can write the condition for per-
pendicularity as

(B1 −D) · (C −A) = 0 . (2.53)

Therefore

(B1 −D)(C −A) = (B1 −D) ∧ (C −A) = (A −D) ∧ (C −A) .

Dividing by (C−A),

B1 −D = [(A −D) ∧ (C−A)] · (C −A)−1

= A −D − (A −D) · (C −A)−1(C−A) . (2.54)

Therefore

B1 = A +
(D −A) · (C −A)

(C −A)2
(C− A) . (2.55)

We can easily convert this to a relation among homogeneous points. However,
we are only interested here in Simson’s triangle e ∧ A1 ∧ B1 ∧ C1, which by
(2.36) can be represented in the form

e ∧ A1 ∧ B1 ∧ C1 = E(B1 −A1) ∧ (C1 −A1)

= E(A1 ∧B1 + B1 ∧C1 + C1 ∧ A1) . (2.56)

Calculations are simplified considerably by identifying D with the origin in
Rn, which we can do without loss of generality. Then equation (2.52) becomes
δ2 = −2P ·D = p2. Setting D = 0 in (2.55) and determining the analogous
expressions for A1 and C1, we insert the three points into (2.56) and find,
after some calculation,

e ∧ A1 ∧ B1 ∧ C1 =
(ρ2 − δ2

4ρ2

)
e ∧ A ∧B ∧ C . (2.57)

The only tricky part of the calculation is getting the coefficient on the right
side of (2.57) in the form shown. To do that the expanded form for ρ2 in
(2.47) to (2.49) can be used.

Finally, combining (2.57) with (2.51) we obtain the identity

e ∧ A1 ∧ B1 ∧ C1 =
A ∧ B ∧ C ∧D

2ρ2
. (2.58)

This proves Simson’s theorem, for the right side vanishes if and only if D is
on the circle, while the left side vanishes if and only if the three points lie on
the same line.

40 Hongbo Li, David Hestenes, Alyn Rockwood

2.4 Euclidean Spheres and Hyperspheres

A hyperplane through the origin is called a hyperspace. A hyperspace Pn+1(s)
in Rn+1,1(s) with Minkowski signature is called a Minkowski hyperspace. Its
normal s must have positive signature.

Theorem 2.4.1. The intersection of any Minkowski hyperspace Pn+1(s)
with the horosphere Nn+1

e (s) ' En is a sphere or hyperplane

S(s) = Pn+1(s) ∩ Nn+1
e (2.59)

in En (or Rn), and every Euclidean sphere or hyperplane can be obtained in
this way. S(s) is a sphere if e · s < 0 or a hyperplane if e · s = 0.

Corollary. Every Euclidean sphere or hyperplane can be represented by a
vector s (unique up to scale) with s2 > 0 and s · e ≤ 0.

From our previous discussion we know that the sphere S(s) has radius ρ
given by

ρ2 =
s2

(s · e)2 , (2.60)

and it is centered at point

p =
s

−s · e + 1
2ρ

2 e . (2.61)

Therefore, with the normalization s · e = −1, each sphere is represented by a
unique vector. With this normalization, the set {x = P⊥

E (x) ∈ Rn|x · s > 0}
represents the interior of the sphere, and we refer to (2.61) as the standard
form for the representation of a sphere by vector s.

To prove Theorem 2, it suffices to analyze the two special cases. These
cases are distinguished by the identity

(s · e)2 = (s ∧ e)2 ≥ 0 , (2.62)

which follows from e2 = 0. We have already established that (e · s)2 > 0
characterizes a sphere. For the case e · s = 0, we observe that the component
of s in Rn is given by

s = P⊥
E (s) = (s ∧ E)E = s+ (s · e0)e . (2.63)

Therefore

s = | s |(n + eδ) , (2.64)

2. Generalized Homogeneous Coordinates for Computational Geometry 41

where n2 = 1 and δ = −s · e0/| s |. Set | s | = 1. The equation for a point x
on the surface S(s) is then

x · s = n · x − δ = 0 . (2.65)

This is the equation for a hyperplane in Rn with unit normal n and signed
distance δ from the origin. Since x · e = 0, the “point at infinity” e lies on
S(s). Therefore, a hyperplane En can be regarded as a sphere that “passes
through” the point at infinity.

With | s | = 1, we refer to (2.64) as the standard form for representation
of a hyperplane by vector s.

Theorem 2.4.2. Given homogeneous points a0, a1, a2, . . . , an “in” En such
that

s̃ = a0 ∧ a1 ∧ a2 ∧ · · · ∧ an 6= 0 , (2.66)

then the (n+ 1)-blade s̃ represents a Euclidean sphere if

(e ∧ s̃)2 6= 0 . (2.67)

or a hyperplane if

(e ∧ s̃)2 = 0 . (2.68)

A point x is on the sphere/hyperplane S(s) if and only if

x ∧ s̃ = 0 . (2.69)

Since (2.66) is a condition for linear independence, we have the converse
theorem that every S(s) is uniquely determined by n+1 linearly independent
points.

By duality, Theorem 3 is an obvious consequence of Theorem 2 where s̃
is dual to the normal s of the hyperspace Pn+1(s), so it is a tangent for the
hyperspace.

For a hyperplane, we can always employ the point at infinity so the con-
dition (2.66) becomes

s̃ = e ∧ a1 ∧ a2 ∧ · · · ∧ an 6= 0 . (2.70)

Therefore only n linearly independent finite points are needed to define a
hyperplane in En.

2.5 Multi-dimensional Spheres, Planes, and Simplexes

We have seen that (n+1)-blades of Minkowski signature in Rn+1,1 represent
spheres and hyperplanes in Rn, so the following generalization is fairly obvious

42 Hongbo Li, David Hestenes, Alyn Rockwood

Theorem 2.5.1. For 2 ≤ r ≤ n+1, every r-blade Ar of Minkowski signature
in Rn+1,1 represents an (r − 2)-dimensional sphere in Rn (or En).

There are three cases to consider:

Case 1. e ∧ Ar = e0 ∧ Ar = 0, Ar represents an (r − 2)-plane through the
origin in Rn with standard form

Ar = EIr−2 , (2.71)

where Ir−2 is unit tangent for the plane.

Case 2. Ar represents an (r − 2)-plane when e ∧ Ar = 0 and

Ar+1 = e0 ∧ Ar 6= 0 . (2.72)

We can express Ar as the dual of a vector s with respect to Ar+1:

Ar = sAr+1 = (−1)ε s̃ ∨ Ar+1 . (2.73)

In this case e · s = 0 but s · e0 6= 0, so we can write s in the standard form
s = n + δe for the hyperplane s̃ with unit normal n in Rn and n-distance δ
from the origin. Normalizing Ar+1 to unity, we can put Ar into the standard
form

Ar = (n + eδ)EIr−1 = EnIr−1 + eδIr−1 . (2.74)

This represents an (r − 2)-plane with unit tangent nIr−1 = n · Ir−1 and
moment δIr−1. Its directance from the origin is the vector δn.

As a corollary to (2.74), the r-plane passing through point a in Rn with
unit r-blade Ir as tangent has the standard form

Ar+1 = e ∧ a ∧ Ir , (2.75)

where a = P⊥
E (a) is the inhomogeneous point.

Case 3. Ar represents an (r − 2)-dimensional sphere if

Ar+1 ≡ e ∧ Ar 6= 0 . (2.76)

The vector

s = ArA
−1
r+1 (2.77)

has positive square and s · e 6= 0, so its dual s̃ = sI−1 represents an (n− 1)-
dimensional sphere

Ar = sAr+1 = (s̃ I) ·Ar+1 = (−1)ε s̃ ∨ Ar+1 , (2.78)

2. Generalized Homogeneous Coordinates for Computational Geometry 43

where the (inessential) sign is determined by (2.43). As shown below, con-
dition (2.76) implies that Ar+1 represents an (r − 1)-plane in Rn. Therefore
the meet product s̃ ∨ Ar+1 in (2.78) expresses the (r − 2)-sphere Ar as the
intersection of the (n− 1)-sphere s̃ with the (r − 1)-plane Ar+1.

With suitable normalization, we can write s = c − 1
2ρ

2 e where c is the
center and ρ is the radius of sphere s̃ . Since s ∧ Ar+1 = e ∧ Ar+1 = 0, the
sphere Ar is also centered at point c and has radius ρ.

Using (2.74) for the standard form of Ar+1, we can represent an (r − 2)-
sphere on a plane in the standard form

Ar = (c− 1
2ρ

2e) ∧ (n + eδ)EIr , (2.79)

where | Ir | = 1, c ∧ Ir = n ∧ Ir = 0 and c · n = δ.
In particular, we can represent an (r−2)-sphere in a space in the standard

form

Ar = (c− 1
2ρ

2 e)EIr−1 , (2.80)

where E = e ∧ e0 and Ir−1 is a unit (r − 1)-blade in Rn. In (2.80) the factor
EIr−1 has been normalized to unit magnitude. Both (2.78) and (2.80) express
Ar as the dual of vector s with respect to Ar+1. Indeed, for r = n+ 1, In is
a unit pseudoscalar for Rn, so (2.78) and (2.80) give the dual form s̃ that we
found for spheres in the preceding section.

This completes our classification of standard representations for spheres
and planes in En.

Simplexes and spheres

Now we examine geometric objects determined by linearly independent ho-
mogeneous points a0, a1, . . . , ar, with r ≤ n so that a0 ∧ a1 ∧ · · · ∧ ar 6= 0.
Introducing inhomogeneous points by (2.26), a simple computation gives the
expanded form

a0 ∧ a1 ∧ · · · ∧ ar = Ar + e0A
+
r + 1

2eA
−
r − 1

2EA±
r , (2.81)

where, for want of a better notation,

Ar = a0 ∧ a1 ∧ · · · ∧ ar,

A+
r =

r∑

i=0

(−1)ia0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar = (a1 − a0) ∧ · · · ∧ (ar − a0),

A−
r =

r∑

i=0

(−1)ia2
i a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar,

A±
r =

r∑

i=0

r∑

j=i+1

(−1)i+j(a2
i − a2

j)a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ǎj ∧ · · · ∧ ar.

(2.82)

44 Hongbo Li, David Hestenes, Alyn Rockwood

Theorem 2.5.2. The expanded form (2.81)

(1) determines an r-simplex if Ar 6= 0,

(2) represents an (r − 1)-simplex in a plane through the origin if
A+
r = A−

r = 0,

(3) represents an (r − 1)-sphere if and only if A+
r 6= 0.

We establish and analyze each of these three cases in turn.
From our study of simplexes in Chapter 1, we recognize Ar as the moment

of a simplex with boundary (or tangent) A+
r . Therefore,

e ∧ a0 ∧ a1 ∧ · · · ∧ ar = eAr +EA+
r (2.83)

represents an r-simplex. The volume (or content) of the simplex is k! |A+
r |,

where

|A+
r |2 = (A+

r)†A+
r = −(ar ∧ · · · ∧ a0 ∧ e) · (e ∧ a0 ∧ · · · ∧ ar)

= −(− 1
2)r

∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1
... d2

ij

1

∣∣∣∣∣∣∣∣∣
(2.84)

and dij = | ai − aj | is the pairwise interpoint distance. The determinant on
the right side of (2.84) is called the Cayley-Menger determinant, because
Cayley found it as an expression for volume in 1841, and nearly a century
later Menger [173] used it to reformulate Euclidean geometry with the notion
of interpoint distance as a primitive.

Comparison of (2.83) with (2.74) gives the directed distance from the
origin in Rn to the plane of the simplex in terms of the points:

δn = Ar(A
+
r)−1 . (2.85)

Therefore, the squared distance is given by the ratio of determinants:

δ2 =
|Ar |2

|A+
r |2

=
(ar ∧ · · · ∧ a0) · (a0 ∧ · · · ∧ ar)

(a r ∧ · · · ∧ a 1) · (a 1 ∧ · · · ∧ a r)
, (2.86)

where a i = ai − a0 for i = 1, . . . , r, and the denominator is an alternative
to (2.84).

When A+
r = A−

r = 0, (2.81) reduces to

a0 ∧ · · · ∧ ar = − 1
2EA±

r . (2.87)

Comparing with (2.83) we see that this degenerate case represents an (r−1)-
simplex with volume 1

2k!|A±
r | in an (r − 1)-plane through the origin. To get

2. Generalized Homogeneous Coordinates for Computational Geometry 45

an arbitrary (r−1)-simplex from a0∧· · ·∧ar we must place one of the points,
say a0, at ∞. Then we have e ∧ a1 ∧ a2 ∧ · · · ∧ ar, which has the same form
as (2.83).

We get more insight into the expanded form (2.81) by comparing it with
the standard forms (2.79), (2.80) for a sphere. When Ar = 0, then A+

r 6= 0
for a0 ∧ · · · ∧ ar to represent a sphere. Since

a0 ∧ · · · ∧ ar = −[e0 − 1
2eA

−
r (A+

r)−1 + 1
2A

±
r (A+

r)−1]EA+
r , (2.88)

we find that the sphere is in the space represented by EA+
r , with center and

squared radius

c = 1
2A

±
r (A+

r)−1 , (2.89a)

ρ2 = c2 + A−
r (A+

r)−1 . (2.89b)

When Ar 6= 0, then A+
r 6= 0 because of (2.95b) below. Since

a0 ∧ · · · ∧ ar =

(Ar + e0A
+
r + 1

2eA
−
r − 1

2EA±
r)(eAr +EA+

r)†

(eAr +EA+
r)†(eAr +EA+

r)
(eAr +EA+

r) ,

(2.90)

and the numerator equals

A+
r (A+

r)†
[
e0 +

2A+
r (Ar)

† + A±
r (A+

r)†

2A+
r (A+

r)†
+

2Ar(Ar)
† −A−

r (A+
r)†

2A+
r (A+

r)†
e

]
,

(2.91)

we find that the sphere is on the plane represented by eAr + EA+
r , with

center and squared radius

c =
2A+

r (Ar)
† + A±

r (A+
r)†

2A+
r (A+

r)†
, (2.92a)

ρ2 = c2 +
A−
r (A+

r)† − 2Ar(Ar)
†

A+
r (A+

r)†
. (2.92b)

We see that (2.92a), (2.92b) congrue with (2.89a), (2.89b) when Ar = 0.
Having shown how the expanded form (2.81) represents spheres or planes

of any dimension, let us analyze relation among the A’s. In (2.82) A+
r is

already represented as a blade; when ai 6= 0 for all i, the analogous represen-
tation for A−

r is

A−
r = Πr(a

−1
1 − a−1

0) ∧ (a−1
2 − a−1

0) ∧ · · · ∧ (a−1
r − a−1

0) , (2.93)

where

46 Hongbo Li, David Hestenes, Alyn Rockwood

Πr = a2
0a2

1 · · · a2
r . (2.94)

From this we see that A+
r and A−

r are interchanged by inversions ai → a−1
i ,

of all inhomogeneous points.
Using the notation for the boundary of a simplex from chapter 1, we

have

A+
r = /∂Ar , A−

r /Πr = /∂(Ar/Πr) , (2.95a)

A±
r = −/∂A−

r , A±
r /Πr = /∂(A+

r /Πr) . (2.95b)

An immediate corollary is that all A’s are blades, and if A±
r = 0 then all

other A’s are zero.
If Ar 6= 0, then we have the following relation among the four A’s:

A+
r ∨A−

r = −ÃrA
±
r , (2.96)

where the meet and dual are defined in G(Ar). Hence when Ar 6= 0, the
vector spaces defined by A+

r and A−
r intersect and the intersection is the

vector space defined by A±
r .

Squaring (2.81) we get

| a0 ∧ · · · ∧ ar |2 = det(ai · aj) = (− 1
2)r+1 det(| ai − aj |2)

= |Ar |2 − (A+
r)† · A−

r − 1
4 |A±

r |2 . (2.97)

For r = n+ 1, Ar vanishes and we obtain

Ptolemy’s Theorem: Let a0, a1, . . . , an+1 be points in Rn, then they are
on a sphere or a hypersphere if and only if det(| ai − aj |2)(n+2)×(n+2) = 0.

2.6 Relation among Spheres and Hyperplanes

In Section 2.3 we learned that every sphere or hyperplane in En is uniquely
represented by some vector s with s2 > 0 or by its dual s̃ . It will be conve-
nient, therefore, to use s or s̃ as names for the surface they represent. We
also learned that spheres and hyperplanes are distinguished, respectively, by
the conditions s · e > 0 and s · e = 0, and the latter tells us that a hyperplane
can be regarded as a sphere through the point at infinity. This intimate rela-
tion between spheres and hyperplanes makes it easy to analyze their common
properties.

A main advantage of the representation by s and s̃ is that it can be used
directly for algebraic characterization of both qualitative and quantitative
properties of surfaces without reference to generic points on the surfaces. In
this section we present important examples of qualitative relations among
spheres and hyperplanes that can readily be made quantitative. The simplic-
ity of these relations and their classifications should be of genuine value in
computational geometry, especially in problems of constraint satisfaction.

2. Generalized Homogeneous Coordinates for Computational Geometry 47

Intersection of spheres and hyperplanes

Let s̃1 and s̃2 be two different spheres or hyperplanes of Rn (or En). Both
s̃1 and s̃2 are tangent (n + 1)-dimensional Minkowski subspaces of Rn+1,1.
These subspaces intersect in an n-dimensional subspace with n-blade tangent
given algebraically by the meet product s̃ 1 ∨ s̃2 defined in chapter 1. This
illustrates how the homogeneous model of En reduces the computations of
intersections of spheres and planes of any dimension to intersections of linear
subspaces in Rn+1,1, which are computed with the meet product.

To classify topological relations between two spheres or hyperplanes, it
will be convenient to work with the dual of the meet:

(s̃1 ∨ s̃2)
∼ = s1 ∧ s2 . (2.98)

There are three cases corresponding to the possible signatures of s1 ∧ s2:

Theorem 2.6.1. Two spheres or hyperplanes s̃ 1, s̃2 intersect, are tangent
or parallel, or do not intersect if and only if (s1∧s2)2 <, =, > 0, respectively.

Let us examine the various cases in more detail.
When s̃1 and s̃2 are both spheres, then

– if they intersect, the intersection (s1∧s2)∼ is a sphere, as e∧(s1∧s2)∼ 6= 0.
The center and radius of the intersection are the same with those of the
sphere (Ps1∧s2(e))

∼. The intersection lies on the hyperplane (e ·(s1∧s2))∼.
– if they are tangent, the tangent point is proportional to the null vector
P⊥
s1 (s2) = (s2 ∧ s1)s−1

1 .
– if they do not intersect, there are two points a, b ∈ Rn, called Poncelet

points [202], which are inversive to each other with respect to both spheres
s̃1 and s̃2. The reason is, since s1 ∧ s2 is Minkowski, it contains two
noncollinear null vectors |s1 ∧ s2|s1 ± |s1|s2|P⊥

s1(s2), which correspond to
a,b ∈ Rn respectively. Let si = λia + µib, where λi, µi are scalars. Then
the inversion of a homogeneous point a with respect to the sphere si gives
the point si a = (−µi/λi)b, as shown in the section on conformal transfor-
mations.

When s̃1 is a hyperplane and s̃2 is a sphere, then

– if they intersect, the intersection (s1∧s2)∼ is a sphere, since e∧(s1∧s2)∼ 6=
0. The center and radius of the intersection are the same with those of the
sphere (P⊥

s1 (s2))
∼.

– if they are tangent, the tangent point corresponds to the null vector P⊥
s1(s2).

When a sphere s̃ and a point a on it is given, the tangent hyperplane of
the sphere at a is (s+ s · ea)∼.

– if they do not intersect, there are two points a, b ∈ Rn as before, called
Poncelet points [202], which are symmetric with respect to the hyperplane
s̃1 and also inversive to each other with respect to the sphere s̃ 2.

48 Hongbo Li, David Hestenes, Alyn Rockwood

When s̃1 and s̃2 are both hyperplanes, they always intersect or are parallel,
as (s1 ∧ s2)∼ always contains e, and therefore cannot be Euclidean. For the
two hyperplanes,

– if they intersect, the intersection (s1 ∧ s2)∼ is an (n−2)-plane. When both
s̃1 and s̃2 are hyperspaces, the intersection corresponds to the (n − 2)-
space (s1 ∧ s2)In in Rn, where Ir is a unit pseudoscalar of Rn; otherwise
the intersection is in the hyperspace (e0 · (s1 ∧ s2))

∼ and has the same
normal and distance from the origin as the hyperplane (Ps1∧s2(e0))

∼.
– if they are parallel, the distance between them is |e0 · P⊥

s2 (s1)|/|s1|.
Now let us examine the geometric significance of the inner product s1 ·s2.

For spheres and hyperspaces s̃1, s̃2, the scalar s1 · s2/|s1||s2| is called the
inversive product [124] and denoted by s1∗s2. Obviously, it is invariant under
orthogonal transformations in Rn+1,1, and

(s1 ∗ s2)2 = 1 +
(s1 ∧ s2)2
s21s

2
2

. (2.99)

Let us assume that s̃1 and s̃2 are normalized to standard form. Following
[124], p. 40, 8.7, when s̃1 and s̃2 intersect, let a be a point of intersection,
and let mi, i = 1, 2, be the respective outward unit normal vector of s̃ i at
a if it is a sphere, or the negative of the unit normal vector in the standard
form of s̃ i if it is a hyperplane; then

s1 ∗ s2 = m1 ·m2. (2.100)

The above conclusion is proved as follows: For i = 1, 2, when s̃ i represents
a sphere with standard form si = ci − 1

2ρ
2
i e where ci is its center, then

s1 ∗ s2 =
ρ2
1 + ρ2

2 − |c1 − c2|2
2ρ1ρ2

, (2.101)

m1 · m2 =
(a − c1)

|a − c1|
· (a − c2)

|a − c2|
=
ρ2
1 + ρ2

2 − |c1 − c2|2
2ρ1ρ2

. (2.102)

When s2 is replaced by the standard form n2 + δ2e for a hyperplane, then

s1 ∗ s2 =
c1 · n2 − δ2

ρ1
, (2.103)

m1 · m2 =
(a − c1)

|a − c1|
· (−n2) =

c1 · n2 − δ2
ρ1

; (2.104)

For two hyperspheres si = ni + δif ; then

s1 ∗ s2 = n1 · n2, (2.105)

m1 · m2 = n1 · n2. (2.106)

2. Generalized Homogeneous Coordinates for Computational Geometry 49

An immediate consequence of this result is that orthogonal transformations
in Rn+1,1 induce angle-preserving transformations in Rn. These are the con-
formal transformations discussed in the next section.

Relations among Three Points, Spheres or Hyperplanes

Let s1, s2, s3 be three distinct nonzero vectors of Rn+1,1 with non-negative
square. Then the sign of

∆ = s1 · s2 s2 · s3 s3 · s1 (2.107)

is invariant under the rescaling s1, s2, s3 → λ1s1, λ2s2, λ3s3, where the λ’s
are nonzero scalars. Geometrically, when s2i > 0, then s̃ i represents either
a sphere or a hyperplane; when s2i = 0, then si represents either a finite
point or the point at infinity e. So the sign of ∆ describes some geometric
relationship among points, spheres or hyperplanes. Here we give a detailed
analysis of the case when ∆ < 0.

When the s’s are all null vectors, then ∆ < 0 is always true, as long as
no two of them are linearly dependent.

When s1 = e, s2 is null, and s23 > 0, then ∆ < 0 implies s̃3 to represent
a sphere. Our previous analysis shows that ∆ < 0 if and only if the point s2
is outside the sphere s̃3.

When s1, s2 are finite points and s23 > 0, a simple analysis shows that
∆ < 0 if and only if the two points by s1, s2 are on the same side of the
sphere or hyperplane s̃3.

When s1 = e, s22, s
2
3 > 0, then ∆ < 0 implies s̃2, s̃3 to represent two

spheres. For two spheres with centers c1, c2 and radii ρ1, ρ2 respectively, we
say they are (1) near if |c1 − c2|2 < ρ2

1 + ρ2
2, (2) far if |c1 − c2|2 > ρ2

1 + ρ2
2,

and (3) orthogonal if |c1 − c2|2 = ρ2
1 + ρ2

2. According to the first equation of
(2.6), ∆ < 0 if and only if the two spheres s̃2 and s̃3 are far.

When s1 is a finite point and s22, s
2
3 > 0, then

– if s̃2 and s̃3 are hyperplanes, then ∆ < 0 implies that they are neither
orthogonal nor identical. When the two hyperplanes are parallel, then ∆ <
0 if and only if the point s1 is between the two hyperplanes. When the
hyperplanes intersect, then ∆ < 0 if and only if s1 is in the wedge domain
of the acute angle in Rn formed by the two intersecting hyperplanes.

– if s̃2 is a hyperplane and s̃3 is a sphere, then ∆ < 0 implies that they are
non-orthogonal, i.e., the center of the sphere does not lie on the hyperplane.
If the center of a sphere is on one side of a hyperplane, we also say that the
sphere is on that side of the hyperplane. If the point s1 is outside the sphere
s̃3, then ∆ < 0 if and only if s1 and the sphere s̃3 are on the same side of
the hyperplane s̃2; if the point is inside the sphere s̃3, then ∆ < 0 if and
only if the point and the sphere are on opposite sides of the hyperplane.

– if s̃2, s̃3 are spheres, then ∆ < 0 implies that they are non-orthogonal. If
they are far, then ∆ < 0 if and only if the point s1 is either inside both of

50 Hongbo Li, David Hestenes, Alyn Rockwood

them or outside both of them. If they are near, then ∆ < 0 if and only if
s1 is inside one sphere and outside the other.

When s1, s2, s3 are all of positive square, then ∆ < 0 implies that no two
of them are orthogonal or identical.

– If they are all hyperplanes, with normals n1, n2, n3 respectively, then
∆ < 0 implies that no two of them are parallel, as the sign of ∆ equals
that of n1 · n2 n2 · n3 n3 · n1. ∆ < 0 if and only if a normal vector of s̃1

with its base point at the intersection of the two hyperplanes s̃ 2 and s̃3,
has its end point in the wedge domain of the acute angle in Rn formed by
the two intersecting hyperplanes.

– If s̃1, s̃2 are hyperplanes and s̃3 is a sphere, then when the hyperplanes
are parallel, ∆ < 0 if and only if the sphere’s center is between the two
hyperplanes. When the hyperplanes intersect, ∆ < 0 if and only if the
sphere’s center is in the wedge domain of the acute angle in Rn formed by
the two intersecting hyperplanes.

– If s̃1 is a hyperplane and s̃2, s̃3 are spheres, then when the two spheres are
far, ∆ < 0 if and only if the spheres are on the same side of the hyperplane.
When the spheres are near, ∆ < 0 if and only if they are on opposite sides
of the hyperplane.

– If all are spheres, then either they are all far from each other, or two spheres
are far and the third is near to both of them.

Bunches of Spheres and Hyperplanes

In previous sections, we proved that Minkowski subspaces of Rn+1,1 repre-
sent spheres and planes of various dimensions in Rn. In this subsection we
consider subspaces of Rn+1,1 containing only their normals, which are vectors
of positive square. Such subspaces are dual to Minkowski hyperspaces that
represent spheres or hyperplanes. Therefore the tangent blade for a subspace
Ar of Rn+1,1 can be used to represent a set of spheres and hyperplanes, where
each of them is represented by a vector of positive square. Or dually, the dual
of Ar represents the intersection of a set of spheres and hyperplanes.

The simplest example is a pencil of spheres and hyperplanes. Let s̃ 1, s̃2 be
two different spheres or hyperplanes, then the pencil of spheres/hyperplanes
determined by them is the set of spheres/hyperplanes (λ1s1 + λ2s2)

∼, where
λ1, λ2 are scalars satisfying

(λ1s1 + λ2s2)
2 > 0. (2.108)

The entire pencil is represented by the blade A2 = s1∧s2 or its dual (s1∧s2)∼.
There are three kinds of pencils corresponding to the three possible signatures
of the blade s1 ∧ s2:
1. Euclidean, (s1 ∧ s2)

2 < 0. The space (s1 ∧ s2)
∼, which is a subspace

of any of the spaces (λ1s1 + λ2s2)
∼, is Minkowski, and represents an

2. Generalized Homogeneous Coordinates for Computational Geometry 51

(n− 2)-dimensional sphere or plane in Rn. If the point at infinity e is in
the space, then the pencil (s1 ∧ s2)∼ is composed of hyperplanes passing
through an (n−2)-dimensional plane. We call it a concurrent pencil. If
e is not in the space (s1 ∧ s2)∼, there is an (n − 2)-dimensional sphere
that is contained in every sphere or hyperplane in the pencil (s1 ∧ s2)∼.
We call it an intersecting pencil.

2. Degenerate, (s1 ∧ s2)
2 = 0. The space (s1 ∧ s2)

∼ contains a one-
dimensional null subspace, spanned by P⊥

s1(s2). If e is in the space, then
the pencil is composed of hyperplanes parallel to each other. We call it a
parallel pencil. If e is not in the space (s1∧s2)∼, the pencil is composed
of spheres tangent to each other at the point in Rn represented by the
null vector P⊥

s1(s2). We call it a tangent pencil.
3. Minkowski, (s1∧s2)2 > 0. The Minkowski plane s1∧s2 contains two non-

collinear null vectors |s1∧s2|s1±|s1|s2|P⊥
s1(s2). The two one-dimensional

null spaces spanned by them are conjugate with respect to any of the vec-
tors λ1s1 +λ2s2, which means that the two points represented by the two
null vectors are inversive with respect to any sphere or hyperplane in the
pencil (s1∧s2)∼. If e is in the space s1∧s2, then the pencil is composed
of spheres centered at the point represented by the other null vector in
the space. We call it a concentric pencil. If e is outside the space s1∧s2,
the two points represented by the two null vectors in the space are called
Poncelet points. The pencil now is composed of spheres and hyperplanes
with respect to which the two points are inversive. We call it a Poncelet
pencil.

This finishes our classification of pencils. From the above analysis we also
obtain the following corollary:

– The concurrent (or intersecting) pencil passing through an (n− 2)-dimen-

sional plane (or sphere) represented by Minkowski subspace An is Ãn.
– The parallel pencil containing a hyperplane s̃ is (e∧ s)∼. In particular, the

parallel pencil normal to vector n ∈ Rn is (e ∧ n)∼.
– The tangent pencil containing a sphere or hyperplane s̃ and having tan-

gent point a = P⊥
E (a) ∈ Rn is (a ∧ s)∼. In particular, the tangent pencil

containing a hyperplane normal to n ∈ Rn and having tangent point a is
(a ∧ (n + a · ne))∼.

– The concentric pencil centered at a = P⊥
E (a) ∈ Rn is (e ∧ a)∼.

– The Poncelet pencil with Poncelet points a,b ∈ Rn is (a ∧ b)∼.

The generalization of a pencil is a bunch. A bunch of spheres and hy-
perplanes determined by r spheres and hyperplanes s̃ 1, . . . , s

∼
r is the set of

spheres and hyperplanes (λ1s1 + · · · + λrsr)
∼, where the λ’s are scalars and

satisfy

(λ1s1 + · · · + λrsr)
2 > 0. (2.109)

52 Hongbo Li, David Hestenes, Alyn Rockwood

When s1 ∧· · ·∧sr 6= 0, the integer r−1 is called the dimension of the bunch,
and the bunch is represented by (s1∧· · ·∧sr)∼. A pencil is a one-dimensional
bunch. The dimension of a bunch ranges from 1 to n− 1.

The classification of bunches is similar to that of pencils. Let (s1 ∧ · · · ∧
sr)

∼, 2 ≤ r ≤ n, be a bunch. Then the signature of the space (s1 ∧ · · · ∧ sr)∼
has three possibilities:

1. Minkowski. The space (s1∧· · ·∧sr)∼ corresponds to an (n−r)-dimensional
sphere or plane of Rn, and is contained in any of the spheres and hyper-
planes (λ1s1 + · · · + λrsr)

∼. If e is in the space, then the bunch is
composed of hyperplanes passing through an (n− r)-dimensional plane.
We call it a concurrent bunch. If e is not in the space, there is an (n− r)-
dimensional sphere that are on any sphere or hyperplane in the bunch.
We call it an intersecting bunch.

2. Degenerate. The space (s1 ∧ · · · ∧ sr)
∼ contains a one-dimensional null

subspace, spanned by the vector (s1∧· · ·∧sr)·(s1∧· · ·∧ši∧· · ·∧sr), where
the omitted vector si is chosen so that (s1 ∧· · ·∧ ši∧· · ·∧sr)2 6= 0. If e
is in the space (s1∧· · ·∧sr)∼, then the bunch is composed of hyperplanes
normal to an (r−1)-space of Rn represented by the blade e0 ·(s1∧· · ·∧sr).
We call it a parallel bunch. If e is not in the space, the bunch is composed
of spheres and hyperplanes passing through a point ai ∈ Rn represented
by the null vector of the space, at the same time orthogonal to the (r−1)-
plane of Rn represented by e∧a∧ (e · (s1 ∧ · · · ∧ sr)). We call it a tangent
bunch.

3. Euclidean. The Minkowski space s1 ∧ · · · ∧ sr corresponds to an (r − 2)-
dimensional sphere or plane. It is orthogonal to all of the spheres and
hyperplanes (λ1s1 + · · ·+λrsr)

∼. If e is in the space s1 ∧ · · · ∧ sr, then
the pencil is composed of hyperplanes perpendicular to the (r− 2)-plane
represented by s1 ∧ · · · ∧ sr, together with spheres whose centers are in
the (r− 2)-plane. We call it a concentric bunch. If e is outside the space,
the (r− 2)-sphere represented by s1 ∧ · · · ∧ sr is called a Poncelet sphere.
Now the pencil is composed of spheres and hyperplanes orthogonal to
the Poncelet sphere, called a Poncelet bunch.

Finally we discuss duality between two bunches. Let Ar, 2 ≤ r ≤ n, be
a blade. Then it represents an (n − r + 1)-dimensional bunch. Its dual, Ãr,
represents an (r − 1)-dimensional bunch. Any bunch and its dual bunch are
orthogonal, i.e., any sphere or hyperplane in a bunch Ar is orthogonal to
a sphere or hyperplane in the bunch Ãr. Table 2.1 provides details of the
duality.

2.7 Conformal Transformations

A transformation of geometric figures is said to be conformal if it preserves
shape; more specifically, it preserves angles and hence the shape of straight

2. Generalized Homogeneous Coordinates for Computational Geometry 53

Table 2.1. Bunch dualities

Geometric conditions Bunch Ar Bunch
�
Ar

Ar ·A†
r < 0 ,

e ∧ Ar = 0

Concurrent bunch,
concurring at the
(r − 2)-plane Ar

Concentric bunch,
centered at the
(r − 2)-plane Ar

Ar ·A†
r < 0 ,

e ∧ Ar 6= 0

Intersecting bunch, at
the (r − 2)-sphere Ar

Poncelet bunch, with
Poncelet sphere Ar

Ar ·A†
r = 0 ,

e ∧ Ar = 0

Parallel bunch, normal
to the (n − r + 1)-space
(e0 ·Ar)∼

Parallel bunch, normal
to the (r − 1)-space

e ∧ e0 ∧ (e0 ·Ar)

Ar · A†
r = 0, e ∧ Ar 6= 0,

assuming a is a null vec-
tor in the space Ar

Tangent bunch, at point
a and orthogonal to the
(n−r+1)-plane (e·Ar)∼

Tangent bunch, at point
a and orthogonal to the
(r−1)-plane e∧a∧(e·Ar)

Ar ·A†
r > 0 ,

e ∧ Ar = 0

Concentric bunch,
centering at the

(n− r)-plane
�
Ar

Concurrent bunch,
concurring at the

(n− r)-plane
�
Ar

Ar ·A†
r > 0 ,

e ∧ Ar 6= 0

Poncelet bunch, with

Poncelet sphere
�
Ar

Intersecting bunch, at

the (n− r)-sphere
�
Ar

lines and circles. As first proved by Liouville [156] for R3, any conformal trans-
formation on the whole of Rn can be expressed as a composite of inversions in
spheres and reflections in hyperplanes. Here we show how the homogeneous
model of En simplifies the formulation of this fact and thereby facilitates
computations with conformal transformations. Simplification stems from the
fact that the conformal group on Rn is isomorphic to the Lorentz group on
Rn+1. Hence nonlinear conformal transformations on Rn can be linearized
by representing them as Lorentz transformation and thereby further sim-
plified as versor representations. The present treatment follows, with some
improvements, [114], where more details can be found.

From chapter 1, we know that any Lorentz transformation G of a generic
point x ∈ Rn+1 can be expressed in the form

G(x) = Gx(G∗)−1 = σx′ , (2.110)

where G is a versor and σ is a scalar. We are only interested in the action
of G on homogeneous points of En. Since the null cone is invariant under G,
we have (x′)2 = x2 = 0. However, for fixed e, x · e is not Lorentz invariant,
so a scale factor σ has been introduced to ensure that x′ · e = x · e = −1 and

54 Hongbo Li, David Hestenes, Alyn Rockwood

Table 2.2. Conformal transformations and their versor representations (see text
for explanation)

Type g(x) on � n Versor in � n+1,1 σ(x)

Reflection −nxn + 2nδ s = n + eδ 1

Inversion
ρ2

x− c
+ c s = c− 1

2
ρ2e

� x − c

ρ � 2

Rotation R(x− c)R−1 + c Rc = R+ e(c×R) 1

Translation x− a Ta = 1 + 1
2
ae 1

Transversion
x− x2a

σ(x)
Ka = 1 + ae0 1 − 2a · x + x2a2

Dilation λx Dλ = e−
1
2

E ln λ λ−1

Involution x∗ = −x E = e ∧ e0 −1

x′ remains a point in En. Expressing the right equality in (2.110) in terms of
homogeneous points we have the expanded form

G[x + 1
2x

2e+ e0](G∗)−1 = σ[x′ + 1
2 (x′)2e+ e0] , (2.111)

where

x′ = g(x) (2.112)

is a conformal transformation on Rn and

σ = −e · (Gx) = −〈 eG∗xG−1 〉 . (2.113)

We study the simplest cases first.
For reflection by a vector s = −s∗ (2.110) becomes

s(x) = −sxs−1 = x− 2(s · x)s−1 = σx′ , (2.114)

where sx + xs = 2s · x has been used. Both inversions and reflections have
this form as we now see by detailed examination.

Inversions. We have seen that a circle of radius ρ centered at point c =
c + 1

2c
2e+ e0 is represented by the vector

s = c− 1
2ρ

2e . (2.115)

2. Generalized Homogeneous Coordinates for Computational Geometry 55

We first examine the important special case of the unit sphere centered at
the origin in Rn. Then s reduces to e0 − 1

2e, so −2s · x = x2 − 1 and (2.114)
gives

σx′ = (x + 1
2x

2e+ e0) + (x2 − 1)(e0 − 1
2e) = x2[x−1 + 1

2x
−2e+ e0] .

(2.116)

Whence the inversion

g(x) = x−1 =
1

x
=

x

|x |2
. (2.117)

Note how the coefficient of e0 has been factored out on the right side of
(2.116) to get σ = x2. This is usually the best way to get the rescaling factor,
rather than separate calculation from (2.113). Actually, we seldom care about
σ, but it must be factored out to get the proper normalization of g(x).

Turning now to inversion with respect to an arbitrary circle, from (2.115)
we get

s · x = c · x− 1
2ρ

2e · x = − 1
2 [(x − c)2 − ρ2] . (2.118)

Insertion into (2.114) and a little algebra yields

σx′ =
(x − c

ρ

)2[
g(x) + 1

2 [g(x)]2e+ e0
]
, (2.119)

where

g(x) =
ρ2

x − c
+ c =

ρ2

(x − c)2
(x − c) + c (2.120)

is the inversion in Rn.
Reflections. We have seen that a hyperplane with unit normal n and

signed distance δ from the origin in Rn is represented by the vector

s = n + eδ . (2.121)

Inserting s · x = n · x − δ into (2.114) we easily find

g(x) = nxn∗ + 2nδ = n(x − nδ)n∗ + nδ . (2.122)

We recognize this as equivalent to a reflection nxn∗ at the origin translated
by δ along the direction of n. A point c is on the hyperplane when δ = n · c,
in which case (2.121) can be written

s = n + en · c . (2.123)

Via (2.122), this vector represents reflection in a hyperplane through point
c.

56 Hongbo Li, David Hestenes, Alyn Rockwood

With a minor exception to be explained, all the basic conformal transfor-
mations in Table 2.2 can be generated from inversions and reflections. Let us
see how.

Translations. We have already seen in chapter 1 that versor Ta in Table
2.2 represents a translation. Now notice

(n + eδ)n = 1 + 1
2ae = Ta (2.124)

where a = 2δn. This tells us that the composite of reflections in two parallel
hyperplanes is a translation through twice the distance between them.

Transversions. The transversion Ka in Table 2.2 can be generated from
two inversions and a translation; thus, using e0ee0 = −2e0 from (2.5c) and
(2.5d), we find

e+Tae+ = (1
2e− e0)(1 + 1

2ae)(
1
2e− e0) = 1 + ae0 = Ka . (2.125)

The transversion generated by Ka can be put in the various forms

g(x) =
x − x2a

1 − 2a · x + x2a2
= x(1 − ax)−1 = (x−1 − a)−1 . (2.126)

The last form can be written down directly as an inversion followed by a
translation and another inversion as asserted by (2.125). That avoids a fairly
messy computation from (2.111).

Rotations. Using (2.123), the composition of reflections in two hyperplanes
through a common point c is given by

(a + ea · c)(b + eb · c) = ab + ec · (a ∧ b) , (2.127)

where a and b are unit normals. Writing R = ab and noting that c ·(a∧b) =
c×R, we see that (2.127) is equivalent to the form for the rotation versor
in Table 2.2 that we found in chapter 1. Thus we have established that the
product of two reflections at any point is equivalent to a rotation about that
point.

Dilations. Now we prove that the composite of two inversions centered at
the origin is a dilation (or dilatation). Using (2.5d) we have

(e0 − 1
2e)(e0 − 1

2ρ
2e) = 1

2 (1 −E) + 1
2 (1 +E)ρ2 . (2.128)

Normalizing to unity and comparing to (2.6) with ρ = eϕ, we get

Dρ = 1
2 (1 +E)ρ+ 1

2 (1 −E)ρ−1 = eEϕ , (2.129)

where Dρ is the square of the versor form for a dilation in table 2.2. To verify
that Dρ does indeed generate a dilation, we note from (2.8) that

Dρ(e) = Dρ eD
−1
ρ = D2

ρ e = ρ−2e .

2. Generalized Homogeneous Coordinates for Computational Geometry 57

Similarly

Dρ(e0) = ρ2 e0 .

Therefore,

Dρ(x + 1
2x

2e+ e0)D
−1
ρ = ρ2[ρ−2x + 1

2 (ρ−2x)2e+ e0] . (2.130)

Thus g(x) = ρ−2x is a dilation as advertised.
We have seen that every vector with positive signature in Rn+1,1 repre-

sents a sphere or hyperplane as well as an inversion or reflection in same. They
compose a multiplicative group which we identify as the versor representation
of the full conformal group C(n) of En. Subject to a minor proviso explained
below, our construction shows that this conformal group is equivalent to the
Lorentz group of Rn+1,1. Products of an even number of these vectors con-
stitute a subgroup, the spin group Spin+(n + 1, 1). It is known as the spin
representation of the proper Lorentz group, the orthogonal group O+(n+1, 1).
This, in turn, is equivalent to the special orthogonal group SC+(n+ 1, 1).

Our constructions above show that translations, transversions, rotations,
dilations belong to SC+(n). Moreover, every element of SC+(n) can be gen-
erated from these types. This is easily proved by examining our construction
of their spin representations Ta, Kb, Rc, Dλ from products of vectors. One
only needs to show that every other product of two vectors is equivalent
to some product of these. Not hard! Comparing the structure of Ta, Kb,
Rc, Dλ exhibited in Table 2.2 with equations (2.6) through (2.15b), we see
how it reflects the structure of the Minkowski plane R1,1 and groups derived
therefrom.

Our construction of Spin+(n+1, n) from products of vectors with positive
signature excludes the bivector E = e+e− because e2− = −1. Extending
Spin+(n + 1, n) by including E we get the full spin group Spin(n + 1, n).
Unlike the elements of Spin+(n+ 1, n), E is not parametrically connected to
the identity, so its inclusion gives us a double covering of Spin+(n + 1, n).
Since E is a versor, we can ascertain its geometric significance from (2.111);
thus, using (2.5c) and (2.5a), we easily find

E(x + 1
2x

2e+ e0)E = −[− x + 1
2x

2e+ e0] . (2.131)

This tells us that E represents the main involution x∗ = −x of Rn, as shown
in table 2.2. The conformal group can be extended to include involution,
though this is not often done. However, in even dimensions involution can be
achieved by a rotation so the extension is redundant.

Including E in the versor group brings all vectors of negative signature
along with it. For e− = Ee+ gives us one such vector, and Dλe− gives us (up
to scale factor) all the rest in the E-plane. Therefore, extension of the versor
group corresponds only to extension of C(n) to include involution.

58 Hongbo Li, David Hestenes, Alyn Rockwood

Since every versor G in Rn+1,1 can be generated as a product of vectors,
expression of each vector in the expanded form (2.17) generates the expanded
form

G = e(−e0A+B) − e0(C + eD) (2.132)

where A, B, C, D are versors in Rn and a minus sign is associated with e0 for
algebraic convenience in reference to (2.5d) and (2.2a). To enforce the versor
property of G, the following conditions must be satisfied

AB†, BD†, CD†, AC† ∈ Rn , (2.133)

GG† = AD† −BC† = ±|G |2 6= 0 . (2.134)

Since G must have a definite parity, we can see from (2.132) that A and
D must have the same parity which must be opposite to the parity of C
and D. This implies that the products in (2.133) must have odd parity. The
stronger condition that these products must be vector-valued can be derived
by generating G from versor products or from the fact that the conformal
transformation generated by G must be vector-valued. For G ∈ Spin+(n +
1, n) the sign of (2.134) is always positive, but for G ∈ Spin(n + 1, n) a
negative sign may derive from a vector of negative signature.

Adopting the normalization |G | = 1, we find

G∗† = ±(G∗)−1 = −(A∗†e0 +B∗†)e+ (C∗† −D∗†e)e0 , (2.135)

and inserting the expanded form for G into (2.111), we obtain

g(x) = (Ax +B)(Cx +D)−1 (2.136)

with the rescaling factor

σ = σg(x) = (Cx +D)(C∗x +D∗)† . (2.137)

In evaluating (2.134) and (2.113) to get (2.137) it is most helpful to use the
property 〈MN 〉 = 〈NM 〉 for the scalar part of any geometric product.

The general homeographic form (2.136) for a conformal transformation on
Rn is called a Möbius transformation by Ahlfors [1]. Because of its nonlinear
form it is awkward for composing transformations. However, composition can
be carried out multiplicatively with the versor form (2.132) with the result
inserted into the homeographic form. As shown in [114], the versor (2.136)
has a 2 × 2 matrix representation

[
G
]

=

[
A B
C D

]
, (2.138)

so composition can be carried out by matrix multiplication. Ahlfors [2] has
traced this matrix representation back to Vahlen [239].

2. Generalized Homogeneous Coordinates for Computational Geometry 59

The apparatus developed in this section is sufficient for efficient formula-
tion and solution of any problem or theorem in conformal geometry. As an
example, consider the problem of deriving a conformal transformation on the
whole of Rn from a given transformation of a finite set of points.

Let a1, · · · , an+2 be distinct points in Rn spanning the whole space. Let
b1, · · · ,bn+2 be another set of such points. If there is a Möbius transforma-
tion g changing ai into bi for 1 ≤ i ≤ n + 2, then g must be induced by
a Lorentz transformation G of Rn+1,1, so the corresponding homogeneous
points are related by

G(ai) = λibi, for 1 ≤ i ≤ n+ 2 . (2.139)

Therefore ai · aj = (λibi) · (λjbj) and g exists if and only if the λ’s satisfy

(ai − aj)
2 = λiλj(bi − bj)

2 . for 1 ≤ i 6= j ≤ n+ 2, (2.140)

This sets (n + 2)(n− 1)/2 constraints on the b’s from which the λ’s can be
computed if they are satisfied.

Now assuming that g exists, we can employ (2.139) to compute g(x) for
a generic point x ∈ Rn. Using the ai as a basis, we write

x =

n+1∑

i=1

xiai, (2.141)

so G(x) =
n+1∑
i=1

xiλibi, and

g(x) =

n+1∑
i=1

xiλibi

n+1∑
i=1

xiλi

. (2.142)

The x’s can be computed by employing the basis dual to {ai} as explained
in chapter 1.

If we are given, instead of n+2 pairs of corresponding points, two sets of
points, spheres and hyperplanes, say t1, · · · , tn+2, and u1, · · · , un+2, where
t2i ≥ 0 for 1 ≤ i ≤ n+2 and where both sets are linearly independent vectors
in Rn+1,1, then we can simply replace the a’s with the t’s and the b’s with
the u’s to compute g.

60 Hongbo Li, David Hestenes, Alyn Rockwood

3. Spherical Conformal Geometry with

Geometric Algebra ∗

Hongbo Li1, David Hestenes1, and Alyn Rockwood2

1 Department of Physics and Astronomy
Arizona State University, Tempe

2 Power Take Off Software, Inc., Colorado Springs

3.1 Introduction

The recorded study of spheres dates back to the first century in the book
Sphaerica of Menelaus. Spherical trigonometry was thoroughly developed
in modern form by Euler in his 1782 paper [75]. Spherical geometry in n-
dimensions was first studied by Schläfli in his 1852 treatise, which was pub-
lished posthumously in [207]. The most important transformation in spherical
geometry, the Möbius transformation, was considered by Möbius in his 1855
paper [176].

Hamilton was the first to apply vectors to spherical trigonometry. In 1987
Hestenes [116] formulated a spherical trigonometry in terms of Geometric
Algebra, and that remains a useful supplement to the present treatment.

This chapter is a continuation of the preceding chapter. Here we con-
sider the homogeneous model of spherical space, which is similar to that of
Euclidean space. We establish conformal geometry of spherical space in this
model, and discuss several typical conformal transformations.

Although it is well known that the conformal groups of n-dimensional Eu-
clidean and spherical spaces are isometric to each other, and are all isometric

∗ This work has been partially supported by NSF Grant RED-9200442.

62 Hongbo Li, David Hestenes, Alyn Rockwood

to the group of isometries of hyperbolic (n+1)-space [133, 134] spherical con-
formal geometry has its unique conformal transformations, and it can provide
good understanding for hyperbolic conformal geometry. It is an indispensible
part of the unification of all conformal geometries in the homogeneous model,
which is addressed in the next chapter.

3.2 Homogeneous Model of Spherical Space

In the previous chapter, we saw that, given a null vector e ∈ Rn+1,1, the
intersection of the null cone Nn of Rn+1,1 with the hyperplane {x ∈ Rn+1,1 | x·
e = −1} represents points in Rn. This representation is established through
the projective split of the null cone with respect to null vector e.

What if we replace the null vector e with any nonzero vector in Rn+1,1?
This section shows that when e is replaced by a unit vector p0 of negative
signature, then the set

Nnp0 = {x ∈ Nn|x · p0 = −1} (3.1)

represents points in the n-dimensional spherical space

Sn = {x ∈ Rn+1|x2 = 1}. (3.2)

The space dual to p0 corresponds to Rn+1 = p̃0, an (n + 1)-dimensional
Euclidean space whose unit sphere is Sn.

Applying the orthogonal decomposition

x = Pp0(x) + P �p0(x) (3.3)

to vector x ∈ Nnp0 , we get

x = p0 + x (3.4)

where x ∈ Sn. This defines a bijective map ip0 : x ∈ Sn −→ x ∈ Nnp0 . Its

inverse map is P⊥
p0 = Pp̃0 .

Theorem 3.2.1.

Nnp0 ' Sn. (3.5)

We call Nnp0 the homogeneous model of Sn. Its elements are called homo-
geneous points.

Distances
For two points a,b ∈ Sn, their spherical distance d(a,b) is defined as

d(a,b) = cos−1
(
a · b

)
. (3.6)

We can define other equivalent distances. Distances d1, d2 are said to be
equivalent if for any two pairs of points a1,b1 and a2, b2, then d1(a1,b1) =
d1(a2,b2) if and only if d2(a1,b1) = d2(a2,b2). The chord distance measures
the length of the chord between a,b:

3. Spherical Conformal Geometry with Geometric Algebra 63

x

x

S

p

n

 n+1

0

0

R

Fig. 3.1. The homogeneous model of Sn

dc(a,b) = |a − b|. (3.7)

The normal distance is

dn(a,b) = 1 − a · b. (3.8)

It equals the distance between points a,b′, where b′ is the projection of b
onto a. The stereographic distance measures the distance between the origin 0
and a′, the intersection of the line connecting −a and b with the hyperspace
of Rn+1 parallel with the tangent hyperplane of Sn at a:

ds(a,b) =
|a ∧ b|

1 + a · b . (3.9)

Some relations among these distances are:

dc(a,b) = 2 sin
d(a,b)

2
,

dn(a,b) = 1 − cos d(a,b),

ds(a,b) = tan
d(a,b)

2
,

d2
s(a,b) =

dn(a,b)

2 − dn(a,b)
.

(3.10)

64 Hongbo Li, David Hestenes, Alyn Rockwood

dnd c

d

a

a

bb

– a

ds

Fig. 3.2. Distances in Sn

For two points a,b in Sn, we have

a · b = a · b − 1 = −dn(a,b). (3.11)

Therefore the inner product of two homogeneous points a, b characterizes the
normal distance between the two points.

Spheres and hyperplanes
A sphere is a set of points having equal distances with a fixed point in

Sn. A sphere is said to be great, or unit, if it has normal radius 1. In this
chapter, we call a great sphere a hyperplane, or an (n− 1)-plane, of Sn, and
a non-great one a sphere, or an (n− 1)-sphere.

The intersection of a sphere with a hyperplane is an (n− 2)-dimensional
sphere, called (n−2)-sphere; the intersection of two hyperplanes is an (n−2)-
dimensional plane, called (n − 2)-plane. In general, for 1 ≤ r ≤ n − 1, the
intersection of a hyperplane with an r-sphere is called an (r − 1)-sphere; the
intersection of a hyperplane with an r-plane is called an (r − 1)-plane. A 0-
plane is a pair of antipodal points, and a 0-sphere is a pair of non-antipodal
ones.

We require that the normal radius of a sphere be less than 1. In this way
a sphere has only one center. For a sphere with center c and normal radius
ρ, its interior is

{x ∈ Sn|dn(x, c) < ρ}; (3.12)

its exterior is

{x ∈ Sn|ρ < dn(x, c) ≤ 2}. (3.13)

A sphere with center c and normal radius ρ is characterized by the vector

3. Spherical Conformal Geometry with Geometric Algebra 65

s = c− ρp0 (3.14)

of positive signature. A point x is on the sphere if and only if x · c = −ρ, or
equivalently,

x ∧ s̃ = 0. (3.15)

Form (3.14) is called the standard form of a sphere.
A hyperplane is characterized by its normal vector n; a point x is on the

hyperplane if and only if x · n = 0, or equivalently,

x ∧ ñ = 0. (3.16)

Theorem 3.2.2. The intersection of any Minkowski hyperspace s̃ with Nn
p0

is a sphere or hyperplane in Sn, and every sphere or hyperplane of Sn can
be obtained in this way. Vector s has the standard form

s = c + λp0, (3.17)

where 0 ≤ λ < 1. It represents a hyperplane if and only if λ = 0.

The dual theorem is:

Theorem 3.2.3. Given homogeneous points a0, . . . , an such that

s̃ = a0 ∧ · · · ∧ an, (3.18)

then the (n+ 1)-blade s̃ represents a sphere in Sn if

p0 ∧ s̃ 6= 0, (3.19)

or a hyperplane if

p0 ∧ s̃ = 0. (3.20)

The above two theorems also provide an approach to compute the center
and radius of a sphere in Sn. Let s̃ = a0 ∧ · · · ∧an 6= 0, then it represents the
sphere or hyperplane passing through points a0, . . . , an. When it represents
a sphere, let (−1)ε be the sign of s · p0. Then the center of the sphere is

(−1)ε+1
P⊥
p0(s)

|P⊥
p0 (s)|

, (3.21)

and the normal radius is

1 − |s · p0|
|s ∧ p0|

. (3.22)

66 Hongbo Li, David Hestenes, Alyn Rockwood

3.3 Relation between Two Spheres or Hyperplanes

Let s̃1, s̃2 be two distinct spheres or hyperplanes in Sn. The signature of the
blade

s1 ∧ s2 = (s̃1 ∨ s̃2)∼ (3.23)

characterizes the relation between the two spheres or hyperplanes:

Theorem 3.3.1. Two spheres or hyperplanes s̃1, s̃2 intersect, are tangent,
or do not intersect if and only if (s1 ∧ s2)2 is less than, equal to or greater
than 0, respectively.

There are three cases:

Case 1. For two hyperplanes represented by ñ1, ñ2, since n1∧n2 has Euclidean
signature, the two hyperplanes always intersect. The intersection is an (n−2)-
plane, and is normal to both P⊥

n1
(n2) and P⊥

n2
(n1).

Case 2. For a hyperplane ñ and a sphere (c + λp0)
∼, since

(n ∧ (c + λp0))
2 = (λ+ |c ∧ n|)(λ− |c ∧ n|), (3.24)

then:

– If λ < |c ∧ n|, they intersect. The intersection is an (n − 2)-sphere with

center
P⊥

n (c)

|P⊥
n (c)| and normal radius 1 − λ

|c ∧ n| .

– If λ = |c ∧ n|, they are tangent at the point
P⊥

n (c)

|P⊥
n (c)| .

– If λ > |c ∧ n|, they do not intersect. There is a pair of points in Sn
which are inversive with respect to the sphere, while at the same time

symmetric with respect to the hyperplane. They are
P⊥

n (c) ± µn

λ
, where

µ =
√
λ2 + (c ∧ n)2.

Case 3. For two spheres (ci + λip0)
∼, i = 1, 2, since

((c1 + λ1p0) ∧ (c2 + λ2p0))
2 = (c1 ∧ c2)

2 + (λ2c1 − λ1c2)
2, (3.25)

then:

– If |c1 ∧ c2| > |λ2c1 − λ1c2|, they intersect. The intersection is an (n− 2)-
sphere on the hyperplane of Sn represented by

(λ2c1 − λ1c2)
∼. (3.26)

The intersection has center

3. Spherical Conformal Geometry with Geometric Algebra 67

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2)

|λ1c2 − λ2c1||c1 ∧ c2|
(3.27)

and normal radius

1 − |λ2c1 − λ1c2|
|c1 ∧ c2|

. (3.28)

– If |c1 ∧ c2| = |λ2c1 − λ1c2|, they are tangent at the point

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2)

|c1 ∧ c2|2
. (3.29)

– If |c1 ∧ c2| < |λ2c1 − λ1c2|, they do not intersect. There is a pair of points
in Sn which are inversive with respect to both spheres. They are

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2) ± µ(λ2c1 − λ1c2)

(λ2c1 − λ1c2)2
, (3.30)

where µ =
√

(c1 ∧ c2)2 + (λ2c1 − λ1c2)2. The two points are called the
Poncelet points of the spheres.

The scalar

s1 ∗ s2 =
s1 · s2
|s1||s2|

(3.31)

is called the inversive product of vectors s1 and s2. Obviously, it is invariant
under orthogonal transformations in Rn+1,1. We have the following conclusion
for the geometric interpretation of the inversive product:

Theorem 3.3.2. Let a be a point of intersection of two spheres or hyper-
planes s̃1 and s̃2, let mi, i = 1, 2, be the respective outward unit normal vector
at a of s̃i if it is a sphere, or si/|si| if it is a hyperplane, then

s1 ∗ s2 = m1 ·m2. (3.32)

Proof. Given that si has the standard form ci + λip0. When s̃i is a sphere,
its outward unit normal vector at point a is

mi =
a(a ∧ ci)

|a ∧ ci|
, (3.33)

which equals ci when s̃i is a hyperplane. Point a is on both s̃1 and s̃2 and
yields

a · ci = λi, for i = 1, 2, (3.34)

so

68 Hongbo Li, David Hestenes, Alyn Rockwood

m1 · m2 =
c1 − a · c1a√
1 − (a · c1)2

· c2 − a · c2a√
1 − (a · c2)2

=
c1 · c2 − λ1λ2√
(1 − λ2

1)(1 − λ2
2)
. (3.35)

On the other hand,

s1 ∗ s2 =
(c1 + λ1p0) · (c2 + λ2p0)

|c1 + λ1p0||c2 + λ2p0|
=

c1 · c2 − λ1λ2√
(1 − λ2

1)(1 − λ2
2)
. (3.36)

An immediate corollary is that any orthogonal transformation in Rn+1,1

induces an angle-preserving transformation in Sn. This conformal transfor-
mation will be discussed in the last section.

3.4 Spheres and Planes of Dimension r

We have the following conclusion similar to that in Euclidean geometry:

Theorem 3.4.1. For 2 ≤ r ≤ n+1, every r-blade Ar of Minkowski signature
in Rn+1,1 represents an (r − 2)-dimensional sphere or plane in Sn.

Corollary The (r−2)-dimensional sphere passing through r points a1, . . . , ar
in Sn is represented by a1 ∧ · · · ∧ ar; the (r− 2)- plane passing through r− 1
points a1, . . . , ar−1 in Sn is represented by p0 ∧ a1 ∧ · · · ∧ ar−1.

There are two possibilities:

Case 1. When p0 ∧ Ar = 0, Ar represents an (r − 2)-plane in Sn. After
normalization, the standard form of the (r − 2)-plane is

p0 ∧ Ir−1, (3.37)

where Ir−1 is a unit (r−1)-blade of G(Rn+1) representing the minimal space
in Rn+1 supporting the (r − 2)-plane of Sn.

Case 2. Ar represents an (r − 2)-dimensional sphere if

Ar+1 = p0 ∧ Ar 6= 0. (3.38)

The vector

s = ArA
−1
r+1 (3.39)

has positive square and p0 · s 6= 0, so its dual s̃ represents an (n −
1)-dimensional sphere. According to Case 1, Ar+1 represents an (r − 1)-
dimensional plane in Sn, therefore

Ar = sAr+1 = (−1)εs̃ ∨ Ar+1, (3.40)

3. Spherical Conformal Geometry with Geometric Algebra 69

where ε = (n+2)(n+1)
2 + 1 represents the intersection of (n− 1)-sphere s̃ with

(r − 1)-plane Ar+1.
With suitable normalization, we can write s = c− ρp0. Since s ∧ Ar+1 =

p0 ∧ Ar+1 = 0, the sphere Ar is also centered at c and has normal radius ρ.
Accordingly we represent an (r− 2)-dimensional sphere in the standard form

(c− ρp0) (p0 ∧ Ir), (3.41)

where Ir is a unit r-blade of G(Rn+1) representing the minimal space in Rn+1

supporting the (r − 2)-sphere of Sn.
This completes our classification of standard representations for spheres

and planes in Sn.

Expanded form
For r + 1 homogeneous points a0, . . . , ar “in” Sn, where 0 ≤ r ≤ n + 1,

we have

Ar+1 = a0 ∧ · · · ∧ ar = Ar+1 + p0 ∧ Ar, (3.42)

where

Ar+1 = a0 ∧ · · · ∧ ar,
Ar = /∂Ar+1.

(3.43)

When Ar+1 = 0, Ar+1 represents an (r− 1)-plane, otherwise Ar+1 repre-
sents an (r − 1)-sphere. In the latter case, p0 ∧Ar+1 = p0 ∧Ar+1 represents
the support plane of the (r − 1)-sphere in Sn, and p0 ∧ Ar represents the
(r− 1)-plane normal to the center of the (r− 1)-sphere in the support plane.
The center of the (r − 1)-sphere is

ArA
†
r+1

|Ar||Ar+1|
, (3.44)

and the normal radius is

1 − |Ar+1|
|Ar|

. (3.45)

Since

A†
r+1 ·Ar+1 = det(ai · aj)(r+1)×(r+1)

= (− 1
2)r+1 det(|ai − aj |2)(r+1)×(r+1);

(3.46)

thus, when r = n+ 1, we obtain Ptolemy’s Theorem for spherical geometry:

Theorem 3.4.2 (Ptolemy’s Theorem). Let a0, · · · , an+1 be points in Sn,
then they are on a sphere or hyperplane of Sn if and only if det(|ai −
aj |2)(n+2)×(n+2) = 0.

70 Hongbo Li, David Hestenes, Alyn Rockwood

3.5 Stereographic Projection

In the homogeneous model of Sn, let a0 be a fixed point on Sn. The space
Rn = (a0 ∧ p0)

∼, which is parallel to the tangent spaces of Sn at points ±a0,
is Euclidean. By the stereographic projection of Sn from point a0 to the space
Rn, the ray from a0 through a ∈ Sn intersects the space at the point

jSR(a) =
a0(a0 ∧ a)

1 − a0 · a
= 2(a − a0)

−1 + a0. (3.47)

Many advantages of Geometric Algebra in handling stereographic projections
are demonstrated in [117].

.

.

.

.

0

0

a

j

n

n

(a)

– a

a

R

R

S

S
0

Fig. 3.3. Stereographic projection of Sn from a0 to the space normal to a0

We note the following facts about the stereographic projection:

1. A hyperplane passing through a0 and normal to n is mapped to the
hyperspace in Rn normal to n.

2. A hyperplane normal to n but not passing through a0 is mapped to the

sphere in Rn with center c = n − a0

n · a0
and radius ρ =

1√
|n · a0|

. Such

a sphere has the feature that

ρ2 = 1 + c2. (3.48)

Its intersection with the unit sphere of Rn is a unit (n − 2)-dimensional
sphere. Conversely, given a point c in Rn, we can find a unique hyperplane
in Sn whose stereographic projection is the sphere in Rn with center c
and radius

√
1 + c2. It is the hyperplane normal to a0 − c.

3. A sphere passing through a0, with center c and normal radius ρ, is
mapped to the hyperplane in Rn normal to P⊥

a0
(c) and with

1 − ρ√
1 − (1 − ρ)2

as the signed distance from the origin.

3. Spherical Conformal Geometry with Geometric Algebra 71

4. A sphere not passing through a0, with center c and normal radius ρ, is

mapped to the sphere in Rn with center
(1 − ρ)p0 + P⊥

a0
(c)

dn(c, a0) − ρ
and radius

√
1 − (1 − ρ)2

|dn(c, a0) − ρ| .

It is a classical result that the map jSR is a conformal map from Sn to
Rn. The conformal coefficient λ is defined by

|jSR(a) − jSR(b)| = λ(a,b)|a − b|, for a,b ∈ Sn. (3.49)

We have

λ(a,b) =
1√

(1 − a0 · a)(1 − a0 · b)
. (3.50)

Using the null cone of Rn+1,1 we can construct the conformal map jSR triv-
ially: it is nothing but a rescaling of null vectors.

Let

e = a0 + p0, e0 =
−a0 + p0

2
, E = e ∧ e0. (3.51)

For Rn = (e ∧ e0)∼ = (a0 ∧ p0)
∼, the map iE : x ∈ Rn 7→ e0 + x+ x2

2 e ∈ Nne
defines a homogeneous model for the Euclidean space.

Any null vector h in Sn represents a point in the homogeneous model of
Sn, while in the homogeneous model of Rn it represents a point or point at
infinity of Rn. The rescaling transformation kR : Nn −→ Nne defined by

kR(h) = − h

h · e, for h ∈ Nn, (3.52)

induces the conformal map jSR through the following commutative diagram:

a + p0 ∈ Nnp0

kR−−−− → a + p0

1 − a · a0
∈ Nne

ip0

↑
|
|

|
|
↓
P⊥
E

a ∈ Sn
jSR−−−− → a0(a0 ∧ a)

1 − a · a0
∈ Rn

(3.53)

i.e., jSR = P⊥
E ◦ kR ◦ ip0 . The conformal coefficient λ is derived from the

following identity: for any vector x and null vectors h1, h2,

∣∣∣∣−
h1

h1 · x
+

h2

h2 · x

∣∣∣∣ =
|h1 − h2|√

|(h1 · x)(h2 · x)|
. (3.54)

72 Hongbo Li, David Hestenes, Alyn Rockwood

The inverse of the map jSR, denoted by jRS , is

jRS(u) =
(u2 − 1)a0 + 2u

u2 + 1
= 2(u− a0)

−1 + a0, for u ∈ Rn. (3.55)

According to [117], (3.55) can also be written as

jRS(u) = −(u− a0)
−1a0(u− a0). (3.56)

From the above algebraic construction of the stereographic projection, we
see that the null vectors in Rn+1,1 have geometrical interpretations in both
Sn and Rn, as do the Minkowski blades of Rn+1,1. Every vector in Rn+1,1

of positive signature can be interpreted as a sphere or hyperplane in both
spaces. We will discuss this further in the next chapter.

3.6 Conformal Transformations

In this section we present some results on the conformal transformations in
Sn. We know that the conformal group of Sn is isomorphic with the Lorentz
group of Rn+1,1. Moreover, a Lorentz transformation in Rn+1,1 is the product
of at most n+ 2 reflections with respect to vectors of positive signature. We
first analyze the induced conformal transformation in Sn of such a reflection
in Rn+1,1.

3.6.1 Inversions and Reflections

After normalization, any vector in Rn+1,1 of positive signature can be written
as s = c + λp0, where 0 ≤ λ < 1. For any point a in Sn, the reflection of a
with respect to s is

1 + λ2 − 2λc · a
1 − λ2

b, (3.57)

where

b =
(1 − λ2)a + 2(λ− c · a)c

1 + λ2 − 2λc · a . (3.58)

If λ = 0, i.e., if s̃ represents a hyperplane of Sn, then (3.58) gives

b = a − 2c · a c, (3.59)

i.e., b is the reflection of a with respect to the hyperplane c̃ of Sn.
If λ 6= 0, let λ = 1 − ρ, then from (3.58) we get

(
c ∧ a

1 + c · a

)†(
c ∧ b

1 + c · b

)
=

ρ

2− ρ
. (3.60)

3. Spherical Conformal Geometry with Geometric Algebra 73

Since the right-hand side of (3.60) is positive, c, a,b and −c are on a half
great circle of Sn. Using (3.9) and (3.10) we can write (3.60) as

ds(a, c)ds(b, c) = ρ2
s, (3.61)

where ρs is the stereographic distance corresponding to the normal distance
ρ. We say that a,b are inversive with respect to the sphere with center c and
stereographic radius ρs. This conformal transformation is called an inversion
in Sn.

An inversion can be easily described in the language of Geometric Alge-
bra. The two inversive homogeneous points a and b correspond to the null
directions in the 2-dimensional space a∧ (c− ρp0), which is degenerate when
a is on the sphere represented by (c− ρp0)

∼, and Minkowski otherwise.
Any conformal transformation in Sn is generated by inversions with re-

spect to spheres, or reflections with respect to hyperplanes.

3.6.2 Other Typical Conformal Transformations

Antipodal transformation
By an antipodal transformation a point a of Sn is mapped to point −a.

This transformation is induced by the versor p0.

Rotations
A rotation in Sn is just a rotation in Rn+1. Any rotation in Sn can be

induced by a spinor in G(Rn+1).
Given a unit 2-blade I2 in G(Rn+1) and 0 < θ < 2π, the spinor eI2θ/2

induces a rotation in Sn. Using the orthogonal decomposition

x = PI2(x) + P⊥
I2

(x), for x ∈ Sn, (3.62)

we get

e−I2θ/2xeI2θ/2 = PI2(x)eI2θ + PĨ2
(x). (3.63)

Therefore when n > 1, the set of fixed points under this rotation is the
(n − 2)-plane in Sn represented by Ĩ2. It is called the axis of the rotation,
where θ is the angle of rotation for the points on the line of Sn represented
by p0 ∧ I2. This line is called the line of rotation.

For example, the spinor a(a+b) induces a rotation from point a to point
b, with p0 ∧ a ∧ b as the line of rotation. The spinor (c ∧ a)(c ∧ (a + b)),
where a and b have equal distances from c, induces a rotation from point a
to point b with p0 ∧ P⊥

c (a) ∧ P⊥
c (b) as the line of rotation.

Rotations belong to the orthogonal group O(Sn). A versor in G(Rn+1,1)
induces an orthogonal transformation in Sn if and only if it leaves {±p0}
invariant.

74 Hongbo Li, David Hestenes, Alyn Rockwood

Tidal transformations
A tidal transformation of coefficient λ 6= ±1 with respect to a point c

in Sn is a conformal transformation induced by the spinor 1 + λp0 ∧ c. It
changes a point a to point

b =
(1 − λ2)a + 2λ(λa · c − 1)c

1 + λ2 − 2λa · c . (3.64)

Points a,b and c are always on the same line. Conversely, from a,b and c
we obtain

λ =
d2
n(b, a)

d2
n(b − c) − d2

n(a − c)
. (3.65)

By this transformation, any line passing through point c is invariant, and
any sphere with center c is transformed into a sphere with center c or −c,
or the hyperplane normal to c. The name “tidal transformation” arises from
interpreting points ±c as the source and influx of the tide.

.

.

. .

. .

. .λ λ
1___

c
c

–c

–c

–a

a

a

c

b

(a)

(a)

(b)

. ca .1______

80
-1

1_

_

–c_

Fig. 3.4. λ = λ(b) of a tidal transfor-
mation

Given points a, c in Sn, which are neither identical nor antipodal, let
point b move on line ac of Sn, then λ = λ(b) is determined by (3.65). This
function has the following properties:

1. λ 6= ±1, i.e., b 6= ±c. This is because if λ = ±1, then 1 + λp0 ∧ c is no
longer a spinor.

2. Let c(a) be the reflection of a with respect to c, then

c(a) = a − 2a · cc−1, (3.66)

and

λ(−c(a)) = ∞, λ(c(a)) = a · c. (3.67)

3. Spherical Conformal Geometry with Geometric Algebra 75

3. When b moves from −c(a) through c, a, −c back to −c(a), λ increases
strictly from −∞ to ∞.

4.

λ(−c(b)) =
1

λ(b)
. (3.68)

5. When c · a = 0 and 0 < λ < 1, then b is between a and −c, and

λ = ds(a,b). (3.69)

When 0 > λ > −1, then b is between a and c, and

λ = −ds(a,b). (3.70)

When |λ| > 1, a tidal transformation is the composition of an inversion
with the antipodal transformation, because

1 + λp0 ∧ c = −p0(p0 − λc). (3.71)

76 Hongbo Li, David Hestenes, Alyn Rockwood

4. A Universal Model for Conformal

Geometries of Euclidean, Spherical

and Double-Hyperbolic Spaces∗

Hongbo Li1, David Hestenes1, and Alyn Rockwood2

1 Department of Physics and Astronomy
Arizona State University, Tempe

2 Power Take Off Software, Inc., Colorado Springs

4.1 Introduction

The study of relations among Euclidean, spherical and hyperbolic geometries
dates back to the beginning of last century. The attempt to prove Euclid’s fifth
postulate led C. F. Gauss to discover hyperbolic geometry in the 1820’s. Only
a few years passed before this geometry was rediscovered independently by N.
Lobachevski (1829) and J. Bolyai (1832). The strongest evidence given by the
founders for its consistency is the duality between hyperbolic and spherical
trigonometries. This duality was first demonstrated by Lambert in his 1770
memoir [144] Some theorems, for example the law of sines, can be stated in
a form that is valid in spherical, Euclidean, and hyperbolic geometries [25].

To prove the consistency of hyperbolic geometry, people built various an-
alytic models of hyperbolic geometry on the Euclidean plane. E. Beltrami
[21] constructed a Euclidean model of the hyperbolic plane, and using differ-
ential geometry, showed that his model satisfies all the axioms of hyperbolic
plane geometry. In 1871, F. Klein gave an interpretation of Beltrami’s model
in terms of projective geometry. Because of Klein’s interpretation, Beltrami’s

∗ This work has been partially supported by NSF Grant RED-9200442.

78 Hongbo Li, David Hestenes, Alyn Rockwood

model is later called Klein’s disc model of the hyperbolic plane. The gener-
alization of this model to n-dimensional hyperbolic space is now called the
Klein ball model [37].

In the same paper Beltrami constructed two other Euclidean models of
the hyperbolic plane, one on a disc and the other on a Euclidean half-plane.
Both models are later generalized to n-dimensions by H. Poincaré [193], and
are now associated with his name.

All three of the above models are built in Euclidean space, and the latter
two are conformal in the sense that the metric is a point-to-point scaling of
the Euclidean metric. In his 1878 paper [131], Killing described a hyperboloid
model of hyperbolic geometry by constructing the stereographic projection
of Beltrami’s disc model onto the hyperbolic space. This hyperboloid model
was generalized to n-dimensions by Poincaré.

There is another model of hyperbolic geometry built in spherical space,
called hemisphere model, which is also conformal. Altogether there are five
well-known models for the n-dimensional hyperbolic geometry:

– the half-space model,
– the conformal ball model,
– the Klein ball model,
– the hemisphere model,
– the hyperboloid model.

The theory of hyperbolic geometry can be built in a unified way within
any of the models. With several models one can, so to speak, turn the object
around and scrutinize it from different viewpoints. The connections among
these models are largely established through stereographic projections. Be-
cause stereographic projections are conformal maps, the conformal groups
of n-dimensional Euclidean, spherical, and hyperbolic spaces are isometric
to each other, and are all isometric to the group of isometries of hyperbolic
(n+ 1)-space, according to observations of Klein [133, 134].

It seems that everything is worked out for unified treatment of the three
spaces. In this chapter we go further. We unify the three geometries, together
with the stereographic projections, various models of hyperbolic geometry,
in such a way that we need only one Minkowski space, where null vectors
represent points or points at infinity in any of the three geometries and any of
the models of hyperbolic space, where Minkowski subspaces represent spheres
and hyperplanes in any of the three geometries, and where stereographic
projections are simply rescaling of null vectors. We call this construction
the homogeneous model. It serves as a sixth analytic model for hyperbolic
geometry.

We constructed homogeneous models for Euclidean and spherical geome-
tries in previous chapters. There the models are constructed in Minkowski
space by projective splits with respect to a fixed vector of null or negative sig-
nature. Here we show that a projective split with respect to a fixed vector of

4. A Universal Model for Conformal Geometries 79

positive signature produces the homogeneous model of hyperbolic geometry.
Because the three geometries are obtained by interpreting null vectors of

the same Minkowski space differently, natural correspondences exist among
geometric entities and constraints of these geometries. In particular, there are
correspondences among theorems on conformal properties of the three geome-
tries. Every algebraic identity can be interpreted in three ways and therefore
represents three theorems. In the last section we illustrate this feature with
an example.

The homogeneous model has the significant advantage of simplifying geo-
metric computations, because it employs the powerful language of Geometric
Algebra. Geometric Algebra was applied to hyperbolic geometry by H. Li in
[153], stimulated by Iversen’s book [124] on the algebraic treatment of hyper-
bolic geometry and by the paper of Hestenes and Zielger [118] on projective
geometry with Geometric Algebra.

4.2 The Hyperboloid Model

In this section we introduce some fundamentals of the hyperboloid model in
the language of Geometric Algebra. More details can be found in [153].

In the Minkowski space Rn,1, the set

Dn = {x ∈ Rn,1|x2 = −1} (4.1)

is called an n-dimensional double-hyperbolic space, any element in it is called
a point. It has two connected branches, which are symmetric to the origin of
Rn+1,1. We denote one branch by Hn and the other by −Hn. The branch Hn

is called the hyperboloid model of n-dimensional hyperbolic space.

4.2.1 Generalized Points

Distances between two points
Let p,q be two distinct points in Dn, then p2 = q2 = −1. The blade

p ∧ q has Minkowski signature, therefore

0 < (p ∧ q)2 = (p · q)2 − p2q2 = (p · q)2 − 1. (4.2)

From this we get

|p · q| > 1. (4.3)

Since p2 = −1, we can prove

Theorem 4.2.1. For any two points p,q in Hn (or −Hn),

p · q < −1. (4.4)

80 Hongbo Li, David Hestenes, Alyn Rockwood

As a corollary, there exists a unique nonnegative number d(p,q) such that

p · q = − cosh d(p,q). (4.5)

d(p,q) is called the hyperbolic distance between p,q.
Below we define several other equivalent distances. Let p,q be two distinct

points in Hn (or −Hn). The positive number

dn(p,q) = −(1 + p · q) (4.6)

is called the normal distance between p,q. The positive number

dt(p,q) = |p ∧ q| (4.7)

is called the tangential distance between p,q. The positive number

dh(p,q) = |p− q| (4.8)

is called the horo-distance between p,q. We have

dn(p,q) = cosh d(p,q) − 1,
dt(p,q) = sinh d(p,q),

dh(p,q) = 2 sinh
d(p,q)

2
.

(4.9)

p

q

d

d

t

c

n

d

0

p

Fig. 4.1. Distances
in hyperbolic geome-
try

4. A Universal Model for Conformal Geometries 81

Points at infinity
A point at infinity of Dn is a one-dimensional null space. It can be repre-

sented by a single null vector uniquely up to a nonzero scale factor.
The set of points at infinity in Dn is topologically an (n− 1)-dimensional

sphere, called the sphere at infinity of Dn. The null cone

Nn−1 = {x ∈ Rn,1|x2 = 0, x 6= 0} (4.10)

of Rn,1 has two branches. Two null vectors h1, h2 are on the same connected
component if and only if h1 ·h2 < 0. One branch N n−1

+ has the property: for

any null vector h in N n−1
+ , any point p in Hn, h · p < 0. The other branch

of the null cone is denoted by N n−1
− .

For a null vector h, the relative distance between h and point p ∈ Dn is
defined as

dr(h,p) = |h · p|. (4.11)

Imaginary points
An imaginary point of Dn is a one-dimensional Euclidean space. It can

be represented by a vector of unit square in Rn+1,1.
The dual of an imaginary point is a hyperplane. An r-plane in Dn is the

intersection of an (r + 1)-dimensional Minkowski space of Rn,1 with Dn. A
hyperplane is an (n− 1)-plane.

Let a be an imaginary point, p be a point. There exists a unique line, a
1-plane in Dn, which passes through p and is perpendicular to the hyperplane
ã dual to a. This line intersects the hyperplane at a pair of antipodal points
±q. The hyperbolic, normal and tangent distances between a,p are defined
as the respective distances between p,q. We have

cosh d(a,p) = |a ∧ p|,
dn(a,p) = |a ∧ p| − 1,
dt(a,p) = |a · p|.

A generalized point of Dn refers to a point, or a point at infinity, or an
imaginary point.

Oriented generalized points and signed distances
The above definitions of generalized points are from [153], where the topic

was Hn instead of Dn, and where Hn was taken as Dn with antipodal points
identified, instead of just a connected component of Dn. When studying
double-hyperbolic space, it is useful to distinguish between null vectors h
and −h representing the same point at infinity, and vectors a and −a repre-
senting the same imaginary point. Actually it is indispensible when we study
generalized spheres in Dn. For this purpose we define oriented generalized
points.

Any null vector in Rn,1 represents an oriented point at infinity of Dn. Two

82 Hongbo Li, David Hestenes, Alyn Rockwood

H

H–

p

a

h

a

n

n

~

sphere at infinity

Fig. 4.2. Generalized points
in Dn: p is a point, h is a point
at infinity, and a is an imagi-
nary point

null vectors in Dn are said to represent the same oriented point at infinity if
and only they differ by a positive scale factor; in other words, null vectors f
and −f represent two antipodal oriented points at infinity.

Any unit vector in Rn,1 of positive signature represents an oriented imag-
inary point of Dn. Two unit vectors a and −a of positive signature represent
two antipodal oriented imaginary points. The dual of an oriented imaginary
point is an oriented hyperplane of Dn.

A point in Dn is already oriented.
We can define various signed distances between two oriented generalized

points, for example,

– the signed normal distance between two points p,q is defined as

−p · q− 1, (4.12)

which is nonnegative when p,q are on the same branch of Dn and ≤ −2
otherwise;

– the signed relative distance between point p and oriented point at infinity
h is defined as

−h · p, (4.13)

which is positive for p on one branch of Dn and negative otherwise;
– the signed tangent distance between point p and oriented imaginary point
a is defined as

−a · p, (4.14)

which is zero when p is on the hyperplane ã, positive when p is on one
side of the hyperplane and negative otherwise.

4. A Universal Model for Conformal Geometries 83

4.2.2 Total Spheres

A total sphere of Dn refers to a hyperplane, or the sphere at infinity, or a gen-
eralized sphere. An r-dimensional total sphere of Dn refers to the intersection
of a total sphere with an (r + 1)-plane.

A generalized sphere in Hn (or −Hn, or Dn) refers to a sphere, or a horo-
sphere, or a hypersphere in Hn (or −Hn, or Dn). It is defined by a pair
(c, ρ), where c is a vector representing an oriented generalized point, and ρ is
a positive scalar.

1. When c2 = −1, i.e., c is a point, then if c is in Hn, the set

{p ∈ Hn|dn(p, c) = ρ} (4.15)

is the sphere in Hn with center c and normal radius ρ; if c is in −Hn, the
set

{p ∈ −Hn|dn(p, c) = ρ} (4.16)

is a sphere in −Hn.
2. When c2 = 0, i.e., c is an oriented point at infinity, then if c ∈ N n−1

+ , the
set

{p ∈ Hn|dr(p, c) = ρ} (4.17)

is the horosphere in Hn with center c and relative radius ρ; otherwise the
set

{p ∈ −Hn|dr(p, c) = ρ} (4.18)

is a horosphere in −Hn.
3. When c2 = 1, i.e., c is an oriented imaginary point, the set

{p ∈ Dn|p · c = −ρ} (4.19)

is the hypersphere in Dn with center c and tangent radius ρ; its intersec-
tion with Hn (or −Hn) is a hypersphere in Hn (or −Hn). The hyperplane
c̃ is called the axis of the hypersphere.
A hyperplane can also be regarded as a hypersphere with zero radius.

4.3 The Homogeneous Model

In this section we establish the homogeneous model of the hyperbolic space.
Strictly speaking, the model is for the double-hyperbolic space, as we must
take into account both branches.

Fixing a vector a0 of positive signature in Rn+1,1, assuming a2
0 = 1, we

get

Nn
a0

= {x ∈ Rn+1,1|x2 = 0, x · a0 = −1}. (4.20)

Applying the orthogonal decomposition

84 Hongbo Li, David Hestenes, Alyn Rockwood

a~

c

h

.

a0

Fig. 4.3. Generalized spheres in Dn:
p the center of a sphere, h the cen-
ter of a horosphere, a the center of a
hypersphere

x = Pa0(x) + Pã0(x) (4.21)

to vector x ∈ Nna0
, we get

x = −a0 + x (4.22)

where x ∈ Dn, the negative unit sphere of the Minkowski space represented
by ã0. The map ia0 : x ∈ Dn 7→ x ∈ Nna0

is bijective. Its inverse map is P⊥
a0

.

Theorem 4.3.1.

Nna0
' Dn. (4.23)

We call Nna0
the homogeneous model of Dn. Its elements are called homo-

geneous points.
We use Hn to denote the intersection of Dn with Hn+1, and −Hn to

denote the intersection of Dn with −Hn+1. Here ±Hn+1 are the two branches
of Dn+1, the negative unit sphere of Rn+1,1.

4.3.1 Generalized Points

Let p,q be two points in Dn. Then for homogeneous points p,q

p · q = (−a0 + p) · (−a0 + q) = 1 + p · q. (4.24)

Thus the inner product of two homogeneous points “in” Dn equals the neg-
ative of the signed normal distance between them.

An oriented point at infinity of Dn is represented by a null vector h of
Rn+1,1 satisfying

h · a0 = 0. (4.25)

For a point p of Dn, we have

4. A Universal Model for Conformal Geometries 85

– a

a
0

0 0
n

n

~

N

D

x

x

Fig. 4.4. The homogeneous model of Dn

h · p = h · (−a0 + p) = h · p. (4.26)

Thus the inner product of an oriented point at infinity with a homogeneous
point equals the negative of the signed relative distance between them.

An oriented imaginary point of Dn is represented by a vector a of unit
square in Rn+1,1 satisfying

a · a0 = 0. (4.27)

For a point p of Dn, we have

a · p = a · (−a0 + p) = a · p. (4.28)

Thus the inner product of a homogeneous point and an oriented imaginary
point equals the negative of the signed tangent distance between them.

4.3.2 Total Spheres

Below we establish the conclusion that any (n + 1)-blade of Minkowski sig-
nature in Rn+1,1 corresponds to a total sphere in Dn.

Let s be a vector of positive signature in Rn+1,1.

1. If s∧ a0 = 0, then s equals a0 up to a nonzero scalar factor. The blade s̃
represents the sphere at infinity of Dn.

2. If s ∧ a0 has Minkowski signature, then s · a0 6= 0. Let (−1)ε be the sign
of s · a0. Let

86 Hongbo Li, David Hestenes, Alyn Rockwood

c = (−1)1+ε
P⊥
a0

(s)

|P⊥
a0

(s)| , (4.29)

then c ∈ Dn. Let

s′ = (−1)1+ε
s

|a0 ∧ s|
, (4.30)

then

s′ = (−1)1+ε
P⊥
a0

(s)

|a0 ∧ s|
+ (−1)1+ε

Pa0(s)

|a0 ∧ s|
= c − (1 + ρ)a0, (4.31)

where

ρ =
|a0 · s|
|a0 ∧ s|

− 1 > 0 (4.32)

because |a0 ∧ s|2 = (a0 · s)2 − s2 < (a0 · s)2.
For any point p ∈ Dn,

s′ · p = (c − (1 + ρ)a0) · (p − a0) = c · p + 1 + ρ. (4.33)

So s̃ represents the sphere in Dn with center c and normal radius ρ; a
point p is on the sphere if and only if p · s = 0.
The standard form of a sphere in Dn is

c− ρa0. (4.34)

3. If s∧a0 is degenerate, then (s∧a0)
2 = (s·a0)

2−s2 = 0, so |s·a0| = |s| 6= 0.
As before, (−1)ε is the sign of s · a0. Let

c = (−1)1+εP⊥
a0

(s), (4.35)

then c2 = 0 and c · a0 = 0, so c represents an oriented point at infinity of
Dn. Let

s′ = (−1)1+εs. (4.36)

Then

s′ = (−1)1+ε(P⊥
a0

(s) + Pa0(s)) = c− ρa0, (4.37)

where

ρ = |a0 · s| = |s| > 0. (4.38)

For any point p ∈ Dn,

s′ · p = (c− ρa0) · (p − a0) = c · p + ρ, (4.39)

so s̃ represents the horosphere in Dn with center c and relative radius ρ;
a point p is on the sphere if and only if p · s = 0.
The standard form of a horosphere in Dn is

c− ρa0. (4.40)

4. A Universal Model for Conformal Geometries 87

4. The term s ∧ a0 is Euclidean, but s · a0 6= 0. Let

c = (−1)1+ε
P⊥
a0

(s)

|P⊥
a0

(s)| , (4.41)

then c2 = 1 and c · a0 = 0, i.e., c represents an oriented imaginary point
of Dn. Let

s′ = (−1)1+ε
s

|a0 ∧ s|
, (4.42)

then

s′ = (−1)1+ε
P⊥
a0

(s)

|a0 ∧ s|
+ (−1)1+ε

Pa0(s)

|a0 ∧ s|
= c− ρa0, (4.43)

where

ρ =
|a0 · s|
|a0 ∧ s|

> 0. (4.44)

For any point p ∈ Dn,

s′ · p = (c− ρa0) · (p − a0) = c · p + ρ , (4.45)

so s̃ represents the hypersphere in Dn with center c and tangent radius
ρ; a point p is on the hypersphere if and only if p · s = 0.
The standard form of a hypersphere in Dn is

c− ρa0. (4.46)

5. If s · a0 = 0, then s ∧ a0 is Euclidean, because (s ∧ a0)
2 = −s2 < 0. For

any point p ∈ Dn, since

s · p = s · p, (4.47)

s̃ represents the hyperplane of Dn normal to vector s; a point p is on the
hyperplane if and only if p · s = 0.

From the above analysis we come to the following conclusion:

Theorem 4.3.2. The intersection of any Minkowski hyperspace of Rn+1,1

represented by s̃ with N n
a0

is a total sphere in Dn, and every total sphere can
be obtained in this way. A point p in Dn is on the total sphere if and only if
p · s = 0.

The dual of the above theorem is:

88 Hongbo Li, David Hestenes, Alyn Rockwood

Theorem 4.3.3. Given n + 1 homogeneous points or points at infinity of
Dn: a0, . . . , an such that

s̃ = a0 ∧ · · · ∧ an. (4.48)

This (n+ 1)-blade s̃ represents a total sphere passing through these points or
points at infinity. It is a hyperplane if

a0 ∧ s̃ = 0, (4.49)

the sphere at infinity if

a0 · s̃ = 0, (4.50)

a sphere if

(a0 · s̃)†(a0 · s̃) > 0, (4.51)

a horosphere if

a0 · s̃ 6= 0, and (a0 · s̃)†(a0 · s̃) = 0, (4.52)

or a hypersphere if

(a0 · s̃)†(a0 · s̃) < 0. (4.53)

The scalar

s1 ∗ s2 =
s1 · s2
|s1||s2|

(4.54)

is called the inversive product of vectors s1 and s2. Obviously, it is invariant
under orthogonal transformations in Rn+1,1. We have the following conclusion
for the inversive product of two vectors of positive signature:

Theorem 4.3.4. When total spheres s̃1 and s̃2 intersect, let p be a point or
point at infinity of the intersection. Let mi, i = 1, 2, be the respective outward
unit normal vector of s̃i at p if it is a generalized sphere and p is a point, or
let mi be si/|si| otherwise, then

s1 ∗ s2 = m1 ·m2. (4.55)

Proof. The case when p is a point at infinity is trivial, so we only consider the
case when p is a point, denoted by p. The total sphere s̃i has the standard
form (ci − λia0)

∼, where ci · a0 = 0, λi ≥ 0 and (ci − λia0)
2 = c2i + λ2

i > 0.
Hence

s1 ∗ s2 =
c1 · c2 + λ1λ2

|c1 − λ1a0||c2 − λ2a0|
=

c1 · c2 + λ1λ2√
(c21 + λ2

1)(c
2
2 + λ2

2)
. (4.56)

4. A Universal Model for Conformal Geometries 89

On the other hand, at point p the outward unit normal vector of generalized
sphere s̃i is

mi =
p(p ∧ ci)
|p ∧ ci|

, (4.57)

which equals ci = si/|si| when s̃i is a hyperplane. Since point p is on both
total spheres, p · ci = −λi, so

m1 ·m2 =
(c1 − λ1a0) · (c2 − λ2a0)

|p ∧ c1||p ∧ c2|
=

c1 · c2 + λ1λ2√
(c21 + λ2

1)(c
2
2 + λ2

2)
. (4.58)

An immediate corollary is that any orthogonal transformation in Rn+1,1

induces an angle-preserving transformation in Dn.

4.3.3 Total Spheres of Dimensional r

Theorem 4.3.5. For 2 ≤ r ≤ n+1, every r-blade Ar of Minkowski signature
in Rn+1,1 represents an (r − 2)-dimensional total sphere in Dn.

Proof. There are three possibilities:
Case 1. When a0 ∧ Ar = 0, Ar represents an (r − 2)-plane in Dn. After
normalization, the standard form of an (r − 2)-plane is

a0 ∧ Ir−2,1, (4.59)

where Ir−2,1 is a unit Minkowski (r− 1)-blade of G(Rn,1), and where Rn,1 is
represented by ã0.
Case 2. When a0 · Ar = 0, Ar represents an (r − 2)-dimensional sphere at
infinity of Dn. It lies on the (r − 1)-plane a0 ∧ Ar. After normalization, the
standard form of the (r − 2)-dimensional sphere at infinity is

Ir−1,1, (4.60)

where Ir−1,1 is a unit Minkowski r-blade of G(Rn,1).
Case 3. When both a0 ∧ Ar 6= 0 and a0 · Ar 6= 0, Ar represents an (r − 2)-
dimensional generalized sphere. This is because

Ar+1 = a0 ∧ Ar 6= 0, (4.61)

and the vector

s = ArA
−1
r+1 (4.62)

has positive square with both a0 · s 6= 0 and a0 ∧ s 6= 0, so s̃ represents an
(n−1)-dimensional generalized sphere. According to Case 1, Ar+1 represents

an (r − 1)-dimensional plane in Dn. Therefore, with ε = (n+2)(n+1)
2 + 1,

90 Hongbo Li, David Hestenes, Alyn Rockwood

Ar = sAr+1 = (−1)εs̃ ∨ Ar+1 (4.63)

represents the intersection of (n − 1)-dimensional generalized sphere s̃ with
(r − 1)-plane Ar+1, which is an (r − 2)-dimensional generalized sphere.

With suitable normalization, we can write

s = c− ρa0. (4.64)

Since s∧Ar+1 = p0∧Ar+1 = 0, the generalized sphere Ar is also centered at c
and has normal radius ρ, and it is of the same type as the generalized sphere
represented by s̃. Now we can represent an (r − 2)-dimensional generalized
sphere in the standard form

(c− λa0) (a0 ∧ Ir−1,1), (4.65)

where Ir−1,1 is a unit Minkowski r-blade of G(Rn,1).

Corollary: The (r − 2)-dimensional total sphere passing through r ho-
mogeneous points or points at infinity p1, . . . , pr in Dn is represented by
Ar = p1∧· · ·∧pr; the (r−2)-plane passing through r−1 homogeneous points
or points at infinity p1, . . . , pr−1 in Dn is represented by a0 ∧ p1 ∧ · · · ∧ pr−1.

When the p’s are all homogeneous points, we can expand the inner product
A†
r ·Ar as

A†
r · Ar = det(pi · pj)r×r = (−1

2
)r det((pi − pj)

2)r×r. (4.66)

When r = n+ 2, we obtain Ptolemy’s Theorem for double-hyperbolic space:

Theorem 4.3.6 (Ptolemy’s Theorem). Let p1, · · · ,pn+2 be points in Dn,
then they are on a generalized sphere or hyperplane of Dn if and only if
det((pi − pj)

2)(n+2)×(n+2) = 0.

4.4 Stereographic Projection

In Rn,1, let p0 be a fixed point in Hn. The space Rn = (a0 ∧ p0)
∼, which is

parallel to the tangent hyperplanes of Dn at points ±p0, is Euclidean. By the
stereographic projection of Dn from point −p0 to the space Rn, every affine
line of Rn,1 passing through points −p0 and p intersects Rn at point

jDR(p) =
p0(p0 ∧ p)

p0 · p − 1
= −2(p + p0)

−1 − p0. (4.67)

Any point at infinity of Dn can be written in the form p0 + a, where a is a
unit vector in Rn represented by (a0∧p0)

∼. Every affine line passing through
point −p0 and point at infinity p0+a intersects Rn at point a. It is a classical
result that the map jDR is a conformal map from Dn to Rn.

We show that in the homogeneous model we can construct the conformal
map jSR trivially; it is nothing but a rescaling of null vectors.

4. A Universal Model for Conformal Geometries 91

.

.

.

.

.

.

0

–

0

0

R

B

p

(p)

(h)

–p

p

H

H
h

j

n

n

n

n

RD
j
RD

Fig. 4.5. Stereographic projection of Dn from −p0 to � n

Let

e = a0 + p0, e0 =
−a0 + p0

2
, E = e ∧ e0. (4.68)

Then for Rn = (e ∧ e0)∼ = (a0 ∧ p0)
∼, the map

iE : x ∈ Rn 7→ e0 + x+
x2

2
e ∈ Nn

e (4.69)

defines a homogeneous model for Euclidean space.
Any null vector h in Rn+1,1 represents a point or point at infinity in

both homogeneous models of Dn and Rn. The rescaling transformation kR :
Nn −→ Nn

e defined by

kR(h) = − h

h · e, for h ∈ Nn, (4.70)

where Nn represents the null cone of Rn+1,1, induces the stereographic
projection jDR through the following commutative diagram:

p − a0 ∈ Nn
a0

kR−−−− → p − a0

1 − p · p0
∈ Nn

e

ia0

↑
|
|

|
|
↓
P⊥
E

p ∈ Dn
jDR−−−− → p0(p0 ∧ p)

p · p0 − 1
∈ Rn

i.e., jDR = P⊥
E ◦ kR ◦ ia0 . Since a point at infinity p0 + a of Dn belongs to

Nn
e , we have

92 Hongbo Li, David Hestenes, Alyn Rockwood

jDR(p0 + a) = P⊥
E (p0 + a) = a. (4.71)

The inverse of the map jDR, denoted by jRD, is

jRD(u) =

(1 + u2)p0 + 2u

1 − u2
, for u2 6= 1, u ∈ Rn,

p0 + u, for u2 = 1, u ∈ Rn,
(4.72)

When u is not on the unit sphere of Rn, jRD(u) can also be written as

jRD(u) = −2(u+ p0)
−1 − p0 = (u+ p0)

−1p0(u+ p0). (4.73)

4.5 The Conformal Ball Model

The standard definition of the conformal ball model [124] is the unit ball Bn
of Rn equipped with the following metric: for any u, v ∈ Bn,

cosh d(u, v) = 1 +
2(u− v)2

(1 − u2)(1 − v2)
. (4.74)

This model can be derived through the stereographic projection from Hn

to Rn. Recall that the sphere at infinity of Hn is mapped to the unit sphere
of Rn, and Hn is projected onto the unit ball Bn of Rn. Using the formula
(4.72) we get that for any two points u, v in the unit ball,

|jRD(u) − jRD(v)| =
2|u− v|√

(1 − u2)(1 − v2)
, (4.75)

which is equivalent to (4.74) since

cosh d(u, v) − 1 =
|jRD(u) − jRD(v)|2

2
. (4.76)

The following correspondences exist between the hyperboloid model and
the conformal ball model:

1. A hyperplane normal to a and passing through −p0 in Dn corresponds
to the hyperspace normal to a in Rn.

2. A hyperplane normal to a but not passing through −p0 in Dn corresponds
to the sphere orthogonal to the unit sphere Sn−1 in Rn; it has center

−p0 −
a

a · p0
and radius

1

|a · p0|
.

3. A sphere with center c and normal radius ρ in Dn and passing through
−p0 corresponds to the hyperplane in Rn normal to P⊥

p0
(c) with signed

distance from the origin − 1 + ρ√
(1 + ρ)2 − 1

< −1.

4. A Universal Model for Conformal Geometries 93

4. A sphere not passing through −p0 in Dn corresponds to a sphere disjoint
with Sn−1.

5. A horosphere with center c and relative radius ρ in Dn passing through
−p0 corresponds to the hyperplane in Rn normal to P⊥

p0
(c) and with

signed distance −1 from the origin.
6. A horosphere not passing through −p0 in Dn corresponds to a sphere

tangent with Sn−1.
7. A hypersphere with center c and tangent radius ρ in Dn passing through

−p0 corresponds to the hyperplane in Rn normal to P⊥
p0

(c) and with

signed distance from the origin − ρ√
1 + ρ2

> −1.

8. A hypersphere not passing through −p0 in Dn corresponds to a sphere
intersecting but not perpendicular with Sn−1.

The homogeneous model differs from the hyperboloid model only by a
rescaling of null vectors.

4.6 The Hemisphere Model

Let a0 be a point in Sn. The hemisphere model [37] is the hemisphere Sn+
centered at −a0 of Sn, equipped with the following metric: for two points
a, b,

cosh d(a, b) = 1 +
1 − a · b

(a · a0)(b · a0)
. (4.77)

This model is traditionally obtained as the stereographic projection jSR

of Sn from a0 to Rn, which maps the hemisphere Sn+ onto the unit ball of
Rn. Since the stereographic projection jDR of Dn from −p0 to Rn also maps
Hn onto the unit ball of Rn, the composition

jDS = j−1
SR

◦ jDR : Dn −→ Sn (4.78)

maps Hn to Sn+, and maps the sphere at infinity of Hn to Sn−1, the boundary
of Sn+, which is the hyperplane of Sn normal to a0. This map is conformal
and bijective. It produces the hemisphere model of the hyperbolic space.

The following correspondences exist between the hyperboloid model and
the hemisphere model:

1. A hyperplane normal to a and passing through −p0 in Dn corresponds
to the hyperplane normal to a in Sn.

2. A hyperplane normal to a but not passing through −p0 in Dn corresponds
to a sphere with center on Sn−1.

3. A sphere with center p0 (or −p0) in Dn corresponds to a sphere in Sn
with center −a0 (or a0).

4. A sphere in Dn corresponds to a sphere disjoint with Sn−1.

94 Hongbo Li, David Hestenes, Alyn Rockwood

5. A horosphere corresponds to a sphere tangent with Sn−1.
6. A hypersphere with center c, relative radius ρ in Dn and axis passing

through −p0 corresponds to the hyperplane in Sn normal to c− ρa0.
7. A hypersphere whose axis does not pass through −p0 in Dn corresponds

to a sphere intersecting with Sn−1.

The hemisphere model can also be obtained from the homogeneous model
by rescaling null vectors. The map kS : Nn −→ Nn

p0 defined by

kS(h) = − h

h · p0
, for h ∈ Nn (4.79)

induces a conformal map jDS through the following commutative diagram:

p − a0 ∈ Nn
a0

kS−−−− → −p− a0

p · p0
∈ Nn

p0

ia0

↑
|
|

|
|
↓
P⊥

p0

p ∈ Dn
jDS−−−− → a0 + p0(p0 ∧ p)

p · p0
∈ Sn

i.e., jDS = P⊥
p0

◦ kS ◦ ia0 . For a point p in Dn,

jDS(p) =
a0 + p0(p0 ∧ p)

p0 · p
= −p0 −

p − a0

p · p0
. (4.80)

For a point at infinity p0 + a, we have

jDS(p0 + a) = P⊥
p0

(p0 + a) = a. (4.81)

We see that ±p0 corresponds to ∓a0. Let p correspond to a in Sn. Then

p · p0 = − 1

a · a0
. (4.82)

The inverse of the map jDS , denoted by jSD, is

jSD(a) =

{
a0 −

p0 + a

a0 · a
, for a ∈ Sn, a · a0 6= 0,

p0 + a, for a ∈ Sn, a · a0 = 0.
(4.83)

4.7 The Half-Space Model

The standard definition of the half-space model [124] is the half space Rn
+

of Rn bounded by Rn−1, which is the hyperspace normal to a unit vector
a0, contains point −a0, and is equipped with the following metric: for any
u, v ∈ Rn+,

4. A Universal Model for Conformal Geometries 95

cosh d(u, v) = 1 +
(u− v)2

2(u · a0)(v · a0)
. (4.84)

This model is traditionally obtained from the hyperboloid model as fol-
lows: The stereographic projection jSR of Sn is from a0 to Rn+1,1. As
an alternative “north pole” select a point b0, which is orthogonal to a0.
This pole determines a stereographic projection jb0 with projection plane
is Rn = (b0 ∧ p0)

∼. The map jDS : Dn −→ Sn maps Hn to the hemisphere
Sn+ centered at −a0. The map jb0 maps Sn+ to Rn+. As a consequence, the
map

jHR = jb0 ◦ jDS : Dn −→ Rn (4.85)

maps Hn to Rn+, and maps the sphere at infinity of Dn to Rn−1.

..

.–p

p
b0

S

+S

. .

.

.

–b

–a

b

a

.

R

+

.

.

.

n Rn

n

n

n

Hn

j jDS

0 –a0

0

a
0

0

0

0

0
0

00

.
R

Fig. 4.6. The hemisphere model and the half-space model

The half-space model can also be derived from the homogeneous model
by rescaling null vectors. Let p0 be a point in Hn and h be a point at infinity
of Hn, then h ∧ p0 is a line in Hn, which is also a line in Hn+1, the (n+ 1)-
dimensional hyperbolic space in Rn+1,1. The Euclidean space Rn = (h∧p0)

∼

is in the tangent hyperplane of Hn+1 at p0 and normal to the tangent vector
P⊥

p0
(h) of line h ∧ p0. Let

e = − h

h · p0
, e0 = p0 −

e

2
. (4.86)

Then e2 = e20 = 0, e · e0 = e · p0 = −1, and e ∧ p0 = e ∧ e0. The unit vector

96 Hongbo Li, David Hestenes, Alyn Rockwood

b0 = e− p0 (4.87)

is orthogonal to both p0 and a0, and can be identified with the pole b0 of the
stereographic projection jb0 . Let E = e∧ e0. The rescaling map kR : Nn −→
Nn
e induces the map jHR through the following commutative diagram:

p − a0 ∈ Nn
a0

kR−−−− → −p− a0

p · e ∈ Nn
e

ia0

↑
|
|

|
|
↓
P⊥
E

p ∈ Dn
jHR−−−− → a0 − P⊥

E (p)

p · e ∈ Rn

i.e., jHR = P⊥
E ◦ kR ◦ ia0 . For a point p in Dn, we have

jHR(p) =
a0 − P⊥

e∧p0
(p)

p · e . (4.88)

For a point at infinity p0 + a in Dn, we have

jHR(p0 + a) =
a+ e · a(p0 − e)

1 − e · a . (4.89)

The inverse of the map jHR is denoted by jRH:

jRH(u) =

a0 −
e0 + u+ u2

2 e

a0 · u
, for u ∈ Rn, u · a0 6= 0,

e0 + u+
u2

2
e, for u ∈ Rn, u · a0 = 0.

(4.90)

The following correspondences exist between the hyperboloid model and
the half-space model:

1. A hyperplane normal to a and passing through e in Dn corresponds to
the hyperplane in Rn normal to a+ a · p0e with signed distance −a · p0

from the origin.
2. A hyperplane not passing through e in Dn corresponds to a sphere with

center on Rn−1.
3. A sphere in Dn corresponds to a sphere disjoint with Rn−1.
4. A horosphere with center e (or −e) and relative radius ρ corresponds to

the hyperplane in Rn normal to a0 with signed distance −1/ρ (or 1/ρ)
from the origin.

5. A horosphere with center other than ±e corresponds to a sphere tangent
with Rn−1.

4. A Universal Model for Conformal Geometries 97

6. A hypersphere with center c, tangent radius ρ in Dn and axis passing
through e corresponds to the hyperplane in Rn normal to c−ρa0 +c ·p0e

with signed distance − c · p0√
1 + ρ2

from the origin.

7. A hypersphere whose axis does not pass through e in Dn corresponds to
a sphere intersecting with Rn−1.

4.8 The Klein Ball Model

The standard definition of the Klein ball model [124] is the unit ball Bn of
Rn equipped with the following metric: for any u, v ∈ Bn,

cosh d(u, v) =
1 − u · v√

(1 − u2)(1 − v2)
. (4.91)

This model is not conformal, contrary to all the previous models, and is valid
only for Hn, not for Dn.

The standard derivation of this model is through the central projection of
Hn to Rn. Recall that when we construct the conformal ball model, we use
the stereographic projection of Dn from −p0 to the space Rn = (a0∧p0)

∼. If
we replace −p0 with the origin, replace the space (a0∧p0)

∼ with the tangent
hyperplane of Hn at point p0, and replace Dn with its branch Hn, then every
affine line passing through the origin and point p of Hn intersects the tangent
hyperplane at point

jK(p) =
p0(p0 ∧ p)

p0 · p
. (4.92)

Every affine line passing through the origin and a point at infinity p0 + a of
Hn intersects the tangent hyperplane at point a.

.

.

. ..
Rp

K
(p)

K
(h)

p

–H

H

B

0

0

–p

n

n

n

n

0

j j

h

Fig. 4.7. The Klein
ball model

98 Hongbo Li, David Hestenes, Alyn Rockwood

The projection jHB maps Hn to Bn, and maps the sphere at infinity of
Hn to the unit sphere of Rn. This map is one-to-one and onto. Since it is
central projection, every r-plane of Hn is mapped to an r-plane of Rn inside
Bn.

Although not conformal, the Klein ball model can still be constructed in
the homogeneous model. We know that jDS maps Hn to Sn+, the hemisphere
of Sn centered at −a0. A stereographic projection of Sn from a0 to Rn, yields
a model of Dn in the whole of Rn. Now instead of a stereographic projection,
use a parallel projection Pã0 = P⊥

a0
from Sn+ to Rn = (a0 ∧ p0)

∼ along a0.
The map

jK = P⊥
a0

◦ jDS : Hn −→ Bn (4.93)

is the central projection and produces the Klein ball model.

.

H

.

.

.

p

S

+S
.

.
a

. R
Pa

.

R

00
0

j

–a

–p

nn

n

n

n

0

0

0

0

0

SD

Fig. 4.8. The Klein ball model derived from parallel projection of Sn to � n

The following are some properties of the map jK . There is no correspon-
dence between spheres in Hn and Bn because the map is not conformal.

1. A hyperplane of Hn normal to a is mapped to the hyperplane of Bn
normal to P⊥

p0
(a) and with signed distance − a · p0√

1 + (a · p0)2
from the

origin.
2. An r-plane of Hn passing through p0 and normal to the space of In−r,

where In−r is a unit (n − r)-blade of Euclidean signature in G(Rn), is
mapped to the r-space of Bn normal to the space In−r.

3. An r-plane of Hn normal to the space of In−r but not passing through
p0, where In−r is a unit (n − r)-blade of Euclidean signature in G(Rn),
is mapped to an r-plane L of Bn. The plane L is in the (r + 1)-space,
which is normal to the space of p0 · In−r of Rn, and is normal to the
vector p0 + (PIn−r(p0))

−1 in the (r + 1)-space, with signed distance

4. A Universal Model for Conformal Geometries 99

− 1√
1 + (PIn−r (p0))−2

from the origin.

The inverse of the map jHB is

j−1
K (u) =

u+ p0

|u+ p0|
, for u ∈ Rn, u2 < 1,

u+ p0, for u ∈ Rn, u2 = 1.
(4.94)

The following are some properties of this map:

1. A hyperplane of Bn normal to n with signed distance δ from the origin
is mapped to the hyperplane of Hn normal to n− δp0.

2. An r-space Ir of Bn, where Ir is a unit r-blade in G(Rn), is mapped to
the r-plane a0 ∧ p0 ∧ Ir of Hn.

3. An r-plane in the (r + 1)-space Ir+1 of Bn, normal to vector n in the
(r+ 1)-space with signed distance δ from the origin, where Ir+1 is a unit
(r+1)-blade in G(Rn), is mapped to the r-plane (n−δp0) (a0∧p0∧Ir+1)
of Hn.

4.9 A Universal Model for Euclidean, Spherical, and

Hyperbolic Spaces

We have seen that spherical and Euclidean spaces and the five well-known
analytic models of the hyperbolic space, all derive from the null cone of a
Minkowski space, and are all included in the homogeneous model. Except for
the Klein ball model, these geometric spaces are conformal to each other. No
matter how viewpoints are chosen for projective splits, the correspondences
among spaces projectively determined by common null vectors and Minkowski
blades are always conformal. This is because for any nonzero vectors c, c′ and
any null vectors h1, h2 ∈ Nn

c′ , where

Nn
c′ = {x ∈ Nn|x · c′ = −1}, (4.95)

we have
∣∣∣∣−

h1

h1 · c
+

h2

h2 · c

∣∣∣∣ =
|h1 − h2|√

|(h1 · c)(h2 · c)|
, (4.96)

i.e., the rescaling is conformal with conformal coefficient 1/
√
|(h1 · c)(h2 · c)|.

Recall that in previous constructions of the geometric spaces and models
in the homogeneous model, we selected special viewpoints: p0, a0, b0, e =
p0 + a0, e0 = p0−a0

2 , etc. We can select any other nonzero vector c in Rn+1,1

as the viewpoint for projective split, thereby obtaining a different realization
for one of these spaces and models. For the Euclidean case, we can select any
null vector in N n

e as the origin e0. This freedom in choosing viewpoints for

100 Hongbo Li, David Hestenes, Alyn Rockwood

projective and conformal splits establishes an equivalence among geometric
theorems in conformal geometries of these spaces and models. From a single
theorem, many “new” theorems can be generated in this way. We illustrate
this with a simple example.

The original Simson’s Theorem in plane geometry is as follows:

Theorem 4.9.1 (Simson’s Theorem). Let ABC be a triangle, D be a
point on the circumscribed circle of the triangle. Draw perpendicular lines
from D to the three sides AB, BC, CA of triangle ABC. Let C1, A1, B1 be
the three feet respectively. Then A1, B1, C1 are collinear.

A

A B

B

C

CD

1

1

1

Fig. 4.9. Original Simson’s Theorem

When A,B,C,D,A1, B1, C1 are understood to be null vectors represent-
ing the corresponding points in the plane, the hypothesis can be expressed
bt the following constraints:

A ∧B ∧ C ∧D = 0 A,B,C,D are on the same circle
e ∧ A ∧ B ∧ C 6= 0 ABC is a triangle
e ∧ A1 ∧ B ∧ C = 0 A1 is on line BC
(e ∧D ∧A1) · (e ∧ B ∧ C) = 0 Lines DA1 and BC are perpendicular
e ∧ A ∧ B1 ∧ C = 0 B1 is on line CA
(e ∧D ∧B1) · (e ∧ C ∧A) = 0 Lines DB1 and CA are perpendicular
e ∧ A ∧ B ∧ C1 = 0 C1 is on line AB
(e ∧D ∧ C1) · (e ∧A ∧ B) = 0 Lines DC1 and AB are perpendicular

(4.97)

The conclusion can be expressed as

4. A Universal Model for Conformal Geometries 101

e ∧ A1 ∧ B1 ∧ C1 = 0. (4.98)

Both the hypothesis and the conclusion are invariant under rescaling of null
vectors, so this theorem is valid for all three geometric spaces, and is free of
the requirement that A,B,C,D,A1, B1, C1 represent points and e represents
the point at infinity of Rn. Various “new” theorems can be produced by
interpreting the algebraic equalities and inequalities in the hypothesis and
conclusion of Simson’s theorem differently.

First let us exchange the roles that D, e play in Euclidean geometry. The
hypothesis becomes

e ∧ A ∧ B ∧ C = 0
A ∧ B ∧ C ∧D 6= 0
A1 ∧ B ∧ C ∧D = 0
(e ∧D ∧ A1) · (D ∧ B ∧ C) = 0
A ∧ B1 ∧ C ∧D = 0
(e ∧D ∧ B1) · (D ∧ C ∧ A) = 0
A ∧ B ∧ C1 ∧D = 0
(e ∧D ∧ C1) · (D ∧ A ∧ B) = 0

(4.99)

and the conclusion becomes

A1 ∧ B1 ∧ C1 ∧D = 0. (4.100)

This “new” theorem can be stated as follows:

Theorem 4.9.2. Let DAB be a triangle, C be a point on line AB. Let
A1, B1, C1 be the symmetric points of D with respect to the centers of circles
DBC, DCA, DAB respectively. Then D,A1, B1, C1 are on the same circle.

A
A B

B

C

C

D

1

1

1
.

.
.

.
..

.

.

..

Fig. 4.10. Theorem 4.9.2

We can get another theorem by interchanging the roles of A, e. The con-

102 Hongbo Li, David Hestenes, Alyn Rockwood

straints become

e ∧B ∧ C ∧D = 0
e ∧A ∧ B ∧ C 6= 0
A ∧ A1 ∧ B ∧ C = 0
(A ∧D ∧A1) · (A ∧ B ∧ C) = 0
e ∧A ∧ B1 ∧ C = 0
(A ∧D ∧B1) · (e ∧ C ∧ A) = 0
e ∧A ∧ B ∧ C1 = 0
(A ∧D ∧ C1) · (e ∧ A ∧ B) = 0 ,

(4.101)

and the conclusion becomes

A ∧A1 ∧ B1 ∧ C1 = 0. (4.102)

This “new” theorem can be stated as follows:

Theorem 4.9.3. Let ABC be a triangle, D be a point on line AB. Let EF
be the perpendicular bisector of line segment AD, which intersects AB,AC
at E,F respectively. Let C1, B1 be the symmetric points of A with respect
to points E,F respectively. Let AG be the tangent line of circle ABC at A,
which intersects EF at G. Let A1 be the intersection, other than A, of circle
ABC with the circle centered at G and passing through A. Then A,A1, B1, C1

are on the same circle.

.

0

A

A

C

D

C

F

G

1

1

1

B

B

E

.
. .

.
.

. .

.
. . .

Fig. 4.11. Theorem 4.9.3

4. A Universal Model for Conformal Geometries 103

There are equivalent theorems in spherical geometry. We consider only
one case. Let e = −D. A “new” theorem as follows:

Theorem 4.9.4. Within the sphere there are four points A,B,C,D on the
same circle. Let A1, B1, C1 be the symmetric points of −D with respect
to the centers of circles (−D)BC, (−D)CA, (−D)AB respectively. Then
−D,A1, B1, C1 are on the same circle.

A
A

B

B

C

C

D

– D

1.
1

1

.
....

.

.

Fig. 4.12. Theorem 4.9.4

There are various theorems in hyperbolic geometry that are also equiva-
lent to Simson’s theorem because of the versatility of geometric entities. We
present one case here. Let A,B,C,D be points on the same branch of D2,
e = −D.

Theorem 4.9.5. Let A,B,C,D be points in the Lobachevski plane H2 and
be on the same generalized circle. Let LA, LB, LC be the axes of hypercycles
(1-dimensional hyperspheres) (−D)BC, (−D)CA, (−D)AB respectively. Let
A1, B1, C1 be the symmetric points of D with respect to LA, LB , LC respec-
tively. Then −D,A1, B1, C1 are on the same hypercycle.

104 Hongbo Li, David Hestenes, Alyn Rockwood

.

.
.

.
.

.

A

B

L
C

C

C

– D

1 D

Fig. 4.13. Construction of C1 from
A,B,D in Theorem 4.9.5

5. Geo-MAP Unification

Ambjörn Naeve and Lars Svensson

Dept. of Numerical Analysis and Computing Science / Dept. of Mathematics
Royal Institute of Technology, Stockholm

5.1 Introduction

The aim of this chapter is to contribute to David Hestenes’ vision - for-
mulated on his web-site1 - of desiging a universal geometric calculus based
on geometric algebra. To this purpose we introduce a framework for geo-
metric computations which we call geo-MAP (geo-Metric-Affine-Projective)
unification. It makes use of geometric algebra to embed the representation
of Euclidean, affine and projective geometry in a way that enables coherent
shifts between these different perspectives. To illustrate the versatility and
usefulness of this framework, it is applied to a classical problem of plane ge-
ometrical optics, namely how to compute the envelope of the rays emanating
from a point source of light after they have been reflected in a smoothly
curved mirror.

Moreover, in the appendix, we present a simple proof of the fact that the
‘natural basis candidate’ of a geometric algebra - the set of finite subsets of
its formal variables - does in fact form a vector space basis for the algebra.
This theorem opens the possibility of a deductive presentation of geometric
algebra to a wider audience.

1 <http://phy.asu.edu/directory/Fac Pages/Hestenes.html>

106 Ambjörn Naeve, Lars Svensson

5.2 Historical Background

Applying polynomial algebra to geometry is called algebraic geometry if the
polynomials commute with each other, and geometric algebra if they don’t.2

Let us take a brief look at the historical process that has developed the design
of present day relationships between geometry and algebra.3

With his work La Geometrie4, published in 1637, Descartes wielded to-
gether the two subjects of algebra and geometry, which had each been limping
along on its own one leg. In this process he created the two-legged subject of
analytic geometry, which turned out to be capable of moving forward in big
strides and even giant leaps - such as e.g. the one manifested by the differ-
ential and integral calculus of Newton and Leibnitz5 towards the end of the
17:th century - building on work by Fermat, Wallis and Barrow6.

But these tremendous advancements came at a considerable price. As
Hestenes points out in [116], the careful separation between number and one-
dimensional un-oriented magnitude that had been so meticulously upheld
by Euclid, was thrown away by Descartes, an identification that has had
fundamental consequences for the design of ‘vectorial’ mathematics. By giving
up the difference between order and magnitude, Descartes in effect created
a 1-dimensional concept of direction, where only 1-dimensional geometric
objects - like lines or line segments - could be oriented in a coordinate free
way.

As we know, two centuries later, Grassmann discovered how to repre-
sent oriented multi-dimensional magnitudes and introduced a calculus for
their manipulation7. Unfortunately, the fundamental nature of his contribu-
tions were not acknowledged by his contemporaries, and in the great battle
over how to express multi-dimensional direction that was eventually fought
between the ‘ausdehnungen’ of Grassmann [97] on the one hand and the
‘quaternions’ of Hamilton [102] on the other, the victory was carried off by
the vector calculus of Gibbs [93] and Heaviside [111] - under heavy influence
from the electro-magnetic theory of Maxwell [168]. This fact has fundamen-
tally shaped the way we think about vectors today, and it has lead to concepts
such as the familiar cross-product that we teach our mathematics students
at the universities8.

Another example of a dominating design-pattern within present day geo-
metrical mathematics is provided by the field of algebraic geometry. Within
this field of mathematics, one describes non-commutative geometrical config-

2 Hence, in these mathematical field descriptions, the words ‘algebra’ and ‘geom-
etry’ do not themselves commute.

3 Hestenes [116] gives an excellent description of this process.
4 Descartes [61]
5 See Newton [183, 182] and Leibnitz [150, 151].
6 See [27] for more detail.
7 See Grassmann [98]
8 An interesting account of this development is given by Crowe in [52].

5. Geo-MAP Unification 107

urations in terms of commutative polynomial rings - using so called “varieties
of zero-sets” for different sets of polynomials9. The urge to factor these poly-
nomials creates an urge to algebraically close the field of coefficients, which
leads to complex-valued coefficients, where one has factorization of single-
variable polynomials into linear factors, and where Hilbert’s so called ‘null-
stellensatz’10 provides the fundamental linkage between the maximal ideals
of the polynomial ring and the points of the underlying geometric space.

By adhering to this design one gains a lot of analytical power, but one
also achieves two important side effects that have major consequences for
the application of this kind of mathematics to geometric problems: First, one
loses contact with real space, which means that algebraic geometry does not
have much to say about real geometry at all, since there is no nullstellensatz
to build on here. Second, since the interesting structures (= the varieties) are
zero-sets of polynomials, they are mostly impossible to compute exactly, and
hence must be approached by some form of iterational scheme - often using
the pseudo-inverse (singular values) decomposition which is the flag-ship of
computational linear algebra.

We could argue other cases in a similar way. The point is not to criticise
the corresponding mathematical structures per se, but rather to underline
the importance of discussing the concept of mathematical design in general
- especially within the scientific communities that make use of mathematical
models to represent the phenomena which they study. Bringing a powerful
mathematical theory into a scientific field of study most often leads to in-
teresting applications of that theory, but it always carries with it the risk of
getting caught up in the difficulties introduced by the theory itself - rather
than using it as a tool to handle the difficulties of the initial problem do-
main. Of course there is never a sharp distinction between these two cases,
but rather a trade-off between the beneficial and the obstructional aspects of
any mathematical tool.

In short, the historical process described above has resulted in a large
variety of algebraic systems dealing with vectors - systems such as matrix
algebra, spinor algebra, differential forms, tensor algebra, etc. etc. For many
years David Hestenes has pointed out that such a multitude of computational
systems for closely related conceptual entities indicate underlying weaknesses
of the corresponding mathematical designs. As members of the scientific com-
munity we all share a dept of gratitude to people like David Hestenes and
Garret Sobczyk, who have devoted a large part of their research to explor-
ing various alternative designs - designs that aim to develop the legacy of
Grassmann [98, 97] and Clifford [46, 45, 47] into its full algebraic and geo-
metric potential11. In fact, it was the works of Hestenes [116] and Hestenes

9 See e.g. Hartshorne: “ What is algebraic geometry” [109], pp.55-59.
10 See e.g. Atiyah-Macdonald [10], p. 85.
11 In this battle Hestenes and Sobczyk have been joined by a number of people.

They include Rota and his co-workers Barabei and Brini [14], who were instru-

108 Ambjörn Naeve, Lars Svensson

& Sobczyk [117] that brought the present authors into the field, and made
us interested enough to take up active research in geometric algebra.

5.3 Geometric Background

5.3.1 Affine Space

As a background to the following discussion we begin by introducing the
abstract concept of an affine space followed by a concrete model of such a
space to which we can apply geometric algebra. Our presentation of affine
spaces follows essentially that of Snapper & Troyer [218], which starts out by
discussing affine spaces in abstract and axiomatic mathematical terms:

Definition 5.3.1. The n-dimensional affine space over a field K consists of
a non-empty set X, an n-dimensional vector space V over K, and an ‘action’
of the additive group of V on X. The elements of X are called points, the
elements of V are called vectors and the elements of K are called scalars.

Definition 5.3.2. To say that the additive group of the vector space V acts
on the set X means that, for every vector v ∈ V and every point x ∈ X there
is defined a point vx ∈ X such that

1. If v, w ∈ V and x ∈ X, then (v + w)x = v(wx).
2. If 0 denotes the zero vector of V , then 0x = x for all x ∈ X.
3. For every ordered pair (x, y) of points of X, there is one and only one

vector v ∈ V such that vx = y.

The unique vector v with vx = y is denoted by xy and we write

v ≡ xy ≡ y − x (5.1)

Also, it is convenient to introduce the following

Notation: The affine space defined byX,V,K and the action of the additive
group of V on X is denoted by (X,V,K).

From now on, we will restrict K to be the field of real numbers R. The corre-
sponding affine space (X,V,R) is called real affine space. We now introduce a
model for real affine space - a model which is in fact often taken as a definition
of such a space.

Let V be an n-dimensional vector space over R. For the set X , we choose
the vectors of V , that is, X = V , where V is considered only as a set. The
action of the additive group of V on the set V is defined as follows:

If v ∈ V and w ∈ V, then v ◦ w = v + w (5.2)

It is an easy exercise to verify that

mental in reviving Grassmann’s original ideas, and Sommer [223, 220], who plays
an important role in bringing these ideas in contact with the engineering com-
munity, thus contributing to the growing number of their applications.

5. Geo-MAP Unification 109

Proposition 5.3.1. The space (V, V,R) as defined above, is a model for n-
dimensional real affine space, in other words, the three conditions of Def.
(5.3.2) are satisfied.

In this case one says that the vectors of V act on the points of V by translation
- thereby giving rise to the affine space (V, V,R). In linear algebra one becomes
accustomed to regarding the vector v of the vector space V as an arrow,
starting at the point of origin. When V is regarded as an affine space, that
is, X = V , the point v should be regarded as the end of that arrow.

To make the distinction between a vector space and its corresponding
affine space more visible, it is customary to talk of direction vectors when
referring to elements of the vector space V and position vectors when referring
to elements of the corresponding affine space (V, V,R).

5.3.2 Projective Space

Definition 5.3.3. Let V be an (n + 1)-dimensional vector space. The n-
dimensional projective space P (V) is the set of all non-zero subspaces of V .

To each non-zero k-blade B = b1 ∧ b2 ∧ . . . ∧ bk we can associate the linear
span B̄ = Linspan[b1, b2, . . . , bk]. Hence we have the mapping from the set
B of non-zero blades to P (V) given by

B 3 B → B̄ ∈ P (V), (5.3)

which takes non-zero k-blades to k-dimensional subspaces of V .
As is well known, P (V) carries a natural lattice structure. Let S and T

be two subspaces of V . We denote by S∧T the subspace S∩T , and by S∨T
the subspace S + T . Moreover, let us recall the geometric algebra dual ∨ of
the outer product ∧, defined by

x ∨ y = (x̃ ∧ ỹ)I = (xI−1) ∧ (yI−1)I. (5.4)

We can now state the following important result:

Proposition 5.3.2. Let A and B be non-zero blades in the geometric algebra
G. Then

A ∧ B = A ∨ B, if A ∧ B = 0,

A ∨ B = A ∧ B, if A ∨ B = V.
(5.5)

Proof. See e.g. Hestenes & Sobczyk [117] or Svensson [232].

In the so called double algebra - also known as the Grassmann-Cayley algebra
- the lattice structure of P (V) is exploited in order to express the join (=
sum) and meet (= intersection) of its subspaces.12 In order to obtain the same

12 See e.g. Barabei & Brini & Rota [14] or Svensson [232].

110 Ambjörn Naeve, Lars Svensson

computational capability within the geometric algebra, we can introduce an
alternating multilinear map called the bracket (or the determinant), given by

V × . . .× V → R

(v1, . . . , vn) 7→ (v1 ∧ . . . ∧ vn)I−1 = |v1, . . . , vn|. (5.6)

As an example, which we will make use of below, we have the following

Proposition 5.3.3. If A,B,C,D ∈ G1
3, then

(A ∧ B) ∨ (C ∧D) = |A,B,C|D − |A,B,D|C. (5.7)

Proof. Since both sides of (5.7) are multilinear in A,B,C and D, it is enough
to verify the equality for {A,B,C,D} ⊂ {e1, e2, e3}. This is left as a routine
exercise.

5.4 The Unified Geo-MAP Computational Framework

As is well-known, the present day vector concept is surrounded by a great deal
of confusion, and we argued above that this is an indicator of its weakness
of design. Symptoms range from the inability of students to discriminate
between direction vectors and position vectors to heated discussions among
experts as to which type of algebra that is best suited to represent vectors.
Since any representational perspective has its own inherent strengths and
weaknesses, it is important to be able to move between such perspectives
in a consistent way, which means to remain within the same computational
framework in spite of the change of representation.

In this section we demonstrate how geometric algebra provides a common
background for such movement. We will explain how this background can
be used to handle the interplay between Euclidean (direction) vectors, affine
(position) vectors and homogeneous (sub-space) vectors - such as the ones
used in projective geometry.

The technique for doing this we have termed geo-Metric-Affine-Projective
unification. It is important because it allows passing from the Euclidean vec-
tor space algebra into the Grassmann-Cayley algebra and then back again
without changing the frame of reference. Later we will make use of the geo-
MAP unification technique to compute intersections of affine sets in cartesian
coordinates.

5.4.1 Geo-MAP Unification

Let V be a n-dimensional Euclidean real vector space with the vectors
{e1, . . . , en} as an orthonormal basis. Denote by G(I) the corresponding ge-
ometric algebra, where I = e1e2 . . . en. Moreover, let O denote an arbitrary
(fixed) point of the affine space (V, V,R). We can represent O by introducing

5. Geo-MAP Unification 111

a unit vector e orthogonal to {e1, . . . , en} and consider the geometric alge-
bra G(J), with unit pseudo-scalar J = Ie. Then it follows directly from Def.
(5.3.2) that for each affine point p ∈ (V, V,R) there is a unique vector such
that

p = e+ x. (5.8)

Moreover, the additive action of the vectors x, y ∈ V is given by

(e+ x) + y = e+ (x+ y). (5.9)

Now, by construction, we have V = G1(I) = I . Let us introduce the vector
space W with the corresponding relation to J :

W = G1(J) = J. (5.10)

Then it is clear that

A = e+ V = {e+ v : v ∈ V } (5.11)

is an affine set in W.
We now introduce the two mappings

V 3 x 7→ ∗x = e+ x ∈ A, (5.12)

and

W\V 3 y 7→ ∗y = (y · e)−1y − e ∈ V. (5.13)

Note that y 6∈ V ensures that y · e 6= 0. Since the right hand side of (5.13)
is invariant under scaling of y, it follows that this mapping can be extended
to P1(W) (= the 1-dimensional subspaces of W), excluding P1(V) (=the 1-
dimensional subspaces of V). Hence (5.13) induces a mapping from the affine
part of projective space:

P1(W)\P1(V) 3 ȳ 7→ ∗y ∈ V. (5.14)

We can now make the following important observation:

∗(∗x) = ∗(x+ e) = ((x+ e) · e)−1(x + e) − e = x. (5.15)

The relation (5.15) embodies the essence of the unified geo-MAP computa-
tional framework. It shows how to pass from a point x of Euclidean space -
via affine space - into projective space, and then how to get back again to the
original starting point x. In this way the upper and lower left star operators
bridge the gap betweeen the metric, affine and projective perspectives on
geometry and unifies them within the same computational framework. The
configuration is illustrated in Figure (5.1).

Using the geo-MAP unification technique, we can start with a Euclidean
direction vector problem and translate it into projective space, where we can
apply e.g. the techniques of the double algebra in order to find intersections of
affine sets. These intersections can then be transported back to the Euclidean
representation and deliver e.g. cartesian coordinates of the intersection ele-
ments. In the next paragraph will apply the geo-MAP unification technique

112 Ambjörn Naeve, Lars Svensson

e1

e

en V

A

Wx*

x

x*
_

y

*y

y
_

Fig. 5.1. The unified
geo-MAP computa-
tional framework

in this way.

5.4.2 A Simple Example

To illustrate how it works, will now apply the geo-MAP computational tech-
nique to the simple problem of finding the intersection of two lines in the
affine plane.

Let v0, v1, w0, w1 ∈ G1(e1, e2) and let the two lines be determined respec-
tively by the two point-pairs Vi = ∗vi and Wi = ∗wi, i = 0, 1.

Making use of (5.7), we can express the point pvw of intersection between
these two lines as:

pvw = ∗((V0 ∧ V1) ∨ (W0 ∧W1)) = ∗(|V0, V1,W0|W1 − |V0, V1,W1|W0)
(5.16)

and the two brackets that appear in (5.16) can be written as:

|V0, V1,W0| = |v0 + e, v1 + e, w0 + e|
= |v0 − w0, v1 − w0, w0 + e|
= |v0 − w0, v1 − w0|
= ((v0 − w0) ∧ (v1 − w0))e2e1 (5.17)

and analogously

|V0, V1,W1| = ((v0 − w1) ∧ (v1 − w1))e2e1. (5.18)

Writing α = |V0, V1,W0| and β = |V0, V1,W1|, (5.16) takes the form:

pvw = ∗(αW1 − βW0)

= ((αW1 − βW0) · e)−1(αW1 − βW0) − e

= (α − β)−1(αw1 + αe− βw0 − βe) − e

=
αw1 − βw0

α− β
. (5.19)

5. Geo-MAP Unification 113

Here we have a good example of the geo-MAP unification technique at work.
Taking the upper star of the Euclidean direction vectors w0 and w1, they are
brought into the affine part of projective space. Here they can be subjected
to the double algebraic lattice operations of ∧ and ∨, in this particular case
in the combination expressed by (5.7).

5.4.3 Expressing Euclidean Operations in the Surrounding
Geometric Algebra

We will end this section by showing how to embed some important Euclidean
direction vector operations within the surrounding geometric algebra G4 -
namely the difference and the cross-product operations. In this way the or-
dinary Euclidean algebra of (cartesian) direction vectors can be emulated in
geometric algebra.

Consider the Euclidean direction vector x ∈ G1
3 ⊂ G1

4 with its cartesian
coordinate expansion given by x = x1e1 + x2e2 + x3e3. Recall that I =
e1e2e3 and J = Ie. By (5.14), the corresponding affine position vector X ∈
(V, V,R) ⊂ G1

4 is expressible as X = x+ e.
With these definitions of x and X , and the corresponding definitions for y

and Y , we will now deduce two formulas that connect the Euclidean direction
vector algebra of Gibbs with the surrounding geometric algebra G4:

Proposition 5.4.1. The Euclidean cross product vector can be expressed in
G4 as:

x× y = (e ∧X ∧ Y)J. (5.20)

Proof. From the definition of the cross product, it follows directly that

x× y = (x ∧ y)I−1. (5.21)

Plugging X = x + e and Y = y + e into the right-hand-side of (5.20) now
gives

(e ∧X ∧ Y)J = (e ∧ (x+ e) ∧ (y + e))J = (e ∧ x ∧ y)J
= e(x ∧ y)J = (x ∧ y)eIe = (x ∧ y)I−1

= x× y. (5.22)

Proposition 5.4.2. The Euclidean difference vector can be expressed in G4

as:

y − x = e · (X ∧ Y). (5.23)

Proof. Expanding again the right-hand-side of (5.23), we can write

e · (X ∧ Y) = e · ((x+ e) ∧ (y + e)) = e · (x ∧ y + xe+ ey)

= e · (xe+ ey) = e · (ey − ex) = {ey and ex ∈ G2}
= 〈eey〉1 − 〈eex〉1 = y − x.

114 Ambjörn Naeve, Lars Svensson

Formulas such as (5.20) and (5.23) are useful for translating a geometric
problem from one representation into another. Moreover, since for a 1-vector
v and a blade B we have v ·B+ v ∧B = vB, it follows that (5.20) and (5.23)
can be combined into:

e(X ∧ Y) = y − x+ (x× y)J−1 (5.24)

or

X ∧ Y = e(y − x) + (x× y)I. (5.25)

The expression (5.25) indicates interesting relationships between ordinary
direction vector algebra and various forms of generalized complex numbers.
However, to pursue this topic further is outside the scope of the current text.

5.5 Applying the Geo-MAP Technique to Geometrical

Optics

In order to illustrate the workings of the unified geo-MAP computational
technique, we will now apply it to a classical problem of geometrical op-
tics. It was first treated by Tschirnhausen and is known as the problem of
Tschirnhausen’s caustics.

5.5.1 Some Geometric-Optical Background

Since light is considered to emanate from each point of a visible object, it is
natural to study optics in terms of collections of point sources. In geometrical
optics, a point source is considered as a set of (light) rays - i.e. a set of directed
half-lines - through a point. But a point source does not (in general) retain
its ‘pointness’ as it travels through an optical system of mirrors and lenses.
When a point source of in-coming light is reflected by a mirror or refracted
by a lens, the out-going rays will in general not pass through a point. Instead,
they will be tangent to two different surface patches, together called the focal
surface of the rays13.

The importance of focal surfaces in geometrical optics is tied up with a
famous theorem due to Malus and Dupin14. In order to understand what this
theorem says, we introduce a geometric property that is sometimes possessed
by a set of lines:

Definition 5.5.1. A two-parameter family of curves K is said to form a
normal congruence, if there exists a one-parameter family of smooth surfaces
Γ such that each surface of the family Γ is orthogonal to each curve of the
family K.

13 Fo a survey ov the theory of focal surfaces, we refer the reader to Naeve [180].
14 see e.g. Lie [155]

5. Geo-MAP Unification 115

A surface in Γ is called an orthogonal trajectory to the curves of the family K.
A point field KP is of course an example of a normal congruence of lines, the
orthogonal trajectories being the one-parameter family of concentric spheres
ΓP with centre P . Furthermore, the rays of KP carry a direction, which varies
continuously when we pass from one ray to its neighbours. Such a family of
lines is called a directed normal congruence.

Now, the theorem of Malus and Dupin can be formulated as follows:

Proposition 5.5.1. A directed normal congruence of lines remains directed
and normal when passing through an arbitrary optical system.

In optics, the orthogonal trajectories of the light rays are called wave fronts,
and the Malus-Dupin theorem can be expressed by stating that any optical
system preserves the existence of wave fronts.

5.5.2 Determining the Second Order Law of Reflection for Planar
Light Rays

In what follows below we will restrict to the plane and consider one-parameter
families of rays that emanate from a planar point source and then are reflected
by a curved mirror in the same plane. We will deduce an expression that
connects the curvatures of the in-coming and out-going wave fronts with the
curvature of the mirror at the point of impact. Since curvature is a second-
order phenomenon, it is natural to call this expression the second order law of
reflection - as opposed to the first order law, that expresses only the direction
of an outgoing ray as a function of the direction of the in-coming ray and the
direction of the mirror normal.

Let us begin by recalling some classical concepts from the differential
geometry of plane curves.

Definition 5.5.2. Consider a one-parameter family of smooth curves F (c)
in the same plane (with c as the parameter). If there is a curve Γ which has
the property of being tangent to every curve of the family F (c) in such a way
that each point Γ (t0) is a point of tangency of exactly one curve F (c0), then
the curve Γ is called the envelope of the family of curves F (c).

Definition 5.5.3. Consider a smooth plane curve M . At each point m(s)
of this curve there is an osculating circle with centre point r(s), called the
centre of curvature of the point m(s). When we vary s (i.e. when we move
along the curve M) the point r(s) will describe a curve E called the evolute
of the original curve M . Reciprocally, the curve M is called the evolvent (or
the involute) of the curve E.

In 2-dimensional geometrical optics, a point source of light corresponds to a
pencil of rays. After having been reflected or refracted by various mirrors and
lenses, these rays will in general be tangent to a curve, called a caustic curve

116 Ambjörn Naeve, Lars Svensson

in optics15. This is the kind of bright, shining curve that we can observe when
sunlight is reflected e.g. in a cup of tea.

Definition 5.5.4. A certain angular sector of a plane pencil of light-rays is
made to be incident on a smoothly curved mirror M in the same plane. After
being reflected by M , the light-rays of this sector are all tangent to the caustic
curve forming their envelope. Such a 1-parameter family of light-rays will be
referred to as a tangential sector of rays.

Note: In view of the discussion above, we can conclude that the caustic
curve of a tangential sector of rays is at the same time the envelope of
the rays and the evolute of their orthogonal trajectories.

Let us consider a tangential sector of rays L12 = {l(s) : s1 < s < s2} with
caustic curve Cin whose rays are incident on a smoothly curved mirror M
between the points m(s1) and m(s2) as depicted in Figure (5.2).

Cin Cout

p(s1)
p(s2)

q(s1)
q(s2)

m(s1) m(s2)

L12

M

Fig. 5.2. The tangential sector
L12 is reflected by the mirror M

Two closely related rays l(s) and l(s + ds) will intersect in a point that
is close to the caustic curve Cin and when l(s + ds) is brought to coincide
with l(s) by letting ds → 0 their point of intersection will in the limit fall
on the caustic point p(s). Hence we can regard the caustic curve passing
through p as the locus of intersection of neighbouring rays, where the term
‘neighbouring’ refers to the limiting process just described16.

15 See e.g. Cornbleet [48] or Hecht & Zajac [112].
16 This is an example of an ituitive (and very useful) way to think about geometrical

entities that has been used by geometers ever since the days of Archimedes.
Unfortunately it has no formal foundation in classical analysis. Since infinitesimal
entities (like dx and dy) do not exist in the world of real numbers, a line in a
continuous, (real), one-parameter family can habe no neighbour. However, the
concept of neighbouring geometrical objects can be made rigorous by the use of
so called non-standard analysis.

5. Geo-MAP Unification 117

p(s)

m(s)

m(s+ds)-n(s+ds)

p(s)

m(s+ds)

t(s)

m(s)-n(s)

t(s+ds)

M

q(s)
r(s)

p(s)^

_

l(s)
l(s+ds)

Fig. 5.3. Two neigh-
boring rays l(s) and
l(s + ds) intersect-
ing at p(s) and their
respective reflections
intersecting at q(s)

In Figure (5.3) the symbols t (=tangent) and n (=normal) denote Eu-
clidean direction vectors, and m, p, q, r denote affine points (= position vec-
tors). The symbol s denotes the parameter that connects corresponding
points and lines. The two rays l(s) and l(s+ds) can be thought of as forming
an infinitesimal sector with its vertex p on the caustic curve of l. Within this
sector, the corresponding (infinitesimal) parts of the wave-fronts are circular
and concentric around p. The point p can therefore be regarded as the focal
point of this infinitesimal sector, i.e. the local focal point of the wave fronts
in the direction given by l(s).

Having thus established some terminology and notation, we now turn to
Tschirnhausen’s problem, which is concerned with determining the point q(s)
on the reflected caustic Cout that corresponds to the point p(s) on the in-
caustic Cin. It can be solved by making use of the theory of envelopes17, but
here we will give a more intuitive and straight-forward solution that makes
use of the unified geo-MAP technique - in combination with ordinary Taylor
expansion - to compute a point of the reflected caustic Cout as the intersection
of two neighbouring reflected rays.

From Sec. (5.4.2) we recall the expression (5.19) for the point of inter-
section of the two lines determined respectively by the two pairs of points
Vi = ∗vi and Wi = ∗wi, i = 0, 1, where the determinants α and β appearing
in (5.19) are given by (5.17) and (5.18).

17 see Kowalewski [137], pp. 50-54.

118 Ambjörn Naeve, Lars Svensson

For the sake of convenience (with respect to the computations that follow)
let us fix the coordinate system so that

m(s) = O, t(s) = e1, n(s) = −e2. (5.26)

Note: Since the point m is to be considered as the point O of origin for
the space of direction vectors, we will write p and q in order to denote
the direction vectors p−m and q−m respectively. This will shorten the
presentation of the computations considerably. When we have finished,
we will restore the correct direction vector expressions and present the
desired result in a way that distinguishes clearly between position vectors
and direction vectors.

Following these preliminaries, we will now make use of (5.19) to compute the
point of intersection q(s) of two neighbouring reflected rays.

From classical differential geometry18 we recall the so called Frenét equa-
tions for a curve M :

ṫ(s) =
1

ρ
n(s)

ṅ(s) = −1

ρ
t(s). (5.27)

Here t(s) and n(s) are the unit tangent respectively the unit normal to M at
the point m(s), and ρ = ρ(s) = |r(s)−m(s)| is the radius of curvature of M
at this point.

Moreover, since s denotes arc-length on M , we have ṁ(s) = t(s) = e1(s),
and (5.27) can be written in the form:

ė1(s) = −1

ρ
e2(s)

ė2(s) =
1

ρ
e1(s). (5.28)

The reflected rays corresponding to the parameter values s and s + ds are
determined by the two point-pairs {m(s), p̄(s)} respectively {m(s+ds), p̂(s)},
where the points p̄(s) and p̂(s) are constructed by reflecting the point p(s) in
the tangent t(s) at the point m(s) respectively the tangent t(s + ds) at the
point m(s+ ds). Using the reflection formula for vectors19, we can write

p̄(s) −m(s) = −e1(s)(p(s) −m(s))e1(s)
−1

p̂(s) −m(s+ ds) = −e1(d+ ds)(p(s) −m(s+ ds))e1(s+ ds)−1. (5.29)

Suppressing the dependence of s and recalling from (5.26) that m(s) = 0,
(5.29) takes the form

18 See e.g. Eisenhart [68] or Struik [228]
19 See Hestenes [116], p. 278]

5. Geo-MAP Unification 119

p̄ = −e1pe1
p̂− ṁds = −(e1 + ė1ds)(p− ṁds)(e1 + ė1ds) +O(ds2) (5.30)

where O(ds2) denotes the well-known ‘big-oh’ ordo-class of functions f , that
is

f ∈ O(ds2) ⇔ |f(s+ ds) − f(s)| ≤ K|ds|2 (5.31)

for some constant K = K(s). Expanding the right hand side of the second
equation of (5.30) gives

p̂− ṁds = −(e1pe1 + (e1pė1 + ė1pe1 − e1ṁe1)ds) +O(ds2). (5.32)

Now ė1pe1 = e1pė1, and since ṁ = e1, we have e1ṁe1 = e1. Therefore we
can write

p̂ = −e1pe1 + (e1 + e1 − e1pė1 − ė1pe1)ds+O(ds2)

= −e1pe1 + 2(e1 − e1pė1)ds+O(ds2). (5.33)

In order to make use of the intersection formula (5.19), we first compute

α = (v0 − w0) ∧ (v1 − w0)e2e1 = −(ṁds) ∧ (p̄− ṁds)e2e1 +O(ds2)

= −((ṁds) ∧ p̄)e2e1 +O(ds2) = (p̄ ∧ ṁ)e2e1ds+O(ds2) (5.34)

and

β = (v0 − w1) ∧ (v1 − w1)e2e1 = (0 − p̂) ∧ (p̄− p̂)e2e1

= −(p̂ ∧ p̄)e2e1 = (p̄ ∧ p̂)e2e1. (5.35)

Moreover, if we split the vector p into the components p = ψ1e1 + ψ2e2 and
make use of the fact that ṁ = e1, we get from (5.34):

α = −ψ2ds+O(ds2), (5.36)

and a rather lengthy but straightforward calculation gives

p̄ ∧ p̂ = −2(|ė1|p2 + ψ2)e1e2ds+O(ds2). (5.37)

Plugging (5.37) into (5.35) gives

β = −2(|ė1|p2 + ψ2)ds+O(ds2). (5.38)

Finally, by making use of the intersection formula (5.19), we arrive at the
following expression for the local focal point q = q(s) of the reflected wave
front corresponding to the local focal point p = p(s) of the incident wave
front:

120 Ambjörn Naeve, Lars Svensson

q =
1

α− β
(αw1 − βw0) =

1

α− β
(αp̂− βm(s+ ds))

=
(ψ1e1 − ψ2e2)

1 + 2|ė1| p
2

ψ2

+O(ds). (5.39)

In order to restore this result - as we promised above - to a logically consistent
and coordinate-free form, we must now substitute p−m for p and q −m for
q in (5.39). Performing this substitution, we get

q −m =
(ψ1e1 − ψ2e2)

1 + 2|ė1| (p−m)2

ψ2

. (5.40)

Observe that if |ė1| → 0, i.e. if the mirror becomes plane, (5.40) reduces to
the familiar law of planar reflection:

qt −m = ψ1e1 − ψ2e2, (5.41)

where the point qt is the reflection of p in the straight line mirror t that is
tangent to the mirrorM at the point m. Hence, recalling that ψi = (p−m)·ei
and that |ė1| = |m̈| = 1/ρ, we can express the relationship between the
corresponding points p ∈ Cin and q ∈ Cout in the following way:

q −m =
((p−m) · e1)e1 − ((p−m) · e2)e2

1 + 2|m̈| (p−m)2

(p−m)·e2

=
((p−m) · t)t− ((p−m) · n)n

1 − 2|m̈| (p−m)2

(p−m)·n
. (5.42)

This relation expresses the second order law of reflection for plane geometrical
optics. We summarize Tschirnhausens result in the following

Proposition 5.5.2. Let Cin be the caustic curve of a plane tangential sector
of rays that is incident on a plane-curve mirror M (located in the same plane)
in such a way that the ray which touches Cin at the point p is intercepted by
M in the point m, where the unit-tangent, unit-normal Frenét frame for the
curve M is given by the vectors t and n (according to an arbitrarily chosen
incremental parametric direction of M).

Under these conditions, the point q which corresponds to p, that is the
point q where the reflected ray from m touches the caustic curve Cout, is
given by the expression

q −m =
((p−m) · t)t− ((p−m) · n)n

1 − 2|m̈| (p−m)2

(p−m)·n
. (5.43)

5. Geo-MAP Unification 121

5.5.3 Interpreting the Second Order Law of Reflection
Geometrically

In order to illustrate the geometric significance of the second order reflection
law given by (5.43), we will interpret it in projective geometric terms. In
Figure (5.4), p, p̄,m and q have the same meaning as before, and r̄ denotes
the result of projecting the point r orthogonally onto the reflected ray through
the point m with direction mq = q −m.

p
_

r
_

q

r

p

m

ϕ ϕ

Fig. 5.4. Overview of the Tschirnhausen con-
figuration

Introducing the angle ϕ between the incident ray of direction pm =
m−p and the corresponding mirror normal e2, we note the following relations
between the participating magnitudes:

qt −m = m− p̄

(p−m) · e2 = −|p−m| cosϕ

|r̄ −m| = |r −m| cosϕ = ρ cosϕ

|p̄−m| = |p−m|. (5.44)

Taking (5.44) into accout, the reflection law (5.43) can be expressed as

q −m =
p̄−m

2|p−m|
ρ cosϕ − 1

(5.45)

and taking the modulus of both sides of (5.45), we can write

1

|p̄−m| ±
1

|q −m| =
2

ρ cosϕ
=

2

|r̄ −m| . (5.46)

The sign in the left hand side of (5.46) corresponds to the sign of the denom-
inator in the right hand side of (5.45).

Since, by (5.26), our coordinate system {e1, e2} has its point of origin at
m, the formula (5.46) expresses the fact that the points p̄ and q separate
the points m and r̄ harmonically, that is, these two pairs of points constitute
a harmonic 4-tuple. This is the form in which Tschirnhausen presented his

122 Ambjörn Naeve, Lars Svensson

reflection law20.

5.6 Summary and Conclusions

5.6.1 The Geo-MAP Unification Technique

In Sec. (5.4.1) we introduced the unified geo-MAP computational frame-
work - inspired by classical projective line geometry.21 We then demonstrated
how the geo-MAP framework provides a way to represent the metric (= Eu-
clidean), affine and projective aspects of geometry within the same geometric
algebra, and how this representation creates a computational background for
performing coherent shifts between these three different geometrical systems.

In (5.12) we showed how to pass from a Euclidean point (= direction
vector), to the corresponding affine part of projective space, and in (5.13)
we showed how to get back again from the finite part of projective space
to the original Euclidean point that we started with. The proof that this
works was provided by (5.15). Formulas (5.12) and (5.13) are key formulas
underlying many of our later computations. Because of their great practical
utility in combining the powers of the ordinary Euclidean direction vector
algebra with those of the Grassmann-Cayley algebra, we feel that they should
be of particular interest to the engineering community.

In Sec. (5.4.3) we showed how to embed the basic (Euclidean) direction
vector algebra into the surrounding geometric algebra. The formulas (5.20)
and (5.23) - combined in (5.24) or (5.25) - illustrate the interplay between
the Euclidean operations of vector addition and Gibbs’ cross-product on the
one hand - and the operations of geometric, outer and inner product on the
other. Such formulas as these we have not seen anywhere else.

As an illustrative application of the unified geo-MAP computational tech-
nique, we applied it in Sec. (5.5) to a classical problem of plane geometrical
optics called ‘Tschirnhausens problem’, which is concerned with determining
the envelope of the rays from a point source of light after their reflection in
a smoothly curved mirror.

Using the geo-MAP technique in combination with ordinary Taylor ex-
pansion, we computed the desired envelope as the locus of intersection of
‘neighboring’ rays, i.e. rays that differ infinitesimally from one another. In
this way we deduced the expression (5.43), which could be termed the ”sec-
ond order law of reflection”, since it expresses the curvature relations between
the in-coming and out-going wave fronts and the curved mirror.

Although, in the planar case, the same result can be achieved using en-
velopes, the geo-MAP framework has the advantage of being applicable in
higher dimensions. For example, in 3 dimensions, it can be used in order to

20 See Kowalewski [137]. p.51.
21 see e.g. Sauer [206], Naeve [179] or Naeve & Eklundh [181].

5. Geo-MAP Unification 123

perform the corresponding computations - relating the points on the respec-
tive focal surfaces of an in-coming and out-going normal congruence of rays
to the corresponding points on the focal surface of the normals to the mir-
ror. However, the complexity of such computations have made it necessary
to exclude them here.

5.6.2 Algebraic and Combinatorial Construction of a
Geometric Algebra

As a didactic comment on how to teach geometric algebra, we present - in
the appendix - a constructional proof of the fact that the ‘expected basis
elements’ of a geometric algebra G -i.e. the set of finite subsets of its formal
variables - actually do form a basis for G. This is done in Prop. (5.8.1) and
Prop. (5.8.2), leading up to Def. (5.8.3), where we define a geometric algebra
by constructing it.

Our construction enables the possibility of a logically self-contained de-
scription of geometric algebra which does not require such high levels of
abstraction as in the traditional tensor algebra approach, and which should
therefore be accessible to a wider audience. In our opinion, the main reason
for the lack of such a presentation in the present literature is the difficulties
encountered in establishing a vector space basis for a geometric algebra.

Using this approach to presenting geometric algebra, we do not have to
worry about the question of whether there exists any algebraic structure that
is capable of implementing the desired specifications. We are therefore free to
take the ‘basis approach’, both to defining different operations on the algebra
as well as to proving their structural properties. In our opinion this greatly
simplifies a deductive presentation of geometric algebra to students.

5.7 Acknowledgements

We want to express our gratitude to professors Jan-Olof Eklundh and Harold
Shapiro at the Royal Institute of Technology in Stockholm/Sweden, for pro-
viding the supportive environment in which we have been able to perform
our academic research over the years. We also would like to thank professor
Gerald Sommer at the Christian-Albrechts-University in Kiel/Germany for
inviting us to contribute to this book.

5.8 Appendix: Construction of a Geometric Algebra

Let R be a commutative ring, and let {E,<} be a totally ordered set. The
non-commutative ring of polynomials over R in the formal variables E is
denoted by R{E}, and the set of monomials and the set of terms in the ring
R{E} is denoted by M respectively by T .

124 Ambjörn Naeve, Lars Svensson

Moreover, let S = {−1, 0, 1} ⊂ R, and let sgn : T → R be any given
mapping.

Definition 5.8.1. We say that the pair (e, e′) ∈ E2 is an involution in the
term t, if there exist terms t′, t′′, t′′′ with t = t′et′′e′t′′′ such that either e′ < e
or e′ = e, sgn(e) = −1.

Notation: The number of inversions in the term t is denoted by inv(t).

We now define a mapping µ : T → R in the following way:

• µ(rm) = rµ(m), where r ∈ R, m ∈M .
• µ(m) = 0, if m contains at least two occurrences of some e ∈ E with

sgn(e) = 0.

• µ(m) = (−1)inv(m) otherwise.

We also introduce a reduction rule →, i.e. a binary relation on T by making
the following

Definition 5.8.2. t → t′, where t, t′ ∈ T , if there exist terms t1, t2 ∈ T and
e1, e2 ∈ E such that t = t1e2e1t2, e1 ≤ e2, and where
t′ = −t1e1e2t2, if e1 < e2, or
t′ = sgn(e1)t1t2, if e1 = e2.

Notation: If no t′ exists in T such that t→ t′, we write t|, and

if t→ t1 → . . .→ tk we write t
∗→ tk.

By inspection, we observe that

inv(m1eem2) = inv(m1m2) + inv(ee) + 2N, for some N ∈ N, (5.47)

and that

inv(m1e2e1m2) = inv(m1e1e2m2) + 1, if e1 < e2. (5.48)

From (5.47) and (5.48) we can conclude that if t→ t′, we have

µ(t) = µ(t′). (5.49)

We can now state the following

Proposition 5.8.1. For each t in T there exists a unique t′ = red(t) in T ,
such that t→ t′|.

Proof. We start by proving uniqueness. If µ(t) = 0 then obviously µ(t′) = 0.

Let t = rm
∗→ r′m′|, where µ(m) 6= 0. Then, by inspection, m′ = e1e2 . . . en,

where e1 < e2 < . . . < en, and {e1, . . . , en} is the set of e : s in E occurring
an odd number of times in m. If this set is empty, we put m′ = 1. Hence, m′

is unique. Moreover, µ(t) = rµ(m) = r′µ(m′) which shows that r′ is unique.
This finishes the uniqueness part of the proof.

5. Geo-MAP Unification 125

For the proof of the existence part, we observe that if t1 → t2, then we
have

deg(t1) + inv(t1) > deg(t2) + inv(t2). (5.50)

Hence every reduction chain t
∗→ tk is finite, which proves the existence of

t′. ut

From Prop. (5.8.1) we can directly conclude:

Proposition 5.8.2. Let B denote the set of monomials m in R{E} such that
m|. Then B is in one-to-one correspondence with the set of finite subsets of
E.

Notation: Let Bn denote the set of monomials in B of degree n. The R-
modules generated by B and Bn are denoted by G and Gn respectively.

We now turn G into a ring by introducing an R-bilinear mapping (multipli-
cation)

G×G→ G

(x, y) → x ◦ y (5.51)

in the following way:
By R-bilinearity, it is enough to define m1 ◦m2 for m1,m2 ∈ B. We do

so by defining

m1 ◦m2 = red(m1m2). (5.52)

We then have

m1m2m3
∗→ m1(m2 ◦m3)

∗→ m1 ◦ (m2 ◦m3) = red(m1m2m3)|, (5.53)

and

m1m2m3
∗→ (m1 ◦m2)m3)

∗→ (m1 ◦m2) ◦m3) = red(m1m2m3)|. (5.54)

Since red(m1m2m3) is unique, it follows that the product ◦ is associative.

Definition 5.8.3. The ring (G, ◦) is called a geometric algebra (or a Clifford
algebra).

Notation: The product ◦ is called the geometric product, and it is usually
written as a concatenation. Following this convention, we will from now
on write xy for the product x ◦ y, i.e.

xy ≡ x ◦ y. (5.55)

We can reformulate Prop. (5.8.2) as

126 Ambjörn Naeve, Lars Svensson

Proposition 5.8.3. Let G be a geometric algebra over R with formal vari-
ables E. Then G has an R-module basis consisting of the set of all finite
subsets of E.

Moreover, it can be shown that the following holds:

Proposition 5.8.4. Let E′ be another set, totally ordered by <′, and let the
mapping sgn′ : E′ → R satisfy the condition card(Es) = card(E′s), where
Es = {e ∈ E : sgn(e) = s} and E ′s = {e ∈ E′ : sgn′(e′) = s}. Then G and
G′ are isomorphic as geometric algebras.

One way to establish this isomorphism is to show that if J is the ideal gen-
erated by {e2 − sgn(e), ee′ + e′e : e, e′ ∈ E, e 6= e′}, then G is isomorphic to
R{E}/J .

6. Honing Geometric Algebra

for Its Use in the Computer Sciences

Leo Dorst

Dept. of Computer Science, University of Amsterdam

6.1 Introduction

A computer scientist first pointed to geometric algebra as a promising way
to ‘do geometry’ is likely to find a rather confusing collection of material,
of which very little is experienced as immediately relevant to the kind of
geometrical problems occurring in practice. Literature ranges from highly
theoretical mathematics to highly theoretical physics, with relatively little in
between apart from some papers on the projective geometry of vision [148].
After perusing some of these, the computer scientist may well wonder what
all the fuss is about, and decide to stick with the old way of doing things, i.e.
in every application a bit of linear algebra, a bit of differential geometry, a bit
of vector calculus, each sensibly used, but ad hoc in their connections. That
this approach tends to split up actual issues in the application into modules
that match this traditional way of doing geometry (rather than into natural
divisions matching the nature of the problem) is seen as ‘the way things are’.

However, if one spends at least a year in absorbing this material, a differ-
ent picture emerges. One obtains increased clarity and prowess in handling
geometry. This is due to being able to do computations without using coordi-
nates; and by having elements of computation which are higher-dimensional
than vectors, and thus collate geometrical coherence. The operators that can
be applied are at the same time more limited in number, and more powerful
in purity and general validity. Through this, one obtains the confidence to

128 Leo Dorst

tackle higher-dimensional parameter spaces with the intuition obtained from
3-dimensional geometry. Programs written are magically insensitive to the
dimensionality of the embedding space, or of the objects they act on. The
concept of a ‘split’ endows the limited set of operators with a varied seman-
tics, which begins to suggests an applicability to all geometries one is likely
to encounter.

The hardest part in achieving such a re-appraisal is actually letting go of
the usual geometrical concepts, and embracing new ones. It is not hard to
rewrite, say, linear algebra into geometric algebra; but it is a different matter
altogether to use the full power of geometric algebra to solve problems for
which one would otherwise employ linear algebra. This overhaul of the mind
takes time; and would be greatly aided by material aimed towards computer
scientists. This will doubtlessly appear, for an evangelical zeal appears to
be common to all who have been touched by geometric algebra, but at the
moment it is scarce.

So geometric algebra can (and will) change computer science; but vice
versa, the need for a clear syntax and semantics for the geometric objects
and operators in a specification language requires a rigor beyond the needs
of its current applications in physics, and this is where computer science
may affect geometric algebra. Imposing this necessary formalization – always
with the applications in mind – reveals some ambiguities in the structure of
geometric algebra which need to be repaired. This paper reports on some
issues encountered when preparing the wealth of geometric algebra for its
application in the computer sciences. They involve simply making the internal
structure explicit (section 6.2); redesigning the operators (even the rather
basic inner product can be improved, in section 6.3); the development of
new techniques to enable the user to adapt the structure to his or her needs
(section 6.4); and making mathematical isomorphisms explicit in applicable
operators (section 6.5).

When this is done, many individual ‘tricks’ occurring in different branches
of classical geometry become unified (this is shown for the ‘meet’ in section
6.6), and therefore implementable in a generic toolbox structuring the think-
ing and increasing the capabilities of the geometrical computer scientist. This
is an ongoing effort; as a consequence, this paper is still directed more towards
the developers of geometric algebra than towards its users. Yet it should help
potential users to assess these exciting new developments in unified geomet-
rical computation.

6.2 The Internal Structure of Geometric Algebra

The monolithic term ‘geometric algebra’ hides an internal structure that con-
sists of various levels, each of which are relevant to the computer scientist
desiring to use it in an application. It is important to distinguish them, for
various branches of literature deal with different levels – so you may not find

6. Honing Geometric Algebra 129

vector spaces

applications

‘split algebras’

‘algebra of directions’

Clifford algebra

geometric calculus

‘interior/exterior algebra’

‘projection algebra’

(Clifford product)

geometric algebra

projective split, kinematic split, etc.

Fig. 6.1. Levels in geometric algebra with their operators (non-standard terms in
quotes).

what you need in any one book or paper. I have found the levels sketched in
table 6.1 useful in expositions on the subject, since they explicitly indicate
the scope of each part of the formalism. They are depicted in a ‘bottom-up’
manner from the mathematics of Clifford algebras (at the basis) to various ap-
plications (at the top). (Some levels and their names are my own suggestions,
for the purpose of this chapter; they are denoted in quotes throughout.)

– Clifford algebra
At the basis of all geometric algebra is Clifford algebra. This introduces a
(Clifford) product in a vector space V n over a field of scalars K, thereby
extending it to a 2n-dimensional linear space of multivectors.1 This product
is commonly introduced using a bilinear form 〈 , 〉 : V n × V n → K or a
quadratic form Q : V n → K, to satisfy the axioms:
1. scalars commute with everything: αu = uα, for α ∈ K, u ∈ C̀ n.
2. vectors x ∈ V n obey: xx = Q(x) (which is a scalar!).

1 Several levels higher, the geometric semantics of this product suggests itself so
strongly that it has become custom in geometric algebra to denote the Clifford
product as a ‘geometric product’; but at this basic level that is not obvious yet,
and leads to confusion.

130 Leo Dorst

3. algebraic properties: geometric product is linear in both factors, associa-
tive, and distributive over +. Do not demand commutativity!

Repeated application of the geometric product then produces the basic el-
ements for the whole Clifford algebra, consisting of scalars, vectors, bivec-
tors, etcetera. A big mathematical advantage of the Clifford product is that
it is in principle invertible (the inverse of a vector x is x/Q(x)). This gives
a much richer algebraic structure than other products on vectors (such as
the inner product) – with far-reaching practical consequences. For instance,
a subject that can be studied fully within Clifford algebra, just using the
Clifford product, is n-dimensional rotations, represented by spinors. Ro-
tations are directly represented as elements of the space of the algebra,
just as vectors are, rather than as elements of an algebra of mappings on
a vector space (as they are in linear algebra).
When one starts studying the properties and relationships of various Clif-
ford algebras, it turns out that these depend on the signature of the
quadratic form; but in this contribution we will not emphasize this, us-
ing C̀ n to denote a Clifford algebra for the vector space V n, and (slightly
casually) for its space of multivectors.2

The mathematics of Clifford algebra has been studied sufficiently for all
immediate purposes in computer science, and good accounts exist (try
[197], chapter 1). The style of explanation in such accounts is often ‘per-
mutation of indices’ rather than ‘geometrically motivated construction’, a
consequence of its close (and, to mathematicians, interesting) relationship
to tensor algebra. Although this is somewhat off-putting at first, it does
give a clear indication to the computer scientist of how the basic operations
can be implemented efficiently, and how their syntax is defined independent
of any geometric semantics we might choose to impose later.

– ‘interior /exterior algebra’
In derivations in Clifford algebra, one often uses commutativity or anti-
commutativity of Clifford products. This occurs so often that it makes sense
to decompose the Clifford product of vectors into a symmetric and anti-
symmetric part under commutation, and use those as higher level ‘macros’
to develop higher level insights. There is an unambiguous and agreed-upon
choice for the anti-symmetric outer product ∧ which is defined by:

1. x ∧ u = 1
2 (xu+ u∗ x) for x ∈ V n, u ∈ C̀ n

2. ∧ is linear in both arguments, and associative.
(6.1)

2 It is a dilemma, when learning Clifford algebra, whether you should do algebras
of purely Euclidean spaces first (most intuitive!), or learn it in its full generality
from the start (most general!). In any case, a practitioner will have to learn
non-Euclidean Clifford algebras eventually, because the projective split (section
6.5) and the recent development of the homogeneous model of Euclidean space
(Chapter 2) show that non-Euclidean Clifford algebras are a very convenient
representation for computations on the geometry of purely Euclidean spaces!

6. Honing Geometric Algebra 131

(Here ·∗ denotes the main involution of C̀ n.) For the symmetric counterpart
there are two choices, the inner product ‘·’ or the contraction ‘c’, both
agreeing on vectors:

x · u = xcu = 1
2 (xu− u∗ x) for x ∈ V n, u ∈ C̀ n,

but differing in action on general multivectors (details later). In geometric
algebra as developed for physics [117], the inner product ‘·’ is used. We will
argue below why the contraction ‘c’ is preferable for computer science since
it gives a cleaner algebraic computational structure, without exceptions or
conditions to geometrically meaningful results.

– ‘projection algebra’
The fresh contribution of Clifford algebras to the way we compute in geome-
try is the treatment of composite geometrical objects (lines, planes, spheres)
as basic elements of computation. This leads to new geometric and com-
putational insights, and new methods, even for such basic constructions
as, say, the intersection of two lines (section 6.6). The main consequence
is that the use of geometric algebra makes our algorithms coordinate-free,
valid in or extendible to n-dimensional spaces, and fully specific on direc-
tion parity (which is useful for consistent treatment of inside/outside, a
notorious issue in computer graphics).
A k-dimensional subspace of a vector space V n is characterized by a blade
i, which is an outer product of k independent vectors in that subspace:

i = a1 ∧ a2 ∧ · · · ∧ ak, with ai ∈ V n. (6.2)

Such a multivector is called simple; its magnitude is the directed volume
spanned by the ai. The subspace spanned by i is denoted G(i). Eq.(6.2) ex-
plains the relevance of the outer product: it codifies ‘linear (in)dependence’
in an operational manner. The interaction of the non-invertible outer prod-
uct with the invertible Clifford product produces compact notation and
computation for algorithms involving orthogonality. For instance, the de-
termination of a vector of C̀ n perpendicular to the subspace G(i) is:

P⊥
i (x) ≡ (x ∧ i) i−1.

This leads to a compact and computable formulation of such algo-
rithms as ‘Gram-Schmidt orthogonalization’. Also, we can construct the
dual ã ≡ aI−1 of a simple multivector a within a subspace I , and interpret
it as the blade of the subspace perpendicular to a in G(I).
These constructions have very intuitive geometrical interpretations (see
figure 6.2); it is at this level that it becomes natural to call the Clifford
product a geometric product.

– ‘algebra of directions’
Closely related to the above, but often used more qualitatively, is the idea of
union and intersection of subspaces to produce higher or lower dimensional
subspaces. The operations that do this are known as the join and meet
operations. They are a precise extension of set union and set intersection

132 Leo Dorst

Fig. 6.2. The perpendicular component x⊥ of a vector x to a subspace character-
ized by a blade A: make the volume x ∧ A, straighten it in your mind (to view it
as geometric product), then factor out A by division – but beware that division is
not commutative, so compute it as x⊥ = (x ∧ A)A−1.

for directed subspaces; usually, they are treated modulo positive scalar
factors since blades signify a directed subspace modulo such a factor. We
will argue in section 6.6 that there is a quantitative structure to these
operations which is very useful in computations, since it determines how
well-conditioned the operations are (similar to the use of the condition
number of a matrix equation in numerical linear algebra) on the basis of
‘distance measures’ between the subspaces.
Join ∧̇ and meet ∨ of spaces are definable in terms of outer product and
the contraction (or the inner product):

a ∧̇ b = b ∧ a and a ∨i b = (ai−1)cb,

but their geometrical use involves some care, as we will see in section 6.6.
Hestenes [117] pg. 19 calls this use of geometric algebra an ‘algebra of
directions’, since the relationships between the blades implement the lattice
of k-dimensional directed subspaces of a vector space V n.

– geometric calculus
Differentiation operators in geometric algebra are associated with multi-
vectors; as a consequence, they have both properties of calculus and of
geometry [117, 64]. The geometrical properties need to obey the various
product rules sketched before for multivectors; so differentiation with re-
spect to a (multi)vector has commutation rules, decomposition rules, and
orthogonality properties that fit the above scheme. This leads to a powerful
calculus, which can usefully redo and extend the constructions of differen-
tial geometry. The popular differential forms, for instance, can be viewed
advantageously within the more general framework of geometric algebra.

– ‘split algebras’
The above gives the framework of basic techniques in geometric algebra.
This needs to be augmented by specific techniques for mapping the geo-
metric structure of an application to a properly identified algebra. This

6. Honing Geometric Algebra 133

is the modeling step, which is part of the application domain more than
of the algebraic mathematics. It is of course highly important to applied
computer science.
There is an important construction technique which brings some unifica-
tion in these various required embeddings: Hestenes’ split [114]. This is a
technique in which the geometric algebra of an (n+ k)-dimensional space
is used to model the geometry of an n-dimensional space V n. The split
explicitly relates multivectors in the two spaces. The advantage is that the
‘orthogonality algebra’ and ‘directed intersection algebra’ of C̀ n+k (which
were developed for homogeneous, because simple, multivectors), now can
describe the non-homogeneous quantities of projective and affine geometry
in V n (using a projective split) and of kinematics in V n (using a confor-
mal split) [114]. Mathematically, the split makes an n-dimensional vector
isomorphic to, say, an n+1-dimensional bivector. This is often denoted as
‘=’ in literature. We will see in section 6.5 that to actually use the split
in an implementation, it is more proper to be explicit about the mapping
relating the elements of the algebras C̀ n+k and C̀ n.

With these refinements of the monolithic term ‘geometric algebra’ into
various levels of meaning and associated operators, we can better state its
relevance to computer scientists needing to ‘do’ geometry.

Geometric algebra is a collection of computation rules and techniques
relevant to doing computations in models of the geometric aspects of
applications. Its structure contains several distinct but exactly re-
lated levels, each with its own syntax of operators, and an accompa-
nying interpretation. A specific application will probably need them
all; fortunately they are generic in their construction. It is thus ad-
vantageous to connect to this framework, both for unified theoretical
developments and for the actual software performing the calculations.

If our hopes come true, geometric algebra does away with the internal in-
terface problem between geometric computational modules (typically arising
when solving part of one’s application by techniques of linear algebra using
matrices, and then having to translate them to differential forms to treat
other aspects, all proceeded by the projective geometry of processing and
interpreting actual visual observations). It will replace all this with a com-
mon language in which all these specialized modules can communicate. and
in which algorithms can be specified and developed. The modeling problem
(‘which geometric model for which application’) remains, but the choices are
limited (one of the Clifford algebras), and can all be implemented in advance,
in a standard manner, with generic data structures. We can then focus on
what we need to compute in our applications, rather than on how to compute
it.

134 Leo Dorst

6.3 The Contraction: An Alternative Inner Product

The Clifford product is the unambiguous basis of all geometric algebra, and
from it are constructed derived products which are useful for ‘orthogonality
algebra’. Using such products, we would expect to prove lemmas which are
universally valid ‘total identities’, into which we can plug any element of
the geometric algebra. The currently used inner product of [117], however,
is riddled with lemmas containing conditions, mostly on the relative grade
of its operands. These problems were recognized (see [117] pg.20), but not
resolved until recently, when Lounesto [158] called attention to a different
way of introducing an inner-product-like operation into geometric algebra.
He calls this the contraction and denotes by ‘c’; his suggestion does not seem
to have been followed in the applied literature. Yet the contraction may be
a great improvement to geometric algebra, since it simplifies the algebraic
structure without sacrificing any of the geometric meaning – as will now be
shown.

Here is the definition. Assume that you have already defined the Clifford
product based on a bilinear form 〈, 〉 on vectors, and have based on that
the outer product, as in eq.(6.1): by means of what it does on vectors, and
demanding bilinearity and associativity. Now extend the bilinear form 〈 , 〉 to
arbitrary multivectors, as follows.

1. For scalars:

〈α, β〉 = αβ for α, β ∈ K. (6.3)

2. For two multivectors of the form a = a1 ∧ a2 ∧ · · · ∧ ak and
b = b1 ∧ b2 ∧ · · · ∧ b`:

〈a, b〉 =

{
det (〈ai,bj〉) if k = `
0 if k 6= `

(6.4)

Here (〈ai,bj〉) denotes the matrix of which the (i, j)-th element equals
〈ai,bj〉; its determinant is just used as a convenient shorthand for the
anti-symmetric construction of the bilinear form.

3. The bilinear form is to be linear in both arguments.

Note that this is symmetrical, i.e. 〈a, b〉 = 〈b, a〉. As a consequence of the
imposed orthogonality of this extended bilinear form, a set of equalities
〈x, a〉 = 〈b, a〉 for all a in (a basis of) C̀ n implies x = b.

With this bilinear form, define the contraction as adjoint to the outer
product:

〈ucv, w〉 ≡ 〈v, u† ∧ w〉 for all u, v, w ∈ C̀ n (6.5)

(where the reversion u† of u is used to absorb some inconvenient signs). Now
one can prove the following properties (see also [158]):

6. Honing Geometric Algebra 135

(a) αcβ = αβ, αcx = αx and xcα = 0, for x ∈ V n, α, β ∈ K

(b) xcy = 〈x,y〉 for x,y ∈ V n

(c) xc(u ∧ v) = (xcu) ∧ v + u∗ ∧ (xcv) for x ∈ V n, u, v ∈ C̀ n

(d) (u ∧ v)cw = uc(vcw), u, v, w ∈ C̀ n

Property (a) shows that a contraction involving scalars is not symmet-
ric, as opposed to their inner product for which [117] explicitly demands
α · x = x · α = 0. Property (b) shows that for vectors the contraction corre-
sponds with the inner product. Property (c) shows that it is like a derivation,
and the common inner product satisfies it as well. Property (d) is a duality
between outer product and contraction, valid for all multivectors; the cor-
responding statement for the inner product has much more limited validity
(more about this below).

These properties, together with linearity in both arguments, are sufficient
to compute the contraction of any two multivectors, more conveniently than
by the formal definition eq.(6.5). An important difference with the inner prod-
uct ‘·’ is that the contraction ‘c’ is not symmetric in its arguments (property
(a) is one example). This means that many of the useful constructions and
proofs of [117] which use the inner product need to be redone. When we do
so, we find that the asymmetrical conditions under which the proof worked
for the inner product (for instance on the relative grades of arguments) are
now elegantly absorbed in the contraction operator (outside the range of the
conditions on ·, the expression with c then automatically produces 0). Thus
the useful results from [117], ch.1 and its sequels are not only ‘rescued’, but
also expressed more concisely. And many results obtain an expanded range
of validity, due to the nice algebraic properties of the new inner product. We
give some examples.

Examples:

1. Duality statements. In [117](1-1.25b) we find for homogeneous multivec-
tors ar, bs, ct of grades r, s, t, respectively, the property:

ar · (bs · ct) = (ar ∧ bs) · ct for r + s ≤ t and r, s ≥ 0 (6.6)

With the contraction rather than the inner product, we can prove the
much stronger:

uc(vci) = (u ∧ v)ci, for u ∈ G(i), v arbitrary. (6.7)

Here u and v are general (not just homogeneous!) multivectors, i is a
blade (and therefore homogeneous), and the only condition is that u is in
the geometric algebra of the subspace with pseudoscalar i. Note that it is
permitted to have v in a space exceeding G(i); if it is, both sides are 0 and
hence still equal. Thus this structural property in ‘interior/exterior alge-
bra’, and the algebras built on it, has a much enlarged scope of validity.

136 Leo Dorst

Other duality statements from [117] generalize similarly, we will prove an
example in section 6.4.2. The most extreme is property (d) above (which
is similar to [117](1-2.17b), but now valid for all multivectors u, v, w).

2. Expansion of geometric products. In [117](1-1.63) we find for the ex-
pansion of a geometric product of a bivector B with a multivector u:

Bu = B · u+ 1
2 (Bu− uB) + B ∧ u if B = 〈B〉2 and 〈u〉1 = 0

Note the demand 〈u〉1 = 0: this formula does not work for vectors. So
we have an identity of which the validity depends on the grade of an
operand. In (subtle) contrast, using the contraction, we can prove:

Bu = Bcu+ 1
2 (Bu− uB) + B ∧ u if B = 〈B〉2,

a formula that is now valid for all u, since Bcu = 0 for the scalar and
vector parts of u. As before, the contraction operator automatically takes
care of the conditions. This formula is part of a series of expansion for-
mulas, for a scalar α, vector x and bivector B we get:

αu = αcu = α ∧ u, xu = xcu+ x ∧ u

Bu = Bcu+ 1
2 (Bu− uB) + B ∧ u.

Each higher order obtains one more term. In [117], the statement for
bivectors takes the exception stated above, while that for scalars reads
αu = α · u+ α ∧ u = α ∧ u since α · u = 0 by definition.

3. Continuing in In this manner, it is indeed possible to reproduce all ge-
ometric constructions from [117], chapter 1, using the contraction to re-
place the inner product. This demonstrates that the contraction can also
be used as a basis for a full geometric algebra.

In summary, an equally or more powerful structure is created by using c rather
than ·, in which known results are simultaneously generalized and more simply
expressible, without conditional exceptions. This cleaner algebraic structure
will lead to simpler geometric software, since no exception handling is re-
quired.3

6.4 The Design of Theorems and ‘Filters’

Since the contraction operator reduces conditions in expressions, it becomes
possible to develop a technique for designing ‘geometric filters’, i.e. expres-
sions in geometric algebra that perform certain desired tasks. Let us call

3 Moreover, the extended bilinear form permits us to repair some inelegancies in
the common definitions of basic concepts, such as the use of grade operators to
define elementary concepts like the norm of a multivector u by 〈u† u〉0. Having

defined the extended bilinear form we can simply define: |u|2 = 〈u, u〉; the same
in value, but arguably more elegant, requiring fewer operators.

6. Honing Geometric Algebra 137

this technique the ‘index set method’, since it designs the filters based on
which independent orthogonal basis vectors (characterized by indices) occur
in input and output of the filter. Such indices may get passed, they may
be cancelled, or they may lead to a zero result. For instance, in e1e2, both
indices 1 and 2 occur in the result; in e1e2e1 = −e2

1e2 = α e2, index 1 has
been absorbed in a scalar α; and in e1ce2, the combination of index 1 for the
first argument and index 2 for the second results in 0 (remember that the ei
are orthogonal). We denote the index set of a simple multivector a by I(a).
Despite the index-based nature of this procedure, linearity guarantees that
the final results are coordinate free, independent of the basis on which they
were derived.

Figure 6.3 and 6.4 present the different filters of two and three terms,
using only geometric product, outer product and contraction between terms
(some reduction of the full range was made using the symmetry of geometric
product and outer product on index sets).

ab

a b

1 1∅

a ∧ b

a b

1 10

acb

a b

0 1∅

Fig. 6.3. The index sets of the basic products. Notation: ‘ 1’ denotes that indices
in this subset appear in the result, ‘ 0’ denotes that indices appearing in this
set make the whole result 0, and ‘ ∅’ denotes that indices in this subset do not
appear in the result (but neither do they make the result zero).

6.4.1 Proving Theorems

We can prove identities and their conditions by the following method:

1. First assume that the arguments are simple multivectors.
2. Draw up the outcome diagrams of both sides (using figures 6.3 and 6.4

to compose them quickly).
3. Make a composite diagram retaining only those subsets in which no con-

flict exists between outcomes.
4. In the areas with outcome 0, the identity obviously (but rather trivially)

holds. Construct general simple multivectors for each of the arguments,
taking a representative from each non-zero area, taking care to satisfy

138 Leo Dorst

abc

a b

c

1 1∅

1

∅ ∅1

(a ∧ b)c

a b

c

1 10

1

∅ ∅0

(acb)c

a b

c

0 1∅

1

0 ∅1

(ab) ∧ c

a b

c

1 1∅

1

0 0
1

a ∧ b ∧ c

a b

c

1 10

1

0 0
0

(acb) ∧ c

a b

c

0 1∅

1

0 0
1

(ab)cc

a b

c

0 0∅

1

∅ ∅1

(a ∧ b)cc

a b

c

0 00

1

∅ ∅0

(acb)cc

a b

c

0 0∅

1

0 ∅1

ac(bc)

a b

c

0 1∅

1

∅ ∅0

ac(b ∧ c)

a b

c

0 1∅

1

∅ 0
0

Fig. 6.4. The complete catalog of different three-term products. Notation as in
figure 6.3.

6. Honing Geometric Algebra 139

the containment relationships of the diagram’s construction in step 3.
(Details below.)

5. Evaluate both sides of the identity for these sample multivectors. If it
holds the identity has been proven for all simple multivectors; if it does
not, this computation shows which scalar factor needs to be introduced.

6. For those arguments in which the identity is linear, extend it to general
multivectors, within the derived preconditions of step 3.

The method most clearly saves work in step 5, since the exceptional cases
messing up the computations have already been taken out in steps3 and 4.
This is best illustrated by an example.

6.4.2 Example: Proof of a Duality

Let us investigate the validity of the identity u ∧ (vw) = (ucv)w, a form of
duality between ∧ and c.
1. We focus first on the identity for simple multivectors a, b, c, so on the

identity a ∧ (bc) = (acb)c.
2. The diagrams for both sides of the possible identity can be gleaned from

the earlier figures as:

a ∧ (bc)

a b

c

1 10

1

0 ∅1

(acb)c

a b

c

0 1∅

1

0 ∅1

3. The composite diagram must contain the consistent parts of both. We
observe that the parts where I(a) 6⊆ I(c) are not consistent, and therefore
redraw the diagram to exclude this, noting the condition I(a) ⊆ I(c):

140 Leo Dorst

a ∧ (bc) = (acb)c

c b

a
6

1 0 1 ∅ 1

4. To establish the full identity, we now have to inspect the scalar fac-
tors. To do so, take a representative simple multi-vector in each of the
subsets of the diagram that do not lead to a zero result, to compose
a typical example. In our diagram this implies, for instance: a = ak,
b = a†kb`dn, c = akd

†
ncm, with ak = e1 · · · ek, b` = ek+1 · · · ek+`,

cm = ek+`+1 · · ·ek+`+m, dn = ek+`+m+1 · · · ek+`+m+n; the index of ak,
b`, cm, dn indicates the grade, and the components of each are orthogonal
basic vectors. The reversions in the expressions for b and c were merely
put in for convenience in the computations below; since they only involve
a scalar factor ±1 on both sides of the identity, this is permitted.

5. With these sample multivectors, we obtain:

a ∧ (bc) = ak ∧ (a†kb`dnakd
†
ncm)

= ak ∧ ((−1)kn(dnd
†
n)a†kb`akcm)

= (−1)k(n+`)(dnd
†
n)(a

†
kak)akb`cm,

and

(acb)c = (akc(a†kb`dn))akd†ncm = (aka
†
k)b`dnakd

†
ncm

= (−1)k(n+`)(aka
†
k)(dnd

†
n)akb`cm.

This establishes that the two results are indeed identical under the con-
dition found in step 3:

a ∧ (bc) = (acb)c if I(a) ⊆ I(c). (6.8)

6. The two sides in eq.(6.8) are linear in all arguments. The precondition
assumes that all indices in I(a) are in I(c). The simplest linear extension
is obtained by keeping c simple, making it in effect the pseudoscalar
i of the space in which a and its linear extensions u reside. Then the
precondition I(a) ⊆ I(c) extends to u ∈ G(i). Thus we have proved an
identity for two general multivectors u and v and a pseudoscalar i of the
u-space:

u ∧ (v i) = (ucv)i if u ∈ G(i) (6.9)

6. Honing Geometric Algebra 141

By carefully keeping track of indices, further extensions of the result for
simple multivectors may be possible, but they are hard to phrase and are
less useful because of that.

It should be clear that we can use the method also to come up with new the-
orems – this now becomes a routine exercise for any practitioner of geometric
algebra (as it should be).

6.4.3 Filter Design to Specification

Since ‘filters’ are merely ‘useful expressions’, their method of design is very
similar:

1. Focus first on simple multivectors.
2. Specify the desired outcome set in terms of a diagram.
3. Identify this diagram in an exhaustive table of outcomes (such as figure

6.3 or 6.4). It may be a sub-diagram of an entry.
4. Identify the conditions on the arguments that select this (sub-)diagram.
5. These conditions, applied to the equation defining the diagram, give the

desired ‘filter’ expression.

6.4.4 Example: The Design of the Meet Operation

We illustrate the design of the important directed intersection operator in the
‘algebra of directions’.

1. The desired outcome of the intersection on two index sets I(a) and I(b)
is that indices ‘pass’ when they are in the intersection of the index sets,
are indifferent when in either of them, and zero outside. This is thus:

a b
∅ ∅1

0

2. Such a filter cannot be made by simply combining the two index sets;
all possibilities of that were indicated in figure 6.3, and it is not among

142 Leo Dorst

them. Thus we look in the three-argument filters of figure 6.4. We find
the desired possibility as a subset of the diagram of (ab)cc:

(ab)cc

a b

c

0 0∅

1

∅ ∅1

b↔ c
−→

(ac)cb

a b

c

0 1∅

0

∅ ∅1

(We interchanged the dummy filter parameters b and c, to make the
parameters and diagram correspond with our choice under step 1.)

3. From this diagram, we produce the desired result by demanding:
I(a) ⊆ I(c) and I(b) ⊆ I(c). So c must contain both a and b in this
sense; the simplest is if c is a pseudoscalar for the space containing both
a and c. The new diagram is:

(ai)cb

a b

i

∅ ∅1

0

4. This shows that a non-trivial result (i.e. non-zero) is only achieved when
i is a pseudoscalar of the smallest space containing both a and b. Then
(ai)cb is a pseudoscalar for the subspace common to G1(a) and G1(b),
since it contains only indices from I(a) ∩ I(b).

The operation we have constructed in this example is proportional to the
meet of subspaces, conventionally defined by a ∨i b = (ai−1)cb (which differs

6. Honing Geometric Algebra 143

by an admissible scalar sign from our filter); more about this, its geometrical
interpretations and the importance of scalar factors in section 6.6.

6.5 Splitting Algebras Explicitly

As we stated in section 6.2, ‘splitting’ is a generic operation that helps in
translating geometrical structures in an application to an appropriate Clifford
algebra. A split is based on the following fact: the space of k-vectors in a
Clifford algebra C̀ n contains (nk) elements. The identity�

n+ 1
k � =

�
n

k − 1 � +

�
n
k � (6.10)

suggests that k-vectors of the Clifford algebra C̀ n+1 could be mapped onto
(k − 1)-vectors and k-vectors in the algebra C̀ n. We can indeed make this
explicit. An important example is the split of a k-vector a of C̀ n+1 relative
to a fixed vector e0 in C̀ n+1, which can be considered as a decomposition
according to the identity:

a = e−1
0 ∧ (e0ca) + e−1

0 c(e0 ∧ a). (6.11)

In this equation, e0ca is a (k − 1) vector in C̀ n+1, which is moreover con-
strained to the n-dimensional subspace G(ẽ0), perpendicular to e0 (Proof:
e0c(e0ca) = (e0∧e0)ca = 0ca = 0). The second term e−1

0 c(e0∧a) is a k-vector
in this same subspace (Proof: e0c(e−1

0 c(e0 ∧ a)) = (e0 ∧ e−1
0)c(e0 ∧ a) = 0).

Thus if we identify this subspace with the vector space generating the lower-
dimensional Clifford algebra C̀ n, then we have explicitly constructed a map-
ping from C̀ n+1 onto C̀ n. We follow custom in denoting the elements of C̀ n or
its isomorphic subspace in bold font, the other elements of C̀ n+1 in normal
math font.

Doing the split for k = 1, we see that a vector x of C̀ n+1 corresponds to
a vector x in C̀ n of the form e−1

0 c(e0 ∧x)/α, with α a scalar or scalar-valued
function.4 This gives, conversely:

x = (e−1
0 cx)e0 + αx = x0e0 + αx (6.12)

(defining x0 ≡ e−1
0 cx). By choosing different α, we can implement different

splits. A particularly useful way is the projective split obtained by setting
α = x0 = e−1

0 cx. This gives:

x = x0(e0 + x) and x = e−1
0 c(e0 ∧ x

e−1
0 cx) = e0c(

e0 ∧ x
e0cx

). (6.13)

4 There is a second way to embed vectors, using k = 2: out of x, construct a
bivector e−1

0 ∧x, then map that according to the first term of eq.(6.11) as e0c(e−1
0 ∧

x). The result is equal to e−1
0 c(e0 ∧ x), and thus the same; this second way may

to be more indirect, but it is actually sounder algebraically, see [114].

144 Leo Dorst

In the projective split, any x representing a vector x can thus be written as
a member of a 1-scalar-parameter family of representatives, namely as some
scalar multiple of the vector e0 + x. It is called ‘projective’ since it is useful
in doing projective geometry (see [114]), but it has other uses too. For some
of those, we must perform the projective split embedding in a canonical way,
representing x by x = e0 + x, taking the arbitrary constant x0 in eq.(6.13)
equal to 1; since x0 = e0

−1cx, we can view this as an embedding to the
hyperplane e0

−1cx = 1 in C̀ n+1. For some other embeddings, we require
normalization of higher-order blades.

The basic usefulness of the projective split is that the embedding of C̀ n

into C̀ n+1 simplifies computations on non-homogeneous affine subspaces.
Take, for instance, the equation for the set of points on a directed line from
p to q in V n of C̀ n. This set is

{x ∈ V n | (x − p) ∧ (q − p) = 0}. (6.14)

(for this is the set of all points x such that x − p and q − p have the same
direction). Under the projective split, this set is represented by the bivector
` = p ∧ q (with p ≡ p0(e0 + p) and q ≡ q0(e0 + q) the representations of p
and q, respectively), in the sense that x is on the line iff its representative x
is in the space of this pseudoscalar `:

(x − p) ∧ (q − p) = 0 ⇐⇒ x ∧ (p ∧ q) = 0, (6.15)

as is easily verified. This result extends to higher order affine linear subspaces:
they are simple multivectors of C̀ n+1, to be interpreted by the projective
split. It generalizes the ‘trick’ of homogeneous coordinates (well-known in
applied linear algebra) from mere vectors to all of the higher-dimensional
subspaces. A further extension has been achieved recently, see the Chapter 2
on generalized homogeneous coordinates.

In the literature on projective splits (such as [114, 185]), the actual em-
bedding is hidden in isomorphisms stating the equivalence of certain bivectors
in C̀ n+1 and vectors in C̀ n. As a consequence, the grades of the various ele-
ments get confusing (a bivector can be ‘equal’ to a vector!), and the operation
∧ acquires a meaning which subtly changes with the operands (if you write
x = e0 ∧ x and y = e0 ∧ y, then formally x ∧ y = 0 for any x, y!). The
above shows that there is no need for this: we can make the mappings totally
explicit. The resulting cleaner algebraic structure leads to cleaner software.5

5 This corresponds in spirit to Stolfi’s careful treatment of the implementation of
oriented projective geometry [227]. He also recommends the introduction of a 0
for every grade k (denoted 0k), to make all theorems on grades universally valid.

6. Honing Geometric Algebra 145

6.6 The Rich Semantics of the Meet Operation

We are now ready to discuss the meet operation from the ‘algebra of direc-
tions’ in more detail, and to apply it to the intersection of directed affine
linear subspaces by combining it with the projective split interpretation.

In literature, the meet is often treated as a ‘qualitative’ operation. The
reason is probably that its most useful application is when a and b in a ∨i b
are blades, and that these in turn have their most useful application when
they are considered the representatives of affine subspaces in the projective
split. Since the projective split contains an arbitrary scalar for the embed-
ding (such as x0 in eq.(6.13)), this then leads one to neglect all scalar factors
(or, when done more carefully, all positive scalar factors) [185]. This qualita-
tive approach, however, is also necessarily binary: subspaces either intersect
or they don’t, and there is no measure of the relevance of the intersection.
This is a problem in applications where geometrical data has an associated
uncertainty. For instance, when intersecting two observed planes that are al-
most co-directional, the location of the intersecting line is ill-determined and
this should be expressed in the error margin; it may even require the ob-
served planes to be considered as two observations of the same plane, making
the intersection line physically meaningless. We thus need a way to express
‘intersection strength’ as well as the intersection result.

Traditionally, the ‘meet’ operation is just taken as providing the intersec-
tion subspace, and not the intersection strength. We now show that it can
give both, with the magnitude of the meet giving such diverse measures of
intersection strength as the distance measure between subspaces (known from
numerical linear algebra), and even (in the explicit projective split interpre-
tation of subspaces of C̀ n+1) the Euclidean distance between non-intersecting
affine subspaces in C̀ n!

6.6.1 Meeting Blades

We first need to understand the meet in more detail, especially being more
careful about scalar factors (including signs) than is common in literature.

For blades a and b, the meet a ∨i b is a blade of their intersection, with
a sign and magnitude that depends on those of a, b and i. For the standard
definition a∨i b ≡ (ai−1)cb, involving the inverse of the pseudoscalar, this is
as follows.

Let a and b be simple multivectors with a common factor c. Then
defining i through:

i = (b c−1) ∧ c ∧ (c−1a) (6.16)

we have:

a ∨i b = c (6.17)

146 Leo Dorst

(The proof is straightforward using the methods of section 6.4.1; the use of
i−1 in the meet causes the somewhat unfortunate reversion of the arguments
in the definition of i.)6 Note that there is no such thing as ‘the’ meet of
a and b; replacing c by −c gives an opposite sign. It is therefore necessary
always to denote the pseudoscalar relative to which the meet is taken, and
any suggestion that it can be omitted or defined objectively from a and b
(such as found in [185]) is wrong.

There is less confusion about the join ∧̇ of two spaces, an operation that
is used to give a blade for the common subspace spanned by two blades a
and b. If a and b have no common factors (so the corresponding subspaces
have only the element 0 in common), then the join is given by:

a ∧̇ b = b ∧ a (6.18)

(the reversal of the arguments is done to prevent stray signs when using this
in combination with the meet, and is again due to the use of i−1 in the
definition of the meet.) The join is then a directed union of the subspaces.

If a and b do have a common subspace, then an objective definition of
their join can not be given ([118],pg.34): there is an ambiguity of sign which
can not be resolved explicitly, as in the case of the meet (see [227] for a
clear explanation of this counterintuitive issue). Thus a directed union can
then not exist, and eq.(6.18) correctly yields 0 (the only blade representing
a non-directed subspace).

For readers familiar with the wonderfully illustrated book on oriented
projective geometry by Stolfi [227], note that his meet (denoted there by ∧i,
presumably following [14]) differs from the above standard definition in geo-
metric algebra. He defines it [227] pg. 50 (modulo a positive scalar) through
equations which in our notation would effectively read:

a ∧i b = c ⇐⇒ i = (ac−1) ∧ c ∧ (c−1b) (6.19)

Thus Stolfi’s meet a ∧i b is identical to our meet b ∨i a (same i!) – and
similarly, his join a ∨ b is identical to our join b ∧̇ a. His delightful graphic
constructions are therefore applicable to the ‘algebra of directions’ with a
simple interchange of the operands.

6.6.2 Meets of Affine Subspaces

Affinely translated subspaces of C̀ n are represented by blades of C̀ n+1 under
the projective split; the meet of these blades can then be interpreted in terms
of quantities of C̀ n as signifying the directed intersection of affine subspaces.

When we compute the meet of two non-homogeneous linear subspaces of
a space G(i), represented as a = (e0 + a) ∧A and b = (e0 + b) ∧B of G(e0i)

6 The above can be used to correct an error in Pappas [185], who uses a
pseudoscalar and decomposition that should have made his meet equal to

(−1)grade(A′)(grade(C)+grade(B′))C−1 rather than C, in his notation.

6. Honing Geometric Algebra 147

Fig. 6.5. The directed inter-
section of two lines in � 2

in the homogeneous projective split representation (so A and B are blades
indicating the tangents, and a and b are translational offsets to create the
affine subspaces parallel to these), we obtain:

a ∨e0i b
=
(
((e0 + a) ∧ A)i−1e0

−1
)
c ((e0 + b) ∧ B)

= (e0Ai−1e0
−1)c(e0B + b ∧B) +

(
(a ∧ A)i−1e0

−1
)
c(e0B + b ∧ B)

= (A∗i∗−1)c(e0B + b ∧ B) +
(
(a ∧A)i−1

)
cB

= −e0(A∗ ∨i∗ B) + (A∗ ∨i∗ (b ∧ B) + (a ∧A) ∨i B)

=
(
e0 + (A∗ ∨i∗ (b ∧ B) + (a ∧ A) ∨i B) (−A∗ ∨i∗ B)

−1
)

∧(−A∗ ∨i∗ B),

where the last step assumes that (A∗ ∨i∗ B) is invertible; which is the case
if i is at most a pseudoscalar for the smallest common subspace of A and B.
Under this condition, the projective split interpretation of the result of the
meet is thus an affine subspace with tangent (−A∗ ∨i∗ B), translated over

the position vector (A∗ ∨i∗ (b ∧B) + (a ∧ A) ∨i B) (−A∗ ∨i∗ B)
−1

.

Example: The directed intersection of two lines in R2: ` = e0∧a+A
and m = e0 ∧ b + B in the projective split representation, see figure
6.5. We compute, with i taken as a pseudoscalar for R2:

p = ` ∨e0i m = −e0(ã∗cb) + ã∗cB + Ãcb
= e0(bcã) − (ã ∧ B̃)i + Ãb

= e0(b ∧ a)
∼ − B̃a + Ãb.

Since (b ∧ a)∼ is scalar, this corresponds to the intersection point:

p =
B̃

(a ∧ b)
∼ a +

Ã

(b ∧ a)
∼ b

if (b ∧ a)∼ is non-zero. Figure 6.5 graphically demonstrates the cor-

148 Leo Dorst

rectness of this result: a and b are weighted by ratios of areas.

The geometric algebra framework validates the intersection results in any
dimension, and in a computational representation that does not require ex-
ceptional data structures: points, lines, planes, etcetera are all admissible
outcomes.

6.6.3 Scalar Meets Yield Distances between Subspaces

We have seen in eq.(6.17) that the meet a ∨i b normally gives a blade as its
result, and that this is interpretable as the space of intersection of a and
b. There is also an interpretation when the result of the meet is a scalar.
The subspaces then intersect in the origin only; i.e. they are complementary
in the smallest common space (with pseudoscalar i), though not necessarily
orthogonal. When the meet is a scalar, we can rewrite it as:

a ∨i b = ãcb = 〈ãcb, 1〉 = 〈b, ã∗〉 = 〈ã∗, b〉 = 〈ã, b∗〉 = 〈bcã, 1〉 = bcã
= (b ∧ a)∼,

Thus in such a case, the meet equals the volume of the commonly spanned
space, relative to the standard pseudoscalar i. This is a useful measure if we
take all blades involved (a, b and i) to be unit blades. Then the meet varies
continuously from 1 to −1, and is zero when the two subspaces have some
subspace in common (they do not necessarily coincide: any common factor
in a and b makes b∧ a equal to zero). We can interpret the values ±1 as: the
subspaces are orthogonal in the embedding space G1(i). The magnitude of a
scalar meet of unit blades is thus a measure for the ‘parallelism’ of the spaces
they represent.

Example: Consider two vectors x and y in R2 with pseudoscalar i.
Then x∨i y = (y ∧ x)∼ = (−|y| |x| i sinφ) i−1 = |x| |y| sinφ, with φ
the angle from x to y in i. If both are unit vectors this yields sinφ.
Thus the meet has the largest absolute value, 1, when x and y are
orthogonal (with +1 when y is in the positive direction from x, so
y = xi, and −1 for the opposite direction), and goes continuously to
zero when x and y become more and more parallel.

In linear algebra, a commonly used distance measure between subspaces is the
sine of the angle between them, see e.g. [96]. It can be shown by generalization
from the 1-dimensional example above that this is indeed what (b ∧ a)∼ is,
for unit a, b and i. Thus the meet contains this common practice in numerical
linear algebra, casting an interesting light on its essential nature.

6.6.4 The Euclidean Distance between Affine Subspaces

If we are in a projective split representation, a and b in C̀ n+1 represent affinely
translated linear subspaces of C̀ n. If these subspaces are complementary in
C̀ n+1 as in the previous section, then their meet is scalar; this complemen-

6. Honing Geometric Algebra 149

Fig. 6.6. The Euclidean distance between two affine subspaces in � n whose ranks
add to n+ 1.

tarity means their ranks in C̀ n add up to n + 1. For two such spaces (a
point and a line in 2-D, two lines in 3-D) we can define their (directed) dis-
tance in C̀ n as the length of the (directed) mutual perpendicular connecting
them. This turns out to be proportional to the meet of their projective split
representatives!

Let us write the affine subspace represented by the blade a as the transla-
tion by a vector a of a subspace with unit blade A, i.e. the
set {(x − a) ∧ A = 0}. Its canonical projective split representation is
a = (e0 + a) ∧ A, and similarly for b we have b = (e0 + b) ∧ B. Let i be
the unit pseudoscalar of C̀ n, and I = e0i the pseudoscalar for C̀ n+1 (note
the order!). Then with the assumed complementarity of a and b in I , their
meet relative to I is:

a ∨I b = (b ∧ a)I−1 = ((e0 + b) ∧ B ∧ (e0 + a) ∧ A)I−1

= (e0 ∧ B ∧ a ∧ A + b ∧ B ∧ e0 ∧ A)I−1

= e0(B ∧ a ∧A −B ∧ b ∧A)I−1

= (B ∧ a ∧A −B ∧ b ∧ A)i−1 (6.20)

This is a quantity that is entirely computable in C̀ n. It is proportional to the
orthogonal directed Euclidean distance between the two subspaces represented
by a and b, by a proportionality factor of (B∧A)i−1 (which is the ‘distance’
between the directional elements in the sense of section 6.6.3). This is depicted
in figure 6.6: the expression in brackets is a difference of two volumes in i-
space, which can be viewed as being spanned by B, A and a vector in the
direction of their perpendicular connection; the difference relative to i is the
directed length of this vector.

We thus find yet another classical distance measure embedded in the
intersection operation of geometric algebra. Note that eq.(6.20) is valid in

150 Leo Dorst

any finite-dimensional space, and coordinate free. It is thus well-suited for
implementation in a generic geometric software package!

6.7 The Use and Interpretation of Geometric Algebra

The meet was designed as a straightforward ‘directed intersection operation’
for geometric algebra in section 6.6. The examples show that it has a seman-
tics that depends on the modeling step which translates an application to
appropriate geometric algebra. This is an instance of an important principle:
there is no unique interpretation of Clifford algebra or geometric algebra.7

This is not a weakness of geometric algebra, but rather a sign of its
strength: a limited number of generic constructions in the mathematically
consistent theory of geometric algebra suffices to implement what used to
be seen as disparate geometrical tricks in different applications. If you view
geometric algebra as giving an exhaustive library of advanced computational
techniques, then once you have made the mapping between your applica-
tion and geometric algebra, the meaning of these techniques is automatic,
and gives a complete set of internally consistent operators in the applica-
tion. This seeming restriction will prevent you from going astray (not just
anything is permitted) and can help to inspire you (since it gives advanced
and consistent constructive techniques). Also, since these can be defined in
generic terms of Clifford algebra, they need only be implemented once – the
only responsibility of the practicing computer scientist is then the explicit im-
plementation of the mapping between the application and this generic body.
After that, computations are automatic.

Having said that, we need to show that the library of techniques in ge-
ometric algebra is indeed sufficient for such purposes, and extend it where
possible. The challenge is not necessarily to do new things using geometric
algebra (though that is always nice!), but rather to show that a single frame-
work encompasses all previously known results, and does so compactly. To
mathematicians, this may not be a very exciting task; to computer scientists
and physicists, its completion would be immensely gratifying. It would give
us a box of integrated geometrical power tools which we could use to perceive,
describe and direct objects in the world without being hampered by interface
problems between incompatible sets of mathematical instruments (as we now
so often are).

7 Hestenes frequently points out that the use of a bilinear form in the Clifford
algebra does not automatically imply that it only applies to metric spaces: it all
depends on how you use it.

6. Honing Geometric Algebra 151

6.8 Geometrical Models of Multivectors

We have seen how we could understand some of the formulas coming out of
our ‘meet’ computations by drawing a picture of the situation, and repre-
senting the multivectors involved by directed lines, directed areas, directed
volumes, etc. Once you have done this for a while, you will find that this tends
to reverse: the pictures soon become a natural construction tool for the design
of formulas and algorithms. Unfortunately, few authors using geometric al-
gebra appear to find a need for such pictorial explanations and constructions
(an exception is [116]). Why? Any explanation of a powerful framework for
‘doing geometry’ that does not contain pictures must be less than convincing
to the intended audience! In my experience, pictorial constructions such as
figure 6.2 immediately instill a desire to learn more about geometric algebra
in an audience of novices, and they are therefore immensely helpful.

It may indeed be possible to give a proper grammar for the construction
of these pictures, which would turn this into a sound design procedure, and
one that could be taught to the graphically inclined. There is some work to be
done, though, to find a proper pictorial model: are vectors better viewed as
emanating from the origin (i.e. as positions), or should we treat them as ‘free
vectors’ (i.e. as directions)? Should we represent a bivector as a reshapable
homogeneous plane element of a certain magnitude (as in [159]) or as a stack
of planes with a stacking density (as in [175])? Do the answers depend on the
‘model’ of the geometry we are using (e.g. the ‘free vector’ image for affine
directions, the ‘fixed vectors’ for their projective split representation)?

Whatever the answers, they are worth some research: the use of picto-
rial representations by proponents of differential forms (e.g. [175]) has helped
them in ‘spreading the faith’, since the pictures effectively convey the in-
tuition behind the computations and instill confidence in their consistency.
Geometric algebra and geometric calculus could and should use a similar
route to speedy introduction to a wider audience.

6.9 Conclusions

Clifford algebra is not useful by itself; it is just a consistent mathematical
structure. Its surprising power comes from the discovery that this structure
can be used to represent very many geometrical phenomena; indeed, maybe
even all of geometry. It does so in geometric algebra which reorganizes the
structure of Clifford algebra at various levels, guided by geometrical signifi-
cance (see figure 6.1). This provides a framework that is immediately com-
putational, rather than an arcane abstraction (not to be confused with al-
gebraic geometry!). This has clear advantages: it unites geometry, and this
is very important to the computer sciences, for a unified framework mini-
mizes conversion between modules. It also gives a richer conceptual structure

152 Leo Dorst

to design geometric algorithms, mainly since we do not need to express ev-
erything in terms of vectors (or, worse, coordinates) before we can make it
computable. This makes advanced geometrical techniques more accessible to
non-geometers.

In this contribution I argued that the user-oriented development of geo-
metric algebra requires some new approaches, or changes in emphasis:

– it is insightful to the novice to convey explicitly the ordering of geometric
ideas involved in turning Clifford algebra into geometric algebra (section
6.2);

– the algebraic structure of geometric algebra should be cleaned up to make
operators operand-independent; we demonstrated this principle in the sub-
stitution of the contraction for the inner product (section 6.3), and in the
totally explicit formulation of the mapping implementing the projective
split isomorphism (section 6.5)

– we need a convenient design strategy to construct geometric ‘filters’ tuned
to specific purposes, empowering the users to develop their own ‘theory’ as
needed (section 6.4);

– we need to map traditionally useful concepts to their counterparts in ge-
ometrical algebra; and conversely, we should interpret the basic operators
in geometric algebra in classical terms (section 6.6)

– it would be helpful to have a standardized pictorial representation of the
basic concepts (section 6.8)

A lot of the work that has been done in geometric algebra is immediately
relevant to these goals; notably the work of Hestenes and his followers, who
have focussed on spreading the faith among physicists and mathematicians.
Similar work now needs to be undertaken to promote its application to the
geometrical issues in such computer sciences as vision, graphics and robotics.

Part II

Algebraic Embedding of Signal Theory and

Neural Computation

7. Spatial–Color Clifford Algebras for

Invariant Image Recognition∗

Ekaterina Rundblad-Labunets and Valeri Labunets

Signal Processing Laboratory, Tampere University of Technology

7.1 Introduction

One of the main and interesting problems of information science is the
clarification of how human eyes and brain recognize objects of the real world.
Practice shows that they successfully cope with the problem of recognizing
objects at different locations, of different views and illumination, and in dif-
ferent orders of blurring. But how is this done by the brain? How do we
see? How do we recognize constantly moving and changing objects of the
surrounding world?

The phenomenon of moving objects recognition is as obvious as incom-
prehensible because moving objects are fixed in the retina in the form of a
sequence of images each of which in its own right does not permit to conclude
on the true shape of an object. But it is beyond question that this sequen-
tial set of images appearing in the retina must contain something constant,
thanks to which we see and realize the object as something constant. This
”something” constant is called invariant [3], [4]. An old problem in pattern
recognition is how to achieve various kinds of invariances. In order that an
artifical pattern recognition system performs in the same way as any biolog-
ical sensory systems does, the recognition result, to a limited extent at least,

∗ This work was supperted by INTAS, grant no. INTAS–94–708, and RFFR–
98/99–01–0002.

156 Ekaterina Rundblad-Labunets, Valeri Labunets

should be invariant with respect to various transformation groups of the pat-
terns such as translation, rotation, size variation, and change in illumination.

This chapter describes new methods of image recognition based on
algebraic–geometrical theory of invariants. Changes in the surrounding world
which cause object shape transformations (e.g. translation, rotation, reflec-
tion, scaling, etc.) can be treated as the action of some Clifford numbers in
image space, appearing in the eye’s retina. The sequential development of this
idea may emphasize the number–theoretical approach to recognition. But it
can also be considered as a purely geometrical approach.

In 1872 F. Klein delivered his famous lecture ”Comparative Review of
the Modern Geometrical Researches,” known as the ”Erlangen Program”
now. In this lecture, geometry of any specific form is connected with a group
and vice versa. From this point of view, any number–theoretical research
on recognition methods can be considered as devoted to the study of the
visual space geometry. This visual space differs from the usual Euclidean–
Newtonean physical space by its properties.

We adopt the philosophy that geometry is the basis for computer vision,
and agree with F. Klein on his Erlangen program that geometry is the study
of those properties of objects that remain invariant under particular groups
of transformations. Klein’s idea proved to be fruitful not only in mathemat-
ics but also in modern physics. For example, space–time physics may be
regarded as the Minkowski geometry corresponding to the group of Lorentz
transformations which made Einstein consider at one time the name ”Invari-
antentheorie” for his special theory of relativity.

In the ”geometrical” direction [94], [95] of pattern recognition theory,
ideas of applying different non–Euclidean geometries for simulation and ex-
planation of structural properties of a hypothetical visual space have long
been stated (see review on this problem in [130]). But nothing was done
to check the applicability of pseudo–Euclidean geometry and the problem
remained open till the works of R. Luneburg [160], [161] published in 1947–
1950. In these papers the idea is stated for the first time that the visual space
of a human being is characterized by Lobatchevsky geometry. In essence, the
author states a ”perceptual theory of relativity” unifying the perceived space
and time similarly to physical space–time as a whole analogously to the phys-
ical space–time in Einstein’s special theory of relativity.

This chapter is devoted to the elaboration of new methods of image invari-
ant recognition in Euclidean and non–Euclidean 2-D, 3-D and n–dimensional
spaces, based on the theory of Clifford hypercomplex numbers that allow the
calculation of efficient algorithms of computing moments and invariants. We
will give special emphasis to the representation problem of color images.

7. Spatial–Color Clifford Algebras 157

7.2 Groups of Transformations and Invariants

Variants and invariants are intrinsic in any change of the surrounding world.
Variant is something that changes under any transformation while invariant
is something that stays invariable in such case. Invariants and variants exist
so far as the transformations of the surrounding world exist. Such changes in
the surrounding world as object shape transformations (e.g. by translation,
rotation, reflection, dilation, etc.) can be treated as actions of some trans-
formation group in image space. The theory of continuous transformation
groups developed by the great Norwegian mathematician Sofus Lie is the
adequate mathematical method for the description of such changes. Let

x′1 = g1(x1, x2, . . . , xn; a1, a2, . . . , ar),
x′2 = g2(x1, x2, . . . , xn; a1, a2, . . . , ar),

...
x′n = gn(x1, x2, . . . , xn; a1, a2, . . . , ar),

(7.1)

or more briefly x′ = g(x, a) := g(a) ◦ x, some continuous one–to–one trans-
formation of the n–dimensional vector space Rn, where x := (x1, . . . , xn) ∈
Rn and a := (a1, . . . , ar) ∈ Rr is a vector of r parameters.

Definition 7.2.1. The family (7.1) of transformations Gn
r = {g(a) | a ∈

Rr} forms an r–parameter group of transformations, if the following condi-
tions are fulfilled:

1) Together with every transformation g(a) the inverse transformation
g−1(a) belongs to the family Gn

r .
2) The identity transformation belongs to the family Gn

r .
3) The sequential action of two transformations of the form (7.1) is some

transformation of the same family: x′ = g(x, a), x′′ = g(x′,b) =
g(g(x, a)b) = g(x, c); c = ϕ(a,b). Using other notation:

x′ = g(a) ◦ x, x′′ = g(b) ◦ (g(a) ◦ x) = g(c) ◦ x; c = ϕ(a,b).

Here, ϕ(a,b) = ϕ(a1, . . . , ar; b1, . . . , br) are r fixed functions specifying
a rule of the multiplication in every group.

Multiple examples of transformation groups were also known before Sofus
Lie, but he was the first one to give a general definition of an abstract group.

7.3 Pattern Recognition

Let Rn be an n–dimensional vector space over R and f(x) an arbitrary n–D
image. Let some group Gn

r of transformations g(a) : Rn −→ Rn act on Rn.
Under the action of the transformation g(a) the image f(x) will be mapped
onto the new image f(g(a) ◦ x).

158 Ekaterina Rundblad-Labunets, Valeri Labunets

The notion of an invariant is one of the most general and important in
mathematics together with the notions of numbers, sets, functions, transfor-
mations, etc. The term invariant stands for everything that stays unchanged
for some transformations of the considered mathematical objects, being con-
nected with them in definite way.

F{f(x)} - mρF{f(x)}
mρ?

f(x) - f(g(a) ◦ x)

g(a) ◦ x

?

FF

Fig. 7.1. Transformation of relative invariants with respect to the group Gn
r

Definition 7.3.1. The scalar–valued functional J = F {f(x)} is called the
classical relative invariant with the weight ρ of the image f(x) with respect
to the group Gn

r if the following is true

J = F {f(g(a) ◦ x)} = mρF {f(x)}

for every transformation g(a) ∈ Gn
r , where m = Jcob(g(a)) is the Jacobian

of the transformation g(a) (see fig. 7.1). If m = 0, then J is called the abso-
lute invariant and is denoted as I. The factor mρ is called the multiplicator.

The problem of invariant pattern recognition is formulated as follows.

Definition 7.3.2. We will say that two images f(x) and f ′(x) have the
”Gn

r –equivalent shape” if there exists such an element g ∈ Gn
r that f ′(x) =

f(g ◦ x).

The relation ”Gn
r –equivalent shape” defines an equivalence relation on the

space of all images.

Definition 7.3.3. The set all images having the ”Gn
r –equivalent shape” is

called an equivalence class.

Let the set of T images {fi(x) | i = 1, 2, . . . , T} be given, which will be
called templates, and let the group G of their transformations be known.

7. Spatial–Color Clifford Algebras 159

Definition 7.3.4. For an image fi(x) we define the set (equivalence class)
Oi, containing all ”Gn

r –equivalent shape” images, which can be obtained from
the template fi(x) under the action of the transformations g ∈ Gn

r :

Oi = {fi(g ◦ x) | ∀g ∈ Gn
r }, i = 1, 2, . . . , T.

The set Oi is called the orbit of the template image fi(x).

A basic pattern recognition problem is to find an index i0 ∈ {1, 2, . . . , T}
so that the current image f c(x) ∈ Oi0 .

Definition 7.3.5. The set of functionals Ik [f(x)] is called the complete sys-
tem of invariants, if every functional is constant on the orbit:

Ik(fi(g◦x) = Ik(fi(x)), ∀g ∈ G, ∀i = 1, . . . , T , ∀k = 1, . . . ,∞
and has different values on at least two different orbits ∀k , i, j (Ik(Oi) 6=
Ik(Oj)).

The property completeness of an invariant system means that all func-
tionals together can ”distinguish” between all orbits.

Let V :=
{
I := (I1, I2, . . . , IK , IK+1, . . .)

∣∣ Ik := Ik(f(x))} be the set of
functional independent invariants and let VK be the subset of V consisting
of K–tuples IK := (I1, I2, . . . , IK) : VK :=

{
IK := (I1, I2, . . . , IK) | Ik =

Ik(f(x))}. If on the V we introduce the metric d[I, I′] =
∑∞

k=1 | Ik−I
′

k |, then
V and VK are transformed into metric spaces. Let δ(K) :=

∑∞
k=K+1 |Ik |.

Definition 7.3.6. A set S(I0, δ(K)) := {I | d[I0, I] ≤ δ(K)} is called the
sphere of radius δ(K) with the center I0.

Technical devices may evaluate a finite number of K invariants. These define
a radius δ(K) of its representing sphere Si(δ(K)) ⊂ V. The problem of
pattern recognition in this case can be solved only if spheres do not intersect
pair-wise, i.e. Si(δ(K)) ∩ Sj(δ(K)) = ∅, i, j = 1, 2, . . . , T.

In the classical methods the problem of recognition is solved the follow-
ing way. At the preliminary step the centers IiK = (I i1, I

i
2, . . . , I

i
K), i =

1, 2, . . . , T , of the spheres S(Ii, δ(K) in the space of invariants the VK

are evaluated for T template images fi(x), i = 1, 2, . . . , T . Coordinates
I ik , k = 1, 2, . . . ,K, of these centers are stored in the computer’s memory.

When the current image f c(x) is brought to the system, the set of K of
its invariants Ick = Ik{f c(x)}, k = 1, 2, . . . ,K, is estimated, that is, the point
IcK is determined in VK . Then T distances are computed

di = d
[
IiK , I

c
K

]
=

K∑

k=1

| I ik − Ick |, i = 1, 2, . . . , T. (7.2)

The smallest distance di0 = mini=1,T (di) is found among them, which indi-
cates that the current image f c(x) lies nearest to the i0–th orbit Oi0 . Thus,
the current image is considered as a distorted version of the i0–th template
image fi0(x).

160 Ekaterina Rundblad-Labunets, Valeri Labunets

7.4 Clifford Algebras as Unified Language for Pattern

Recognition

We suppose that a brain calculates hypercomplex–valued invariants of an
image when recognizing it. Of course, the algebraic nature of hypercomplex
numbers must correspond to the spaces with respect to the geometrically
perceivable properties. For recognition of 2–D, 3–D and n–D images we turn
the spaces R2, R3, Rn into corresponding algebras of hypercomplex numbers.
Here, we present a brief introduction to the conventions of geometrical algebra
that are used in this paper. A more comprehensive introduction can be found
in Hestenes and Sobczyk [117].

7.4.1 Clifford Algebras as Models of Geometrical and
Perceptual Spaces

Algebra and Geometry of 2–D Spaces. We start with the space R2 and
provide it with the algebraic frame of the algebra of generalized complex
numbers:

R2 −→ A2(R) := R + RI = {z = x1 + Ix2 | x1, x2 ∈ R},

where I is a generalized imaginary unit.
If I2 = −1, i.e. I = i, then A2(R) is the field of complex numbers

COM := {x1 + ix2 | x1, x2 ∈ R; i2 = −1}.

If I2 = +1, i.e I = e, then A2(R) is the ring of double numbers

DOU := {x1 + ex2 | x1, x2 ∈ R; e2 = 1}.

If I2 = 0, i.e I = ε then A2(R) is the ring of dual numbers

DUA := {x1 + εx2 | x1, x2 ∈ R; ε2 = 0}.

In A2(R) we introduce a conjugation operation which maps every element
z = x1 + Ix2 to the element z = x1 − Ix2. Now, the generalized complex
plane is turned into a pseudometric space: A2(R) −→ GCp,q,r2 if one defines
the pseudodistance

ρ(z1, z2) =

√
(z2 − z1)(z2 − z1) =

√
(x2 − x1)2 + (y2 − y1)2, z ∈ COM,√
(x2 − x1)2 − (y2 − y1)2, z ∈ DOU,

|x2 − x1|, z ∈ DUA,

where z1 := (x1, x2) = x1 + Ix2, z2 := (y1, y2) = y1 + Iy2 and the three
superscripts p, q, r are denoting the signature of the space. So, the plane of
classical complex numbers is a 2–dimensional Euclidean space GC2,0,0

2 , the

7. Spatial–Color Clifford Algebras 161

double numbers plane is a 2–dimensional Minkowskian space GC1,1,0
2 and the

dual numbers plane is a 2- dimensional Galilean space GC1,0,1
2 .

When one speaks about all three algebras (or geometries) simultaneously,
then the corresponding algebra (or geometry) is that of generalized complex
numbers, that is denoted as Ap,q,r

2 (or GCp,q,r2).

Algebra and Geometry of 3–D Spaces. Quaternions, as constructed by
Hamilton, form 4–D algebra

A4(R|1, i, j, k) = A4(R) = A4 := R + Ri+ Rj + Rk

spanned on four hyperimaginary units 1, i, j, k. The following identities are
valid for these units: i2 = j2 = k2 = −1, ij = −ji = k. It can be set
i2 = j2 = k2 = δ ∈ {−1, 0, 1}. Here, the two latter values (0 and 1) result
in non–classical quaternions that were proposed by Clifford [47]. Introducing
notations I, J,K for the three new hyperimaginary units we get nine spatial
algebras of generalized quaternions

A4(R|1, I, J,K) := A4 = R + RI + RJ + RK (7.3)

depending on which of the nine possibilities resulting from I2 ∈ {1, 0,−1},
J2 ∈ {1, 0,−1} is valid for two independent hyperimaginary units.

Every generalized quaternion q has a unique representation in the form
q = q0 + q1I + q2J + q3K = Sc(q) + Vec(q), where q0, q1, q2, q3 are real
numbers, Sc(q) := q0, Vec(q) := q1I + q2J + q3K are scalar and vector parts
of the quaternion q, respectively.

In A4(R) we introduce a conjugation operation which maps every quater-
nion q = q0 + Iq1 + Jq2 +Kq3 to the element q = q0 − Iq1 − Jq2 −Kq3. If
the pseudodistance ρ(p,q) between two generalized quaternions p and q is
defined as modulus of their difference u = p − q = t+ xI + yJ + zK :

ρ(p,q) =

√
(t2 + x2 + y2 + z2),if I2 =−1,J2 =−1,√
(t2 + y2), if I2 = 0,J2 =−1,√
(t2 − x2 + y2 − z2),if I2 = 1,J2 =−1,√
(t2 + x2), if I2 =−1,J2 = 0,√
(t2) = |t|, if I2 = 0,J2 = 0,√
(t2 − x2), if I2 = 1,J2 = 0,√
(t2 + x2 − y2 − z2),if I2 =−1,J2 = 1,√
(t2 − y2), if I2 = 0,J2 = 1,√
(t2 − x2 − y2 + z2),if I2 = 1,J2 = 1,

then the nine spatial algebras A4(R) are transformed into nine 4–D pseudo-
metric spaces designed as GHp,q,r

4 , where p, q and r stand for the number of

162 Ekaterina Rundblad-Labunets, Valeri Labunets

basis vectors which square to 1,−1 and 0, respectively and fulfill p+q+r = n.
Thus, the pseudodistance can take positive, negative and pure imaginary val-
ues. There are only 5 different geometries GHp,q,r

4 : GH4,0,0
4 , GH2,2,0

4 , GH2,0,2
4 ,

GH1,3,0
4 , GH1,2,1

4 .
The subspaces of vector generalized quaternions xI + yJ + zK are 3–D

spaces GRp,q,r
3 := Vec{GHp,q,r

4 }. The pseudometrics introduced in GHp,q,r
4

induce only three different pseudometrics in GRp,q,r
3 :

ρ(Vec{p},Vec{q}) = |Vec{p− q}| = |Vec{u}| =

=
√
‖xI+yJ+ zK‖GH =

√
(x2 + y2 + z2),√
(x2 − y2 − z2),√
x2 = |x|.

The corresponding 3–D metrical spaces will be denoted as GR3,0,0
3 ,

GR1,0,2
3 , and GR1,2,0

3 . They form Euclidean, Minkowskian, and Galilean 3–D
pseudometric spaces, respectively.

Algebra and Geometry of n–D Spaces. Now, let us consider an n–
D space Rn spanned on the orthonormal basis of n hyperimaginary units
Ii, i = 1, 2, . . . , n. We suppose I2

i = +1 for i = 1, 2, . . . , p, I2
i = −1 for

i = p + 1, 2, . . . , p + q, I2
i = 0 for i = p + q + 1, 2, . . . , p + q + r = n and

IiIj = −IjIi. Now, we construct the ”big” 2n–D space R2n

as a direct sum
of subspaces of dimensions C0

n, C
1
n, . . . , C

p
n, . . . C

n
n :

R2n

= RC
0
n ⊕ RC

1
n ⊕ . . .⊕ RC

p
n ⊕ . . .⊕ RC

n
n ,

where the subspaces RC
p
n (p = 0, 1, . . . , n) are spanned on the p–products of

units Ii1Ii2 . . . Iip (i1 < i2 < . . . < ip). By definition, we suppose that Ii0 := 1
is the classical real unit 1. So

RC
0
n := {xIi0 | x ∈ R},

RC
1
n := {x1I1 + x2I2 + . . .+ xnIn | xi ∈ R, ∀i = 1, . . . , n},

RC
2
n := {x12I1I2 + x13I1I3 + . . .+ xn−1,nIn−1In |

| xi1i2 ∈ R, ∀i1, i2 = 1, . . . , n},

RC
3
n := {x123I1I2I3 + x124I1I2I4 + . . .+ xn−2,n−1,nIn−2In−1In |

| xi1i2i3 ∈ R, ∀i1, i2, i3 = 1, . . . , n},
........,

RC
n
n := {x12...nI1I2 · · · In | x12...n ∈ R}.

7. Spatial–Color Clifford Algebras 163

Example 7.4.1. R8 = R1 ⊕ R3 ⊕ R3 ⊕ R1 = RI0 ⊕ {RI1 ⊕ RI2 ⊕ RI3}⊕

⊕{RI1I2 ⊕ RI1I3 ⊕ RI2I3} ⊕ RI1I2I3.

Every element C ε R2n

has the following representation

C =

n∑

p=0

n∑

i1,i2,...ip=1

xi1i1...ipIi1Ii2 . . . Iip

 =

= Vec0(C) + Vec1(C) + Vec2(C) + . . .+ Vecn(C),

where Vec0(C) ≡ Sc(C) ∈ RC
0
n is the scalar part of the Clifford number C,

Vec1(C) ∈ RC
1
n is its vector part, Vec2(C) ∈ RC

2
n is its bivector part,. . . and

Vecn(C) ∈ RC
n
n is its n-vector part.

If C1, C2 ∈ R2n

, then we can define their product as

C1C2 :=

n∑

p=0

n∑

i1,i2,...ip=1

xi1i1...ipIi1Ii2 . . . Iip

 ◦

◦

n∑

q=0

n∑

jj ,j2,...jq=1

yi1i1...iqIj1Ij2 . . . Ijq

 =

=

n∑

r=0

n∑

k1,k2,...kr=1

zk1k1...krIk1Ik2 . . . Ikr ,

where Ik1Ik2 . . . Ikr are obtained from products Ii1Ii2 . . . IipIj1Ij2 . . . Ijq with
the conditions I2

i = δ and IiIj = −IjIi. There are 3n possibilities for
I2
i = +1, 0,−1, ∀i = 1, 2, . . . , n. Every possibility generates one algebra.

Consequently, the space R2n

with 3n rules of multiplication forms 3n differ-
ent 2n–D algebras Ap,q,r

2n (R), which are called Clifford algebras.
In Ap,q,r

2n (R) we introduce the conjugation operation which maps every
Clifford number C to the number C. If the pseudodistance between two Clif-
ford numbers A and B is defined as modulus of their difference

ρ(A,B) = |A −B| =

√
(A−B)(A−B),

then the algebras Ap,q,r
2n (R) are transformed into 2n–D pseudometric spaces

designed as CLp,q,r2n .
The subspaces of pure vector Clifford numbers x1I1 + . . . + xnIn ∈

Vec1(Ap,q,r
2n (R)) are n–D spaces Rn := GRp,q,r

n . The pseudometrics con-
structed in CLp,q,r2n induces in GRp,q,r

n the corresponding pseudometrics.
Every algebra Ap,q,r

2n (R) has an even subalgebra

164 Ekaterina Rundblad-Labunets, Valeri Labunets

evAp,q,r
2n (R) =

C

∣∣ C :=
∑

p=even

n∑

i1,i2,...ip=1

xi1i1...ipIi1Ii2 . . . Iip

 .

All Clifford numbers E ∈ evAp,q,r
2n of unit modulus represent the rotation

group of the corresponding space GRp,q,r
n which is called the spinor group

and is denoted as Spin(Ap,q,r
2n).

7.4.2 Clifford Algebra of Motion and Affine Groups of
Metric Spaces

Generalized complex numbers and quaternions of unit modulus have the form

z = eIϕ = cosϕ+ I sinϕ,

q = eu0ϕ = cosϕ+ u0 sinϕ,

where cosϕ and sinϕ are trigonometric functions in the corresponding n–D
GCp,q,rn –geometries, ϕ is a rotation angle around the vector–valued quaternion
u0 of unit modulus (|u0| = 1, u0 = −u0).

Clifford numbers E ∈ Spin(Ap,q,r
2n) with unit modulus have analogous form

E = eu0ϕ = cosϕ+ u0 sinϕ ∈ Spin(Ap,q,r
2n).

Theorem 7.4.1. [47]. The transformations

z′ = eIϕ/2zeIϕ/2 + y = eIϕz + y,

q′ = euϕ/2qe−uϕ/2 + p, Q′ = E1/2QE−1/2 + P
form the groups of motions Mov(GCp,q,r2), Mov(GHp,q,r

4), and Mov(CLp,q,r2n)
of the spaces GCp,q,r2 , GHp,q,r

4 and CLp,q,r2n respectively.

Theorem 7.4.2. [47]. All motions of 2-D, 3-D and n–D spaces GRp,q,r
2 ,

GRp,q,r
3 , GRp,q,r

n are represented in the form

z′ = ez + y, z,y ∈ GRp,q,r
2 ,

x′ = q1/2xq−1/2 + y, x,y ∈ GRp,q,r
3 ,

x′ = E1/2xE−1/2 + y, x,y ∈ GRp,q,r
n ,

where e := eIϕ, |q| = 1, |E| = 1.

If |e|, |q|, |E| 6= 1 then latter transformations form the affine groups
Aff(GRp,q,r

2), Aff(GRp,q,r
3) and Aff(GRp,q,r

n).

7. Spatial–Color Clifford Algebras 165

7.4.3 Algebraic Models of Perceptual Color Spaces

The aim of this subsection is to present, as an example, algebraic models of
the subjective perceptual color space. Note, that the perceived color is the
result of the human mind, not a physical property of an object.

The color representation we are using is based on Young’s theory (1802),
asserting that any color can be visually reproduced by a property combina-
tion of three colors, referred to as primary colors. Later studies have been
developed on the basis of the physiological discovery that the human eye
retina mainly contains three different color receptors (cones), tuned to three
overlapping intervals of the visible light spectrum:

fR(x, y) =

∫

λ

s(λ)HR(λ)dλ,

fG(x, y) =

∫

λ

s(λ)HG(λ)dλ,

fB(x, y) =

∫

λ

s(λ)HB(λ)dλ,

where s(λ) is the color spectrum received from the object, HR(λ), HB(λ),
HR(λ) are three photoreceptor (cone or sensor) sensitivity functions, and λ
is the wavelength.

Usually, the three primary colors are chosen as Red, Green, Blue. Once
the primary colors have been chosen, every color is associated to a point of
a 3-D color space. The color of this point represents the weight sum of the
primary colors.

A color image can be considered as a 2–dimensional vector–valued
(R,G,B) function

fcol(x, y) = fR(x, y)i + fG(x, y)j + fB(x, y)k.

We use a color transformation to separate the color image into two terms:
1–D luminance (intensity) term and 2–D chromaticity term (color informa-
tion). This color transformation is simply a linear projection of the color
vector-valued image on a plane of the color space, which is orthogonal to the
diagonal vector (1, 1, 1). Then we get

fcol(x, y) = flu(x, y)e + fch(x, y),

where e := (i + j + k)/
√

3, 〈e | fch(x, y)〉 = 0.
The same result is obtained if we consider a color image as hypercomplex–

valued (triplet–valued) function:

fcol(x, y) = fR(x, y)1col + fG(x, y)εcol + fB(x, y)ε2col,

166 Ekaterina Rundblad-Labunets, Valeri Labunets

where 1col, εcol, ε
2
col are hyperimaginary units, ε3col = 1. Note, that the num-

bers of the form a1col + bεcol + cε2col are called triplets or 3–cycle numbers.
They form a color triplet (or 3–cycle) algebra:

Acol
3 = Acol

3 (R | 1, εcol, ε
2
col) := R1col + Rεcol + Rε2col, ε3col = 1.

One can show that the color triplet algebra is the direct sum of the real
numbers field R and of the complex numbers field C : Acol

3 = Relu ⊕ CEch,
where elu := (1col+εcol+ε

2
col)/

√
3, Ech := (1col+ωεcol+ω

2ε2col)/
√

3 are new
”luminance” and ”chromaticity” hyperimaginary units, respectively, ω :=
e

2π
3 , e2

lu = elu, E
2
ch = Ech, eluEch = Echelu = 0.

So, every triplet C ∈ Acol
3 is a linear combination of the ”scalar” part aelu

and the ”complex” part AEch : C = aelu + AEch. The real numbers a ∈ R

we call intensity numbers and complex numbers A ∈ C we call chromaticity
numbers. We introduce a generalized color triplet algebra p,q,rAcol

3 := Relu⊕
p,q,rA2Ech. For briefly, this algebra will be denoted as Acol

3 .

Definition 7.4.1. A color image of the form

fcol(x, y) = fR(x, y)1col + fG(x, y)εcol + fB(x, y)ε2col

= flu(x, y)elu + fch(x, y)Ech

is called a triplet–valued color image.

The intensity (luminance) term is flu(x, y) and the chromaticity term is
fch(x, y). Such a model of color images will be called 3–cycle model (or model
of odd grade).

Definition 7.4.2. The color triplet (3–cycle) algebra Acol
3 is called perceptive

color space.

However, the representation of one perceived color by three numerical
values is not complete, due to the fact that only a subset of colors is gener-
ated by a combination of three assigned ”primary” sources. A more complete
model of the visual perception is based on the lateral geniculate nucleus
(LGN), at which the optical nerve terminates. According to de Valois et
al. [240], there are many types of color sensitive cells in the LGN. Spec-
trally opponent cells respond to wide uniform fields by increasing their fir-
ing rate within the same wavelength region, and by descreasing the firing
rate for other wavelengths. Depending on the firing threshold, these cells
are called: ”–Red+Blue”, ”+Red–Blue”, ”–Green+Red”, ”+Green–Red”, ”–
Green+Blue”, ”+Green–Blue”, where ”+” means excitation and ”–” means
inhibition. These opponent cells map R,G,B components on the 4–D unit
sphere

f2
Bl + f2

RG + f2
RB + f2

GB = 1,

where fBl, fRG, fRB , fGB are black, red–green, red–blue and green–blue com-
ponents, respectively.

7. Spatial–Color Clifford Algebras 167

Now, let us consider the 3-D color space R3
col := RIR + RIG + RIB

spanned on basis IR, IG, IB . We suppose I2
R = +1, 0,−1, I2

G = +1, 0,−1,
I2
B = +1, 0,−1. Now, we construct a new color Clifford algebra

Acol
8 := RIBl + (RIR + RIG + RIB)+

+(RIRG + RIRB + RIGB) + RIWh,

where IBl = 1, IWh = IRIGIB are black and white units, IRG := IRIG,
IRB := IRIB , IGB := IGIB . Therefore, resulting from the capacity of this
algebraic model of color images, we can formulate the spin–valued function

fcol := fBlIBl + fRGIRG + fRBIRB + fGBIGB ,

which has values in the spin part Spin(Acol
8) of the color Clifford algebra.

Definition 7.4.3. Functions of the form

fcol : R2 −→ Spin(Acol
8), fcol : Rn −→ Spin(Acol

8)

will be called spin–valued color 2–D and n–D images, respectively.

This is an even grade model of color images.
The color vision model of primates is based on the existence of three dif-

ferent types of photoreceptors in the eye. However, Cronin et al. [51] showed
recently that mantis shrimps have at least ten spectral types of photorecep-
tors in their eyes giving them the capability to recognize fine spectral details.
This example illustrates the need of more general approaches for color analy-
sis and representation than is given by three broadband filter representations.

Note that for a long time multispectral measurements have been used
for region classification in satellite images. More recently, Swain and Ballard
[233] proposed a method called color indexing to demonstrate that color dis-
tributions without geometric information could be used to recognize objects
efficiently from a large database of models.

The multicomponent color image is measured as k–component vector

fmcol(x) :=

f1(x, y)
f2(x, y)
. . .

fk(x, y)

 =

∫
λ
s(λ)H1(λ)dλ∫

λ s(λ)H2(λ)dλ
. . .∫

λ
s(λ)Hk(λ)dλ

 ,

where f1(x, y), f2(x, y) . . . , fk(x, y) are sensor sensitivity functions. For in-
stance, using 5nm resolution between 400nm and 700nm, k equals 60, and
for 20nm resolution, k equals 16.

We will interprete such images as hypercomplex–valued signals

fmcol = f01 + f1ε
1
col + . . .+ fk−1ε

k−1
col

168 Ekaterina Rundblad-Labunets, Valeri Labunets

which takes values in the k–cycle algebra A(R|1, ε1col, . . . , εk−1
col). This is an

odd grade model of multicolor images.
To form the even grade model we consider the k–D color space Rk

col :=
RI1 + RI2 + . . .+ RIk spanned on the basis Ii, i = 1, 2, . . . , k. We suppose
I2
i = +1, 0,−1, i = 1, 2, . . . , k. This color space generates the Clifford algebra
Acol

2k := p,q,rAcol
2k (I1, I2, . . . , Ik|R).

Definition 7.4.4. Functions which take values in the spin part of the color
Clifford algebra

fcol : R2 −→ Spin(Acol
2k), fcol : Rn −→ Spin(Acol

2k)

will be called spin–valued color 2–D and n–D images, respectively.

Further, we interpret an image as an embedding of a manifold in a higher
dimensional spatial–color Clifford algebra. The embedding manifold is a hy-
brid space that includes spatial coordinates as well as color coordinates.

A grey level image is considered in this framework as a 2–D surface (i.e.
graph of f(x, y)) embedded in the 3–D spatial–color space

R
SpCol
3 (ISp1 , ISp2 ; Iglf) = (RISp1 + RISp2) + RIglf

whose coordinates are (x, y, f), where x ∈ RISp1 , y ∈ RISp2 , f ∈ RIglf . A color
image is accordingly considered as a 3–D manifold in the 5–D spatial–color
space

R
SpCol
5 (ISp1 , ISp2 ; IColR , IColG , IColB) =

= (RISp1 + RISp2) + (RIColR + RIColG + RIColB) = R
Sp
2 + Rcol3 ,

whose coordinates are (x, y, fR, fG, fB), where x ∈ RISp1 , y ∈ RISp2 are spatial
coordinates and fR ∈ RIColR , fG ∈ RIColR , fB ∈ RIColR are color coordinates.

For n–D k–color images we have an n+ k spatial–color space

R
SpCol
n+k (ISp1 , . . . , ISpn ; ICol1 , ICol2 , . . . , IColk) =

= (RISp1 + . . .+ RISpn) + (RICol1 + RICol2 + . . .+ RIColk) = RSpn + RColk ,

whose coordinates are (x1, . . . , xn; f1, f2, . . . , fk), where xi ∈ RISpI , i =
1, . . . , n are spatial coordinates and fj ∈ RIColj , j = 1, 2, . . . , k.

It is clear that the geometrical, color and spatial–color spaces RSp
n , RColk ,

R
SpCol
n+k generate spatial, color and spatial–color Clifford algebras

ASp
2n , ACol

2k , ASpCol
2n+k = ASp

2n ⊗ACol
2k , (7.4)

respectively, where ⊗ is the symbol of the tensor product.

7. Spatial–Color Clifford Algebras 169

7.5 Hypercomplex–Valued Moments and Invariants

The recognition of an object independent of its position, size and orientation
is an important problem in pattern recognition. In the last two decades a
number of techniques have been developed to extract image features which
are invariant under translation, scale change and rotation caused by the im-
age formation process. In particular, moment invariants are used as image
description for object recognition, image classification and scene matching.

7.5.1 Classical R–Valued Moments and Invariants

The classical geometrical moments mp of the grey level image f(x) =
f(x1, x2, . . . , xn) are integrals

mp =

∫

Rn

xpf(x)dx,

where dx := dx1dx2 · · · dxn, xp := xp11 x
p2
2 · · ·xpn

n .
The invariants of an image f(x) are usually constructed in two steps

[122] – [234]. At the second step the invariants are computed by inserting the
moments mp into quite definite polynomial expressions. The form of these
expressions depends on the view of the group Gr

n.

Definition 7.5.1. If c is the centroid of the image f(x), then functionals

ṁp =

∫

Rn

f(x)(x − c)pdx

are called central moments.

Theorem 7.5.1. [122]. Central moments are absolute invariants with re-
spect to the group of translation Tr(Rn) (see fig. 7.2):

ṁp{f(x + a)} = ṁp{f(x)}, ∀a ∈ Tr(Rn).

Therefore, there is an infinite set of invariants with respect to translation:
Ip{Tr(Rn) | f(x + a)} = Ip{Tr(Rn) | f(x)} := ṁp.

Now, let us investigate how the central moments change with respect to
scaling x′ = λx. Let fλ(x) := f(λx). Then we have

ṁp{fλ} =

∫

x∈Rn

xpf(λx) dx =

(
1

λ

)p1+p2+...pn+n

ṁp{f}. (7.5)

Theorem 7.5.2. [122]. The central moments of an n–D image f(x) are
the relative invariants with respect to the scaling transformation MRn with
multiplicators (1/λ)p1+p2+···+pn+n(see fig 7.3).

Definition 7.5.2. [122]. Expressions ṁp/[ṁ00...0]
(p1+p2+···+pn+n)/n

are called normalized central moments.

The normalized moments being invariants will be denoted as Ip{MRn|f}.

170 Ekaterina Rundblad-Labunets, Valeri Labunets

ṁp{f(x)} - ṁp{f(x)}
=?

f(x) - f(x + a)

(x + a)

?

FF

Fig. 7.2. Transformations of central moments with respect to the group Tr(Rn)

ṁp{f(x)} - 	 1
λ
 p1+...+pn+n

ṁp{f(x)}
	 1

λ
 p1+...+pn+n?

f(x) - f(λx)

λx

?

FF

Fig. 7.3. Transformation of central moments with respect to the group MRn

7. Spatial–Color Clifford Algebras 171

Theorem 7.5.3. Normalized central moments Ip{MRn|f} are absolute in-
variants with respect to the group of similarities.

The invariants with respect to rotations are more difficult to calculate.
Here we consider only the case n = 2. Let now act the group of rotations
SO2 in the plane R2. If fϕ(x, y) := f(x cosϕ − y sinϕ, x sinϕ + y cosϕ) is a
copy of the initial image, rotated by the angle ϕ, then we have
ṁpq{fϕ} =

=

p∑

r=0

q∑

s=0

(
p
r

)(
q
s

)
(−1)r cosp−r+s(ϕ) sinq+r−s(ϕ) ṁp+q−r−s,r+s{f}.

(7.6)

We see that the set of moments ṁpq of the given order k = p+q is transformed
via the set of moments of the same order

ṁk−q,q{fϕ} =

k−q∑

n=0

q∑

s=0

(
k − q
n− s

)(
q
s

)
(−1)n−s cosk−q−n+2s(ϕ)×

× sinq+n−2s(ϕ) ṁk−n,n{f}, (7.7)

which clarifies the rule of moment transformations under rotation.
Let us give a matrix interpretation of this result. For this purpose

consider an infinite sequence of vectors of increasing dimension: ṁ0 :=
(ṁ00) ∈ R1, ṁ1 := (ṁ01, ṁ10) ∈ R2, ṁ2 := (ṁ20, ṁ11, ṁ02) ∈ R3, . . . ,
ṁk := (ṁk,0, ṁk−1,1, ..., ṁ1,k−1, ṁ0,k) ∈ Rk+1. According to (7.7), every
vector

mk = (m0,k,m1,k−1, . . . ,mk,0) =

=

∫

R2

(
x0yk, x1yk−1 · · · , xky0

)
f(x, y)dxdy (7.8)

is transformed into itself:

ṁk{fϕ} = Mk(ϕ)ṁk{f},
where the matrix elements of the (k+1)× (k+1)–matrix Mk(ϕ) are defined
by the inner sum in expression (7.7).

Theorem 7.5.4. [122]. The vector–valued moments ṁk, k = 0, 1, 2, . . . are
the relative vector–valued SO2–invariants

J{fϕ} := ṁk{fϕ} = Mk(ϕ)ṁk{f},
with matrix multiplicators Mk(ϕ) (see fig. 7.4).

Definition 7.5.3. Let A : R2{x1, x2} −→ R2{x1, x2} be a transformation.
Then it induces another transformation A[k] acting into the (k + 1)–D space
spanned by the basis vectors {xpyq |p + q = k}. This transformation A[k] is
called the k–symmetric tensor power of the matrix A.

172 Ekaterina Rundblad-Labunets, Valeri Labunets

f(x, y)

rot(ϕ)◦(x, y)

f(rot(ϕ)◦(x, y))

F

Mk(ϕ)ṁk{f(x, y)}
Mk(ϕ)

ṁk{f(x, y)}

F

-
?

-

?

Fig. 7.4. Transformation of vector–valued moments with respect to the group SO2

In particular, when A = rot(ϕ) := M[1](ϕ), we have

[M [k]
mn(ϕ)] =

m∑

s=0

(
k −m
n− s

)(
m
s

)
(−1)n−s cosk−m−n+2s(ϕ) sinm+n−2s(ϕ).

Comparing (7.9) with (7.7) shows that [M
[k]
mn(ϕ)] actually are matrix ele-

ments of the matrix M[k]. For example,

M2(ϕ) =

[
cosϕ sinϕ

− sinϕ cosϕ

][2]

=

cos2(ϕ) 2 cos(ϕ) sin(ϕ) sin2(ϕ)
− cos(ϕ) sin(ϕ)cos2(ϕ) − sin2(ϕ)cos(ϕ) sin(ϕ)

sin2(ϕ) −2 cos(ϕ) sin(ϕ) cos2(ϕ)

 . (7.9)

Theorem 7.5.5. [20]. The following equations are valid: (AB)[k] = A[k]B[k]

and if AB = I, then A[k]B[k] = I [k].

Now, we will use these expressions to simplify (7.9). Note then that

M(ϕ)] =

[
cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)

]
= ∆(i)H

[1]
2 ∆(ϕ)H

[1]
2 ∆(−i), (7.10)

where ∆(i) :=

[
1
i

]
, H

[1]
2 =

[
1 1
1 −1

]
, ∆(ϕ) :=

[
eiϕ

e−iϕ

]
.

Raising (7.10) into the k–symmetric tensor power we get

7. Spatial–Color Clifford Algebras 173

M[k](ϕ) = ∆[k](i)H
[k]
2 ∆[k](ϕ)H

[k]
2 ∆[k](−i), (7.11)

where ∆[k](i) = [δmni
m]km,n=0, ∆

[k](ϕ) = [δmne
iϕ(k−2m)]km,n=0,

H
[k]
2 = [Kmn]

k
m,n=0 =

[
m∑

s=0

(−1)s
(
k −m
n− s

)(
m
s

)]k

m,n=0

.

The transformation H
[k]
2 is called Kravchuk transform and is widely used in

theory of codes [166]. For example,

H
[1]
2 =

[
1 1
1 −1

]
, H

[2]
2 =

1 2 1
1 0 −1
1 −2 1

 .

From (7.7), taking in consideration (7.11), we get

ṁk{fϕ} = Mk(ϕ)ṁk{f} =

= ∆[k](i)H
[k]
2 ∆[k](ϕ)H

[k]
2 ∆[k]∗(i)ṁk{f},

where

ṁk{fϕ} := (ṁk,0{fϕ}, ṁk−1,1{fϕ}, ..., ṁ0,k{fϕ}) ,

ṁk{f} := (ṁk,0{f}, ṁk−1,1{f}, ..., ṁ0,k{f}) .
Hence, we get the final expression

H
[k]
2 ∆[k](−i)ṁk{fϕ} = ∆[k](ϕ)[H

[k]
2 ∆[k](−i)ṁk{f}]. (7.12)

Theorem 7.5.6. [140]. The spectral coefficients Jk{SO2|f} of the Kravchuk

transform H
[k]
2 ∆[k](−i)ṁk{f} of the vector–valued moment ṁk{f} are the

relative SO2–invariants of the image f : Jk{fϕ} = ∆[k](ϕ)Jk{f}, i.e.
(
Jkk,o, J

k
k−1,1, . . . , J

k
o,k,
)
{fϕ} =

= diag(e−i(k−2m)ϕ)
(
Jkk,o, J

k
k−1,1, . . . , J

k
o,k,
)
{f} (7.13)

(see fig. 7.5).
We find now the direct expressions for the relative invariants. From (7.13)

it follows

Jkk−m,m{f)} =

k∑

n=0

[
m∑

s=0

(−1)s(−i)n
(
k −m
n− s

)(
m
s

)]
ṁk
k−n,n{f},

which is the desired expression. For example,

J2
20

J2
11

J2
02

 =

1 2 1
1 0 −1
1 −2 1

ṁ02

−iṁ11

−ṁ20

 =

(ṁ20 − ṁ02) − 2iṁ11

(ṁ20 + ṁ02)
(ṁ20 − ṁ02) + 2iṁ11

 .

174 Ekaterina Rundblad-Labunets, Valeri Labunets

f(x, y)

rot(ϕ)◦(x, y)

f(rot(ϕ)◦(x, y))

F

e−i(k−2m)ϕJk
k,k−m{f}

∆k(ϕ)

Jk
k,k−m{f}

F

-
?

-

?

Fig. 7.5. Transformation of relative invariants with respect to the group SO2

As we have stated, when an image is rotated counter–clockwise by the
angle ϕ, the new set of the relative invariants is connected with the old one
according to (7.13) by the relation

Jkk−m,m{fϕ} = e−i(k−2m)ϕJkk−m,m{f}, 0 ≤ m ≤ k, (7.14)

which we repeat here for convenience. As can be seen from this, rotations
influence only the phase of relative invariants and do not change their absolute
value. Hence, the absolute values of relative invariants are indeed the absolute
invariants of rotations:

HMIkk−m,m := | Jkk−m,m{fϕ} | = | Jkk−m,m{f)} | (7.15)

(where HMI is the abridged notation of Hu moment invariants).
As the relative invariant Jkk−m,m is the complex conjugate to Jkm,k−m,

then only (k/2) + 1 independent binary absolute invariants can be obtained
from k + 1 relative invariants of the k–th order. That is explained by the
information lost by choosing as invariant a real number and not a complex
one.

Complex–valued functionals of images can also be used as invariants be-
cause they do not change under the transformation. Hence, if we compose
the product of the powers of two relative invariants, the phases of which are
changing in the opposite directions by the same amount, then such a product
will give a complex–valued invariant. For example, the product

HMIs1;s2k1−m1,m1;k2−m2,m2
= [Jk1k1−m1,m1

]s1 [Jk2k2−m2,m2
]s2

is such an invariant if s1(k1 − 2m1) + s2(k2 − 2m2) = 0. This expression can
be easily generalized to n-ary absolute invariants of the (s1 + s2 + ...+ sn)–th
power:

7. Spatial–Color Clifford Algebras 175

HMIs1;s2;...;sn

k1−m1,m1;k2−m2,m2;...;kn−mn,mn
=

= [Jk1k1−m1,m1
]s1 [Jk2k2−m2,m2

]s2 ...[Jkn

kn−mn,mn
]sn ,

where s1(k1 − 2m1) + s2(k2 − 2m2) + ...+ sn(kn − 2mn) = 0.

7.5.2 Generalized Complex Moments and Invariants

Let GCSp2 := {z = x1 + Ix2 | x1, x2 ∈ R; I2 = −1, 0,+1} be a generalized
spatial complex plane. Then the grey–level image f(x, y) can be considered

as a function of a generalized complex variable, i.e. f(z), z ∈ GCSp2 .

Definition 7.5.4. If c is the centroid of the image f(z), then the functionals

ṁp{f} :=

∫

z∈GCSp
2

(z − c)pf(z)dz

are called one–index central ASp
2 –valued moments of the image f(z), where

dz := dxdy, p ∈ Q is an arbitrary rational number.

Let us now clarify the rules of moment transformations under geometrical
distortions of the initial images. We will consider translation, rotation, and
scaling transformations. If f(z) is the initial image, then fv,a(z) denotes its
geometrical distorted copy fv,a(z) = f(v(z + a)) = f(z∗). Here v and a are
arbitrary fixed generalized numbers, z∗ = v(z+a). Summing z with a brings
us to image translation, and multiplication of z + a by v is equivalent to the
rotation (in Euclidean plane — classical rotation, in Minkowskian plane —
hyperbolic (Lorentz) rotation, in Galilean plane — Galilei rotation) by an
angle equal to arg (v) and with a dilatation given by |v|.
Theorem 7.5.7. Central moments of the image f(z) are relative complex–
valued invariants

Jp{fv,a} := ṁp{fv,a} = vp|v|2ṁp{f} (7.16)

with respect to the affine group Aff(GCSp2) of the generalized complex plane

GCSp2 with ASp
2 –valued multiplicators vp|v|2 (see fig. 7.6).

To get absolute invariants of the affine group based on relative ones, it is
necessary to ”neutralize” multiplicators by any way.

Definition 7.5.5. The products ṁk1
p1ṁ

k2
p2 · · · ṁks

ps
are called s–ary ASp

2 –valued
central moments, where ki ∈ Q.

Theorem 7.5.8. The s–ary central moments of the image f(z) are relative

ASp
2 –valued invariants
J k1, ..., ks
p1, ..., ps

{fv,w} = ṁk1
p1ṁ

k2
p2 · · · ṁks

ps
{fv,w} =

= v(p1k1+...+psks)|v|2(k1+...+ks)ṁk1
p1ṁ

k2
p2 · · · ṁks

ps
{f}

with respect to the group Aff(GCSp2) with multiplicators
v(p1k1+...+psks) |v|2(k1+...+ks), which have s free parameters k1, . . . , ks.

176 Ekaterina Rundblad-Labunets, Valeri Labunets

f(z)

v(z + a)

f(v(z + a))

F

vp|v|2ṁp{f(z)}
vp|v|2

ṁp{f(z)}

F

-
?

-

?

Fig. 7.6. Transformation of ASp
2 –valued moments with respect to the group

Aff(GCSp
2)

The appropriate choice of these parameters can make the multiplicators equal
to 1.

Definition 7.5.6. S–ary moments of the form ṁk1
p1ṁ

k2
p2 · · · ṁks

ps
, where k1p1+

. . .+ ksps = 0 and k1 + . . .+ ks = 0, are called normalized central one–index
moments.

Normalized central one–index moments are by definition absolute ASp
2 -

valued invariants of the affine group Aff(GCSp2). Being invariants, they will
be denoted as Ik1, ..., ks

p1, ..., ps
{f}.

The system of equations k1p1 + . . .+ ksps = 0, k1 + . . .+ ks = 0 has no
solution for s = 1, 2 in the ring Z and in the field Q.

Theorem 7.5.9. 2–D images have no absolute ASp
2 –valued invariants among

unary and binary normalized central moments and have such only among s–
ary (s ≥ 3) moments with respect to the affine group Aff(ASp

2).

Example 7.5.1. For s = 3 we have

I
p3−p2
p2−p1

,
p3−p1
p2−p1

,1
p1, p2, p3 {f} :=

(
ṁp1

) p3−p2
p2−p1

(
ṁp2

) p3−p1
p2−p1

(
ṁp3

)1{f},

where k1 = p3−p2
p2−p1 , k2 = p3−p1

p2−p1 , k3 = 1.

Now, let us return to binary relative invariants. We will show that among
them there are absolute ASp

2 –valued invariants of the most important sub-
groups of affine group.

1. For the ”small affine subgroup” aff(GCSp2) := M ∗ Tr(GCSp2) in (7.16)
we have v = λ ∈ R, where ∗ is the symbol of the semidirect product. Hence,
the central moments of the image f(z) are relative ASp

2 –valued invariants

7. Spatial–Color Clifford Algebras 177

Jp{fλ,w} := ṁp{fλ,w} = λp+2ṁp{f} (7.17)

with respect to the group aff(GCSp2) with scalar-valued multiplicators λp+2.

Theorem 7.5.10. The binary moments of the form

Ik1,k2p1,p2 {f} := ṁk1
p1ṁ

k2
p2{f} = ṁk1

p1ṁ
− p1+2

p2+2
p2 {f}

are absolute ASp
2 –valued invariants of the group aff(GCSp2), where (p1+2)k1+

(p2 + 2)k2 = 0. In particular,

I1,(p+2)/2
p,0 {f} := ṁ1

p{f}/ṁ(p+2)/2
0 {f}

are such invariants, where p1 := p, k1 = 1, p2 = 0.

2. For the subgroup of motion Mov(GCSp2) in (7.16) we have v = eIϕ

and |v| = 1. Hence, the central moments of the image f(z) are relative ASp
2 –

valued invariants

Jp{fϕ,w} := ṁp{fϕ,w} = eIpϕṁp{f} (7.18)

of this subgroup with ASp
2 –valued multiplicators eIpϕ.

Theorem 7.5.11. The binary moments of the form

Ik1,−p1k1/p2p1,p2 {f} := ṁk1
p1{f}/ṁp1k1/p2

p2 {f}

are absolute ASp
2 –valued invariants with respect to Mov(GCSp2). In particular,

absolute values of central moments I1,−1
p,p := |ṁp{fv,w}| = |ṁp{f}| are real–

valued invariants with respect to the group Mov(ASp
2).

7.5.3 Triplet Moments and Invariants of Color Images

Changes in the surrounding world as such of intensity, color or illumination
can be treated in the language of the triplet algebra as action of some trans-
formation group in the perceivable color space.

Let A = ae + AE be an arbitrary triplet number. Let us clarify the rules
of moment transformations under distortions of chromaticity and geometry
of initial images. If fcol(z) is the initial image then

v,wf
A
col(z) = fAcol(v(z + w)) = afI(v(z + w)e + AfCh(v(z + w)E

denotes its distorted copy.
Here we need a correct definition of the multiplication of spatial numbers

by colors numbers. Let z ∈ ASp
2 be spatial numbers and A ∈ ACol

3 be color
triplet numbers, then all products zA will be called spatial–color numbers.
They form a space–color algebra (see (7.4))

178 Ekaterina Rundblad-Labunets, Valeri Labunets

ASpCol
6 := ASp

2 ⊗ACol
3 = ASp

2 ⊗
(
Relu ⊕ Ach

2 Ech

)
=

=
(
ASp

2 ⊗ R

)
elu ⊕

(
ASp

2 ⊗Ach
2

)
Ech =

= ASp
2 elu ⊕

(
ASp

2 ⊗Ach
2

)
Ech = ASp

2 elu ⊕ ASpCh
4 Ech,

where ASpCh
4 Ech := (ASp

2 ⊗Ach
2)Ech and ⊗ is the tensor product.

We suppose that all spatial hyperimaginary units commute with all chro-
maticity units. Therefore, ASpCol

6 = ASp
2 ⊗ACol

3 = ACol
3 ⊗ASp

2 .

Definition 7.5.7. If c is the centroid of the image fcol, then the functionals

Ṁp :=

∫

z∈ASp
2

(z − c)pfcol(z)dz

=

∫

z∈ASp
2

(z − c)pflu(z)dz

elu +

∫

z∈ASp
2

(z − c)qfch(z)dz

Ech =

= ṁpelu + ṀpEch

are called central ASpCol
6 –valued moments of the color image fcol(z), where ṁp

are ASp
2 –valued central moments of the intensity term and Ṁp are ASpCh

4 –
valued central moments of the cromaticity term.

fcol(z)

v(z + a)

A
Afcol(v(z + a))

F

Avp|v|2Ṁp{fcol(z)}
Avp|v|2

Ṁp{fcol(z)}

F

-
?

-

?

Fig. 7.7. Transformations of relative ASpCol
6 –valued moments with respect to the

geometrical group Aff(GCSp
2) and the color group of similarities M× SO(ACol

3) of
the perceptual color space.

7. Spatial–Color Clifford Algebras 179

Theorem 7.5.12. The central moments Ṁp of the color image fcol(z) are
relative
ASpCol

6 –valued invariants

Jp{v,af
A
col} := Ṁp{v,af

A
col} = Avp|v|2Ṁp{f} (7.19)

with respect to both the geometrical group Aff(GCSp2) and the color group of

similarities M× SO(ACol
3) of the perceptual color space with ASpCol

6 –valued
multiplicators Avp|v|2 (see fig. 7.7).

Definition 7.5.8. The products Ṁk1
p1Ṁk2

p2 · · · Ṁks
ps

are called s–ary ASpCol
6 –

valued central moments, where ki ∈ Q.

Theorem 7.5.13. The s–ary central moments of the image f(z) are relative

ASpCol
6 –valued invariants

J k1,...,ks
p1,...,ps

{ v,af
A
col} = Ṁk1

p1Ṁk2
p2 · · · Ṁks

ps
{v,af

A
col} =

= v(p1k1+...+psks)(A|v|2)(k1+...+ks)Ṁk1
p1Ṁk2

p2 · · · Ṁks
ps
{fcol}

with respect to the groups Aff(GCSp2) and M×SO(ACol
3) with multiplicators

v(p1k1+...+psks)(A|v|2)(k1+...+ks), which have s free parameters k1, . . . , ks.

Definition 7.5.9. The S–ary moments of the form Ṁk1
p1Ṁk2

p2 · · · Ṁks
ps
, where

k1p1 + . . . + ksps = 0, and k1 + . . . + ks = 0, are called normalized central
one–index moments.

Normalized central one–index moments are by definition absolute complex-
valued invariants with respect to the groups Aff(GCSp2) and M× SO(ACol

3).
Being invariants, they will be denoted as Ik1,...,ks

p1,...,ps
{fcol}.

The system of equations k1p1 + . . .+ ksps = 0, k1 + . . .+ ks = 0, has no
solution for s = 1, 2 in the ring Z and in the field Q.

Theorem 7.5.14. 2–D color images have no absolute ASpCol
6 –valued invari-

ant among unary and binary moments with respect to the groups Aff(GCSp2),
M× SO(ACol

3) and have such among only s–ary (s ≥ 3) moments.

Example 7.5.2. For s = 3 we have

I
p3−p2
p2−p1

,
p3−p1
p2−p1

,1
p1, p2, p3 {fcol} :=

(
Ṁp1

) p3−p2
p2−p1 Ṁ

p3−p1
p2−p1
p2

(
Ṁp3

)1{fcol},

where k1 = p3−p2
p2−p1 , k2 = p3−p1

p2−p1 , k3 = 1.

Now, we return to binary relative invariants. We will show that among
them there are absolute invariants of the most important subgroups of the
geometrical and chromaticity affine groups.

1. For the ”small geometrical affine subgroup” aff(GCSp2) := M∗Tr(GCSp2)
and for the color group of similarities M × SO(ACol

3) in (7.19) we have

180 Ekaterina Rundblad-Labunets, Valeri Labunets

v = λ ∈ R. Hence, the central moments of the image fcol(z) are relative

ASpCol
6 –valued invariants

Jp{λ,afAcol} := Ṁp{λ,afAcol} = Aλp+2Ṁp{fcol} (7.20)

with respect to these groups with triplet–valued multiplicators Aλp+2.
Let by definition Ṅp := Ṁp/Ṁ0, then from (7.19) we have

Np{λ,wfAcol} := Aλp+2Ṁp{fcol}/Aλ2M0{fcol} = λp+2Ṅp{fcol}. (7.21)

Theorem 7.5.15. The binary moments

Ik1,k2p1,p2 {fcol} := Ṅ k1
p1 Ṅ k2

p2 {fcol} = Ṅ k1
p1 Ṅ

− p1
p2

p2 {fcol},

where p1k1 + p2k2 = 0, are absolute ASpCol
6 –valued invariants with respect to

the groups Aff(GCSp2) and M× SO(ACol
3).

2. For the geometrical group Mov(GCSp2) and the color group SO(ACol
3)

in (7.19) we have v = eIϕ, |v| = 1 and A = 1elu + AEch, where |A| = 1.

Hence, the central moments of the image fcol(z) are relative ASpCol
6 –valued

invariants of the form

Jp{ϕ,afcol} = Ṁp{ϕ,afcol} = AeIpϕṄp{fcol} (7.22)

with respect to these groups with ASpCol
6 –valued multiplicators AeIpϕ, where

A ∈ ACol
3 and eIpϕ ∈ ASp

2 . From (7.22) we have

Ṅp{λ,afAcol} = AeIpϕṀp{fcol}/AM0{fcol} = eIpϕṄp{fcol}. (7.23)

Theorem 7.5.16. The binary moments

Ik1,k2p1,p2{fcol} := Ṅ k1
p1 Ṅ k2

p2 {fcol} = Ṅ k1
p1 Ṅ

− p1
p2

p2 {fcol},

where p1k1 + p2k2 = 0, are absolute ASpCol
6 –valued with respect to the geo-

metrical group Mov(GCSp2) and the color group SO(ACol
3), respectively. In

particular, the absolute values of the central moments |I1,−1
p,p |{v,afcol} :=

|Ṅp|{v,afcol}| = |Ṅp|{fcol} are real–valued invariants.

7.5.4 Quaternionic Moments and Invariants of 3–D Images

Let be fcol(q) a color 3-D image depending on the pure vector generalized

quaternion q ∈ Vec{ASp
4 } = GR3.

If q ∈ GR3 ⊂ ASp
4 are generalized quaternions and A ∈ ACol are color

numbers then all products of the form qA will be called spatial–color numbers.
They form a space–color algebra

7. Spatial–Color Clifford Algebras 181

ASpCol := ASp
4 ⊗ACol = ACol ⊗ASp

4 ,

where all spatial hyperimaginary units commute with all color units. Here,
ASpCol := ASpCol

12 = ASp
4 ⊗ACol

3 if a 3–cycle model of the color image is used

and ASp := ASpCol
16 = ASp

4 ⊗ACol
4 if a spin–valued model of the color image

is used.

Definition 7.5.10. If c is the centroid of the image fcol(q), then the func-
tionals of the form

Ṁp{fcol} :=

∫

q∈GR3

(q − c)fcol(q)dq (7.24)

are called one–index central ASpCol–valued moments of the 3-D color image
fcol(q), where p ∈ Q, dq := dxdydz.

Now, let us find rules of moments changing with respect to geometrical and
chromatical distortions of the initial image:

fAλQa(q) := Afcol(λQ(q + a)Q−1), (7.25)

where q∗ := λQ(q + a)Q−1, A ∈ ACol
3 (or A ∈ ACol

4), A = |A|euϕ.

fcol(q)

A

λQ(q + a)Q−1

Afcol(λQ(q + a)Q−1)

F

λp+3QpAṀp{fcol(q)}Q−p

λp+3QpA{·}Q−p

Ṁp{fcol(q)}

F

-
?

-

?

Fig. 7.8. Transformation of ASpCol–valued moments with respect to the groups
Aff(GR3) and M × SO(ACol)

Theorem 7.5.17. The central moments Ṁp{fcol} are relative
ASpCol–valued invariants

Jp
{
fAλQa

}
:= Ṁp{fAλQa} = Aλp+3QpṀp{f}Q−p

with respect to the groups Aff(GR3) and M × SO(ACol) with left ASpCol–

valued multiplicators Aλp+3Qp and with right Spin(ASp
4)–valued multiplica-

tors Q−p, respectively (see fig. 7.8).

182 Ekaterina Rundblad-Labunets, Valeri Labunets

As relative invariants obtain both left and right multiplicators, common
multiplication does not result in absolute invariants from s–ary moments.
Hence, 3–D k–color image has no absolute invariants among s–ary ASpCol–
valued moments with respect to the groups Aff(GR3) and M× SO(ACol).

Theorem 7.5.18. The modulus of the central moments Ṁp{f} are the rel-
ative R–valued invariants

|Jp{fAλQa(q)}| := Ṁp{fAλQa} = λp+3|A||Ṁp{f}| (7.26)

with respect to the groups Aff(GR3), M×SO(ACol) with scalar–valued mul-
tiplicators λp+3|A|.

Let by definition Ṅp := |Ṁp|/|Ṁ0|, then from (7.26) we have

Np{λ,afAcol} := Aλp+3|Ṁp|{fcol}/Aλ3|Ṁ0|{fcol} = λpṄp{fcol}. (7.27)

Definition 7.5.11. The products Ṅ k1
p1 Ṅ k2

p2 · · · Ṅ ks
ps

are called s–ary R–valued
modular central moments, where ki ∈ Q.

Theorem 7.5.19. The s–ary modular central moments of the image fcol(z)
are relative R–valued invariants

|J k1,...,ks
p1,...,ps

|{fλQa} = Ṅ k1
p1 · · · Ṅ ks

ps
{fAλQa} = λp1k1+...+psksṄ k1

p1 · · · Ṅ ks
ps

{fcol}

with respect to the groups Aff(GR3) and M × SO(ACol) and with scalar–
valued multiplicators λp1k1+...+psks , which have s free parameters k1, . . . , ks.

Definition 7.5.12. The modulus of s–ary moments of the form Ṅ k1
p1 · · · Ṅ ks

ps
,

where p1k1 + . . .+ psks = 0, are called normalized modular central moments.

The normalized modular central moments are by definition absolute R-
valued invariants with respect to the groups Aff(GR3) and M× SO(ACol).

The normalized modular moments being invariants will be denoted as
|Ik1,...,ks
p1,...,ps

{fcol}|.
The system of equations k1p1 + . . . + ksps = 0 has an infinite number

of solutions for s ≥ 2 in the ring Z and in the field Q, for example, k1 =
−k2

p1+3
p2+3 .

Theorem 7.5.20. The binary modular moments

Ik1,−k1
p1+3
p2+3

p1,p2 {fcol(q)} := |Ṁk1
p1 |/|Ṁ

k1
p1+3
p2+3

p2 |

are absolute R–valued invariants with respect to the groups Aff(GR3) and
M× SO(ACol).

Analogously we can construct absolute invariants for important subgroups
of these groups.

7. Spatial–Color Clifford Algebras 183

7.5.5 Hypercomplex–Valued Invariants of n–D Images

Let us assume that fmcol(x) : Rn −→ Rk is an image of some k-color n–D
signal as an element of the image space L(Rn,Rk), and J is a descriptor of
some feature of the image as an element of some spatial–multicolor Clifford
algebra

ASpCol
2k+n = Ap,q,r

2n ⊗ p,q,rACol
2k ,

where all spatial hyperimaginary units commute with all color units. Here,
ASpCol := ASpCol

2nk = ASp
2n ⊗ ACol

k if a k–cycle model of the color image is

used and ASpCol := ASpCol
2n+k = ASp

2n ⊗ACol
2k if a spin–valued model of the color

image is used.
Formally we can write J = F

[
f(x)

]
, where F : L(Rn,Rk) −→ ASpCol

represents a feature map. In Rn let some group of transformations act: G :
Rn −→ Rn.

Definition 7.5.13. The ASpCol–valued functional J = F
[
fmcol(x)

]
of the

image fmcol(x) is called relative G-invariant with respect to some transfor-
mation group G if

J = F
[
f(g ◦ x)

]
= C(g) · F

[
f(x)

]
· C−1(g), ∀g ∈ G,

where C, C−1 are left and right ASpCol–valued multiplicators. If C = 1 then
J is called absolute invariant and is denoted as I.

The function fmcol(x1, . . . , xn) can be considered as a function of Clifford

variables: fmcol(x), x ∈ Vec1(ASp
2n) := GRn.

Definition 7.5.14. If c is the centroid of the image fmcol(x), then the func-
tionals

Ṁp{fmcol} :=

∫

x∈GRn

(x − c)pfmcol(x)dx

will be called one–index central ASpCol–valued moments of the n–D k-color
image fmcol(x).

Let us clarify the rules of moment transformations under geometrical and
multicolor distortions of the initial images:

fAλQa(x) := Afmcol (λQ(x + a)Q) ,

where λ is a scale factor, x∗ = rQ(x + a)Q, x∗,x, a ∈ GRp,q,r
n , |Q| = 1.

Theorem 7.5.21. (Main theorem). The central moments Ṁp{fmcol} are
the relative ASpCol–valued invariants

Jp{fAλQa} := Ṁp{fAλQa} = Aλp+nQpṀp{fcol}Q−p

with respect to the groups Aff(GRn) and M×SO(ACol) with ASpCol–valued

left multiplicators Aλp+3Qp and ASp
2n –valued right multiplicators Q−p, respec-

tively (see fig. 7.9).

184 Ekaterina Rundblad-Labunets, Valeri Labunets

fmcol(x)

λQ(x + a)Q−1

A
Afmcol(λQ(x + a)Q−1)

F

λp+nQpAṀp{fmcol(x)}Q−p

λp+nQpA{·}Q−p

Ṁp{fmcol(x)}

F

-
?

-

?

Fig. 7.9. Transformation of ASpCol–valued moments with respect to the groups
Aff(GRn) and M× SO(ACol)

As relative invariants obtain both left and right multiplicators, common
multiplication does not result in absolute invariants from s–ary moments.
Hence, a 3–D color image has no absolute invariants among s–ary ASpCol–
valued moments with respect to the groups Aff(GRn) and M× SO(ACol).

Theorem 7.5.22. The modulus of the central moments Ṁp{fmcol} are the
relative R–valued invariants

|Jp|{fAλQa} := |Ṁp|{fAλQa} = λp+3|A||Ṁp|{fmcol} (7.28)

with respect to the groups Aff(GRn) and M × SO(ACol) and with scalar–
valued multiplicators λp+3|A|.

Let by definition be Ṅp := |Ṁp|/|Ṁ0|, then from (7.26) we have

Np{ λ,af
A
mcol} :=

= Aλp+3|Ṁp|{fmcol}/Aλ3|M0|{fmcol} = λpṄp{fmcol}. (7.29)

Definition 7.5.15. The products Ṅ k1
p1 Ṅ k2

p2 · · · Ṅ ks
ps

are called s–ary R–valued
modular central moments, where ki ∈ Q.

Theorem 7.5.23. The s–ary modular central moments of the image fmcol(x)
are relative R–valued invariants

|J k1, ..., ks
p1, ..., ps

|{fλQa} =

= Ṅ k1
p1 · · · Ṅ ks

ps
{fAλQa} = λp1k1+...+psksṄ k1

p1 · · · Ṅ ks
ps
{fmcol}

with respect to the groups Aff(GRn) and M × SO(ACol) and with scalar–
valued multiplicators λp1k1+...+psks , which have s free parameters k1, . . . , ks.

7. Spatial–Color Clifford Algebras 185

Definition 7.5.16. The modulus of s–ary moments of the form Ṅ k1
p1 · · · Ṅ ks

ps
,

where p1k1 + . . .+ psks = 0, are called normalized modular central moments.

Normalized modular central moments are by definition absolute R-valued
invariants with respect to the groups Aff(GRn) and M× SO(ACol).

The normalized modular moments being invariants will be denoted as
|Ik1, ..., ks
p1, ..., ps

|{fmcol}.
The system of equations k1p1 + . . . + ksps = 0 has an infinite number

of solutions for s ≥ 2 in the ring Z and in the field Q, for example, k1 =
−k2

p1+3
p2+3 .

Theorem 7.5.24. The binary modular moments

Ik1,−k1
p1+3

p2+3
p1,p2 {fcol(q)} := |Ṁk1

p1 |/|Ṁ
k1

p1+3

p2+3
p2 |

are absolute R–valued invariants with respect to the groups Aff(GRn) and
M× SO(ACol).

Analogously we can construct absolute invariants for important subgroups
of these groups.

7.6 Conclusion

We have shown how Clifford algebra can be used in formation and compu-
tation of invariants of 2-D, 3-D and n–D color and multicolor objects of dif-
ferent Euclidean and non–Euclidean geometries. The proved theorems show
how simple and efficient the methods of calculation of invariants are that use
spatial and color Clifford algebra.

Note that digital computers use Boolean algebra. This is a Clifford alge-
bra A2n(GF(2)) over the Galois field GF(2). But are there analog computers
working in Clifford algebra Ap,q,r

2n (R)? Now we will try to answer this question
by asking a question which may be a subtitle of this chapter: ”Is the visual
cortex a Clifford Algebra Computer”? Yes, it can be if this visual cortex be-
longs to a human being living even in n–D non–Euclidean space GRp,q,r

n .
But, how fast can the invariants be calculated? The answer to this ques-
tion the interested reader can find in [141]–[143], where Fourier–Clifford and
Fourier–Hamilton number theoretical transforms are used for this purpose.

186 Ekaterina Rundblad-Labunets, Valeri Labunets

8. Non-commutative Hypercomplex

Fourier Transforms of

Multidimensional Signals∗

Thomas Bülow, Michael Felsberg, and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

8.1 Introduction

Harmonic transforms, and among those especially the Fourier transform, play
an essential role in mathematical analysis, in almost any part of modern
physics, as well as in electrical engineering. The analysis of the following four
chapters is motivated by the use of the Fourier transform in signal process-
ing. It turns out that some powerful concepts of one-dimensional signal theory
can hardly be carried over to the theory of n-dimensional signals by using
the complex Fourier transform. We start by introducing and studying the hy-
percomplex Fourier transforms in the following two chapters. In this chapter
representations in non-commutative algebras are investigated, while chapter
9 is concerned with representations in commutative hypercomplex algebras.
After these rather theoretical investigations we turn towards practice in chap-
ter 10 where fast algorithms for the transforms are presented and in chapter
11 where local quaternion-valued LSI-filters based on the quaternionic Fourier
transform are introduced and applied to image processing tasks.

∗ This work has been supported by German National Merit Foundation and by
DFG Grants So-320-2-1, So-320-2-2, and Graduiertenkolleg No. 357.

188 Thomas Bülow, Michael Felsberg, Gerald Sommer

In this chapter we will introduce hypercomplex Fourier transforms. The
main motivation lies in the following two facts:

1. The basis functions of the complex Fourier transform of arbitrary dimen-
sion n are intrinsically one-dimensional.

2. The symmetry selectivity of the 1-D complex Fourier transform is not car-
ried forward completely to n-D by a complex transform.

The first point refers to the fact that the basis functions of the complex
Fourier transform look like plane waves, i.e. they vary along one orientation
while being constant within the orthogonal (n− 1)-dimensional hyperplane.
This turns out to be a severe restriction in the analysis of the local structure
of multidimensional signals. The implications of introducing transforms with
intrinsically multidimensional basis functions will be regarded in chapter 11
for the case n = 2. The second point is important since the phase concept
depends on the symmetry selectivity of the transform. E.g. the local phase
of a signal is defined as the angular phase of the complex number made
up of a real filter-response of the locally even signal component and the
imaginary filter-response of the locally odd component. Extending the phase
concept to higher dimensions we need a representation handling more than
two symmetry components separately. This second point is directly related
to the first one, since the introduction of a transform with higher symmetry
selectivity leads directly to intrinsically multidimensional basis functions.

The structure of this chapter is as follows. In section 8.2 we consider
several 1-D harmonic transforms. Among these transforms are those which
map real-valued functions to real-valued, to complex-valued, and to vector-
valued ones. We compare these transforms and thus motivate the introduction
of multidimensional transforms with values in hypercomplex algebras. In 2-
D the quaternionic Fourier transform (QFT) is such a transform. The QFT
will be introduced and compared to real- and complex-valued transforms in
section 8.3. In section 8.4 a hierarchy of 2-D transforms is introduced which is
based on the symmetry selectivity of the transforms. Furthermore the main
theorems for the QFT like the shift-theorem, Rayleigh’s theorem, and some
more are proven in this section. The definition of n-D transforms with values
in Clifford algebras, i.e. in non-commutative hypercomplex algebras, is given
in section 8.5 as an extension of the QFT. Before concluding this chapter we
give a short overview of the literature on hypercomplex Fourier transforms in
section 8.6 which seems of interest because the field is rather disjointed still.

8.2 1-D Harmonic Transforms

Before delving into the theory of hypercomplex transforms, we present some
of the well-known harmonic transforms. In this section we restrict ourselves
to 1-D signals and the corresponding 1-D transforms. The signals considered

8. Hypercomplex Fourier Transforms 189

are assumed to be square integrable and real-valued: f ∈ L2(R,R). For these
signals the transforms considered in the following are guaranteed to exist.

Definition 8.2.1 (Cosine transform and sine transform).
For f ∈ L2(R,R)

Fc(u) = 2

∫ ∞

0

f(x) cos(2πux)dx

is called the cosine transform of f . Analogously

Fs(u) = 2

∫ ∞

0

f(x) sin(2πux)dx

defines the sine transform of f .

The trigonometric transforms as defined above take no account of f to the left
of the origin. Thus, since in signal processing we are interested in complete
transforms, we modify definition 8.2.1 slightly.

Definition 8.2.2 (C-transform and S-transform). For f ∈ L2(R,R) we
define the two transforms C : L2(R,R) → L2(R,R) and S : L2(R,R) →
L2(R,R), where

C{f}(u) = C(u) =

∫

R
f(x) cos(2πux)dx

is called the C-transform of f . Analogously

S{f}(u) = S(u) =

∫

R
f(x) sin(2πux)dx

defines the S-transform of f .

Since each transform takes account either of the even or the odd part of f
neither the C- nor the S-transform is invertible. If a complete transform is
desired, both transforms have to be combined. We will show three different
combinations of the C- and the S-transform, all of which lead to complete
and thus invertible transforms.

Definition 8.2.3 (1-D Hartley transform).
Consider f ∈ L2(R,R). Then, H : L2(R,R) → L2(R,R), with

H{f}(u) = H(u) = C{f}(u) + S{f}(u)

is called the Hartley transform of f .

Definition 8.2.4 (1-D Fourier transform). Let f ∈ L2(R,R). Then, F :
L2(R,R) → L2(R,C), with

F{f}(u) = F (u) = C{f}(u)− iS{f}(u)

is the Fourier transform of f .

190 Thomas Bülow, Michael Felsberg, Gerald Sommer

Finally, we introduce a transform which results from combining the C- and
the S-transform into a vector.

Definition 8.2.5 (Trigonometric vector transform).
For any square-integrable one-dimensional real signal f ∈ L2(R,R) we define
a vector-valued transform V : L2(R,R) → L2(R,R2) by

V{f}(u) = V (u) =

(
C{f}(u)
S{f}(u)

)
.

Theorem 8.2.1. The Hartley transform, the Fourier transform, and the
trigonometric vector transform are invertible.

The main difference between the Hartley transform on the one hand and the
Fourier and the vector-valued transform on the other hand is that the Hartley
transform does not separate even signal components from odd ones while the
others do.

A question that often arises when talking about hypercomplex spectral
transforms is: Do we really need this complicated mathematics of hypercom-
plex algebras? Or can we do the same using real numbers or vectors? The
answer is: We can do the same using real numbers or vectors, but in fact us-
ing hypercomplex numbers makes things easier and more natural rather than
complicated. This is at least true for the applications we have in mind and
which we will demonstrate in the following chapters. We can partly explain
this on the example of the complex Fourier transform and the vector-valued
transform. Both transforms are complete, both transforms separate even from
odd signal components. Thus, insofar the transforms are equivalent to each
other. However, there are properties of the transforms which can be expressed
very naturally only using the complex transform. For demonstration purpose
we merely mention the shift theorem and the Hermite symmetry of a real
signal’s Fourier transform. The shift theorem of the Fourier transform de-
scribes how the transform of a signal varies when the signal is shifted. If the
signal f is shifted by d, its Fourier transform is multiplied by a phase factor
exp(−2π i du). Thus, a shift in spatial domain corresponds to multiplication
of the complex transform by a complex number. Expressing this theorem
for the vector-valued transform is of course possible. However, the algebraic
frame would have to be extended to include not only vectors but also square
matrices. The Hermite symmetry of the Fourier transform of a real signal is
expressed by F ∗(u) = F (−u) which immediately explains the redundancy of
the spectrum. There is no special notation for expressing this in vector al-
gebra. These two simple examples already explain why the complex Fourier
transform is more convenient than the vector-valued transform. Similar ar-
guments apply for the introduction of hypercomplex numbers for signals of
higher dimension.

8. Hypercomplex Fourier Transforms 191

8.3 2-D Harmonic Transforms

8.3.1 Real and Complex Harmonic Transforms

Again, we start with defining real trigonometric transforms from which we
will derive the transforms of interest in this chapter.

Definition 8.3.1.
Let f be a real two-dimensional square-integrable signal f ∈ L2(R2,R). Then
we define the transforms CC,SC, CS,SS : L2(R2,R) → L2(R2,R) by

CC{f}(u) = CC(u)=

∫

R
2
f(x) cos(2πux) cos(2πvy)d2x (8.1)

SC{f}(u) = SC(u)=

∫

R
2
f(x) sin(2πux) cos(2πvy)d2x (8.2)

CS{f}(u) = CS(u)=

∫

R
2
f(x) cos(2πux) sin(2πvy)d2x (8.3)

SS{f}(u) = SS(u)=

∫

R
2
f(x) sin(2πux) sin(2πvy)d2x. (8.4)

We could have started in def. 8.3.1 with an 2-D C- and S-transform. However,
the four transforms allow the construction of more general transforms than
the C- and S-transform, which can in fact be constructed from the transforms
of def. 8.3.1 by linear combination due to the addition theorem of the sine and
cosine function. Actually, the introduction of the four separable transforms
is crucial four the following analysis.

As it is possible to construct the 1-D Hartley- and Fourier-transform from
the C- and the S-transform, we can combine the separable trigonometric
transforms given in def. 8.3.1 in different ways to yield the well-known 2-D
spectral transforms.

Definition 8.3.2 (2-D Hartley and Fourier transform). Let f be a real
2-D signal f ∈ L2(R2,R). The 2-D Hartley transform of f is then given by

CC{f}(u) + SC{f}(u) + CS{f}(u) + SS{f}(u) = H{f}(u) = H(u).

The 2-D Fourier transform of f is

CC{f}(u) − SS{f}(u) − i(CS{f}(u) + SC{f}(u) = F{f}(u) = F (u).

Definition 8.3.3 (2-D Trigonometric vector transform).
A vector-valued transform of V : L2(R2,R) → L2(R2,R4) is given by

V{f}(u) = V (u) =

CC{f}(u)
SC{f}(u)
CS{f}(u)
SS{f}(u)

 .

192 Thomas Bülow, Michael Felsberg, Gerald Sommer

In section 8.2 we saw that it is advantageous to replace the the transform V
with values in R

2 by the Fourier transform with values in C. Actually, C and
R

2 are isomorphic as vector spaces. However, C has an additional algebraic
structure. In the following section we will introduce a 2-D transform which
adds an algebraic structure to the values of the 2-D V-transform by replacing
R

4 by H.

8.3.2 The Quaternionic Fourier Transform (QFT)

Definition 8.3.4 (Quaternionic Fourier transform). The quaternionic
Fourier transform Fq : L2(R2,R) → L2(R2,H) is given by

Fq{f}(u) = F q(u)

= CC{f}(u) − iSC{f}(u) − j CS{f}(u) + k SS{f}(u).

The three symbols i, j, and k denote the imaginary units of the algebra of
quaternions. The choice of the signs in Def. 8.3.4 will become clear below.
We shortly review the quaternion algebra in the following.

The quaternions are a special Clifford algebra, namely R0,2. Historically,
the algebra of quaternions is one of the predecessors of Clifford’s geometric
algebra. In 1843 quaternions were first introduced by Hamilton. To his honor
the algebra is commonly denoted by the letter H.

Definition 8.3.5. The set

H = {a+ bi+ cj + dk| a, b, c, d ∈ R}

together with the multiplication rules

ij = −ji = k and i2 = j2 = k2 = −1,

as well as component-wise addition and multiplications by real numbers form
an associative R-algebra, called the quaternions.

The impulse for introducing quaternions was the quest for an algebra which
was able to represent rotations in three-dimensional space. Later, when con-
sidering the polar representation of a quaternion, we will exploit this rela-
tionship between rotations and quaternions.

For later use we present some definitions and properties concerning H.
The conjugate of a quaternion

q = a+ i b+ j c+ k d

is given by

q̄ = a− i b− j c− k d.

The norm of q is given by |q| =
√
qq̄. It can be shown that H is a normed

algebra, i.e. for q1, q2 ∈ H we have |q1||q2| = |q1q2|. H forms a group under

8. Hypercomplex Fourier Transforms 193

multiplication, i.e. there exist a unit element, namely e = 1 ∈ H, and to
each q ∈ H there exists a multiplicative inverse q−1 with qq−1 = q−1q = e.
The multiplicative inverse is given by q−1 = q̄/|q|2. For the components of a
quaternion qa+ i b+ j c+ k d we sometimes write

a = Rq, b = Iq, c = J q, d = Kq.
There are three non-trivial involutions defined on H:

α : H → H, q 7→ α(q) = −iqi = a+ ib− jc− kd,

β : H → H, q 7→ β(q) = −jqj = a− ib+ jc− kd, (8.5)

γ : H → H, q 7→ γ(q) = −kqk = a− ib− jc+ kd, .

These involutions will be used in order to extend the notion of Hermite sym-
metry from complex to quaternion-valued functions. A function f : R

n → C

is called Hermite symmetric or hermitian if f(x) = f ∗(−x) for all x ∈ R
n.

The notion of Hermite symmetry of a function is useful in the context of
Fourier transforms since the Fourier transform of a real function owes this
property.

Definition 8.3.6 (Quaternionic Hermite symmetry). A function f :
R

2 → H is called quaternionic hermitian if:

f(−x, y) = β(f(x, y)) and f(x,−y) = α(f(x, y)) , (8.6)

for each (x, y) ∈ R
2.

One main subject of chapter 11 is the local quaternionic phase of a signal. In
order to define the phase we introduce the angular phase of a quaternion as
follows.

Theorem 8.3.1. Each quaternion q can be represented in the form

q = |q|eiφekψejθ with (φ, θ, ψ) ∈ [−π, π[×[−π/2, π/2[×[−π/4, π/4]. (8.7)

The triple (φ, θ, ψ) is called the angular phase of q.

The angular phase of a quaternion can be understood in terms of ro-
tations. Any 3-D rotation about the origin can be expressed in terms of
quaternions. The set of unit quaternions is the 3D unit hypersphere

S3 = {q ∈ H| |q| = 1}.
Let q ∈ S3 be given by q = cos(φ) + n sin(φ), where n is a pure unit quater-
nion. Further let x be a pure quaternion, representing the three-dimensional
vector (x1, x2, x3)

>. A rotation about the axis defined by n through the angle
2φ takes x to x′ = qxq−1. Thus, any unit quaternion q represents a rotation
in R

3.
In this interpretation the angles φ/2, θ/2 and ψ/2 are the Euler angles of

the corresponding rotation1.

1 Note that the definition of the Euler angles in not unique. The above represen-
tation corresponds to a concatenation of rotations about the y-axis, the z-axis,
and the x-axis.

194 Thomas Bülow, Michael Felsberg, Gerald Sommer

Table 8.1. How to calculate the quaternionic phase-angle representation from a
quaternion given in Cartesian representation

if ψ ∈] − π
4
, π

4
[

θ =
argj(α(q̄)q)

2

φ = argi(qβ(q̄))
2

φ→ φ− π

if ψ = ±π
4

φ→ φ+ π

q = a+ bi + cj + dk, |q| = 1

ψ = −arcsin(2(bc−ad))
2

choose

or
θ = 0

if eiφekψejθ = −q
and φ ≥ 0 and φ < 0

if eiφekψejθ = −q

φ = 0

φ = argi(qγ(q̄))
2

θ =
argj(γ(q̄)q)

2

8.4 Some Properties of the QFT

8.4.1 The Hierarchy of Harmonic Transforms

Before analyzing some properties of the QFT we present what we call the
hierarchy of harmonic transforms. The hierarchy of transforms is understood
in terms of selectivity of the transforms with respect to the specular symmetry
of an analyzed signal: Let L2

s(R
n,R) be the set of functions in L2(Rn,R) with

symmetry s ∈ Sn = {(s1, . . . , sn), si ∈ {e, o}}, where si is the symmetry
(even or odd) with respect to xi, i ∈ {1, . . . , n}. Furthermore, let T be an
n-D harmonic transform, e.g. the Fourier transform:

T : L2(Rn,R) → L2(Rn, V) (8.8)

T : L2
s(R

n,R) → L2
s(R

n, Vs). (8.9)

Since all the transforms considered here are based on trigonometric integral
kernels, the transforms preserve the symmetries of signals (see eq. (8.9)). The
values of the transformed signal functions T {f} are supposed to lie in the
real vector space V . In case of algebra-valued functions, V is the underlying
R-vector-space, e.g. R

2 for complex-valued functions. Vs is supposed to be
the smallest possible subspaces of V fulfilling (8.9). If the Vr and Vs, r, s ∈ S
intersect only in the zero-vector Vr ∩ Vs = {(0, . . . , 0)}, T is said to sep-
arate signal components with symmetry s from those of symmetry r. The
more symmetry components are separated by a transform, the higher this
transform stands in the hierarchy of harmonic transforms.

8. Hypercomplex Fourier Transforms 195

In the case n = 1 we merely have to consider the Hartley transform H,
the trigonometric vector transform V , and the Fourier transform F . For the
Hartley transform H we find V = R. The even and odd components of a
signal f are mixed in the transform H(u) since Ve = Vo = R. In contrast
the 1-D Fourier transform and the trigonometric vector transform separate
even from odd components of a real signal: While V = R

2 in these cases,
we find Ve = {(a, 0)|a ∈ R} =: P1R

2 and Vo = {(0, b)|b ∈ R} =: P2R
2, thus

Ve ∩ Vo = {(0, 0)}.
The symmetry selectivity of the Fourier transform, is also expressed by

the fact, that the Fourier transform of a real signal is hermitian, i.e. F (u) =
F ∗(−u). Thus, the real part of F is even, while its imaginary part is odd.

In the case n = 2 we consider the four transforms H, F , F q , and V . For
the Hartley and the Fourier transform we get similar results as for n = 1: For
H, we have V = R and Vs = R for all s ∈ S2. For F we find V = R

2, while
Vee = Voo = P1R

2 and Voe = Veo = P2R
2. Thus, the 2-D Fourier transform

separates the four symmetry components of a signal into two subspaces. In
this case it is more natural to write Ve = P1R

2 and Vo = P2R
2. Here the

indices e and o mean even and odd with respect to the argument vector of
an n-D function f : R

n → R. I.e. fe(x) = fe(−x) and fo(x) = −fo(−x).
Finally, for V and Fq we get V = R

4 and the four symmetry components are
completely separated:

Vee = P1R
4 (8.10)

Voe = P2R
4 (8.11)

Veo = P3R
4 (8.12)

Voo = P4R
4. (8.13)

Thus, we get a three-level hierarchy of 2-D harmonic transforms, on the
lowest level of which stands the Hartley transform. On the second level we
find the complex Fourier transform while on the highest level the quaternionic
Fourier transform and the trigonometric vector transform can be found. This
hierarchy is visualized in figure 8.1.

= k-imaginary

= j-imaginary

= real

= i-imaginary

F q
ee(u)

H(u)

F q
eo(u)F q

oe(u)

Fo(u)

F q
oo(u)

Fe(u)

Fig. 8.1. The hierarchy of 2-D harmonic transforms

196 Thomas Bülow, Michael Felsberg, Gerald Sommer

8.4.2 The Main QFT-Theorems

All harmonic transforms share some important properties. In his famous book
on the Fourier transform Bracewell states that for every theorem about the
Fourier transform there is a corresponding Hartley transform theorem ([28],
p. 391). In order to put the QFT on a theoretically firm basis we derive the
most important QFT-analogies to Fourier theorems in the following. First of
all we rewrite the definition of the QFT given in def. 8.3.4.

Theorem 8.4.1. The QFT of a 2-D signal is given by

F q(u) =

∫

R
2
e−i2πu1x1f(x)e−j2πu2x2d2x. (8.14)

Proof. Euler’s equation exp(nφ) = cos(φ) + n sin(φ) holds for any pure unit
quaternion n. Thus, it applies to the two exponentials in theorem 8.4.1 where
we have n = i and n = j, respectively. Expanding the product of the two
exponentials expressed as sums via Euler’s equality gives the expression in
def. 8.3.4. ut
For clarity we depict the basis functions of the complex Fourier transform
and the QFT in figures 8.4.2 and 8.4.2, respectively. The small images show
the real part of the basis functions in the spatial domain for fixed frequency
u. The frequency-parameter varies from image to image. Since only the real
component is shown, in case of the complex Fourier transform the imaginary
component is missing while in case of the quaternionic Fourier transform three
imaginary components exist which are not shown. It can be seen that the
basis functions of the complex Fourier transform are intrinsically 1-D. They
resemble plane waves. In contrast, the basis functions of the quaternionic
Fourier transform are intrinsically 2-D. As the complex Fourier transform
the quaternionic Fourier transform is an invertible transform.

Theorem 8.4.2 (Inverse QFT). The QFT is invertible. The transform G
given by

G{F q}(x) =

∫

R
2
ei2πuxF q(u)ej2πvyd2u (8.15)

is the inverse of the QFT.

Proof. By inserting (8.14) into the right hand side of (8.15) we get

G{F q}(x) =

∫

R
2

∫

R
2
ei2πuxe−i2πux

′

f(x′)e−j2πvy
′

ej2πvyd2u d2x′. (8.16)

Integrating with respect to u and taking into account the orthogonality of
harmonic exponential functions this simplifies to

G{F q}(u) =

∫

R
2
δ(x− x′)f(x′)δ(y − y′)d2x′

= f(x), (8.17)

thus G = F−1
q . ut

8. Hypercomplex Fourier Transforms 197

x

u

y

v

Fig. 8.2. The basis functions of the complex 2-D Fourier transform

y

x

u

v

Fig. 8.3. The basis functions of the quaternionic Fourier transform

198 Thomas Bülow, Michael Felsberg, Gerald Sommer

The convolution theorem of the Fourier transform states that convolution
of two signals in the spatial domain corresponds to their pointwise multipli-
cation in the frequency domain, i.e.

f(x) = (g ∗ h)(x) ⇔ F (u) = G(u)H(u) (8.18)

where f , g and h are two-dimensional signals and F , G and H are their
Fourier transforms. We now give the corresponding QFT theorem.

Theorem 8.4.3 (Convolution theorem (QFT)). Let f , g and h be two-
dimensional signals and F q, Gq and Hq their QFT’s. In the following g is
assumed to be real-valued, while h and consequently f may be quaternion-
valued. Then,

f(x) = (g ∗ h)(x) ⇐⇒ F q(u) = Gq· e(u)Hq(u) +Gq· o(u)β(Hq(u)).

Here β denotes one of the three non-trivial automorphisms of the quaternion
algebra as defined in (8.5). G · e and G · o are the components of G which are
even or odd with respect to the second argument.

Proof. We prove the convolution theorem by directly calculating the QFT of
the convolution integral:

F q(u) =

∫

R
2
e−2πixu

[∫

R
2
(g(x′)h(x − x′))d2x′

]
e−2πjyvd2x

=

∫

R
2
e−2πix′ug(x′)Hq(u)e−2πjy′vd2x′

=

∫

R
2
e−2πix′ug(x′) cos(−2πy′v)Hq(u)d2x′

+

∫

R
2
e−2πix′ug(x′)j sin(−2πy′v)β(Hq(u))d2x′

= Gq· e(u)Hq(u) +Gq· o(u)β(Hq(u)), (8.19)

which completes the proof. ut

Analogously it can be shown, that

F q(u) = Hq(u)Gqe · (u) + α(Hq(u))Gqo · (u).

If h is a quaternion-valued function which QFT is real-valued the convolution
theorem simplifies to

f(x) = (g ∗ h)(x) ⇒ F q(u) = Gq(u)Hq(u), (8.20)

which is of the same form as the convolution theorem of the two-dimensional
Fourier transform. This is an important fact, since later we will convolve real-
valued signals with quaternionic Gabor filters, which QFT’s are real-valued.

8. Hypercomplex Fourier Transforms 199

According to (8.20) in this case the convolution theorem can be applied as
usually.

The energy of a signal is defined as the integral (or sum in the case of
discrete signals) over the squared magnitude of the signal. Rayleigh’s theorem
states that the signal energy is preserved by the Fourier transform:

∫

R
2
|f(x)|2d2x =

∫

R
2
|F (u)|2d2u , (8.21)

where F (u) is the Fourier transform of f(x). Rayleigh’s theorem is valid for
arbitrary integer dimension of the signal. In mathematical terms Rayleigh’s
theorem states that the L2-norm of a signal is invariant under the Fourier
transform. We will show that the analogous statement for the QFT is true.

Theorem 8.4.4 (Rayleigh’s theorem (QFT)).
The quaternionic Fourier transform preserves the L2-norm of any real two-
dimensional signal f(x):

∫

R
2
|f(x)|2d2x =

∫

R
2
|F q(u)|2d2u, (8.22)

where F q(u) is the QFT of f(x).

Proof. We make use of Rayleigh’s theorem for the two-dimensional Fourier
transform. Thus, we only have to prove that

∫

R
2
|F (u)|2d2u −

∫

R
2
|F q(u)|2d2u = 0 . (8.23)

Regarding the integrands and using the addition theorems of the sine and
the cosine function we find out that

|F (u)|2 = (CC{f}(u) − SS{f}(u))2 + (SC{f}(u) + CS{f}(u))2 ,
(8.24)

while

|F q(u)|2 = CC{f}2(u) + SC{f}2(u) + CS{f}2(u) + SS{f}2(u). (8.25)

Thus, the left hand side of (8.23) can be evaluated as follows:
∫

R
2
|F (u)|2d2u −

∫

R
2
|F q(u)|2d2u

= 2

∫

R
2
(SC{f}(u)CS{f}(u) − CC{f}(u)SS{f}(u)) d2u. (8.26)

The integrand in (8.26) is odd with respect to both arguments (since S-terms
are odd). Thus, the integral is zero which completes the proof. ut

200 Thomas Bülow, Michael Felsberg, Gerald Sommer

The shift theorem of the Fourier transform describes how the transform
of a signal varies when the signal is shifted. If the signal f is shifted by
d, it is known that its Fourier transform is multiplied by a phase factor
exp(−2π id · x). How the QFT of f is affected by the shift is described by
the following theorem.

Theorem 8.4.5 (Shift theorem (QFT)). Let

F q(u) =

∫

R
2
e−i2πuxf(x)e−j2πvyd2x (8.27)

and

F qs (u) =

∫

R
2
e−i2πuxf(x − d)e−j2πvyd2x (8.28)

be the QFT’s of a 2-D signal f and a shifted version of f , respectively. Then,
F q(u) and F qs (u) are related by

F qs (u) = e−i2πud1F q(u)e−j2πvd2 . (8.29)

If we denote the phase of F q(u) by (φ(u), θ(u), ψ(u))> then, as a result of the
shift, the first and the second component of the phase undergo a phase-shift

φ(u)
θ(u)
ψ(u)

 →

φ(u) − 2πud1

θ(u) − 2πvd2

ψ(u)

 . (8.30)

Proof. Equation (8.29) follows from (8.27) and (8.28) by substituting (x−d)
with x′. If F q(u) has the polar representation

F q(u) = |F q(u)|eiφ(u)ekψ(u)ejθ(u),

we find for the polar representation of F qs (u)

F qs (u) = e−i2πud1F q(u)e−j2πvd2

= e−i2πud1 |F q(u)|eiφ(u)ekψ(u)ejθ(u)e−j2πvd2

= |F q(u)|ei(φ(u)−2πud1)ekψ(u)ej(θ(u)−2πvd2).

This proves (8.30). ut

In the shift theorem a shift of the signal in the spatial domain is considered.
The effect of such a shift are the modulation factors shown in (8.29). In the
following theorem we regard the converse situation: the signal is modulated
in the spatial domain, and we ask for the effect in the quaternionic frequency
domain.

8. Hypercomplex Fourier Transforms 201

Theorem 8.4.6 (Modulation theorem (QFT)).
Let f(x) be a quaternion-valued signal and F q(u) its QFT. Further, let fm(x)
be the following modulated version of f(x):

fm(x) = ei2πu0xf(x)ej2πv0y. (8.31)

The QFT of fm(x) is then given by

Fq{fm}(u) = F q(u − u0). (8.32)

If fm(x) is a real modulated version of f(x), i.e.

fm(x) = f(x) cos(2πxu0) cos(2πyv0), (8.33)

the QFT of fm(x) is given by

Fq{fm}(u) =
1

4
(F q(u + u0) + F q(u− u0, v + v0)

+ F q(u+ u0, v − v0) + F q(u − u0)). (8.34)

Proof. First, we consider the QFT of

fm(x) = ei2πu0xf(x)ej2πv0y.

By inserting fm into the definition of the QFT we obtain

F qm(u) =

∫

R
2
e−i2πuxfm(x)e−j2πvyd2x

=

∫

R
2
e−i2π(u−u0)xf(x)e−j2π(v−v0)yd2x

= F q(u − u0).

For the second part of the proof we introduce the abbreviation f(x) =
e−i2πuxf(x)e−j2πvy . Further, we use the notation

Iee(u0) =

∫

R
2
cos(2πu0x)f(x) cos(2πv0y)d

2x

Ioe(u0) = i

∫

R
2
sin(2πu0x)f(x) cos(2πv0y)d

2x

Ieo(u0) = j

∫

R
2
cos(2πu0x)f(x) sin(2πv0y)d

2x

Ioo(u0) = k

∫

R
2
sin(2πu0x)f(x) sin(2πv0y)d

2x,

where Iee(u0) is even with respect to both u0 and to v0, Ioe(u0) is odd with
respect to u0 and even with respect to v0 and so on. We can then write

202 Thomas Bülow, Michael Felsberg, Gerald Sommer

1

4
(F q(u + u0) + F q(u− u0, v + v0) (8.35)

+F q(u+ u0, v − v0) + F q(u − u0))

=
1

4
(Iee(u0) + Ioe(u0) + Ieo(u0) + Ioo(u0))

+
1

4
(Iee(−u0, v0) + Ioe(−u0, v0) + Ieo(−u0, v0) + Ioo(−u0, v0))

+
1

4
(Iee(u0,−v0) + Ioe(u0,−v0) + Ieo(u0,−v0) + Ioo(u0,−v0))

+
1

4
(Iee(−u0) + Ioe(−u0) + Ieo(−u0) + Ioo(−u0))

= Iee(u0) = Fq{cos(2πu0x)f(x) cos(2πv0y)}, (8.36)

which completes the proof. ut

Theorem 8.4.7 (Derivative theorem (QFT)).
Let f be a real two-dimensional signal, F q its QFT, and n = p+ r, p, r ∈ N.
Then

Fq
{

∂n

∂xp∂yr
f

}
(u) = (2π)n(iu)pF q(u)(jv)r.

Proof. We prove the theorem for (p, r) = (1, 0) and (p, r) = (0, 1) starting
with the first case. We have

f(x) =

∫

R
2
ei2πuxF q(u)ej2πvy . (8.37)

Thus, it follows that

∂

∂x
f(x) =

∂

∂x

∫

R
2
ei2πuxF q(u)ej2πvy =

∫

R
2
ei2πux(i2πuF q(u))ej2πvy .

Therefore, we have

Fq
{
∂

∂x
f

}
(u) = i2πuF q(u). (8.38)

Analogously we derive

∂

∂y
f(x) =

∂

∂y

∫

R
2
ei2πuxF q(u)ej2πvy =

∫

R
2
ei2πux(F q(u)j2πv)ej2πvy ,

which shows that

Fq
{
∂

∂y
f

}
(u) = 2πF q(u)(jv). (8.39)

For general derivatives the theorem follows from successive application of first
order derivatives. ut

8. Hypercomplex Fourier Transforms 203

Theorem 8.4.8. The QFT of a real two-dimensional signal f is quater-
nionic hermitian.

Proof. We have shown before that the QFT of a real signal has the form

F q(u) = F qee(u) + iF qoe(u) + jF qeo(u) + kF qoo(u).

Applying the automorphisms α and β yields

α(F q(u)) = F qee(u) + iF qoe(u) − jF qeo(u) − kF qoo(u)

= F qee(u,−v) + iF qoe(u,−v) + jF qeo(u,−v) + kF qoo(u,−v)
= F q(u,−v) (8.40)

β(F q(u)) = F qee(u) − iF qoe(u) + jF qeo(u) − kF qoo(u)

= F qee(−u, v) + iF qoe(−u, v) + jF qeo(−u, v) + kF qoo(−u, v)
= F q(−u, v), (8.41)

which proves the theorem according to definition 8.3.6. ut
It can often happen that a signal undergoes an affine transformation in the

spatial domain, which can be written as f(x) → f(Ax+b), where b ∈ R
2 and

A ∈ Gl(2,R). In these cases it is desirable to know how this transformation
affects the frequency representation F q of f . The effect of the shift by b

is already known from the shift theorem. It remains to work out how the
frequency representation is transformed under a linear transformation of the
spatial domain: f(x) → f(Ax). This is done by the following theorem.

Theorem 8.4.9 (Affine theorem (QFT)).
Let f(x) be a real 2D signal and F q(u) = Fq{f(x)}(u) its QFT. Further, let
A be the real regular 2 × 2 matrix

A =

(
a b
c d

)
, with det(A) = ad− bc 6= 0.

The QFT of f(Ax) is then given by

Fq{f(Ax)}(u) =
1

2 det(A)
(F q(det(B)B−1>u) + F q(B>tu) (8.42)

+ i(F q(det(B)B−1>u) − F q(B>tu))j) .

where we introduced the matrix

B =

(
a′ b′

c′ d′

)
=:

A

det(A)
.

Furthermore, A> denotes the transpose of A and At the transpose of A ac-
cording to the minor diagonal:

A =

(
a b
c d

)
⇒ A> =

(
a c
b d

)
, At =

(
d b
c a

)
.

204 Thomas Bülow, Michael Felsberg, Gerald Sommer

Proof. The inverse of A is given by

A−1 =
1

det(A)

(
d −b
−c a

)
.

For the transformed coordinates we introduce the notation

Ax = x′ =

(
x′

y′

)
=

(
ax+ by
cx+ dy

)
⇒
(
x
y

)
=

1

det(A)

(
dx′ − by′

−cx′ + ay′

)
.

Now we can express Fq{f(Ax)}(u) using the coordinates x′ in the following
way:

Fq{f(Ax)}(u) =

∫

R
2
e−i2πuxf(Ax)e−j2πvyd2x

=
1

det(A)

∫

R
2
e−i2πu(d′x′−b′y′)f(x′)e−j2πv(−c

′x′+a′y′)d2x′

=
1

det(A)

∫

R
2
e−i2πu(d′x−b′y)f(x)e−j2πv(−c

′x+a′y)d2y.

In order to complete the proof we still have to show that

e−i2πu(d′x−b′y)e−j2πv(−c
′x+a′y) =

1

2
(e−i2πx(d

′u+c′v)e−j2πy(b
′u+a′v)

+e−i2πx(d
′u−c′v)e−j2πy(−b

′u+a′v)

−iei2πx(−d′u+c′v)e−j2πy(−b
′u+a′v)j

+iei2πx(−d
′u−c′v)e−j2πy(b

′u+a′v)j) .

For a more compact form of (8.43) we introduce the abbriviations

α = 2πvya′, β = 2πuyb′, γ = 2πvxc′, δ = 2πuxd′

and we get the following expression:

e−i(δ−β)e−j(−γ+α) =
1

2

(
ei(−δ−γ)ej(−β−α) + ei(−δ+γ)ej(β−α) (8.43)

−kei(δ−γ)ej(β−α) + kei(δ+γ)ej(−β−α)
)
.

We evaluate the right-hand side:

1

2

(
ei(−δ−γ)ej(−β−α) + ei(−δ+γ)ej(β−α) (8.44)

−ie−i(δ−γ)ej(β−α)j + ie−i(δ+γ)ej(−β−α)j
)

=
1

2
e−iδ

(
e−iγe−jβ + eiγejβ − ieiγejβj + ie−iγe−jβj

)
e−jα

= e−iδeiβejγe−jα.

Obviously, this final result equals the left-hand side of 8.43 which completes
the proof. ut

8. Hypercomplex Fourier Transforms 205

Example 1. As an example we will demonstrate the effect of a rotation
of the original signal. The transformation matrix A is then given by

A =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
⇒ det(A) = 1, B = At = A, (8.45)

A> = A−1 =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
. (8.46)

Fq{f(Ax)}(u) =
1

2
(F q(Au) + F q(A−1u)

+ i(F q(Au) − F q(A−1u))j) . (8.47)

Example 2. Here we regard a pure dilation of the original signal with dif-
ferent scaling factors for the x-axis and the y-axis. In this case the transfor-
mation matrix takes the form:

A =

(
a 0
0 b

)
⇒ det(A) = ab, (8.48)

B = B> =

(
1/b 0
0 1/a

)
, Bt =

1

ab
B−1 =

(
1/a 0
0 1/b

)
. (8.49)

Fq{f(Ax)}(u) =
1

2ab

(
F q
(u
a
,
v

b

)
+ F q

(u
a
,
v

b

)
(8.50)

+i
(
F q
(u
a
,
v

b

)
− F q

(u
a
,
v

b

))
j
)

(8.51)

=
1

ab
F q
(u
a
,
v

b

)
. (8.52)

This result has the same form as the analogue result for the 2-D Fourier
transform. The affine theorem of the Hartley transform [29] is like the ver-
sion for the QFT more complicated than the affine theorem of the Fourier
transform.

8.5 The Clifford Fourier Transform

Above we developed the QFT which applies to images or other 2-D signals.
When one wants to deal with volumetric data, image sequences or any other
signals of higher dimensions, the QFT has to be extended. For this reason we
introduce the Clifford Fourier transform for signals of arbitrary dimension n.
Which Clifford algebra has to be used depends on the signal’s dimension n.

We recall the QFT in the form given in theorem 8.4.1:

F q(u) =

∫

R
2
e−i2π u1x1f(x)e−j2π u2x2 .

As mentioned earlier, the position of the signal f between the exponential
functions is of no importance as long as f is real-valued.

206 Thomas Bülow, Michael Felsberg, Gerald Sommer

Definition 8.5.1 (Clifford Fourier transform).
The Clifford Fourier transform Fc : L2(Rn,R0,n) → L2(Rn,R0,n) of an n–
dimensional signal f(x) is defined by

F c(u) =

∫

R
n
f(x)

n∏

k=1

exp(−ek2πukxk)dnx . (8.53)

where u = (u1, u2, . . . , un), x = (x1, x2, . . . , xn) and e1, e2, . . . , en are the
basis vectors of the Clifford algebra R0,n as defined in chapter 1. The product
is meant to be performed in a fixed order:

∏n
j=1 aj = a1a2 · · ·an.

For real signals and n = 2 the Clifford Fourier transform is identical to the
QFT. For n = 1 it is the complex Fourier transform.

Theorem 8.5.1 (Inverse Clifford Fourier transform). The inverse
Clifford Fourier transform is obtained by

F−1
c {F c}(x) =

∫

R
n
F c(u)

n−1∏

k=0

exp(en−k2πun−kxn−k)d
nu. (8.54)

Proof. Inserting term (8.53) into the formula (8.54) yields

∫

R
2n
f(x′)

n∏

j=1

exp(−ej2πujx′j)dnx′
n−1∏

k=0

exp(en−k2πun−kxn−k)d
nu

=

∫

R
n
f(x′)δn(x − x′)dnx′

= f(x),

where the orthogonality of the harmonic exponential functions is used. ut

In chapter 9 we will introduce a corresponding transform using an n-D com-
mutative hypercomplex algebra.

8.6 Historical Remarks

Although hypercomplex spectral signal representations are of special interest
for image processing tasks, the Clifford Fourier transform does not seem to
have attracted a lot of attention yet. The reason may lie in the fact that
articles on the subject are spread in the literature of many different fields
and are not easily accessible. For this reason it is not surprising that the
authors of this chapter first thought to have ”invented” the QFT and the
Clifford Fourier transform in [35]. Since the literature on the QFT is rather
disjointed the following review may be of interest to researchers in this field.

The first appearance we could trace the QFT back to is an article by
the Nobel laureate R.R. Ernst et al. which appeared in 1976 [72]. The scope

8. Hypercomplex Fourier Transforms 207

of this work is 2-D NMR spectroscopy. In the analysis of molecular systems
transfer functions of perturbed systems are recorded, which leads to 2-D
spectra. Ernst shows that for the analysis of so called quadruple phase 2-D
Fourier transform spectroscopy the introduction of a hypercomplex Fourier
transform is necessary. The transform introduced in [72] could be the same
as the QFT. However, the algebra involved is not completely defined: The
elements i and j are given as imaginary units i2 = j1 = −1, and a new
element ji is introduced. There is nothing said about (ji)2 and on whether
ji equals ij or not. This work has again been reported in [73] and [59] where
the used algebra is specified to a commutative algebra with ij = ji.

In mathematical literature the Clifford Fourier transform was introduced
by Brackx et al. [30] in the context of Clifford analysis. This branch of math-
ematics is concerned with the extension of results of the theory of complex
functions to Clifford-valued functions.

In 1992 the QFT was reinvented by Ell for the analysis of 2-D partial-
differential systems [69, 70]. This work was taken up and adapted to the use
in color image processing by Sangwine [203, 204, 205]. Sangwine represents
an RGB color image as a pure quaternion-valued function

f(x) = i r(x) + j g(x) + k b(x)

which can be transformed into the frequency domain by the QFT. This al-
lows to transform color images holistically instead of transforming each color
component separately using a complex Fourier transform. A more extensive
discussion of algebraic embeddings of color images can be found in Chap. 7
of this book.

The discrete QFT or DQFT has been used by Chernov in order to develop
fast algorithms for the 2-D discrete complex Fourier transform [40]. Chernov
reduces the size of a real image by assigning to each pixel a quaternion made
up from four real pixel-values of the original image. This method is called
overlapping. The shrunk image is transformed by the DQFT. The result is
expanded to the DFT of the input signal using simple automorphisms of the
quaternion algebra.

8.7 Conclusion

The quaternionic Fourier transform (QFT) has been introduced as an alter-
native to the 2-D complex Fourier transform. It has been shown that the
main theorems of the complex Fourier transform have their analogues in case
of the QFT. An n-D Clifford Fourier transform has been introduced as an
alternative to the complex Fourier transform. It has been shown that there
is a hierarchy of harmonic transforms. Actually, all lower level transforms
can be easily derived from the higher level transforms. Whereas here mainly
theoretical considerations were made, we will demonstrate the impact of the
quaternionic Fourier transform on image processing in chapter 11.

208 Thomas Bülow, Michael Felsberg, Gerald Sommer

9. Commutative Hypercomplex Fourier

Transforms of Multidimensional

Signals∗

Michael Felsberg, Thomas Bülow, and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

9.1 Introduction

In Chap. 8 the approach of the Clifford Fourier transform (CFT) and of
the quaternionic Fourier transform (QFT) have been introduced. We have
shown that the CFT yields an extended and more efficient multi-dimensional
signal theory compared to the theory based on complex numbers. Though the
CFT of a real signal does not include new information (the complex Fourier
transform is a complete transform in the mathematical sense), the Clifford
spectrum is a richer representation with respect to the symmetry concepts
of n-D signals than the complex spectrum. Furthermore, the possibility of
designing Clifford-valued filters represents a fundamental extension in multi-
dimensional signal theory. Our future aim is to develop principles for the
design of hypercomplex filters. The first method is introduced in Chap. 11,
where the quaternionic Gabor filters are explored.

One main property of Clifford algebras is the non-commutativity of the
Clifford product. This property is impractical in some cases of analytic and
numerical calculations. Some theorems are very complicated to formulate in

∗ This work has been supported by German National Merit Foundation and by
DFG Grants So-320-2-1, So-320-2-2, and Graduiertenkolleg No. 357.

210 Michael Felsberg, Thomas Bülow, Gerald Sommer

higher dimensions, e.g. the affine theorem (The. 8.4.9) and the convolution
theorem (The. 8.4.3). Similar problems occur in the derivation of fast algo-
rithms (Chap. 10), because for the decimation of space method, the exponen-
tial functions need to be separated. Due to non-commutativity, the additional
exponential terms cannot be sorted, and hence, no closed formulation of the
partial spectra is obtained.

Therefore, we have generalized the approach of Davenport [58], who in-
troduces ’a commutative hypercomplex algebra with associated function the-
ory‘. Davenport uses the C2 algebra (commutative ring with unity) in order
to extend the classical complex analysis for treating four-dimensional vari-
ables, which are similar to quaternions. Ell [69] applies this approach to the
quaternionic Fourier transform in order to simplify the convolution theorem.

We have picked up this idea to develop fast algorithms for the CFT
(Chap. 10). For the separation of the CFT-kernel, we need a commutative
algebra. Therefore, we have designed a new transform which is based on a dif-
ferent algebra, but yields the same spectrum as the CFT for real signals. For
hypercomplex valued signals the spectrum differs from the Clifford spectrum.

Though it seems that the commutative hypercomplex Fourier transform
(HFT) is no more than a tool for easier or faster calculation of the CFT, we
will show in this chapter, that the HFT has the same right to exist as the
CFT, because neither transform can be considered to be the correct extension
of the complex Fourier transform (both yield the complex FT in the 1-D case).
Up to now, there is no fundamental reason that determines which transform
to use. Therefore, we study the properties of both transforms.

In this chapter we show several important properties of the algebra that
generalizes Davenport’s approach. After introducing the algebraic framework,
we define the HFT and prove several theorems. We do this to motivate the
reader to make his own experiments. This chapter together with Chap. 10
should form a base for further analytic and numerical investigations.

9.2 Hypercomplex Algebras

In this section, we define the algebraic framework for the rest of the chapter.
The term hypercomplex algebra is explained and a specific four-dimensional
algebra is introduced.

9.2.1 Basic Definitions

In general, a hypercomplex algebra is generated by a hypercomplex number
system and a multiplication which satisfies the algebra axioms (see [129]).

To start with, we define what is meant by the term hypercomplex number
(see also Cha. 7):

9. Commutative Hypercomplex Fourier Transforms 211

Definition 9.2.1 (Hypercomplex numbers). A hypercomplex number of
dimension n is an expression of the form

a = a0 + a1i1 + a2i2 + . . .+ an−1in−1 (9.1)

where aj ∈ R for all j ∈ {0, . . . , n−1} and ij (j ∈ {1, . . . , n−1}) are formal
symbols (often called imaginary units). Two hypercomplex numbers

a = a0 + a1i1 + . . .+ an−1in−1 and

b = b0 + b1i1 + . . .+ bn−1in−1

are equal if and only if aj = bj for all j ∈ {0, . . . , n− 1}.
Take, for example, n = 2. In this case we obtain numbers of the form

a0 + a1i1 – this could be the complex numbers, dual numbers or double
numbers. If n = 4 we obtain numbers of the form a0 +a1i1 +a2i2 +a3i3. This
could be the quaternions or the commutative algebra which we will introduce
at the end of this section.

Definition 9.2.2 (Addition, subtraction, and multiplication). The
addition of two hypercomplex numbers a and b is defined by

a + b = (a0 + a1i1 + . . .+ an−1in−1) + (b0 + b1i1 + . . .+ bn−1in−1)

= (a0 + b0) + (a1 + b1)i1 + . . .+ (an−1 + bn−1)in−1 (9.2)

and their subtraction is defined by

a − b = (a0 + a1i1 + . . .+ an−1in−1) − (b0 + b1i1 + . . .+ bn−1in−1)

= (a0 − b0) + (a1 − b1)i1 + . . .+ (an−1 − bn−1)in−1 . (9.3)

The multiplication of two hypercomplex numbers is defined by an
(n− 1) × (n− 1) multiplication table with the entries

iαiβ = pαβ0 + pαβ1 i1 + . . .+ pαβn−1in−1 (9.4)

where α, β ∈ {1, . . . , n− 1}. The product

ab = (a0 + a1i1 + . . .+ an−1in−1)(b0 + b1i1 + . . .+ bn−1in−1) (9.5)

is evaluated by using the distributive law and the multiplication table.

The sum and the difference of two hypercomplex numbers are calculated
like in an n-dimensional vectorspace with the base vectors 1, i1, i2, . . . , in−1.
The product is more general than a vectorspace product: we can embed the
commonly used products in this hypercomplex product.

If we, for example, consider the scalar product according to the Euclidean
norm, then we have pαβj = 0 for j 6= 0 and pαβ0 = 1 for α = β.

Standard algebra products are covered by the hypercomplex product, too.
For example, the product of the algebra of complex numbers is obtained for
n = 2, p11

0 = −1 and p11
1 = 0. The quaternion product is obtained by the

following table 9.1. According to this table, we have pjj0 = −1 (j = 1, 2, 3),

pjjk = 0 (j = 1, 2, 3, k = 1, 2, 3), etc..

212 Michael Felsberg, Thomas Bülow, Gerald Sommer

Table 9.1. Multiplication table of the quaternion algebra

i1 i2 i3

i1 −1 i3 −i2
i2 −i3 −1 i1
i3 i2 −i1 −1

A hypercomplex number system of dimension n consists of all numbers
of the form (9.1) of dimension n and the operations which are defined in
(9.2),(9.3), and (9.5).

A hypercomplex number system contains even more structure than it
seems so far. In the following theorem, we show that a hypercomplex number
system forms an associative algebra.

Theorem 9.2.1 (Hypercomplex algebra). All hypercomplex number sys-
tems fulfill the following properties and therefore they are associative algebras:

1. the product is bilinear, i.e.

(au)v = a(uv) = u(av) (9.6a)

(v + w)u = vu + wu (9.6b)

u(v + w) = uv + uw , (9.6c)

2. and the product is associative, i.e.

u(vw) = (uv)w , (9.7)

where u,v,w are hypercomplex numbers and a ∈ R.

Proof. The theorem is proved by elementary calculations using Def. 9.2.2. ut
Therefore, complex numbers and their product form the algebra of com-

plex numbers, the quaternions and their product form the algebra of quater-
nions, etc..

9.2.2 The Commutative Algebra H2

In the following we consider a further, specific four-dimensional hypercom-
plex algebra, which is commutative and somehow similar to the algebra of
quaternions. The new algebra denoted by H2 is formed by the space

span(1, e1 ∧ e3, e2 ∧ e4, e1 ∧ e3 ∧ e2 ∧ e4)

and the geometric product. Consequently, H2 is a subalgebra of R
+
4,0 and we

have the following multiplication table (Tab. 9.2):
The same multiplication table is obtained for the two-fold tensor product

of the complex algebra (C ⊗ C). In this case, we have the basis elements
{1 ⊗ 1, i ⊗ 1, 1 ⊗ i, i ⊗ i}. Since H2 and C ⊗ C have the same dimension

9. Commutative Hypercomplex Fourier Transforms 213

Table 9.2. Multiplication table of H2

e1 ∧ e3 e2 ∧ e4 e1 ∧ e3 ∧ e2 ∧ e4

e1 ∧ e3 −1 e1 ∧ e3 ∧ e2 ∧ e4 −e2 ∧ e4

e2 ∧ e4 e1 ∧ e3 ∧ e2 ∧ e4 −1 −e1 ∧ e3

e1 ∧ e3 ∧ e2 ∧ e4 −e2 ∧ e4 −e1 ∧ e3 1

and the multiplication tables1 are the same, H2 and C⊗C are isomorphic as
algebras by the mapping f2 : H2 → C⊗C and f(1) = 1⊗1, f(e1∧e3) = i⊗1,
f(e2 ∧ e4) = 1 ⊗ i, and f(e1 ∧ e3 ∧ e2 ∧ e4) = i⊗ i.

Since the multiplication table is symmetric with respect to the major
diagonal, the algebra H2 is commutative. Furthermore, Tab. 9.2 is equal
to the multiplication table of the quaternion algebra (Tab. 9.1) in the cells
(1, 1), (1, 2), (1, 3), (2, 2) and (3, 2). In particular, we obtain for (a+ib)(c+jd)
in the quaternion algebra the same coefficients as for (a+be1∧e3)(c+de2∧e4)
in the algebra H2:

(a+ ib)(c+ jd) = ac+ ibc+ jad+ kbd (9.8a)

(a+ be1 ∧ e3)(c+ de2 ∧ e4) = ac+ bce1 ∧ e3 + ade2 ∧ e4

+ bde1 ∧ e3 ∧ e2 ∧ e4 . (9.8b)

From this fact we will conclude The. 9.3.1 about the commutative hypercom-
plex Fourier transform (HFT2) of a real signal in the following section.

9.3 The Two-Dimensional Hypercomplex Fourier

Analysis

In this section, we firstly define an integral transform which is based on
the commutative algebra H2 and acts on hypercomplex 2-D signals. This
transform which is denoted HFT2 yields the same spectrum as the QFT
(8.3.4) for real signals. We reformulate the affine theorem, the convolution
theorem, the symmetry theorem, and the shift theorem. Additionally, we
prove that the algebra H2 and the two-fold Cartesian product of the complex
numbers are isomorphic as algebras (see also [58]).

9.3.1 The Two-Dimensional Hypercomplex Fourier Transform

We introduce the HFT2 according to Ell [69] in the following. Furthermore,
we make some fundamental considerations about this transform.

Definition 9.3.1 (Commutative hypercomplex Fourier transform).
The two-dimensional commutative hypercomplex Fourier transform (HFT2)
of a two-dimensional signal f(x, y) is defined by

1 Note that both algebras are multilinear.

214 Michael Felsberg, Thomas Bülow, Gerald Sommer

F h(u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2π(xue1∧e3+yve2∧e4) dx dy . (9.9)

Note that due to the commutativity of H2 we have the identity

e−2π(xue1∧e3+yve2∧e4) = e−2πxue1∧e3e−2πyve2∧e4 .

The commutativity implies that all commutator terms in the Campbell-
Hausdorff formula (see e.g. [211]) vanish.

As mentioned at the end of the last section, the product of two quater-
nions and the product of two H2 elements are equal if the multiplication in
the algebra H is ordered wrt. the index set of the basis. That means that
no product of the form eiej with i ≥ j appears. This is the case for the
quaternionic Fourier transform of real signals:

Theorem 9.3.1 (Correspondence of HFT2 and QFT). The 2-D com-
mutative hypercomplex Fourier transform of a real 2-D signal f(x, y) yields
the same coefficients as the QFT of f(x, y).

Proof. The coefficient of the spectra are the same, because all multiplications
have the form (9.8a,b). ut

In particular, we can decompose both transforms into four real-valued
transforms: a cos-cos-transform, a cos-sin-transform, a sin-cos-transform, and
a sin-sin-transform. Then, we can take the real valued transforms as coeffi-
cients of the QFT and the HFT2 spectrum (see Def. 8.3.1):

F q = CC{f} − SC{f}i− CS{f}j + SS{f}k (9.10a)

F h = CC{f} − SC{f}e1 ∧ e3 − CS{f}e2 ∧ e4

+SS{f}e1 ∧ e3 ∧ e2 ∧ e4 . (9.10b)

The HFT2 (9.9) yields a geometric interpretation concerning the spatial
and the frequency domain. If we span the spatial domain by e1 and e2,
i.e. each point is represented by xe1 + ye2 = x + y, and same with the
frequency domain (ue3 + ve4 = u + v), we can rewrite (9.9) as

F h(u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e2π(u∧x+v∧y) dx dy . (9.11)

Both, the spatial and the frequency domain are 2-D vectorspaces, which are
orthogonal with respect to each other (see Fig. 9.1).

The hypercomplex spectrum includes a scalar part, two bivector parts
(e1∧e3 and e2∧e4) and a four-vector part. Therefore, the spectral values are
denoted in the same algebra as the coordinates! This is an obvious advantage
of Def. 9.11 and therefore, we use this definition for proving theorems in the
following. Nevertheless, all results can easily be transferred to the Def. 9.9.

One property which is important in signal theory is the uniqueness of a
transform and the existence of an inverse transform. Otherwise, the identifi-
cation and manipulation of the signal in frequency representation would not
be possible.

9. Commutative Hypercomplex Fourier Transforms 215

spatial domain frequency domain

e

e
e

e

1

2

3

4

Fig. 9.1. The HFT2 visual-
ized

Theorem 9.3.2 (The HFT2 is unique and invertible). The HFT2 of
a signal f is unique and invertible.

Proof. In order to show the uniqueness, we prove that the kernel of the trans-
form consists of orthogonal functions. We do so by reducing the exponential
function to sine and cosine functions:

e2π(u∧x+v∧y) = e2πu∧xe2πv∧y

=
(
cos(2πux) − e1 ∧ e3 sin(2πux)

)(
cos(2πvy) − e2 ∧ e4 sin(2πvy)

)

Since the sine and cosine functions are orthogonal, the HFT2 is unique and
furthermore, the inverse transform reads

f(x, y) =

∫

R2

F h(u, v)e2π(x∧u+y∧v) du dv ,

which can be verified by a straightforward calculation. ut
One nice property of the HFT2 is the fact that both, the transform and

the inverse transform, are formulated in the same way2. The minus sign which
we have for the complex Fourier transform and for the QFT can be omitted
for the HFT2.

If we recall the isomorphism between H2 and C ⊗ C, we can rewrite the
HFT2-kernel as

e−2π(xue1∧e3+yve2∧e4) ∼= e−i2πxu ⊗ e−i2πyv . (9.12)

Consider now a real-valued, separable signal f(x, y) = fx(x)fy(y). Then, due
to multilinearity, the HFT2 of f(x, y) itself can be written as

2 We know such property from the Hartley transform.

216 Michael Felsberg, Thomas Bülow, Gerald Sommer

f(x, y) ◦−• F h(u, v) ∼= F x(u) ⊗ F y(v) (9.13)

where F x(u) is the 1-D Fourier transform of the signal f(x, y) wrt. the x-
coordinate and F y(v) accordingly to the y-coordinate.

This notation introduces another interpretation of the HFT2: we obtain
the HFT2 of a real, separable signal by the tensor product of the complex
1-D spectra. Note that this is not valid for hypercomplex signals, because in
that case we cannot exchange the tensor product and the product between
signal and kernel3. Nevertheless, since the coefficients of the quaternionic
spectrum and the H2 spectrum of a real signal are the same, the QFT of
a separable signal can be interpreted as the tensor product of complex 1-D
Fourier transforms wrt. to x and y as well.

9.3.2 Main Theorems of the HFT2

In this section, we consider some theorems for the HFT2. For the QFT, some
of the main theorems are more complicated compared to those of the complex
FT. We will show that this drawback is less crucial for the HFT2.

In the shift theorem of the QFT (Eq. 8.29) one exponential factor moves
to the left (the i term) and one moves to the right (the j term). This is
necessary since the algebra of quaternions is not commutative. But what can
we do for Clifford transforms of higher dimension? There are only two ways of
multiplication: one from the left and one from the right. The great advantage
of commutative algebras is the fact that neither the order nor the direction
of multiplication is relevant. Hence, the shift theorem for the HFT yields two
exponential factors which can be placed arbitrarily or even composed in one
exponential factor:

Theorem 9.3.3 (Shift theorem). Let F h(u, v) be the HFT2 of a signal
f(x, y). Then, the HFT2 of the signal f ′(x, y) = f(x − ξ, y − η) reads

F h
′
(u, v) = e2π(u∧ξ+v∧η)F h(u, v) where ξ = ξe1 and η = ηe2.

Proof. We prove this theorem by straightforward calculation:

F h
′
(u, v)

=

∫

R2

f(x− ξ, y − η) e2π(u∧x+v∧y) dx dy

x−ξ=x′

y−η=y′

=

∫

R2

f(x′, y′) e2π(u∧x′+v∧y′)e2π(u∧ξ+v∧η) dx dy

= e2π(u∧ξ+v∧η)F h(u, v)

Hence, the theorem is proved. ut
3 Note that, since we use the field � , the multilinearity is only valid for real factors.

9. Commutative Hypercomplex Fourier Transforms 217

The shift theorem of the complex FT is closely related to the modulation
theorem. The relation is even more general: we have a so-called symmetry
theorem, which yields the Fourier transform of a signal simply by the inverse
Fourier transform of the signal. We can formulate this theorem for the HFT2
as well:

Theorem 9.3.4 (Symmetry of the HFT2). Let f(x, y) be a H2-valued

signal and F h(u, v) its HFT2. Then, the HFT2 of F h
†
(x, y) reads f †(u, v)

(where ·† indicates the reversion of the underlying geometric algebra).

Proof. In this proof we notate the exponents in the form uxe3 ∧ e1 instead

of u ∧ x. The HFT2 of F h
†
(x, y) reads

∫

R2

F h
†
(x, y) e2π(uxe3∧e1+vye4∧e2) dx dy

=

∫

R4

(f(u′, v′) e2π(u′xe3∧e1+v
′ye4∧e2))† du′dv′ e2π(uxe3∧e1+vye4∧e2) dx dy

=

∫

R2

f †(u′, v′)

∫

R2

e2π(u′xe1∧e3+v′ye2∧e4) e2π(uxe3∧e1+vye4∧e2) dx dy du′dv′

=

∫

R2

f †(u′, v′)δ(u− u′)δ(v − v′) du′dv′ = f †(u, v)

Note that in the commutative algebra H2 the order of the factors is not
inverted by the reversion ·† (so the reversion is an automorphism in H2). ut

The shift theorem together with the symmetry theorem yield the modu-
lation theorem of the HFT2 which we do not formulate explicitly.

Up to now there is no significant improvement in the formulation of the
theorems, although some formulation might be more elegant. However, the
next theorem shows that in the commutative algebra a closed formulation of
the convolution theorem is possible. The 2-D convolution is defined as follows.

Definition 9.3.2 (2-D convolution). Let f(x, y), g(x, y) be two 2-D sig-
nals. The 2-D convolution f ∗ g is then defined by

(f ∗ g)(x, y) =

∫

R2

f(ξ, η)g(x− ξ, y − η) dξ dη . (9.14)

In contrast to the convolution theorem of the QFT, the convolution the-
orem of the HFT2 can be formulated similarly to the convolution theorem of
the complex Fourier transform.

Theorem 9.3.5 (Convolution theorem of the FHT2). Let f(x, y) and
g(x, y) be two 2-D signals and let F h(u, v) and Gh(u, v) be their HFT2s,
respectively. Then, the HFT2 of f ∗ g is equivalent to the pointwise product
of F h and Gh, i.e.

∫

R2

(f ∗ g)(x, y)e2π(u∧x+v∧y) dx dy = F h(u, v)Gh(u, v) . (9.15)

218 Michael Felsberg, Thomas Bülow, Gerald Sommer

Proof. We obtain by straightforward calculation

∫

R2

(f ∗ g)(x, y)e2π(u∧x+v∧y) dx dy

=

∫

R2

∫

R2

f(ξ, η)g(x− ξ, y − η) dξ dη e2π(u∧x+v∧y) dx dy

x−ξ=x′

y−η=y′
=

∫

R2

∫

R2

f(ξ, η)g(x′, y′)e2π(u∧ξ+v∧η)e2π(u∧x′+v∧y′) dξ dη dx′dy′

= F h(u, v)Gh(u, v)

and therefore, the theorem is proved. ut

Of course, the convolution defined in Def. 9.3.2 can be formulated for
discrete signals as well. Note that we obtain the cyclic convolution by the
pointwise product in the frequency domain and not the linear convolution.
If the latter is needed, the signal must be filled up by zeroes.

9.3.3 The Affine Theorem of the HFT2

The next theorem states an isomorphism between H2 and the two-fold (Car-
tesian) product of the complex algebra (C2, see also [58]). Though this the-
orem seems to be a pure mathematical result, it will be important for the
subsequent theorems.

Theorem 9.3.6 (H2
∼= C2). The commutative hypercomplex algebra H2 is

isomorphic to the two-fold (Cartesian) product of the complex algebra C2.
For an arbitrary element Z = a+ be1 ∧ e3 + ce2 ∧ e4 + de1 ∧ e3 ∧ e2 ∧ e4 we
obtain the representation (ξ, η) =

(
(a− d)+ i(b+ c) , (a+ d)+ i(b− c)

)
∈ C2.

Proof. Consider the matrix representations of Z ∈ H2 and z = (x+ iy) ∈ C

Z ∼= a

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ b

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

+ c

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

+ d

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

z ∼= x

[
1 0
0 1

]
+ y

[
0 −1
1 0

]

which can both easily be verified to be isomorphic.
The eigenvectors of the matrix representation of Z read

e1 =

1
−i
−i
−1

 e2 =

1
i
i
−1

 e3 =

1
−i
i
1

 e4 =

1
i
−i
1

 (9.16)

9. Commutative Hypercomplex Fourier Transforms 219

and since these eigenvectors are independent of the coefficients a, b, c, d, they
yield an eigenvalue transform which turns the matrix representation of any
Z into diagonal form. The eigenvalues read

ξ = (a− d) + i(b+ c) ξ∗ = (a− d) − i(b+ c)

η = (a+ d) + i(b− c) η∗ = (a+ d) − i(b− c)

and therefore, the matrix multiplication yields a pointwise product on (ξ, η).
ut

Note 9.3.1. The proof of The. 9.3.6 is only sketched because it is a special
case of The. 9.4.1. In the following, we use this theorem in a less formal
way, since we replace the i of the complex numbers by e1 ∧ e3 in the fol-
lowing. The reason for this is that we can write Z = ξb1 + ηb2 now, where
b1 = (1 − e1 ∧ e3 ∧ e2 ∧ e4)/2 and b2 = (1 + e1 ∧ e3 ∧ e2 ∧ e4)/2.

Theorem 9.3.6 can be used to state a relation between the complex Fourier
transform and the HFT2. Due to the isomorphism we can map the signal
and the kernel to C2 and can perform all calculations in this representation.
Afterwards, the HFT2-spectrum can be obtained from the two complex spec-
tra. In this context, it is not surprising that the representation of the HFT2
kernel in C2 consists of two Fourier kernels.

Theorem 9.3.7 (Relation between FT2 and HFT2). Let f(x, y) be a
two-dimensional H2-valued signal and let (fξ(x, y), fη(x, y)) be its represen-
tation in C2. Furthermore, let Fξ(u, v) and Fη(u, v) be the complex Fourier
transforms of fξ(x, y) and fη(x, y), respectively. Then, the HFT2 of f(x, y)
reads

F h(u, v) = Fξ(u, v)b1 + Fη(u,−v)b2 . (9.17)

Proof. We can rewrite the kernel of the HFT2 by

e2π(xue3∧e1+yve4∧e2) = e2π(xu+yv)e3∧e1b1 + e2π(xu−yv)e3∧e1b2 . (9.18)

Therefore, we obtain for the HFT2 of f(x, y) = fξ(x, y)b1 + fη(x, y)b2 by

F h(u, v) =

∫

R2

f(x, y) e2π(xue3∧e1+yve4∧e2) dx dy

=

∫

R2

(fξ(x, y)b1 + fη(x, y)b2)

(e2π(xu+yv)e3∧e1b1 + e2π(xu−yv)e3∧e1b2) dx dy

=

∫

R2

fξ(x, y) e
2π(xu+yv)e3∧e1 dx dy b1

+

∫

R2

fη(x, y) e
2π(xu−yv)e3∧e1 dx dy b2

= Fξ(u, v)b1 + Fη(u,−v)b2

220 Michael Felsberg, Thomas Bülow, Gerald Sommer

(note that the product in C2 is evaluated pointwise (b1b2 = 0) and that
the kernels in (9.18) are the kernels of the complex 2-D FTs F{·}(u, v) and
F{·}(u,−v)). ut

Note that we can obtain the HFT2 of a real signal by the complex spec-
trum because the spectra Fξ and Fη are equal in that case. Therefore, the
extended (i.e. hypercomplex) representation of a real signal is calculated with-
out increased computational effort!

The simple calculation of the HFT2 spectrum is not the only result of the
relation between the complex FT and the HFT2. Using the last theorem, we
can state the affine theorem in a straightforward way:

Theorem 9.3.8 (Affine theorem). Let F h(u, v) be the HFT2 of a signal
f(x, y). Then, the HFT2 of the signal f ′(x, y) = f(x′, y′) reads

F h
′
(u, v) =

1

| detA|
(
F h(u′, v′)b1 + F h(u′′, v′′)b2

)
(9.19)

where (x′, y′)T = A(x, y)T , (u′, v′)T = A−1(u, v)T , and
(u′′, v′′)T = A−1(u,−v)T .

Proof. First, we decompose f(x, y) = fξ(x, y)b1 + fη(x, y)b2. According to
The. 9.3.7 we have

F h(u, v) = Fξ(u, v)b1 + Fη(u,−v)b2

where Fξ(u, v) = F{fξ(x, y)}(u, v) and Fη(u, v) = F{fη(x, y)}(u,−v). Con-
sider now f ′(x, y) = f(x′, y′) = fξ(x

′, y′)b1 + fη(x
′, y′)b2. The HFT2 of f ′ is

obtained by

F h
′
(u, v) = F{fξ(x′, y′)}(u, v)b1 + F{fη(x′, y′)}(u,−v)b2 .

According to the affine theorem of the complex FT, we have

F{fξ(x′, y′)}(u, v) =
1

| detA|Fξ(u
′, v′) and

F{fη(x′, y′)}(u,−v) =
1

| detA|Fη(u
′′, v′′)

and since F h(u, v)b1 = Fξ(u, v)b1 and F h(u, v)b2 = Fη(u, v)b2 we obtain
(9.19). ut

Obviously, the affine theorem is more complicated for the HFT2 than for
the complex FT. This results from the fact that the spatial coordinates and
the frequency coordinates are not combined by a scalar product. This is some
kind of drawback since the recognition of a rotated signal in frequency domain
is more complicated. On the other hand, filtering can be performed nearly
isotropic (rotation invariant), e.g. the concept of hypercomplex Gabor filters

9. Commutative Hypercomplex Fourier Transforms 221

yields a lower energy dependency on the orientation in contrast to complex
Gabor filters (see 11).

Last but not least, let us consider the energy of an H2-valued signal. The
magnitude of a multi-vector M is obtained by |M | =

√
MM †. Consequently,

the magnitude of an H2-valued number

h = a+ be1 ∧ e3 + ce2 ∧ e4 + de1 ∧ e3 ∧ e2 ∧ e4

also reads

|h| =
√
a2 + b2 + c2 + d2 =

√
hh† .

The energy of the HFT2 of a signal f(x, y) is then obtained by
∫

R2

F h(u, v)F h
†
(u, v) du dv (9.20a)

=

∫

R6

f(x, y)e2π(x∧u+y∧v)e2π(u∧x′+v∧y′)f †(x′, y′) du dv dx dy dx′ dy′

=

∫

R4

f(x, y)δ(x− x′)δ(y − y′)f †(x′, y′) dx dy dx′ dy′ (9.20b)

=

∫

R2

f(x, y)f †(x, y) dx dy (9.20c)

and therefore, the Parseval equation is satisfied by the FHT2. The energy of
the HFT2 spectrum is equal to the energy of the signal.

The last subject of this section is the derivative theorem for the HFT2.
It reads analogously to the derivative theorem of the QFT (The. 8.4.7)

∂

∂x
f(x, y) ◦−• 2πue1 ∧ e3F

h(u, v) (9.21a)

∂

∂y
f(x, y) ◦−• 2πve2 ∧ e4F

h(u, v) . (9.21b)

Finally, we have transferred all global concepts of the QFT to the HFT2.

9.4 The n-Dimensional Hypercomplex Fourier Analysis

In this section we generalize the commutative hypercomplex Fourier trans-
form for arbitrary dimensions (HFTn). Firstly, we have to introduce an al-
gebraic framework which is the systematic extension of H2: Hn.

9.4.1 The Isomorphism between Hn and the 2n−1-Fold
Cartesian Product of C

Consider the Clifford algebra R+
2n,0 and define a 2n-dimensional hypercomplex

number system based on the space which is induced by

222 Michael Felsberg, Thomas Bülow, Gerald Sommer

ij = ej ∧ en+j , j = 1, . . . , n .

The basis elements of the number system are created by the following rules
(j = 1, . . . , n, s ⊆ {1, . . . , n}4)

ijij = −1 = −i∅ (9.22a)

ijis = isij = i{j}∪s j /∈ s (9.22b)

ijis = isij = −is\{j} j ∈ s . (9.22c)

Obviously, span(is| s ⊆ {1, . . . , n}) and the Clifford product form a com-
mutative 2n-dimensional hypercomplex algebra which is denoted Hn in the
sequel. The following lemma identifies this algebra.

Lemma 9.4.1 (C⊗n ∼= Hn). The algebra Hn ⊂ R+
2n,0 which is formed by

(9.22a,b,c) is isomorphic to the n-fold tensor product of the complex algebra.

Proof. The basis vectors ij in (9.22a) can be written as

ij = 1 ⊗ . . .⊗ 1 ⊗ i
↑
⊗ 1 ⊗ . . .⊗ 1

jth position
. (9.23)

Obviously, the basis vectors satisfy (9.22a, b and c) which can be verified by
straightforward calculations. ut

Consider, for example, n = 3. Then, the isomorphism yields the following
correspondences of the basis elements:

i∅ = 1 ∼= 1 ⊗ 1 ⊗ 1

i1 = e1 ∧ e4
∼= i⊗ 1 ⊗ 1

i2 = e2 ∧ e5
∼= 1 ⊗ i⊗ 1

i3 = e3 ∧ e6
∼= 1 ⊗ 1 ⊗ i

i12 = e1 ∧ e4 ∧ e2 ∧ e5
∼= i⊗ i⊗ 1

i13 = e1 ∧ e4 ∧ e3 ∧ e6
∼= i⊗ 1 ⊗ i

i23 = e2 ∧ e5 ∧ e3 ∧ e6
∼= 1 ⊗ i⊗ i

i123 = e1 ∧ e4 ∧ e2 ∧ e5 ∧ e3 ∧ e6
∼= i⊗ i⊗ i

Lemma 9.4.2 (Matrix representation of C⊗n and Hn). The matrices
Ins , s ∈ P({1, . . . , n}) span the matrix representation of C⊗n (and therefore
for Hn, too). The matrices Ins are defined by

I0
∅ = 1 (9.24a)

Ims =

[
Im−1
s 0
0 Im−1

s

]
(9.24b)

Ims∪{m} =

[
0 −Im−1

s

Im−1
s 0

]
(9.24c)

4 For the sake of short writing, the indices are sometimes denoted as sets in the
sequel (e.g., i123 = i{1,2,3}).

9. Commutative Hypercomplex Fourier Transforms 223

with s ∈ P({1, . . . ,m− 1}) and 1 ≤ m ≤ n.

Proof. Let v = (v1, . . . , vn) be a vector of dimension n and diag(v) denotes

the diagonal matrix

v1 0 . . .
0 v2 0 . . .

. . .

. . . 0 vn

.

Then, for s ∈ P({1, . . . , n}) we have the following identities:

In∅ = diag(1, . . . , 1) (9.25a)

Inj I
n
j = −In∅ with j ∈ {1, . . . , n} (9.25b)

Ins I
n
j = Inj I

n
s = Ins∪{j} with j /∈ s (9.25c)

Ins I
n
j = Inj I

n
s = −Ins\{j} with j ∈ s . (9.25d)

Hence, this matrix algebra follows the same multiplication rules as Hn and
C⊗n. Since all three algebras are of the same dimension, they are isomorphic
as algebras. ut

Consider again the case n = 3. The matrix representation of H3 is ob-
tained by:

i∅ ∼=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

i123 ∼=

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

i1 ∼=

0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

i23 ∼=

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

i2 ∼=

0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

i13 ∼=

0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

224 Michael Felsberg, Thomas Bülow, Gerald Sommer

i3 ∼=

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

i12 ∼=

0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0

The matrix representation of Hn has eigenvectors which are independent
of the coefficients. Therefore, every element of Hn can be expressed by a
diagonal matrix, which is obtained by a fixed eigenvalue transform.

Lemma 9.4.3 (Eigenvectors and eigenvalues of C⊗n). Let

An =
∑

s∈P({1,... ,n})
ksI

n
s

be the matrix representation of an arbitrary element of C⊗n. Then, the matrix
of eigenvectors (row vectors) of An is inductively constructed by

E1 =

[
1 −i
1 i

]
and (9.26a)

Em =

[
Em−1 −iEm−1

Em−1 iEm−1

]
with 2 ≤ m ≤ n . (9.26b)

The corresponding vector of eigenvalues reads ηn where diag(ηn) = ηn∅ and
ηnt is inductively defined by

η0
t = kt with t ∈ P({1, . . . , n}) and (9.27a)

ηmt =

[
ηm−1
t − iηm−1

{m}∪t 0

0 ηm−1
t + iηm−1

{m}∪t

]
, (9.27b)

where t ∈ P({m+ 1, . . . , n}) and 1 ≤ m ≤ n.

Proof. We prove the lemma by induction over n. Firstly, let n = 1. Then we
have

(E1)−1 =
1

2

[
1 1
i −i

]

and hence,

E1A1(E1)−1 = E1(k∅I
1
∅ + k1I

1
1)(E1)−1

=
1

2

[
1 −i
1 i

] [
k∅ −k1

k1 k∅

] [
1 1
i −i

]

=

[
k∅ − ik1 0

0 k∅ + ik1

]
= diag(η1)

9. Commutative Hypercomplex Fourier Transforms 225

Now provide n > 1. The induction assumption reads

En−1An−1(En−1)−1 = diag(ηn−1) , (9.28)

for any An−1. Furthermore,

(En)−1 =
1

2

[
(En−1)−1 (En−1)−1

i(En−1)−1 −i(En−1)−1

]
(9.29)

and according to Lemma 9.4.2, we obtain

An =

[
An−1

∅ −An−1
{n}

An−1
{n} An−1

∅

]
, (9.30)

where An−1
∅ =

∑
s∈P({1,... ,n−1}) ksI

n−1
s and

An−1
{n} =

∑
s∈P({1,... ,n−1}) ks∪{n}I

n−1
s . Therefore, we have

EnAn(En)−1

= 1
2

[
En−1 −iEn−1

En−1 iEn−1

] [
An−1

∅ −An−1
n

An−1
n An−1

∅

] [
(En−1)−1 (En−1)−1

i(En−1)−1 −i(En−1)−1

]

= 1
2

[
En−1(An−1

∅ − iAn−1
n) En−1(−An−1

n − iAn−1
∅)

En−1(An−1
∅ + iAn−1

n) En−1(−An−1
n + iAn−1

∅)

]

[
(En−1)−1 (En−1)−1

i(En−1)−1 −i(En−1)−1

]

= 1
2

[
2En−1(An−1

∅ − iAn−1
n)(En−1)−1 0

0 2En−1(An−1
∅ + iAn−1

n)(En−1)−1

]

=

[
ηn−1
∅ − iηn−1

{n} 0

0 ηn−1
∅ + iηn−1

{n}

]

= diag(ηn) ,

so the induction step is proved and therefore, the lemma is proved, too. ut

Again, we present the explicit results for the case n = 3:

η1 = η∗8 = (k∅ − k12 − k13 − k23) − i(k1 + k2 + k3 − k123)

η2 = η∗7 = (k∅ + k12 + k13 − k23) − i(−k1 + k2 + k3 + k123)

η3 = η∗6 = (k∅ + k12 − k13 + k23) − i(k1 − k2 + k3 + k123)

η4 = η∗5 = (k∅ − k12 + k13 + k23) − i(−k1 − k2 + k3 − k123)

are the eigenvalues of the matrix representation of an arbitrary H3 element.
The matrix of eigenvectors (row-vectors) is given by:

226 Michael Felsberg, Thomas Bülow, Gerald Sommer

E3 =

1 −i −i −1 −i −1 −1 i
1 i −i 1 −i 1 −1 −i
1 −i i 1 −i −1 1 −i
1 i i −1 −i 1 1 i
1 −i −i −1 i 1 1 −i
1 i −i 1 i −1 1 i
1 −i i 1 i 1 −1 i
1 i i −1 i −1 −1 −i

Theorem 9.4.1 (C⊗n ∼= C2n−1

). The n-fold tensor product of C is isomor-
phic to the 2n−1-fold Cartesian product of C.

Proof. The proof follows from Lemma 9.4.3, since the eigenvalues of any
matrix representation An are complex-valued and the eigenvectors do not
depend on the coefficients of An. The vector of eigenvalues ηn = (η1, . . . , η2n)
is Hermite symmetric (i.e. ηi = η∗2n−i, i ∈ {1, . . . , 2n}). Hence, ηn is uniquely
represented by 2n/2 = 2n−1 complex values.

From the eigenvectors we obtain the mapping fn which maps the matrix
representation An of an arbitrary element of C⊗n onto

diag(ηn) = fn(An) = EnAn(En)−1

which is the matrix representation of an element of C2n−1

.
In order to show that fn is a vector space isomorphism, we have to show

that the kernel of fn is {0n}. Therefore, we must solve

fn(An) = EnAn(En)−1 = 0n (9.31)

By multiplication of En from the right and (En)−1 from the left we get the
kernel

kern(fn) = (En)−10nEn = 0n . (9.32)

This result already follows from rank(En) = 2n.
In order to show that fn is an algebra isomorphism, we have to show that

fn(AnBn) = fn(An)fn(Bn):

fn(AnBn) = EnAnBn(En)−1

= EnAn(En)−1EnBn(En)−1

= diag(ηnA)diag(ηnA)

= diag(ηA1 η
B
1 , . . . , η

A
2n−1ηB2n−1 , (ηA2n−1ηB2n−1)∗, . . . , (ηA1 η

B
1)∗)

= fn(An)fn(Bn) ,

where ηnA = (ηA1 , . . . , η
A
2n) and ηnB = (ηB1 , . . . , η

B
2n) are the vectors of the

eigenvalues of An and Bn, respectively. ut
Hence, we have identified the algebra Hn and additionally we have ob-

tained an isomorphism to C2n−1

which will be very useful later on. Using this
algebraic framework we introduce now the HFTn.

9. Commutative Hypercomplex Fourier Transforms 227

9.4.2 The n-Dimensional Hypercomplex Fourier Transform

In this section we introduce the HFTn and transfer some theorems from the
two-dimensional case. Actually, all but the relation theorem and the affine
theorem are formulated for the n-D case. The relation theorem can be for-
mulated for arbitrary but fixed n. A formulation for all n would be very
technical and therefore hard to understand. The same situation holds with
the affine theorem. Additionally, due to their structure these theorems have
little practical relevance for high dimensions.

Definition 9.4.1 (n-dimensional HFT). The n-dimensional commutative
hypercomplex Fourier transform F h(u) of an n-dimensional signal f(x) is
defined by (u = (u1, . . . , un)

T ,x = (x1, . . . , xn)T ∈ Rn)

F h(u) =

∫

Rn

f(x) e2π � n
j=1 ujxjen+j∧ejdnx . (9.33)

Note that due to the commutativity of Hn we can factorize the kernel to
n exponential functions.

We do not prove every theorem of Sec. 9.3 for the n-dimensional case,
since most proofs are straightforward extensions to the HFT2. Nevertheless,
we state the most important ones informally:

– The HFTn is unique and the inverse transform reads

f(x) =

∫

Rn

F h(u) e2π � n
j=1 ujxjej∧en+jdnu . (9.34)

– As in the two-dimensional case, the HFTn of a real signal has the same
coefficients as the n-D Clifford spectrum. The reason for this lies in the fact,
that all multiplications in the CFT are ordered with respect to the index
set. Consequently, no n-blade occurring in the kernel is inverted due to
permutations. For non-permuted blades, the multiplication tables of R0,n

and Hn are identical. If the signal is not real-valued, the spectra differ in
general, because there are products of the form e′

je
′
k with j > k in the

CFT (where e′
j are the basis one-vectors of R0,n). The result is then of

course −e′kj instead of ikj in the algebra Hn.
– The shift theorem and the symmetry theorem read according to theo-

rems 9.3.3 and 9.3.4, respectively

f(x − ξ) ◦−• e2π � n
j=1 ujξjen+j∧ejF h(u) (9.35)

and

F h
†
(x) ◦−• f †(u) , (9.36)

(where f(x) ◦−• F h(u), i.e. F h(u) is the HFTn of f(x)). Note that there
is no such factorized version of the shift theorem possible for the CFT and
n ≥ 3.

228 Michael Felsberg, Thomas Bülow, Gerald Sommer

– The n-dimensional convolution is defined by

(f ∗ g)(x) =

∫

Rn

f(ξ)g(x − ξ) dnξ (9.37)

and the convolution theorem reads

(f ∗ g)(x) ◦−• F h(u)Gh(u) . (9.38)

– The Parseval equation is satisfied by the HFTn which can be verified by a
straightforward calculation like in the two-dimensional case.

– The derivative theorem reads

∂

∂xi
f(x) ◦−• 2πuiei ∧ en+iF

h(u) .

The only theorems for which we do not have the n-D extensions yet, are
theorems 9.3.7 and 9.3.8 (relation FT and HFT and affine theorem). Though
we can state the two theorems for any fixed dimension n, we cannot formulate
them explicitly for arbitrary n. Nevertheless, we describe how to design the
theorems for any n.

Due to The. 9.4.1 we can decompose the (hypercomplex) signal f into
2n−1 complex signals. We can do the same with the kernel of the FHTn.
The kernel is not only decomposed into 2n−1 complex functions but into
2n−1 complex exponential functions (complex Fourier kernels). In order to
understand why this is true, consider the coefficients of the hypercomplex
kernel. We obtain

ks = (−1)|s|
∏

j∈{1,... ,n}\s
cos(2πujxj)

∏

l∈s
sin(2πulxl) (9.39)

for s ∈ P({1, . . . , n}).
By calculating the eigenvalues (9.27b), one factor changes into an ex-

ponential function in each step. Consider, for example, the first step. For
t ∈ P({2, . . . , n}) we obtain

η1
t =

[
e2πu1x1ct(x,u) 0

0 e−2πu1x1ct(x,u)

]
(9.40)

where ct(x,u) = (−1)|t|
∏
j∈{2,... ,n}\t cos(2πujxj)

∏
l∈t sin(2πulxl).

The eigenvalues of the kernel of the HFT are the Fourier kernels for all
possible sign-permutations, i.e. e−i2π(±x1u1±...±xnun). Since there are always
two exponential functions pairwise conjugated, we have 2n−1 different Fourier
kernels left.

Now, we have 2n−1 signals and 2n−1 Fourier transforms. According to
the isomorphism we can calculate the HFT by calculating the 2n−1 complex
transforms and applying the inverse mapping (fn)−1.

9. Commutative Hypercomplex Fourier Transforms 229

Using this knowledge, we can also state an n-dimensional affine theorem
by applying the affine theorem for the complex FT to each of the 2n−1 trans-
forms. This would result in a sum of 2n−1 HFT which would be applied in
2n−1 different coordinate systems. Since there is no practical relevance for
such a complicated theorem we omit it.

9.5 Conclusion

We have shown in this chapter that the CFT and the QFT can be replaced
by the HFTn and the HFT2, respectively. The commutative hypercomplex
transforms yield a spectral representation which is as rich as the Clifford
spectrum. We have stated several theorems, among those the isomorphism
between the n-fold tensor product of C and the 2n−1-fold Cartesian product of
C is the theoretically most important result. This theorem makes it possible to
calculate the hypercomplex spectrum of a signal from the complex spectrum.

The commutative algebra Hn makes the analytic and numerical calcula-
tions easier. We can extend complex 1-D filters to hypercomplex n-D filters
by the tensor product. We do not take care of the order of the operation as for
the CFT: the shift theorem, the convolution theorem and the affine theorem
are easier to formulate. Furthermore, we will be able to state a simple fast
algorithm in Chap. 10.

Additionally, the two domains of the HFTn can be visualized by two or-
thogonal n-D subspaces in a common 2n-D space. This point of view can lead
to further concepts, e.g. a decayed Fourier transform (or Laplace transform),
fractional Fourier transforms (similar to [142]), and so on.

Furthermore, the design of hypercomplex filters has to be considered more
closely. Our present and future aim is to develop new multi-dimensional con-
cepts which are not only a ’blow-up‘ of 1-D concepts, but an intrinsic n-D
extension, which includes a new quality of filter properties.

230 Michael Felsberg, Thomas Bülow, Gerald Sommer

10. Fast Algorithms of Hypercomplex

Fourier Transforms∗

Michael Felsberg1, Thomas Bülow1, Gerald Sommer1, and
Vladimir M. Chernov2

1 Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

2 Image Processing System Institute,
Russian Academy of Sciences, Samara

10.1 Introduction

In this chapter we consider the computational aspect of the quaternionic
Fourier transform (QFT), of the Clifford Fourier transform (CFT), and of
the commutative hypercomplex Fourier transform (HFT). We can cover all
these transforms with the term hypercomplex Fourier transforms, since all
mentioned algebras are hypercomplex algebras (see Cha. 9). In order to have
a numerical way to evaluate these transforms, we introduce the corresponding
discrete transforms by sampling the continuous transforms. Furthermore, we
prove the inverse transforms.

The simplest way to create fast algorithms for the discrete transforms (of
real n-dimensional signals) is to separate the transforms into 2n − 1 trans-
forms so that each transform only effects one spatial coordinate. Therefore,
the asymptotic complexity of fast algorithms for n-dimensional transforms

∗ This work has been supported by German National Merit Foundation and by
DFG Grants So-320-2-1, So-320-2-2, and Graduiertenkolleg No. 357.

232 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

should not exceed 2n− 1 times the complexity of (2n− 1)Nn FFTs1, i.e. the
complexity should be of order O(Nn logn) (or less).

In order to obtain little computational complexities, we formulate several
approaches for fast algorithms. We make use of some algebraic properties
of hypercomplex algebras in order to optimize the transforms. Some of the
algorithms are based on standard algorithms, so that for the implementation
there is nearly no additional coding; the standard implementations can be
re-used.

All the time and memory complexities of the presented algorithms are
estimated, illustrated, and systematically compared. Hence, it should be easy
for the reader to choose the algorithm which suits best for his purposes. This
decision does not only depend on the purpose but also on the computer
environment. We try to stay abreast of this fact by considering cache sizes
and memory sizes of today’s computers knowing the fact that the usage of
swap space (i.e. to swap out data on a hard disc) drives any algorithmetic
optimization insane.

10.2 Discrete Quaternionic Fourier Transform and Fast

Quaternionic Fourier Transform

In this section we define the discrete quaternionic Fourier transform (DQFT)
in a similar way as the discrete complex Fourier transform is defined, i.e. the
continuous transform is sampled. We state and prove the inverse discrete
QFT, a fast algorithm for the QFT (FQFT) and a fast algorithm for the
inverse QFT. Further optimizations of the fast algorithms are presented (and
proved) and their complexities are considered in detail.

10.2.1 Derivation of DQFT and FQFT

Starting point for a fast algorithm of the QFT is the discrete quaternionic
Fourier transform, of course. It is defined analogously to the discrete Fourier
transform by sampling the continuous transform (8.3.4). Formally, the contin-
uous, infinite signal f(x, y) which must be of limited bandwidth (or convolved
with a low-pass filter) is convolved with the Shah function (infinite sum of
equi-distant Dirac impulses). Afterwards, the new (periodic) signal is sam-
pled so that fm,n = f(mex, ney) where ex and ey must be integer divisors
of the periods with respect to x and y. Formally, the last step is a pointwise
multiplication with a Shah function.

We obtain the discrete transform by two steps. Firstly, we only consider
the periodicity. As a result we evaluate the integral of (8.3.4) only in one
period (similar to Fourier series). Secondly, we multiply the integral with the
Shah function, so the integral changes to a sum:

1 Note that N indicates the extension of the signal in only one dimension. The
total size of the signal is therefore Nn.

10. Fast Algorithms 233

Definition 10.2.1 (Discrete QFT). Let f be a discrete two-dimensional
signal of finite size M × N . The discrete quaternionic Fourier transform
(DQFT), denoted as FD

q {f} = F q, is defined by

F qu,v :=

M−1∑

x=0

N−1∑

y=0

e−i2πuxM
−1

fx,ye
−j2πvyN−1

. (10.1)

The discrete inverse transform can be derived from the continuous one,
too. Due to the fact that a periodic signal in the spatial domain corresponds
to a discrete spectrum (Fourier series) and a discrete (infinitely long) signal
corresponds to a periodic spectrum, we can simply exchange spatial and
frequency domain. This yields the same transform, except for the sign of
the exponential term and except for a normalizing factor which must be
multiplied in this transform as in the one-dimensional case:

Theorem 10.2.1 (Inverse DQFT). The inverse discrete quaternionic

Fourier transform FD
q

−1{F q} = f reads

fx,y =
1

MN

M−1∑

u=0

N−1∑

v=0

ei2πuxM
−1

F qu,ve
j2πvyN−1

. (10.2)

Proof. Due to the fact that we call (10.2) the inverse transform of (10.1), we
must prove that the concatenation of both transforms yields the identity.

Firstly, we define abbreviations for the modulation terms:

wi = ei2πM
−1

(10.3a)

wj = ej2πN
−1

(10.3b)

Applying formula (10.2) to (10.1) yields:

FD
q

−1

{
M−1∑

x=0

N−1∑

y=0

w−ux
i fx,yw

−vy
j

}

=
1

MN

M−1∑

u=0

N−1∑

v=0

wux
′

i

M−1∑

x=0

N−1∑

y=0

w−ux
i fx,yw

−vy
j wvy

′

j

=
1

MN

M−1∑

x=0

N−1∑

y=0

M−1∑

u=0

N−1∑

v=0

w
u(x′−x)
i fx,yw

v(y′−y)
j

=
1

MN

M−1∑

x=0

N−1∑

y=0

Mδx′−xfx,yNδy′−y

= fx′,y′

So the concatenation of the transforms (10.2) and (10.1) yields the identity
and we can call them inverse to each other. Note that the other concatenation
need not be proved because the Fourier transform is a 1-1 mapping (it is just
a change to another basis of same dimension). ut

234 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

Now, we are able to calculate the spectrum of a finite, discrete signal. If
we use formula (10.1) to implement an algorithm for the DQFT, we obtain a
computational complexity of cM 2N2 (c being a constant). This complexity
is quite high. Hence we try to reduce it as it has been done by Cooley and
Tuckey when they developed their fast Fourier transform (FFT) algorithm.
The idea they used is the decimation of time method.

The FFT algorithm has originally been designed for 1-D time signals.
The time domain has been divided into two new domains (one consisting of
the signal values at even positions and one consisting of the values at odd
positions). Hence, it is called the radix-2 method. We will do the same for
the DQFT. We apply the decimation method to the spatial domain in order
to obtain a recursive algorithm (divide and conquer). If the domain is of the
size (1 × 1) the DQFT is the identity. Otherwise we have the following.

Theorem 10.2.2 (Fast QFT). Let (f)M×N be a discrete two–dimensional
signal and M = N = 2k ≥ 2. Then we have

FD
q {f} = F ee + w−u

i F oe + F eow−v
j + w−u

i F oow−v
j (10.4)

where

F ee = FD
q {fee} = FD

q {f2x,2y} (10.5a)

F oe = FD
q {foe} = FD

q {f2x+1,2y} (10.5b)

F eo = FD
q {feo} = FD

q {f2x,2y+1} (10.5c)

F oo = FD
q {foo} = FD

q {f2x+1,2y+1} (10.5d)

Proof. In order to show that the recursive formula (10.4) is correct we present
a constructive proof. We apply the radix-2 method to the definition of the
DQFT (10.1) and obtain

FD
q {f} =

N/2−1∑

x1,y1=0

1∑

x0,y0=0

w
−u(2x1+x0)
i f2x1+x0,2y1+y0w

−v(2y1+y0)
j ,

by substituting u = u1N/2 + u0, v = v1N/2 + v0

FD
q {f} =

1∑

x0,y0=0

w−ux0

i

N/2−1∑

x1,y1=0

w−u02x1

i f2x1+x0,2y1+y0w
−v02y1
j w−vy0

j

and finally, because w−Nu1x1

i = w−Nv1y1
j = 1

FD
q {f} = FD

q {f2x,2y} + w−u
i FD

q {f2x+1,2y} + FD
q {f2x,2y+1}w−v

j

+ w−u
i FD

q {f2x+1,2y+1}w−v
j

Note that the signals f2x,2y, f2x+1,2y, f2x,2y+1 and f2x+1,2y+1 and their quater-
nionic Fourier transforms have the size N/2. ut

10. Fast Algorithms 235

In practical applications signals will not always have a size of a power of
two. In that case the domain may be filled up by zeros. As a consequence,
the period of the signal is changed, which has an effect on the reconstruction
of the original signal.

The recursive formula (10.4) and the identity for M = N = 1 yield an
algorithm for calculating the DQFT with complexity cN 2 ldN (see section
10.2.3). We need ldN = k recursive calls of (10.4).

A fast algorithm for the inverse transform can be derived in the same
way as for the DQFT except for the normalizing factor and the sign in the
exponential function. This method is called decimation of frequency. Never-
theless, it is advantageous to develop another algorithm which calculates the
inverse of (10.4) in each step. Consequently, we obtain after step n exactly
the same sub-spectra as in the FQFT just before the (k−n)th application of
(10.4). The reason why this method is advantageous will be given in section
10.2.2.

Using the notations above we state the following.

Theorem 10.2.3 (Inverse FQFT). The inverse of formula (10.4) reads
(L = N/2)

F eeu,v =
1

4

(
F qu,v + F qu+L,v + F qu,v+L, + F qu+L,v+L)

)
(10.6a)

F oeu,v =
1

4
wui

(
F qu,v − F qu+L,v + F qu,v+L) − F qu+L,v+L)

)
(10.6b)

F eou,v =
1

4

(
F qu,v + F qu+L,v − F qu,v+L) − F qu+L,v+L)

)
wvj (10.6c)

F oou,v =
1

4
wui

(
F qu,v − F qu+L,v − F qu,v+L) + F qu+L,v+L)

)
wvj (10.6d)

and therefore, the recursive execution of (10.6a-10.6d) reconstructs fx,y from
F qu,v.

Proof. Since the DQFT (and hence each application of (10.4)) is a 1-1 map-
ping, we only have to show that the successive application of (10.6a)-(10.6d)
and (10.4) yields the identity.

F ee + w−u
i F oe + F eow−v

j + w−u
i F oow−v

j

=
1

4

((
F qu,v + F qu+L,v + F qu,v+L, + F qu+L,v+L)

)

+w−u
i wui

(
F qu,v − F qu+L,v + F qu,v+L) − F qu+L,v+L)

)

+
(
F qu,v + F qu+L,v − F qu,v+L) − F qu+L,v+L)

)
wvjw

−v
j

+w−u
i wui

(
F qu,v − F qu+L,v − F qu,v+L) + F qu+L,v+L)

)
wvjw

−v
j

)

= F qu,v

Consequently, (10.6a)-(10.6d) and (10.4) are inverse mappings. If the DQFT
of a signal fx,y (size: N×N) is calculated by (10.4), ldN levels of sub-spectra

236 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

are created. Eq. (10.4) describes the transition from one level to the next. We
have proved that (10.6a)-(10.6d) do the inverse of (10.4) and therefore, they
describe the transition from one level to the previous. Consequently, recursive
execution of (10.6a)-(10.6d) yield the iDQFT. ut

Due to this theorem, the equations (10.6a)-(10.6d) can be used to imple-
ment an inverse fast quaternionic Fourier transform. In each step one step of
the (forward) FQFT is inverted. Hence, after k steps we have reconstructed
the original signal. In other words, the recursive calls must stop for N = 1. In
this case, the iDQFT is the identity. This procedure is illustrated in Fig. 10.1.

(10.6a)-(10.6d)

(10.6a)-(10.6d)

spectrum

subspectra

(10.4)

(10.4)

subsubspectra

Fig. 10.1. Transitions between the (sub-)spectra

Of course, the performance of the implementation can be increased by
e.g. unfolding one or two recursive calls (so the recursive function would stop
for N = 2 or N = 4). However, we only consider principle optimizations in
this chapter; further improvements of technical details are left to the pro-
grammer. Some general optimizations are given in the following section.

10.2.2 Optimizations by Hermite Symmetry

The first approach for optimizing the fast algorithms does not make use of
the specific properties of the spectra of real signals (i.e. Hermite symmetry).
The idea is the same as in equations (10.6a)-(10.6d). A phase of π yields only
a change of the sign. This property will be called π-phase in the following.
Hence, we have the same sum (10.4) for F qu,v , F

q
u+L,v, F

q
u,v+L and F qu+L,v+L,

except for the signs. Consequently, we only need to perform the multiplica-
tions once and can use the products four times. Hence, the multiplicative
complexity is divided by four.

10. Fast Algorithms 237

The second approach makes use of the quaternionic Hermite symmetry: we
can

a) calculate four spectra in one step,
b) evaluate three quarters of each sub-spectrum by copying and applying one

of the involutions (8.5).

If we choose a) and use the four spectra from the first decimation-step of
(10.4), we make use of a method which is called overlapping [40].

This procedure is illustrated in the figure 10.2. The 8 × 8 real signal is
mapped onto a 4 × 4 quaternionic signal. The real, the i-, the j-, and the
k-imaginary part are denoted by r, i, j, and k, respectively.

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

r i

j k

0

1

2

3

4

5

6

7

0

1

2

3

0 1 2 3 4 5 6 7

0 1 2 3

Fig. 10.2. A two-dimensional real signal
is mapped onto a quaternionic signal

In (8.5), we have defined three involutions (q ∈ H):

α(q) = −jqj (10.7a)

β(q) = −iqi (10.7b)

γ(q) = −kqk = α(β(q)) (10.7c)

In order to reconstruct the four spectra from the overlapped one, we
simply use the symmetry properties of the signals (see 8.3.6). The symmetries
imply the following:

Theorem 10.2.4 (Overlapping). Let f̄ = fee + ifoe + jfeo + kfoo and
FD
q {f̄} = F̄ q. Furthermore let

Fαu,v = α(F̄ qu,−v) (10.8a)

F βu,v = β(F̄ q−u,v) (10.8b)

F γu,v = γ(F̄ q−u,−v). (10.8c)

Then, the partial spectra are obtained by

238 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

4F eeu,v = F̄ qu,v + Fαu,v + F βu,v + F γu,v (10.9a)

4iF oeu,v = F̄ qu,v + Fαu,v − F βu,v − F γu,v (10.9b)

4jF eou,v = F̄ qu,v − Fαu,v + F βu,v − F γu,v (10.9c)

4kF oou,v = F̄ qu,v − Fαu,v − F βu,v + F γu,v . (10.9d)

Proof. Due to linearity of the Fourier transform we obtain the following table
of symmetries (table 10.1) for the addends of the overlapped quaternionic
spectrum.

Table 10.1. Symmetries of the addends of F̄ q

Addend real part i-imag. part j-imag. part k-imag. part

FD
q {fee} ee oe eo oo

iFD
q {foe} oe ee oo eo

jFD
q {feo} eo oo ee oe

kFD
q {foo} oo eo oe ee

e: even
o: odd
feo is even wrt. the x-coordinate and odd wrt. the y-coordinate

Hence, each partial spectrum can be extracted from F̄ q . Without loss of
generality we will reconstruct the spectrum F ee. We obtain the real part of
F ee by

4R(F eeu,v) = R(F̄ qu,v + F̄ q−u,v + F̄ qu,−v + F̄ q−u,−v),

since all odd parts yield zero. Analogously, we obtain the other parts, namely

4 I(F eeu,v) = I(F̄ qu,v − F̄ q−u,v + F̄ qu,−v − F̄ q−u,−v),

4J (F eeu,v) = J (F̄ qu,v + F̄ q−u,v − F̄ qu,−v − F̄ q−u,−v),

4K(F eeu,v) = K(F̄ qu,v − F̄ q−u,v − F̄ qu,−v + F̄ q−u,−v).

Due to linearity we can exchange the sums and the selection of the com-
ponents which yield formula (10.9a). The other three spectra can be recon-
structed analogously. ut

Now we consider the optimization b) which means direct application of
the Hermite symmetry. If we have calculated a spectral value F qu,v (this might
be a spectral value of a sub-spectrum, too), we obtain three more spectral
values by

F q−u,v = β(F qu,v) (10.10a)

F qu,−v = α(F qu,v) (10.10b)

F q−u,−v = γ(F qu,v). (10.10c)

10. Fast Algorithms 239

Fig. 10.3. Two effects speed up the calculation of
the spectrum:

calculated value
changed signs
Hermite symmetry
signs and Hermite symmetry

Note, if u (v) is zero or N/2, we have (−u, v) = (u, v) ((u,−v) = (u, v)), since
F q is N -periodic.

Both effects (the π-phase and the Hermite symmetry) are illustrated in
the following figure 10.3.

The black cell (calculated value) is the only cell which has to be explicitly
calculated. The dark grey cells (changed signs) are obtained without addi-
tional multiplications due to the π-phase. The middle grey cells (Hermite
symmetry) are obtained from the black cell without any additional arith-
metic operations by applying the involutions. Finally, the light grey cells are
obtained from the dark grey cells by the Hermite symmetry.

Both methods, a) and b), reduce the whole complexity by a factor of
four. Though we only considered the forward transform, we can decrease
the complexity of the inverse transform using the same methods. This is
possible, since we formulated an inverse transform which reconstructs the
Hermite-symmetric sub-spectra (a simple decimation of frequency does not
yield such an algorithm).

The overlapping additionally reduces the memory complexity by a factor
of four (except for the reconstruction procedure). This is quite important if
we consider the execution of the algorithm on a computer.

The memory complexity and the localization of data have to be considered
under two aspects: cache size and memory size. If the data exceeds the cache
size, we have cache misses (in image processing we have this on most machines
for e.g. images of 512×512 pixels). During the execution of the algorithm the
data have to be moved between cache and main memory. It is advantageous if
the algorithm acts locally, which means that the algorithm uses only a small
part of the data (less than the cache size). The latency time for copying
data from the main memory to the cache is similar to the latency time of
floating point operations. Hence, if we would have a branch first algorithm
(the recursion is executed layer by layer), the data must be moved in each
incarnation of recursion. The resulting complexity of the data handling would
be similar to that one of the calculation itself.

Fortunately, we have a depth first algorithm which means that the recur-
sion is first finished completely for the first call, then for the second call and
so on.Hence, we have two times a cache miss for each value if the cache size

240 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

is at least a quarter of the size of the spectrum.
If the data even exceeds the main memory, the computer uses disk space

to extend the main memory (swapping). Since the access to the hard disk
is one thousand times slower than the memory access, the time complexity
of the algorithm itself becomes obsolete. The only important feature of the
algorithm is to work as locally as possible. This problem might appear if 3-D
data or image sequences are transformed.

In the following, we only consider the time complexity, since we have a
2-D transform and we assume that the cache is nearly as large as the data.

10.2.3 Complexities

In this section we consider the complexities of the presented algorithms. Since
modern computers calculate floating point multiplications much faster than
in former times, we do not restrict to the multiplicative complexities.

In literature, we have found some algorithms which reduce the multi-
plicative complexity of complex and quaternionic multiplications. Complex
multiplications can be performed with three multiplications (instead of four)
and quaternionic multiplications can be performed with nine multiplications
(instead of 16) [208]. This decrease of the multiplicative complexity can only
be achieved by increasing the additive complexity. Since multiplications are
performed as fast as additions on today’s processors (e.g. SUN UltraSPARC-
II [231], SGI R10000 [217], DEC Alpha 21164PC [49]), the fastest algorithm is
the one with the least number of operations – multiplications plus additions.

Consequently, we always consider the multiplicative complexity, the ad-
ditive complexity, and the sum of both.

Although the FQFT is performed in the quaternion algebra, we need
not calculate the general quaternionic multiplication. We know that in each
multiplication of (10.4) one factor (the exponential term) is the element of a
subalgebra which is isomorphic to the complex algebra. Hence, the complexity
of such a multiplication can be reduced to eight multiplications and four
additions.

Formula (10.4) yields four multiplications and three additions in the
quaternion algebra or 32 multiplications and 16 + 12 = 28 additions in the
algebra of real numbers for each frequency. Hence, we have 32N 2 multiplica-
tions and 28N2 additions for each recursive call. If the effect of the π-phase
is used, we reduce the multiplications in the quaternion algebra by a factor
of four, i.e. we need 8N2 multiplications and 16N2 additions in the algebra
of real numbers for evaluating (10.4) for all frequencies. Since we have ldN
recursive calls, we have a total complexity of 8N 2 ldN multiplications and
16N2 ldN additions (total: 24N2 ldN floating point operations).

If we have a real signal, the complexity can be reduced to approximately
one quarter. Firstly, we consider overlapping. Since the size of the new sig-
nal domain is reduced to N2/4, the complexity is divided by four and ldN

10. Fast Algorithms 241

is substituted by ld N
2 = −1 + ldN (one recursive call less). The recon-

struction of the overlapped spectrum (10.9a-d) increases the quadratic ad-
ditive complexity by three quaternionic additions (or twelve real additions)
and one real multiplication per frequency (the factor four can be eliminated
component-wise in F̄ q). The last recursive call of (10.4) increases the com-
plexities according to the case without Hermite symmetry (e.g. eight real
multiplications and 16 real additions per frequency). Finally, the overall
complexity reads 8

4N
2(−1 + ldN) + (1 + 8)N2 = (7 + 2 ldN)N2 multipli-

cations and 16
4 N

2(−1 + ldN) + (12 + 16)N2 = (24 + 4 ldN)N2 additions
(total: (31 + 6 ldN)N2 operations).

If the Hermite symmetry is directly used, we only need calculate one
quarter of each sub-spectrum. The other three quarters are evaluated by the
automorphisms (8.5). Since there is no symmetric frequency if u and v are
zero or N/2 and there is only one instead of three symmetric frequencies if
either u or v are zero or N/2, we obtain a high additional quadratic complex-
ity. Furthermore, this algorithm has a four times higher memory complexity
than the overlapping algorithm (except for the last step). Hence, it is not
advantageous to realize this fast algorithm.

Nevertheless, we can decrease the complexity of the overlapping algorithm
if we reconstruct only one quarter of the spectrum by formulae (10.9a-d) and
(10.4) and copy the other three quarters. This reduces the complexity of the
reconstruction to 1+ 8

4 = 3 real multiplications and 28
4 = 7 real additions per

frequency. Due to the zero-frequencies (and the N/2-frequencies), we have
an additional linear complexity, which is neglected in these considerations.
The total complexity of this algorithm is (1 + 2 ldN)N 2 multiplications and
(3 + 4 ldN)N2 additions (total complexity: (4 + 6 ldN)N 2 operations).

The same complexity as for the last algorithm is obtained if four real
signals are transformed at the same time. The four signals are mapped to
the four parts of a quaternionic signal which is transformed with a com-
plexity of 24N2 ldN operations (i.e. 6N2 ldN per spectrum). Afterwards,
we reconstruct the four spectra similarly to overlapping (using the Hermite-
symmetry), which yields the same additional complexity (N 2 multiplications
and 12

4 N
2 additions per spectrum). All results are summarized in table 10.2.

Table 10.2. Complexities of the considered algorithms

Algorithm multiplications additions operations

FQFT (π-phase) 8N2 ldN 16N2 ldN 24N2 ldN

FQFT/overlapping N2(7 + 2 ldN) N2(24 + 4 ldN) N2(31 + 6 ldN)

FQFT/overl.+sym. N2(1 + 2 ldN) N2(3 + 4 ldN) N2(4 + 6 ldN)

FQFT/four spectra N2(1 + 2 ldN) N2(3 + 4 ldN) N2(4 + 6 ldN)

242 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

Note, that the algorithm using overlapping with Hermite symmetry in
the last step is very complicated to implement. The enormous code length of
the implementation could possibly slow down the algorithm more than it is
sped up by the Hermite symmetry. Additionally, there is an alternative way
to calculate the DQFT which is even faster than all algorithms above (see
10.4.2).

10.3 Discrete and Fast n-Dimensional Transforms

In this section we extend the definition of the discrete QFT for the n-
dimensional commutative hypercomplex Fourier transform (HFT). We state
the inverse discrete HFT and a fast algorithm (FHFT). Further on, we gen-
eralize the π-phase and the overlapping for n dimensions and consider the
complexities.

10.3.1 Discrete Commutative Hypercomplex Fourier
Transform and Fast Commutative Hypercomplex
Fourier Transform

Recall the correspondence of the QFT and the HFT2 (9.3.1): both transforms
yield the same coefficient in the case of real signals. We have extended that
concept to n dimensions in Sec. 9.4.2, i.e. the coefficients of the HFTn are the
same as those of the n-D CFT of a real signal. For the discrete n-D CFT and
the discrete HFTn we have the same correspondence as for the continuous
transforms, since we have not used the properties of the domain (i.e. if it is
infinite and continuous or finite and discrete) in the proof. Therefore, we can
calculate the Clifford spectrum via the HFTn and it is sufficient to give the
definition of the discrete HFTn in this section.

Additionally, it is not possible to develop directly a fast algorithm for the
CFT in the same way as we did for the QFT. We can apply the decimation
method in a straightforward way only for commutative algebras because we
have to exchange some factors. The QFT is an exception since we have two
ways of multiplying and therefore we can extract one factor of the QFT kernel
to the left (the i-term) and one to the right (the j-term). If n ≥ 3 we have not
enough ways of multiplying (e.g. from the top), so we must really permute
some factors. Since the hypercomplex algebra introduced in section 9.4.2 is
commutative, we use the commutative hypercomplex Fourier transform for
developing a fast algorithm. In this respect, we want to annotate that we have
originally introduced the commutative hypercomplex algebra for the purpose
of developing fast algorithms. Therefore, the whole theory presented in Cha. 9
has been motivated by the mathematical properties which we needed for the
algorithm.

We have shown in The. 9.3.1 that the coefficients of both transforms are
the same if the signal is real-valued and due to linearity of the HFT, we can

10. Fast Algorithms 243

even calculate the Clifford spectrum of a Clifford-valued signal (see 10.4.2).
Thus, by developing the discrete and fast HFT, we indirectly obtain a discrete
and fast CFT, respectively.

To start with, we now define the discrete HFT in analogy to the DQFT
by sampling the continuous transform. The considerations we made for the
QFT in section 10.2.1 (about the formal construction of discrete signals) are
the same for the HFT, of course.

Definition 10.3.1 (Discrete HFT). Let f be an n-dimensional discrete
signal of the size Nn and let In be defined as

In =

e1 ∧ e1+n 0
0 e2 ∧ e2+n 0 . . .

. . . 0
. . . 0

. 0 en ∧ e2n

 .

Then, the discrete HFT of f is defined by

F hu =
∑

x∈{0,... ,N−1}n

fxe
−2πxInuTN−1

. (10.11)

Note that the discrete signal can have different lengths in each coordinate,
i.e. a 3-D signal can have the size M ×N ×K with arbitrary (true positive)
M,N,K. We formulated the DHFT for signals with equal length in each
dimension, since the formula is more compact and the FHFT (see (10.13)) can
only be applied to such signals. Nevertheless, every signal can be embedded
in a larger signal of that form (with a changed period, of course).

In analogy to the iDQFT we state a theorem for the inverse transform
in the following. The transform and its proof are extensions of the two-
dimensional case (10.2). Note that there is one important difference between
the 2-D DHFT and the DQFT. The latter is formulated using a special or-
der of multiplications (i-term from the left and j-term from the right). This
order implies that the iDQFT must have the same sequence of factors, since
the two i-terms and the two j-terms must compensate directly each other,
respectively.

In contrast to this, the sequence of factors is irrelevant in the case of
the DHFT and the iDHFT, since they are commutative. Hence, they can be
formulated putting all exponential functions in one exponential function at
the end. Additionally, we need not take care of the order of the multiplications
in the proof of the theorem.

Theorem 10.3.1 (Inverse discrete HFT). Let f be an n-dimensional
discrete signal of the size Nn and F h its DHFT. Then, the following equation
holds true

fx =
1

Nn

∑

u∈{0,... ,N−1}n

F hue
2πxInuTN−1

. (10.12)

244 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

Proof. Applying (10.12) to the discrete HFT of f yields:

1

Nn

∑

u∈{0,... ,N−1}n

F hue
2πx′InuTN−1

=
1

Nn

∑

u∈{0,... ,N−1}n

∑

x∈{0,... ,N−1}n

fxe
−2πxInuTN−1

e2πx′InuTN−1

=
1

Nn

∑

x∈{0,... ,N−1}n

∑

u∈{0,... ,N−1}n

e2π(x′−x)InuTN−1

fx

=
1

Nn

∑

x∈{0,... ,N−1}n

fxN
nδx′−x

= fx′ .

Hence, (10.12) is the inverse DHFT. ut

Now, having a discrete transform in a commutative algebra, we are able
to state a fast algorithm for the HFT, since we can apply the decimation
method. The following theorem is the extension of the FQFT (10.4). The
notes we made for the DQFT concerning the order of multiplications are
valid for the FHFT, too. Therefore, the recursive formula for the 2-D FHFT
differs from that one of the FQFT. Nevertheless, both formulae yield the
same coefficients for a real signal. Besides, the proof is simplified by the
commutativity.

Theorem 10.3.2 (Fast HFT). Let fx be a discrete n-dimensional signal
of the size Nn with N = 2k. Then we have

F hu =
1∑

xl0=0
1≤l≤n

Fx0ue
−2πx0Inu/N (10.13)

where

Fx0u =

N/2−1∑

xl1=0
1≤l≤n

f2x1+x0e
−2π2x1Inu/N . (10.14)

Proof. Since the proof of equation (10.13) is the same as the one for the
FQFT (10.4) except for the dimension and the notation of even / odd signal-
components, it is omitted. Instead of using ”e” for even and ”o” for odd signal-
components, they are denoted by ”0” and ”1”, respectively. Accumulating
the indices yields an index-collection, which is an n-dimensional vector. This
vector is identical to x0 = xmod 2. Again, the order of multiplications is
irrelevant. ut

10. Fast Algorithms 245

The notes which have been made for the FQFT concerning the signal
length are valid for the n-D FHFT as well. Obviously, the restriction to the
signal size becomes a drawback for higher dimensions, since the area filled
up by zeros might be a multiple of the original signal size. For those cases
the row-column algorithm in section 10.4.1 evaluates the spectrum with less
complexity.

The inverse transform can be calculated by the same algorithm as the
FHFT using positive exponential terms and a norming factor. Alternatively,
an iDHFT can be developed by reconstructing the sub-spectra as it has been
done for the iFQFT. Since such an iFHFT does not include any new ideas
which have not been mentioned so far, we omit the explicit formulation of
the algorithm.

10.3.2 Optimizations and Complexities

For the FHFT we have the same optimizations as for the FQFT. Essentially,
we can apply the π-phase method and overlapping. We will consider only
these two methods in the following.

Analogously to the FQFT, we exclusively have multiplications by complex
factors. Note that for an implementation of the FQFT or FHFT, we reduce
the complex exponential functions to sine and cosine. Therefore, we have to
decompose the compact exponential function in (10.13) into n products of
the sums of sines and cosines.

The multiplication of a general element U of the 2n dimensional com-
mutative algebra by a complex factor yields 2n+1 real multiplications and
2n additions. The addition of two general elements U and V yields 2n real
additions.

One application of (10.13) yields

n∑

i=0

(
n

i

)
i = n

n−1∑

i=0

(
n− 1

i

)
= n2n−1

of these special multiplications and 2n − 1 additions per frequency. Hence,
we obtain n22n real multiplications and

n22n−1 + 22n − 2n =
(n

2
+ 1− 2−n

)
22n

real additions. Therefore, we have n22nNn multiplications and
(n2 + 1 − 2−n)22nNn additions for the whole spectrum. Since the algorithm
is performed ldN times, we must multiply these complexities by ldN for
obtaining the complexity of the whole algorithm.

Using the effect of the π-phase, we reduce the number of multiplica-
tions by 2n. Consequently we need n2nNn ldN real multiplications and
(n2 + 2n − 1)2nNn ldN real additions for the whole algorithm.

246 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

Now, we describe the overlapping for the n-dimensional case: firstly, the
domain of the signal fx of the size Nn is divided into 2n parts by the sub-
stitution x = 2x1 + x0 where x0j = xjmod 2 and x1j = bxj/2c. Each signal
value f2x1+x0 is mapped onto one component of a new hypercomplex-valued
signal f̄x1

. Which value is mapped onto which component is determined by
x0.
We define a coding function

C : P({1, . . . , n}) −→ {0, 1}n

with

Ck(j) =

{
1 if k ∈ j

0 else
(10.15)

and use the following mapping:

Ij{f̄x1
} = f2x1+C(j) (10.16)

for all j ∈ P({1, . . . , n}) \ ∅ and

R{f̄x1} = f2x1 . (10.16′)

If the set j is empty, the real part is taken, otherwise Ij{f̄x1
}. Conse-

quently, a value at a position which is odd with respect to coordinate k is
mapped onto an imaginary part which contains ik.

Calculating the spectrum of f̄x1 yields

F̄u0 =
∑

j∈P({1,... ,n})
ijFC(j)u0

(10.17)

where Fx0u0 are the sub-spectra from (10.13).
The sub-spectra can be extracted from (10.17) by inverting the involutions

(8.5):

2nijFC(j)u0
=

∑

k∈P({1,... ,n})
αk(F̄uk

0
)(−1)card(j∩k) (10.18)

where uk0i =

{
−u0i if i ∈ k

u0i else
and card(M) is the cardinality of M . Finally,

the spectrum Fu is calculated by use of formula (10.13).
Roughly speaking, overlapping reduces the complexity by a factor of

four. The total complexity is a little bit worse, since we have an additional
Nn-complexity for the reconstruction. This additional complexity can be cal-
culated analogously to that one in section 10.2.3. Finally, we obtain the fol-
lowing table 10.3:

We want to justify the neglect of the exact evaluation of the Nn-
complexities by the fact that we will present a faster approach to calculate
the DHFT in section 10.4.

10. Fast Algorithms 247

Table 10.3. Complexities of the considered algorithms

Complexity FHFT (π-phase) FHFT/overlapping

multiplications n2nNn ldN nNn ldN + O(Nn)
additions (n

2
+ 2n − 1)2nNn ldN (n

2
+ 2n − 1)Nn ldN + O(Nn)

operations (3n
2

+ 2n − 1)2nNn ldN (3n
2

+ 2n − 1)Nn ldN + O(Nn)

The memory complexity is very crucial in the n-dimensional case, since
the signal size increases exponentially with the dimension. The presented
algorithm gets very slow, if the signal size is greater than the main memory.
The reason for this is the global data access of the algorithm in the first
recursive steps (the whole domain, 2−nth of the domain, . . .). In the section
10.4.1 we present an algorithm which only acts on 1-D sub-signals. For very
big signal sizes this algorithm needs less swapping of the data.

10.4 Fast Algorithms by FFT

In this section we describe two methods of evaluating the DHFT and the
DCFT by applying complex-valued FFT algorithms. The first method which
is called row-column method cascades 1-D FFTs in order to calculate the
spectrum. The second method uses the isomorphism between the commuta-
tive hypercomplex algebra and the indirect product of complex algebras. This
isomorphism maps the HFT of a signal onto two complex spectra of the signal
and vice versa. We obtain a method to calculate the hypercomplex spectrum
from the complex spectrum. The last paragraph deals with the complexities
of the presented algorithms.

10.4.1 Cascading 1-D FFTs

There is one simple approach to calculate the DCFT (or the DHFT) by
the 1-D FFT algorithm. The method is called row-column algorithm and we
will firstly introduce it for the DQFT. Of course, it can be generalized for
arbitrary dimensions.

The idea is as follows. We pick up one coordinate, without loss of gener-
ality we will take the first one (i.e. the x-coordinate). Then, we calculate the
1-D FFT of each row and put the results in two domains of the same size,
one for the real part and one for the imaginary part, denoted by fR and f I ,
respectively.

Next, each column of these two signals fR and f I is transformed by the
1-D FFT. Finally, each part of both spectra is mapped to one part of the
quaternionic spectrum. The real spectrum of fR is the real part of F q , the real
spectrum of f I is the i-imaginary part of F q, the imaginary spectrum of fR

248 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

is the j-imaginary part of F q and the remaining spectrum is the k-imaginary
part of F q . The method is illustrated in the following figure 10.4.

real part imaginary part

real imag. real imag.

f

f IfR

real j-imag. i-imag. k-imag.

Fig. 10.4. The row-
column algorithm for
a 2-D signal (the ar-
row means applica-
tion of the 1-D FFT)

Theorem 10.4.1 (Row-Column algorithm). The application of the
row-column algorithm to a signal yields its DQFT in the 2-D case.

Proof. We start this proof with the DQFT of a signal f .

F qu,v =
M−1∑

x=0

N−1∑

y=0

e−i2πuxM
−1

fx,ye
−j2πvyN−1

Now, we will set some parenthesis to define N new 1-D functions f yx = fx,y.
The 1-D Fourier transform of fyx is denoted by F yu (complex-valued):

F qu,v =
N−1∑

y=0

(
M−1∑

x=0

e−i2πuxM
−1

fyx

)
e−j2πvyN

−1

=

N−1∑

y=0

F yu e
−j2πvyN−1

=

N−1∑

y=0

R{F yu}e−j2πvyN
−1

+ i

N−1∑

y=0

I{F yu }e−j2πvyN
−1

The 1-D Fourier transform of R{F yu } and I{F yu} are denoted by FRu,v and

10. Fast Algorithms 249

F Iu,v , respectively. Note that these transforms use y as the spatial coordinate
and v as the frequency.

F qu,v =
N−1∑

y=0

R{F yu}(R{e−i2πvyN−1}+ jI{e−i2πvyN−1})

+i

N−1∑

y=0

I{F yu}(R{e−i2πvyN−1}+ jI{e−i2πvyN−1})

= R{FRu,v} + jI{FRu,v} + iR{F Iu,v} + kI{F Iu,v}
Hence, we obtain exactly the coefficients as described in the row-column
algorithm and due to the fact that two quaternions are equal if and only if
all coefficients are equal, the theorem is proved. ut

For the DHFT we obtain an analogous algorithm. In each step the
number of transforms is doubled, since the real and imaginary parts are

transformed separately. Every exponential factor e−ij2πxjujN
−1
j is rewritten

as R{e−i2πxjujN
−1
j } + ijI{e−i2πxjujN

−1
j }. Hence, we double the number of

Fourier transforms n− 1 times and consequently we obtain 2 · 2n−1 = 2n co-
efficients which we need for the DHFT. Furthermore, we have all imaginary
units: Πn

j=1(1 + ij).
Since the order of the imaginary units in the product is ascending, we can

perform the multiplications as well in the Clifford algebra as in the commuta-
tive hypercomplex algebra. This is an improvement, compared to the FHFT
(see below). Besides, the drawback of all radix-2 methods (i.e. that the signal
size must be a power of two) is less serious for the row-column algorithm.
For the FHFT the signal length in each coordinate must be filled up to the
same (i.e. the greatest) power of two. The row-column algorithm can handle
different signal lengths in each coordinate.

The algorithm must be modified, if the spatial signal f is not real-valued.
Consider the two-dimensional case. If the QFT is defined with one exponential
factor to the left and one to the right, we can split the signal f into one
complex signal f1 = R{f} + iI{f} and one complex signal f 2 = J {f} +
iK{f}. Obviously f = f 1 + f2j. The 1-D Fourier transform (row-wise) of
f1 and f2 are denoted F 1 and F 2, respectively. Now, we calculate the 1-D
Fourier transform (column wise) of R{F 1} + iR{F 2} and I{F 1} + iI{F 2},
denoted by FRJ and F IK , respectively. They are identical to R{F q}+iJ {F q}
and I{F q} + iK{F q}. Hence, we obtain

F q = R{FRJ} + jI{FRJ} + i(R{F IK} + jI{F IK}). (10.19)

Considering the CFT, a new problem occurs. As we can see in the case
of the 2-D CFT, the spectrum is different depending on the i-exponential
term standing on the left or on the right of the signal. If we have more than
two dimensions, we must use the CFT. Therefore, in order to compensate

250 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

the exchanged imaginary units, we have to alter some signs. These signs can
be evaluated by formally splitting the CFT into 1-D FTs. The formulation
of the specific rules for each dimension is omitted here, since the rules can
be derivated from the eigenvalues in Lem. 9.4.3 and by the different signs in
the multiplication tables of the algebras R0,n and Hn. Furthermore, we are
mostly interested in image analysis and for that purpose the 2-D algorithm
is sufficient.

10.4.2 HFT by Complex Fourier Transform

We have proved in section 9.4.2 that the commutative hypercomplex algebra
is isomorphic to the Cartesian product of complex algebras. Let us consider
this isomorphism more closely with respect to the Fourier transform. Firstly,
we take the two-dimensional case.

We obtain the two complex coefficients η, ξ from the hypercomplex value
F by the formulae

η = R{F} − K{F} + i(I{F} + J {F}) (10.20a)

ξ = R{F} + K{F} + i(I{F} − J {F}) (10.20b)

Assume now F being a hypercomplex spectrum. If we consider η, we can see
that it is equal to the complex spectrum of the same signal. It is an amazing
fact, that two totally different mappings (one between two algebras and one
between two signal-theoretic concepts) are equal.

Even more amazing is the correspondence between the second complex
component ξ and the complex spectrum. If F is the spectrum of a real signal,
i.e. it is Hermite symmetric, we obtain ξ from η by inverting the v-coordinate
(the reversion in v-direction yields a changed sign in the j- and k-components
of the spectrum).

Using this knowledge, we can develop another fast algorithm for the HFT2
based on a complex 2-D FFT. Assume that the signal is real-valued. Now,
calculate its complex spectrum, using an ordinary 2-D FFT algorithm. This
spectrum is equal to η. Next, invert the v-axis in order to obtain the ξ com-
ponent. Last, use the inverse of (10.20a and b) in order to reconstruct the
hypercomplex spectrum.

The whole procedure can be shortened by writing

F h = R{F e} + iI{F e} + jI{F o} − kR{F o} (10.21)

where F is the complex spectrum, F eu,v = 1/2(Fu,v + Fu,−v) and
F ou,v = 1/2(Fu,v − Fu,−v).

Up to now, we have exclusively considered spectra of real signals. In sec-
tion 10.3.1 we have already mentioned that the DCFT of a Clifford-valued
signal can be calculated using the DHFT. In order to develop such an algo-
rithm we use the following derivation starting with the 2-D DCFT (not the
DQFT):

10. Fast Algorithms 251

F q =
M−1∑

x=0

N−1∑

y=0

(R{f} + iI{f}+ jJ {f}+ kK{f})e−i2πux/Me−j2πvy/N

=

M−1∑

x=0

N−1∑

y=0

R{f}e−i2πux/Me−j2πvy/N

+i

M−1∑

x=0

N−1∑

y=0

I{f}e−i2πux/Me−j2πvy/N

+j

M−1∑

x=0

N−1∑

y=0

J {f}e−i2πux/Me−j2πvy/N

+k

M−1∑

x=0

N−1∑

y=0

K{f}e−i2πux/Me−j2πvy/N

= FR + iF I + jF J + kFK

where FR, F I , F J , and FK are spectra of the real signals R{f}, I{f},J{f},
and K{f}, respectively. Hence, they can be evaluated either in the Clifford
algebra or in the commutative hypercomplex algebra. Therefore, they can be
calculated via the complex spectra. Only the last step (the multiplication of
the partial spectra by the imaginary units) must be calculated in the Clifford
algebra.

Since the isomorphism is proved for any dimension, every hypercomplex
spectrum can be calculated using the complex Fourier transform. If the signal
is real, the method is straightforward. The first complex coefficient is obtained
by the complex Fourier transform. The other coefficient are calculated by
inverting each coordinate axis except for the first. If the signal is Clifford-
valued, each component must be transformed separately and afterwards the
imaginary units are multiplied to the partial spectra using the Clifford algebra
multiplication.

10.4.3 Complexities

In this section we consider some complexities of the presented algorithms.
Though the row-column algorithm is most advantageous in the case where
the signal length varies widely with respect to the different coordinates, we
consider the case where all signal lengths are the same, in order to compare
the row-column algorithm to the other ones.

We start with the complexities for the two-dimensional case. We already
said that for real signals the row-column algorithm doubles the number of
1-D transforms for each dimension. Hence, we need three transforms in the
2-D case. Each transform has to pass N rows (columns) and its complexity
is given according to table 10.3 by N ldN multiplications and 3/2N ldN

252 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

additions (5/2N ldN operations). Hence, we obtain 3N 2 ldN multiplications
and 9/2N2 ldN additions for the whole spectrum (15/2N 2 ldN operations).

For quaternionic signals the row-column algorithm performs two times two
1-D FFTs. Since the signals are not real, the 1-D FFT itself needs twice the
number of operations. That yields a complexity of 8N 2 ldN multiplications
and 12N2 ldN additions (20N2 ldN operations).

If we use the isomorphism to calculate the Clifford spectrum of a signal,
the complexity depends on the 2-D FFT algorithm (up to a quadratic ad-
ditive complexity). Assuming that a 2-D FFT algorithm can be performed
with 3/2N2 ldN multiplications and (3/4+2)N 2 ldN additions (17/4N2 ldN
operations)[125], an FHFT algorithm using the isomorphism has the same
complexity if the signal is real.

If the signal is Clifford-valued, the complexity is four times the complexity
of the algorithm for a real signal (up to a quadratic additive complexity for
the combination of the four spectra). All the complexities calculated above
are summarized in table 10.4.

Table 10.4. Complexities of the considered algorithms

algorithm multiplications additions operations

row-column (real) 3N2 ldN 9/2N2 ldN 15/2N2 ldN

row-column (quat.) 8N2 ldN 12N2 ldN 20N2 ldN

isomorphism (real) 3
2
N2 ldN 11

4
N2 ldN 17

4
N2 ldN

isomorphism (quat.) 6N2 ldN 11N2 ldN 17N2 ldN

Finally, we will roughly consider some complexities for the n-dimensional
case. The row-column algorithm for the real case uses

∑n−1
i=0 2i = 2n− 1 1-D

FFTs Nn−1 times. That yields a complexity of (2n − 1)Nn ldN multiplica-
tions and (2n − 1)3/2Nn ldN additions ((2n − 1)5/2Nn ldN operations).

The row-column algorithm for Clifford-valued signals needs n2n−1 1-D
FFTs (with double complexity) Nn−1 times. Hence, we have a complexity of
n2nNn ldN multiplications and n2n3/2Nn ldN additions (n2n5/2Nn ldN
operations).

The algorithm using the isomorphism still has the same complexity as
the complex nD FFT in the case of real signals and it has a 2n times higher
complexity in the case of Clifford-valued signals.

If we consider the memory complexity, it becomes obvious that the row-
column algorithm applies FFTs only on 1-D sub-signals. Therefore, it works
nearly independently on the dimension. If the signal does not fit into the main
memory, the data is swapped as often as the coordinate for the 1-D FFT is
changed (i.e. n times). Hence, the number of swapped data is nNn. Note that

10. Fast Algorithms 253

we provided implicitly, that one row always fits in the main memory, which
is quite realistic.

For the n-D FFT (or FHFT) we have one crucial point in the recursion
where the data begins to swap for each higher level. The number of the
swapping levels s can be calculated from the size of the main memory M and
the signal size Nn by the formula

s = d 1

n
ld
Nn

M
e = dldN − 1

n
ldMe = ldN − bld n

√
Mc. (10.22)

The algorithm must swap (ldN − bld n
√
Mc)Nn values. Since this formula is

not as easy to understand as the one for the row-column algorithm, we will
give an example.

Firstly, consider that we want to calculate the DQFT (n = 2). We know
that each quaternion uses 32 bytes (four double floats). Assuming that the
main memory consists of 64 megabyte, we obtainM = 221. Hence bld 2

√
Mc =

10. That means, if the image is greater than 1024 × 1024 the FHFT begins
to swap. The number of swappings is linear with the power of two. The row-
column algorithm swaps two times, if the image is greater that 1024× 1024.

Now we have n = 3. We obtain M = 220 and bld 2
√
Mc = 6. Again, both

algorithms begin to swap if the signal is greater than 64× 64× 64. The row-
column algorithm swaps three times, the FHFT algorithm needs a number
of swappings linear with the power of two. Both examples are illustrated in
figure 10.5. The x-axis indicates the exponent of the signal size and the y-axis
indicates, how often the whole data is swapped.

ldN

n
u
m

b
er

o
f
sw

a
p
p
in

g
s

2 4 6 8 10 12 14

2 4 6 8 10 12 14

2

4

6

8

2

4

6

8

n
u
m

b
er

o
f
sw

a
p
p
in

g
s

16 18

2-D FHFT

3-D FHFT

3-D row-column

ldN

2-D row-column

Fig. 10.5. The num-
ber of swapping oper-
ations for the 2-D and
3-D FHFT and row-
column algorithm

254 Michael Felsberg, Thomas Bülow, Gerald Sommer, Vladimir M. Chernov

Obviously, it depends on the size of the data which algorithm is the best
choice.

10.5 Conclusion and Summary

We have considered several fast algorithms for multidimensional hypercom-
plex Fourier transforms. We can divide these algorithms into three classes: n-
D decimation algorithms, n-D algorithms which use the complex FFTn, and
row-column algorithms which apply 1-D FFT1s to each coordinate (separabil-
ity). The last two algorithms use standard transforms and a simple mapping
of the data is all to be done. Therefore, these algorithms are to be preferred
if one wants to make only some experiments or if the dimension of the signals
often changes because they can be implemented fast and easily.

Although the asymptotic complexity of the n-D decimation algorithms are
the least and therefore these algorithms seem to be superior to the algorithms
using the isomorphism or the row-column method, we cannot recommend us-
ing them, because their implementation is slower due to all the array accesses
and the exhaustive length of the code. We ourselves recommend using the
row-column method since the complex FFTn algorithms are mostly imple-
mented in this way and one can merge the steps from 1-D FFTs to n-D FFT
and from n-D FFT to n-D FHFT in one step. Additionally, it is possible to
adapt the algorithm to signal sizes which differ for different coordinates.

For very large signals (i.e. greater than the actual memory size) the row-
column method is superior as well, since the swapping is reduced to a min-
imum. Furthermore, it is easier to optimize the 1-D FFT algorithm than to
speed up the n-D algorithms. These optimizations of the FFT1 automatically
lead to an optimized n-D algorithm.

The most interesting result which we have presented is the fact that a
theoretical algebraic result yields a practically optimal algorithm. The iso-
morphism of the n-fold tensor product and the 2n−1-fold Cartesian product
of the complex algebra leads to a decomposition technic for an algorithm.
This result emphasizes the importance of deep mathematical knowledge for
signal processing. Thus, geometric algebra has been shown to be a powerful
embedding for multidimensional signal analysis.

11. Local Hypercomplex Signal

Representations and Applications∗

Thomas Bülow and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

11.1 Introduction

The concept of the analytic signal is an important concept in one-dimensional
signal theory since it makes the instantaneous amplitude and phase of a real
signal directly accessible. Regrettably, there is no straightforward extension
of this concept to multidimensional signals, yet. There are rather different
approaches to an extension which have different drawbacks. In the first part
of this chapter we will review the main approaches and introduce a new one
which overcomes some of the problems of the older approaches. The new
definition is easily described in the frequency domain. However, in contrast
to the 1-D analytic signal we will use the quaternionic frequency domain
instead of the complex Fourier domain. Based on the so defined quaternionic
analytic signal [36] the instantaneous amplitude and quaternionic phase of a
2-D signal can be defined [34].

In one-dimensional signal theory it is often useful not to calculate the ana-
lytic signal but a bandpass filtered version of the analytic signal. This is done
by applying so called quadrature filters. Here, we will use Gabor filters which
are good approximations to quadrature filters. Corresponding to the evalu-
ation of the quaternionic analytic signal is the application of quaternionic
∗ This work has been supported by German National Merit Foundation and by

DFG Grants So-320-2-1 and So-320-2-2.

256 Thomas Bülow, Gerald Sommer

Gabor filters which we introduce based on the quaternionic Fourier trans-
form. As a practical example we demonstrate the application of quaternionic
Gabor filters in texture segmentation.

11.2 The Analytic Signal

The notion of the analytic signal of a real one-dimensional signal was intro-
duced in 1946 by Gabor [88]. Before going into technical details we will give
a vivid explanation of the meaning of the analytic signal. If we regard a real
one-dimensional signal f as varying with time, it can be represented by the
oscillating vector from the origin to f(t) on the real line. Taking a snapshot
of the vector at time t0 as shown in figure 11.2 reveals no information about
the amplitude or the instantaneous phase of the oscillation. I.e. it is invisible
whether f is still growing to the right or already on the returning way and
where the extrema of the oscillation lie. The analytic signal of f is a complex-
valued signal, denoted by fA. Thus, fA can be visualized as a rotating vector
in the complex plane. This vector has the property that its projection to
the real axis is identical to the vector given by f . Moreover, if a snapshot is
taken, the length of the vector, and its angle against the real axis give the
instantaneous amplitude and the instantaneous phase of f , respectively. The
analytic signal is constructed by adding to the real signal f a signal which is
shifted by −π/2 in phase against f .

fHi

f

fA(t0)

f(t0)0

Fig. 11.1. Snapshot of the oscillating vector to f and the rotating vector to
fA at time t0

11. Local Hypercomplex Signal Representations 257

In this section we will shortly review the analytic signal in 1-D and four
approaches to the analytic signal in 2-D which have occurred in the literature
[100, 101, 92, 226]. We investigate the different principles which lie at the basis
of the definitions and conclude with a set of desirable properties of the 2-D
analytic signal. Based on the QFT it is possible to introduce a novel definition
of the analytic signal which fulfills most of the desired properties.

11.2.1 The One-Dimensional Analytic Signal

As mentioned above, the analytic signal fA of a real one-dimensional signal f
is defined as the sum of f and a −π/2-shifted version of f as imaginary part.
The shifted version of f is the Hilbert transform fHi of f . Thus, the analytic
signal can be written as fA = f + ifHi. This is the generalization of the
complex notation of harmonic signals given by Euler’s equation exp(i2πux) =
cos(2πux) + i sin(2πux).

A phase shift by −π/2 – which is expected to be done by the Hilbert
transform – can be realized by taking the negative derivative of a function.
E.g. we have

− ∂

∂x
cos(2πux) = 2πu sin(2πux),

which shifts the cosine-function and additionally scales the amplitude with
the angular frequency ω = 2πu. In order to avoid this extra scaling we divide
each frequency component by the absolute value of the angular frequency.
This procedure can easily be described in the Fourier domain: Taking the
negative derivative results in multiplication by −i2πu. Dividing by |2πu|
results in the following procedure in the frequency domain:

F (u) 7→ −i u|u|F (u) = −i sign(u)F (u),

which makes plausible the definition of the Hilbert transform.
The formal definitions of the Hilbert transform and of the analytic signal

are as follows:

Definition 11.2.1 (Hilbert transform). Let f be a real 1-D signal and
F its Fourier transform. The Hilbert transform of f is then defined in the
frequency domain by

FHi(u) = −isign(u)F (u) with sign(u) =

1 if u > 0
0 if u = 0
−1 if u < 0

. (11.1)

In spatial domain this reads

fHi(x) = f(x) ∗ 1

πx
, (11.2)

where ∗ denotes the convolution operation.

258 Thomas Bülow, Gerald Sommer

The convolution integral in (11.2), namely

fHi(x) =
1

π

∫

R

f(ξ)

x− ξ
dξ

contains a singularity at x = ξ. This is handled by evaluating Cauchy’s
principle value, i.e.

fHi(x) =
1

π
P

∫

R

f(ξ)

x− ξ
dξ (11.3)

=
1

π
lim
ε→0

x−ε∫

−∞

f(ξ)

x− ξ
dξ +

∞∫

x+ε

f(ξ)

x− ξ
dξ

 (11.4)

Definition 11.2.2 (Analytic signal). Let f be a real 1-D signal and F its
Fourier transform. Its analytic signal in the Fourier domain is then given by

FA(u) = F (u) + iFHi(u) (11.5)

= F (u)(1 + sign(u)).

In the spatial domain this definition reads:

fA(x) = f(x) + ifHi(x) = f(x) ∗
(
δ(x) +

i

πx

)
. (11.6)

Thus, the analytic signal of f is constructed by taking the Fourier transform
F of f , suppressing the negative frequencies and multiplying the positive
frequencies by two. Note that, applying this procedure, we do not lose any
information about f because of the Hermite symmetry of the spectrum of a
real function.

The analytic signal enables us to define the notions of the instantaneous
amplitude and the instantaneous phase of a signal [92].

Definition 11.2.3 (Instantaneous amplitude and phase). Let f be a
real 1-D signal and fA its analytic signal. The instantaneous amplitude and
and phase of f are then defined by

instantaneous amplitude of f(x) = |fA(x)| (11.7)

instantaneous phase of f(x) = atan2(IfA(x),RfA(x)). (11.8)

For later use we introduce the notion of a Hilbert pair.

Definition 11.2.4 (Hilbert pair). Two real one-dimensional functions f
and g are called a Hilbert pair if one is the Hilbert transform of the other,
i.e.

fHi = g or gHi = f.

If fHi = g it follows that gHi = −f .

11. Local Hypercomplex Signal Representations 259

We illustrate the above definitions by a simple example: The analytic signal of
f(x) = a cos(ωx) which is a cosA(ωx) = a cos(ωx) + ia sin(ωx) = a exp(iωx).
The instantaneous amplitude of f is given by |fA(x)| = a while the in-
stantaneous phase is atan2(IfA(x),RfA(x)) = ωx. Thus, the instantaneous
amplitude and phase of the cosine-function are exactly equal to the expected
values a and ωx, respectively. Furthermore, cos and sin constitute a Hilbert
pair. Figure 11.2 shows another example of an oscillating signal together with
its instantaneous amplitude and its instantaneous phase.

−300 −200 −100 0 100 200 300
−4

−3

−2

−1

0

1

2

3

4

Fig. 11.2. An oscillating signal, its instantaneous amplitude (signal envelope)
and its instantaneous phase (dashed)

However, the close relation of the instantaneous amplitude and phase to
the local structure of the signal gets lost if the signal has no well defined
angular frequency. Most of the time it is sufficient to require the signal to be
of narrow bandwidth ([92], p. 171).

For this reason later (in section 11.3.1) Gabor filters will be introduced
which establish a relation between the local structure and the local phase of
a broader class of signals.

11.2.2 Complex Approaches to the Two-Dimensional
Analytic Signal

The construction of the analytic signal is of interest not only in one-
dimensional signal processing but in image processing and multidimensional
signal processing as well. So far, however, we have merely presented a def-
inition of the one-dimensional analytic signal. Thus, an extension to higher

260 Thomas Bülow, Gerald Sommer

dimensions is needed. There have appeared different approaches to a 2-D ana-
lytic signal in the literature. All of these approaches use a combination of the
original signal and its Hilbert transform. In this section we will present and
discuss these approaches. A novel approach which is based on the quater-
nionic Fourier transform (see chap. 8, Def. 8.3.4) is introduced in section
11.2.3.

In order to evaluate the different approaches to the analytic signal to 2-
D we need some guidelines. As such a guideline we give a list of the main
properties of the analytic signal in 1-D. Any new definition will be mea-
sured according to the degree to which it extends these properties to higher
dimensions.

Table 11.1. Four properties of the analytic signal

1. The spectrum of an analytic signal is right-sided (FA(u) =
0 for u < 0).

2. Hilbert pairs are orthogonal.
3. The real part of the analytic signal fA is equal to the original

signal f .
4. The analytic signal is compatible with the associated harmonic

transform (in case of the 1-D analytic signal with the Fourier
transform.)

We will explain the forth point. The analytic signal is called compati-
ble with the associated harmonic transform with transformation kernel K
if RK and IK are a Hilbert pair. In case of the one-dimensional Fourier
transform this property is fulfilled, since the real part of the Fourier kernel,
i.e. R(exp(−i2π ux)) = cos(−2π ux) is the Hilbert transform of sin(−2π ux),
as was shown above.

The first definition is based on the 2-D Hilbert transform [226]:

Definition 11.2.5 (Total 2-D Hilbert transform). Let f be a real two-
dimensional signal. Its Hilbert transform is given by

fHi(x) = f(x) ∗
(

1

π2xy

)
, (11.9)

where ∗ denotes the 2-D convolution. In the frequency domain this reads

FHi(u) = −F (u)sign(u)sign(v).

Sometimes fHi is called the total Hilbert transform of f [101].

For later use, we define also the partial Hilbert transforms of a 2-D signal.

11. Local Hypercomplex Signal Representations 261

Definition 11.2.6 (Partial Hilbert transform).
Let f be a real two-dimensional signal. Its partial Hilbert transforms in x-
and y-direction are given by

fHi1(x) = f(x) ∗
(
δ(y)

πx

)
, and (11.10)

fHi2(x) = f(x) ∗
(
δ(x)

πy

)
, (11.11)

respectively. In the frequency domain this reads

FHi1(u) = −iF (u)sign(u) and FHi2 (u) = −iF (u)sign(v).

The partial Hilbert transform of a 2-D signal can of course be defined with
respect to any orientation.

In analogy to 1-D an extension of the analytic signal can be defined as
follows:

Definition 11.2.7 (Total analytic signal). The analytic signal of a real
2-D signal f is defined as

fA(x) = f(x) ∗ (δ2(x) +
i

π2xy
) (11.12)

= f(x) + ifHi(x), (11.13)

where fHi is given by (11.9). In the frequency domain this definition reads

FA(u) = F (u)(1 − i sign(u)sign(v)).

The spectrum of fA according to definition 11.2.7 is shown in figure 11.3.
It does not vanish anywhere in the frequency domain. Hence, there is no
analogy to the causality property of an analytic signal’s spectrum in 1-D.
Secondly, Hilbert pairs according to this definition are only orthogonal if
the functions are separable [101]. Furthermore, the above definition of the
analytic signal is not compatible with the two-dimensional Fourier transform,
since sin(2πux) is not the total Hilbert transform of cos(2πux). Thus, the
properties 1, 2 and 4 from table 11.1 are not satisfied by this definition. A

F (u) − iF (u)

F (u) − iF (u) F (u) + iF (u)

F (u) + iF (u)
v

u

Fig. 11.3. The spectrum of the analytic signal according to definition 11.2.7

262 Thomas Bülow, Gerald Sommer

common approach to overcome this fact can be found e.g. by Granlund [92].
This definition starts with the construction in the frequency domain. While
in 1-D the analytic signal is achieved by suppressing the negative frequency
components, in 2-D one half-plane of the frequency domain is set to zero in
order to fulfill the causality constraint (property no. 1 in table 11.1). It is not
immediately clear how negative frequencies can be defined in 2-D. However,
it is possible to introduce a direction of reference defined by the unit vector
ê = (cos(θ), sin(θ)). A frequency u with ê · u > 0 is called positive while a
frequency with ê ·u < 0 is called negative. The 2-D analytic signal can then
be defined in the frequency domain.

Definition 11.2.8 (Partial analytic signal). Let f be a real 2-D signal
and F its Fourier transform. The Fourier transform of the analytic signal is
defined by:

FA(u) =

2F (u) if u · ê > 0
F (u) if u · ê = 0

0 if u · ê < 0

 = F (u)(1 + sign(u · ê)). (11.14)

In the spatial domain (11.14) reads

fA(x) = f(x) ∗
(
δ(x · ê) +

i

πx · ê

)
δ(x · ê⊥). (11.15)

The vector ê⊥ is a unit vector which is orthogonal to ê : ê · ê⊥ = 0.

Please note the similarity of this definition with the one-dimensional def-
inition (11.5). For ê> = (1, 0) (11.15) takes the form

fA(x) = f(x) ∗
(
δ(x) +

i

πx

)
δ(y) (11.16)

= f(x) + ifHi1 . (11.17)

Thus, the reason for the name partial analytic signal lies in the fact that it
is the sum of the original signal and the partial Hilbert transform as imagi-
nary part. The partial analytic signal with respect to the two coordinate axes
has been used by Venkatesh et al. [242, 241] for the detection of image fea-
tures. They define the energy maxima of the partial analytic signal as image
features.

According to this definition the analytic signal is calculated line-wise along
the direction of reference. The lines are processed independently. Hence, def-
inition 11.2.8 is intrinsically 1-D, such that it is no satisfactory extension of
the analytic signal to 2-D. Its application is reasonable only for simple sig-
nals, i.e. signals which vary only along one orientation [92]. The orientation
ê can then be chosen according to the direction of variation of the image.

If negative frequencies are defined in the way indicated above, we can say
that property 1 of table 11.1 is fulfilled. Properties 2 and 3 are valid as well.

11. Local Hypercomplex Signal Representations 263

This follows from the fact that merely the 1-D analytic signal is evaluated line-
wise, which leads to a trivial extension of these properties. Even property 4 is
”almost” valid: sin(ux+vy) is the partial Hermite transform (i.e. with respect
to the x direction) of cos(ux+ vy) for all frequencies u with u 6= 0. However,
the main drawback of definition 11.2.8 is the intrinsic one-dimensionality
of the definition and the non-uniqueness with regard to the orientation of
reference ê.

2F (u)

0

ê

u

v

Fig. 11.4. The spectrum of the analytic signal according to definition 11.2.8

The both definitions presented so far seem to establish the following
dilemma: Either an intrinsically two-dimensional definition of the analytic
signal based on the total Hilbert transform can be introduced, which does
not extend the main properties of the 1-D analytic signal, or these proper-
ties are extended by an intrinsically one-dimensional definition based on the
partial Hilbert transform.

An alternative to these approaches was recently introduced by Hahn [100,
101]. Hahn avoids the term ”analytic signal” and uses Gabor’s original term
”complex signal” instead.

Definition 11.2.9. Let f be a real, two-dimensional function and F its
Fourier transform. The 2-D complex signal (according to Hahn [101]) is de-
fined in the frequency domain by

FA(u) = (1 + sign(u))(1 + sign(v))F (u).

In the spatial domain this reads

fA(x) = f(x) ∗
(
δ(x) +

i

πx

)(
δ(y) +

i

πy

)
(11.18)

= f(x) − fHi(x) + i(fHi1(x) + fHi2(x)), (11.19)

where fHi is the total Hilbert transform, and fHi1 and fHi2 are the partial
Hilbert transforms.

264 Thomas Bülow, Gerald Sommer

The meaning of definition 11.2.9 becomes clear in the frequency domain:
Only the frequency components with u > 0 and v > 0 are kept, while the
components in the three other quadrants are suppressed (see figure 11.5):

FA(u) = (1 + sign(u))(1 + sign(v))F (u).

0

0 0

4F (u)

v

u

Fig. 11.5. The spectrum of the analytic signal according to Hahn [100] (def-
inition 11.2.9)

Thus, the problem of defining positive frequencies is solved in another
way then in definition 11.2.8.

A main problem of definition 11.2.9 is the fact that the original signal is
not reconstructible from the analytic signal, since due to the Hermite symme-
try only one half-plane of the frequency domain of a real signal is redundant.
For this reason Hahn proposes to calculate not only the analytic signal with
the spectrum in the upper right quadrant but also another analytic signal
with its spectrum in the upper left quadrant. It can be shown that these two
analytic signals together contain all the information of the original signal
[101]. When necessary we distinguish the two analytic or complex signals by
referring to them as definition 11.2.9a and 11.2.9b, respectively.

Thus, the complete analytic signal according to definition 11.2.9 consists
of two complex signals, i.e. two real parts and two imaginary parts or, in polar
representation, of two amplitude- and two phase-components which makes the
interpretation, especially of the amplitude, difficult. Furthermore, it would
be more elegant to express the analytic signal with only one function instead
of two. Definition 11.2.9 fulfills properties 1 and 2 from table 11.1. The very
important property that the signal should be reconstructible from its analytic
signal is only fulfilled if two different complex signals are calculated using two
neighbored quadrants of the frequency domain. Hahn [101] mentions that
his definition of the 2-D analytic signal is compatible with the 2-D Fourier
transform for the following reason: The 2-D Fourier kernel can be written in
the form

11. Local Hypercomplex Signal Representations 265

exp(i2πux) = cos(2πux) cos(2πvy) − sin(2πux) sin(2πvy) (11.20)

+ i(cos(2πux) sin(2πvy) + sin(2πux) cos(2πvy)) (11.21)

where for convenience we have omitted the minus sign in the exponential.
According to definition 11.2.9 this is exactly the complex signal of f(x) =
cos(2πux) cos(2πvy). However, this fulfills only a weak kind of compatibility
and not the one defined by us above. This would require that the analytic
signal of R exp(i2πux) would equal exp(i2πux).

The remaining problems can be summarized as follows. The original signal
cannot be recovered from Hahn’s analytic signal. This restriction can only be
overcome by introducing two complex signals for each real signal, which is not
a satisfactory solution. Furthermore, Hahn’s analytic signal is not compatible
with the 2-D Fourier transform in the strong sense.

Apart from these disadvantages, it is clear from the above analysis, that,
among the definitions introduced so far, Hahn’s definition is closest to a
satisfactory 2-D extension of the analytic signal. In the following section we
will show how Hahn’s frequency domain construction can be applied to the
construction of a quaternionic analytic signal, which overcomes the remaining
problems.

11.2.3 The 2-D Quaternionic Analytic Signal

Hahn’s approach to the analytic signal faces the problem that a two-
dimensional complex hermitian signal can not be recovered from one quadrant
of its domain. For this reason Hahn introduced two complex signals to each
real two-dimensional signal. We will show how this problem is solved using
the QFT.

Since the QFT of a real signal is quaternionic hermitian (see chapter 8,
theorem 8.4.8) we do not lose any information about the signal in this case.
This fact is visualized in figure 11.6.

β(F q(u, v)) F q(u, v)

α(F q(u, v))γ(F q(u, v))

v

u

Fig. 11.6. The quaternionic spectrum of a real signal can be reconstructed
from only one quadrant

266 Thomas Bülow, Gerald Sommer

Thus, we define the quaternionic analytic signal in the frequency domain
as in definition 11.2.9, with the only difference that we use the quaternionic
frequency domain defined by the QFT instead of the complex frequency do-
main.

Definition 11.2.10 (Quaternionic analytic signal). Let f be a
real two-dimensional signal and F q its QFT. In the quaternionic frequency
domain we define the quaternionic analytic signal of a real signal as

F qA(u) = (1 + sign(u))(1 + sign(v))F q(u),

where x = (x, y) and u = (u, v). Definition 11.2.10 can be expressed in the
spatial domain as follows:

f qA(x) = f(x) + n · fHi(x), (11.22)

where n = (i, j, k)> and fHi is a vector which consists of the total and the
partial Hilbert transforms of f according to definitions 11.2.5 and 11.2.6:

fHi(x) =

fHi1(x)
fHi2(x)
fHi(x)

 . (11.23)

Note that, formally, (11.22) resembles the definition of the one-dimensional
analytic signal (11.6). Since the quaternionic analytic signal consists of four
components we replace the notion of a Hilbert pair (definition 11.2.4) by the
notion of a Hilbert quadruple.

Definition 11.2.11 (Hilbert quadruple). Four real two-dimensional
functions fi, i ∈ {1, . . . 4} are called a Hilbert quadruple if

I(fk)
q
A = fl (11.24)

J (fk)
q
A = fm (11.25)

K(fk)
q
A = fn (11.26)

for some permutation of pairwise different k, l,m, n ∈ {1, . . . 4}.

Theorem 11.2.1. The four components of the QFT-kernel build a Hilbert
quadruple.

Proof. Since the quaternionic analytic signal of f(x) = cos(ωxx) cos(ωyy) is
given by f qA(x) = exp(iωxx) exp(jωyy), which is the QFT-kernel, we have

I(R exp(iωxx) exp(jωyy))
q
A = I exp(iωxx) exp(jωyy) (11.27)

J (R exp(iωxx) exp(jωyy))
q
A = J exp(iωxx) exp(jωyy) (11.28)

K(R exp(iωxx) exp(jωyy))
q
A = K exp(iωxx) exp(jωyy). (11.29)

which concludes the proof. ut

11. Local Hypercomplex Signal Representations 267

11.2.4 Instantaneous Amplitude

One main feature of the analytic signal is that it makes accessible instanta-
neous phase and amplitude information directly. In the following we define
the instantaneous amplitude of real 2-D signal as the absolute value of its
analytic signal. Clearly, the different definitions of the analytic signal given in
the last section result in different definitions of the instantaneous amplitude
of a signal. We summarize these definitions in table 11.2. Figure 11.7 shows

analytic signal instantaneous amplitude

Def. 11.2.7 � f2() + f2
Hi()

Def. 11.2.8 � f2() + f2
Hi1

()

Def. 11.2.9 � [f() − fHi()]2 + [fHi1 () + fHi2 ()]2

Def. 11.2.10 � f2() + f2
Hi1

() + f2
Hi2

() + f2
Hi()

Table 11.2. The tabular shows the different possible definitions of the instanta-
neous magnitude in 2-D. On the right hand side the instantaneous amplitude of the
2-D signal f is given according to the definition of the analytic signal indicated on
the left hand side

an image of D. Hilbert and the instantaneous amplitude of this image. The
instantaneous amplitude is expected to take high values wherever the image
has considerable contrast. From this point of view only the instantaneous
amplitude constructed via the partial analytic signal and the quaternionic
analytic signal yield acceptable results. However, at positions where the local
structure is intrinsically 2-D the quaternionic analytic signal yields better
results.

11.2.5 The n-Dimensional Analytic Signal

All approaches to the 2-D analytic signal can easily be extended to n-
dimensional signals. We merely give the definitions here and forego a detailed
discussion, since the main properties of and differences between the different
approaches remain the same in n-D as in 2-D.

Definition 11.2.12 (Total analytic signal). The analytic signal of a real
n-D signal f is defined as

268 Thomas Bülow, Gerald Sommer

Fig. 11.7. An image of Hilbert and its instantaneous amplitude according to the
different definitions of the 2-D analytic signal given in section 11.2.3. From top left
to bottom right: The original image, the instantaneous amplitude (IA) according to
the total analytic signal, the partial analytic signal (with respect to the x-direction),
the definition of Hahn (maintaining the upper right quadrant and the upper left
quadrant, respectively), and the IA with respect to the quaternionic analytic signal

11. Local Hypercomplex Signal Representations 269

fA(x) = f(x) ∗ (δn(x) +
i

πn
∏n
j=1 xj

) (11.30)

=: f(x) + ifHi(x), (11.31)

where fHi is the n-D total Hilbert transform of f . In the frequency domain
this definition reads

FA(u) = F (u)(1 − i

n∏

j=1

sign(uj)).

Definition 11.2.13 (Partial analytic signal). Let f be a real n-D signal
and F its Fourier transform. The Fourier transform of the analytic signal
with respect to some n-D unit vector ê is defined by:

FA(u) =

2F (u) if u · ê > 0
F (u) if u · ê = 0

0 if u · ê < 0

 = F (u)(1 + sign(u · ê)). (11.32)

Definition 11.2.14. Let f be a real, n-dimensional function and F its
Fourier transform. The n-D complex signal (according to Hahn [101]) is de-
fined in the frequency domain by

FA(u) =

n∏

j=1

(1 + sign(uj))F (u).

In the spatial domain this reads

fA(x) = f(x) ∗
n∏

j=1

(
δ(xj) +

i

πxj

)
. (11.33)

Finally we define the n-dimensional version of the quaternionic analytic sig-
nal, namely the Clifford analytic signal.

Definition 11.2.15 (Clifford analytic signal).
Let f be a real, n-dimensional function and F c its Clifford Fourier transform.
The n-D Clifford analytic signal is defined in the frequency domain by

F cA(u) =

n∏

j=1

(1 + sign(uj))F
c(u).

In the spatial domain this reads

f cA(x) = f(x) ∗
n∏

j=1

(
δ(xj) +

ej
πxj

)
. (11.34)

270 Thomas Bülow, Gerald Sommer

11.3 Local Phase in Image Processing

We have shown how the instantaneous phase can be evaluated using the
analytic signal. However, the instantaneous phase loses its direct relation
to the local signal structure, when the signal is not of narrow bandwidth
[92]. In order to overcome this restriction, bandpass-filters with a one-sided
transfer function can be applied to a signal. According to the definition of
the 1-D analytic signal the impulse responses of these filters, and the filter
responses to any real signal as well, are analytic signals. Filters of this kind are
called quadrature filters. The angular phase of the quadrature filter response
to a real signal is called the local phase. In the following we will introduce
complex Gabor filters as approximations to quadrature filters. Using these
filters we will define the local complex phase of an n-D signal. Since the local
complex phase is an intrinsically 1-D concept it is a reasonable concept merely
for simple or locally intrinsically 1-D signals. In section 11.3.2 we introduce
quaternionic Gabor filters based on the quaternionic Fourier transform. Using
these filters the concept of local phase of 2-D signals is extended.

11.3.1 Local Complex Phase

Complex Gabor filters are defined as linear shift-invariant filters with the
Gaussian windowed basis functions of the Fourier transform as their basis
functions.

Definition 11.3.1 (1-D Complex Gabor filter). A one-dimensional
complex Gabor filter is a linear shift-invariant filter with the impulse response

h(x;N, u0, σ) = g(x;N, σ) exp(i2πu0x), (11.35)

where g(x;N, σ) is the Gauss function

g(x;N, σ) = N exp

(
− x2

2σ2

)
.

The Gabor filters have as parameters the normalization constant N , the
center frequency u0 and the variance σ of the Gauss function. However, most
of the time we will not write down these arguments explicitly. Where no
confusion is possible we use the notation h(x) and g(x) for the Gabor filter
and the Gaussian function at position x, respectively.

We will use the normalization N = (
√

2πσ2)−1 such that
∫
R g(x)dx = 1

in the following. Analogously the definition of 2-D complex Gabor filters is
based on the 2-D Fourier transform:

Definition 11.3.2 (2-D Complex Gabor filter). A two-dimensional
complex Gabor filter is a linear shift-invariant filter with the impulse response

h(x; u0, σ, ε, φ) = g(x′, y′) exp(2πi(u0x+ v0y)) (11.36)

11. Local Hypercomplex Signal Representations 271

with

g(x, y) = N exp

(
−x

2 + (εy)2

σ2

)

where ε is the aspect ratio. The coordinates (x′, y′) are derived from (x, y) by
a rotation about the origin through the angle φ:

(
x′

y′

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x
y

)
. (11.37)

Again, we will choose the normalization such that
∫
R g(x, y)dx dy = 1,

i.e. N = ε
2πσ2 . In frequency domain the 1-D Gabor filters take the following

form:

h(x;u0, σ) ◦−• H(u;u0, σ) = exp(−2π2σ2(u− u0)
2).

The transfer function of a 2-D Gabor filter is given by

h(x; u0, σ, ε, φ) ◦−• H(u; u0, σ, ε, φ) = exp(−2π2σ2[|(u′ − u′
0)|2/ε]).

Thus, Gabor filters are bandpass filters. The radial center frequency of
the 2-D Gabor filter is given by F =

√
u2

0 + v2
0 and its orientation is

θ = atan(v0/u0). In most cases it is convenient to choose θ = φ such that the
orientation of the complex sine gratings is identical with the orientation of
one of the principle axes of the Gauss function. Figure 11.8 shows the transfer
function of a one-dimensional complex Gabor filter. Figure 11.8 shows that

−300 −200 −100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
(u

)

frequency u

H(u)

1

0

0.5

frequency u

−200 0 200

Fig. 11.8. The transfer function of a one-dimensional Gabor filter with u0 = 100
and σ = 0.01

the main amount of energy of the Gabor filter is centered around the center
frequency u0 in the positive half of the frequency domain. However, the en-
ergy in the negative half is not equal to zero. Because of this property, the
filter response of the Gabor filter to a real signal is only an approximation

272 Thomas Bülow, Gerald Sommer

to an analytic signal (which is only one-sided in the frequency domain). The
error of this approximation decreases with increasing u and with increasing
σ.

The local phase of a signal is defined as the angular phase of its complex
Gabor filter response. The relation to the local structure of the signal becomes
clear in the following way. At a signal position with locally even symmetry
only the even part of the Gabor filter, which is real-valued matches. The
angular phase of a real number is either 0 for a positive number or π for a
negative one. Thus, if the even filter component matches the signal positive,
the local phase is 0, if it matches negative, the local phase is π. A similar
reflection clarifies the case of a locally odd structure. In this case only the
odd, and thus imaginary, filter component matches the signal. Since the an-
gular phase of a pure imaginary number is π/2 for a positive imaginary part
and −π/2 otherwise, these values represent odd local structures. Figure 11.9
sketches the relation between structure and phase: the orientation in the cir-
cle indicates the value of the local phase. At the values 0, π/2, π and −π/2
the related structure is shown. An important feature of the local phase is

φ

Fig. 11.9. The relation between local signal structure and local phase (See [92].)

that it is independent of the signal energy. This makes the local phase
very robust against changing lighting conditions.

It should be mentioned here that the value of the local phase at a certain
signal position depends on the chosen filter parameters. I.e. Gabor filters will
only detect features at the scale to which they are tuned.

11.3.2 Quaternionic Gabor Filters

In analogy to the complex Gabor filters we introduce quaternionic Gabor
filters.

11. Local Hypercomplex Signal Representations 273

Definition 11.3.3 (Quaternionic Gabor filter). The impulse response of
a quaternionic Gabor filter is a Gaussian windowed basis function of the QFT:

hq(x; u0, σ, ε) = g(x;σ, ε) exp(i2πu0x) exp(j2πv0y). (11.38)

Note that we do not use rotated Gaussian windows here.
It follows from the modulation theorem of the Fourier transform that com-

plex Gabor filters are shifted Gaussians in the frequency domain. In section
8.4.2 of chapter 8 we showed that there exists a modulation theorem for the
QFT as well. Consequently, quaternionic Gabor filters are shifted Gaussian
functions in the quaternionic frequency domain. Quaternionic Gabor filters
thus belong to the ”world” of the QFT rather than to the ”complex Fourier
world”. The QFT of a quaternionic Gabor filter is given by

hq(x; u0, σ, ε)
H
◦−• Hq(u; u0, σ, ε) = exp(−2π2σ2[|u − u0|2/ε2])

Thus, for positive frequencies u0 and v0 the main amount of the Gabor filter’s
energy lies in the upper right quadrant. Therefore, convolving a real signal
with a quaternionic Gabor filter yields an approximation to a quaternionic
analytic signal.

A typical quaternionic Gabor filter is shown in figure 11.10.

Fig. 11.10. A quaternionic Gabor filter with parameters σ1 = 20, σ2 = 10,
2πu0σ1 = 2πv0σ2 = 2. The size of the filter mask is 100 × 100

11.3.3 Local Quaternionic Phase

We now define the local quaternionic phase of a real two-dimensional signal
as the angular phase of the filter response to a quaternionic Gabor filter. The
angular phase is evaluated according to the rules given in table 8.1. If kq is
the quaternionic Gabor filter response of some image f the local quaternionic
phase (φ(x), θ(x), ψ(x) is defined by

kq(x) = |kq(x)|eiφ(x)ekψ(x)ejθ(x)

according to def. 8.3.1 given in chapter 8.
In 1-D we can make the statement: The local phase estimates and

spatial position are equivariant [92]. I.e. generally the local phase of a
signal varies monotonically up to 2π-wrap-arounds. There are only singular

274 Thomas Bülow, Gerald Sommer

points with low or zero signal energy where this equivariance cannot be found
anymore. A simple example is the cosine function cos(x). If we apply a well
tuned Gabor filter for estimating the local phase φ of this function, we find
that it is almost equal to the spatial position: φ(x) ≈ x for x ∈ [−π, π[(see
figure 11.11). This leads us to an interpretation of the local quaternionic
phase.

−300 −200 −100 0 100 200 300
−4

−3

−2

−1

0

1

2

3

4

Fig. 11.11. The cosine function and its local phase

We make a similar example as in the one-dimensional case by replacing
cos(x) by cos(x) cos(y). The first two components of the local phase φ and
θ turn out to approximate the spatial position: φ(x) ≈ x and θ(x) ≈ y for
(x, y) ∈ [0, 2π[×[0, π[. In general it turns out that these two components
of the local phase are equivariant with spatial position. The reason for the
interval [0, 2π[×[0, π[, which follows mathematically from the definition of the
angular phase of unit quaternions, can be understood from figure 11.12.

 ��
 θ

ϕ
2π

π

0

0

π φ

 ��

Fig. 11.12. The function f(x, y) = cos(x) cos(y) with (x, y) ∈ [0, 4π[×[0, 3π[
(left) and (x, y) ∈ [0, 2π[×[0, π[(right)

11. Local Hypercomplex Signal Representations 275

While the spatial position can be recovered uniquely from the local signal
structure within the interval [0, 2π[×[0, π[, there will occur ambiguities if
the interval is extended. The whole function cos(x) cos(y) can be build from
patches of the size 2π × π. Considering this example the third component of
the local phase is always zero: ψ = 0. The meaning of this phase component
becomes obvious if we vary the structure of the test signal in the following
way. The function cos(x) cos(y) can be written as the sum

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)).

If we consider linear combinations of the form

f(x) = (1 − λ) cos(x + y) + λ cos(x− y)

we find that ψ varies monotonically with the value of λ ∈ [0, 1]. This behavior
is shown in figure 11.13.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.5

-0.4

-0.8

0

0.4

0.8

ψ

0 1

λ

Fig. 11.13. Dependence of the third phase component ψ on the local image
structure

The first two phase components, namely φ and θ do not change their
meaning, while λ varies. Only for the values λ = 0 and λ = 1, i.e. ψ = ∓ π

4 the
structure degenerates into an intrinsically one-dimensional structure. Hence,
the spatial position cannot any longer be recovered from the local structure.
This corresponds to the singularity in the evaluation the angular phase of
a quaternion when ψ = ±π

4 . In this case only φ ∓ θ can be evaluated. The
remaining degree of freedom can be eliminated by setting θ = 0.

276 Thomas Bülow, Gerald Sommer

11.3.4 Relations between Complex and Quaternionic Gabor
Filters

There is a simple relation between complex and quaternionic Gabor filters.
Each component of a complex Gabor filter with aspect ratio ε = 1 may be
written as the sum of two quaternionic Gabor filter components:

he(x, y) = g(x, y) cos(ω1x+ ω2y)

= g(x, y)(cos(ω1x) cos(ω2y) − sin(ω1x) sin(ω2y))

= hqee(x, y) − hqoo(x, y) (11.39)

ho(x, y) = g(x, y) sin(ω1x+ ω2y)

= g(x, y)(cos(ω1x) sin(ω2y) + sin(ω1x) cos(ω2y))

= hqeo(x, y) + hqoe(x, y). (11.40)

From the same quaternionic Gabor filter a second complex Gabor filter can
be generated by

he(x, y) = g(x, y) cos(ω1x− ω2y) (11.41)

= hqee(x, y) + hqoo(x, y)

ho(x, y) = g(x, y) sin(ω1x− ω2y) (11.42)

= hqoe(x, y) − hqeo(x, y).

Thus, each quaternionic Gabor filter corresponds to two complex Gabor fil-
ters. Sometimes these two complex filters are denoted by h+ (11.39, 11.40)
and h− (11.41, 11.42), respectively. The response of a signal f(x, y) to a Ga-
bor filter will be denoted by k(x, y) for a complex Gabor filter and kq(x, y) for
a quaternionic Gabor filter:

k(x, y) = (h ∗ f)(x, y)

= ((he + iho) ∗ f)(x, y)

= ke(x, y) + iko(x, y) (11.43)

kq(x, y) = (hq ∗ f)(x, y)

= ((hqee + ihqoe + jhqeo + khqoo) ∗ f)(x, y)

= kqee(x, y) + ikqoe(x, y) + jkqeo(x, y) + kkqoo(x, y). (11.44)

Theorem 11.3.1. The filter responses of the complex Gabor filters h+ and
h− can be obtained from kq by

k+(x) = (kqee − kqoo) + i(kqoe + kqeo) (11.45)

k−(x) = (kqee + kqoo) + i(kqoe − kqeo). (11.46)

Proof. The theorem follows from the definition of h+ and h− and the fact
that hq is an LSI-filter. ut

Algebraically, the relation between quaternionic and complex Gabor filters
can be illuminated if we apply a mapping from the algebra H to the four-

11. Local Hypercomplex Signal Representations 277

Fig. 11.14. Relation between quaternionic and complex Gabor filters

dimensional commutative hypercomplex algebra H2 introduced in chapter 9
called switching.

Definition 11.3.4 (Switching). The one-to-one mapping S2 : H → H2 is
defined by

S2(a+ bi+ cj + dk) = a+ bi1 + ci2 + di3.

The multiplication table of H2 is given in table 11.3 (see also table 9.2)

Table 11.3. Multiplication table of H2

i1 i2 i3

i1 −1 i3 −i2
i2 i3 −1 −i1
i3 −i2 −i1 1

Theorem 11.3.2. Let hq be a quaternionic Gabor filter. Then

η(S2(h
q(x))) = (h+(x), h−(x)) ∈ C

2,

where η establishes the isomorphism between H2 and C
2:

278 Thomas Bülow, Gerald Sommer

η : H2 → C
2 (11.47)

(α+ βi1 + γi2 + δi3) 7→ ((α− δ) + i(β + γ), (α+ δ) + i(β − γ)).(11.48)

The same is true for the filter responses to real images

η(S2(k
q(x))) = (k+(x), k−(x)) ∈ C

2.

Proof. The theorem follows directly from applying η to S2(h
q(x)) and the

definition of h+ and h−. ut

11.3.5 Algorithmic Complexity of Gabor Filtering

When performing a Gabor filtering on the computer we have to use discrete
Gabor filter masks of the form: h = [hm,n]m,n∈{1,...M} with

hm,n = h(m− M − 1

2
, n− N − 1

2
), (11.49)

where the right hand side is the continuous Gabor filter as in Def. 11.3.2.
Using this convention the Gabor filter mask is an M ×M matrix. The

origin is located at the center of the matrix, therefore it is advantageous
to choose M odd, in order to have a pixel in the center of the filter mask.
The frequencies u and v count how many periods fit into the filter mask in
horizontal and vertical direction, respectively.

The number of multiplications required by the convolution of an N ×N
image with an M×M filter mask in a direct manner is O(N 2M2). When the
filter mask h is separable (h = hc ∗hr), where hc and hr are a column vector
and a row vector of length M , respectively, the filtering operation is of linear
asymptotic complexity. Since the convolution operation is associative we can
write the filtering as

F = f ∗ (hc ∗ hr) = (f ∗ hc) ∗ hr. (11.50)

Thus, the number of required multiplications reduces to O(N 2M). It has
been shown how complex Gabor filter components can be constructed as the
sum of components of a quaternionic Gabor filter. Since quaternionic Gabor
filters are separable, this opens the possibility of implementing the
convolution with complex Gabor filters in a separable way. This
result is especially important since Gabor filters are known to be not exactly
steerable [174]. Figure 11.15 clarifies this result in ”image notation”.

11. Local Hypercomplex Signal Representations 279

−

=∗

∗ =

Fig. 11.15. The real part of a complex Gabor filter as linear combination of
separable quaternionic Gabor filter components

11.4 Texture Segmentation Using the Quaternionic

Phase

The task addressed in this section is: Segment a given image into uniformly
textured regions. This so-called texture segmentation problem is one branch
of the general problem of image segmentation which is one important step
in many computer vision tasks. Regarding global variations of gray values or
mean gray values over some neighborhood is in most cases not sufficient for
a correct segmentation. For this reason rather the global variations of local
measures characterizing the texture have to be regarded.

The posed problem is rather vague since the term texture is not well
defined and there is no unique way of characterizing mathematically the
local gray-value variations perceived as texture by human observers. For this
reason very different approaches to texture segmentation have been taken. As
local measure for the characterization of texture local statistical properties
[103, 125] and local geometric building blocks (textons) [127] have been used
among others. Another whole branch in texture segmentation research is
based on the local spatial frequency for characterizing texture. On the one
hand the Gabor filter based approaches to texture analysis are motivated
by psychophysical research since 2-D Gabor filters have proven to be a good
model for the cortical receptive field profiles [57] while on the other hand they

280 Thomas Bülow, Gerald Sommer

are supported by the observation that a whole class of textures (so-called
deterministic textures) give rise to periodic gray value structures. We will
restrict ourselves to the Gabor filter based approaches here. In the following
the term texture will always be understood as image texture in contrast to
surface texture. While surface texture is a property of a 3D real-world object,
image texture in this context is a property of a 2-D intensity image.

In the following sections we analyze in detail the pioneering work of Bovik
et al. [26] and in parallel introduce the corresponding quaternionic Gabor
filter based approach to texture segmentation. In the final section we discuss
our result and make some remarks on other texture segmentation approaches
based on Gabor filters.

11.4.1 The Gabor Filter Approach

Bovik et al. [26] introduced a Gabor filter based approach to texture segmen-
tation. As mentioned above, texture segmentation is the task of segmenting
an image into uniformly textured regions. According to Bovik’s approach a
uniform texture is described by a dominant frequency and orientation. Thus,
different textures occurring in a given image are supposed to differ signifi-
cantly at least in either the dominant frequency or the dominant orientation.

This assumption leads to the following simple texture model. An image
containing only one homogeneous texture is modeled as

fi(x) = ci(x) cos(2π(uix+ viy)) + si(x) sin(2π(uix+ viy))

= ai(x) cos(2π(uix+ viy) + pi(x)), (11.51)

where the amplitude ai =
√
c2i + s2i and the phase pi = − tan−1

(
si

ci

)
are

assumed to vary slowly, i.e. in such a way that the dominant frequency com-
ponent is always well approximated by (ui, vi). The characterizing domi-
nant frequency and orientation of the texture fi are |ui| =

√
u2
i + v2

i and
αi = − tan−1(vi

ui
), respectively.

A textured image containing n different textures fi is then given by n
textures of the form (11.51) each of which occurs in exactly one connected
region Ri of the image. Defining the characteristic functions zi of the regions

zi(x) =

{
1 if x ∈ Ri

0 else,

we can write the texture image f as

f(x) =

n∑

i=1

fi(x)zi(x). (11.52)

The regions Ri are assumed to define a partitioning of the domain of f ,
i.e.

∑n
i=1 zi(x) ≡ 1 and zi(x)zj(x) ≡ 0 if i 6= j. The set of all possible

11. Local Hypercomplex Signal Representations 281

textures f will be denoted by T . This texture model fits optimally the texture
segmentation technique applied by Bovik et al.

The first step in the segmentation procedure is devoted to filter selec-
tion. In this stage the parameters of a number of Gabor filters that will
be used for the segmentation are chosen. For a review of possible methods
we refer to Bovik’s article [26]. The image f is convolved with the set of
selected Gabor filters hi which yields n filtered images ki, where n is the
number of selected filters. The complex filtered images are transformed into
the amplitude/phase-representation according to

mi = |ki|, φ = − tan−1

(I(ki)

R(ki)

)
. (11.53)

The first level of segmentation is based on the comparison of the channel
amplitudes. At this stage each pixel of the image is assigned to one channel.
We will denote the region of pixels belonging to channel i by Ri. The clas-
sification is simply based on the comparison of the amplitudes mi at each
position in the image:

x ∈ Ri ⇐⇒ arg

(
max

j∈{1,... ,n}
(mj(x))

)
= i, (11.54)

where the function arg returns the index of m. A second segmentation step
is based on phase discontinuities. In this step regions which contain the same
texture but which are shifted against each other are separated.

11.4.2 Quaternionic Extension of Bovik’s Approach

The extension of Bovik’s approach to texture segmentation using quater-
nionic Gabor filters is straightforward. Before outlining the segmentation
procedure in the quaternionic case we modify the texture model given above.
If quaternionic Gabor filters are applied instead of complex filters the fol-
lowing texture model is more appropriate. A textured image is assumed to
consist of homogeneously textured regions

f q(x) =

n∑

i=1

f qi (x)zi(x), (11.55)

where this time the homogeneous textures are of the form

f qi (x) = cci(x) cos(2πuix) cos(2πviy)

+ sci(x) sin(2πuix) cos(2πviy)

+ csi(x) cos(2πuix) sin(2πviy)

+ ssi(x) sin(2πuix) sin(2πviy).

Again, the functions cci, sci, csi and ssi are assumed to vary slowly. The set of
all possible textures f q will be denoted by T q . Obviously, this model is most

282 Thomas Bülow, Gerald Sommer

appropriate for the use of quaternionic filters, since the four terms exactly
correspond to the modulation functions of the components of a quaternionic
Gabor filter. In figure 11.16 two model textures are shown which demonstrate
the difference between the two models.

Fig. 11.16. Two examples of textured images. Left: A textured image fitting
Bovik’s texture model (11.52). Right: An image fitting the extended texture
model (11.55). For simplicity, in both examples constant coefficients have
been chosen

Note that the quaternionic texture model comprises Bovik’s model as a
special case, i.e. T ⊂ T q.

The first stages of the segmentation procedure stay basically the same
as described in the previous section. Only slight modifications have to be
made. The filter selection stage is performed by a peak-finding algorithm in
the quaternionic power spectrum. The difference is that here the peak find-
ing is only performed over one quadrant of the frequency domain instead of
one half in the complex approach. As we have shown when introducing the
quaternionic analytic signal in section 11.2.3, one quadrant of the quater-
nionic frequency domain contains the complete information about the image.

Having selected a set of n quaternionic Gabor filters hqi the textured image
is convolved with these filters, which yields the filtered images kqi . These
image values are transformed into the polar representation of quaternions
introduced in section 8.3.1. This leads to an amplitude/phase-representation
(mi, φi, θi, ψi) of the filtered images.

Since we have shown that complex Gabor filters are contained in the
quaternionic Gabor filters, the first levels of Bovik’s approach, i.e. channel
assignment and detecting phase discontinuities, can as well be performed
using quaternionic Gabor filters. Thus, we do not go into details on these
steps but show which additional information is contained in the quaternionic
Gabor filter response, which can be used for segmentation purposes.

As shown in Fig. 11.13 the ψ-component of the phase holds the informa-
tion about the mixture of two superimposed frequency components, i.e. f1

and f2. Denoting the mixed texture by f = (1 − λ)f1 + λf2 there is a one-

11. Local Hypercomplex Signal Representations 283

to-one mapping of ψ to λ. Thus, it is possible to use the ψ-component of the
local quaternionic phase in order to separate regions belonging to the same
frequency channel but having different structure according to the continuum
of structures shown in Fig. 11.13.

11.4.3 Experimental Results

We demonstrate the segmentation power of the ψ-component of the local
quaternionic phase first on a synthetic texture consisting of three different
textures (figure 11.17). This image resembles an image used by Bovik ([26]
p. 64, fig. 6), with the difference that in [26] only two different regions are
used. The third region (upper right and lower left region), which is the super-
position of the two orthogonally oriented sinusoidals, can not be segmented
using the complex approach. In contrast, the ψ-component of the quater-
nionic phase distinguishes not only local frequency and orientation but also
local structure as explained in the last section. See also figure 11.19 for clar-
ification.

Fig. 11.17. The textured image, its QFT-magnitude spectrum, and the ψ-
component of the local phase (top), and the segmentation result, the pixels
which were misclassified (1.22%) and the edges of the ψ-component found by
a Sobel filter superimposed to the original texture (bottom)

We tested the robustness of ψ for segmentation by adding Gaussian noise
to the synthetic texture in figure 11.17. The result is shown in figure 11.18.

284 Thomas Bülow, Gerald Sommer

We added noise with zero mean and variance 1.5 and 5, respectively. The
texture itself has zero mean and takes values between −1 and 1. The SNR is
−2.7 dB and −13.2 dB, respectively. Although it is almost impossible for a
human observer to segment the image with the strongest noise, by means of
ψ more than 78% of the pixels are correctly classified.

Fig. 11.18. The texture from figure 11.17 with added Gaussian noise. In the
upper row the SNR is −2.7 dB, and more than 97% of the pixels are classified
correctly. In the lower row the SNR is −13.2 dB and about 78% of the pixels
are classified correctly. From left to right the rows show the contaminated
texture, the median filtered ψ-component of the local phase, the segmented
texture and the false classified pixels

11.4.4 Detection of Defects in Woven Materials

As a practical application we demonstrate how the quaternionic Gabor seg-
mentation method can be used for the detection of defects in woven materials.
We regard this task as a texture segmentation problem, where we want to
segment the regular texture from defective regions. However, defects are of-
ten so small that they do not exhibit periodic structure. That makes the
defect detection not feasible for a channel assignment method — complex or
quaternionic — based on the magnitude of response to a certain channel filter.
We test the following method here. Given a homogeneous woven texture we
extract the dominant quaternionic frequency component. The image is con-
volved with the corresponding quaternionic Gabor filter (where the remain-
ing parameters are chosen as ch = cv = 3) and the ψ-component of the local
phase is extracted. A flaw in the texture manifests itself in a change of the lo-

11. Local Hypercomplex Signal Representations 285

complex

Demodulation

ψ

Thresholding

Error

φ

Convolution with GF

Add noise

quaternionic

Fig. 11.19. Comparison of the complex and the quaternionic segmentation ap-
proach. The input image (top) is convolved with an optimally tuned complex (right
column) and quaternionic (middle column) Gabor filter. In the second row the real
parts of the filter responses are shown. The filtered images are transformed into
amplitude/phase-representation. In the complex case the magnitude (not shown)
is constant, and the phase φ is varying monotonically. No segmentation is possi-
ble. In the quaternionic case segmentation based on the ψ-component (magnitude
and other phase-components are not shown) is possible. The left column is like the
middle column, but with added noise (SNR=0dB)

286 Thomas Bülow, Gerald Sommer

cal structure, which is what is measured by the ψ-phase. As the experiments
show, ψ varies only very modestly within a homogeneously textured region.
The mean ψ-value of a homogeneous texture f will be denoted as ψf . For
the segmentation we chose an interval of acceptance ITexture = [ψf − δ, ψf + ε].
The defective region will be denoted by RFlaw. The assignment rule is then
given by

x ∈ RFlaw ⇔ ψ(x) 6∈ ITexture.

As a second example we use a subregion of the texture D77 (see figure 11.20
taken from Brodatz album [32]). We apply one QGF whose central frequencies
have been tuned to the main peak in the power (QFT)-spectrum of the
image. In this case the frequencies are 21 cycles/image in vertical direction
and 12 cycles per image in horizontal direction. In the regular part of the
texture we find ψ ≈ 0.5 while at the irregularity we get ψ ≤ 0. Before
applying a threshold, the ψ-image is smoothed with a Gaussian filter with
σGauss = 1.5σQGF where σ = (σ1, σ2)

>. This choice is based on an empirical
result by Bovik et al. [26].

Fig. 11.20. A subregion of Brodatz texture D77 (top, left). The smoothed
ψ-component of the local quaternionic phase as intensity image (top, right)
and after applying a threshold (bottom, left). The edges of the thresholded
ψ-phase superimposed to the input image (bottom, right)

11. Local Hypercomplex Signal Representations 287

Since at the flaw the applied filters do not match optimally, also the am-
plitude of the filter output yields a hint for the defect searched for. However,
the amplitude is very sensitive to changing lightning conditions as shown in
the following experiments. However, ψ is insensitive to changes in contrast.
This is important, because of the fact that the lighting conditions are not
necessarily optimal (e.g. not homogeneous) in practical applications [74].

We simulate changing lighting conditions by adding a gray-value ramp
with constant slope (figure 11.21) and by changing the contrast inhomoge-
neously (figure 11.22). In figure 11.23 the amplitude of the filter responses
are shown for the different lighting conditions. A segmentation on the basis
of the amplitude envelopes is not possible by a thresholding procedure.

Fig. 11.21. As in figure 11.20. To the original image a gray value ramp with
constant slope is added

288 Thomas Bülow, Gerald Sommer

Fig. 11.22. As in figure 11.20. The contrast is modified to vary from left
(low contrast) to right (high contrast)

Fig. 11.23. The amplitude envelopes of the quaternionic Gabor filter re-
sponse to the texture D77 under different lighting conditions. Left: Original
illumination. Middle: A gray value ramp added. Right: Changing contrast

11. Local Hypercomplex Signal Representations 289

Fig. 11.24. Another subregion of D77. As in figure 11.20

The flaw detection method presented here has the advantage of being
fast, since only separable convolutions have to be performed and only the
ψ-component of the local phase has to be evaluated which is a pointwise
nonlinear operation. The method is robust to changing lighting conditions.

11.5 Conclusion

In this chapter the quaternionic Fourier transform has been used in order
to generalize the concept of the analytic signal which is well-known in 1-D
signal theory to 2-D in a novel manner. Based on the quaternionic analytic
signal the instantaneous quaternionic phase has been introduced. The local
phase concept as introduced in this chapter is based on the approximation
of an analytic signal by a Gabor filtered image. In order to introduce a lo-
cal quaternionic phase, quaternionic Gabor filters have been introduced as
windowed basisfunctions of the quaternionic Fourier transform. The local
quaternionic phase has been used for texture segmentation where it could be
shown that the ψ-component of the quaternionic phase yields a novel feature
and provides useful information for the segmentation.

290 Thomas Bülow, Gerald Sommer

12. Introduction to Neural

Computation in Clifford Algebra∗

Sven Buchholz and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

12.1 Introduction

This is the first of two chapters on neural computation in Clifford algebra.
The name Clifford algebra refers to its inventor William K. Clifford
(1845-1879). We will restrict ourselves on Clifford algebras generated by
non–degenerate quadratic forms. Thus, Clifford algebras are non–degenerated
geometric algebras hereafter.

Any degenerate geometric algebra can be embedded in a larger dimen-
sional non-degenerate geometric (Clifford) algebra as stated in the first chap-
ter of this book. In that sense, our restriction will not be significant. However,
it is necessary because it is not possible to derive learning algorithms for neu-
ral networks in degenerate algebras. We will explain this in full detail in the
second chapter on Clifford multilayer perceptrons (Clifford MLPs).

The idea of developing neural networks in other than the real domain is
not new. Complex valued networks were already introduced at the beginning
of our decade, see e.g. [90]. Recently, [7] proposed a quaternionic valued neural
network. A first attempt of developing neural networks in Clifford algebras
was made by [187]. Unfortunately, the approach proposed there had many
drawbacks. We showed this in [33], [15], where we also sketched an alternative
that leads to correct learning algorithms for Clifford–valued neural networks.
∗ This work has been supported by DFG Grants So-320-2-1 and So-320-2-2.

292 Sven Buchholz, Gerald Sommer

In this chapter we will not speak of Clifford neural networks yet. Instead,
the center of our studies will be the Clifford neuron itself. Thus, we will
develop Clifford neural networks directly from their building blocks. At the
level of neurons it is much easier to understand the principles of neural com-
putation in Clifford algebras. The main principle is, that neural computation
in Clifford algebras can be seen as model-based in comparison to that in the
real case. To show this theoretically and experimentally is the main goal of
this chapter.

The model–based approach will allow us to interpret the non–commutativ-
ity of Clifford algebras in general as a feature of Clifford neural computation.
That aspect is not mentioned in the previous work of [7] and [187]. This will
lead us to a special type of Clifford neuron called spinor neuron.

The split–up of the discussion of Clifford neural computation in one chap-
ter on Clifford neurons and one other on Clifford MLPs follows also a classical
road. That is the design from linear units to non–linear networks. The last
section of this chapter is therefore dedicated to linearization with Clifford
neurons. We will work out this completely on the example of Möbius trans-
formations.

We start with an outline of Clifford algebra now.

12.2 An Outline of Clifford Algebra

A compact and comprehensive introduction on geometric algebras (and there-
fore also on Clifford algebras) has already been given by the first chapter of
this book. Here, we will only review those facts needed in the following.

In addition, we will put more emphasis to the direct generation of algebras
by non-degenerate quadratic forms. This gives the signature of a vector space
in a very natural way.

So let be Q a non–degenerate quadratic form on Rn. For shortness, we
will call (Rn, Q) a quadratic space.

By a theorem of linear algebra there exists a basis of Rn such that

Q(v) = −v2
1 − v2

2 − . . .− v2
p + v2

p+1 . . .+ v2
p+q (12.1)

for all v = (v1, . . . , vn) ∈ Rn, p, q ∈ N and p+ q = n. This allows us to work
with quadratic forms in an abstract fashion. In that sense, a quadratic form
is already determined by (p, q). Then, we will denote a quadratic space by
Rp,q hereafter. For the vectors of an orthonormal basis {e1, . . . , en} of Rn we
get from (12.1)

−Q(ei) = +1 if i ≤ p (12.2)

−Q(ei) = −1 if i > p . (12.3)

With the corresponding scalar product to Q in mind we can also speak of
R0,q as an Euclidean space, Rp,0 as an anti–Euclidean space, and Rp,q (p 6=
0 ∧ q 6= 0) as an indefinite space, respectively.

12. Introduction to Neural Computation in Clifford Algebra 293

Equations (12.1)-(12.3) together now allow the following definition of a
Clifford algebra [159].

Definition 12.2.1. An associative algebra with unity 1 over Rp,q containing
Rp,q and R as distinct subspaces is called the Clifford algebra Cp,q of Rp,q, iff

(a) v ⊗p,q v = −Q(v) , v ∈ Rp,q

(b) Cp,q is generated as an algebra by Rp,q

(c) Cp,q is not generated by any proper subspace of Rp,q .

Examples of Clifford algebras are the real numbers R corresponding to
C0,0, the complex numbers C corresponding to C0,1, and the quaternions H

corresponding to C0,2, respectively.
An element of a Clifford algebra is called a multivector, due to the fact

that it consists of objects of different types by definition. The algebra multi-
plication ⊗p,q of a Clifford algebra Cp,q is called the geometric product.

Condition (a) of the above definition implies equations (12.2),(12.3) and
further for all i, j ∈ {1, . . . , p+ q}

ei ⊗p,q ej = −ej ⊗p,q ei . (12.4)

Clearly, 2p+q is then an upper bound for the dimension of a Clifford
algebra. Condition (c) guarantees that no lower dimensional algebras are
generated. For a complete proof see e.g. [194]. Hence, the dimension of a
Clifford algebra is 2p+q.

A further very important consequence of equation (12.4) is, that only
Clifford algebras up to dimension 2 are commutative ones.

We will now give explicitly a basis of a Clifford algebra in terms of the basis
vectors {e1, . . . , en} of the underlying quadratic space. Using the canonical
order of the power set P({1, . . . , n}) to derive the index set

A := {{a1, . . . , ar} ∈ P({1, . . . , n}) | 1 ≤ a1 ≤ . . . ≤ ar ≤ n} (12.5)

and then defining for all A ∈ A

eA := ea1 . . . ear , (12.6)

we achieve a basis {eA | A ∈ A} of the Clifford algebra Cp,q. Every x ∈ Cp,q
can then be written as

x =
∑

A∈A
xAeA . (12.7)

For every r ∈ {0, . . . , 2p+q−1} the set {eA | A ∈ A, |A| = r} is spanning
a linear subspace of Cp,q. This linear subspace is called the r–vector part of
the Clifford algebra Cp,q. An element of such a subspace is then called an
r–vector. For r running from 0 to 3 an r–vector is also often called a scalar,
vector, bivector, or trivector, respectively.

294 Sven Buchholz, Gerald Sommer

The vector part of a Clifford algebra Cp,q should get its own notation Rp,q
to be distinguished from the quadratic space Rp,q itself.

All even r-vectors form the even part C+
p,q of the Clifford algebra Cp,q.

C+
p,q is a subalgebra of Cp,q isomorphic to Cp,q−1. Whereas the odd part C−

p,q

formed by all odd r-vectors is not a subalgebra.
Clifford algebras are R–linear

∀λ ∈ R ∀x, y ∈ Cp,q : (λ x)y = x(λ y) = λ (xy) , (12.8)

so every Clifford algebra is isomorphic to some matrix algebra. The matrix
representations of Clifford algebras Cp,q up to dimension 16 are given in Table
12.1. As we can see, there are many isomorphic Clifford algebras.

Table 12.1. Matrix representations of Clifford algebras up to dimension 16

p\q 0 1 2 3 4
0 � � � 2 � � (2)
1 2 � � (2) � (2) � (2) 2 � (2)
2 � (2) 2 � (2) � (4) � (4) � (4)
3 � (2) � (4) 2 � (4) � (8) � (8)
4 � (2) � (4) � (8) 2 � (8) � (16)

Next, we will deal with involutions of Clifford algebras. An involution is
an algebra mapping of order 2. Thus the set of all involutions of a Clifford
algebra is given by

In(Cp,q) := {f : Cp,q → Cp,q | f2 = id} . (12.9)

The most important involutions of a Clifford algebra are the following
ones. The first, called inversion

x̂ =
∑

A∈A
(−1)|A| xAeA (12.10)

is an automorphism (x̂ŷ = x̂y), whereas reversion

x̃ =
∑

A∈A
(−1)

|A| (|A|−1)
2 xAeA , (12.11)

and conjugation

x̄ =
∑

A∈A
(−1)

|A| (|A|+1)
2 xAeA (12.12)

are anti–automorphisms (x̃ỹ = ỹx, x̄ȳ = yx). Conjugation is obviously a
composition of inversion and reversion. The conjugation of complex numbers
results a special case of (12.12).

Finally, we want to analyse which Clifford algebras are division algebras.
The answer is given by the famous Frobenius theorem. That theorem states,
that there are no other real division algebras despite of R, C, and H. A

12. Introduction to Neural Computation in Clifford Algebra 295

finite-dimensional associative algebra A is a division algebra, iff it contains
no divisors of zero. Therefore, any other Clifford algebras except the ones
mentioned above will contain divisors of zero. Thereby, an element a ∈ A is
a divisor of zero, iff there exists an element b ∈ A\{0} with ab = 0 or ba = 0.

The existence of divisors of zero can cause many problems in the design of
neural algorithms in the frame of Clifford algebras. We will see this already
in outlines in the next section.

12.3 The Clifford Neuron

In this section we will start with a generic neuron as computational unit. From
this, a standard real valued neuron is then derived. Finally, we will introduce
the Clifford neuron based on the geometric product. Through this way, we
will also introduce some basics of neural computation in general very briefly.
To characterize the computation with Clifford neurons as model–based in
relation to that with real neurons is the main goal of this section.

A generic neuron is a computational unit of the form shown in Figure 12.1.
The computation within such a neuron is performed in two steps. Firstly, a
propagation function f associates the input vector x with the parameters
of the neuron comprised in the weight vector w. Then, the application of a
activation function g follows. Thus, the output of a generic neuron is given
by

y = g(f(x;w)) . (12.13)

f g

1x

y

x n

w

wn

1

Fig. 12.1. Generic neuron

In general, the propagation function f is a mapping

f : Dn → D (12.14)

for a domain D. The activation function g is a mapping

296 Sven Buchholz, Gerald Sommer

g : D → D′ (12.15)

to a domain D′. Mostly, D is a continuous domain. In this case, we have
usually D′ = D for function approximation. On the other hand, the neuron
computes a classification if D′ is discrete.

From now on, we will assume if no other statement is made, that g is set
to be the identity. We will also speak of a neuron with this in mind.

12.3.1 The Real Neuron

For a real neuron we have with our previous notation D = R and w, x ∈ Rn.
The most common propagation function for such a neuron simply computes
a weighted sum of the inputs of a real neuron

f(x) =

n∑

i=1

wixi + θ , (12.16)

with an additional parameter θ ∈ R, that works as a bias. By extending the
domain by one dimension and then using an extended input vector x+ :=
(x, 1) and an extended weight vector w+ := (w, θ) we can rewrite (12.16) in
the form

f(x+) =

n+1∑

i=1

w+
i x

+
i . (12.17)

A real neuron with the above propagation function is therefore a linear asso-
ciator. Non-linearity of the neuron could be achieved by applying a non-linear
activation function g.

As a linear associator we can use the real neuron for linear regression. This
(neural computation) is done by formulating linear regression as a learning
problem.

So let us consider a training set T := {(x1, t1), . . . , (xm, tm)} consisting
of input–output pairs (xi, ti) with xi ∈ Rn, ti ∈ R. The aim of learning is
to find a weight vector w = (w1, . . . , wn) that minimizes the sum-of-squared
error (SSE)

E =
1

2

m∑

i=1

(ti −
n∑

j=1

wjx
i
j)

2 (12.18)

iteratively. A well known method to do so is using gradient descent. Then,
at each step the following correction of the weights

∆wj = − ∂ E

∂ wj
. (12.19)

12. Introduction to Neural Computation in Clifford Algebra 297

has to be made. In terms of neural networks this is called back–propagation,
due to the fact that the error is propagated back from the output.

Since the error function (12.18) is convex, back–propagation will always
find the global minimum.

Provided with the above basic knowledge about generic and real neurons
we are now able to study Clifford neurons in detail.

12.3.2 The Clifford Neuron

An abstract Clifford neuron is easily derived as a special case of a generic
neuron by taking in (12.13) a Clifford algebra as domain. However, some
care has to be taken already. The propagation function of a generic Clifford
neuron should obviously be a mapping of the form

f : Cp,q → Cp,q. (12.20)

The above function is then just a special case of (12.14) with D = Cp,q and
n = 1. In that case the illustration of a generic neuron in Figure 12.1 has no
great strength anymore, because we have just one input and one weight. But
through that, we can also see immediately that f has lost its independent
function. More precisely, it is fully determined by the way the association of
the one input with the one weight is done. Clearly, there is only one intented
way of association — the geometric product.

The propagation function f of a Clifford neuron is given either by

f(x) = w ⊗p,q x+ θ (12.21)

or by

f(x) = x⊗p,q w + θ . (12.22)

All the entities are now multivectors, i.e. x,w, θ ∈ Cp,q.
Of course, we have to distinguish left–sided and right–sided weight mul-

tiplication in the general case of a non-commutative Clifford algebra.
Formally, we have just replaced the scalar product by the geometric prod-

uct. As in the real case, we can interpret the parameter θ as a bias. However,
now an extension of the form (12.17) is possible to treat θ as a normal weight.

The input-weight association of a Clifford neuron should now be made
concretely. For the sake of simplicity let us choose the complex numbers C0,1

as an example. A complex neuron computes just a complex multiplication,
say xw = y. Further, let be x = x1 + x2 i and y = y1 + y2 i.

Now assume we want to compute a complex multiplication with real neu-
rons. Clearly, this requires 2 real input and 2 real output neurons. We are
looking then for a weight matrix W ∈ R(2) that fulfills (x1, x2)W = (y1, y2).
This is achieved by setting w11 = w22 and w12 = −w21, which just results in

298 Sven Buchholz, Gerald Sommer

the well-known matrix representation of complex numbers. Figure 12.2 gives
an illustration of the situation.

1

x 2

1 y

y 2

1x

1 1

2 2

y
y

x
x

w

w

w

w

w

w

1

2

2

1

1

21

2

2

1

w
11

= w
22

w =
12

w
2 1

-

Fig. 12.2. Computation of a complex neuron (right) and simulation with
real neurons (left)

Thus, complex multiplication is just a certain linear transformation,
namely a dilatation-rotation, which easily follows from the polar form of
complex numbers. This means in terms of neural computation, a complex
neuron can be seen as model-based. Instead of an unspecified linear function
(real neurons) we use a dilatation-rotation (complex neuron). If this model
is applicable to given data, we would only need half of the parameters (see
again Figure 12.2) for computation. Furthermore, the real neurons have to
imitate the model “by finding the given weight constraints” with independent
weights. This approach should then also be less efficient with respect to time
complexity or less accurate.

To be able to verify this experimentally, we now need a correct learning
algorithm for a complex neuron. Yet, we will give here the rule for updating
the weight in the general case of an arbitrary Clifford neuron. So let be
T := {(x1, t1), . . . , (xm, tm)} the training set consisting of input–output pairs
(xi, ti) with xi, ti ∈ Cp,q. The SSE defined analogously to (12.18) is then
minimized by applying the correction step

∆w = x̄i ⊗p,q (ti − w ⊗p,q x
i) . (12.23)

for left–sided weight multiplication and

∆w = (ti − xi ⊗p,q w) ⊗p,q x̄i . (12.24)

for right–sided weight multiplication, respectively. Here, the function ¯ stands
for that univocally determined involution yielding

x⊗p,q y =
∑

i

xiyi . (12.25)

Using this function avoids the appearance of divisors of zeros during back–
propagation. This is necessary, otherwise learning could stop for an non–zero

12. Introduction to Neural Computation in Clifford Algebra 299

error. The proof of correctness of the algorithm will be postponed to the next
chapter.

Now, we can perform our first intented experiment.

Experiment 1 (Complex multiplication).
The task for a complex neuron and for real neurons as in Figure 12.2 was
simply to learn the complex multiplication with 2 − 4 i. As training set T =
{(−0.3, 0), (−0.5,−0.3), (−0.6, 0)} was used. After 116 epochs (which means
after applying the training patterns 116 times) the SSE of the complex neuron
where dropped under 0.000001. The learned weight of the complex neuron
was w = 2.0000− 4.0000 i. In contrast, the SSE of the real neurons dropped
under 0.000001 after 246 steps but the weight matrix was

W =

(
1.99741 −3.99738
4.00252 1.99700

)
.

Thus, our very plain considerations are right. Simulation of a model seems
worse than using a model directly.

In the case of complex numbers we have identified the input–weight as-
sociation by the geometric (complex) product completely and characterized
it as model-based. The generalization of this is quiet easy. Due to the R-
linearity of Clifford algebras (12.8), any geometric product can be expressed
as a special matrix multiplication. This means that the computation of an
arbitrary single Clifford neuron can also be performed by the corresponding
number of real neurons. However, this point of view on the neuron level is
too artificial. In practice we have to deal with real data of any dimension.

We have introduced Clifford algebras as the algebras of quadratic spaces
in section 2. Therefore, a natural computation of a Clifford neuron should
process (real) data of the underlying quadratic space. In fact, the complex
multiplication of a Clifford neuron should also be seen in this way. As we
know already, a complex neuron computes a dilatation–rotation. More pre-
cisely, it computes a transformation of vectors of R2 in such a manner. As
real vector spaces of the same dimension R2 and C are isomorphic. In that
sense a complex neuron processes also indeed points of R2. However, complex
numbers are no vectors.

This interpretation problem will be easily resolved in the next section.
That section will be fully dedicated to the processing of data drawn from
quadratic spaces with Clifford neurons in a formally consistent manner. By
doing so we will also get a better understanding of the model–based nature
of Clifford neurons.

12.4 Clifford Neurons as Linear Operators

Following the ideas developed at the end of the previous section, we are now
interested how a linear transformation of the form

300 Sven Buchholz, Gerald Sommer

f : Rp,q → Rp,q (12.26)

can be computed with Clifford neurons. To be able to do so, we need a
theoretical method to describe such transformation in Clifford algebras.

Fortunately, any multivector that has a multiplicative inverse defines such
a transformation already. Thus, the mathematical object we have to look at
is the group formed by these multivectors. This group is called the Clifford
group.

Applying a group to the elements of a set is generally formalized in the
following way.

Definition 12.4.1. Let G be a group and M be a non–empty set. The map

? : G×M →M ; (a, x) 7→ a ? x (12.27)

is called the operation of G on M, if 1G ? x = x and a ? (b ? x) = (a ? b) ? x
for all x ∈ M, a, b ∈ G.

For example, the general linear group GL(n,R) of Rn operates on (col-
umn) vectors by matrix multiplication

· : GL(n,R) × Rn → Rn; (A, x) 7→ Ax . (12.28)

The Clifford case is more complicated than that. It will be studied in detail
in the next subsection. The results of this study will then be transposed to
the level of Clifford neurons and will be verified there experimentally.

12.4.1 The Clifford Group

Let us start directly with the definition of the Clifford group.

Definition 12.4.2. The Clifford group Γp,q of a Clifford algebra Cp,q is de-
fined as

Γp,q := {s ∈ Cp,q | ∀x ∈ Rp,q : sx ŝ−1 ∈ Rp,q} . (12.29)

From that definition we get immediately

Γp,q × Rp,q → Rp,q ; (s , x) 7→ sx ŝ−1 (12.30)

as the operation of the Clifford group Γp,q on Rp,q. Thus, the operation of
Γp,q is not one single primitive operation, as it was the case in the example
of GL(n,R) (12.28). Another important difference to that case is, that the
elements of the group are of the same type as the elements of the set on which
the group is operating. Actually, this is one of the great advantages of Clifford
algebra. We shall call an element of Γp,q a linear operator to distinguish it
from an ordinary multivector. It is indeed a linear operator since the Clifford
group Γp,q consists of linear transformations of Rp,q by definition (12.26).

12. Introduction to Neural Computation in Clifford Algebra 301

Hence, Γp,q is isomorphic to a general linear group or one of its subgroups.
The relation of Γp,q to those classical groups can be concluded from the map

ψs : Rp,q → Rp,q ; x 7→ sxŝ−1 . (12.31)

For all x ∈ Rp,q, s ∈ Γp,q we have

Q(ψs(x)) = ̂(sxŝ−1)sxŝ−1 = ŝx̂s−1sxŝ−1 = x̂x = Q(x) , (12.32)

so ψs is an orthogonal map. In fact, it is easy to see that ψs is even an
orthogonal automorphism of Rp,q . Thereby, we have proofed the following
theorem in principle.

Theorem 12.4.1. The map Ψs : Γp,q → O(p, q); s 7→ ψs is a group epi-
morphism.

Indeed, Γp,q is a multiple cover of the orthogonal group O(p, q) since the
kernel of Ψs is R\ {0}.

Altogether, we know now that the Clifford group Γp,q is an orthogonal
transformation group. However, it is still unnecessarily large. Therefore, we
first reduce Γp,q to a two-fold cover of O(p, q) by defining the so–called Pin
group

Pin(p, q) := {s ∈ Γp,q | ss̃ = ±1} . (12.33)

The even elements of Pin(p, q) form the spin group

Spin(p, q) := Pin(p, q) ∩ C+
p,q (12.34)

which is a double cover of the special orthogonal group SO(p, q). Finally,
those elements of Spin(p, q) with Clifford norm equal 1 form a further sub-
group

Spin+(p, q) := {s ∈ Spin(p, q) | ss̃ = 1} (12.35)

that covers SO+(p, q) twice. Thereby, SO+(p, q) is the connected component
of the identity of O(p, q).

As usual, we write Pin(p) for Pin(p, q) and so on. We shall remark here,
that Spin(p, q) ' Spin(q, p) and Spin(p) = Spin+(p). Both follows easily
from the properties of the orthogonal groups together with C+

p,q ' C+
q,p.

For the spin group Spin(p, q) there exists another way besides the stan-
dard one (12.30) of operating as a dilatation–rotation operator. This way will
allow the reduction of the dimension of the Clifford algebra in use. Also it will
resolve the interpretation problem regarding complex multiplication noticed
earlier in section 3.

Spin(p, q) consists by definition only of even elements. Remembering
C+
p,q ' Cp,q−1, we can interpret a spinor also as an element of Cp,q−1.

302 Sven Buchholz, Gerald Sommer

Let us denote by λRp,q−1 both the scalar and vector part of Cp,q−1. This
space is called the space of paravectors. Then the operation of Spin(p, q) on
Rp,q−1 is the same as on Rp,q [194]. More precisely, for every s ∈ Spin(p, q)
the map

φs : λRp,q−1 → λRp,q−1; x 7→ sxŝ−1 (12.36)

is a dilatation–rotation of Rp,q. If the underlained Clifford algebra in (12.36)
is commutative in addition we have

φs(x) = sxŝ−1 = xsŝ−1 = xs′ (s′ := sŝ−1 ∈ Spin(p, q)) . (12.37)

In the special case of complex numbers the above relations together with
C0,1 = λR0,1 implies that any complex multiplication is indeed a dilatation–
rotation.

All the obtained results will be transposed to the computational level of
Clifford neurons now.

12.4.2 Spinor Neurons

In the previous section we have studied the group of linear transformations
Γp,q of a Clifford algebra. Actually, we have found out that Γp,q consists of
orthogonal transformations only. The operation of Γp,q can be simulated by
concatenation of a left–sided and a right-sided (or vice versa) Clifford neuron.
This architecture is shown in Figure 12.3.

x y
w w

1 2
1xw

y = w
1
x w

2

Fig. 12.3. Simulation of the operation of Γp,q with Clifford neurons

Every orthogonal transformation is computable by this architecture. This
is just done by using the vector part of the input and output neuron to process
the data. However, there might exist other suitable ways of representing the

data. In general there are
(
n
k

)2
possibilities of input-output representations of

k–dimensional data in n dimensions. Therefore, we will only study the case of
plane transformations in Clifford algebras of dimension 4. In that case there
are 36 possibilities of data representation.

12. Introduction to Neural Computation in Clifford Algebra 303

Table 12.2. Used codes for 2 dimensional data in 4 dimension

Representation

1 0xx0
2 0x0x
3 00xx
4 xx00
5 x0x0
6 x00x

Using the notations of Table 12.2 the number 11 then denotes input rep-
resentation 1 and output representation 1 and thus input–output represen-
tation 0xx0 − 0xx0. This is the representation corresponding directly to the
definition of Γp,q. The results for the computation of 2-D Euclidean transfor-
mations are listed in Table 12.3.

Table 12.3. Suitable data representations for SO(2) and O(2) computation

Algebra Weight multiplication Data representation

left-right, right-left all
C0,2 left 11,22,33,44,55,66,25,52

right 11,22,33,44,55,66,16,61,34,43

left, left-right, right-left 22,55,25,52C1,1
right 55,22

left, left-right, right-left 11,66,16,61C2,0 right 11,66

As we can see, there is no difference between the computation of SO(2) and
O(2). Remarkable, all representations with two weights in C0,2 are suitable.
Due to the existence of complex number representations we get also repre-
sentations that work with only one weight. In the case of an anti–Euclidean
transformation we have to distinguish SO(1,1) and O(1,1). The suitable data
representations can be found in Table 12.4 and Table 12.5, respectively.

Before starting to discuss the above listed results we should re-think the
situation in general. All the reported results were obtained by applying data
of a transformation of one of the mentioned types. So we actually just checked
which representation will not work. Having in mind that all the transforma-
tions could also be computed by real neurons as in Fig. 12.2, we should extend
our point of view again.A main idea of this introductory chapter is to develop
interpretations of the computation of Clifford neurons. This should always
be done by characterizing Clifford neurons as model–based ones as in section
3.

304 Sven Buchholz, Gerald Sommer

Table 12.4. Suitable data representations for SO(1,1) computation

Algebra Weight multiplication Data representation

C0,2 left, right, left-right, right-left none

left-right, 44,64,14,34,46,66,16,36,
right-left 41,61,11,31,53,63,13,33C1,1

left 44,66,16,61,11,33
right 44,34,66,11,43,33

left-right, 44,54,24,34,45,55,25,35,
right-left 42,52,22,32,43,53,23,33C2,0 left 44,55,25,52,22,33

right 44,34,55,22,43,33

Table 12.5. Suitable data representations for O(1,1) computation

Algebra Weight multiplication Data representation

C0,2 left, right, left-right, right-left none

left-right, 44,64,14,34,46,66,16,36
right-left 41,61,11,31,53,63,13,33C1,1

left 34,43
right 16,61

left-right, 44,54,24,34,45,55,25,35,
right-left 42,52,22,32,43,53,23,33C2,0

left 34,43
right 25,52

This step has to be made for the computation of orthogonal transforma-
tions with Clifford neurons now. That is, we have to determine the conditions
so that the computation of Clifford neurons as in Figure 12.3 can be forced
to be an orthogonal computation. In that case we would apply this model
independent of the processed data. To be able to do so, we have to constrain
the weights of the left–sided and right–sided Clifford neurons in Figure 12.3
together. This should result in one neuron with one weight that is multiplied
from the left and from the right. But this will be not possible for an orthog-
onal transformation in general. However, it is possible for the operation of a
spinor. The corresponding neuron is then named a spinor neuron. Computa-
tion with such neurons is always model–based. In the case of a 2–dimensional
Clifford algebra this is also valid for any orthogonal transformation due to
the commutativity of the algebra. However, this could require a special data
representation as shown in Tables 12.3-12.5. So we use the notion of a spinor
neuron in that sense that the operation of the neuron as a linear operator
is performed by one weight. After we have reflected that spinor neurons are
model–based, we will now perform simulations to compare them with real
neurons.

12. Introduction to Neural Computation in Clifford Algebra 305

12.4.3 Simulations with Spinor Neurons

With the following two experiments we want to test the strength of the model
of single spinor neurons in comparison with multiple real neurons, especially
in the presence of noise. We will just speak of real neurons, since the number
of real input and output neurons to compute a linear transformation of Rn

is always n. See again Figure 12.2.

Experiment 2 (Euclidean 2D similarity transformation).
The transformation that should be learned was a composition of a Euclidean
2D rotation about -55◦, a translation of [+1, -0.8], and a scaling of factor 1.5.
The training and test data is shown in Figure 12.4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input
Output

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input
Output

Fig. 12.4. Training data (left) and test data (right)

The experiment was performed using real neurons, a complex neuron, and
a spinor neuron in C0,2. The convergence of the training is reported in Figure
12.5.

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120 140

S
S

E

Epoch

complex
spinor

real

Fig. 12.5. Convergence of the
learning

306 Sven Buchholz, Gerald Sommer

The spinor neuron learned indeed a spinor representation. Its weights in
the odd components were zero. This required some more epochs of learning
in comparison with the complex neuron. But it learned the task still faster
than the real neurons. Besides the qualitative difference of the learning curve
of the spinor neuron to the curves of the other neurons, no great quantitative
difference could be noticed.

To test the generalization performance of the different neurons we also
made simulations with noisy training data, by adding median-free uniform
noise up to a level of 20%. The obtained results are shown in Figure 12.6.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20

M
S

E

Noise level (%)

real
complex

spinor

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20

M
S

E

Noise level (%)

real
complex

spinor

Fig. 12.6. Training errors (left) and generalization errors (right) by different
noise levels

Due to the fact that the real neurons compute a general linear transfor-
mation, they have learned the noise better than the Clifford neurons. As a
consequence, the generalization was then much worse in comparison with the
Clifford neurons. There was no significant difference in generalization between
the both Clifford neurons. The output on the test data of the real neurons
and the complex neuron is shown in Figure 12.7.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

w/o noise
10% noise
20% noise

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

w/o noise
10% noise
20% noise

Fig. 12.7. Generalization obtained by the real neurons (left) and the complex
neuron (right) by different noise levels

12. Introduction to Neural Computation in Clifford Algebra 307

Using the model–based Clifford neurons for data fitting this model gave
better results than using real neurons, especially on training with noisy data.

Experiment 3 (Euclidean 3D similarity transformation).
The only 4–dimensional Clifford algebra in which a Euclidean 3D rotation
can be computed is C0,2. Thus, we can only compare experimentally the
quaternionic and the real way of neural computation of such transformations.
Actually, a quaternionic spinor neuron with any input-output representation
can compute such a transformation. For the following experiment we use the
standard spinor representation. That is we used the input–output represen-
tation xxx0−xxx0. For this single quaternionic spinor neuron and a network
of real neurons the task was to learn a rotation of -60◦ about the axis [0.5,√

0.5, 0.5] with translation about [0.2,-0.2,0.3]. The data for training is shown
in Figure 12.8.

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.8. Training data input (left) and training data output(right)

As test set we use a transformed version of the training data as shown in
Figure 12.9.

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.9. Test data input (left) and test data output (right)

308 Sven Buchholz, Gerald Sommer

The convergence of the training is shown in Figure 12.10. As we can see,
the quaternionic spinor neuron converges much faster than the real neurons.
The real neurons have to learn the matrix representation of the quaternionic
multiplication. Due to that fact, it was impossible to drop the SSE < 0.00001
for the real neurons. Thus, there exists already a numerical boundary value
of reachable accuracy for the computation with real neurons.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

100 200 300 400 500 600 700 800 900 1000

S
S

E

Epoch

real
spinor

Fig. 12.10. Convergence of the
learning

Clearly, this effects the performance of the real neuron on noisy training
data in a quiet negative way. The errors for different noise level are shown in
Figure 12.11.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

M
S

E

Noise level (%)

real
spinor

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

M
S

E

Noise level (%)

real
spinor

Fig. 12.11. Training errors (left) and generalization errors (right) by different noise
levels

The real neurons simply learned the noise. Therefore, their generalization
is worse than that of the Clifford neuron by a factor two. Actually, the real
neurons performed much worse than indicated by that, as it can be seen
by looking at the obtained generalization results shown in Figure 12.12 and
Figure 12.13, where crosses indicate the desired output.

12. Introduction to Neural Computation in Clifford Algebra 309

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.12. Generalization obtained with spinor neurons by 10% noise (left) and
by 20% noise (right)

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.13. Generalization obtained with real neurons by 10% noise (left)
and by 20% noise (right)

The pose of the object generalized by the real neurons is completely
wrong. In fact, this is already caused by the way the real neurons learned the
task. The model applied is that of the noise. Instead of still separating the
problem in a rotation part (weight matrix) and a translation part (biases)
they will always use the biases strongly to fit the noise. Instead, a Clifford
neuron applies this model of separation.

With this simulation we will finish our study of Clifford neurons as linear
operators.

12.5 Möbius Transformations

In this section we will demonstrate, that Clifford neurons are able to learn
transformations that are not learnable with real neurons. Clearly, this will
require to linearize a non-linear transformation in a unique way in the frame-
work of Clifford algebras.

310 Sven Buchholz, Gerald Sommer

The transformations in mind are the plane projective transformations.
These are the most general transformations mapping lines to lines.

Of course, some theoretical preparations have to be made first. The idea
is to relate the projective transformation groups to Möbius transformation
groups. So let therefore the complex general projective group, denoted by
PGL(2,C), Ĉ := C ∪ {∞}, be the one-point compactification of C.

The biholomorphic functions of Ĉ in itself are isomorphic to the group of
the fractional-linear transformations

z 7→ τA(z) :=
az + b

cz + d
, A =

(
a b
c d

)
∈ GL(2,C) . (12.38)

This group is also called the Möbius group of Ĉ, denoted by M(Ĉ). Further
then, the map

GL(2,C) →M(Ĉ) , A 7→ τA (12.39)

is a group isomorphism with kernel identical to the center of GL(2,C). Due
to the fact, that PGL(2,C) is GL(2,C) factorized to its center, we then have

PGL(2,C) 'M(Ĉ).
The definition of Möbius transformations of the complex plane C, can

be easily generalized to the general case of a quadratic space Rp,q , where no
explicit notion of the corresponding one-point compactification will be made
anymore.

Definition 12.5.1. The map

Cp,q → Cp,q , x 7→ (ax+ b)(cx+ d)−1 a, b, c, d ∈ Cp,q , (cx+ d) ∈ Γp,q

is called a Möbius transformation of Rp,q.

Again, the group formed by Möbius transformations of Rp,q is called the
Möbius group and will be denoted by M(p, q), that is, M(Ĉ) is now de-
noted by M(0, 1). The Möbius group M(p, q) is covered by the orthogo-
nal group O(p + 1, q + 1), and is therefore (section 3.2) four times covered
by Pin(p + 1, q + 1). Clearly then, we have immediately M(p, q) ' M(q, p).
However, Pin(p + 1, q + 1) acts not directly on elements of Cp,q in Cp+1,q+1.

To be able to achieve the intented embedding of Cp,q in Cp+1,q+1, i.e. to
find a way to let M(p, q) (or Pin(p + 1, q + 1), respectively) operate on Cp,q,
we must proceed our study of Möbius transformations in terms of matrix
groups. We will restrict ourselves thereby essentially to the case of interest,
that is Möbius transformations of anti–Euclidean spaces R0,n. The following
characterization theorem for that was given already by Vahlen, 1902.

Theorem 12.5.1. A matrix A=

(
a b
c d

)
with entries in C0,n represents a

Möbius transformation of R0,n, iff

12. Introduction to Neural Computation in Clifford Algebra 311

(a) a, b, c, d ∈ Γ0,n ∪ {0}
(b) āb, bd̄, d̄c, cā ∈ R0,n

(c) ad̃− bc̃ ∈ R\{0} .

Matrices fulfilling these conditions are called Vahlen matrices.
A characterization of Möbius transformations of Euclidean spaces is easily

obtained by switching the signature (0, n) to (n, 0) in the above theorem. For
the general case of a quadratic space with an arbitrary signature one has to
allow all products of vectors (not only invertible) in Rp,q in condition (a) of
Theorem 12.5.1, which is just the same if p = 0 or q = 0.

We will now develop the representation of Möbius transformations of the
complex plane in detail. Due to the fact that Cp,q(2) ' Cp+1,q+1, the algebra
to concern is C1,2, for which we need a matrix representation firstly. This is
given by defining the following basis

e0 :=

(
1 0
0 1

)
e1 :=

(
0 1
1 0

)
e2 :=

(
i 0
0 −i

)
e3 :=

(
0 −1
1 0

)

and the remaining basis vectors are easily obtained by matrix multiplica-
tion, e.g.

e123 =

(
−i 0
0 −i

)
.

A complex number z can therefore be represented as a matrix in an obvious
way either by

Z ′ :=

(
z 0
0 z

)

or equivalently by

Z ′′ :=

(
z 0
0 z̄

)

with the corresponding multivectors (Re(z), 0, 0, 0, 0, 0, 0,−Im(z)) and
(Re(z), 0, Im(z), 0, 0, 0, 0, 0), respectively. Although outside our main focus,
we should remark as a warning, that none of them gives a multivector rep-
resentation of complex numbers in C1,2, because complex multiplication is
not preserved. For a complex Vahlen matrix V neither V Z ′V ˜ nor V Z ′′V ˜

represent a Möbius transformation in general.
The right embedding to choose is

Z :=

(
z zz̄
1 z̄

)
, (12.40)

312 Sven Buchholz, Gerald Sommer

which can be deduced by using the concept of paravectors, mentioned earlier
in section 3.2.
The corresponding multivector is then given by

(Re(z),
1

2
(1 + zz̄), Im(z),

1

2
(1 − zz̄), 0, 0, 0, 0) .

Applying now a complex Vahlen matrix

(
a b
c d

)
as a spinor to Z one

obtains
(
a b
c d

)(
z zz̄
1 z̄

)(
a b
c d

)̃

=

(
a b
c d

)(
z zz̄
1 z̄

)(
d̄ b̄
c̄ ā

)

= λ

(
z′ z′z̄′

1 z̄′

)

where λ = |bz+ d|2 and z′ = (az+ b)(cz+ d)−1. Thus, we have found the
spinor representation of a complex Möbius transformation in C1,2. With some
effort λ could be expressed only in terms of the parameters of the Möbius
transformation. Therefore, we can speak of it as a scaling factor.

Experiment 4 (Möbius transformation).
As an example, we will now study how the Möbius transformation

z 7→ 0.5(1 + i)z + 0.5(1− i)

−0.5(1 + i)z + 0.5(1− i)

can be learned by C1,2-Neurons, but not by real valued neurons.
The training and test data used for this task is shown below in Fig. 12.14.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Input
Output

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

Input
Output

Fig. 12.14. Training data (left) and test data (right)

12. Introduction to Neural Computation in Clifford Algebra 313

Neither on the pure complex input-output pairs nor on the coded data
(12.40) an MLP can generalize the transformation. In the first case a training
SSE of 0.00326 results in a generalization SSE of 6.15109 on the test set, in
the second case a generalization SSE of 2.31305 was reached, although the
training SSE was only 0.00015. So the MLP has in both cases just memorized
the training examples, but not learned the structure within the data, because
of its missing abilities to do so, namely the to embed the 4-dimensional data
correctly in the required 8-dimensional space. This was done, as theoretically
derived, by the Clifford neurons with nice robustness with respect to noise
as shown in Figs. 12.15 and 12.16, respectively.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

w/o noise
5% noise
10% noise

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

w/o noise
 5% noise
10% noise

Fig. 12.15. Learned transformation on training data (left) and test
data(right)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 5 10 15 20 25

M
S

E

Noise level (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 0.25

M
S

E

Noise level (%)

Fig. 12.16. MSE vs. noise level for training (left) and testing (right)

314 Sven Buchholz, Gerald Sommer

12.6 Summary

In this first of two chapters on Clifford neural computation we discussed
the Clifford neuron in detail. We showed how the geometric product can be
used with an associator. We introduced the special neuron model of spinor
neurons that allows to compute orthogonal transformations very elegantly.
This way of computation was proven to be faster and much more robust
against noise as real single–layer neural networks. Moreover, we were able to
show on the example of Möbius transformations that there exist geometric
transformations that are only exclusively computable by Clifford neurons.
This was done by using a non–linear coding of the data which resulted in a
linearization in Clifford algebras.

We now will make the transition from the Clifford neuron and linearity
to Clifford neural networks and non–linearity in the subsequent chapter.

13. Clifford Algebra Multilayer

Perceptrons

Sven Buchholz and Gerald Sommer∗

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

13.1 Introduction and Preliminaries

Multilayer Perceptrons (MLPs) are one of the most common and popular neu-
ral architectures. They are widely used in many different areas like handwrit-
ing recognition, speech recognition, and time series prediction for instance.
In this chapter, we will extend MLPs from the domain of real numbers to
Clifford algebra domains.

MLPs consist of Perceptron–type neurons as processing units grouped
together in layers. The computation in an MLP is feed forward only. The
neurons processing the input to the net are grouped in the input layer. The
output of the net is taken from the output neurons grouped in the output
layer. Usually, there are also one or more layers between input and output
layer called hidden layers, since they are not visible from the outside. Input
neurons are just for making the data available to the net, they do not perform
a computation. Any other single neuron computes as its so–called propagation
function a weighted sum of its received inputs. Thus, the association of the
weights and the inputs is linear. Nonlinearity is achieved by applying a so-
called activation function g. The computation of such a neuron is therefore
given by

∗ This work has been supported by DFG Grants So-320-2-1 and So-320-2-2.

316 Sven Buchholz, Gerald Sommer

y = g(

n∑

i=1

wixi + θ) (13.1)

in the real case (w, x ∈ Rn, θ ∈ R) and by either

y = g(w ⊗p,q x+ θ) (13.2)

or by

y = g(x⊗p,q w + θ) (13.3)

in the general case of a Clifford algebra (w, x, θ ∈ Cp,q) using the geometric
product ⊗ as associator. The Clifford neuron in comparison with the real
neuron was fully discussed in chapter 12. There we assumed g to be the
identity to discuss propagation functions and linear aspects exclusively.

A suitable nonlinear activation function g allows to built powerful neural
networks out of real neurons by using the superposition principle

y =
∑

i

λi gi(x) . (13.4)

Thus, one hidden layer may be sufficient and no activation function in the
output neurons is needed. This transforms directly in the MLP architecture
shown below in Figure 13.1.

. ..

x
11 n

f

g g

f f

g

. . .
y y

1 p

x . . .

. ..

Fig. 13.1. MLP with one hid-

den layer

Cybenko proved in [53] that for so–called sigmoidal activation functions
MLPs are universal approximators of continuous functions. In [121] these
results were extended to the class of Borel measurable functions. Univer-
sal approximation in that sense means, that for any required approximation

13. Clifford Algebra Multilayer Perceptrons 317

accuracy an MLP with one hidden layer with finite number of neurons is
sufficient.

The graph representation (Figure 13.1) of a neural network is called its
topology. Since an MLP is fully connected, its topology is therefore fully
determined by the sequence of the number of nodes in any layer starting
from the input layer.

Throughout this chapter let N denote the number of neurons in the input
layer, M denote the number of neurons in the hidden layer, and P denote
the number of neurons in the output layer, respectively. Hence, we can speak
of an (N,M,P)–MLP to denote the topology completely.

Let us denote the other parameters of the network according to Table
13.1.

Table 13.1. Notations of MLP parameters

– w1
nm weight connecting the n–th input neuron to the

m–th hidden neuron
– w2

mp weight connecting the m–th hidden neuron to the
p–th output neuron

– θ1m bias of the m–th hidden neuron
– θ2p bias of the p–th output neuron

The detailed structure of the chapter is as follows. Starting with a mathe-
matically precise formulation of required notions of approximation theory we
will derive in section 2 a sufficient criterion on activation functions to make
Clifford MLPs universal approximators as well. In section 3, we will study
activation functions of Clifford MLPs in detail. Reviewing the real, complex,
and quaternionic special cases and proposed activation functions in the lit-
erature, we will get a systematic survey of the topic. We will prove therein
that Clifford MLPs with sigmoid activation functions in every multivector
component are universal approximators. After this we will develop in the
subsequent section a backpropagation algorithm for such Clifford MLPs. In
the final section we will report experimental results.

13.2 Universal Approximation by Clifford MLPs

In the introduction we gave already an informal characterization of the uni-
versal approximation property. Let us start with the formalization thereof by
introducing the notion of “denseness”. Thereby we will use N to indicate the

318 Sven Buchholz, Gerald Sommer

class of functions realizable by a certain neural network and F the class of
function that shall be approximated by N . Then, the concept of denseness
can be defined as follows.

Definition 13.2.1. Let F and N be sets of functions of a normed space
(X, p). Let d be the metric induced by p. That is for all x ∈ N , y ∈ F the
distance is defined by d(x, y) = p(x− y). Then N is dense under the norm p
in F if, for any f ∈ F and any ε > 0, there exists some n ∈ N with

d(f, n) < ε . (13.5)

Thus, denseness is always measured with respect to some norm. Typical
norms are the Lp norms (1 < p <∞)

‖f‖p =

(∫

X

|f(x)|pdx
)1/p

. (13.6)

However, the most relevant norm in our case will be the supremum norm L∞

‖f‖∞ = sup
x∈X

|f(x)| . (13.7)

A well known density theorem is the famous Weierstrass theorem of
real analysis. It states that polynomials of one real variable are dense in the set
C0([a, b],R). A generalization of this, the Stone-Weierstrass theorem, was
used in [121] to prove the universal approximation capability of real valued
MLPs. However, we cannot profit from these results in Clifford algebras.
Moreover, these do not lead to a general density criterion of Clifford MLPs
which is what we are looking for.

To reach this goal, we need functional analysis in Clifford algebras, espe-
cially an appropriate version of the Hahn-Banach theorem. The real and
complex Hahn-Banach theorem has already been used in such a manner in
[53] and accordingly in [6].

Let us first have an informal look at the Hahn-Banach theorem before
going into technical details. In its dominated extended version it states the
following.

Let M be a subspace of a linear space X over R, let p be a sublinear
functional defined on X and let f be a linear form defined on M dominated
by p. The theorem asserts the existence of a linear extension F of f to X
dominated by p everywhere. The diagram below gives an illustration of the
statement of the Hahn-Banach theorem.

F : X F ≤ p

| ↘
f : M → R f ≤ p

13. Clifford Algebra Multilayer Perceptrons 319

The basic idea now is the following. The neural architecture of f above is
N and F is the class of functions it should be dense in. With this in mind we
will get a nice criterion of denseness as a corollary from that theorem soon.
To go ahead in this direction we have to formulate the theorem in terms of
Clifford algebra. The functionality of a generic Clifford MLP is

Cnp,q → Cmp,q . (13.8)

In general, Cnp,q cannot be a linear space, since Cp,q itself is not a skew field
in general. Thus, we have to replace the concept of a linear space with the
algebraic weaker one of a module.

Definition 13.2.2. Let R be a ring with 1. A left R-module Gl is an abelian
group G = (G,+) together with a mapping R×Gl → Gl : (r, g) 7→ rg in such
a way, that

(a) ∀g1, g2 ∈ G ∀r ∈ R : r(g1 + g2) = rg1 + rg2

(b) ∀g ∈ G ∀r1, r2 ∈ R : (r1 + r2)g = r1g + r2g

(c) ∀g ∈ G ∀r1, r2 ∈ R : (r1r2)g = r1(r2g)

(d) ∀g ∈ G : 1g = g

are fulfilled.

The corresponding definition of right modules is obvious. However, we
only have to choose one version to be formally consistent without loss of
generality. From now on we will always use left modules. To bound a function
as required by the Hahn-Banach theorem we next introduce the notion of
a seminorm.

Definition 13.2.3. Let X be a Cp,q-module. A function p : X → R is called
a seminorm on X if it fulfills for all f, g ∈ X,λ ∈ Cp,q and κ ∈ R

(a) p(f + g) ≤ p(f) + p(g)

(b) p(f) = 0 ⇒ f = 0

(c) p(λf) ≤ C‖λ‖p(f)

p(κf) = |κ|p(f) .

The next definition gives then complete access to the needed concept of
boundness.

Definition 13.2.4. Let X be a Cp,q-module. A family P of seminorms p :
X → R is called a proper system of seminorms on X if for any finite sequence
p1, p2, . . . , pk ∈ P there exist p ∈ P and C > 0 such that for all f ∈ X

sup
j=1,... ,k

pj(f) ≤ Cp(f) . (13.9)

320 Sven Buchholz, Gerald Sommer

Hereafter, we will speak of a module equipped with a proper system of
seminorms as a proper module for shortness. We are now in the position to
formulate the Hahn-Banach theorem of Clifford analysis.

Theorem 13.2.1. Let X be a proper Cp,q-module, let Y be a submodule of X
and let T be a bounded left Cp,q–functional on Y . Then there exists a bounded
left Cp,q–functional T ∗ on X such that

T ∗
|Y = T . (13.10)

For a proof of this theorem and the following corollary see again [30]. This
corollary will give us now the desired density criterion.

Corollary 13.2.1. Let X be a left proper Cp,q-module and Y a submodule of
X. Then Y is dense in X, iff for all T ∈ X∗ with T|Y = 0 follows T = 0 on
X.

Let us now return to our neural architecture N that should be dense in
the function class F . If it is not, then the closure N is not completely F .
By corollary 13.2.1 of the Clifford Hahn-Banach theorem there exists a
bounded linear functional L : F → Cp,q, with L(N) = L(N) and L 6= 0.
Then furthermore, by the Clifford Riesz theorem [30] there exists a unique
Clifford measure µ on X such that for all g ∈ C0(X, Cp,q)

L(g) =

∫

X

gdµ(x) . (13.11)

Let us assume that the function g has the special property to be discrim-
inatory.

Definition 13.2.5. A function g : Cp,q → Cp,q is said to be discriminatory if
∫

I2p+q
g(w ⊗ x+ θ)dµ(x) = 0 (13.12)

implies that µ(x) = 0 for any finite regular Clifford measure µ with support

I2p+q

:= [0, 1]2
p+q

.

If g is discriminatory, then follows immediately by definition that µ(x) =
0. But this is a contradiction to L 6= 0, which was a consequence of the as-
sumption that N is dense in F . Thus, we can conclude, that the use of a
discriminatory activation function is sufficient to make Clifford MLPs uni-
versal approximators of C0(I2p+q

, Cp,q) functions.

13.3 Activation Functions

With the discriminatory property of the preceding section we have already a
criteria on hand regarding the approximation capabilities of activation func-
tions of Clifford MLPs. We will now turn our attention to properties neces-
sary from the algorithmic point of view. We will start with the real case and

13. Clifford Algebra Multilayer Perceptrons 321

then proceed to the multi–dimensional Clifford algebra case. We can thereby
make extensive use of previous work by other authors in the complex and
quaternionic case.

13.3.1 Real Activation Functions

Let us start with a general property an activation function has to fulfill in-
dependent of the concrete training algorithm. It is simply due to implemen-
tation aspects. The property in mind is boundness to avoid overflows during
simulation on computers.

In the real case, this property is easy to check and expressed by so–called
squashing functions. A function g : R → R is called a squashing function if
limx→−∞ g(x) = a and limx→∞ g(x) = b for a, b ∈ R, a < b.

Since backpropagation is gradient descent in the weight space of the MLP,
the activation function has to be differentiable. A class of squashing functions
with this property are the sigmoid functions.

Definition 13.3.1. The function

σβ(x) : R → R; x 7→ 1

1 + exp(−βx) (13.13)

is called a sigmoid function.

Also the widely used hyperbolic tangent in real MLPs is only a slight
modification of a sigmoid function, since

tanh = 2σ2 − 1 . (13.14)

In the following, we will only proceed with the most used activation func-
tion of real MLPs which is the so–called logistic function σ := σ1. It has a
very simple derivative σ̇ = σ(1 − σ). Figure 13.2 shows a plot of the logistic
function.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/(1+exp(−x))

Fig. 13.2. Logistic activation
function

322 Sven Buchholz, Gerald Sommer

The logistic function has approximately linear behaviour in [−1, 1] and
saturation is reached quickly outside of this region. To be complete at this
point, we mention again that the universal approximator capability of real–
valued MLPs with sigmoid activation function was first proven by Cybenko
[53].

13.3.2 Activation Function of Clifford MLPs

There are two possible ways of generalization of real activation functions to
Clifford algebra activation functions. One is to use the corresponding Clifford
algebra formulation of such a function, the other is to use the real activation
function in every multivector component separately. A formal characteriza-
tion can be made in the following way.

Definition 13.3.2. Let be G : Cp,q → Cp,q (p+ q > 1), n := 2p+q.
G is called a component–wise activation function if

∀i ∈ {1, . . . , n} ∃gi ∈ R → R ∀x = (x1, . . . , xn) ∈ Cp,q : [G(x)]i = gi(xi) ,

otherwise a multivector activation function.

Thus, in the complex case (G : C → C) a multivector activation function
has the generic form

G(z) = u (x, y) + u (x, y) i . (13.15)

On the other hand, the generic form of a component–wise activation function
is given by

G(z) = v (x) + v (y) i . (13.16)

The use of a multivector activation function seems to be more natural and
quiet more sophisticated in comparison to component activation functions.
Hence, as the complex MLP was introduced, the first proposed activation
function (see e.g. [152]) was the extension of the real logistic function σ to
the complex domain

σC : C → C; z 7→ 1

1 + exp(−z) . (13.17)

Later, it was pointed out by Georgiou and Koutsougeras [90] that σC is not
bounded, since it has singularities with value +∞ at 0 +π(2n+ 1) i (n ∈ N).
Due to that fact, these authors proposed as alternative the activation function

Gc,r : C → C; z 7→ z

c+ 1
r |z|

(c, r ∈ R) . (13.18)

They also gave a complete list of necessary properties that complex activation
functions of the form (13.15) have to fulfill. One of these is with respect to the

13. Clifford Algebra Multilayer Perceptrons 323

backpropagation algorithm, that all partial derivatives have to exist together
with further conditions on them. Clearly, these requirements are also valid in
the general case of an arbitrary Clifford algebra.

The first Clifford MLP introduced by Pearson [187] used the straightfor-
ward Clifford algebra domain extension of the above function (13.18). How-
ever, he has not paid any attention to the fact that Clifford algebras are
not division algebras in general. The consequence (impossibility) for the for-
mulation of a correct backpropagation algorithm is the subject of the next
section. Also, no universal approximation theorem for such networks could
yet be proven.

Instead, we will use in our Clifford MLP the real logistic activation func-
tion in any component. Let us denote the function derived in this manner
by σ. This function was first introduced by Arena et al. [7] in their work
on the quaternionic MLP (QMLP). For this QMLP they further derived a
quaternionic version of the backpropagation algorithm and proved its univer-
sal approximation capability. To give a proof sketch for the universal approx-
imation capability of Clifford MLPs with activation function σ is the final
part of this section.

Theorem 13.3.1. The function

σ(w; θ) : Cp,q → Cp,q; x 7→
∑

A∈A
σ([w ⊗ x+ θ])AeA (13.19)

is discriminatory.

Proof (Sketch). Let µ(x) be a finite regular Clifford measure on the set

C0(I2p+q

, Cp,q) such that

∫

I2
p+q

σ(w ⊗ x+ θ)dµ(x) = 0 , (13.20)

for all w, x ∈ Cnp,q, θ ∈ Cp,q. According to the definition of σ, we have for all
i ∈ 1, . . . , 2p+q}

[σ(w ⊗ x+ θ)]i = σ([w ⊗ x+ θ]i) . (13.21)

Let us now consider the pointwise limit

φi(w ⊗ x+ θ) := lim
λ→∞

σ(λ[w ⊗ x+ θ]i) , (13.22)

with λ ∈ R. This limit evaluates to

φi(w ⊗ x+ θ) =

{
1 : if [w ⊗ x+ θ]i > 0
0 : if [w ⊗ x+ θ]i ≤ 0

(13.23)

With the Lesbesgue-dominated convergence theorem of Clifford analysis fol-
lows

324 Sven Buchholz, Gerald Sommer

0 =

∫

I2p+q
σ(w ⊗ x+ θ)dµ(x)

=

∫

I2p+q
(
∑

A∈A
φA(w ⊗ x+ θ)eA) dµ(x)

= lim
λ→∞

σ(λ[w ⊗ x+ θ]i) .

For all j ∈ {0, 1}2p+q

define the following sets

Hj :=
⋂

i∈{1,... ,2p+q}
j[i]=1

{[w ⊗ x+ θ]i > 0} ∩
⋂

i∈{1,... ,2p+q}
j[i]=0

{[w ⊗ x+ θ]i ≤ 0} .

(13.24)

Thus, the Hj sets give us a partition of I2p+q

. Therefore, we have with
(13.23), (13.24)

µ(∪Hj) = 0 . (13.25)

Unfortunately, no assumptions on µ can be made. Therefore, one has to prove
that for all j ∈ {0, 1}2p+q

µ(Hj) = 0 . (13.26)

By the real theorem of Cybenko [53] we only know µ(H10...0) = 0. This can
be extended with some effort to show that

µ({Hj |
2p+q∑

i=1

j[i] = 1}) = 0 (13.27)

However, the other cases remain open problems to be proved.

13.4 Clifford Back–Propagation Algorithm

In this section we will derive the Clifford back–propagation algorithm. For the
sake of simplicity, we only deal with a Clifford MLP with one hidden layer,
reminding the reader that this structure is already a universal approximator.
Let N , M and P denote the number of input, hidden and output nodes,
respectively. Furthermore, let be w1

nm the multivector weight connecting the
n-th input node with the m-th hidden node, and w2

mp the one connecting the
m-th hidden node with the p-th output node. Analogously, the bias nodes
are denoted by θ1

m and θ2p, respectively.
Using the above nomenclature the feed-forward phase is given as follows:

13. Clifford Algebra Multilayer Perceptrons 325

- hidden node activation and output value

S1
m :=

N∑

n=1

w1
nm ⊗ xn + θ1m (13.28)

hm := σ(S1
m) (13.29)

- output node activation and output value

S2
p :=

M∑

m=1

w2
mp ⊗ hm + θ2p (13.30)

op := σ(S2
p) . (13.31)

We will now apply gradient descent with respect to the weights to mini-
mize the common sum–of–squared error function

E =
1

2

P∑

p=1

(yp − op)
2 , (13.32)

whereby y = (y1, . . . , yp) stands for the expected output value. First, we have
to compute the weights of the output layer according to

∇Ew2
mp

=
∑

A∈A

∂E

∂[w2
mp]A

eA . (13.33)

Applying the chain rule to each term of (13.33) gives

∂E

∂[w2
mp]A

=
∑

B∈A

∂E

∂[S2
p]B

∂[S2
p]B

∂[w2
mp]A

. (13.34)

For the partial derivatives of the error function wrt. the output node activa-
tion S2

p we obtain

∂E

∂[S2
p]B

=
∂E

∂[yp]B

∂[yp]B
∂[S2

p]B
= ([yp]B − [op]B) σ̇([S2

p]B) . (13.35)

The computation of the partial derivatives of the output node activation wrt.
the output layer weights is as easy to compute. However, some effort has to be
made to get one single compact formula for it. Let us take a look at the case
of 4–dimensional Clifford algebras. Table 13.2 shows exemplarily the partial

derivatives
∂[S2

p]

∂[w2
mp]e1

.

326 Sven Buchholz, Gerald Sommer

Table 13.2. Partial derivatives
∂[S2

p]

∂[w2
mp]e1

C0,2 C1,1 C2,0

∂[S2
p]0

∂[w2
mp]e1

−[hm]e1 +[hm]e1 +[hm]e1
∂[S2

p]e1

∂[w2
mp]e1

+[hm]0 +[hm]0 +[hm]0
∂[S2

p]e2

∂[w2
mp]e1

+[hm]e12 −[hm]e12 +[hm]e12
∂[S2

p]e12

∂[w2
mp]e1

−[hm]e2 −[hm]e2 +[hm]e2

It is easy to conclude from the above example (and also easy to verify
directly), that

∂[S2
p]

∂w2
mp

= h∗m (13.36)

for some involution ∗ dependent on the underlying Clifford algebra. Clearly,
this involution is already determined uniquely by any partial derivative
∂[S2

p]

∂[w2
mp]A

. For Clifford algebras of the type C(0,q) this involution is just conju-

gation, i.e. we have h∗m = hm in (13.36). Due to the fact that the geometric
product of a multivector with a scalar is ordinary component–wise real mul-
tiplication we can get a very elegant description of the involution ∗ via the
scalar component. We can then use the fact

[x⊗ ȳ]0 = xyT (13.37)

to describe ∗ as the unique involution yielding

[x⊗ y∗]0 = xyT . (13.38)

Putting now all the derived results together and using the symbol � to de-
note component–wise multiplication, we get the following update rule for the
weights of the output layer

∆w2
mp = [(yp − op) � σ̇(S2

p)︸ ︷︷ ︸
δ2p

] ⊗ hm . (13.39)

The derivation of the updating rule for the weights of the hidden layer is
analog, resulting in

∆w1
nm = [(

P∑

p=1

w 2
mp ⊗ δ2p) � σ̇(S1

m)

︸ ︷︷ ︸
δ1m

] .⊗ xn (13.40)

13. Clifford Algebra Multilayer Perceptrons 327

Finally, the update rule for the biases is then given by

∆θ2p = δ2p and ∆θ1m = δ1m . (13.41)

Let us now verify briefly our claim made in section 3 regarding the im-
possibility of a general correctly Clifford back–propagation algorithm for not
component–wise activation functions. This is simply due to the existence of
divisors of zero in general Clifford algebras. Using non component–wise acti-
vation functions results in a geometric product ⊗ instead of a component–wise
product � in (13.39), respectively (13.40). Thus, δ1

m and δ2p could then always
be zero even if a non–zero error occurred. Due to the definition of ∗ this can
never be the case for the geometric products involving ∗.

The above derived Clifford back-propagation rule therefore avoids prob-
lems with divisors of zero completely.

13.5 Experimental Results

Both real MLPs and Clifford MLPs (CMLPs) are universal approximators
of continuous functions in several variables as we know from the previous
sections. Thus, they have the same theoretical strength in principle. More-
over, they use the ”same” activation function, since our Clifford MLP uses
the logistic function σ in every component. However, alternative activation
functions are rare as argued before. Thus, a potential advantage of CMLPs
versus MLPs seems to be based on the propagation function, i.e. on the in-
volved geometric product. The propagation function was fully discussed in
chapter 12, however only in the case of a single linear neuron. As we know
from that chapter, in a Clifford MLP real vector data can be presented in
many arbitrary different ways. But it is difficult to give general advises for
Clifford MLPs for the optimal choice, especially due to the incorporated non–
linearity.

However, this is only valid in a theoretically provable sense. In this section
instead, we try to conclude from an experimental approach. Thereby, we will
compare the space and time complexity of the real MLP and the CMLP with
respect to their generalization performance. Time complexity is used in the
loose sense of convergence time.

Space complexity is measured by the amount of real parameters. This is
given for an MLP with one hidden layer by the formula

#MLP := M · (N + 1) + P · (M + 1) . (13.42)

The weights of an CMLP can be easily converted into real parameters by
counting them component by component. Thus, one obtains for the number
of real parameters of an CMLP with one hidden layer

#CMLP(p,q) := 2p+q ·M · (N + 1) + 2p+q · P · (M + 1) . (13.43)

328 Sven Buchholz, Gerald Sommer

An MLP with the same number of component activation functions as an
CMLP would have 2p+q times of real parameters, which follows easily from
(13.42), (13.43). Clearly, the assumption that an MLP would require the same
amount of activation functions as an CMLP to achieve the same performance
is not realistic. However, about 20–25% fewer parameters of an CMLP in
comparison to an MLP where reported by Arena et al. [6], [7] and this result
was also obtained in earlier work of ours [15]. However, it is not easy to find
another reason for this phenomenon than the more compact weight structure
of CMLPs, especially in the case of processing real data. Thus, we will not
make a simulation of the approximation of a real vector function, but one
of a Clifford–valued function. The main goal of the simulations is to check,
whether or not there are indications of algebraic model–based behavior of
Clifford MLPs.

Let us study only one very simple example. The considered function is

f : C → C; (x + y i) 7→ (x2 + y2 + 2xy i) , (13.44)

which is plotted in Figure 13.3.

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

Fig. 13.3. Plot of the real and the imaginary parts of f

There is a very good reason to choose a low dimensional example. Namely,
everything can be visualized. This is clearly helpful, to get a real evaluation
of the performance of different networks. As outlined, we want to investigate
whether or not there might be indications of algebraic interpretations of the
approximation capability of the CMLP(0,1). If on the other hand a CMLP(1,0)

achieved an equal or better performance then an algebraic reason would have
to be rejected. Clearly, also if this were true for a real MLP. If both Clifford
networks showed equivalent but better performance than the real MLP, this
would then only be due to their more compact weight structure. As in the
simulations of chapter 12 we will also have a closer look at the performance
of the networks in the presence of noise.

13. Clifford Algebra Multilayer Perceptrons 329

Next, we report the obtained results in detail.
The training data consisted of 100 randomly drawn points from [0, 1] ×

[0, 1] with uniform distribution. For the test set we sampled this domain with
a regular grid of size 20 × 20. Thus, we got 100 training points and 400 test
points. This 20%/80% ratio of samples is well established and therefore often
used in neural network simulations.

The number of hidden nodes of the Clifford networks was easy to deter-
mine. Two hidden nodes already gave results, which could not be improved
significantly by the use of more hidden nodes. The performance of an MLP
with two hidden nodes was not sufficient. The convergence of the training of
the two CMLPs, a (2,3,2)-MLP and a (2,4,2)-MLP are shown in Figure 13.4.

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000 3500 4000

S
S

E

Epoch

(1-2-1) CMLP(0,1)
(1-2-1) CMLP(1,0)
(2-3-2) MLP
(2-4-2) MLP

Fig. 13.4. Convergence

of the learning

A first look at these results seems to be quite astonishing. The complex
MLP shows the worst performance of all networks, followed by the CMLP(1,0).
Taking into account that the number of parameters of the (2,3,2)-MLP is 17
((2,4,2)-MLP: 22) and that of both CMLPs is 14, no advantage seems visible
from the space complexity point of view either. We should remark, that all
networks have reached a stable and optimal error plateau.

As already observed in the simulations on Clifford neurons in chapter
12, generalization is the measure that counts indeed. The obtained sum-of-
squared errors (SSE) in training and testing are reported together in Table
13.3.

330 Sven Buchholz, Gerald Sommer

Table 13.3. SSEs by noise free training

network SSE Training SSE Testing

(1,2,1)-CMLP(0,1) 0.07302 0.00040
(1,2,1)-CMLP(1,0) 0.04175 0.00067

(2,4,2)-MLP 0.00971 0.03298
(2,3,2)-MLP 0.04315 0.15539

As we can see there, the complex MLP showed the best generalization
performance of all nets, followed closely by the CMLP(1,0). Both generaliza-
tion errors are very low, and remarkable orders smaller than the trainings
errors. The MLPs on the other hand have both approximately 4-times higher
generalization errors than training errors. With the generalization errors the
situation has changed completely.

The complex MLP has reached the training error level corresponding to
this superb generalization error very quickly within about 1000 epochs. Thus,
we could say that it converges fastest. Another interesting fact observable
from Figure 13.4 is that all other nets except the complex MLP show the
same behavior during the beginning of the training. Hence, we could argue
that the complex CMLP could match the underlying model of the data very
early in the training, whereas both real MLPs have not observed the right
model as can be concluded from their generalization error. The rapid descent
of the MLP with 4 hidden nodes in comparison to that with 3 hidden nodes
is clearly due to its greater amount of parameters (degrees of freedom).

Let us now have a closer look at the output of the networks shown in Fig-
ure 13.5. Especially compare the numerically nearly identical generalization
of both CMLPs. Thereby, areas of high approximation errors are indicated
by light shading in Figure 13.5.

Between them there are no great differences visible in fact. Both have
learned the two component functions indeed, with less accuracy on the imag-
inary one. However, the learned real and imaginary functions of the MLPs
are similar and (thus) far away from the expected shapes. Obviously, the
MLPs have applied a global numerically concept to match the data, without
notice to the structure of the data. The effect of the 4–th MLP hidden node
is also easy to interpret. With only 3 hidden nodes the MLP learned a similar
concept as with 4 hidden nodes. However, it decided to not descend down to
zero height to approximate the range [0, 0.3]2 accurately. Since the values of
the function are low in this area an error is ”cheap” with respect to the other
areas.

Thus, an MLP is not able to detect the algebraic structure of the data.
But the CMLP(1,0) seems to be able to do so. We should remember that there
is only one sign in the multiplication tables that makes both 2-dimensional
Clifford algebras different.

13. Clifford Algebra Multilayer Perceptrons 331

In the following we discuss how things changed in the presence of noise.
We therefore added 20% mean–free noise to the training data. The obtained
errors are presented in Table 13.4.

Table 13.4. SSEs by 20% noise in training data

network SSE Training SSE Testing

(1,2,1)-CMLP(0,1) 1.32612 0.72041
(1,2,1)-CMLP(1,0) 1.57850 1.15853

(2,4,2)-MLP 1.24180 0.74325
(2,3,2)-MLP 1.51760 1.12471

The errors of the (2,4,2)-MLP and the (1,2,1)-CMLP(0,1) are nearly equal.
The same can be said about the errors of the (2,3,2)-MLP and the (1,2,1)-
CMLP(1,0). The (1,2,1)-CMLP(0,1) shows now a better performance than the
(1,2,1)-CMLP(1,0). Clearly, that of the MLP with 4 hidden nodes is better
than that with 3 hidden nodes again.

Let us study the outputs of the networks shown in Figure 13.6 beginning
with that of the real MLPs. We can see a clear negative effect of the 4 hidden
nodes there. In the presence of noise, this ”additional” degree of freedom is
just used to learn the noise. Actually, any simulation of an (2,4,2)-MLP with
high noisy training data can produce an arbitrary output scheme. The applied
concept leads then no longer to equally well learned component functions.
This is still the case for the (2,3,2)-MLP. The real part in the case of the
(2,4,2)-MLP shows an additional scaling error, while its imaginary part fits
randomly the imaginary component function.

An important but well known conclusion from the simulations is that
more degrees of freedom in an MLP (which cannot match the model of data)
are only good for memorization. Clearly, things then get worse very quickly
in the presence of noise.

The difference between both CMLPs does not seem too large again. How-
ever, it is significant as seen in Table 13.4. The imaginary part of the function
in the range [0, 0.2]× [0, 0.8] is better approximated by the complex CMLP.

332 Sven Buchholz, Gerald Sommer

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

Fig. 13.5. Approximation results (from top to bottom):
(1,2,1)-CMLP(0,1) , (1,2,1)-CMLP(1,0) , (2,4,2)-MLP, (2,3,2)-MLP

13. Clifford Algebra Multilayer Perceptrons 333

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.4

0.6

0.8

imaginary part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

real part

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

imaginary part

Fig. 13.6. Approximation results by 20% noise (from top to bottom):
(1,2,1)-CMLP(0,1) , (1,2,1)-CMLP(1,0) , (2,4,2)-MLP, (2,3,2)-MLP

334 Sven Buchholz, Gerald Sommer

13.6 Conclusions and Outlook

In this chapter we introduced the Clifford Algebra Multilayer Perceptron
(CMLP) as an extension of the well known real–valued MLP. Thereby, we
applied mainly a theoretical point of view.

We discussed questions regarding the theory of function approximation in
Clifford algebras in some detail. This led us to a criterion on the activation
function that guarantees that CMLPs as MLPs are universal approximators
too. We then reviewed basic facts on activation functions known from the lit-
erature in the complex and quaternionic special cases [90] [7]. We introduced
the notion of component–wise activation functions and argued why this is a
necessary property of activation functions for CMLPs.

A central part of this work was the derivation of the Clifford algebra
back–propagation algorithm. We have found an elegant way to formulate the
updating rules of the weights in terms of generally characterized involutions.
The properties of these involutions guarantee the operativeness of the algo-
rithm because excluding problems with zero divisors.

Although, concentrating on theoretical and technical aspects of computing
with Clifford MLPs throughout this paper, we also made a simple simulation
to compare the performance of Clifford MLPs with real–valued MLPs. Our
interest was thereby to see if CMLPs are also model–based as we showed for
single Clifford neurons in chapter 12. The obtained results were unfortunately
weaker in that sense and partially showed up only in the presence of noise.
However, the model–based property of CMLPs is not in general doubt. On the
other hand it is also very clear, that non–linearity in any MLP architecture
makes things less easy to interpret.

Thus, many more simulations have to be done in the future to get em-
pirical confidence at this points. It is indicated, that such simulations should
be biased in that way, that specifically geometric tasks are chosen for Clif-
ford MLPs. However, such tasks might require a more suitable and flexible
architecture. This could mean using inhomogeneous nodes in a layer, i.e.
nodes of different Clifford algebra type. A step still further in this direction
would be the use of nodes operating on single blades. All these steps would
only require small modifications of the Clifford back–propagation algorithm
as derived herein. From a conceptual point of view this would then invoke
questions of self–organization.

It is our strong belief that a way based on this work towards more complex
Clifford neural computation is worth being considered and would be fruitful.

Part III

Geometric Algebra for Computer Vision and

Robotics

14. A Unified Description of Multiple

View Geometry

Christian B.U. Perwass1 and Joan Lasenby2

1 Cavendish Laboratory, Cambridge
2 C. U. Engineering Department, Cambridge

14.1 Introduction

Multiple view tensors play a central role in many areas of Computer Vision.
The Fundamental Matrix, Trifocal Tensor and Quadfocal Tensor have been
investigated by many researchers using a number of different formalisms.
For example, standard matrix analysis has been used in [106] and [215]. An
analysis of multiple view tensors in terms of Grassmann-Cayley (GC) algebra
can be found in [82], [184], [80]. Geometric Algebra (GA) has also been applied
to the problem [189], [190], [147], [146].

In this article we will show how Geometric Algebra can be used to give a
unified geometric picture of multiple view tensors. It will be seen that with
the GA approach multiple view tensors can be derived from simple geometric
considerations. In particular, constraints on the internal structure of multiple
view tensors will all be derived from the trivial fact that the intersection
points of a line with three planes, all lie along a line. Our analysis will also
show how closely linked the numerous different expressions for multiple view
tensors are.

The structure of this article will be as follows. First we give a short intro-
duction to projective geometry, mainly to introduce our notation. We then
describe the Fundamental Matrix, the Trifocal Tensor and the Quadfocal Ten-
sor in detail, investigating their derivations, inter-relations and other prop-

338 Christian B.U. Perwass, Joan Lasenby

erties. Following on from these analytical investigations, we show how the
self-consistency of a trifocal tensor influences its reconstruction quality. We
end this article with some conclusions and a table summarising the main
properties of the three multiple view tensors described here.

14.2 Projective Geometry

In this section we will outline the GA framework for projective geometry. We
assume that the reader is familiar with the basic ideas of GA and is able to
manipulate GA expressions.

We define a set of 4 orthonormal basis vectors {e1, e2, e3, e4} with signa-
ture {−−−+}. The pseudoscalar of this space is defined as I = e1∧e2∧e3∧e4.
A vector in this 4D-space (P3), which will be called a homogeneous vector,
can then be regarded as a projective line which describes a point in the
corresponding 3D-space (E3). Also, a line in E3 is represented in P3 by the
outer product of two homogeneous vectors, and a plane in E3 is given by the
outer product of three homogeneous vectors in P3. In the following, homoge-
neous vectors in P3 will be written as capital letters, and their corresponding
3D-vectors in E3 as lower case letters in bold face.

Note that the set of points {X} that lie on a line (A∧B) are those that
satisfy X∧(A∧B) = 0. Similarly, a plane is defined through the set of points
{X} that satisfy X∧(A∧B∧C) = 0. Therefore, it is clear that if two lines,
or a line and a plane intersect, their outer product is zero.

The projection of a 4D vector A into E3 is given by,

a =
A∧e4
A·e4

This is called the projective split. Note that a homogeneous vector with no
e4 component will be projected onto the plane at infinity.

A set {Aµ} of four homogeneous vectors forms a basis or frame of P3

if and only if (A1 ∧A2 ∧A3 ∧A4) 6= 0. The characteristic pseudoscalar of
this frame for 4 such vectors is defined as Ia = A1∧A2∧A3∧A4. Note that
Ia = ρaI , where ρa is a scalar. This and results relating the inner products
of multivectors with the pseudoscalars of the space are given in [190].

Another concept which is very important in the analysis to be presented
is that of the dual of a multivector X . This is written as X∗ and is defined as
X∗ = XI−1. It will be extremely useful to introduce the dual bracket and
the inverse dual bracket. They are related to the bracket notation as used
in GC algebra and GA, [146]. The bracket of a pseudoscalar P is a scalar,
defined as the dual of P in GA. That is, [P] = PI−1. The dual and inverse
dual brackets are defined as

[[Aµ1 · · ·Aµn]]a ≡ (Aµ1∧. . .∧Aµn)I−1
a (14.1a)

[[Aµ1 · · ·Aµn]] ≡ (Aµ1∧. . .∧Aµn)I−1 (14.1b)

14. Multiple View Geometry 339

〈〈Aµ1 · · ·Aµn〉〉a ≡ (Aµ1∧. . .∧Aµn)Ia (14.2a)

〈〈Aµ1 · · ·Aµn〉〉 ≡ (Aµ1∧. . .∧Aµn)I (14.2b)

with n ∈ {0, 1, 2, 3, 4}. The range given here for n means that in P3 none,
one, two, three or four homogeneous vectors can be bracketed with a dual or
inverse dual bracket. For example, if P = A1∧A2∧A3∧A4, then [[A1A2A3A4]] =
[[P]] = [P] = ρa.

Using this bracket notation the normalized reciprocal A-frame, written
{Aµa}, is defined as Aµ1

a = [[Aµ2Aµ3Aµ4]]a. It is also useful to define a standard
reciprocal A-frame: Aµ1 = [[Aµ2Aµ3Aµ4]]. Then, Aµ ·Aνa = δνµ and Aµ ·Aν =
ρaδ

ν
µ, where δνµ is the Kronecker delta. That is, a reciprocal frame vector is

nothing else but the dual of a plane. In the GC algebra these reciprocal vectors
would be defined as elements of a dual space, which is indeed what is done in
[80]. However, because GC algebra does not have an explicit inner product,
elements of this dual space cannot operate on elements of the “normal” space.
Hence, the concept of reciprocal frames cannot be defined in the GC algebra.

A reciprocal frame can be used to transform a vector from one frame into
another. That is, X = (X ·Aµa)Aµ = (X ·Aν)Aνa. Note that in general we
will use greek indices to count from 1 to 4 and latin indices to count from 1
to 3. We also adopt the convention that if a subscript index is repeated as a
superscript, or vice versa, it is summed over its implicit range, unless stated
otherwise. That is,

∑4
µ=1(X ·Aµa)Aµ ≡ (X ·Aµa)Aµ.

It will be important later not only to consider vector frames but also line
frames. The A-line frame {Lia} is defined as Li1a = Ai2∧Ai3 . The {i1, i2, i3}
are assumed to be an even permutation of {1, 2, 3}. The normalised reciprocal
A-line frame {L̄ai } and the standard reciprocal A-line frame {Lai } are given by
L̄ai = [[AiA4]]a and Lai = [[AiA4]], respectively. Hence, Lia·L̄aj = δij and Lia·Laj =

ρaδ
i
j . Again, this shows the universality of the inner product: bivectors can

be treated in the same fashion as vectors.
The meet and join are the two operations needed to calculate intersections

between two lines, two planes or a line and a plane – these are discussed in
more detail in [190], [146] and [118]; here we will give just the most relevant
expression for the meet. If A and B represent two planes or a plane and a
line in P3 their meet may be written as

A ∨B = 〈〈[[A]][[B]]〉〉 = [[A]]·B ≡ (AI−1)·B (14.3)

From this equation it also follows that

〈〈A〉〉 ∨ 〈〈B〉〉 = 〈〈AB〉〉 (14.4)

Later on we will need the dual representations of points and lines. For
lines they are given by,

340 Christian B.U. Perwass, Joan Lasenby

Li1a = Ai2∧Ai3 ' 〈〈Ai1a A4
a〉〉 and Ai1∧A4 ' 〈〈Ai2a Ai3a 〉〉 (14.5)

The symbol ' denotes equality up to a scalar factor. This shows that a
line can either be expressed as the outer product of two vectors or by the
intersection of two planes, since 〈〈Ai1a A4

a〉〉 = 〈〈Ai1a 〉〉∨〈〈A4
a〉〉. Similarly, for points

we have

Aµ1 ' 〈〈Aµ2
a A

µ3
a A

4
a〉〉 (14.6)

That is, a point can also be described as the intersection of three planes.
A pinhole camera can be defined by 4 homogeneous vectors in P3: one

vector gives the optical centre and the other three define the image plane
[147], [146]. Thus, the vectors needed to define a pinhole camera also define
a frame for P3. Conventionally the fourth vector of a frame, eg. A4, defines
the optical centre, and the outer product of the other three defines the image
plane.

Suppose that X is given in some frame {Zµ} as X = ζµZµ, it can be
shown [190] that the projection of some point X onto image plane A can be
written as

Xa = (X ·Ai)Ai = (ζµ Zµ ·Ai)Ai = ζµKi
µ
Ai ; Ki

µ
≡ Zµ ·Ai (14.7)

The matrixKi
µ

is the camera matrix of camera A, for projecting points given

in the Z-frame onto image plane1 A. In general we will write the projection

of some point X onto image plane P as X
P−→ Xp.

In [80] the derivations begin with the camera matrices by noting that the
row vectors refer to planes. As was shown here, the row vectors of a camera
matrix are the reciprocal frame vectors {Ai}, whose dual is a plane.

With the same method as before, lines can be projected onto an image
plane. For example, let L be some line in P3, then its projection onto image
plane A is: (L∧A4) ∨ (A1∧A2∧A3) = (L·Lai)Lia.

An epipole is the projection of the optical centre of one camera onto the
image plane of another. Therefore epipoles contain important information
about the relative placements of cameras.

As an example consider two cameras A and B represented by frames
{Ai} and {Bi}, respectively. The projection of the optical centre of camera
B onto image plane A will be denoted Eab. That is, Eab = B4 ·AiAi or
simply Eab = εiabAi, with εiab ≡ B4 ·Ai. Note, that we adopted the general
GA convention that the inner product takes precedence over the geometric
product2.The only other epipole in this two camera set-up is Eba given by

1 Note that the indices of K are not given as super- and subscripts of K but are
raised (or lowered) relative to each other. This notation was adopted since it
leaves the superscript position of K free for other usages.

2 Also, the outer product has precedence over the inner product. That is, A·B∧C =
A · (B ∧ C).

14. Multiple View Geometry 341

Eba = A4·BiBi. This may also be written as Eba = εibaBi, with εiba ≡ A4·Bi.
If there are three cameras then each image plane contains two epipoles. With
four cameras each image plane contains three epipoles. In general the total
number of epipoles is N(N − 1) where N is number of cameras present.

Let {Bµ} define a camera in P3 and {Aµ} be some other frame of the same
projective space. Also, define A4 to be the origin of P3. Then Eba contains
some information about the placement of camera B relative to the origin.
Therefore, A4 ·Bj may be regarded as a unifocal tensor Ub.

U ib ≡ εiba = A4 ·Bi = Kb
i
4
' 〈〈A1A2A3Bi〉〉 (14.8)

Obviously the unifocal tensor is of rank 1. The definition of a unifocal tensor
is only done for completeness and is not strictly necessary since every unifocal
tensor is also an epipole vector.

Later on we will have to deal with determinants of various 3×3 matrices.
Such a determinant can be written in terms of the εijk operator, which is
defined as

εijk =

+1 if the {ijk} form an even permutation of {123}
0 if any two indices of {ijk} are equal

−1 if the {ijk} form an odd permutation of {123}
(14.9)

Let αia1 , αib2 and αic3 give the three rows of a 3 × 3 matrix M . Then the
determinant of M is det(M) = εiaibicα

ia
1 α

ib
2 α

ic
3 . Note that there is an implicit

summation over all indices. It will simplify the notation later on if we define

det(αia1 , α
ib
2 , α

ic
3)iaibic = det(αij)ij ≡ εiaibicα

ia
1 α

ib
2 α

ic
3 = det(M) (14.10)

Furthermore, if the rows of the matrix M are written as vectors aj = αijei,
then we can also adopt the notation

det(a1,a2,a3) = |a1a2a3| ≡ det(M) (14.11)

As an example, let the {Aµ} form a frame of P3, with reciprocal frame
{Aµ}. Then from the definition of the square and angle brackets, it follows
that

εiaibic = [[AiaAibAicA4]]a and εiaibic = 〈〈AiaAibAicA4〉〉a (14.12)

Therefore, we may, for example, express a determinant as det(αij)ij =

αia1 α
ib
2 α

ic
3 [[AiaAibAicA4]]a.

14.3 The Fundamental Matrix

14.3.1 Derivation

Let {Aµ} and {Bµ} define two cameras in P3. A point X in P3 may be
transformed into the A and B frames via

342 Christian B.U. Perwass, Joan Lasenby

X = X ·AµaAµ = X ·BνbBν (14.13)

Recall that there is an implicit summation over µ and ν. From that follows
that the line A4∧X can also be written as

A4∧X = X ·Aia A4∧Ai
= ρ−1

a A4∧Xa

(14.14)

where Xa = X ·AiAi. Let Xa and Xb be the images of some point X ∈ P3

taken by cameras A and B, respectively. Then, since the lines from A and B
to X intersect at X

0 = (A4∧X ∧ B4∧X)I−1

' (A4∧Xa ∧ B4∧Xb)I−1

= αiβj [[A4AiB4Bj]]

(14.15)

where αi ≡ X ·Ai and βj ≡ X ·Bj are the image point coordinates of Xa

and Xb, respectively. Therefore, for a Fundamental Matrix defined as

Fij ≡ [[A4AiB4Bj]] (14.16)

we have

αiβjFij = 0 (14.17)

if the image points given by {αi} and {βj} are images of the same point in
space. Note, however, that equation (14.17) holds as long as Xa is the image
of any point along A4∧Xa and Xb is the image of any point along B4∧Xb. In
other words, the condition in equation (14.17) only ensures that lines A4∧Xa

and B4∧Xb are co-planar.
In the following let any set of indices of the type {i1, i2, i3} be an even

permutation of {1, 2, 3}. It may be shown that

[[B4Bj1]] ' Bj2∧Bj3 (14.18)

Thus, equation (14.16) can also be written as

Fij1 ' (Ai∧A4)·(Bj2∧Bj3) (14.19)

This may be expanded to

Fij1 = (A4 ·Bj2)(Ai ·Bj3) − (A4 ·Bj3)(Ai ·Bj2)
= U j2b K

b
j3i

− U j3b K
b
j2i

(14.20)

That is, the Fundamental Matrix is just the standard cross product between
the epipole3 U•

b and the column vectors Kb•
i
.

Fi• ' U•
b ×Kb•

i
(14.21)

In order to have a unified naming convention the Fundamental Matrix will
be refered to as the bifocal tensor.

3 Recall that Ub ≡ Eba.

14. Multiple View Geometry 343

14.3.2 Rank of F

Note that we use the term “rank” in relation to tensors in order to generalise
the notion of rank as used for matrices. That is, we would describe a rank 2
matrix as a rank 2, 2-valence tensor.

In general a tensor may be decomposed into a linear combination of rank
1 tensors. The minimum number of terms necessary for such a decomposition
gives the rank of the tensor. For example, a rank 1, 2-valence tensor M is
created by combining the components {αi}, {βi} of two vectors as M ij =
αiβj .

The rank of F can be found quite easily from geometric considerations.
Equation (14.16) can also be written as

Fij ' Ai ·[[A4B4Bj]] (14.22)

The expression [[A4B4Bj]] gives the normal to the plane (A4∧B4∧Bj). This
defines three planes, one for each value of j, all of which contain the line
A4∧B4. Hence, all three normals lie in a plane. Furthermore, no two nor-
mals are identical since the {Bj} are linearly independent by definition. It
follows directly that at most two columns of Fij can be linearly independent.
Therefore, F is of rank 2.

The rank of the bifocal tensor F can also be arrived at through a minimal
decomposition of F into rank 1 tensors. To achieve this we first define a new
A-image plane frame {A′

i} as

A′
i ≡ s(Ai + tiA4) (14.23)

where s and the {ti} are some scalar components. Thus we have

A4∧A′
i = sA4∧(Ai + tiA4)

= sA4∧Ai
(14.24)

Hence, F is left unchanged up to an overall scale factor under the transfor-
mation Ai −→ A′

i. In other words, the image plane bases {Ai} and {Bj} can
be changed along the projective rays {A4∧Ai} and {B4∧Bj}, respectively,
without changing the bifocal tensor relating the two cameras. This fact limits
the use of the bifocal tensor, since it cannot give any information about the
actual placement of the image planes.

Define two bifocal tensors F and F ′ as

Fij = [[A4AiB4Bj]] (14.25a)

F ′
ij = [[A4A

′
iB4Bj]] (14.25b)

From equation (14.24) it follows directly that Fij ' F ′
ij . Since the {A′

i} can
be chosen arbitrarily along the line A4∧Ai we may write

A′
i = (A4∧Ai) ∨ P (14.26)

344 Christian B.U. Perwass, Joan Lasenby

where P is some plane in P3. P = (B4∧B1∧B2) seems a good choice, since
then the {A′

i} all lie in a plane together with B4. The effect of this is that
the projections of the {A′

i} on image plane B will all lie along a line. The
matrix A′

i ·Bj therefore only has two linearly independent columns because
the column vectors are the projections of the {A′

i} onto image plane B. That
is, A′

i ·Bj , which is the 3 × 3 minor of Kb, is of rank 2.
This matrix could only be of rank 1, if the {A′

i} were to project to a
single point on image plane B, which is only possible if they lie along a line
in P3. However, then they could not form a basis for image plane A which
they were defined to be.

Thus A′
i·Bj can minimally be of rank 2. Such a minimal form is what we

need to find a minimal decomposition of F into rank 1 tensors using equation
(14.20). Substituting P = (B4∧B1∧B2) into equation (14.26) gives

A′
i = (A4∧Ai) ∨ (B4∧B1∧B2)

= [[A4Ai]]·(B4∧B1∧B2)

= [[A4AiB4B1]]B2 − [[A4AiB4B2]]B1 + [[A4AiB1B2]]B4

= Fi1B2 − Fi2B1 + [[A4AiB1B2]]B4

(14.27)

Expanding F ′ in the same way as F in equation (14.20) and substituting the
above expressions for the {A′

i} gives

F ′
ij1 = (A4 ·Bj2)(A′

i ·Bj3) − (A4 ·Bj3)(A′
i ·Bj2)

= (A4 ·Bj2)
[
− Fi2(B1 ·Bj3) + Fi1(B2 ·Bj3)

]

− (A4 ·Bj3)
[
− Fi2(B1 ·Bj2) + Fi1(B2 ·Bj2)

]

= εj2ba

[
− Fi2δ

j3
1 + Fi1δ

j3
2

]

− εj3ba

[
− Fi2δ

j2
1 + Fi1δ

j2
2

]

= Fi1

[
εj2baδ

j3
2 − εj3baδ

j2
2

]

− Fi2

[
εj2baδ

j3
1 − εj3baδ

j2
1

]

(14.28)

where we used the fact that B4 · Bj = 0. Clearly, Fi1, Fi2 and the expres-
sions in the square brackets all represent vectors. Therefore, equation (14.28)
expresses F ′ as a linear combination of two rank 1 tensors (matrices). This
shows again that the bifocal tensor is of rank 2.

But why should we do all this work of finding a minimal decomposition of
F if its rank can be found so much more easily from geometric considerations?
There are two good reasons:

1. for the trifocal and quadfocal tensor, a minimal decomposition will be
the easiest way to find the rank, and

14. Multiple View Geometry 345

2. such a decomposition is useful for evaluating F with a non-linear al-
gorithm, since the self-consistency constraints on F are automatically
satisfied.

14.3.3 Degrees of Freedom of F

Equation (14.28) is in fact a minimal parameterisation of the bifocal tensor.
This can be seen by writing out the columns of F ′.

F ′
i1 = −ε3baFi1 ; F ′

i2 = −ε3baFi2 ; F ′
i3 = ε1baFi1 + ε2baFi2 (14.29)

As expected, the third column (Fi3) is a linear combination of the first two.
Since an overall scale is not important we can also write

F ′
i1 = Fi1 ; F ′

i2 = Fi2 ; F ′
i3 = −ε̄1baFi1 − ε̄2baFi2 (14.30)

where ε̄iba ≡ εiba/ε
3
ba. This is the most general form of a rank 2, 3× 3 matrix.

Furthermore, since there are no more constraints on Fi1 and Fi2 this is also
a minimal parameterisation of the bifocal tensor. That is, eight parameters
are minimally necessary to form the bifocal tensor. It follows that since an
overall scale is not important the bifocal tensor has seven degrees of freedom
(DOF).

This DOF count can also be arrived at from more general considerations:
each camera matrix has 12 components. However, since an overall scale is
not important, each camera matrix adds only 11 DOF. Furthermore, the
bifocal tensor is independent of the choice of basis. Therefore, it is invariant
under a projective transformation, which has 16 components. But again, an
overall scale is not important. Thus only 15 DOF can be subtracted from the
DOF count due to the camera matrices. For two cameras we therefore have
2 × 11 − 15 = 7 DOF.

14.3.4 Transferring Points with F

The bifocal tensor can also be used to transfer a point in one image to a line
in the other. Starting again from equation (14.16) the bifocal tensor can be
written as

Fij = [[AiA4BjB4]]

= (Ai∧A4)·[[BjB4]]

= (Ai∧A4)·Lbj

(14.31)

This shows that Fij gives the components of the projection of line (Ai∧A4)
onto image plane B. Therefore,

(Ai∧A4)
B−→ FijL

j
b. (14.32)

346 Christian B.U. Perwass, Joan Lasenby

Since A4
B−→ Eba (the epipole on image plane B), FijL

j
b defines an epipolar

line.
Thus, contracting F with the coordinates of a point on image plane A,

results in the homogeneous line coordinates of a line passing through the
corresponding point on image plane B and the epipole Eba.

αiFij = λbj (14.33)

where the {αi} are some point coordinates and the {λbj} are the homogeneous
line coordinates of an epipolar line.

14.3.5 Epipoles of F

Recall that if there are two cameras then two epipoles are defined;

Eab ≡ B4 ·AiAi = εiabAi (14.34a)

Eba ≡ A4 ·BiBi = εibaBi (14.34b)

Contracting Fij with εiab gives

εiabFij = εiab[[A4AiB4Bj]]

= ρa[[A4(B4 ·AiaAi)B4Bj]]

= ρa[[A4B4B4Bj]] ; from equation (14.14)

= 0

(14.35)

Similarly,

εjbaFij = 0 (14.36)

Therefore, vectors {εiab} and {εjba} can be regarded respectively as the left
and right null spaces of matrix F . Given a bifocal tensor F , its epipoles can
therefore easily be found using, for example, a singular value decomposition
(SVD).

14.4 The Trifocal Tensor

14.4.1 Derivation

Let the frames {Aµ}, {Bµ} and {Cµ} define three distinct cameras. Also, let
L = X∧Y be some line in P 3. The plane L∧B4 is then the same as the plane
λbiL

i
b∧B4, up to a scalar factor, where λbi = L·Lbi . But,

Li1b ∧B4 = Bi2∧Bi3∧B4 = 〈〈Bi1〉〉
Intersecting planes L∧B4 and L∧C4 has to give L. Therefore, (λbi 〈〈Bi〉〉) ∨
(λcj〈〈Cj〉〉) has to give L up to a scalar factor. Now, if two lines intersect, their
outer product is zero. Thus, the outer product of lines X∧A4 (or Y ∧A4) and
L has to be zero. Note that X∧A4 defines the same line as (αiAi)∧A4, up
to a scalar factor, where αi = X ·Ai . Figure 14.1 shows this construction.

14. Multiple View Geometry 347

L ^b B4

L = X^ Y

L ^ Cc 4

bc

E

E

X

Y

E

B

A4

4

C

b

ab

ac

ba L E

Ecb

Eca

Lc

4

Fig. 14.1. Line projected onto three image planes. Note that although the figure
is drawn in � 3 , lines and points are denoted by their corresponding vectors in � 3

Combining all these expressions gives

0 = (X∧A4∧L)I−1

= αiλbjλ
c
k

[[
(Ai∧A4)(〈〈Bj〉〉 ∨ 〈〈Ck〉〉)

]]

= αiλbjλ
c
k

[[
(Ai∧A4)〈〈BjCk〉〉

]]
(14.37)

where the identity from equation (14.4) was used. If the trifocal tensor T
i
jk

is defined as

T
i
jk =

[[
(Ai∧A4)〈〈BjCk〉〉

]]
(14.38)

then, from equation (14.37) it follows that it has to satisfy αiλbjλ
c
kTijk

=

0. This expression for the trifocal tensor can be expanded in a number of
different ways. One of them is,

T
i
jk = (Ai∧A4)·[[〈〈BjCk〉〉]]

= (Ai∧A4)·(Bj∧Ck)
= (A4 ·Bj)(Ai ·Ck) − (A4 ·Ck)(Ai ·Bj)
= U jbK

c
k
i
− UkcK

b
j
i

(14.39)

348 Christian B.U. Perwass, Joan Lasenby

where Kb
j
i
≡ Ai ·Bj and Kc

k
i
≡ Ai ·Ck are the camera matrix minors for

cameras B and C, respectively, relative to camera A. This is the expression
for the trifocal tensor given by Hartley in [106]. Note that the camera matrix
for camera A would be written as Ka

j
µ
≡ Aµ ·Aj ' δji . That is, Ka = [I |0]

in standard matrix notation. In many other derivations of the trifocal tensor
(eg. [106]) this form of the camera matrices is assumed at the beginning.
Here, however, the trifocal tensor is defined first geometrically and we then
find that it implies this particular form for the camera matrices.

14.4.2 Transferring Lines

The trifocal tensor can be used to transfer lines from two images to the third.
That is, if the image of a line in P3 is known on two image planes, then its
image on the third image plane can be found. This can be seen by expanding
equation (14.38) in the following way,

T
i
jk = [[AiA4]]·〈〈BjCk〉〉

= Lai ·〈〈BjCk〉〉
(14.40)

This shows that the trifocal tensor gives the homogeneous line components
of the projection of line 〈〈BjCk〉〉 onto image plane A. That is,

〈〈BjCk〉〉 A−→ T
i
jkL

i
a (14.41)

It will be helpful later on to define the following two lines.

T jk ≡ 〈〈BjCk〉〉 (14.42a)

T jka ≡ T
i
jkL

i
a (14.42b)

such that T jk
A−→ T jka . Let the {λbj} and {λck} be the homogeneous line

coordinates of the projection of some line L ∈ P3 onto image planes B and
C, respectively. Then recall that λbjλ

c
k〈〈BjCk〉〉 gives L up to an overall scalar

factor, i.e.

L ' λbjλ
c
k〈〈BjCk〉〉 ; λbj ≡ L·Lbj and λck ≡ L·Lck (14.43)

The image of L on image plane A, La, can therefore be found via

La = L·LaiLia
' λbjλ

c
k〈〈BjCk〉〉·LaiLia

= λbjλ
c
kTijk

Lia

(14.44)

Thus, we have

λai ' λbjλ
c
kTijk

(14.45)

14. Multiple View Geometry 349

14.4.3 Transferring Points

It is also possible to find the image of a point on one image plane if its image
is known on the other two. To see this, the expression for the trifocal tensor
needs to be expanded in yet another way. Substituting the dual representation
of line Ai1∧A4, i.e. 〈〈Ai2a Ai3a 〉〉 into equation (14.38) gives

T
i1
jk =

[[
(Ai1∧A4)〈〈BjCk〉〉

]]

=
[[
〈〈Ai2a Ai3a 〉〉〈〈BjCk〉〉

]]

= 〈〈Ai2a Ai3a 〉〉·(Bj∧Ck)
= 〈〈Ai2a Ai3a BjCk〉〉

(14.46)

It can be shown that this form of the trifocal tensor is equivalent to the
determinant form given by Heyden in [120]. Now only one more step is needed
to see how the trifocal tensor may be used to transfer points.

T
i1
jk = 〈〈Ai2a Ai3a BjCk〉〉

= 〈〈Ai2a Ai3a Bj〉〉·Ck

= XT

i1
j ·Ck ; XT

i1
j ≡ 〈〈Ai2a Ai3a Bj〉〉

(14.47)

Note that the points {XT

i1
j} are defined through their dual representation as

the set of intersection points of lines {Ai1∧A4} (' {〈〈Ai2a Ai3a 〉〉}) and planes
{〈〈Bj〉〉} (' {Ljb∧B4}). Let L = X∧Y be a line in P3. Then

X
A−→ Xa = αiAi (14.48a)

L
B−→ LB = λbjL

j
b (14.48b)

Hence

X ' (αi1 Ai1∧A4︸ ︷︷ ︸
〈〈Ai2Ai3〉〉

) ∨ (λbj L
j
b∧B4︸ ︷︷ ︸
〈〈Bj〉〉

)

=
∑

i1
αi1λbj〈〈Ai2Ai3Bj〉〉

= αi1λbjX
T

i1
j

(14.49)

Now, the projection of X onto image plane C is simply

Xc = X ·CkCk
' αiλbjX

T

i1
j ·CkCk

= αiλbjTijk
Ck

(14.50)

350 Christian B.U. Perwass, Joan Lasenby

That is,

ηk ' αiλbjTijk
(14.51)

with ηk ≡ X ·Ck. Similarly we also have,

βk ' αiλckTijk
(14.52)

Therefore, if the image of a point and a line through that point are known
on two image planes, respectively, then the image of the point on the third
image plane can be calculated. Note that the line defined by the {λbj} can
be any line that passes through the image of X on image plane B. That is,
we may choose the point (0, 0, 1) as the other point the line passes through.
Then we have

λb1 = β2 ; λb2 = −β1 ; λb3 = 0 (14.53)

Hence, equation (14.51) becomes

ηk ' αi(β2T
i
1k − β1T

i
2k) (14.54)

and equation (14.52) becomes

βk ' αi(η2T
i
j1 − η1T

i
j2) (14.55)

14.4.4 Rank of T

Finding the rank of T is somewhat harder than for the bifocal tensor, mainly
because there is no simple geometric construction which yields its rank. As
was mentioned before the rank of a tensor is given by the minimum number
of terms necessary for a linear decomposition of it in terms of rank 1 tensors4.
As for the bifocal tensor, the transformation Ai → A′

i = s(Ai + tiA4) leaves
the trifocal tensor unchanged up to an overall scale. A good choice for the
{A′

i} seems to be

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4) (14.56)

since then all the {A′
i} lie in a plane together with B4 and C4. Therefore, the

camera matrix minors Kb
j
i
= A′

i·Bj and Kc
k
i
= A′

i·Ck are of rank 2. As was

shown before, this is the minimal rank camera matrix minors can have. To
see how this may help to find a minimal decomposition of T recall equation
(14.39);

T
i
jk = U jbK

c
k
i
− UkcK

b
j
i

4 For example, a rank 1 3-valence tensor is created by combining the components
{αi}, {βi}, {ηi} of three vectors as T ijk = αiβjηk.

14. Multiple View Geometry 351

This decomposition of T shows that its rank is at most 6, since Ub and Uc are
vectors, and Kc and Kb cannot be of rank higher than 3. Using the above
choice for Kb and Kc however shows that the rank of T is 4, since then the
rank of the camera matrices is minimal, and we thus have a minimal linear
decomposition of T .

14.4.5 Degrees of Freedom of T

As for the bifocal tensor we can also write down an explicit parameterisation
for the trifocal tensor. Starting with equation (14.56) we get

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4)

= [[AiA4]]·(B3∧B4∧C4)

= [[AiA4B4C4]]B3 − [[AiA4B3C4]]B4 + [[AiA4B3B4]]C4

= α1
iB3 + α2

iB4 + α3
iC4

(14.57)

where α1
i , α

2
i and α3

i are defined appropriately. The trifocal tensor may be
expressed in terms of the {A′

i} as follows (see equation (14.39)).

T
i
jk = (A4 ·Bj)(A′

i ·Ck) − (A4 ·Ck)(A′
i ·Bj)

= (A4 ·Bj)
[
α1
iB3 ·Ck + α2

iB4 ·Ck
]

− (A4 ·Ck)
[
α1
iB3 ·Bj + α3

iC4 ·Bj
]

= εjba

[
α1
iB3 ·Ck + α2

i ε
k
cb

]

− εkca

[
α1
i δ
j
3 + α3

i ε
j
bc

]

(14.58)

This decomposition of T has 5 × 3 + 3 × 3 − 1 = 23 DOF. The general
formula for finding the DOF of T gives 3 × 11 − 15 = 18 DOF. Therefore,
equation (14.58) is an overdetermined parameterisation of T . However, it will
still satisfy the self-consistency constraints of T .

14.4.6 Constraints on T

To understand the structure of T further, we will derive self-consistency con-
straints for T . Heyden derives the constraints on T using the “quadratic
p-relations” [120]. In GA these relations can easily be established from geo-
metric considerations.

The simplest constraint on T may be found as follows. Recall equation
(14.47), where the trifocal tensor was expressed in terms of the projection of
points XT

i1
j = 〈〈Ai2a Ai3a Bj〉〉 onto image plane C, i.e.

T
i1
jk = XT

i1
j ·Ck

352 Christian B.U. Perwass, Joan Lasenby

Now consider the following trivector.

XT

i1
ja
∧XT

i1
jb
∧XT

i1
jc

=
(
〈〈Ai2a Ai3a 〉〉 ∨ 〈〈Bja〉〉

)

∧
(
〈〈Ai2a Ai3a 〉〉 ∨ 〈〈Bjb〉〉

)
∧
(
〈〈Ai2a Ai3a 〉〉 ∨ 〈〈Bjc〉〉

)

= 0

(14.59)

The first step follows from equation (14.4). It is clear that this expression
is zero because we take the outer product of the intersection points of line
〈〈Ai2a Ai3a 〉〉 with the planes 〈〈Bj1 〉〉, 〈〈Bj2〉〉 and 〈〈Bj3 〉〉. In other words, this equa-
tion says that the intersection points of a line with three planes all lie along
a line (see figure 14.2).

A4

A1

A2

A3

<< >>A1

<< A2>>

B4

B3
B1

B2

A1A2>><<

B1>><<

>><<B
2

>><<B4

>><<B
3

X T
3 1

X T
3 3

X T
3 2

Fig. 14.2. This demonstrates the constraint from equation (14.59) for i2 = 1,
i3 = 2 and ja = 1, jb = 2, jc = 3. The figure also visualises the use of the inverse
dual bracket to describe planes and lines

When projecting the three intersection points onto image plane C they
still have to lie along a line. That is,

14. Multiple View Geometry 353

0 = (XT

i
ja
·Cka)(XT

i
jb
·Ckb)(XT

i
jc
·Ckc)Cka ∧Ckb

∧Ckc

⇐⇒ 0 = T
i
jakaTijbkb

T
i
jckc [[CkaCkb

CkcC4]]c

= εkakbkcTijakaTijbkb
T
i
jckc

= det(T
i
jk)jk

(14.60)

14.4.7 Relation between T and F

We mentioned before that the quadratic p-relations can be used to find con-
straints on T [120]. The equivalent expressions in GA are of the form

〈〈B1B2〉〉∧〈〈A1A2A3〉〉∧〈〈B1B2C1〉〉 = 0 (14.61)

This expression is zero because 〈〈B1B2〉〉 ∧ 〈〈B1B2C1〉〉 = 0. This becomes
obvious immediately from a geometric point of view: the intersection point
of line 〈〈B1B2〉〉 with plane 〈〈C1〉〉 clearly lies on line 〈〈B1B2〉〉.

In the following we will write TXYZ
i1
jk to denote the trifocal tensor

TXYZ
i1
jk = 〈〈X i2X i3Y jZk〉〉

We will similarly write FXYi1j1 to denote the bifocal tensor

FXYi1j1 = 〈〈X i2X i3Y j2Y j3〉〉

If no superscripts are given then T
i
jk and Fij take on the same meaning as

before. That is,

T
i
jk ≡ TABC

i
jk (14.62a)

Fij ≡ FABij (14.62b)

We can obtain a constraint on T by expanding equation (14.61).

0 = 〈〈B1B2〉〉∧〈〈A1A2A3〉〉∧〈〈B1B2C1〉〉
= 〈〈A1A2B1B2〉〉〈〈B1B2A3C1〉〉

+ 〈〈A3A1B1B2〉〉〈〈B1B2A2C1〉〉
+ 〈〈A2A3B1B2〉〉〈〈B1B2A1C1〉〉

= F33T
BAC

3
31 + F23T

BAC

3
21 + F13T

BAC

3
11

= Fi3T
BAC

3
i1

(14.63)

Note that there is an implicit summation over i, because it is repeated as a
(relative) superscript. Of course, we could have chosen different indices for

354 Christian B.U. Perwass, Joan Lasenby

the reciprocalB vectors and the reciprocal C vector. Therefore, we can obtain
the following relation between the trifocal tensor and the bifocal tensor.

FijT
BAC

j
ik = 0 (14.64)

Again there is an implicit summation over the i index but not over the j
index. From this equation it follows that the three column vectors of the
bifocal tensor give the three “left” null vectors of the three matrices T

i
••,

respectively. Equation (14.64) has two main uses: it can be used to find some
epipoles of the trifocal tensor via equations (14.35) and (14.36), but it also
serves to give more constraints on T since detF = 0.

The columns of F may be found from equation (14.64) using, for example,
an SVD. However, since the columns are found separately they will not in
general be scaled consistently. Therefore, F found from equation (14.64) has
only a limited use. Nonetheless, we can still find the correct left null vector
of F , i.e. εiab, because each column is consistent in itself. Note also that, the
determinant of F is still zero, since the rank F cannot be changed by scaling
its columns separately. We cannot use this F , though, to find the right null
vector, i.e. εiba, or to check whether image points on planes A and B are
images of the same world point. Finding a consistent F is not necessary to
find the right null vector of F , as will be shown later on. Therefore, unless
we need to find a bifocal tensor from T which we can use to check image
point pair matches, a fully consistent F is not necessary. A consistent F can,
however, be found as shown in the following.

We can find the bifocal tensor row-wise in the following way.

0 = 〈〈Ai2Ai3〉〉∧〈〈B1B2B3〉〉∧〈〈Ai2Ai3Ck〉〉
= Fi1jTi1jk

(14.65)

Knowing F row-wise and column-wise we can find a consistently scaled bifocal
tensor. What remains is to find TBAC from T . To do so we define the following
intersection points in terms of the lines T iaja ≡ 〈〈BiaCja〉〉 (see equation
(14.42a)).

p(iaja, ibjb) ≡ (A4∧T iaja) ∨ T ibjb

=
〈〈[[

A4〈〈BiaCja〉〉
]][[

〈〈BibCjb 〉〉
]]〉〉

=
〈〈(

A4 ·
[[
〈〈BiaCja〉〉

]])
BibCjb

〉〉

=
〈〈(

A4 ·(Bia∧Cja)
)
BibCjb

〉〉

=
〈〈

(A4 ·Bia)CjaBibCjb

−(A4 ·Cja)BiaBibCjb
〉〉

= εiaba〈〈CjaBibCjb 〉〉 + εjaca〈〈BiaCjbBib 〉〉

(14.66)

14. Multiple View Geometry 355

Two useful special cases are

p(i1j, i2j) = εjca〈〈Bi1CjBi2〉〉 (14.67a)

p(ij1, ij2) = εiba〈〈Cj1BiCj2〉〉 (14.67b)

The projection of p(i1j, i2j) onto image plane A, denoted by pa(i1j, i2j) gives

pa(i2k, i3k) = εkca

(
Aj ·〈〈Bi2CkBi3〉〉

)
Aj

= εkca〈〈AjBi2CkBi3〉〉Aj
= −εkca〈〈Bi2Bi3AjCk〉〉Aj
= −εkcaTBAC

i1
jk Aj

(14.68)

We can also calculate pa(jaka, jbkb) by immediately using the projections of
the T jk onto image plane A (see equation (14.42b)). That is,

pa(jaka, jbkb) = (A4∧T iajaa) ∨ T ibjba

= T
ia
jakaTibjbkb

(A4∧Liaa) ∨ Liba
= T

ia
jakaTib

jbkb
(A4∧〈〈Aiaa A4

a〉〉) ∨ 〈〈Aiba A4
a〉〉

= T
ia
jakaTib

jbkb

〈〈(
A4 ·(Aiaa ∧A4

a)
)
Aiba A

4
a

〉〉

' T
ia
jakaTib

jbkb
〈〈Aiaa Aiba A4

a〉〉

(14.69)

From the definition of the inverse dual bracket we have

Ai3 = 〈〈Ai1a Ai2a A4
a〉〉a

Therefore, from equation (14.69) we find

pa(j1k, j2k) ' (T
i1
j1kTi2j2k

− T
i2
j1kTi1j2k

)Ai3 (14.70)

Equating this with equation (14.68) gives

TBAC
j3
i3k ' (εkca)

−1(T
i1
j1kTi2j2k

− T
i2
j1kTi1j2k

) (14.71)

Since εkca can be found from T (as will be shown later) we can find TBAC

from T up to an overall scale. Equation (14.71) may also be written in terms
of the standard cross product.

TBAC
j3

•k ' (εkca)
−1(T•j1k × T•j2k) (14.72)

Had we used equation (14.67b) instead of equation (14.67a) in the previ-
ous calculation, we would have obtained the following relation.

356 Christian B.U. Perwass, Joan Lasenby

TCBA
k3
ji3 ' (εjba)

−1(T
i1
jk1Ti2jk2

− T
i2
jk1Ti1jk2

) (14.73)

Or, in terms of the standard cross product

TCBA
k3
j• ' (εjba)

−1(T
•jk1

× T
•jk2

) (14.74)

Hence, we can also obtain TCBA from T up to an overall scale. Note that
since

TABC
i1
jk = 〈〈Ai2Ai3BjCk〉〉

= −〈〈Ai2Ai3CkBj〉〉
= −TACB

i1
kj

(14.75)

we have found all possible trifocal tensors for a particular camera setup from
T .

Equations (14.72) and (14.74) simply express that the projections of the
intersection points between some lines onto image plane A are the same as
the intersection points between the projections of the same lines onto image
plane A. This implies that independent of the intersection points, i.e. the
components of T

i
jk, equations (14.72) and (14.74) will always give a self-

consistent tensor, albeit not necessarily one that expresses the correct camera
geometry.

14.4.8 Second Order Constraints

There are more constraints on T which we will call “second order” because
they are products of determinants of components of T . Their derivation is
more involved and can be found in [189] and [190]. Here we will only state
the results. These constraints may be used to check the self-consistency of T
when it is calculated via a non-linear method.

0 = |T jaka
a T jbka

a T jakb
a | |T jbkb

a T jakc
a T jbkc

a |
− |T jaka

a T jbka
a T jbkb

a | |T jakb
a T jakc

a T jbkc
a |

(14.76)

0 = |T jaka
a T jakb

a T jbka
a | |T jbkb

a T jcka
a T jckb

a |
− |T jaka

a T jakb
a T jbkb

a | |T jbka
a T jcka

a T jckb
a |

(14.77)

0 = |T iajaa T ibjaa T iajba | |T ibjba T iajba T ibjca |
− |T iajaa T ibjaa T ibjba | |T iajba T iajca T ibjba |

(14.78)

Where the determinants are to be be interpreted as

|T jaka
a T jbka

a T jakb
a | = det(T

ia
jaka , Tib

jbka , Ticjakb
)iaibic

14. Multiple View Geometry 357

14.4.9 Epipoles

The epipoles of T can be found indirectly via the relation of bifocal tensors to
T (e.g. equation (14.64)). Also recall that the right null vector of some FXYij

is εjyx, whereas the left null vector is εixy (equations (14.35) and (14.36)).
From equation (14.65) we know that

FijT
i
jk = 0

When calculating F from this equation, we cannot guarantee that the rows
are scaled consistently. Nevertheless, this does not affect the right null space
of F . Hence, we can find εjba from this F . In the following we will list the
necessary relations to find all epipoles of T .

0 = 〈〈Ai2Ai3〉〉∧〈〈B1B2B3〉〉∧〈〈Ai2Ai3Ck〉〉
= Fi1jTi1jk

→ εjba
(14.79a)

0 = 〈〈Ai2Ai3〉〉∧〈〈C1C2C3〉〉∧〈〈Ai2Ai3Bj〉〉
= FACi1k Ti1jk

→ εkca
(14.79b)

0 = 〈〈Bi2Bi3〉〉∧〈〈A1A2A3〉〉∧〈〈Bi2Bi3Ck〉〉
= FBAi1j T

BAC

i1
jk → εjab

(14.80a)

0 = 〈〈Bi2Bi3〉〉∧〈〈C1C2C3〉〉∧〈〈Bi2Bi3Aj〉〉
= FBCi1k T

BAC

i1
jk → εkcb

(14.80b)

0 = 〈〈Ci2Ci3〉〉∧〈〈A1A2A3〉〉∧〈〈Ci2Ci3Bj〉〉
= FCAi1k T

CBA

i1
jk → εkac

(14.81a)

0 = 〈〈Ci2Ci3〉〉∧〈〈B1B2B3〉〉∧〈〈Ci2Ci3Ak〉〉
= FCBi1j T

CBA

i1
jk → εjbc

(14.81b)

By → εjxy we denote the epipole that can be found from the respective rela-
tion5 . Note that since

FXYi1j1 = 〈〈X i2X i3Y j2Y j3〉〉
= 〈〈Y j2Y j3X i2X i3〉〉
= F Y Xj1i1

(14.82)

we have also found all fundamental matrices.
5 Initial computations evaluating the quality of the epipoles found via this method

indicate that this may not be the best way to calculate the epipoles. It seems
that better results can be obtained when the epipoles are found directly from
TABC .

358 Christian B.U. Perwass, Joan Lasenby

14.5 The Quadfocal Tensor

14.5.1 Derivation

Let L be a line in P3 and let {Aµ}, {Bµ}, {Cµ} and {Dµ} define four cameras
A, B, C and D, respectively. The projection of L onto the image planes of
these four cameras is

L
A−→ LA = L·LaiLia = λai L

i
a (14.83a)

L
B−→ LB = L·LbiLib = λbiL

i
b (14.83b)

L
C−→ LC = L·LciLic = λciL

i
c (14.83c)

L
D−→ LD = L·LdiLid = λdiL

i
d (14.83d)

The intial line L can be recovered from these projections by intersecting any
two of the planes (LA∧A4), (LB∧B4), (LC∧C4) and (LD∧D4). For example,

L ' (LA∧A4) ∨ (LB∧B4) ' (LC∧C4) ∨ (LD∧D4) (14.84)

Therefore,

0 =
[[(

(LA∧A4) ∨ (LB∧B4)
)
∧
(
(LC∧C4) ∨ (LD∧D4)

)]]

= λai λ
b
jλ
c
kλ

d
l

[[(
(Lia∧A4) ∨ (Ljb∧B4)

)

(
(Lkc∧C4) ∨ (Lld∧D4)

)]]

= λai λ
b
jλ
c
kλ

d
l

[[(
〈〈Ai〉〉 ∨ 〈〈Bj〉〉

)(
〈〈Ck〉〉 ∨ 〈〈Dl〉〉

)]]

= λai λ
b
jλ
c
kλ

d
l 〈〈AiBjCkDl〉〉

(14.85)

Therefore, a quadfocal tensor may be defined as

Qijkl = 〈〈AiBjCkDl〉〉 (14.86)

If the quadfocal tensor is contracted with the homogeneous line coordinates
of the projections of one line onto the four camera image planes, the result
is zero. In this way the quadfocal tensor encodes the relative orientation of
the four camera image planes. However, note that contracting the quadfo-
cal tensor with the line coordinates of the projection of one line onto only
three image planes gives a zero vector. This follows directly from geometric
considerations. For example,

λai λ
b
jλ
c
kQ

ijkl = λai λ
b
jλ
c
k〈〈AiBjCk〉〉·Dl

'
(
L ∨ (λckC

k)
)
·Dl

(14.87)

where L is the line whose images on image planesA, B and C have coordinates
{λai }, {λbj} and {λck}, respectively. Hence, L lies on plane λckC

k, and thus

14. Multiple View Geometry 359

their meet is zero. This also shows that the quadfocal tensor does not add
any new information to what can be known from the trifocal tensor, since
the quadfocal tensor simply relates any three image planes out of a group of
four.

The form for Q given in equation (14.86) can be shown to be equivalent
to the form given by Heyden in [120]. In this form it is also immediately clear
that changing the order of the reciprocal vectors in equation (14.86) at most
changes the overall sign of Q.

14.5.2 Transferring Lines

If the image of a line is known on two image planes, then the quadfocal
tensor can be used to find its image on the other two image planes. This can
be achieved through a somewhat indirect route. Let L be a line projected
onto image planes A and B with coordinates {λai } and {λbj}, respectively.
Then we know that

L ' λai λ
b
j〈〈AiBj〉〉 (14.88)

Therefore, we can define three points {Xk
L} that lie on L as

Xk
L ≡ λai λ

b
j(〈〈AiBj〉〉 ∨ 〈〈Ck〉〉)

= λai λ
b
j〈〈AiBjCk〉〉

(14.89)

The projections of the {Xk
L} onto image plane D, denoted by {Xk

Ld
} are

given by

Xk
Ld

≡ Xk
L ·Dl

= λai λ
b
j〈〈AiBjCk〉〉·Dl

= λai λ
b
j〈〈AiBjCkDl〉〉

= λai λ
b
jQ

ijkl

(14.90)

From the points {Xk
Ld

} the projection of line L onto image plane D can be
recovered.

14.5.3 Rank of Q

The form for the quadfocal tensor as given in equation (14.86) may be ex-
panded in a number of ways. For example,

Qi1jkl = (Ai2∧Ai3∧A4)·(Bj∧Ck∧Dl)

= U jb

[
Kc
k
i3
Kd
l
i2
−Kd

l
i3
Kc
k
i2

]

− Ukc

[
Kb
j
i3
Kd
l
i2
−Kd

l
i3
Kb
j
i2

]

+ U ld

[
Kb
j
i3
Kc
k
i2
−Kc

k
i3
Kb
j
i2

]
(14.91)

360 Christian B.U. Perwass, Joan Lasenby

In terms of the standard cross product this may be written as

Q•jkl = U jb (K
c
k•

×Kd
l•

) − Ukc (Kb
j•

×Kd
l•

) + U ld(K
b
j•

×Kc
k•

) (14.92)

This decomposition of Q shows that the quadfocal tensor can be at most of
rank 9. From equation (14.91) it becomes clear that, as for the trifocal tensor,
the transformation Ai 7→ s(Ai + tiA4) leaves Q unchanged up to an overall
scale.

Let P = B4∧C4∧D4. As for the trifocal tensor case, define a basis {A′
i}

for image plane A by

A′
i = (Ai∧A4) ∨ P (14.93)

All the {A′
i} lie on plane P , that is they lie on the plane formed by B4, C4

and D4. Therefore, Kb′
j
i
= A′

i·Bj , Kc′ = A′
i·Ck and Kd′ = A′

i·Dl are of rank

2. As was shown previously, this is the minimum rank the camera matrices
can have. Hence, forming Q with the {A′

i} should yield its rank. However,
it is not immediately obvious from equation (14.91) what the rank of Q is
when substituting the {A′

i} for the {Ai}. A more yielding decomposition of
Q is achieved by expanding equation (14.93).

A′
i = (Ai∧A4) ∨ P
' [[AiA4]]·(B4∧C4∧D4)

= [[AiA4B4C4]]D4 − [[AiA4B4D4]]C4 + [[AiA4C4D4]]B4

= α1
iB4 + α2

iC4 + α3
iD4

(14.94)

where the {αji} are defined accordingly. Furthermore,

A′
i1∧A′

i2 = λ1
i3 C4∧D4 + λ2

i3 D4∧B4 + λ3
i3 B4∧C4 (14.95)

with λj3i3 = αj1i1α
j2
i2
− αj1i2α

j2
i1

. Equation (14.91) may also be written as

Qi1jkl = (Ai2∧Ai3∧A4)·(Bj∧Ck∧Dl)

= U jb

[
(A′

i2∧A′
i3)·(Ck∧Dl)

]

− Ukc

[
(A′

i2∧A′
i3)·(Bj∧Dl)

]

+ U ld

[
(A′

i2∧A′
i3)·(Bj∧Ck)

]
(14.96)

From equation (14.95) it then follows

14. Multiple View Geometry 361

(A′
i2∧A′

i3)·(Ck∧Dl) = λ1
i1 D4 ·Ck C4 ·Dl

− λ2
i1 D4 ·Ck B4 ·Dl

− λ3
i1 B4 ·Ck C4 ·Dl

(14.97a)

(A′
i2∧A′

i3)·(Bj∧Dl) = λ1
i1
D4 ·Bj C4 ·Dl

− λ2
i1
D4 ·Bj B4 ·Dl

+ λ3
i1
C4 ·Bj B4 ·Dl

(14.97b)

(A′
i2∧A′

i3)·(Bj∧Ck) = − λ1
i1
C4 ·Bj D4 ·Ck

− λ2
i1
D4 ·Bj B4 ·Ck

+ λ3
i1
C4 ·Bj B4 ·Ck

(14.97c)

Each of these three equations has a linear combination of three rank 1, 3-
valence tensors on its right hand side. Furthermore, none of the rank 1, 3-
valence tensors from one equation is repeated in any of the others. Therefore,
substituting equations (14.97) into equation (14.96) gives a decomposition of
Q in terms of 9 rank 1 tensors. Since this is a minimal decomposition, Q is
of rank 9.

14.5.4 Degrees of Freedom of Q

Substituting equations (14.97) back into equation (14.96) gives

Qijkl = εjba

[
λ1
i ε
k
cdε

l
dc − λ2

i ε
k
cdε

l
db + λ3

i ε
k
cbε

l
dc

]

− εkca

[
λ1
i ε
j
bdε

l
dc − λ2

i ε
j
bdε

l
db + λ3

i ε
j
bcε

l
db

]

+ εlda

[
λ1
i ε
j
bcε

k
cd − λ2

i ε
j
bdε

k
cb + λ3

i ε
j
bcε

k
cb

]

(14.98)

This decomposition of Q has 9×3+3×3−1 = 35 DOF. The general formula
for the DOF of Q gives 4×11−15 = 29 DOF. Therefore the parameterisation
of Q in equation (14.98) is overdetermined. However, it will still give a self-
consistent Q.

14.5.5 Constraints on Q

The constraints on Q can again be found very easily through geometric con-
siderations. Let the points {X ijk

Q } be defined as

X ijk
Q ≡ 〈〈AiBjCk〉〉 (14.99)

A point X ijk
Q can be interpreted as the intersection of line 〈〈AiBj〉〉 with plane

〈〈Ck〉〉. Therefore,

X ijka

Q ∧X ijkb

Q ∧X ijkc

Q = 0 (14.100)

362 Christian B.U. Perwass, Joan Lasenby

because the three intersection points X ijka

Q , X ijkb

Q and X ijkc

Q lie along line

〈〈AiBj〉〉. Hence, also their projections onto an image plane have to lie along a
line. Thus, projecting the intersection points onto an image plane D we have

0 = (X ijka

Q ·Dla) (X ijkb

Q ·Dlb) (X ijkc

Q ·Dlc)

(Dla∧Dlb∧Dlc)

⇐⇒ 0 = Qijkala Qijkblb Qijkclc [[DlaDlbDlcD4]]d

= εlalblc Q
ijkala Qijkblb Qijkclc

= det(Qijkl)kl

(14.101)

Similarly, this type of constraint may be shown for every pair of indices. We
therefore get the following constraints on Q.

det(Qijkl)ij = 0; det(Qijkl)ik = 0; det(Qijkl)il = 0

det(Qijkl)jk = 0; det(Qijkl)jl = 0; det(Qijkl)kl = 0
(14.102)

14.5.6 Relation between Q and T

We can find the relation between Q and T via the method employed to find
the relation between T and F . For example,

0 = 〈〈A1A2A3〉〉∧〈〈BjCkDl〉〉∧〈〈BjCk〉〉

=
∑

i1

(
〈〈Ai1BjCkDl〉〉〈〈Ai2Ai3BjCk〉〉

)

= QijklT
i
jk

(14.103)

Similarly, equations for the other possible trifocal tensors can be found. Be-
cause of the trifocal tensor symmetry detailed in equation (14.75) all trifocal
tensors may be evaluated from the following set of equations.

Qijkl TABC
i
jk = 0; Qijkl TABD

i
jl = 0; Qijkl TACD

i
kl = 0

Qijkl TBAC
j
ik = 0; Qijkl TBAD

j
il = 0; Qijkl TBCD

j
kl = 0

Qijkl TCAB
k
ij = 0; Qijkl TCAD

k
il = 0; Qijkl TCBD

k
jl = 0

Qijkl TDAB
l
ij = 0; Qijkl TDAC

l
ik = 0; Qijkl TDBC

l
jk = 0

(14.104)

Note that the trifocal tensors found in this way will not be of consistent scale.
To fix the scale we start by defining intersection points

Xjkl
BCD ≡

[
A4∧〈〈BjCk〉〉

]
∨ 〈〈CkDl〉〉

' εkca〈〈BjCkDl〉〉
(14.105)

14. Multiple View Geometry 363

Projecting these points onto image plane A gives

Xjkl
BCDa

≡ Xjkl
BCD ·AiAi

' εkca〈〈BjCkDl〉〉·AiAi
' εkca〈〈AiBjCkDl〉〉Ai
= εkcaQ

ijklAi

(14.106)

But we could have also arrived at an expression for X jkl
BCDa

via

Xjkl
BCDa

'
(
〈〈BjCk〉〉·Laia

)(
〈〈CkDl〉〉·Laib

)[
A4∧Liaa

]
∨ Liba

'
(
TABC
i1
jk TACD

i2
kl − TABC

i2
jk TACD

i1
kl

)
Ai3

(14.107)

Equating this with equation (14.106) gives

TABC
i1
jk TACD

i2
kl − TABC

i2
jk TACD

i1
kl ' εkcaQ

i3jkl (14.108)

This equation may be expressed more concisely in terms of the standard cross
product.

TABC
•jk

× TACD
•kl

' εkcaQ
•jkl (14.109)

Furthermore, from the intersection points

Xkjl
CBD ≡

[
A4∧〈〈CkBj〉〉

]
∨ 〈〈BjDl〉〉

and their projections onto image plane A we get

TABC
•jk

× TABD
•jl

' εjbaQ
•jkl (14.110)

We can now find the correct scales for TABC by demanding that

TABC
i1
jk TACD

i2
kl − TABC

i2
jk TACD

i1
kl

Qi3jkl
= φ (14.111)

for all j while keeping i1, k and l constant, where φ is some scalar. Further-
more, we know that

TABC
i1
jk TABD

i2
jl − TABC

i2
jk TABD

i1
jl

Qi3jkl
= φ (14.112)

for all k while keeping i1, k and l constant, where φ is some different scalar.
Equations (14.111) and (14.112) together fix the scales of TABC completely.
Note that we do not have to know the epipoles εkca and εjba.

Similarly, all the other trifocal tensors can be found. These in turn can
be used to find the fundamental matrices and the epipoles.

364 Christian B.U. Perwass, Joan Lasenby

14.6 Reconstruction and the Trifocal Tensor

In the following we will investigate a computational aspect of the trifocal ten-
sor. In particular we are interested in the effect the determinant constraints
have on the “quality” of a trifocal tensor. That is, a trifocal tensor calculated
only from point matches has to be compared with a trifocal tensor calculated
form point matches while enforcing the determinant constraints.

For the calculation of the former a simple linear algorithm is used that
employs the trilinearity relationships, as, for example, given by Hartley in
[106]. In the following this algorithm will be called the “7pt algorithm”.

To enforce all the determinant constraints, an estimate of the trifocal
tensor is first found using the 7pt algorithm. From this tensor the epipoles
are estimated. Using these epipoles the image points are transformed into the
epipolar frame. With these transformed point matches the trifocal tensor can
then be found in the epipolar basis.

It can be shown [147] that the trifocal tensor in the epipolar basis has
only 7 non-zero components6. Using the image point matches in the epipolar
frame these 7 components can be found linearly. The trifocal tensor in the
“normal” basis is then recovered by tranforming the trifocal tensor in the
epipolar basis back with the initial estimates of the epipoles. The trifocal
tensor found in this way has to be fully self-consistent since it was calculated
from the minimal number of parameters. That also means that the determi-
nant constraints have to be fully satisfied. This algorithm will be called the
“MinFact” algorithm.

The main problem with the MinFact algorithm is that it depends crucially
on the quality of the initial epipole estimates. If these are bad, the trifocal
tensor will still be perfectly self-consistent but will not represent the true
camera structure particularly well. This is reflected in the fact that typically
a trifocal tensor calculated with the MinFact algorithm does not satisfy the
trilinearity relationships as well as a trifocal tensor calculated with the 7pt
algorithm, which is of course calculated to satisfy these relationships as well
as possible.

Unfortunately, there does not seem to be a way to find the epipoles and
the trifocal tensor in the epipolar basis simultaneously with a linear method.
In fact, the trifocal tensor in a “normal” basis is a non-linear combination
of the epipoles and the 7 non-zero components of the trifocal tensor in the
epipolar basis.

Nevertheless, since the MinFact algorithm produces a fully self-consistent
tensor, the camera matrices extracted from it also have to form a self-
consistent set. Reconstruction using such a set of camera matrices may be
expected to be better than reconstruction using an inconsistent set of camera

6 From this it follows directly that the trifocal tensor has 18 DOF: 12 epipolar
components plus 7 non-zero components of the trifocal tensor in the epipolar
basis minus 1 for an overall scale.

14. Multiple View Geometry 365

matrices, as typically found from an inconsistent trifocal tensor. The fact that
the trifocal tensor found with the MinFact algorithm may not resemble the
true camera structure very closely, might not matter too much, since recon-
struction is only exact up to a projective transformation. The question is,

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 4 6 8 10 12 14 16 18 20

Fig. 14.3. Mean distance between original points and recon-
structed points in arbitrary units as a function of mean Gaus-
sian error in pixels introduced by the cameras. The solid line
shows the values using the MinFact algorithm, and the dashed
line the values for the 7pt algorithm

of course, how to measure the quality of the trifocal tensor. Here the quality
is measured by how good a reconstruction can be achieved with the trifocal
tensor in a geometric sense. This is done as follows:

1. A 3D-object is projected onto the image planes of the three cameras,
which subsequently introduce some Gaussian noise into the projected
point coordinates. These coordinates are then quantised according to
the simulated camera resolution. The magnitude of the applied noise is
measured in terms of the mean Gaussian deviation in pixels.

366 Christian B.U. Perwass, Joan Lasenby

0

1000

2000

3000

4000

5 10 15 20

Fig. 14.4. Mean difference between elements of calculated and
true tensors in percent. Solid line shows values for trifocal tensor
calculated with 7pt algorithm, and dashed line shows values for
trifocal tensor calculated with MinFact algorithm

2. The trifocal tensor is calculated in one of two ways from the available
point matches:
a) using the 7pt algorithm, or
b) using the MinFact algorithm.

3. The epipoles and the camera matrices are extracted from the trifocal
tensor. The camera matrices are evaluated using Hartley´s recomputation
method [106].

4. The points are reconstructed using a version of what is called “Method
3” in [199] and [200] adapted for three views. This uses a SVD to solve for
the homogeneous reconstructed point algebraically using a set of camera
matrices. In [199] and [200] this algorithm was found to perform best of
a number of reconstruction algorithms.

5. This reconstruction still contains an unknown projective transformation.
Therefore it cannot be compared directly with the original object. How-
ever, since only synthetic data is used here, the 3D-points of the original
object are known exactly. Therefore, a projective transformation matrix
that best transforms the reconstructed points into the true points can be
calculated. Then the reconstruction can be compared with the original
3D-object geometrically.

6. The final measure of “quality” is arrived at by calculating the mean
distance in 3D-space between the reconstructed and the true points.

14. Multiple View Geometry 367

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 5 10 15 20

Fig. 14.5. Mean difference between elements of true trifocal
tensor and trifocal tensor calculated with 7pt algorithm in per-
cent

These quality values are evaluated for a number of different noise magnitudes.
For each particular noise magnitude the above procedure is performed 100
times. The final quality value for a particular noise magnitude is then taken
as the average of the 100 trials.

Figure 14.3 shows the mean distance between the original points and the
reconstructed points in 3D-space in some arbitrary units7, as a function of
the noise magnitude. The camera resolution was 600 by 600 pixels.

This figure shows that for a noise magnitude of up to approximately 10
pixels both trifocal tensors seem to produce equally good reconstructions.
Note that for zero added noise the reconstruction quality is not perfect. This
is due to the quantisation noise of the cameras. The small increase in quality
for low added noise compared to zero added noise is probably due to the
cancellation of the quantisation and the added noise.

Apart from looking at the reconstruction quality it is also interesting to
see how close the components of the calculated trifocal tensors are to those
of the true trifocal tensor. Figures 14.4 and 14.5 both show the mean of the
percentage differences between the components of the true and the calculated
trifocal tensors as a function of added noise in pixels. Figure 14.4 compares the
trifocal tensors found with the 7pt and the MinFact algorithms. This shows
that the trifocal tensor calculated with the MinFact algorithm is indeed very

7 The particular object used was 2 units wide, 1 unit deep and 1.5 units high in
3D-space. The Y-axis measures in the same units.

368 Christian B.U. Perwass, Joan Lasenby

different to the true trifocal tensor, much more so than the trifocal tensor
calculated with the 7pt algorithm (shown enlarged in figure 14.5).

Table 14.1. Comparison of Multiple View Tensors

Fundamental Matrix Trifocal Tensor

Fi1j1 = 〈〈Ai2Ai3Bj2Bj3〉〉 T
i1

jk = 〈〈Ai2Ai3BjCk〉〉
Fij1 = εj3

baK
b
j2i

− εj
baK

b
j3i

T
i
jk = εj

baK
c
k

i
− εk

caK
b
j
i

Fij = La
i ·(Bj∧B4)� ��� �

line

T
i
jk = La

i ·〈〈BjCk〉〉� ��� �
line

detF = 0 det(T
i
jk)jk = 0 for each i

7 DOF 18 DOF

rank 2 rank 4

Quadfocal Tensor

Qijkl = 〈〈AiBjCkDl〉〉
Qi1jkl = εj

ba � Kc
k

i3
Kd

l
i2

−Kd
l
i3
Kc

k
i2 �

− εk
ca � Kb

j
i3
Kd

l
i2

−Kd
l
i3
Kb

j
i2 �

+ εl
da � Kb

j
i3
Kc

k
i2

−Kc
k

i3
Kb

j
i2 �

Qijkl = Ai ·〈〈BjCkDl〉〉� ��� �
point

det(Qijkl)xy = 0
where x and y are any pair of {ijkl}

29 DOF

rank 9

The data presented here seems to indicate that a tensor that obeys the
determinant constraints, i.e. is self-consistent, but does not satisfies the tri-
linearity relationships particularly well is equally as good, in terms of recon-
struction ability, as an inconsistent trifocal tensor that satisfies the trilin-
earity relationships quite well. In particular the fact that the trifocal tensor
calculated with the MinFact algorithm is so very much different to the true
trifocal tensor (see figure 14.4) does not seem to have a big impact on the
final recomputation quality.

14. Multiple View Geometry 369

14.7 Conclusion

Table 14.1 summarises the expressions for the different tensors, their degrees
of freedom, their rank and their main constraints. In particular note the
similarities between the expressions for the tensors.

We have demonstrated in this paper how Geometric Algebra can be used
to give a unified formalism for multiple view tensors. Almost all properties of
the tensors could be arrived at from geometric considerations alone. In this
way the Geometric Algebra approach is much more intuitive than traditional
tensor methods. We have gained this additional insight into the workings of
multiple view tensors because Projective Geometry in terms of Geometric
Algebra allows us to describe the geometry on which multiple view tensors
are based, directly. Therefore, we can understand their “inner workings” and
inter-relations. The best examples of this are probably the derivations of the
constraints on T and Q which followed from the fact that the intersection
points of a line with three planes all have to lie along a line. It is hard to
imagine a more trivial fact.

A similar analysis of multiple view tensors was presented by Heyden in
[120]. However, we believe our treatment of the subject is more intuitive due
to its geometric nature. In particular the “quadratic p-relations” used by
Heyden were here replaced by the geometric fact that the intersection point
of a line with a plane lies on that line.

We hope that our unified treatment of multiple view tensors has not just
demonstrated the power of Geometric Algebra, but will also give a useful new
tool to researchers in the field of Computer Vision.

370 Christian B.U. Perwass, Joan Lasenby

15. 3D-Reconstruction from Vanishing

Points

Christian B.U. Perwass1 and Joan Lasenby2

1 Cavendish Laboratory, Cambridge
2 C. U. Engineering Department, Cambridge

15.1 Introduction

3D-reconstruction is currently an active field in Computer Vision, not least
because of its many applications. It is applicable wherever the “real world”
has to be understood by a computer. This may be with regard to control
movement (robots), to survey a scene for later interpretation (medicine), or
to create and mix artificial with real environments (special effects).

Research on 3D-reconstruction can roughly be separated into three areas:

1. Reconstruction with calibrated cameras, [148, 146, 119, 79, 157]. In this
case, a set of images is taken of a scene with one or more calibrated
cameras. However, the camera positions are unknown. To perform a 3D-
reconstruction we therefore first have to reconstruct the camera positions.
To do this it is assumed that image point matches are known.

2. Reconstruction from sequences of images, [235, 237, 236, 246, 71, 62, 164].
Here a series of monocular, binocular or trinocular images is taken. To
perform a reconstruction it is then assumed that point matches between
the views in space and over time are known, and that the relative camera
geometry and their internal parameters do not change. A popular method
in this area is the use of the Kruppa equations [138, 78].

3. Reconstruction from static views, [38, 44]. A set of images of a scene
taken with unknown cameras, from unknown positions is given. We still

372 Christian B.U. Perwass, Joan Lasenby

assume that we have point matches over the images. However, note that
we cannot assume anymore that the internal parameters of the cameras
that took the images are the same.

The least information about a scene is given in point 3. In fact, there is so
little information that a correct 3D-reconstruction is impossible, as we have
shown in chapter 14. Therefore, some additional information is needed. Such
information could be the knowledge of lengths, angles or parallel lines.

Our approach to 3D-reconstruction falls into the area of Reconstruction
from static views. We have two images taken with unknown cameras from
unknown positions and assume that apart from the point matches we also
know the projections of a number of sets of parallel world lines. The latter
are used to find vanishing points but also to constrain the reconstruction.
This information allows us to perform an affine reconstruction of the scene.
That is, we find the rotation, translation and the internal parameters of the
second camera relative to the first. If we assume furthermore, that we have
three mutually orthogonal sets of parallel lines, we can also find the internal
calibration of the first camera and thus obtain a Euclidean 3D-reconstruction.

In the following discussion of our reconstruction algorithm we use the
same notation as in chapter 14. We will also assume that the reader is familiar
with our description of reciprocal frames, pinhole cameras, camera matrices
and the basic form of the fundamental matrix. Of course, all this assumes
some familiarity with Geometric Algebra (GA).

15.2 Image Plane Bases

We will be working in projective space (P3) with basis {e1, e2, e3, e4} which
has signature {−−−+}. We can project down to the corresponding Euclidean
space (E3) via the projective split. Our general setup is that we have two
pinhole cameras described by frames {Aµ} and {Bµ}, respectively. The frame
{Aµ} is also regarded as the world frame which we use for our reconstruction.

The basic form of our calculation is as follows. We start with the image
points obtained from real cameras, i.e. in E3. These image points are embed-
ded in P3. All our calculations are then performed in P3 and the resultant
reconstruction is projected back into E3. This method forces us to take note
of two important concepts.

1. Correct Basis. The power of GA in this field derives from the fact that
we are not working purely with coordinates, but with the underlying
geometric basis. Therefore, we have to make sure that the basis we are
working with is actually appropriate for our problem.

2. Scale Invariance. The projection of homogeneous vectors into E3 is
independent of the overall scale of the homogeneous vector. Calculations
in P3 may depend on such an overall scale, though. We have to make sure
that all our calculations are invariant under a scaling of the homogeneous

15. 3D-Reconstruction from Vanishing Points 373

vectors, because such a scaling cannot and should not have any influence
on our final result. Furthermore, since we are initially embedding vectors
from E3 in P3 we are not given any particular scale. Any expression that
is invariant under a scaling of its component homogeneous vectors will
be called scale invariant.

As mentioned above, the frames {Aµ} and {Bµ} define two pinhole cam-
eras. Since {Aµ} also serves as our world frame in P3 we can choose that
A4, the optical centre of camera A, sits at the origin. A1, A2 and A3 define
the image plane of camera A. If we want to be true to our previously stated
concepts, we need to give some thought as to how we should choose the {Ai}.

Note here that we use latin indices to count from 1 to 3 and greek indices to
count from 1 to 4. We also make use of the Einstein summation convention,
i.e. if a superscript index is repeated as a subscript within a product, a
summation over the range of the index is implied. Hence, αiAi ≡

∑3
i=1 α

iAi.
The images we obtain from real cameras are 2-dimensional. Therefore,

the image point coordinates we get are of the form {x, y}, which give the
displacement in a horizontal and vertical direction1 in the image coordinate
frame. However, in P3 an image plane is defined by three vectors. Therefore,
a point on a plane in P3 is defined by three coordinates. A standard way given
in the literature to extend the 2D image point coordinates obtained from a
real camera to P3 is by writing the vector {x, y} as {x, y, 1}. This is a well
founded and very practical choice, and if we just worked with matrices and
tensors we would not need to do anything else. However, since we want to tap
into the power of GA, we need to understand what kind of basis is implicitly
assumed when we write our image point coordinates in the form {x, y, 1}.

The best way to proceed is first to describe a 2D-image point in a 3D
basis and then to embed this point in P3. An image point {x, y} gives the
horizontal and vertical displacement in the 2D-image plane coordinate frame.
Let the basis corresponding to this 2D frame in E3 be {a1,a2}. If we define
a third vecor a3 to point to the origin of the 2D frame in E3, then an image
point with coordinates {x, y} can be expressed as follows in E3.

xa = xa1 + y a2 + 1 a3 = α̂i ai, (15.1)

with {α̂i} ≡ {x, y, 1}. The {α̂i} are the image point coordinates correspond-
ing to image point {x, y} in E3. Now we embed the point xa in P3.

Xa = (xa ·e4) + e4 = α̂iAi, (15.2)

where we defined A1 ≡ a1 ·e4, A2 ≡ a2 ·e4 and A3 ≡ (a3 ·e4) + e4. That is,
A1 and A2 are direction vectors, or points at infinity, because they have no
e4 component. However, they still lie on image plane A. More precisely, they
lie on the intersection line of image plane A with the plane at infinity. Note

1 Note that although we call these directions horizontal and vertical, they may not
be at a 90 degree angle to each other in general.

374 Christian B.U. Perwass, Joan Lasenby

that A1 and A2 do not project to a1 and a2, respectively, when projected
back to Euclidean space. For example,

A1∧e4
A1 ·e4

=
a1

0
−→ ∞. (15.3)

Nevertheless, {Ai} is still the projective image plane basis we are looking for,
as can be seen when we project Xa down to Euclidean space.

xa =
Xa∧ e4
Xa · e4

=
α̂i ai
α̂3

= xa1 + y a2 + 1 a3 ; α̂3 ≡ 1. (15.4)

What is important here is that neither α̂1 nor α̂2 appear in the denomi-
nator. This shows that by writing our image point coordinates in the form
{x, y, 1} we have implicitly assumed this type of frame, which we will call a
normalised homogeneous camera frame. The camera frames we will use
in the following are all normalised homogeneous camera frames.

A 1́

A 2́

A 3́

O

A 3 A 1

A 2

O
Fig. 15.1. Transformation from general basis to nor-
malised homogeneous camera frame, in which image
points have coordinates of the type {x, y, 1}

Figure 15.1 shows the difference between a general image plane basis in
P3, denoted by {A′

i}, and a normalised homogeneous camera frame {Ai}.
Note that homogeneous vectors A1 and A2 are drawn as lying in the image
plane to indicate that they are direction vectors.

It might seem a bit odd that we have devoted so much space to the de-
velopment of normalised homogeneous camera frames. However, this has far
reaching implications later on and is essential to understand our derivation.

In P3 a point on the image plane of cameraA can be written asXa = αi Ai
in general. We can normalise the coordinates without changing the projection
of Xa into E3. That is, Xa ' ᾱi Ai with ᾱi ≡ αi/α3. The symbol ' means
equality up to a scalar factor. In this case we clearly have {ᾱi} = {α̂i}.

A general point in P3 can be written as X = αµ Aµ in the A-frame. We
can normalise the coordinates of Xa in the same way as before to obtain
X ' ᾱµ Aµ with ᾱµ ≡ αµ/α3. If we project this point down to E3 we get2

15. 3D-Reconstruction from Vanishing Points 375

x =
X ∧ e4
X · e4

=
ᾱi

1 + ᾱ4
ai = α̂i ai, (15.5)

with α̂i ≡ ᾱi/(1 + ᾱ4). That is, if ᾱ4 = 0, then X is a point on the image
plane of camera A. Also, if ᾱ4 = −1 then X is a point at infinity. We will
call ᾱ4 the projective depth of a point in P3.

15.3 Plane Collineation

A4 B4

X p

X 4
b

X 4
a

P

L

Fig. 15.2. Schematic representation of a
plane collineation. Image point Xa

4 is pro-
jected to Xb

4 under the P -collineation

Before we can get started on the actual reconstruction algorithm, we need
to derive some more mathematical objects which we will need as tools. The
problem we want to solve first is the following. Let us assume we have three
image point matches in cameras A and B. That is, if three points in space,
{Xi}, are projected onto image planes A and B to give images {Xa

i } and
{Xb

i } respectively, then we know that the pairs {Xa
i , X

b
i } are images of the

same point in space. If the three points in space do not lie along a line,
they define a plane. This plane induces a collineation, which means that we
can transfer image points from camera A to camera B through that plane.
For example, let Xa

4 be the image point on image plane A which we want to
transfer to camera B through the plane. First we have to find the intersection
point of line A4∧Xa

4 with the plane3, and then we project this intersection
point onto image plane B (see figure 15.2). This transformation can also be

2 Recall that A4 = e4 (the origin of � 3) and that the {Ai} are a normalised
homogeneous camera frame.

3 Recall that A4 is the optical centre of camera A.

376 Christian B.U. Perwass, Joan Lasenby

represented by a 3 × 3 matrix, which is called a collineation matrix. Our
goal is to find the collineation induced by the plane P ≡ X1∧X2∧X3 by
knowing the projections of the points {Xi} onto image planes A and B, and
the fundamental matrix for the two cameras. Since we know the fundamental
matrix we can also calculate the epipoles. The epipoles on the two image
planes are always projections of a single point in space and thus give us the
projections of a fourth point on any plane in space. That is, we have in fact
the projections of four points that lie on some plane P . Hence, we can find
the collineation matrix directly through a matrix diagonalisation.

However, it is interesting to see what this means geometrically. Faugeras
gives a geometrical interpretation4 in [78]. We will follow his construction
method to obtain a 3 × 3 × 3 collineation tensor.

We start by defining three points Xi = αµi Aµ. The projections of these

three points onto image planes A and B are Xa
i = ᾱjiAj and Xb

i = β̄jiBj ,

respectively. We know the coordinates {ᾱji} and {β̄ji }, and we know that the

pairs {ᾱji , β̄ki } are images of the same point in space. Furthermore, we have
the fundamental matrix for the two cameras. We find the collineation induced
by the plane P = X1∧X2∧X3 geometrically through a two step construction.

Step 1:

X 1
a X 1

b

aX 4

X p
a

bX p

4BA 4X p
a
^ ^

E ba

X 3
a

X 2
a

X 2
b

X 3
b

A 4 4B

Lb
p

Lp

LetXa
4 = αi4Ai be the image point we want to project

onto image plane B under the P -collineation. Now
consider the intersection point Xa

p of lines Xa
3 ∧Xp

4

and Xa
1 ∧Xa

2 . The intersection point of line Lp ≡
A4∧Xa

p with an arbitrary plane in P3 obviously lies on
Lp. Denote the projection of Lp onto image plane B
by Lbp. Obviously Xa

p can only be projected to some

point on Lbp, independent of the collineation. We also
know that Xa

p has to project to some point on the

line Xb
1∧Xb

2 under the specific P -collineation. Hence,
Xb
p is the intersection point of lines Lbp and Xb

1∧Xb
2 .

We can also write this as

Xb
p = (Xa

p ∧A4∧B4) ∨ (Xb
1∧Xb

2) (15.6)

4 In [78] this method is called the Point-Plane procedure.

15. 3D-Reconstruction from Vanishing Points 377

Step 2:

4B

X 1
a X 1

b

A 4

aX 4

X p
a

bX p

E ba

bX 4

4BA 4
aX 4 ^ ^

L4
b

L4

X 3
a

X 2
a

X 3
b

X 2
b

Now that we have calculated the point Xb
p, we can

project Xa
4 under the P -collineation in an analogue

way. We form a line L4 = A4∧Xa
4 which we project

onto image plane B. Xb
4, the projection of Xa

4 under
the P -collineation, is then the intersection point of
Lb4 and line Xb

3∧Xb
p. This can also be expressed as

Xb
4 = (Xa

4 ∧A4∧B4) ∨ (Xb
3∧Xb

p) (15.7)

By substituting equation (15.6) into equation (15.7) we can find a col-
lineation tensor Mk

ij . Details of this calculation can be found in [191]. The

resultant expression for Mk
ij is

Mk
ij ≡

[(
F (1, 2) λ̄1

a i β̄
k
1 − F (2, 1) λ̄2

a i β̄
k
2

)
f bj3

−
(
F (1, 2) λ̄1

a i f
b
j1 − F (2, 1) λ̄2

a i f
b
j2

)
β̄k3

]
,

(15.8)

with

F (r, s) ≡ ᾱirβ̄
j
s Fij ; f bir ≡ β̄jr Fij ; λ̄j1a k1 ≡ (ᾱk2j2 ᾱ

k3
j3

− ᾱk3j2 ᾱ
k2
j3

), (15.9)

where Fij is the fundamental matrix for the two cameras. Here, and through-
out the rest of this chapter, indices of the type {i1, i2, i3} are taken to be an
even permutation of {1, 2, 3}. Also indices of the type {µ1, µ2, µ3, µ4} are an
even permutation of {1, 2, 3, 4}.

To project a point Xa
4 = ᾱi4 Ai on image plane A, onto image plane B

under the collineation described by points {X1, X2, X3}, we can now simply
write

βk4 ' ᾱi4ᾱ
j
4 M

k
ij , (15.10)

where the {β̄j4} are the coordinates of the projected point Xb
4 = β̄j Bj on

image plane B. It can be shown that Mk
ij is scale invariant [191].

Equation (15.10) seems to indicate that a collineation is a quadratic rela-
tion. However, we know that βk4 = αi4H

k
i where Hk

i is the collineation matrix.
If we take a closer look at the components of equation (15.8) we find that
λ̄ra 3 is linearly dependent on λ̄ra 1 and λ̄ra 2. Therefore, the three matrices in
indices i, j of Mk

ij are of rank 2. We can write equation (15.10) as

378 Christian B.U. Perwass, Joan Lasenby

βk4 ' ᾱ1ᾱ1 Mk
11 + ᾱ2ᾱ2 Mk

22 + ᾱ1ᾱ2 (Mk
12 +Mk

21)

+ᾱ1 (Mk
13 +Mk

31) + ᾱ2 (Mk
23 +Mk

32) + ᾱ3 Mk
33

(15.11)

since ᾱ3 = 1 by definition. Thus, if we perform a set of similarity transforms
on Mk

ij such that the components Mk
11,M

k
22,M

k
12,M

k
21 are zero, we can read

off the components of the collineation matrix from the transformedM k
ij . Such

a similarity transformation on Mk
ij is possible because the matrices in indices

i, j of Mk
ij are of rank 2.

15.4 The Plane at Infinity and Its Collineation

It will be very useful for us to see what the collineation of the plane at infinity
looks like. Recall that A4 = e4 and that the {Ai} form a normalised homo-
geneous camera frame. That is, A1 and A2 are direction vectors. Therefore,
the plane at infinity P∞ may be given by

P∞ = A1∧A2∧(A3 −A4) (15.12)

Now that we have the plane at infinity we can also find an expression for the
collineation matrix associated with it. More details of the following calcula-
tion can be found in [191].

We want to project a point Xa = αiAi on image plane A to image plane
B under the P∞-collineation. First we have to find the intersection point Xp

of line L = A4∧Xa with P∞.

Xp = (A4∧Xa) ∨ P∞ ' αiAi − α3A4 (15.13)

Now we need to find the projection Xb
p of Xp onto image plane B.

Xb
p = Xp ·Bj Bj =

(
αiKb

j
i
− α3εjba

)
Bj (15.14)

where Kb
j
i
≡ Ai ·Bj is the 3 × 3 camera matrix minor of camera B, and

εjba ≡ A4 ·Bj is the epipole of camera B and also the fourth column of the
full camera matrix5. Note that we use here a notation of relative super- and
subscripts to keep the absolute superscript position free for other uses. From
equation (15.14) it follows that we can write the collineation matrix of P∞
as

Ψ∞
j
i
≡ [Kb

j
1
,Kb

j
2
,Kb

j
3
− εjba] (15.15)

5 The full camera matrix is given by Kb
j
µ

= Aµ ·Bj . See chapter 14for details on

camera matrices and epipoles.

15. 3D-Reconstruction from Vanishing Points 379

where i counts the columns. Therefore, if we want to project a point Xa =
αi Ai on image plane A, onto image plane B under the P∞-collineation we
can write

βj∞ ' αiΨ∞
j
i
. (15.16)

What does the P∞-collineation describe geometrically? If Xa is an image
point in camera A and X∞

b is its projection under the P∞-collineation, then
from the construction of the collineation it follows that the lines La = A4∧Xa

and Lb = B4∧X∞
b meet in a point on P∞. If two lines meet in a point on

the plane at infinity, they are parallel. Therefore, the P∞-collineation tells us
which two image points Xa and X∞

b on image planes A and B, repectively,
correspond such that the lines A4∧Xa and B4∧X∞

b are parallel. Obviously,
this tells us something about the relative orientation of the two cameras.

We can use our knowledge of the relation between Ψ∞ and the camera
matrix to find the depths of a set of world points whose projections are
known in both cameras, if we also know the projections of at least three
pairs of parallel lines. We will assume for the moment that for each point
pair {ᾱi, β̄j} we also know β̄j∞, which is the projection of ᾱi under the P∞-
collineation. From the definition of the camera matrix we know that

βj = αiKb
j
i
+ α4εjba. (15.17)

Furthermore, equation (15.16) may be rewritten as

βj∞ ' αiKb
j
i
− α3εjba (15.18)

We can now combine equations (15.17) and (15.18) to obtain the following
expression (see [191] for details).

ᾱ4 = ᾱiK̄b
3
i
ζj1 − ζj2 ; j ∈ {1, 2}. (15.19)

with

ζj1 ≡ β̄j∞ − β̄j

β̄j − ε̄jba
; ζj2 ≡ β̄j∞ − ε̄jba

β̄j − ε̄jba
(15.20)

Since equation (15.19) has to give the same result for both j = 1 and j = 2
independent of K̄b

3
i
, it follows that ζ1

1 = ζ2
1 and ζ1

2 = ζ2
2 . Therefore, we will

discard the superscript of the ζs in the following.
Equation 15.19 by itself is still not useful, since we neither know ᾱ4 nor

K̄b
3
i
. However, if we had some constraints on the projective depths (ᾱ4) for

a number of points we could find K̄b
3
i
. Once K̄b

3
i

is known for a particular

camera setup, we can use it to calculate the depths for any point matches.
Before we show how K̄b

3
i
can be evaluated, we will take a closer look at how

to find the {β̄j∞}.

380 Christian B.U. Perwass, Joan Lasenby

15.5 Vanishing Points and P �
We mentioned earlier that the {βj∞} are the projections of the {αi} onto
image plane B under the P∞-collineation. We can find the P∞-collineation
Ψ∞ from the projection pairs of three points on P∞ and the fundamental
matrix.

If two parallel world lines are projected onto an image plane, their pro-
jections are only parallel if the image plane is parallel to the world lines. The
intersection point of the projections of two parallel world lines is called a
vanishing point.

Two parallel world lines meet at infinity. In projective space P3 this may
be expressed by saying that the intersection point of two parallel world lines
lies on P∞. Points on P∞ may also be interpreted as directions. Therefore,
intersecting a line with P∞ gives its direction. In this light, a vanishing point
is the projection of the intersection point of two parallel lines. Or, in other
words, it is the projection of a direction.

If we knew three vanishing points which are projections of three mutu-
ally orthogonal directions, we would know how a basis for the underlying
Euclidean space E3 projects onto the camera used. This information can be
used to find the internal camera calibration [44]. Here our initial goal is to
find the relative camera calibration of the two cameras. We can then find an
affine reconstruction. To achieve this, we do not require the vanishing points
to relate to orthogonal directions. However, the more mutually orthogonal the
directions related to the vanishing points are, the better the reconstruction
will work.

15.5.1 Calculating Vanishing Points

Before we go any further with the actual reconstruction algorithm, let us take
a look at how to calculate the vanishing points. Suppose we have two image
point pairs {ᾱiu1, ᾱ

i
u2} and {ᾱiv1, ᾱiv2}, defining two lines on image plane A,

which are projections of two parallel world lines. The vanishing point is the
intersection of lines Lu and Lv where

Lu = λui L
i
a ; Lv = λviL

i
a, (15.21)

and

λui1 ≡ ᾱi2u1ᾱ
i3
u2 − ᾱi3u1ᾱ

i2
u2 ; λvi1 ≡ ᾱi2v1ᾱ

i3
v2 − ᾱi3v1ᾱ

i2
v2, (15.22)

are the homogeneous line coordinates. Also note that Li1a ≡ Ai2 ∧ Ai3 (see
chapter 14). The intersection point Xa

uv of lines Lu and Lv is then given by

Xa
uv = Lu ∨ Lv = αiuvAi, (15.23)

where

15. 3D-Reconstruction from Vanishing Points 381

αi1uv ≡ (λvi2 λ
u
i3 − λvi3 λ

u
i2). (15.24)

First of all note that the {αiuv} define a point in P2. Since we defined A1 and
A2 to be directions, the image point coordinates {x, y} in E2 corresponding
to the {αiuv}, are found to be {ᾱ1

uv, ᾱ
2
uv} through the projective split, where

ᾱiuv ≡ αiuv/α
3
uv. Note that points which lie at infinity in E2 can be expressed

in P2 by points which have a zero third component. Such points will also be
called directions.

The fact that points at infinity in E2 are nothing special in P2 shows an
immediate advantage of using homogeneous coordinates for the intersection
points over using 2D-coordinates. Since we are looking for the intersection
point of the projections of two parallel world lines, it may so happen, that
the projections are also parallel, or nearly parallel. In that case, the 2D im-
age point coordinates of the vanishing point would be very large or tend to
infinity. This, however, makes them badly suited for numerical calculations.
When using homogeneous coordinates, on the other hand, we do not run into
any such problems.

15.5.2 Vanishing Points from Multiple Parallel Lines

Above we described how to find a vanishing point from the projections of two
parallel world lines. In practical applications the lines will only be known with
a finite precision and will also be subject to a measurment error. Therefore,
we could improve on the quality of a vanishing point if sets of more than two
parallel lines are known. In particular, the vanishing point quality is improved
if these parallel lines are taken from varying depths within in world scene. In
[191] we discuss a standard method, which consists of finding the null space
of a matrix of the homogeneous line coordinates. This method gives us the
best fitting vanishing point in homogeneous coordinates, in the least squares
sense.

Note that in [38] vanishing points are found as 2D-image point coordi-
nates, which means that only parallel world lines can be used that are not
parallel in the image. In [44] the projections of at least three parallel world
lines have to be known to calculate a vanishing point. The implementation of
our algorithm switches automatically between finding a vanishing point from
two parallel lines, and calculating it from multiple parallel lines, depending
on how much information is available.

15.5.3 Ψ∞ from Vanishing Points

Now we return to our reconstruction algorithm. We discussed vanishing points
since they are projections of points on P∞. If we know three vanishing point
matches over cameras A and B and the epipoles, we can calculate the P∞-
collineation matrix Ψ∞. Once we have Ψ∞ we can find the projections of

382 Christian B.U. Perwass, Joan Lasenby

some image points {ᾱin} on image plane A, onto image plane B under the
P∞-collineation. That is,

β̄kn∞ ' ᾱin Ψ
∞
i (15.25)

We can now use the {β̄jn∞} to find the {ζjn} for equation (15.19).

15.6 3D-Reconstruction of Image Points

Now that we have found Ψ∞ and thus can calculate the {ζn} from equation
(15.20), we can think about how to find the correct depth values for the image
point matches {ᾱin, β̄jn}.

We will perform an affine reconstruction. That is, we reconstruct in the
frame of camera A. When we plot our final reconstructed points we will
assume that the A-frame forms an orthonormal frame of E3, though. However,
we do not need to assume anything about the frame of camera B, since
we will find the translation, rotation and internal calibration of camera B
relative to camera A. To find the internal calibration of camera A relative to
an orthonormal frame of E3, we would need to know the projection of this
orthonormal set of directions onto camera A [44].

We have already found sets of parallel lines to calculate vanishing points.
We can reuse these sets of lines to constrain the depth values found with
equation (15.19). In particular, we will regard the {K̄b

3
i
} as free parameters.

If we now take the image point matches that define the projections of two
parallel world lines, we can use this extra information to constrain the {K̄b

3
i
}.

That is, we vary the free parameters until the reconstructed points define a
pair of parallel world lines again.

15.6.1 The Geometry

Before we start developing an algorithm to find the best {K̄b
3
i
} we will take

a quick look at the relevant geometry. In figure 15.3 we have drawn the
geometry underlying our reconstruction algorithm.

A4 and B4 are the optical centres of cameras A and B, respectively. We
have also chosen A4 to lie at the origin of E3. Recall that A1, A2 and B1, B2

are direction vectors in P3. We have drawn these vectors here as lying on the
image planes to indicate this.

A world point X is projected onto image planes A and B giving projec-
tions Xa and Xb, respectively. X∞

b is the projection of Xa onto image plane
B under the P∞-collineation. Also, Eba is the epipole of camera B.

Now we can see what the {ζ1n, ζ2n} components from equation (15.19)
express.

ζ1n ≡ β̄jn∞ − β̄jn

β̄jn − ε̄jba

gives the ratio of the distance (in x or
y direction) between X∞

b and Xb, and
Xb and Eba.

15. 3D-Reconstruction from Vanishing Points 383

A 4

B4

B2
B1

Xb
A 3

A 2

A 1

Eab

B3

Eba

Xb

8

Xa

X

Fig. 15.3. This figure shows the geometry behind equation (15.19). A point
X is projected onto cameras A and B, giving images Xa and Xb, respectively.
Projecting Xa onto image plane B under the P∞-collineation gives X∞

b . We
choose A4 to be the origin of � 3 . Kb

3
i

gives the components of A1, A2 and A3

along B3

ζ2n ≡ β̄jn∞ − ε̄jba
β̄jn − ε̄jba

gives the ratio of the distance (in x or
y direction) between X∞

b and Eba, and
Xb and Eba.

Recall that Kb
3
i

= Ai ·B3, that is, it gives the components of the {Ai}
along B3. Therefore, varying the {Kb

3
i
} means that we are moving B3, which

is the principal point on image plane B. Since X∞
b cannot change when we

vary Kb
3
i
the relation between B3 and B4 is fixed. Thus, changing B3 means

changing B4. In this respect, finding the correct {Kb
3
i
} means finding the

correct translation of camera B relative to camera A. The relative rotation
has already been fixed through finding P∞.

However, it is only the relative sizes of the {K̄b
3
i
} that are really important.

An overall scale factor will only change the depths of all reconstructed points
simultaneously. Therefore, we can fix the depth of one image point, to fix the
scale of K̄b

3
i
.

15.6.2 The Minimization Function

We mentioned before that we will use our knowledge of parallel lines once
again to constrain the {K̄b

3
i
} from equation (15.19). Let Lau = Xa

u1∧Xa
u2 and

Lav = Xa
v1∧Xa

v2 be the projections of two parallel world lines onto image plane
A. In general we define world points and image points as

Xur ≡ ᾱµur Aµ ; Xa
ur ≡ ᾱiur Ai

Xvr ≡ ᾱµvr Aµ ; Xa
vr ≡ ᾱivr Ai

r ∈ {1, . . . , n}. (15.26)

384 Christian B.U. Perwass, Joan Lasenby

Furthermore, if we know the image points on image plane B corresponding
to Xa

u1, X
a
u2, X

a
v1 and Xa

v2, and we have found Ψ∞, then we can calculate
the corresponding ζs from equation (15.20). Equation (15.19) will now allow
us to find the projective depths for Xa

u1, X
a
u2, X

a
v1 and Xa

v2. Therefore, we
can calculate the world lines Lu = Xu1∧Xu2 and Lv = Xv1∧Xv2.

Now, we know that Lu and Lv are supposed to be parallel, which means
that they have to intersect P∞ in the same point. This will be the constraint
which we will use to find the correct {K̄b

3
i
}. Let X∞

u and X∞
v be defined as

X∞
u ≡ Lu ∨ P∞ ; X∞

v ≡ Lv ∨ P∞. (15.27)

Lines Lu and Lv are parallel iff

X∞
u ∧X∞

v = 0 (15.28)

Instead of using this condition we could also project Lu and Lv into E3,
and then check that they are parallel. However, projecting into E3 means
dividing through the projective depth, which means that our free parameters
are now in the denominator of a minimisation function. Apart from creating a
minimisation surface with singularities, the derivatives of such a minimisation
function will be more complicated and thus cost more computing time.

Finding the Minimisation Parameters. The following expression for
X∞
u is derived in more detail in [191].

X∞
u = Lu ∨ P∞ = χiuA

∞
i (15.29)

where

χiu ≡ (λ̄ui3 + λ̄ui4) ; λ̄uµ1µ2
≡ ᾱµ1

u1 ᾱ
µ2

u2 − ᾱµ2

u1 ᾱ
µ1

u2

A∞
1 ≡ A1 ; A∞

2 ≡ A2 ; A∞
3 ≡ A3 −A4

(15.30)

The free parameters we have are the {K̄b
3
i
}. To make future equations

somewhat clearer we will define ϕi ≡ K̄b
3
i
. Hence, equation (15.19) will be

written as

ᾱ4
n = ᾱin ζ1n ϕi − ζ2n. (15.31)

Recall that lines Lu and Lv are parallel iff X∞
u ∧X∞

v = 0. We can now write
this expression in terms of the {χi}.

X∞
u ∧X∞

v = Λuvi Li∞ ; Λuvi1 ≡ χi2u χ
i3
v − χi3u χ

i2
v (15.32)

with Li1∞ ≡ A∞
i2
∧A∞

i3
. Each of the {Λuvi } has to be zero if X∞

u ∧X∞
v = 0.

Therefore, from an analytical point of view, the expression we should try to
minimise for each parallel line pair {Lu, Lv} is

∆uv : ϕj −→
3∑

i=1

(Λuvi)2. (15.33)

15. 3D-Reconstruction from Vanishing Points 385

Improving Computational Accuracy. However, for a computer with fi-
nite floating point precision, this equation poses a problem. The culprits in
this case are the {χi}. Recall that they give the direction of a line in homo-
geneous coordinates. Before they are used in equation (15.32) they should be
normalised to improve the precision of the equation on a computer.

χ̂iu ≡ χiu√∑
i (χ

i
u)

2
(15.34)

Therefore, the minimisation function we will use is

∆uv : ϕj −→
3∑

i=1

(Λ̂uvi)2 ; Λ̂uvi1 ≡ χ̂i2u χ̂
i3
v − χ̂i3u χ̂

i2
v (15.35)

The Derivatives. The derivative of ∆uv is computationally not a particu-
larly expensive expression. Therefore, we can use a minimisation routine that
also uses the derivatives of the minimisation function. This will make the min-
imisation process more efficient and robust. Details about the derivatives can
be found in [191].

Implementing the Depth Constraint. At the moment the minimisation
function ∆uv depends on three parameters: the {ϕj}. However, we mentioned
earlier that we can fix, the depth of one point. This will reduce the number
of free parameters to two. How this is done best is described in [191]. It
turns out that constraining the depth of one point is necessary. Otherwise
the minimisation routine tries to push the whole scene to infinity.

The Minimisation Routine. We use a modified version of the conjugate
gradient method to perform the minimisation. This modified version is called
MacOpt and was developed by David MacKay [165]. It makes a number of
improvements over the conjugate gradient method as given in [195]. MacOpt
assumes that the minimisation surface is fundamentally convex with no local
minima. However, our surface is only of that shape near the absolute min-
imum6. It turns out that the success rate of finding the absolute minimum
can be improved if we first use the unnormalised χs to step towards the
minimum, and then use the normalised χs to find the minimum with high
accuracy. This is because the minimisation surface for the unnormalised χs
is of a convex shape, whereas the minimisation surface for the normalised χs
has a number of local minima.

6 A number of examples of minimisation surfaces and their corresponding recon-
structions are demonstrated by the program MVT, which can be downloaded
from C.Perwass’ home page. This program runs under Windows 95/98 and
NT4/5.

386 Christian B.U. Perwass, Joan Lasenby

Image Point Normalisation. Before we can calculate the collineation ten-
sor for the P∞-collineation we have to find the fundamental matrix (F) for
the two views (see equation (15.8)). For the calculation of the fundamental
matrix we cannot use the pixel coordinates directly, because they are typi-
cally too large to obtain good accuracy in our numerical calculations. This
is also true for all other calculations performed here. Therefore, we need to
scale the image point coordinates so that they are of order 1.

In [106] Hartley suggests that the scales and skews applied to the image
point coordinates are found in the following way. The skew is given by the
coordinates of the centroid of all image points. Then the average distance of
the skewed image points from the origin is calculated. The inverse of that
distance gives the scale.

This is a good method if we just wanted to calculate F . However, it turns
out that for our purposes such a scaling is not suitable. In fact, we found
that it is important to conserve the aspect ratio of the images (separately),
and to ensure that the origin of the image plane is chosen in the same way
in both images.

We choose the image plane origin to be in the centre of each image plane
and then scale the image points by dividing their x and y coordinate by the
image resolution in the x-direction. This preserves the aspect ratio.

15.7 Experimental Results

We can now outline the structure of our reconstruction algorithm.

Step 1: We find point matches and sets of projections of par-
allel lines over the two images.

Step 2: We calculate three vanishing points and the fun-
damental matrix. This allows us to find the P∞-
collineation matrix Ψ∞.

Step 3: We select a set of parallel lines that we want to use
to constrain our minimisation. Note that one pair of
parallel lines may be enough. More pairs do not nec-
essarily improve the result, since they may not be
consistent due to errors.

Step 4: The image points on image plane A which define the
chosen parallel lines are projected onto image plane
B under the P∞-collineation with Ψ∞.

Step 5: We can now find the {Kb
3
i
} by minimising equation

(15.33) or equation (15.35).

Step 6: Once we have found Kb
3
i
we can use it in conjunction

with Ψ∞ in equation (15.31) to reconstruct any other
image point matches for this camera setup.

15. 3D-Reconstruction from Vanishing Points 387

15.7.1 Synthetic Data

To test the quality of the reconstructions we created synthetic data. The
advantage of using synthetic data is that we can get a geometric quality
measure of the reconstruction. Also if an algorithm fails with synthetic data
it is clearly unlikely to work with real data.

Fig. 15.4. The synthetic data was created from pro-
jecitons of the house onto the cameras

The lower picture in figure 15.4 shows a house with three cameras. The
three smaller pictures on top show the projections of the house onto the
three image planes. The house consists of 18 vertices, which were all used in
our calculations. We performed two trials: trial 1 uses an orthogonal set of
vanishing points. Trial 2 uses two orthogonal vanishing points but the third
vanishing point is found from the two lines on the roof which are vertically
sloping and closest to the camera. In each trial we also tested two camera
configurations: the camera to the very left and the very right, and the two
cameras which are close together. The former will be called the far cameras
and the latter the close cameras configuration.

Recall that we can and, in fact, have to fix the depth of one point. Since we
know the true points we can set this depth to its true value. Also remember
that we perform our reconstruction in the frame of one of the cameras. But

388 Christian B.U. Perwass, Joan Lasenby

we also know this frame and can therefore transform our reconstructed points
to lie in the appropriate frame. The reconstruction obtained in this way can
then be compared directly with the true object.

In our experiments we added a Gaussian error with a mean deviation
between 0 and 12 pixels to the image points. The camera resolutions were
600× 600 pixels. For each setting of the mean deviation of the induced error
we calculated the {Kb

3
i
} 100 times, each time with different errors, to obtain

a statistically meaningful result. Each calculation of the {Kb
3
i
} can be used to

reconstruct any image point matches in the two images. Therefore, we pro-
jected the house again onto the two image planes, again introducing an error
of the same mean deviation. These image points are then reconstructed and
compared with the true points. This was done 20 times for each calculation
of the {Kb

3
i
}. This way we obtained a separation of the calibration and the

reconstruction.
The quality measure of a reconstruction is given by the root mean squared

error between the locations of the reconstructed points and the true points.
That is, we take the root of the mean of the sum of the distances squared
between the true and the reconstructed points. We evaluated the RMS error
over the 20 reconstructions for each calibration (i.e. calculation of the {Kb

3
i
}),

and also over all calculations of the {Kb
3
i
} for each mean deviation of the

induced error. The former will be called the “RMS/Trial” and the latter the
“Total RMS”.

Reconstruction Quality
(Trial 1)

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

0 1 2 3 4 5 6 7 8 9 10 11 12

Mean Deviation of Induced Error in Pixels

G
eo

m
et

ri
c

R
M

S
 E

rr
or

RMS/Trial (close cameras)
Total RMS (close cameras)
RMS/Trial (far cameras)
Total RMS (far cameras)

Fig. 15.5. Comparison of reconstruction quality for first trial

15. 3D-Reconstruction from Vanishing Points 389

Reconstruction Quality
(Trial 2)

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

0 1 2 3 4 5 6 7 8 9 10 11 12

Mean Deviation of Induced Error in Pixels

G
eo

m
et

ri
c

R
M

S
 E

rr
or

RMS/Trial (close cameras)
Total RMS (close cameras)
RMS/Trial (far cameras)
Total RMS (far cameras)

Fig. 15.6. Comparison of reconstruction quality for second trial

Figure 15.5 shows the results when using an orthogonal set of vanishing
points and figure 15.6 when using a non-orthogonal set, as described above.
Note that the y-axis has a log10 scale. The length of the house is 2 units, its
total height 1.5 units and its depth 1 unit. The results for the close camera
configuration are slighty displaced to the right, so that they can be distin-
guished from the far cameras setup.

The first thing we can see from the graphs is that as the induced error
increases over 6 pixels we start to get error configurations where the algorithm
breaks down. This can be either due to the minimisation getting stuck in local
minima or because the absolute minimum is at a wrong position. The latter
is possible since the minimisation surface depends on Ψ∞ and F.

Furthermore, it can be seen that the far cameras configuration is more
immune to induced errors than the close cameras configuration. Also the
non-orthogonal set of vanishing points fares worse than the orthogonal one.
Curiously, in trial 2 the far cameras configuration is worse than the close
cameras configuration.

In general it can be seen, though, that an error with a mean deviation
of up to 5 pixels still gives acceptable reconstructions. It might seem odd,
though, that if some error is introduced into the image points, the reconstruc-
tion can actually be better than with no noise at all. This is because even if
no additional error is applied, there is still an error due to the digitisation

390 Christian B.U. Perwass, Joan Lasenby

in the cameras. Particular configurations of induced error can compensate
for that by chance. However, the figures also show that the probability of
the added error improving the reconstruction is about as high as making
the reconstruction worse (relative to the total RMS). Nevertheless, this fact
supplies us with an interesting idea: we might be able to improve our recon-
structions from real data by adding noise to the image points. To be more
precise, we could vary the image point coordinates slightly until we obtain
an improved reconstruction. Since our calibration algorithm is quite fast it
seems feasible to employ maximum entropy methods. We will discuss this in
future work.

Note that we have calculated F with a simple method which does not
enforce the rank 2 constraint on F . Nevertheless, the reconstruction qual-
ity is quite good, which seems to indicate that a highly accurate F is not
very important for our algorithm. Therefore, it appears that in certain cases
fully constraint evaluations of F are not necessary to obtain good results.
Of course, using a fully contraint F might improve the results. Research on
calculating F or the trifocal tensor (which is a related problem) optimally
can be found in [106, 108, 147, 189, 80, 84, 120].

15.7.2 Real Data

Fig. 15.7. Initial images with parallel lines used for the calculation of the vanishing
points and minimisation function indicated

The real test for any reconstruction algorithm is the reconstruction of
a real world scene, though. Figure 15.7 shows two views of a chessboard
which we used for reconstruction7. The original images had a resolution of

7 These pictures were actually taken by C.Perwass’ father, in a different country,
with equipment unknown to the authors. They were then sent via email to the
authors. That is, the only thing known about the pictures to the authors, are
the pictures themselves.

15. 3D-Reconstruction from Vanishing Points 391

Fig. 15.8. Reconstruction of the chessboard (Schachbrett)

1280 × 960 pixels. The lines indicate the parallel lines used to calculate the
vanishing points. The two sets of parallel lines on the front of the chessbox
were used in the minimisation routine. The fundamental matrix used was
calculated from 13 point matches. The resultant reconstruction8 can be seen
in figure 15.8.

The different views of the reconstruction show that the chessbox was
reconstructed quite well. However, the chessboard is not really square. Re-
member, though, that this is only an affine reconstruction drawn in an or-
thonormal frame. That is, we assume that the camera frame is orthonormal.
Furthermore, we have only used two line pairs and one line triplet to find

8 This and other reconstructions, as well as some more analysis of the reconstruc-
tion algorithm are demonstrated by the program MVT, which can be downloaded
from C.Perwass’ home page.

392 Christian B.U. Perwass, Joan Lasenby

three vanishing points, of which only two relate to orthogonal directions in
E3. The reconstruction might be improved by exploiting all the parallel lines
available, of which there are many on a chessboard.

Also note that the front side of the chessboard is reconstructed very nicely,
at a proper right angle to its top side. The chess figure, which can be seen best
in the bottom left hand view of figure 15.8, is not reconstructed particularly
well, though. This is because it is very difficult to find matching point sets
for round objects.

15.8 Conclusions

We have presented here an algorithm for the affine reconstruction of 3D scenes
from two static images. The information we need is firstly point matches over
the two images, and secondly at least three sets of parallel lines. From this
information alone we implicitly9 find the internal calibration, rotation and
translation of the second camera relative to the first one. This allows us
to perform an affine reconstruction of the scene. Assuming that the three
sets of parallel lines are mutually orthogonal we could also find the internal
calibration of the first camera.

Our algorithm is clearly not automatic. This is because apart from the
point matches, combinations of vanishing points and parallel lines can be
chosen freely. Also the information that certain lines in an image are actually
parallel in the world, is a knowledge-based decision that humans are easily
capable of, but not computers.

Advantages of our algorithm are that it is fast and that the reconstruction
is robust for a particular calibration. On a PentiumII/233MHz under Win-
dows 98 it took on average 160ms for a calibration (10000 trials). This time
includes updating of dialog boxes. In an optimised program this time could
probably be reduced to less than half. Robustness of the calibration depends
mostly on the set of vanishing points used. The more similar the directions
the vanishing points describe are, the less robust the calibration is.

We believe that apart from presenting an interesting affine reconstruction
algorithm we have also shown that GA is a useful tool which allows us to
gain geometric insight into a problem.

9 Future work will look at how these entities can be found explicitly.

16. Analysis and Computation of the

Intrinsic Camera Parameters∗

Eduardo Bayro-Corrochano and Bodo Rosenhahn

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

16.1 Introduction

The computation of the intrinsic camera parameters is one of the most impor-
tant issues in computer vision. The traditional way to compute the intrinsic
parameters is using a known calibration object. One of the most important
methods is based on the absolute conic and it requires as input only infor-
mation about the point correspondences [163, 107]. As extension a recent
approach utilizes the absolute quadric [235]. Other important groups of self-
calibration methods either reduce the complexity if the camera motion is
known in advance, for example as translation [66], or as rotation about known
angles [5, 67], or by using active strategies and e.g. the vanishing point [56].

In this chapter we re-establish the idea of the absolute conic in the context
of Pascal’s theorem and we get equations different to the Kruppa equations
[163, 107]. Although the equations are different, they rely on the same prin-
ciple of invariance of the mapped absolute conic. The consequence is that we
can generate equations so that we require only a couple of images whereas
the Kruppa equation method requires at least three views [163]. However, as
a prior knowledge the method requires the translational motion direction of
the camera and the rotation about at least one fixed axis through a known

∗ This work has been supported by DFG Grant So-320-2-1.

394 Eduardo Bayro-Corrochano, Bodo Rosenhahn

angle in addition to the point correspondences. The paper will show that
although the algorithm requires the extrinsic camera parameters in advance
it has the following clear advantages: It is derived from geometric observa-
tions, it does not stick in local minima in the computation of the intrinsic
parameters and it does not require any initialization at all. We hope that this
proposed method derived from geometric thoughts gives a new point of view
to the problem of camera calibration.

The chapter is organized as follows. Section two explains the conics and
the theorem of Pascal. Section three reformulates the well known Kruppa
equations for computer vision in terms of algebra of incidence. Section four
presents a new method for computing the intrinsic camera parameters based
on Pascal’s theorem. Section five is devoted to the experimental analysis and
section six to the conclusion part.

16.2 Conics and the Theorem of Pascal

The role of the conics and quadrics is well known in the projective geom-
etry [213] because of their invariant properties with respect to projective
transformations. This knowledge lead to the solution of crucial problems in
computer vision [177]. The derivation of the Kruppa equations relies on the
conic concept. These equations have been used in the last decade to com-
pute the intrinsic camera parameters. In this chapter we will exploit further
the conics concept and use Pascal’s theorem to establish an equation system
with clear geometric transparency. Next, we will explain the role of conics
and that of Pascal’s theorem in relation with a fundamental projective invari-
ant. This section is mostly based on the interpretation of the linear algebra
together with projective geometry in the Clifford algebra framework realized
by Hestenes and Ziegler [118].

When we want to use projective geometry in computer vision, we utilize
homogeneous coordinate representations. Doing that, we embed the 3–D Eu-
clidean visual space in the 3–D projective space P3 or R4 and the 2–D Eu-
clidean space of the image plane in the 2–D projective space P2 or R3. In the
geometric algebra framework we select for P2 the 3–D Euclidean geometric
algebra C3,0,0 and for P3 the 4–D geometric algebra C1,3,0. The reader should
see chapter 14 for more details about the connection of geometric algebra and
projective geometry. Any geometric object of P3 will be linearly projective
mapped to P2 via a projective transformation, for example the projective
mapping of a quadric at infinity in the projective space P3 results in a conic
in the projective plane P2.

Let us first consider a pencil of lines lying on the plane. Doing that,
we will follow the ideas of Hestenes and Ziegler [118]. Any pencil of lines
is well defined by a bivector addition of two of its lines: l = la + slb with
s ∈ R ∪ {−∞,+∞}. If two pencils of lines, l and l′ = l′a + s′l′b, can be
related one–to–one so that l = l′ for s = s′, we can say that they are in

16. Analysis and Computation of the Intrinsic Camera Parameters 395

projective correspondence. Using this idea, the set of intersecting points of
lines in correspondence build a conic. Since the intersecting points x of the
line pencils l and l′ fulfill for s = s′ the following constraints

x∧l = x∧la + sx∧lb = 0

x∧l′ = x∧l′a + sx∧l′b = 0, (16.1)

the elimination of the scalar s yields a second order geometric product equa-
tion in x

(x∧la)(x∧l′b) − (x∧lb)(x∧l′a) = 0. (16.2)

We can also get the parameterized conic equation simply by computing
the intersecting point x, taking the meet of the line pencils as follows

x = (la + slb) ∨ (l′a + sl′b) = la ∨ l′a + s(la ∨ l′b + lb ∨ l′a) + s2(lb ∨ l′b).
(16.3)

Let us for now define the involved lines in terms of wedge of points la =
a∧b, lb = a∧b′, l′a = a′∧b and l′b = a′∧b′ such that la ∨ l′a = b, la ∨ l′b = d,
lb ∨ l′a = d′ and lb ∨ l′b = b′, see Figure 16.1.a. By substituting b′′ = la ∨ l′b +
lb ∨ l′a = d + d′ in the last equation, we get

x = b + sb′′ + s2b′, (16.4)

which represents a nondegenerated conic for b∧b′′∧b′ = b∧(d + d′)∧b′ 6=0.
Now, using this equation let us compute the generating line pencils. Define
l1 = b′′∧b′, l2 = b′∧b and l3 = b∧b′′. Then using the equation (16.4), its
two projective pencils are

b∧x = sb∧b′′ + s2b∧b′ = s(l3 − sl2)

b′∧x = b′∧b + sb′∧b′′ = l2 − sl1. (16.5)

Considering the points a, a′, b and b′ and some other point c′ lying on the
conic depicted in Figure 16.1.a, and the equation (16.2) for s = ρs′ slightly
different to s′, we get the bracket expression

[c′ab][c′a′b′] − ρ[c′ab′][c′a′b] = 0

⇔ ρ =
[c′ab][c′a′b′]

[c′ab′][c′a′b]
(16.6)

for some ρ 6= 0. This equation is well known and represents a projective
invariant which has been used quite a lot in real applications of computer
vision [177]. For a thorough study of the role of this invariant using brackets
of points, lines, bilinearities and the trifocal tensor see Bayro and Lasenby
[145, 18]. Now evaluating ρ in terms of some other point c we get a conic
equation fully represented in terms of brackets

[cab][ca′b′] − [c′ab][c′a′b′]

[c′ab′][c′a′b]
[cab′][ca′b] = 0

⇔ [cab][ca′b′][ab′c′][a′bc′] − [cab′][ca′b][abc′][a′b′c′] = 0. (16.7)

396 Eduardo Bayro-Corrochano, Bodo Rosenhahn

Again we get a well known concept, which says that a conic is uniquely
determined by the five points in general position a, a′, b, b′ and c . Now,
considering Figure 16.1.b, we assume six points on the conic and we can iden-
tify three collinear intersecting points α1, α2 and α3. Using the collinearity
constraint and the lines which belong to pencils in projective correspondence
we can write down a very useful equation

α1∧α2∧α3 = 0

⇔
(
(a′∧b) ∨ (c′∧c)

)
∧
(
(a′∧a) ∨ (b′∧c)

)
∧
(
(c′∧a) ∨ (b′∧b)

)
= 0.

(16.8)

a a’

b’b

A’ A B’ B

a’
c’

b’

ab
c

α α321α
l

la d’

d

b

l’b

al’

Fig. 16.1. a) Two projective pen-
cils generate a conic b) Pascal’s the-
orem

This expression is a geometric formulation of Pascal’s theorem. This the-
orem proves that the three intersecting points of the lines which connect
opposite vertices of a hexagon circumscribed by a conic are collinear ones.
The equation (16.8) will be used in later section for computing the intrinsic
camera parameters.

16.3 Computing the Kruppa Equations in the

Geometric Algebra

In this section we will formulate in two ways the Kruppa equations in the
geometric algebra framework. First, we derive the Kruppa equations in its
polynomial form using the bracket conic equation (16.7). Secondly, we for-
mulate them in terms of pure brackets. The goal of the section is to compare
the bracket representation with the standard one.

16.3.1 The Scenario

Next, we will briefly summarize the scenario for observing a conic at infinity
(the absolute conic) in the image planes of multiple views with the aim of
self-calibration of the camera. We are applying the standard pinhole camera

16. Analysis and Computation of the Intrinsic Camera Parameters 397

model. As described in chapter 14 a pinhole camera can be described by four
homogeneous vectors in P3: One vector gives the optical centre and the other
three define the image plane. Let {Aµ} be a reference coordinate system,
which consists of four vectors and defines the frame F0. Let X be a point in
a frame {Zµ} = F1. The image XA of the point X on the image plane A of
{Aµ} = F0 can be described by several transformations.

In the first step the frame F1 can be related to F0 by a transformation MF1

F0
.

This transformation represents a 3-D rotation R and a 3-D translation t in
the 3-D projective space P3 and depends on six camera parameters. So the
frames F0 and F1 are first related by a 4 × 4 matrix

MF1

F0
=

 R t

0T3 1

 . (16.9)

The matrix MF1

F0
is the matrix of the extrinsic camera parameters.

In the next step changes between the camera planes have to be considered.
So the focal length, rotations and translations in the image planes have to be
adapted. This affine transformation will be described by the matrix K and
has the well known form

K =

αu γ u0

0 αv v0

0 0 1

 . (16.10)

The parameters u0, v0 describe a translation along the image plane and
αu, αv , γ describe scale changes along the image axes and a rotation in the
image plane. So the whole projective transformation can be described by

P = KP0M
F1

F0
, (16.11)

where P0 = [I |0] is a 3 × 4 matrix and I is the 3 × 3 identity matrix. P0

describes the projection matrix from the 3-D camera frame F1 to the nor-
malized camera plane, given in homogeneous coordinates.
The task is to find out the intrinsic camera parameters, which can be found
in the matrix K (see equation 16.10) of the affine transformation from the
normalized camera coordinate plane to the image coordinate plane. As de-
picted in Figure 16.2, the images of the points defining the absolute conic are
observed from different positions and orientations, and the point correspon-
dences between the images are evaluated. Generally, the relation between
points of cameras at different locations depends on both, the extrinsic and
the intrinsic parameters. But in case of formulating the Kruppa equations, it
will happen that these only depend on intrinsic parameters. An often used
notation of equation (16.11), which we want to adopt here for the camera at
the i-th frame Fi with respect to frame F0, is

Pi = K[R|t], (16.12)

398 Eduardo Bayro-Corrochano, Bodo Rosenhahn

where [R|t] is a 3 × 4 matrix constituted by the rotation matrix R and the
translation vector t, resulting from the fusion of P0 and MFi

F0
. For the sake

of simplicity, we will set for the first camera F1 ≡ F0, thus, its projective
transformation becomes P1 = K[I |0], where I is the 3 × 3 identity matrix.

16.3.2 Standard Kruppa Equations

This approach uses the equation (16.7) for the conic in terms of brackets
considering five points a, b, a′, b′, c′ which lie on the conic in the image
plane:

[cab][ca′b′][ab′c′][a′bc′] − [cab′][ca′b][abc′][a′b′c′] = 0

[abc][a′b′c] − [a′b′c′][abc′]

[ab′c′][a′bc′]
[ab′c][a′bc] = 0. (16.13)

P P P3=01 2

K [R | t]
1 1

2 2 2

K [R | t]nnn

C1
e12

C2 e
21

Π Π21

Πn

K [R | t]1

1
2P P P3

C’A’ B’

infΠ

C A0

0
0

0

0B
0

Fig. 16.2. The conics at infinity, the real 3–D visual space and n uncalibrated
cameras

16. Analysis and Computation of the Intrinsic Camera Parameters 399

These five points are images of points on the absolute conic. A conic at
infinity Ωinf in P3 can be defined employing any imaginary five points lying
on the conic, e.g.

A0 =

1

i

0

0

,B0 =

i

1

0

0

,A′

0 =

i

0

1

0

,B′

0 =

1

0

i

0

,C′

0 =

0

i

1

0

, (16.14)

where i2 = −1. Note that we use upper case letters to represent points of
the projective space P3 in C1,3,0. Because these points at infinity fulfill the

property AT
0 A0 = BT

0 B0 = A
′T
0 A′

0 = B
′T
0 B′

0 = C
′T
0 C′

0 = 0 they lie on
the absolute conic. In geometric algebra a conic can be described by the
points lying on the conic. Furthermore, the image of the absolute conic can
be described by the image of the points lying on the absolute conic. In the
next step, let us first define the point A as a 3 × 1-vector which consists of
the first three elements of A0. Doing similary with the other points we get
the points

A =

1

i

0

 ,B =

i

1

0

 ,A′ =

i

0

1

 ,B′ =

1

0

i

 ,C ′ =

0

i

1

 . (16.15)

Since the projection of the points A0, . . . ,C
′
0 are translation invariant,

their projections x = PX on any image plane are independent of t and thus
given by

a = K[R|t]A0 = KRA , b = K[R|t]B0 = KRB

a′ = K[R|t]A′
0 = KRA′ , b′ = K[R|t]B′

0 = KRB′

c′ = K[R|t]C ′
0 = KRC′ . (16.16)

In addition the rotated points RTA, RTB, RTA′, RTB′ and RTC′ lie
also at the conic, because they fulfill the property

(RTA)T (RTA) = (RTB)T (RTB) = (RTA′)T (RTA′) =

(RTB′)T (RTB′) = (RTC ′)T (RTC ′) = 0. (16.17)

Using these rotated points, the rotation R of the camera transformation is
canceled and the points on the image of the absolute conic will be described
by

a = KA, b = KB, a′ = KA′, b′ = KB′, c′ = KC′. (16.18)

To use the points a, . . . , c′ in the bracket notation of conics it is use-
full to translate the matrix multiplication x = KX in terms of geometric

400 Eduardo Bayro-Corrochano, Bodo Rosenhahn

algebra. Suppose an orthonormal basis B1 = {e1, . . . , e3} and X as a lin-

ear combination of B1 i.e. X =
∑3
i=1 xiei. The matrix K describes a linear

transformation. As can be seen in chapter 1.3 this linear transformation can
be expressed by

Kei = K(ei) =

3∑

j=1

ejkji (16.19)

with kji the elements of the matrix K. So the matrix multiplication KX can
be substituted by KX in terms of geometric algebra. Therefore, the point c
lies on the image of the absolute conic iff

[(K �)(K �) �][(K � ′)(K � ′) �] − [(K � ′)(K � ′)(K � ′)][(K �)(K �)(K � ′)]

[(K �)(K � ′)(K � ′)][(K � ′)(K �)(K � ′)]
·

·[(K �)(K � ′) �][(K � ′)(K �) �] = 0.

(16.20)

We can further extract of the brackets the determinant of the intrinsic
parameters in the multiplicative ratio of the previous equation. This is ex-
plained in chapter 1.3. Now the invariant reduces to a constant

Inv =
([K � ′)(K � ′)(K � ′)][(K �)(K �)(K � ′)]

[(K �)(K � ′)(K � ′))][(K � ′)(K �)(K � ′)]

=
det(K)[� ′ � ′ � ′]det(K)[� �!� ′]

det(K)[�"� ′ � ′]det(K)[� ′ �!� ′]

=
[� ′ � ′ � ′][�#�!� ′]

[� � ′ � ′][� ′ �!� ′]
. (16.21)

Substituting the values from equation (16.15) for A, B, A′, B′, C ′ in
this equation, we get the value of Inv = 2. This value will be used for further
computations later on. The equation (16.21) is as expected invariant to the
affine transformation K. Thus, the bracket equation (16.6) of the projective
invariant resulting in the image of the absolute conic can be written as

[(K �)(K �) �][(K � ′)(K � ′) �] − Inv[(K �)(K � ′) �][(K � ′)(K �) �] = 0. (16.22)

Let be Q = K−TK−1 the matrix of the image of the absolute conic, then
cTQc = 0 in matrix notation means that c is a point on the image of the
absolute conic. According to the duality principle of points and lines the dual
image of the absolute conic, i.e. its matrix Q∗ ∼ Q−1 = KKT is related to
a line lc, tangential to the image of the absolute conic. Because this can be
expressed as

0 = cTQc = cTQT c = (cTQT)Q−1(Qc) = lTc Q
∗lc, (16.23)

we have Qc = lc or c = KKT lc. To use KKT lc in the bracket description
of conics, it is usefull to translate the matrix multiplications in terms of
geometric algebra. The line lc is tangential to the image of the absolute
conic, so it has the form

∑3
i=1 lciei. The product KT lc can be described using

16. Analysis and Computation of the Intrinsic Camera Parameters 401

the adjoint K of K by the expression Klc, see chapter 1.3. The expression
c = KKT lc can thus be formulated as c = KKlc. We can substitute this
line tangent in equation (16.22):

[(K �)(K �) �][(K � ′)(K � ′) �] − Inv[(K �)(K � ′) �][(K � ′)(K �) �] = 0

⇔ [(K �)(K �)(KK $ c)][(K � ′)(K � ′)(KK $ c)] −
−Inv[(K �)(K � ′)(KK $ c)][(K � ′)(K �)(KK $ c)] = 0

⇔ det(K)[�#� (K $ c)]det(K)[� ′ � ′(K $ c)] −
−Inv det(K)[�#� ′(K $ c)]det(K)[� ′ � (K $ c)] = 0

⇔ [�#� (K $ c)][� ′ � ′(K $ c)] − Inv[�#� ′(K $ c)][� ′ � (K $ c)] = 0. (16.24)

To further proceed on the classical way of deriving Kruppa’s equations
[169, 163, 162], it will be possible to formulate two polynomial constraint
equations on the dual of the image of the absolute conic in the frame of
epipolar geometry. Let be p = p1e1 + p2e2 + p3e3 the epipole of an image
and let be q = e1 + τe2 a point at infinity. The aim will be to force the line

lc = (p ∧ q)I−1

=

((
3∑

i=1

piei

)
∧ (e1 + τe2)

)
(e1e2e3)

−1

= (−p3τ)e1 + (p3)e2 + (p1τ − p2)e3, (16.25)

to be tangential to the dual of the image of the absolute conic by means of
the unknown τ . Then we can substitute the term lc in equation (16.24). With

Klc = (−k11p3τ)e1 + (−k12p3τ + k22p3)e2 +

(−k13p3τ + k23p3 + p1τ − p2)e3 (16.26)

and the value for Inv = 2 the equation (16.24) simplifies to a second order
polynomial with respect to τ as follows

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] =

4p1τp2 − 2p2
1τ

2 − 2k2
22p

2
3 − 4k23p3p1τ + 4k23p3p2 − 2k2

13p
2
3τ

2 −
2k2

12p
2
3τ

2 − 2k2
23p

2
3 − 2p2

2 − 2k2
11p

2
3τ

2 + 4k12p
2
3τk22 − 4k13p3τp2 +

4k13p
2
3τk23 + 4k13p3τ

2p1. (16.27)

Expressing the polynomial in the form P (τ) = k0 + k1τ + k2τ
2, we get

the following coefficients

k0 = −2k2
22p

2
3 + 4k23p3p2 − 2k2

23p
2
3 − 2p2

2

k1 = 4p1p2 − 4k23p3p1 + 4k12p
2
3k22 − 4k13p3p2 + 4k13p

2
3k23

k2 = −2p2
1 − 2k2

13p
2
3 − 2k2

12p
2
3 − 2k2

11p
2
3 + 4k13p3p1. (16.28)

402 Eduardo Bayro-Corrochano, Bodo Rosenhahn

Because lc can be also considered as an epipolar line tangent to the conic
in the first camera, according the homography of a point lying at the line at
infinity of the second camera, we can use the operator F for the describtion
of the fundamental matrix F in terms of geometric algebra, and can compute
lc = F (e1 + τe2). Using the new expression of lc we can gain similarly as
above new equations for the coefficients of the polynomial P (τ), now called
k′i. Taking now these equations for the two cameras, we finally can write down
the well known Kruppa equations

k2k
′
1 − k′2k1 = 0

k0k
′
1 − k′0k1 = 0

k0k
′
2 − k′0k2 = 0. (16.29)

We get up to a scalar factor the same Kruppa equations as presented by
Luong and Faugeras [162]. The scalar factor is present in all of these equa-
tions, thus it can be canceled straightforwardly. The algebraic manipulation
of this formulas was checked entirely using a Maple program.

16.3.3 Kruppa’s Equations Using Brackets

In this section we will formulate the Kruppa coefficients k0, k1, k2 of the
polynomial P (τ) in terms of brackets. This kind of representation will obvi-
ously elucidate the involved geometry. First let us consider again the bracket
[AB(Klc)] of equation (16.24). Each bracket can be split in two brackets,
one independent of τ and another depending of it

[AB(Klc)] = [AB(K(p3e2 − p2e3))] + [AB(K(−p3e1 + p1e3))]τ. (16.30)

In short, [AB(Klc)] = a1 + τb1. Now using this bracket representation
the equation (16.24) can be written as

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] = 0

⇔ (a1 + τb1)(a2 + τb2) − Inv(a3 + τb3)(a4 + τb4) = 0

⇔ a1a2 + τb1a2 + a1τb2 + τ2b1b2 −
−Inv(a3a4 + a3a4τ + b3a4τ + b3b4τ

2) = 0

⇔ a1a2 − Inv(a3a4)︸ ︷︷ ︸
k0

+τ(a1b2 + b1a2 − Inv(a3b4 + a4b3)︸ ︷︷ ︸
k1

) +

+τ2(b1b2 − Inv(b3b4)︸ ︷︷ ︸
k2

) = 0. (16.31)

Now let us take a partial vector part of Klc and call it

Klc1 := −k11p3e1 − k12p3e2 + (−k13p3 + p1)e3

and the “rest”-part as

16. Analysis and Computation of the Intrinsic Camera Parameters 403

Klc2 := (k22p3)e2 + (k23p3 − p2)e3.

Using both parts we can write the coefficients of the polynomial in a
bracket form as follows:

k0 = [� � (K $ c2)][� ′ � ′(K $ c2)] − Inv[�#� ′(K $ c2)][� ′ � (K $ c2)] (16.32)

k1 = [� � (K $ c1)][� ′ � ′(K $ c2)] + [� � (K $ c2)][� ′ � ′(K $ c1)]

−Inv[� � ′(K $ c2)][� ′ � (K $ c1)] − Inv[�#� ′(K $ c1)][� ′ � (K $ c2)] (16.33)

k2 = [� � (K $ c1)][� ′ � ′(K $ c1)] − Inv[�#� ′(K $ c1)][� ′ � (K $ c1)]. (16.34)

Since A,B,A′,B′ and Inv are known given an epipole p = p1e1 +p2e2 +
p3e3, we can finally compute the coefficients k0, k1, k2 straightforwardly. The
striking aspect of these equations is twofold. They are expressed in terms
of brackets and they depend of the invariant real magnitude Inv. This can
certainly help us to explore the involved geometry of the Kruppa equations
using brackets.

Let us first analyze the k’s. Since the elements of k1 consists of the ele-
ments of k0 and k2, it should be sufficient to explore the involved geometry
of k0 and k2 if these are expressed as follows:

k0 = a1a2 − Inv(a3a4)

= [AB(Klc2)][A
′B′(Klc2)] − Inv[AB′(Klc2)][A

′B(Klc2)]

= ((e1 + ie2) ∧ (ie1 + e2) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1)

((ie1 + e3) ∧ (e1 + ie3) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1) −

Inv((e1 + ie2) ∧ (e1 + ie3) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1)

((ie1 + e3) ∧ (ie1 + e2) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1) (16.35)

k2 = b1b2 − Inv(b3b4)

= [AB(Klc1)][A
′B′(Klc1)] − Inv[AB′(Klc1)][A

′B(Klc1)]

((e1 + ie2) ∧ (ie1 + e2) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

((ie1 + e3) ∧ (e1 + ie3) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

−Inv((e1 + ie2) ∧ (e1 + ie3) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

((ie1 + e3) ∧ (ie1 + e2) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1). (16.36)

Let us analyze some effects of camera motions in these two equations.
If the camera moves on a straight path parallel to the object, the epipole

404 Eduardo Bayro-Corrochano, Bodo Rosenhahn

lies at infinity. Because p3 = 0 in this case, the intrinsic parameters become
zero resulting a trivial polynomial, i.e. we can not get the coefficients of
the intrinsic camera parameters. On the other hand, for example trying the
values −k13p3 + p1 = 0 or k23p3 − p2 = 0, the rest of the brackets will have
the rank two and their determinant value is also zero. Since the epipole can
be normalized with p3 = 1, the equations are equivalent to k13 = p1 and
k23 = p2. This means there is a superposition of the value of the epipole with
a parameter of the intrinsic camera parameters. These simple examples show
that analyzing the brackets for certain kinds of camera motions can avoid
certain camera motions which generate trivial Kruppa equations. It is also
interesting to see that for k0 = 0 and k2 = 0 we have also conic equations.
So in order to avoid trivial equations we have to consider always k0 6= 0 and
k2 6= 0. In other words, the splitted parts Klc1 and Klc2 of Klc should not
lie on the image of the absolute conic.

Now let us consider the invariant real magnitude Inv of the bracket equa-
tion (16.24).

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] = 0

⇔ Inv =
[AB(Klc)][A

′B′(Klc)]

[AB′(Klc)][A
′B(Klc)]

. (16.37)

That the invariant value Inv like in the equation (16.6) plays a role in the
Kruppa equations is a fact that has been overseen so far. This can be simply
explained as the fact that when we formulate the Kruppa equations using
the condition cTQc = 0, we are actually implicitly employing the invariant
given by equation (16.37).

16.4 Camera Calibration Using Pascal’s Theorem

This section presents a new technique in the geometric algebra framework for
computing the intrinsic camera parameters. The previous section used the
equation of (16.7) to compute the Kruppa coefficients which in turn can be
used to get the intrinsic camera parameters. Along this lines we will proceed
here.

In section two it is shown that the equation (16.7) can be reformulated to
express the constraint of equation (16.8) known as Pascal’s theorem. Since
Pascal’s theorem fulfills a property of any conic, it should be also possible us-
ing this equation to compute the intrinsic camera parameters. Let us consider
the three intersecting points which are collinear and fulfill

((% ′∧ &) ∨ (� ′ ∧ �))� ��� �'
1

∧ ((% ′ ∧ %) ∨ (& ′ ∧ �))� ��� �'
2

∧ ((� ′ ∧ %) ∨ (& ′ ∧ &))� ��� �'
3

= 0. (16.38)

16. Analysis and Computation of the Intrinsic Camera Parameters 405

Similar to chapter 1.3.2, in Figure 16.3 at the first camera the projected
rotated points of the conic at infinity are

a = KA, b = KB, a′ = KA′, b′ = KB′, c′ = KC′. (16.39)

The point c = KKlc depends of the intrinsic parameters and of the
line lc tangent to the conic which is computed in terms of the epipole p =
p1e1 + p2e2 + p3e3 and a point q = e1 + τe2 lying at the line at infinity of
the first camera, i.e. lc = (p ∧ q)I−1.

Now using this expression for lc we can simplify equation (16.38) and get
the bracket equations of the α’s	 [% ′ &(� ′] � − [% ′ &(�] � ′
 ∧ 	 [% ′ %)& ′] � − [% ′ %*�] & ′
 ∧ 	 [� ′ %*& ′] & − [� ′ %*&] & ′
 = 0

⇔ 	 [(K � ′)(K �)(K � ′)](KK $ c) − [(K � ′)(K �)(KK $ c)](K � ′)
 ∧	 [(K � ′)(K �)(K � ′)](KK $ c) − [(K � ′)(K �)(KK $ c)](K � ′)
 ∧	 [(K � ′)(K �)(K � ′)](K �) − [(K � ′)(K �)(K �)](K � ′)
 = 0

⇔ 	 det(K)K 	 [� ′ �!� ′](K $ c) − [� ′ � (K $ c)] � ′
 � ∧�
det(K)K 	 [� ′ �"� ′](K $ c) − [� ′ � (K $ c)] � ′) � ∧�
det(K)K 	 [� ′ �#� ′] � − [� ′ � �] � ′) � = 0

⇔ det(K)4
� 	 [� ′ �!� ′](K $ c) − [� ′ � (K $ c)] � ′
 ∧	 [� ′ � � ′]K $ c − [� ′ � (K $ c)] � ′)∧	 [� ′ �#� ′] � − [� ′ �#�] � ′
 � = 0

⇔ 	 [� ′ �!� ′](K $ c) − [� ′ � (K $ c)] � ′
� ��� �'
1

∧

	 [� ′ � � ′](K $ c) − [� ′ � (K $ c)] � ′
� ��� �'
2

∧

	 [� ′ �#� ′] � − [� ′ �#�] � ′
� ��� �'
3

= 0. (16.40)

Note that the scalar det(K)4 is cancelled out simplifying the expression
for the α’s. The computation of the intrinsic parameters will be done first
considering that the intrinsic parameters remain stationary under camera
motions and second when these parameters change.

16.4.1 Computing Stationary Intrinsic Parameters

Let us assume that the basis F0 is attached to the optical center of the first
camera and consider a second camera which has a motion of [R1|t1] with
respect to the first one. Accordingly the involved projective transformations
are given in matrix notation by

406 Eduardo Bayro-Corrochano, Bodo Rosenhahn

21e12e

Fig. 16.3. Pascal’s theorem at the conic images

P1 = K[I |0] (16.41)

P2 = P1

R1 t1

0T3 1

−1

= P1

(
MF0

FC

)−1

(16.42)

and their optical centres by C1 = (0, 0, 0, 1)T and C2 = MF0

FC
C1. In geometric

algebra we use the notations P1, P2, C1 = e4 and C2 = MF0

FC
C1. Thus, we

can compute their epipoles as e21 = P2C1, e12 = P1C2.
Next, we will show by means of an example that the coordinates of the

points α1, α2, α3 are entirely independent of the intrinsic parameters. This
condition is necessary for solving the problem. Let us choose a camera motion
given by

[R1|t1] =

0 −1 0 2

1 0 0 −1

0 0 1 3

 . (16.43)

For this motion the epipoles are

e12 = (2k11 − k12 + 3k13)e1 + (−k22 + 3k23)e2 + 3e3 and

e21 = (k11 + 2k12 − 3k13)e1 + (2k22 − 3k23)e2 − 3e3. (16.44)

By using the rotated conic points given by the equation (16.15) and re-
placing e12 in the equation (16.40), we can make explicit the α’s

16. Analysis and Computation of the Intrinsic Camera Parameters 407

α1 = ((−3 + 3i)k11τ)e1 +

(3k11τ − ik12τ + ik22 + 2ik11τ − 3k12τ + 3k22)e2 +

(ik11τ + 3k12τ − 3k22 + ik12τ − ik22)e3

α2 = (−3ik11τ − 2k12τ + 2k22 − 2k11τ)e1 +

(−6i(k12τ − k22))e2 + (−3k11τ − 4ik12τ + 4ik22 + 2ik11τ)e3

α3 = (1 − i)e1 + (1 − i)e2 + 2e3. (16.45)

Note that α3 is fully independent of K. According to Pascal’s theorem
these three points lie on the same line, therefore, by replacing these points in
the equation (16.38) we get the following second order polynomial in τ

(−40ik2
12 − 52ik2

11 + 16ik11k12)τ
2+

(−16ik11k22 + 80ik12k22)τ − 40ik2
22 = 0. (16.46)

Solving this polynomial and choosing one of the solutions which is nothing
else than the solution for one of the two lines tangent to the conic we get

τ :=
16ik11k22 − 80ik12k22 + 24

√
14k11k22

2(−40ik2
12 − 52ik2

11 + 16ik11k12)
. (16.47)

Now considering the homogeneous representation of these intersection
points

αi = αi1e1 + αi2e2 + αi3e3 ∼ αi1
αi3

e1 +
αi2
αi3

e2 + e3, (16.48)

we can finally express their homogeneous coordinates as follows

α11 = −(2k11−10k12+3ik11
√

14+8ik12+2k12
√

14−10ik11+2
√

14k11)

2ik11−10ik12−3
√

14k11−4k12−4ik12
√

14−16k11+2ik11
√

14
(16.49)

α12 = 2i(−2ik12−3k12
√

14+13ik11)

2ik11−10ik12−3
√

14k11−4k12−4ik12
√

14−16k11+2ik11
√

14
(16.50)

α21 = (1−i)(2ik11−10ik12−3
√

14k11)

5k11−4k12+ik11
√

14+2ik12+3k12
√

14−13ik11+ik12
√

14
(16.51)

α22 = 11ik11+8ik12+3
√

14k11−6k12−ik12
√

14−3k11+2ik11
√

14−3k12
√

14
5k11−4k12+ik11

√
14+2ik12+3k12

√
14−13ik11+ik12

√
14

. (16.52)

In the case of exactly orthogonal image axis, we can set in previous equa-
tion k12 = 0 and get

α11 =
2i− 3

√
14 + 10 + 2i

√
14

2 + 3i
√

14 + 16i+ 2
√

14
(16.53)

α12 = 26
i

2 + 3i
√

14 + 16i+ 2
√

14
(16.54)

α21 =
(1 + i)(−2i+ 3

√
14)

−5i+
√

14− 13
(16.55)

α22 = −−11 + 3i
√

14− 3i− 2
√

14

−5i+
√

14 − 13
. (16.56)

408 Eduardo Bayro-Corrochano, Bodo Rosenhahn

The coordinates of the intersection points are indeed independent of the
intrinsic parameters.

After this illustration by an example we will get now the coordinates
for any general camera motion. For that it is necessary to separate in the
projections the intrinsic parameters from the extrinsic ones. Let us define

s = s1e1 + s2e2 + s3e3 = [I |0] MF0

FC
C1. (16.57)

Thus, the epipole is

e12 = K [I |0] MF0

FC
C1 = Ks. (16.58)

Note that in this expression the intrinsic parameters are separate from
the extrinsic ones. Similar as above for the general camera motion with the
corresponding epipole value the coordinates for the intersecting points read

α11 = − (−s3s1s2+is3

√
s2
3(s2

1+s2
2+s2

3)−is3
3−is3s2

1+s1

√
s2
3(s2

1+s2
2+s2

3)−is2s2
3)

(−is3s1s2−s3

√
s2
3(s2

1+s2
2+s2

3)−s3
3−s3s2

1+is1

√
s2
3(s2

1+s2
2+s2

3)+s2s2
3)

(16.59)

α21 =
−2s3(s2

3+s2
1)

−is3s2s1−s3

√
s2
3(s2

1+s2
2+s2

3)−s3
3−s3s2

1+is1

√
s2
3(s2

1+s2
2+s2

3)+s2s2
3

(16.60)

α12 =
(−1−i)(is1s2+

√
s2
3(s2

1+s2
2+s2

3))s3

−is3s1s2−s3

√
s2
3(s2

1+s2
2+s2

3)+s3s2
1+s3

3+s1

√
s2
3(s2

1+s2
2+s2

3)−is2s2
3

(16.61)

α22 =
i(is3s1s2+s3

√
s2
3(s2

1+s2
2+s2

3)+is1

√
s2
3(s2

1+s2
2+s2

3)+s2s2
3+is3s2

1+is3
3)

−is3s1s2−s3

√
s2
3(s2

1+s2
2+s2

3)+s3s2
1+s3

3+s1

√
s2
3(s2

1+s2
2+s2

3)−is2s2
3

. (16.62)

Note that the intrinsic parameters are totally cancelled out. The invari-
ance properties can be used to obtain equations which depend on the four
unknown intrinsic camera parameters. The algorithm can be summarized in
the following steps.

1. Suppose point correspondences between two cameras and motion between
the cameras.

2. Calculate the values of the homogeneous αi by using the known camera
motion and the formulas (16.59–16.62).

3. Calculate Klc with the epipole, evaluated from the point correspon-
dences. To fulfill Pascal’s theorem solve the equations system to τ similar
to (16.47).

4. Replace τ in (16.45) and calculate the homogeneous representation of
these intersection points to get quadratic polynomials which depends on
the four unknown intrinsic parameters. Note that the intrinsic parameters
are not cancelled out because of the insert of the real values from the
epipol. Because of the invariant properties of the α’s the polynomials
must be equal to the evaluated values of the α’s in step 2. This leads to
four quadratic equations.

Since we are assuming that the intrinsic parameters remain constant, we can
consequently gain a second set of four equations depending again of the four
intrinsic parameters from the second epipole.

16. Analysis and Computation of the Intrinsic Camera Parameters 409

The interesting aspect here is that we require only one camera motion to
find a solvable equation system. Other methods gain for each camera motion
only a couple of equations, thus they require at least three camera motions
to solve the problem [169, 163]. This particular advantage of our approach
relies in the investigation of Pascal’s theorem and its formulation in geometric
algebra.

16.4.2 Computing Non–stationary Intrinsic Parameters

In this case we will consider that due to the camera motion the intrisic pa-
rameters may have been changed. The procedure can be formulated along
the same previous ideas with the difference that we compute the line lc using
the operator for the fundamental matrix and a point lying at line at infinite
of the second camera as lc = F (e1 + τ ′e2).

Note that the fundamental matrix can be expressed in terms of the mo-
tion between cameras and the K of the camera, i.e. F = K−T [t]×R12K

T

where [t]× is the tensor notation of the antisymmetric matrix representing
the translation [163]. The term E = [t]×R12 is called the essential matrix. The

decomposition of F can instantaneous be described by F = K
−1

[t]× R12K
in terms of geometric algebra.

Now similar as in previous case we will use an example for facilitating the
understanding. We will use the same camera motion given in equation (16.43).
The fundamental matrix in terms of the intrinsic parameters of the first
camera K and of the second one K ′, with the assumption of perpendicular
pixel grids k12 = k′12 = 0, and the camera motion reads in matrix notation

F = K−1T [t]×RK
′−1

=

−3
k′22k22
v2

0 − (k′11−3k′13)k22k
′
22

v2

0 −3
k′11k11
v2

−k11k
′
11(2k

′
22−3k′23)
v2

(2k11+3k13)k22k
′
22

v2
− (k22−3k23)k11k

′
11

v2
1

(16.63)

where v2 = −3k′22k22k13k
′
13 + k22k

′
22k

′
11k13 + k22k

′
23k

′
11k11 − 2k22k

′
22k

′
13k11 +

2k23k
′
22k

′
11k11 − 3k23k

′
23k

′
11k11.

The value of the line lc is now computed in terms of the operator of the
fundamental matrix, i.e. lc = F (e1 + τ ′e2) Similar as above we compute
the α’s and according the Pascal’s theorem we gain a polynomial similar as
equation (16.46). This reads

10k′
2
11τ

′2 − 4k′22k
′
11τ

′ + 13k′
2
22 = 0. (16.64)

We select one of both solutions of this second order polynomial

τ ′ =
4k′22k

′
11 + 6ik′22k

′
11

√
14

20(k′211)
(16.65)

410 Eduardo Bayro-Corrochano, Bodo Rosenhahn

and substitute it in the homogeneous coordinates of the α’s

α11 = − i(−5i− 4 + i
√

14)

5i+ 2 + 2i
√

14
(16.66)

α21 =
−2 + 3i

√
14

5i+ 2 + 2i
√

14
(16.67)

α12 =
10 − 10i

−4i− 2 + 3i
√

14 −
√

14
(16.68)

α22 = − 8 + 6i−
√

14 + 3i
√

14

−4i− 2 + 3i
√

14−
√

14
, (16.69)

where α3 = (1 − i)e1 + (1 − i)e2 + 2e3 is again fully independent of the
intrinsic parameters.

Finally, we will show the expression when we consider now a general
motion

[R|t] =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 . (16.70)

In matrix algebra the fundamental matrix reads

F = K−TEK ′−1
(16.71)

=

k11 0 k13

0 k22 k23

0 0 1

−T

E11 E12 E13

E21 E22 E23

E31 E32 E33

k′11 0 k′13

0 k′22 k
′
23

0 0 1

−1

(16.72)

and in geometric algebra the operator of the fundamental matrix reads

F = K
−1
E K

′−1.
Using this formulation we compute the homogeneous coordinates of the

α’s

α11 = i(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32

−iE12
√
v3 +E21E

2
12 +E21E

2
32 −E22E11E12 −E22E31E32

−E22
√
v3 −E31E

2
12 −E31E

2
22 + E32E11E12 +E32E21E22 +E32

√
v3)/

(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32 − iE12

√
v3 −

E31E
2
12 −E31E

2
22 +E32E11E12 + E32E21E22 +E32

√
v3 −

E21E
2
12 −E21E

2
32 +E22E11E12 + E22E31E32 +E22

√
v3) (16.73)

16. Analysis and Computation of the Intrinsic Camera Parameters 411

α12 = 2(−E21E
2
12 −E21E

2
32 +E22E11E12 + E22E31E32 +E22

√
v3)/

(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32

−iE12
√
v3 −E31E

2
12 −E31E

2
22 +E32E11E12 +E32E21E22 +

E32
√
v3 −E21E

2
12 −E21E

2
32 +E22E11E12 +E22E31E32 +E22

√
v3)

(16.74)

α21 = (1 − i)(E11E
2
22 + E11E

2
32 −E12E21E22 −E12E31E32 −E12

√
v3)/

(−iE11E
2
22 − iE11E

2
32 + iE12E21E22 + iE12E31E32

+iE12
√
v3 −E21E

2
12 −E21E

2
32 +E22E11E12 +E22E31E32

+E22
√
v3 − iE31E

2
12 − iE31E

2
22 + iE32E11E12

+iE32E21E22 + iE32
√
v3) (16.75)

α22 = −(E11E
2
22 +E11E

2
32 −E12E21E22 −E12E31E32 −E12

√
v3

−iE31E
2
12 − iE31E

2
22 + iE32E11E12 + iE32E21E22

+iE32
√
v3 −E21E

2
12 −E21E

2
32 +E22E11E12 +E22E31E32

+E22
√
v3)/(−iE11E

2
22 − iE11E

2
32 + iE12E21E22

+iE12E31E32 + iE12
√
v3 −E21E

2
12 −E21E

2
32

+E22E11E12 +E22E31E32 +E22
√
v3 − iE31E

2
12

−iE31E
2
22 + iE32E11E12 + iE32E21E22 + iE32

√
v3) (16.76)

where

v3 = 2E11E12E21E22 + 2E11E12E31E32 + 2E21E22E31E32

−E2
12E

2
31 −E2

12E
2
21 −E2

22E
2
31 −E2

22E
2
11 −E2

32E
2
21 −E2

32E
2
11. (16.77)

Note that for the general case the α’s are fully independent of the in-
trinsic camera coefficients kij or k′ij . Together with the equations of the α’s
obtained using the first epipole the intrinsic parameters can be found solving
a quadratic equation system.

16.5 Experimental Analysis

In this section we present tests of the method based on Pascal’s theorem
using firstly simulated images. We explore the effect of different kinds of
camera motion and the effect of increasing noise in the computing of the
intrinsic camera parameters. The experiments with real images show that
the performance of the method is reliable.

16.5.1 Experiments with Simulated Images

Using a Maple simulation we firstly test the method based on the theorem
of Pascal to explore the dependency of the type and the amount of necessary

412 Eduardo Bayro-Corrochano, Bodo Rosenhahn

camera motions for solving the problem. The experiments show that at least
a rotation about only one axis and a displacement along the three axes are
necessary for stabile computations of all intrinsic parameters. Then, we realize
a test of our approach by increasing noise.

The camera is rotated about the y–axis with translation along the three
camera axes. For the tests we used exact arithmetic of the Maple program
instead of floating point arithmetic of the C language. The Table 1 shows the
computed intrinsic parameters. The most right column of the table shows the
error obtained substituting these parameters in the polynomial (16.64) which
gives zero for the case of zero noise. The values in this column show that by
increasing noise the computed intrinsic parameters cause a tiny deviation of
the ideal value of zero. This indicates that the procedure is relatively stable
against noise. We could image that there is a relative flat surface around the
global minimum of the polynomial. Note that there are remarkable deviations
shown by noise 1.25.

Table 16.1. Intrinsic parameters by rotation about the y–axis and translation
along the three axes with increasing noise

Noise(pixels) k11 k13 k22 k23 Error

0 500 256 500 256 10−8

0.1 505 259 509 261 0.001440

0.5 504 259.5 503.5 258 0.004897

0.75 498 254 503.5 258 0.001668

1 482 242 485 254 0.011517

1.25 473 220 440 238 0.031206

1.5 517 272 518 266 0.015

2 508 262.5 504 258.5 0.006114

2.5 515 268 501.9 257 0.011393

3 510 265 524 276 0.011440

16.5.2 Experiments with Real Images

In this section we present experiments using real images with one general
camera motion, see Figure 16.4.

The motion was done about the three coordinate axes. We use a cali-
bration dice and for comparison purposes we compute the intrinsic param-
eters from the involved projective matrices by splitting the intrinsic pa-
rameters from the extrinsic ones. The reference values were: First camera

16. Analysis and Computation of the Intrinsic Camera Parameters 413

Fig. 16.4. Scenario

k11 = 1200.66, k22 = 1154.77, k13 = 424.49, k23 = 264.389 and second cam-
era k11 = 1187.82, k22 = 1141.58, k13 = 386.797, k23 = 288.492 with mean
errors of 0.688 and 0.494, respectively.

Thereafter, using the gained extrinsic parameters [R1|t1] and [R2|t2] we
compute the relation [R|t] between cameras which is required for the Pas-
cal’s theorem based method. The fundamental matrix is computed using
a non-linear method. Using the Pascal’s theorem based method with 12
point correspondences unlike 160 point correspondences used by the algo-
rithm with the calibration dice we compute the following intrinsic parameters
k11 = 1244, k22 = 1167, k13 = 462 and k23 = 217. The error is computed
using the eight equations gained from the α’s of the first and second camera.
These values resemble quite well to the reference ones and cause an error of√
|eqn1|2 + ...+ |eqn8|2 : 0.004961 in the error function. The difference with

the reference values is attributable to inherent noise in the computation and
to the fact that the reference values are not exact, too.

Fig. 16.5. Superimposed
epipolar lines using the ref-
erence and Pascal’s theorem
based method

414 Eduardo Bayro-Corrochano, Bodo Rosenhahn

Since this is a system of quadratic equations we resort to an iterative pro-
cedure for finding the solution. First we tried the Newton–Raphson method
[196] and the continuation method [163]. These methods are not practicable
enough due to their complexity. We use instead a variable in size window
minima search which through the computation ensure the reduction of the
quadratic error. This simply approach work faster and reliable.

In order to visualize how good we gain the epipolar geometry we super-
imposed the epipolar lines for some points using the reference method and
Pascal’s theorem based method. In both cases we computed the fundamental
matrix in terms of their intrinsic parameters, i.e. F = K−T [t]×RK−1. Figure
16.5 shows this comparison. It is clear that both methods give quite similar
epipolar lines and interesting enough it is shown that the intersecting point
or epipole coincide almost exactly.

16.6 Conclusions

This paper presents a geometric approach to formulate the Kruppa equations
in terms of pure brackets. This can certainly help to explore the geometry
of the calibration problem and to find degenerated cases. Furthermore this
paper presents an approach to compute the intrinsic camera parameters in the
geometric algebra framework using Pascal’s theorem. We adopt the projected
characteristics of the absolute conic in terms of Pascal’s theorem to propose
a new camera calibration method based on geometric thoughts. The use of
this theorem in the geometric algebra framework allows us the computing
of a projective invariant using the conics of only two images. Then, this
projective invariant expressed in terms of brackets helps us to set enough
equations to solve the calibration problem. Our method requires to know
the point correspondences and the values of the camera motion. The method
gives a new point of view for the understanding of the problem thanks to the
application of Pascal’s theorem and it also explains the overseen role of the
projective invariant in terms of the brackets. Using synthetic and real images
we show that the method performs efficiently without any initialization or
getting trapped in local minima.

17. Coordinate-Free Projective

Geometry for Computer Vision∗

Hongbo Li and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

17.1 Introduction

How to represent an image point algebraically? Given a Cartesian coordinate
system of the retina plane, an image point can be represented by its coordi-
nates (u, v). If the image is taken by a pinhole camera, then since a pinhole
camera can be taken as a system that performs the perspective projection
from three-dimensional projective space to two-dimensional one with respect
to the optical center [77], it is convenient to describe a space point by its
homogeneous coordinates (x, y, z, 1) and to describe an image point by its
homogeneous coordinates (u, v, 1). In other words, the space of image points
can be represented by the space of 3 × 1 matrices. This is the coordinate
representation of image points.

There are other representations which are coordinate-free. The use of al-
gebras of geometric invariants in the coordinate-free representations can lead
to remarkable simplifications in geometric computing. Kanatani [128] uses
the three-dimensional affine space for space points, and the space of displace-
ments of the affine space for image points. In other words, he uses vectors
fixed at the origin of R3 to represent space points, and uses free vectors to

∗ This work has been supported by Alexander von Humboldt Foundation (H.L.)
and by DFG Grants So-320-2-1 and So-320-2-2 (G.S.)

416 Hongbo Li, Gerald Sommer

represent image points. Then he can use vector algebra to carry out geometric
computing. This algebraic representation is convenient for two-dimensional
projective geometry, but not for three-dimensional one. The space represent-
ing image points depends neither on the retina plane nor on the optical
center.

Bayro-Corrochano, Lasenby and Sommer use R4 for both two-dimensional
and three-dimensional projective geometries[19, 17, 222]. They use a coordi-
nate system {e1, e2, e3, C} of R4 to describe a pinhole camera, where the e’s
are points on the retina plane and C is the optical center. Both space points
and image points are represented by vectors fixed at the origin of R4, the only
difference is that an image point is in the space spanned by vectors e1, e2, e3.
This algebraic representation is convenient for projective geometric compu-
tations using the incidence algebra formulated in Clifford algebra. However,
it always needs a coordinate system for the camera. The space representing
image points depends only on the retina plane.

We noticed that none of these algebraic representations of image points
is related to the optical center. By intuition, it is better to represent image
points by vectors fixed at the optical center. The above-mentioned coordinate-
free representations do not have this property.

Hestenes [113] proposed a technique called space-time split to realize
the Clifford algebra of the Euclidean space in the Clifford algebra of the
Minkowskii space. The technique is later generalized to projective split by
Hestenes and Ziegler [118] for projective geometry. We find that a version of
this technique offers us exactly what we need: three-dimensional linear spaces
imbedded in a four-dimensional one, whose origins do not concur with that
of the four-dimensional space but whose Clifford algebras are realized in that
of the four-dimensional space.

Let C be a vector in R4. It represents either a space point or a point at
infinity of the space. Let M be another vector in R4. The image of the space
point or point at infinity M by a pinhole camera with optical center C can
be described by C ∧M . The image points can be represented by the three-
dimensional space C ∧ R4 = {C ∧ X |X ∈ R4}. The Clifford algebra of the
space C ∧ R4 can be realized in the Clifford algebra of R4 by the theorem of
projective split proposed later in this chapter. The space representing image
points depends only on the optical center. The representation is completely
projective and completely coordinate-free.

Using this new representation and the version of Grassmann-Cayley al-
gebra formulated by Hestenes and Ziegler [118] within Clifford algebra, we
have reformulated camera modeling and calibration, epipolar and trifocal
geometries, relations among epipoles, epipolar tensors and trifocal tensors.
Remarkable simplifications and generalizations are obtained through the re-
formulation, both in conception and in application. In particular, we are to
derive and generalize all known constraints on epipolar and trifocal tensors
[76, 80, 81, 83] in a systematic way.

17. Coordinate-Free Projective Geometry for Computer Vision 417

This chapter is arranged as follows: in section 17.2 we collect some necess-
sary mathematical techniques, in particular the theorem of projective split in
Grassmann-Cayley algebra. In sections 17.3 and 17.4 we reformulate camera
modeling and calibration, and epipolar and trifocal geometries. In section
17.5 we derive and generalize the constraints on epipolar and trifocal tensors
systematically.

17.2 Preparatory Mathematics

17.2.1 Dual Bases

According to Hestenes and Sobczyk [117], let {e1, . . . , en} be a basis of Rn

and {e∗1, . . . , e∗n} be the corresponding dual (or reciprocal) basis, then

e∗i = (−1)i−1(e1 ∧ · · · ∧ ěi ∧ · · · ∧ en)∼,
ei = (−1)i−1(e∗1 ∧ · · · ∧ ě∗i ∧ · · · ∧ e∗n)∼,

(17.1)

for 1 ≤ i ≤ n. Here “∼” is the dual operator in Gn with respect to e1∧· · ·∧en.
The basis {e1, . . . , en} induces a basis {ej1 ∧ · · · ∧ ejs |1 ≤ j1 < . . . < js ≤

n} for the s-vector subspace Gsn of the Clifford algebra Gn of Rn. We have

(ej1 ∧ · · · ∧ ejs)∗

= e∗js ∧ · · · ∧ e∗j1
= (−1)j1+···+js+s(s+1)/2(e1 ∧ · · · ∧ ěj1 ∧ · · · ∧ ějs ∧ · · · ∧ en)∼.

(17.2)

Let x ∈ Gsn, then

x =
∑

1≤j1<...<js≤n
x · (ej1 ∧ · · · ∧ ejs)∗ ej1 ∧ · · · ∧ ejs

=
∑

1≤j1<...<js≤n
(−1)j1+···+js+s(s+1)/2 ej1 ∧ · · · ∧ ejs

(e1 ∧ · · · ∧ ěj1 ∧ · · · ∧ ějs ∧ · · · ∧ en) ∨ x.

(17.3)

Let an invertible transformation T of Rn maps {e1, . . . , en} to a basis
{e′1, . . . , e′n}. Let T ∗ = (T T)−1. Then T ∗ maps the dual basis {e∗1, . . . , e∗n}
to the dual basis {e′∗1, . . . , e′∗n}.

Any linear mapping T : Rn −→ Rm has a tensor representation in Rn ⊗
Rm. Then

T =

n∑

i=1

e′i ⊗ e∗i . (17.4)

For example, let Πn be the identity transformation of Rn, then in tensor

representation, Πn =
n∑
i=1

ei ⊗ e∗i for any basis {e1, . . . , en}.

418 Hongbo Li, Gerald Sommer

17.2.2 Projective and Affine Spaces

An n-dimensional real projective space Pn can be realized in the space Rn+1,
where a projective r-space is an (r+1)-dimensional linear subspace. In Gn+1,
a projective r-space is represented by an (r+1)-blade, and the representation
is unique up to a nonzero scale. Throughout this chapter we use “x ' y” to
denote that if x, y are scalars, they are equal up to a nonzero index-free scale,
otherwise they are equal up to a nonzero scale.

An n-dimensional real affine space An can be realized in the space Rn+1

as a hyperplane away from the origin. Let e0 be the vector from the origin
to the hyperplane and orthogonal to the hyperplane. When e20 = 1, a vector
x ∈ Rn+1 is an affine point if and only if x · e0 = 1. An r-dimensional affine
plane is the intersection of an (r + 1)-dimensional linear subspace of Rn+1

with An, and can be represented by an (r + 1)-blade of Gn+1 representing
the subspace.

The space of displacements of An is defined as
∞
An= {x − y|x, y ∈ An}.

It is an n-dimensional linear subspace of Rn+1. Any element of it is called a

direction. When
∞
An is taken as an (n− 1)-dimensional projective space, any

element in it is called a point at infinity, and
∞
An is called the space at infinity

of An.

Let In = e0 · In+1. Then it represents the space
∞
An. The mapping

∂In : x 7→ e0 · x = In ∨ x, for x ∈ Gn+1, (17.5)

maps Gn+1 to G(
∞
An), called the boundary mapping. When In is fixed, ∂In is

often written as ∂. Geometrically, if Ir+1 represents an r-dimensional affine
space, then ∂Ir represents its space at infinity. For example, when x, y are
both affine points, ∂(x ∧ y) = y − x is the point at infinity of line xy.

Let {e1, . . . , en+1} be a basis of Rn+1. If en+1 ∈ An, e1, . . . , en ∈
∞
An, the

basis is called a Cartesian coordinate system of An, written as {e1, . . . , en;
en+1}. The affine point en+1 is called the origin. Let x ∈ An, then x =

en+1 +
n∑
i=1

λiei. (λ1, . . . , λn) is called the Cartesian coordinates of x with

respect to the basis.
Below we list some properties of the three-dimensional projective (or

affine) space when described in G4.

– Two planes N , N ′ are identical if and only if N ∨N ′ = 0, where N,N ′ are
3-blades.

– A line L is on a plane N if and only if L ∨N = 0, where L is a 2-blade.
– Two lines L,L′ are coplanar if and only if L ∨ L′ = 0, or equivalently, if

and only if L ∧ L′ = 0.
– A point A is on a plane N if and only if A∨N = 0, or equivalently, if and

only if A ∧N = 0. Here A is a vector.

17. Coordinate-Free Projective Geometry for Computer Vision 419

– A point A is on a line L if and only if A ∧ L = 0.
– Three planes N,N ′, N ′′ are concurrent if and only if N ∨N ′ ∨N ′′ = 0.
– For two lines L,L′, L ∨ L′ = L∼ ∨ L′∼.
– For point A and plane N , A ∨N = A∼ ∨N∼.

17.2.3 Projective Splits

The following is a modified version of the technique of projective split.

Definition 17.2.1. Let C be a blade in Gn. The projective split PC of Gn
with respect to C is the following transformation: x 7→ C ∧ x, for x ∈ Gn.
Theorem 17.2.1. [Theorem of projective split in Grassmann-Cayley alge-
bra 1] Let C be an r-blade in Gn. Let C ∧ Gn = {C ∧ x|x ∈ Gn}. Define in it
two products “∧C” and “∨C”: for x, y ∈ Gn,

(C ∧ x) ∧C (C ∧ y) = C ∧ x ∧ y,
(C ∧ x) ∨C (C ∧ y) = (C ∧ x) ∨ (C ∧ y),

(17.6)

and define

(C ∧ x)∼C = C ∧ (C ∧ x)∼. (17.7)

Then vector space C∧Gn equipped with “∧C”, “∨C ”, “∼C ” is a Grassmann-
Cayley algebra isomorphic to Gn−r, which is taken as a Grassmann-Cayley
algebra.

Proof. Let C ∧ Rn = {C ∧ x|x ∈ Rn}. It is an (n − r)-dimensional vector
space. By the linear isomorphism of {λC|λ ∈ R} with R, it can be verified that
(C ∧ Gn,∧C) is isomorphic to the Grassmann algebra generated by C ∧ Rn.
A direct computation shows that the composition of “∼C ” with itself is the
scalar multiplication by (−1)n(n−1)/2C2. That C∧Gn is a Grassmann-Cayley
algebra follows from the identity

(C ∧ x)∼C ∨C (C ∧ y)∼C = ((C ∧ x) ∧C (C ∧ y))∼C , (17.8)

which can be verified by the definitions (17.6) and (17.7).

1 Theorem 17.2.1 can be generalized to the following one, which is nevertheless
not needed in this chapter:

[Theorem of projective split in Clifford algebra] Let C be a blade in Gn. The
space C∧Gn equipped with the following outer product “∧C” and inner product
“·C” is a Clifford algebra isomorphic to G(C∼):

(C ∧ x) ∧C (C ∧ y) = C ∧ x ∧ y,
(x ∧ C) ·C (C ∧ y) = C−2 C ∧ ((x ∧ C) · (C ∧ y)),

for x, y ∈ Gn.

420 Hongbo Li, Gerald Sommer

Let {e1, . . . , en} be a basis of Rn. The projective split PC can be written
as the composition of the outer product by C and the identity transformation.
It has the following tensor representation:

PC =

n∑

s=0

∑

1≤j1<...<js≤n
(C ∧ ej1 ∧ · · · ∧ ejs) ⊗ (ej1 ∧ · · · ∧ ejs)∗. (17.9)

For example, when C is a vector and PC is restricted to Rn, then

PC =

n∑

i=1

(C ∧ ei) ⊗ e∗i . (17.10)

In particular, when {e1, . . . , en−1, C} is a basis of Rn, then

PC =
n−1∑

i=1

(C ∧ ei) ⊗ e∗i . (17.11)

When PC is restricted to G2
n, then

PC =
∑

1≤j1<j2≤n
(C ∧ ej1 ∧ ej2) ⊗ (ej1 ∧ ej2)∗. (17.12)

In particular, when {e1, . . . , en−1, C} is a basis of Rn, then

PC = −
∑

1≤j1<j2≤n−1

(C ∧ ej1 ∧ ej2) ⊗ (e∗j2 ∧ e∗j1). (17.13)

When n = 4, we use the notation i ≺ i1 ≺ i2 to denote that i, i1, i2 is an
even permutation of 1, 2, 3. Let

êi = ei1 ∧ ei2 , ê∗i = e∗i1 ∧ e∗i2 . (17.14)

then

PC = −
3∑

i=1

(C ∧ êi) ⊗ ê∗i . (17.15)

The following theorem establishes a connection between the projective
split and the boundary mapping.

Theorem 17.2.2. When C is an affine point, the boundary mapping ∂
realizes an algebraic isomorphism between the Grassmann-Cayley algebras

C ∧ Gn+1 and G(
∞
An).

17. Coordinate-Free Projective Geometry for Computer Vision 421

17.3 Camera Modeling and Calibration

17.3.1 Pinhole Cameras

According to Faugeras [77], a pinhole camera can be taken as a system that
performs the perspective projection from P3 to P2 with respect to the optical
point C ∈ P3. To describe this mapping algebraically, let {e1, e2, e3;O} be a
fixed Cartesian coordinate system of A3, called the world coordinate system.
Let {eC1 , eC2 , eC3 , C} be a basis of R4 satisfying (eC1 ∧eC2 ∧eC3 ∧C)∼ = 1, called
a camera projective coordinate system. When C is an affine point, let eC3
be the vector from C to the origin OC of the retina plane (or image plane),
and let eC1 , e

C
2 be two vectors in the retina plane. Then {eC1 , eC2 , eC3 ;C} is a

Cartesian coordinate system of A3, called a camera affine coordinate system.
Let M be a point or point at infinity of A3, and let mC be its image.

Then M can be represented by its homogeneous coordinates which is a 4× 1
matrix, and mC can be represented by its homogeneous coordinates which is
a 3×1 matrix. The perspective projection can then be represented by a 3×4
matrix.

M

m

O

C

e e

e

e

e

e

1 2

3

1

2

3
C

C

C

.OC

Fig. 17.1. A pinhole camera.

In our approach, we describe a pinhole camera with optical center C,
which is either an affine point or a point at infinity of A3, as a system per-
forming the projective split of G4 with respect to C ∈ R4.

To see how this representation works, we first derive the matrix of the
project split PC restricted to R4. We consider the case when the camera
coordinate system {eC1 , eC2 , eC3 , C} is affine. According to (17.11),

422 Hongbo Li, Gerald Sommer

PC =

3∑

i=1

(C ∧ eCi) ⊗ eC∗
i . (17.1)

In the camera coordinate system, let the coordinates of ei, i = 1, 2, 3,
and O, be (ei1, ei2, ei3, 0) = (eTi , 0), and (O1, O2, O3, 1) = (−cT , 1), respec-
tively. Here ei and c represent 3 × 1 matrices. The following matrix changes
{eC1 , eC2 , eC3 , C} to {e1, e2, e3, O}:

eT1 0

eT2 0

eT3 0

−cT 1

. (17.2)

Its transpose changes {e∗1, e∗2, e∗3, O∗} to {eC∗
1 , eC∗

2 , eC∗
3 , C∗}. Substituting eC∗

i ,
i = 1, 2, 3 expressed by e∗1, e

∗
2, e

∗
3, O

∗ into (17.1), we get the matrix of PC :

PC = (e1 e2 e3 − c). (17.3)

When C = O, eC1 = e1, e
C
2 = e2 and eC3 = −fe3, where f is the focal

length of the camera,

PC =

1 0 0 0

0 1 0 0

0 0 −1/f 0

 , (17.4)

which is the standard perspective projection matrix. This justifies the repre-
sentation of the perspective projection by PC and the representation of image
points by vectors in C ∧ R4.

In the case when the camera coordinate system is projective, let the 4×1
matrices eC∗

i , i = 1, 2, 3 represent the coordinates of eC∗
i with respect to

{e∗1, e∗2, e∗3, O∗}. By (17.1),

PC = (eC∗
1 eC∗

2 eC∗
3)T . (17.5)

Below we derive the matrix of PC restricted to G2
4 . Let

êC∗
i = eC∗

i1 × eC∗
i2 , (17.6)

where i ≺ i1 ≺ i2. It represents the coordinates of êC∗
i with respect to the

basis of G2
4 induced by {e∗1, e∗2, e∗3, O∗}. According to (17.15), the matrix of

PC is

PC = −(êC∗
1 êC∗

2 êC∗
3)T . (17.7)

17. Coordinate-Free Projective Geometry for Computer Vision 423

17.3.2 Camera Constraints

It is clear that as long as det(e1 e2 e3) 6= 0, the matrix PC = (e1 e2 e3 − c)
represents a perspective projection. When there is further information on the
pinhole camera, for example vectors eC1 , e

C
2 of the camera affine coordinate

system are perpendicular, then PC needs to satisfy additional equality con-
straints in order to represent the perspective projection carried out by such
a camera.

Let “∼3” represent the dual in G(
∞
A3). Let the dual bases of {e1, e2, e3}

and {eC1 , eC2 , eC3 } in
∞
A3 be {e∗3

1 , e
∗3
2 , e

∗3
3 } and {eC∗3

1 , eC∗3
2 , eC∗3

3 }, respectively.
Then

eC1 = (eC∗3

2 ∧ eC∗3

3)∼3 = eC∗3

2 × eC∗3

3 ,

eC2 = (eC∗3
3 ∧ eC∗3

1)∼3 = eC∗3
3 × eC∗3

1 ,
(17.8)

where “×” is the cross product in vector algebra. The perpendicularity con-
straint can be represented by

eC1 · eC2 = (eC∗3
2 × eC∗3

3) · (eC∗3
3 × eC∗3

1) = 0. (17.9)

Let the 3 × 1 matrix eC∗3

i represent the coordinates of eC∗3

i with respect
to {e∗3

1 , e
∗3
2 , e

∗3
3 }. Under the assumption that {e1, e2, e3} is an orthonormal

basis, eC∗3

i · eC∗3

j = eC∗3

i ·eC∗3

j for any 1 ≤ i, j ≤ 3. Then (17.9) is changed to

(eC∗3
2 × eC∗3

3) · (eC∗3
3 × eC∗3

1) = 0, (17.10)

which is a constraint on PC because

(eC∗3
1 eC∗3

2 eC∗3
3) = (e1 e2 e3)

T . (17.11)

17.3.3 Camera Calibration

Let M be a space point or point at infinity, mC be its image in the retina
plane. Assume that mC is a point, and has homogeneous coordinates (u, v, 1)
in the Cartesian coordinate system of the retina plane. Let the 4×1 matrix M
represent the homogeneous coordinates of M in the world coordinate system.
Then

(u v 1)T ' PCM = (eC∗
1 · M eC∗

2 · M eC∗
3 ·M)T , (17.12)

which can be written as two scalar equations:

(eC∗
1 − ueC∗

3) · M = 0, (eC∗
2 − veC∗

3) ·M = 0. (17.13)

The matrix PC = (eC∗
1 eC∗

2 eC∗
3)T can be taken as a vector in the space

R4×R4×R4 equipped with the induced inner product from R4. By this inner
product, (17.13) can be written as

424 Hongbo Li, Gerald Sommer

(M 0 − uM)T ·PC = 0, (0 M − vM)T · PC = 0. (17.14)

Given Mi and (ui, vi) for i = 1, . . . , 6, there are 12 equations of the forms
in (17.14). If there is no camera constraint, then since a 3 × 4 matrix rep-
resenting a perspective projection has 11 free parameters, PC can be solved
from the 12 equations if and only if the determinant of the coefficient matrix
A of these equations is zero, i. e.,

Λ6
i=1(Mi 0 − uiMi) ∧ Λ6

i=1(0 Mi − viMi) = 0, (17.15)

where the outer products are in the Clifford algebra generated by R4×R4×R4.
Expanding the left-hand side of (17.15), and changing outer products into
determinants, we get

∑
σ,τ

ε(σ)ε(τ)uσ(1)uσ(2)vτ(1)vτ(2) det(Mσ(1) Mσ(2) Mτ(1) Mτ(2))

det(Mσ(i))i=3..6 det(Mτ(j))j=3..6 = 0,

(17.16)

where σ, τ are any permutations of 1, . . . , 6 by moving two elements to the
front of the sequence, and ε(σ), ε(τ) are the signs of permutation.

For experimental data, (17.16) is not necessarily satisfied because of errors
in measurements.

17.4 Epipolar and Trifocal Geometries

17.4.1 Epipolar Geometry

There is no much difference between our algebraic description of the pinhole
camera and others if there is only one fixed camera involved, because the
underlying Grassmann-Cayley algebras are isomorphic. Let us reformulate
the epipolar geometry of two cameras with optical centers C,C ′ respectively.

The image of C ′ in camera C is ECC
′

= C ∧ C ′, called the epipole of C ′

in camera C. Similarly, the image of C in camera C ′ is EC
′C = C ′∧C, called

the epipole of C in camera C ′. An image line passing through the epipole
in camera C (or C ′) is called an epipolar line with respect to C ′ (or C).
Algebraically, an epipolar line is a vector in

C ∧ C ′ ∧ R4 = (C ∧ G2
4) ∩ (C ′ ∧ G2

4). (17.1)

An epipolar line C∧C ′∧M corresponds to a unique epipolar line C ′∧C∧M ,
and vice versa.

Let there be two camera projective coordinate systems in the two cameras
respectively: {eC1 , eC2 , eC3 , C} and {eC′

1 , eC
′

2 , eC
′

3 , C ′}. Using the relations

(C ∧ eCi) ∨ (C ∧ êCi) = −C, for 1 ≤ i ≤ 3, (17.2)

and

(C ∧ êCi1) ∨ (C ∧ êCi2) = C ∧ êCi , for i ≺ i1 ≺ i2, (17.3)

17. Coordinate-Free Projective Geometry for Computer Vision 425

M

m

C

.
C’.

.

.

E
CC’

E
C’C

C

C’m

Fig. 17.2. Epipolar geometry.

we get the coordinates of epipole ECC
′

:

ECC′

= ((C ∧ êCi) ∨ C ′)i=1..3

= ((C ∧ êCi)∼ ∨ C ′∼)i=1..3

= ((eC
′∗

1 ∧ eC′∗
2 ∧ eC′∗

3) ∨ eC∗
i)i=1..3.

(17.4)

The following tensor in (C ∧R4)⊗ (C ′ ∧R4) is called the epipolar tensor
decide by C,C ′:

FCC
′

(mC ,mC′

) = mC ∨mC′

. (17.5)

Let mC ∈ C ∧ R4, mC′ ∈ C ′ ∧ R4. They are images of the same space point
or point at infinity if and only if FCC

′

(mC ,mC′

) = 0. This equality is called
the epipolar constraint between mC and mC′

.
In matrix form, with respect to the bases {C ∧ eC1 , C ∧ eC2 , C ∧ eC3 } and

{C ′ ∧ eC′

1 , C ′ ∧ eC′

2 , C ′ ∧ eC′

3 }, FCC′

can be represented by

FCC
′

= ((C ∧ eCi) ∨ (C ′ ∧ eC′

j))i,j=1..3

= ((C ∧ eCi)∼ ∨ (C ′ ∧ eC′

j)∼)i,j=1..3

= (êC∗
i ∨ êC′∗

j)i,j=1..3.

(17.6)

(17.6) is called the fundamental matrix.
The epipolar tensor induces a linear mapping FC;C′

from C ∧R4 to (C ′ ∧
R4)∗ = C ′ ∧G2

4 , called the epipolar transformation from camera C to camera
C ′:

426 Hongbo Li, Gerald Sommer

FC;C′

(mC) = C ′ ∧mC . (17.7)

Similarly, it induces an epipolar transformation from camera C ′ to camera C
as follows:

FC
′;C(mC′

) = C ∧mC′

. (17.8)

Both transformations are just projective splits.
The kernel of FC;C′

is the one-dimensional subspace of C∧R4 represented
by C ∧ C ′, the range of FC;C′

is the two-dimensional space C ′ ∧ C ∧ R4. In
geometric language, FC;C′

maps the epipole of C ′ to zero, and maps any
other point in camera C to an epipolar line with respect to C.

Furthermore, we have the following conclusion:

Proposition 17.4.1. Let LC be an epipolar line in camera C. If its dual is
mapped to epipolar line LC

′

in camera C ′ by FC;C′

, then the dual of LC
′

is
mapped back to LC by FC

′;C .

The proof follows from the identity that for any vector M ∈ R4,

C ∧ (C ′ ∧ (C ∧ C ′ ∧M)∼C)∼C′ ' C ∧ C ′ ∧M. (17.9)

17.4.2 Trifocal Geometry

Let there be three cameras with optical centers C,C ′, C ′′ respectively. Let M
be a space point or point at infinity. Its images C∧M , C ′∧M and C ′′∧M in
the three cameras must satisfy pairwise epipolar constraints. Let us consider
the inverse problem: If there are three image points mC ,mC′

,mC′′

in the
three cameras respectively, they satisfy the pairwise epipolar constraints, is
it true that they are images of the same space point or point at infinity?

C
.

C’.
.

C”

C

m

m

C”

C’

M

m

Fig. 17.3. Point correspondence in three cameras.

17. Coordinate-Free Projective Geometry for Computer Vision 427

A simple counter-example shows that the epipolar constraints are not
enough. When the 2-blades mC ,mC′

,mC′′

belong to G(C ∧ C ′ ∧ C ′′), the
epipolar constraints are always satisfied, but the blades do not necessarily
share a common vector.

Assume that the epipolar constraint between mC′

and mC′′

is satisfied.
Let M be the intersection of the two lines mC′

and mC′′

in P3. Then mC

represents the image of M in camera C if and only if mC ∧ M = 0, or
equivalently,

mC ∨ (M ∧ x) = 0, for any x ∈ R4. (17.10)

When C ′, C ′′,M are not collinear, since

M ∧ R4 = (C ′ ∧M ∧ R4) ∨ (C ′′ ∧M ∧ R4), (17.11)

(17.10) can be written as

mC ∨ (mC′ ∧C′ mC′

0) ∨ (mC′′ ∧C′′ mC′′

0) = 0, (17.12)

for any image points mC′

0 ,mC′′

0 in cameras C ′, C ′′ respectively. When C ′, C ′′,
M are collinear, since mC′ ' mC′′

, (17.12) is equivalent to the epipolar
constraint between mC and mC′

. So the constraint (17.12) must be satisfied
for mC ,mC′

,mC′′

to be images of the same space point or point at infinity.

Definition 17.4.1. The following tensor in (C∧R4)⊗(C ′∧G2
4)⊗(C ′′∧G2

4) is
called the trifocal tensor [105, 106, 214] of camera C with respect to cameras
C ′, C ′′:

T (mC , LC
′

, LC
′′

) = mC ∨ LC′ ∨ LC′′

, (17.13)

where mC ∈ C ∧ R4, LC
′ ∈ C ′ ∧ G2

4 , LC
′′ ∈ C ′′ ∧ G2

4 .

Two other trifocal tensors can be defined by interchanging C with C ′, C ′′

respectively:

T ′(mC′

, LC , LC
′′

) = mC′ ∨ LC ∨ LC′′

,

T ′′(mC′′

, LC , LC
′

) = mC′′ ∨ LC ∨ LC′

.
(17.14)

In this section we discuss T only. Let {eC1 , eC2 , eC3 , C}, {eC
′

1 , eC
′

2 , eC
′

3 , C ′},
{eC′′

1 , eC
′′

2 , eC
′′

3 , C ′′} be camera projective coordinate systems of the three
cameras respectively. Then T has the following component representation:

T = ((C ∧ eCi) ∨ (C ′ ∧ êC′

j) ∨ (C ′′ ∧ êC′′

k))i,j,k=1..3

= ((C ∧ eCi)∼ ∨ ((C ′ ∧ êC′

j)∼ ∧ (C ′′ ∧ êC′′

k)∼))i,j,k=1..3

= (êC∗
i ∨ (eC

′∗
j ∧ eC′′∗

k))i,j,k=1..3

= (−(êC∗
i ∧ eC′∗

j) ∨ eC′′∗
k)i,j,k=1..3.

(17.15)

The trifocal tensor T induces three trifocal transformations:

428 Hongbo Li, Gerald Sommer

1. The mapping TC : (C ′ ∧ G2
4) × (C ′′ ∧ G2

4) −→ (C ∧ R4)∗ = C ∧ G2
4 is

defined as

TC(LC
′

, LC
′′

) = C ∧ (LC
′ ∨ LC′′

). (17.16)

When LC
′

is fixed, TC induces a linear mapping TCC
′

LC′ : C ′′ ∧ G2
4 −→

C ∧ G2
4 :

TCC
′

LC′ (LC
′′

) = C ∧ (LC
′ ∨ LC′′

). (17.17)

If LC
′

is an epipolar line with respect to C, the kernel of TCC
′

LC′ is all
epipolar lines with respect to C, the range is the epipolar line represented
by LC

′

; else if LC
′

is an epipolar line with respect to C ′′, the kernel is
the epipolar line represented by LC

′

, the range is all epipolar lines with
respect to C ′′. For other cases, the kernel is zero.
Geometrically, when TC(LC

′

, LC
′′

) 6= 0, then LC
′ ∨ LC

′′

represents a
line or line at infinity L of A3, both LC

′

and LC
′′

are images of L.
TC(LC

′

, LC
′′

) is just the image of L in camera C.
2. The mapping TC

′

: (C ∧ R4) × (C ′′ ∧ G2
4) −→ (C ′ ∧ G2

4)∗ = C ′ ∧ R4 is
defined as

TC
′

(mC , LC
′′

) = C ′ ∧ (mC ∨ LC′′

). (17.18)

When mC is fixed, TC
′C induces a linear mapping TC

′C
mC : C ′′ ∧ G2

4 −→
C ′ ∧ R4:

TC
′C

mC (LC
′′

) = C ′ ∧ (mC ∨ LC′′

). (17.19)

If mC is the epipole of C ′′, the kernel of TC
′C

mC is all epipolar lines with
respect to C, the range is the epipole of C ′′. For other cases, the kernel
is the epipolar line C ′′ ∧mC , the range is the two-dimensional subspace
of C ′ ∧ R4 represented by C ′ ∧mC .
Geometrically, when TC

′

(mC , LC
′′

) 6= 0, then mC ∨ LC
′′

represents a
point or point at infinity M of A3, mC is its image in camera C, and
LC

′′

is the image of a space line or line at infinity passing through M .
TC

′

(mC , LC
′′

) is just the image of M in camera C ′.
3. The mapping TC

′′

: (C ∧ R4) × (C ′ ∧ G2
4) −→ (C ′′ ∧ G2

4)∗ = C ′′ ∧ R4 is
defined as

TC
′′

(mC , LC
′

) = C ′′ ∧ (mC ∨ LC′

). (17.20)

We prove below two propositions in [81, 83] using the above reformulation
of trifocal tensors.

Proposition 17.4.2. Let LC
′

be an epipolar line in camera C ′ with respect
to C and LC be the corresponding epipolar line in camera C. Then for any
line LC

′′

in camera C ′′ which is not the epipolar line with respect to C,
TC(LC

′

, LC
′′

) ' LC .

17. Coordinate-Free Projective Geometry for Computer Vision 429

Proof. The hypotheses are LC
′ ' LC , C ∨ LC′′ 6= 0. Using the formula that

for any C ∈ R4, A3, B3 ∈ G3
4 ,

C ∧ (A3 ∨ B3) = (C ∨ B3)A3 − (C ∨ A3)B3, (17.21)

we get

TC(LC
′

, LC
′′

) ' C ∧ (LC ∨ LC′′

) = (C ∨ LC′′

)LC − (C ∨ LC)LC
′′ ' LC .

Proposition 17.4.3. Let mC′

,mC′′

be images of the point or point at in-
finity M in cameras C ′, C ′′ respectively. Let LC

′

be an image line passing
through mC′

but not through EC
′C . Let LC

′′

be an image line passing
through mC′′

but not through EC
′′C′

. Then the intersection of TC(LC
′

, LC
′′

)
with the epipolar line C ∧mC′

is the image of M in camera C.

Proof. The hypotheses are M∨LC′

= M ∨LC′′

= 0, C∨LC′ 6= 0, C ′∨LC′′ 6=
0. So

TC(LC
′

, LC
′′

) ∨ (C ∧mC′

)

= (C ∧ (LC
′ ∨ LC′′

)) ∨ (C ∧ C ′ ∧M)

= ((C ∧ C ′) ∨ LC′ ∨ LC′′

)(C ∧M) − ((C ∧M) ∨ LC′ ∨ LC′′

)(C ∧ C ′)

= −(C ∨ LC′

)(C ′ ∨ LC′′

)(C ∧M)

' C ∧M.

17.5 Relations among Epipoles, Epipolar Tensors, and

Trifocal Tensors of Three Cameras

Consider the following 9 vectors of R4:

ES = {eC∗
i , eC

′∗
j , eC

′′∗
k |1 ≤ i, j, k ≤ 3}. (17.1)

According to (17.4), (17.6) and (17.15), by interchanging among C,C ′, C ′′

any of the epipoles, epipolar tensors and trifocal tensors of the three cameras
has its components represented as a determinant of 4 vectors in ES. For
example,

ECC
′

i = (eC∗
i ∧ eC′∗

1 ∧ eC′∗
2 ∧ eC′∗

3)∼;

FCC
′

ij = (êC∗
i ∧ êC′∗

j)∼;

Tijk = (êC∗
i ∧ eC′∗

j ∧ eC′′∗
k)∼.

(17.2)

Conversely, any determinant of 4 vectors in ES equals a component of
one of the epipoles, epipolar tensors and trifocal tensors up to an index-free

430 Hongbo Li, Gerald Sommer

scale. Since the only constraint on the 9 vectors is that they are all in R4,
theoretically all relations among the epipoles, epipolar tensors and trifocal
tensors can be established by manipulating in the algebra of determinants of
vectors in ES using the following Cramer’s rule [76, 80]:

(x2 ∧ x3 ∧ x4 ∧ x5)
∼x1 = (x1 ∧ x3 ∧ x4 ∧ x5)

∼x2 − (x1 ∧ x2 ∧ x4 ∧ x5)
∼x3

+(x1 ∧ x2 ∧ x3 ∧ x5)
∼x4 − (x1 ∧ x2 ∧ x3 ∧ x4)

∼x5,

(17.3)

where the x’s are vectors in R4.
In practice, however, we can only select a few expressions from the algebra

of determinants and make manipulations, and it is difficult to make the selec-
tion. In this section we propose a different approach. Instead of considering
the algebra of determinants directly, we consider the set of meets of different
blades, each blade being an outer product of vectors in ES. Since the meet
operator is associative and anti-commutative in the sense that

Ar ∨ Bs = (−1)rsBs ∨ Ar, (17.4)

for Ar ∈ Gr4 and Bs ∈ Gs4 , for the same expression of meets we can have a
variety of expansions. Then we can obtain various equalities on determinants
of vectors in ES, which may be changed into equalities, or equalities up to
an index-free constant, on components of the epipoles, epipolar tensors and
trifocal tensors.

It appears that we need only 7 expressions of meets to derive and further
generalize all the known constraints on epipolar and trifocal tensors.

It should be reminded that in this chapter we always use the notation
i ≺ i1 ≺ i2 to denote that i, i1, i2 is an even permutation of 1, 2, 3.

17.5.1 Relations on Epipolar Tensors

Consider the following expression:

Fexp = (eC
′∗

1 ∧ eC′∗
2 ∧ eC′∗

3) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3) ∨ (eC

′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).
(17.5)

It is the dual of the blade C ′ ∧ C ∧ C ′′.
Expanding Fexp from left to right, we get

Fexp =
3∑

i,k=1

((eC
′∗

1 ∧ eC′∗
2 ∧ eC′∗

3) ∨ eC∗
i)(êC∗

i ∨ êC′′∗
k)eC

′′∗
k

=
3∑

i,k=1

ECC
′

i FCC
′′

ik eC
′′∗

k .

Expanding Fexp from right to left, we get

17. Coordinate-Free Projective Geometry for Computer Vision 431

Fexp =
3∑
k=1

(
((eC

′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ eC′′∗

k2
)((eC∗

1 ∧ eC∗
2 ∧ eC∗

3) ∨ eC′′∗
k1

)

− ((eC
′∗

1 ∧ eC′∗
2 ∧ eC′∗

3) ∨ eC′′∗
k1

)((eC∗
1 ∧ eC∗

2 ∧ eC∗
3) ∨ eC′′∗

k2
)
)
eC

′′∗
k

=
3∑
k=1

(EC
′′C′

k2
EC

′′C
k1

−EC
′′C′

k1
EC

′′C
k2

)eC
′′∗

k ,

where k ≺ k1 ≺ k2. So for any 1 ≤ i ≤ 3,

3∑

k=1

ECC
′

i FCC
′′

ik ' KC′′CC′

k , (17.6)

where KC′′CC′

k = EC
′′C

k1
EC

′′C′

k2
−EC

′′C
k2

EC
′′C′

k1
.

(17.6) is a fundamental relation on the epipolar tensor FCC
′′

and the
epipoles. In matrix form, it can be written as

(FCC
′′

)TECC′ ' EC′′C ×EC′′C′

; (17.7)

in Grassmann-Cayley algebra, it can be written as

C ′′ ∧ (C ∧ C ′) ' (C ′′ ∧ C) ∧C′′ (C ′′ ∧ C ′). (17.8)

Geometrically, it means that the epipolar line in camera C ′′ with respect
to both C and C ′ is the image line connecting the two epipoles EC

′′C and
EC

′′C′

. One should notice the obvious advantage of Grassmann-Cayley alge-
braic representation in geometric interpretation.

Since EC′′C ×EC′′C′

is orthogonal to EC′′C′

, an immediate corollary is

(ECC′

)TFCC
′′

EC′′C′

= 0, (17.9)

which is equivalent to (C ∧C ′)∨ (C ′′ ∧C ′) = 0. Geometrically, it means that
the two epipoles EC

′′C and EC
′′C′

satisfy the epipolar constraint.

17.5.2 Relations on Trifocal Tensors I

The first idea to derive relations on trifocal tensors is very simple: if the
tensor (Tijk)i,j,k=1..3 is given, then expanding

(êC∗
i ∧ eC′∗

j) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3) (17.10)

gives a 2-vector of the eC
′′∗’s whose coefficients are known. Similarly, expand-

ing

Texp1 = (êC∗
i ∧ eC′∗

j1) ∨ (êC∗
i ∧ eC′∗

j2) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3). (17.11)

from right to left gives a vector of the eC
′′∗’s whose coefficients are known.

Expanding Texp1 from left to right, we get a vector of the eC
′′∗’s whose

432 Hongbo Li, Gerald Sommer

coefficients depend on epipolar tensors. By comparing the coefficients of the
eC

′′∗’s, we get a relation on T and epipolar tensors.
Assume that j ≺ j1 ≺ j2. Expanding Texp1 from left to right, we get

Texp1 = −(êC∗
i ∧ eC′∗

j1
∧ eC′∗

j2
)∼

3∑
k=1

(êC∗
i ∨ êC′′∗

k) eC
′′∗

k

= −
3∑
k=1

FCC
′

ij FCC
′′

ik eC
′′∗

k .

Expanding Texp1 from right to left, we get

Texp1 =
3∑

k=1

(
((êC∗

i ∧ eC′∗
j1) ∨ eC′′∗

k2
)((êC∗

i ∧ eC′∗
j2) ∨ eC′′∗

k1
)

− ((êC∗
i ∧ eC′∗

j1) ∨ eC′′∗
k1

)((êC∗
i ∧ eC′∗

j2) ∨ eC′′∗
k2

)
)
eC

′′∗
k

=
3∑

k=1

(Tij1k2Tij2k1 − Tij1k1Tij2k2) e
C′′∗
k ,

where k ≺ k1 ≺ k2. So

FCC
′

ij FCC
′′

ik = tCijk , (17.12)

where

tCijk = Tij1k1Tij2k2 − Tij1k2Tij2k1 . (17.13)

Proposition 17.5.1. For any 1 ≤ i, j, k ≤ 3,

FCC
′

ij FCC
′′

ik ' tCijk . (17.14)

Corollary 17.5.1. Let 1 ≤ i, j1, j2, k1, k2 ≤ 3, then

FCC
′

ij1

FCC
′

ij2

=
tCij1k
tCij2k

, for any 1 ≤ k ≤ 3; (17.15)

FCC
′′

ik1

FCC
′′

ik2

=
tCijk1
tCijk2

, for any 1 ≤ j ≤ 3; (17.16)

tCij1k1
tCij1k2

=
tCij2k1
tCij2k2

. (17.17)

Notice that (17.17) is a constraint of degree 4 on T .
To understand relation (17.14) geometrically, we first express it in terms of

Grassmann-Cayley algebra. When C∧eCi is fixed, T induces a linear mapping

TC
′′C

i : C ′ ∧ G2
4 −→ C ′′ ∧ R4 by

TC
′′C

i (LC
′

) = C ′′ ∧ ((C ∧ eCi) ∨ LC′

). (17.18)

The matrix of TC
′′C

i is (−Tijk)Tj,k=1..3.

17. Coordinate-Free Projective Geometry for Computer Vision 433

Define a linear mapping tC
′′C

i : C ′ ∧ R4 −→ C ′′ ∧ G2
4 as follows: let

mC′ ∈ C ′ ∧ R4 and mC′

= LC
′

1 ∨ LC′

2 , where LC
′

1 , LC
′

2 ∈ C ′ ∧ G2
4 , then

tC
′′C

i (mC′

) = TC
′′C

i (LC
′

1) ∧C′′ TC
′′C

i (LC
′

2). (17.19)

We need to prove that this mapping is well-defined. Using the formula that
for any 2-blade C2 ∈ G2

4 and 3-blades A3, B3 ∈ G3
4 ,

(C2 ∨ A3) ∧ (C2 ∨ B3) = −(A3 ∨ B3 ∨ C2)C2, (17.20)

we get

tC
′′C

i (mC′

) = C ′′ ∧ ((C ∧ eCi) ∨ LC′

1) ∧ ((C ∧ eCi) ∨ LC′

2)

= −LC′

1 ∨ LC′

2 ∨ (C ∧ eCi) C ′′ ∧ C ∧ eCi
= −mC′ ∨ (C ∧ eCi) C ′′ ∧ C ∧ eCi
=

3∑
k=1

mC′ ∨ (C ∧ eCi) (C ′′ ∧ C ∧ eCi ∧ eC′′

k)∼ C ′′ ∧ êC′′

k .

(17.21)

So tC
′′C

i is well-defined. Let j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2, then since

tC
′′C

i (C ′ ∧ eC′

j) = TC
′′C

i (C ′ ∧ eC′

j ∧ eC′

j1
) ∧C′′ TC

′′C
i (C ′ ∧ eC′

j ∧ eC′

j2
)

= −
(

3∑
k2=1

Tij2k2C
′′ ∧ eC′′

k2

)
∧C′′

(
3∑

k1=1

Tij1k1C
′′ ∧ eC′′

k1

)

=
3∑

k=1

(Tij1k1Tij2k2 − Tij1k2Tij2k1)C
′′ ∧ êC′′

k ,

the matrix of tC
′′C

i is (tijk)
T
j,k=1..3.

So (17.14) is equivalent to

TC
′′C

i (LC
′

1) ∧C′′ TC
′′C

i (LC
′

2) = −mC′ ∨ (C ∧ eCi) C ′′ ∧ C ∧ eCi . (17.22)

Geometrically, TC
′′C

i maps an image line in camera C ′ to an image point on
the epipolar line C ′′ ∧C ∧ eCi in camera C ′′. (17.22) says that the image line

connecting the two image points TC
′′C

i (LC
′

1) and TC
′′C

i (LC
′

2) in camera C ′′

is just the epipolar line C ′′ ∧ C ∧ eCi . This is the geometric interpretation of
(17.14).

17.5.3 Relations on Trifocal Tensors II

Now we let the two êC∗’s in Texp1 be different, and let the two eC
′∗ be the

same, i. e., we consider the expression

434 Hongbo Li, Gerald Sommer

Texp2 = (eC∗
i1 ∧ eC∗

i ∧ eC′∗
j) ∨ (eC∗

i2 ∧ eC∗
i ∧ eC′∗

j) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3).

(17.23)

Assume that i ≺ i1 ≺ i2. Expanding Texp2 from left to right, we get

Texp2 = −(eC∗
i ∧ eC∗

i1 ∧ eC∗
i2 ∧ eC′∗

j)∼
(

3∑
k=1

((eC∗
i ∧ eC′∗

j) ∨ êC′′∗
k)eC

′′∗
k

)

=
3∑

k=1

EC
′C

j T ′′
kije

C′′∗
k .

Expanding Texp2 from right to left, we get

Texp2 = −
3∑
k=1

(
((êC∗

i2 ∧ eC′∗
j) ∨ eC′′∗

k2
)((êC∗

i1 ∧ eC′∗
j) ∨ eC′′∗

k1
)

− ((êC∗
i2 ∧ eC′∗

j) ∨ eC′′∗
k1

)((êC∗
i1 ∧ eC′∗

j) ∨ eC′′∗
k2

)
)
eC

′′∗
k

= −
3∑
k=1

(Ti1jk1Ti2jk2 − Ti1jk2Ti2jk1)e
C′′∗
k ,

where k ≺ k1 ≺ k2. So

−EC′C
j T ′′

kij = tC
′

ijk , (17.24)

where

tC
′

ijk = Ti1jk1Ti2jk2 − Ti1jk2Ti2jk1 . (17.25)

Proposition 17.5.2. For any 1 ≤ i, j, k ≤ 3,

EC
′C

j T ′′
kij ' tC

′

ijk . (17.26)

Corollary 17.5.2. For any 1 ≤ i, i1, i2, j, k, k1, k2 ≤ 3,

T ′′
ki1j

T ′′
ki2j

=
tC

′

i1jk

tC
′

i2jk

;
T ′′
k1ij

T ′′
k2ij

=
tC

′

k1ij

tC
′

k2ij

. (17.27)

Same as before, to understand relation (17.26) geometrically, we first ex-
press it in terms of Grassmann-Cayley algebra. When C ′ ∧ êC

′

j is fixed, T

induces a linear mapping TCC
′

j : C ′′ ∧ G2
4 −→ C ∧ G2

4 by

TCC
′

j (LC
′′

) = C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

), (17.28)

whose matrix is (−Tijk)i,k=1..3. T
′′ also induces a linear mapping T ′′CC′

j :
C ′′ ∧ R4 −→ C ∧ R4 by

T ′′CC′

j (mC′′

) = C ∧ (mC′′ ∨ (C ′ ∧ êC′

j)), (17.29)

17. Coordinate-Free Projective Geometry for Computer Vision 435

whose matrix is (−T ′′
kij)

T
k,i=1..3. Define a linear mapping tCC

′

j : C ′′ ∧ R4 −→
C∧R4 as follows: letmC′′ ∈ C ′′∧R4 andmC′′

= LC
′′

1 ∨LC′′

2 , where LC
′′

1 , LC
′′

2 ∈
C ′′ ∧ G2

4 , then

tCC
′

j (mC′′

) = TCC
′

j (LC
′′

1) ∨ TCC
′

j (LC
′′

2). (17.30)

We need to prove that this mapping is well-defined. Using the formula that
for any C ∈ R4 and A3, B3 ∈ G3

4 ,

(C ∧ (A3 ∨ B3)) ∨ B3 = −(B3 ∨ C)(A3 ∨ B3), (17.31)

we get

tCC
′

j (mC′′

) =
(
C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1)
)
∨
(
C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

2)
)

= −C ∧
(
C ∧

(
(C ′ ∧ êC′

j) ∨ LC′′

1

)
∨ (C ′ ∧ êC′

j) ∨ LC′′

2

)

= (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1 ∨ LC′′

2)

= (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨mC′′

)

= EC
′C

j T ′′CC′

j (mC′′

).

(17.32)

So tCC
′

j is well-defined. Using (17.30), it can be verified that the matrix of

tCC
′

j is (tC
′

ijk)i,k=1..3.
Thus, (17.26) is equivalent to

TCC
′

j (LC
′′

1) ∨ TCC
′

j (LC
′′

2) = (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1 ∨ LC′′

2).

(17.33)

Geometrically, TCC
′

j maps an image line LC
′′

in camera C ′′ to the image line

in camera C, which is the image of the space line on both planes C ′∧ êC′

j and

LC
′′

. (17.33) says that the intersection of the two image lines TCC
′

j (LC
′′

1) and

TCC
′

j (LC
′′

2) is just the image of the intersection of the plane C ′∧ êC′

j with the

line LC
′′

1 ∨ LC′′

2 in the space. This is the geometric interpretation of (17.26).

17.5.4 Relations on Trifocal Tensors III

Consider the following expression obtained by changing one of the eC
′∗’s in

Texp1 to an eC
′′∗:

Texp3 = (êC∗
i ∧ eC′∗

j) ∨ (êC∗
i ∧ eC′′∗

k) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3). (17.34)

Expanding Texp3 from left to right, we get

436 Hongbo Li, Gerald Sommer

Texp3 = (êC∗
i ∧ eC′∗

j) ∨ eC′′∗
k

(
3∑
l=1

(êC∗
i ∨ êC′′∗

l) eC
′′∗

l

)

= −
3∑
l=1

TijkF
CC′′

il eC
′′∗

l .

Expanding Texp3 from right to left, we get

Texp3 = (êC∗
i ∧ eC′∗

j) ∨
(
(êC∗
i ∧ eC′′∗

k ∧ eC′′∗
k1

)∼eC
′′∗

k2
∧ eC′′∗

k

− (êC∗
i ∧ eC′′∗

k ∧ eC′′∗
k2

)∼eC
′′∗

k1
∧ eC′′∗

k

)

= (Tijk1F
CC′′

ik1
+ Tijk2F

CC′′

ik2
)eC

′′∗
k

−TijkFCC
′′

ik1
eC

′′∗
k1

− TijkF
CC′′

ik2
eC

′′∗
k2

,

where k ≺ k1 ≺ k2.

Proposition 17.5.3. For any 1 ≤ i, j ≤ 3,

3∑

k=1

TijkF
CC′′

ik = 0. (17.35)

By (17.16), FCC
′′

ik = FCC
′′

i1 tCijk/t
C
ij1. So (17.35) is equivalent to

3∑

k=1

Tijkt
C
ijk = det(Tijk)j,k=1..3 = 0, (17.36)

for any 1 ≤ i, j ≤ 3. (17.36) can also be obtained directly by expanding the
following expression:

(êC∗
i ∧ eC′∗

1) ∨ (êC∗
i ∧ eC′∗

2) ∨ (êC∗
i ∧ eC′∗

3) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3).
(17.37)

Expanding from left to right, (17.37) gives zero; expanding from right to left,
it gives det(Tijk)j,k=1..3.

To understand (17.36) geometrically, we check the dual form of (17.37),
which is

C ′′ ∧ ((C ∧ eCi) ∨ (C ′ ∧ êC′

1))

∧((C ∧ eCi) ∨ (C ′ ∧ êC′

2))

∧((C ∧ eCi) ∨ (C ′ ∧ êC′

3)).

(17.38)

(17.38) equals zero because the intersections of a line with three planes are
always collinear.

Interchanging C with C ′′, we get det(T ′′
kij)i,j=1..3 = 0 for any 1 ≤ k ≤ 3.

By (17.26), we have

17. Coordinate-Free Projective Geometry for Computer Vision 437

det(tC
′

ijk)i,j=1..3 = 0. (17.39)

A similar constraint can be obtained by interchanging C and C ′.
(17.37) can be generalized to the following one:

(
(

3∑
i=1

λiê
C∗
i) ∧ eC′∗

1

)
∨
(

(
3∑
i=1

λiê
C∗
i) ∧ eC′∗

2

)

∨
(

(
3∑
i=1

λiê
C∗
i) ∧ eC′∗

3

)
∨ (eC

′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.40)

where the λ’s are indeterminants. (17.40) equals zero when expanded from
the left, and equals a polynomial of the λ’s when expanded from the right.
The coefficients of the polynomial are expressions of the Tijk ’s. Thus, we get
10 constraints of degree 3 on T , called the rank constraints by Faugeras and
Papadopoulo [81, 83].

17.5.5 Relations on Trifocal Tensors IV

Now, we let the two êC∗’s in Texp3 be different. Consider

Texp4 = (eC∗
i ∧ eC∗

i1 ∧ eC′∗
j) ∨ (eC∗

i ∧ eC∗
i2 ∧ eC′′∗

k) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3).

(17.41)

Assume that i ≺ i1 ≺ i2. Expanding Texp4 from left to right, we get

Texp4 = (eC∗
i ∧ eC∗

i1
∧ eC∗

i2
∧ eC′∗

j)∼(eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3 ∧ eC∗
i)∼eC

′′∗
k

−(eC∗
i ∧ eC∗

i1 ∧ eC′∗
j ∧ eC′′∗

k)∼(
3∑
l=1

((eC∗
i ∧ eC∗

i2
) ∨ êC′′∗

l)eC
′′∗

l

)

= (EC
′C

j ECC
′′

i + Ti2jkF
CC′′

i1k
)eC

′′∗
k

+ Ti2jkF
CC′′

i1k1
eC

′′∗
k1

+ Ti2jkF
CC′′

i1k2
eC

′′∗
k2

.

Expanding Texp4 from right to left, we get

Texp4 = ((eC∗
i ∧ eC∗

i1
) ∨ (eC

′∗
j ∧ eC′′∗

k))(êC∗
i1

∨ êC′′∗
k1

)eC
′′∗

k1

+ ((eC∗
i ∧ eC∗

i1) ∨ (eC
′∗

j ∧ eC′′∗
k))(êC∗

i1 ∨ êC′′∗
k2

)eC
′′∗

k2

−
(
((eC∗

i ∧ eC∗
i1

) ∨ (eC
′∗

j ∧ eC′′∗
k1

))(êC∗
i1

∨ êC′′∗
k1

)

+ ((eC∗
i ∧ eC∗

i1) ∨ (eC
′∗

j ∧ eC′′∗
k2

))(êC∗
i1 ∨ êC′′∗

k2
)
)
eC

′′∗
k

= Ti2jkF
CC′′

i1k1
eC

′′∗
k1

+ Ti2jkF
CC′′

i1k2
eC

′′∗
k2

− (Ti2jk1F
CC′′

i1k1
+ Ti2jk2F

CC′′

i1k2
)eC

′′∗
k ,

438 Hongbo Li, Gerald Sommer

where k ≺ k1 ≺ k2. So

3∑

k=1

Ti2jkF
CC′′

i1k = −EC′C
j ECC

′′

i . (17.42)

Interchanging i1, i2 in Texp4, we obtain

3∑

k=1

Ti1jkF
CC′′

i2k = EC
′C

j ECC
′′

i . (17.43)

Proposition 17.5.4. For any 1 ≤ i, j ≤ 3,

EC
′C

j ECC
′′

i 'Wij , (17.44)

where Wij =
3∑

k=1

Ti1jkF
CC′′

i2k
.

From (17.36), (17.42) and (17.43) we get

Proposition 17.5.5. For any 1 ≤ i1, i2, j ≤ 3,

3∑

k=1

(Ti1jkF
CC′′

i2k + Ti2jkF
CC′′

i1k) = 0. (17.45)

In fact, (17.44) can be proved by direct computation:

Wij =
3∑

k=1

(C ∧ eCi1) ∨ (C ′ ∧ êC′

j) ∨ (C ′′ ∧ êC′′

k) (C ∧ eCi2) ∨ (C ′′ ∧ eC′′

k)

= −
(
C ′′ ∧

(
3∑

k=1

(C ∧ eCi2) ∨ (C ′′ ∧ eC′′

k) êC
′′

k

))
∨ (C ∧ eCi1) ∨ (C ′ ∧ êC′

j)

= (C ′′ ∧ C ∧ eCi2) ∨ (C ∧ eCi1) ∨ (C ′ ∧ êC′

j)

= (C ′′ ∧ C ∧ eCi1 ∧ eCi2)∼ (C ∧ C ′ ∧ êC′

j)∼

= ECC
′′

i EC
′C

j .

So (17.44) is equivalent to

(C ′′ ∧ C ∧ eCi2) ∨ (C ∧ eCi1) ∨ (C ′ ∧ êC′

j) =

(C ′′ ∧ C ∧ eCi1 ∧ eCi2)∼ (C ∧ C ′ ∧ êC′

j)∼;
(17.46)

(17.45) is equivalent to the anti-symmetry of C ′′ ∧ C ∧ eCi1 ∧ eCi2 with respect

to eCi1 and eCi2 .
Define

17. Coordinate-Free Projective Geometry for Computer Vision 439

uC
′′C

i1i2j1j2 =

3∑

k=1

tCi1j1kTi2j2k (17.47)

for 1 ≤ i1, i2, j1, j2 ≤ 3. By (17.12), (17.36), (17.42) and (17.43),

uC
′′C

i1i2j1j2 =
3∑

k=1

FCC
′

i1j1 F
CC′′

i1k
Ti2j2k

=

0, if i1 = i2;

− FCC
′

i1j1
EC

′C
j2

ECC
′′

i , if i ≺ i1 ≺ i2;

FCC
′

i1j1 E
C′C
j2 ECC

′′

i , if i ≺ i2 ≺ i1.

(17.48)

Two corollaries can be drawn immediately:

Corollary 17.5.3. 1. For any 1 ≤ il, jl ≤ 3, where 1 ≤ k ≤ 4,

uC
′′C

i1i2j1j2

uC
′′C

i1i2j1j3

=
uC

′′C
i3i4j4j2

uC
′′C

i3i4j4j3

=
EC

′C
j2

EC
′C

j3

. (17.49)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC
′′C

i1i2j1j2

uC
′′C

i1ij1j2

=
uC

′′C
i1i2j3j4

uC
′′C

i1ij3j4

= −E
CC′′

i

ECC
′′

i2

. (17.50)

Corollary 17.5.4. 1. For any 1 ≤ i1, i2, j1 ≤ 3 where i1 6= i2,,

EC′C ' (uC
′′C

i1i2j1j2)j2=1..3. (17.51)

2. For any 1 ≤ j1, j2 ≤ 3,

ECC′′ ' (uC
′′C

23j1j2u
C′′C
32j1j2 ,−uC

′′C
23j1j2u

C′′C
31j1j2 ,−uC

′′C
21j1j2u

C′′C
32j1j2)

T . (17.52)

Now we explain (17.48) in terms of Grassmann-Cayley algebra. We have
defined two mappings TC

′′C
i and tC

′′C
i in (17.18) and (17.19), whose matrices

are (−Tijk)j,k=1..3 and (tCijk)j,k=1..3 respectively. By the definition of uC
′′C

i1i2j1j2
,

uC
′′C

i1i2j1j2C
′′ = tC

′′C
i1 (C ′ ∧ eC′

j1) ∨ TC′′C
i2 (C ′ ∧ êC′

j2). (17.53)

Expanding the right-hand side of (17.53), we get

uC
′′C

i1i2j1j2 = UC
′′C(C ∧ eCi1 , C ∧ eCi2 , C ′ ∧ eC′

j1 , C
′ ∧ êC′

j2), (17.54)

where UC
′′C : (C ∧ R4) × (C ∧ R4) × (C ′ ∧ R4) × (C ′ ∧ G2

4) −→ R is defined
by

UC
′′C(mC

1 ,m
C
2 ,m

C′

, LC
′

) = −mC
1 ∨mC′

C ∨ LC′

C ′′ ∨ (mC
1 ∧C mC

2).
(17.55)

440 Hongbo Li, Gerald Sommer

(17.54) is (17.48) in Grassmann-Cayley algebraic form. It means that the
uC

′′C ’s are components of the mapping UC
′′C .

Notice that (17.49) is a group of degree 6 constraints on T . It is closely
related to Faugeras and Mourrain’s first group of degree 6 constraints:

|Tk1k2. Tk1l2. Tl1l2.||Tk1k2. Tl1k2. Tl1l2.|
= |Tl1k2. Tk1l2. Tl1l2.||Tk1k2. Tl1k2. Tk1l2.|,

(17.56)

where Tk1k2. = (Tk1k2k)k=1..3.
It is difficult to find the symmetry of the indices in (17.56), so we first

express (17.56) in terms of Grassmann-Cayley algebra. Using the fact that
−Tk1k2. is the coordinates of C ′′ ∧ ((C ∧ eCk1) ∨ (C ′ ∧ êC′

k2
)), we get

|Tk1k2. Tk1l2. Tl1l2.|∼

=
(
C ′′ ∧

(
(C ∧ eCk1) ∨ (C ′ ∧ êC′

k2
)
))

∧C′′

(
C ′′ ∧

(
(C ∧ eCk1) ∨ (C ′ ∧ êC′

l2
)
))

∧C′′

(
C ′′ ∧

(
(C ∧ eCl1) ∨ (C ′ ∧ êC′

ls2
)
))

= C ′′ ∧
(
(C ∧ eCk1) ∨ (C ′ ∧ êC′

k2
)
)
∧
(
(C ∧ eCk1) ∨ (C ′ ∧ êC′

l2
)
)

∧
(
(C ∧ eCl1) ∨ (C ′ ∧ êC′

l2
)
)
.

By formula (17.20),

|Tk1k2. Tk1l2. Tl1l2.| = −(C ∧ eCk1) ∨ (C ′ ∧ êC′

l2
) ∨ (C ′ ∧ êC′

k2
)

(C ′′ ∧ C ∧ eCk1) ∨ (C ∧ eCl1) ∨ (C ′ ∧ êC′

l2
)

= − (C ∧ eCk1) ∨ (C ′ ∧ êC′

k2
) ∨ (C ′ ∧ êC′

l2
)

C ′′ ∨ (C ∧ eCk1 ∧ eCl1) C ∨ (C ′ ∧ êC′

l2
).

(17.57)

Define a mapping V C
′′

: (C ∧R4)× (C ∧R4)× (C ′∧G2
4)× (C ′∧G2

4) −→ R

as follows:

V C
′′

(mC
1 ,m

C
2 , L

C′

1 , LC
′

2) = −(C ′′ ∨ (mC
1 ∧C mC

2))

(C ∨ LC′

2)(mC
1 ∨ LC′

1 ∨ LC′

2).
(17.58)

Let

vC
′′

k1l1k2l2 = V C
′′

(C ′ ∧ êC′

k1 , C
′ ∧ êC′

l1 , C
′′ ∧ êC′′

k2 , C
′′ ∧ êC′′

l2). (17.59)

By (17.57),

17. Coordinate-Free Projective Geometry for Computer Vision 441

|Tk1k2. Tk1l2. Tl1l2.| = vC
′′

k1l1k2l2 . (17.60)

Similarly, we can get

|Tk1k2. Tl1k2. Tl1l2.| = vC
′′

l1k1l2k2
,

|Tl1k2. Tk1l2. Tl1l2.| = vC
′′

l1k1k2l2
,

|Tk1k2. Tl1k2. Tk1l2.| = vC
′′

k1l1l2k2
.

(17.61)

So (17.56) is equivalent to

vC
′′

k1l1k2l2

vC
′′

k1l1l2k2

=
vC

′′

l1k1k2l2

vC
′′

l1k1l2k2

, (17.62)

which is simpler than (17.56) in appearance. By (17.58), (17.59), in Grassmann-
Cayley algebra, (17.62) is just the following identity:

C ′′ ∨ (mC
1 ∧C mC

2) C ∨ LC′

2 mC
1 ∨ LC′

1 ∨ LC′

2

C ′′ ∨ (mC
1 ∧C mC

2) C ∨ LC′

1 mC
1 ∨ LC′

2 ∨ LC′

1

=
C ′′ ∨ (mC

2 ∧C mC
1) C ∨ LC′

2 mC
2 ∨ LC′

1 ∨ LC′

2

C ′′ ∨ (mC
2 ∧C mC

1) C ∨ LC′

1 mC
2 ∨ LC′

2 ∨ LC′

1

,

(17.63)

for any mC
1 ,m

C
2 ∈ C ∧ R4, LC

′

1 , LC
′

2 ∈ C ′ ∧ G2
4 .

By (17.58), we have

vC
′′

i1i2j1j2
=

0, if i1 = i2 or j1 = j2;

− FCC
′

i1j EC
′C

j2 ECC
′′

i , if i ≺ i1 ≺ i2 and j ≺ j1 ≺ j2,

or i ≺ i2 ≺ i1 and j ≺ j2 ≺ j1;

FCC
′

i1j
EC

′C
j2

ECC
′′

i , if i ≺ i1 ≺ i2 and j ≺ j2 ≺ j1,

or i ≺ i2 ≺ i1 and j ≺ j1 ≺ j2.

(17.64)

Corollary 17.5.5. 1. For any 1 ≤ il, j1, j2 ≤ 3 where 1 ≤ l ≤ 4,

vC
′′

i1i2j1j2

vC
′′

i1i2j2j1

=
vC

′′

i3i4j1j2

vC
′′

i3i4j2j1

. (17.65)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

vC
′′

i1i2j1j2

vC
′′

i1ij1j2

=
vC

′′

i1i2j3j4

vC
′′

i1ij3j4

. (17.66)

442 Hongbo Li, Gerald Sommer

(17.56) is a special case of (17.65) where i3 = i2, i4 = i1. Comparing
UC

′′C with V C
′′

, we get

V C
′′

(mC
1 ,m

C
2 , L

C′

1 , LC
′

2) = UC
′′C(mC

1 ,m
C
2 , L

C′

1 ∨ LC′

2 , LC
′

2). (17.67)

It appears that we have generalized Faugeras and Mourrain’s first group of
degree-six constraints furthermore by UC

′′C , because (17.50) is equivalent to
(17.66), while (17.65) is a special case of (17.49) where j4 = j1. An explana-
tion for this phenomenon is that the variables in V C

′′

are less separated than
those in UC

′′C , so there are less constraints on T that come from V C′′

than
from UC

′′C .
Interchanging C ′ and C ′′ in (17.56), we get Faugeras and Mourrain’s

second group of degree 6 constraints:

|Tk1.k2 Tk1.l2 Tl1.l2 ||Tk1.k2 Tl1.k2 Tl1.l2 |
= |Tl1.k2 Tk1.l2 Tl1.l2 ||Tk1 .k2 Tl1.k2 Tk1.l2 |,

(17.68)

where Tk1 .k2 = (Tk1kk2)k=1..3.
This group of constraints can be generalized similarly.

17.5.6 Relations on Trifocal Tensors V

Consider the following expression:

Texp5 = (eC∗
i ∧ eC∗

i1 ∧ eC′∗
j) ∨ (eC∗

i2 ∧ eC′∗
j ∧ eC′′∗

k) ∨ (eC
′′∗

1 ∧ eC′′∗
2 ∧ eC′′∗

3).

(17.69)

Assume that i ≺ i1 ≺ i2. Expanding Texp5 from left to right, we get

Texp5 = −EC′C
j EC

′C′′

j eC
′′∗

k − Ti2jk

3∑

l=1

T ′′
li2je

C′′∗
l .

Expanding Texp4 from right to left, we get

Texp5 = −T ′′
k2i2j

Ti2jke
C′′∗
k2

− T ′′
k1i2j

Ti2jke
C′′∗
k1

+(T ′′
k2i2j

Ti2jk2 + T ′′
k1i2j

Ti2jk1)e
C′′∗
k ,

where k ≺ k1 ≺ k2. So

3∑

k=1

T ′′
ki2jTi2jk = −EC′C

j EC
′C′′

j . (17.70)

Proposition 17.5.6. For any 1 ≤ i, j ≤ 3,

3∑

k=1

T ′′
kijTijk ' EC

′C
j EC

′C′′

j . (17.71)

17. Coordinate-Free Projective Geometry for Computer Vision 443

Using the relation (17.26), we get

3∑

k=1

tC
′

ijkTijk = det(Tijk)i,k=1..3 = (EC
′C

j)2EC
′C′′

j . (17.72)

Corollary 17.5.6. For any 1 ≤ i1, i2, j1 ≤ 3 where i1 6= i2,

EC′C′′ '
(

det(Tijk)i,k=1..3

(uC
′′C

i1i2j1j
)2

)

j=1..3

. (17.73)

17.5.7 Relations on Trifocal Tensors VI

The second idea of deriving relations on trifocal tensors is as follows: if the
tensor (Tijk)i,j,k=1..3 is given, then expanding

(eC
′∗

j ∧ eC′′∗
k) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3) (17.74)

gives a vector of the eC∗’s whose coefficients are known. Similarly, expanding

(eC
′∗

j ∧ eC′∗
j) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3 ∧ eC′∗
j),

(eC
′∗

j ∧ eC′′∗
k) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3 ∧ eC′′∗
k)

(17.75)

gives two 2-vectors of the eC
′∗

j ∧eC∗
i ’s and the eC

′′∗
k ∧eC∗

i ’s respectively, whose
coefficients are known. The meet of two such 2-vectors, i. e.,

Texp6 =
(
(eC

′∗
j1

∧ eC′′∗
k1

) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′∗

j1
)
)

∨
(
(eC

′∗
j2 ∧ eC′′∗

k2
) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3 ∧ eC′′∗
k2

)
)

(17.76)

is an expression of the Tijk ’s. Expanding the meets differently, we get a rela-
tion on T , epipoles and epipolar tensors.

Assume that j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2. Expanding Texp6 according
to its parentheses, we get

Texp6 =

(
3∑

i1=1

(eC
′∗

j1
∧ eC′′∗

k1
) ∨ êC∗

i1
eC∗
i1

∧ eC′∗
j1

)

∨
(

3∑
i2=1

(eC
′∗

j2
∧ eC′′∗

k2
) ∨ êC∗

i2
eC∗
i2

∧ eC′′∗
k2

)

=
3∑
i=1

(−Ti1j1k1Ti2j2k2 + Ti2j1k1Ti1j2k2)Tij1k2 ,

where i ≺ i1 ≺ i2. Using the fact that the meet of a 4-vector with any
multivector in G4 is a scalar multiplication of the multivector by the dual of
the 4-vector, we get

444 Hongbo Li, Gerald Sommer

Texp6 = (eC
′∗

j1
∧ eC′′∗

k1
) ∨ (eC

′∗
j2

∧ eC′′∗
k2

) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′∗

j1
)

∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′′∗

k2
)

= − FC
′C′′

jk EC
′C

j1
EC

′′C
k2

.

So

FC
′C′′

jk EC
′C

j1 EC
′′C

k2 =

3∑

i=1

(Ti1j1k1Ti2j2k2 − Ti2j1k1Ti1j2k2)Tij1k2 . (17.77)

Interchanging j1, j2 in Texp5, we get

−FC′C′′

jk EC
′C

j2 EC
′′C

k2 =

3∑

i=1

(Ti1j2k1Ti2j1k2 − Ti2j2k1Ti1j1k2)Tij2k2 . (17.78)

Interchanging k1, k2 in Texp5, we get

−FC′C′′

jk EC
′C

j1 EC
′′C

k1 =

3∑

i=1

(Ti1j1k2Ti2j2k1 − Ti2j1k2Ti1j2k1)Tij1k1 . (17.79)

Interchanging (j1, k1) and (j2, k2) in Texp5, we get

FC
′C′′

jk EC
′C

j2 EC
′′C

k1 =

3∑

i=1

(Ti1j2k2Ti2j1k1 − Ti2j2k2Ti1j1k1)Tij2k1 . (17.80)

When j1 = j2 or k1 = k2, Texp5 = 0 by expanding from left to right.
Define

vCj1j2k1k2 = −
3∑

i=1

(Ti1j1k1Ti2j2k2 − Ti2j1k1Ti1j2k2)Tij1k2 . (17.81)

Then

vCj1j2k1k2 =

0, if j1 = j2 or k1 = k2;

− FC
′C′′

jk EC
′C

j1 EC
′′C

k2
, if j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2,

or j ≺ j2 ≺ j1 and k ≺ k2 ≺ k1;

FC
′C′′

jk EC
′C

j1 EC
′′C

k2
, if j ≺ j1 ≺ j2 and k ≺ k2 ≺ k1,

or j ≺ j2 ≺ j1 and k ≺ k1 ≺ k2.

(17.82)

Proposition 17.5.7. For any 1 ≤ j1, j2, k1, k2 ≤ 3,

vCj1j2k1k2
vCj2j1k1k2

= −
EC

′C
j1

EC
′C

j2

;
vCj1j2k1k2
vCj1j2k2k1

= −E
C′′C
k2

EC
′′C

k1

. (17.83)

17. Coordinate-Free Projective Geometry for Computer Vision 445

Corollary 17.5.7. 1. For any 1 ≤ jl, kl ≤ 3, where 1 ≤ l ≤ 4,

vCj1j2k1k2
vCj2j1k1k2

=
vCj1j2k3k4
vCj2j1k3k4

;
vCj1j2k1k2
vCj1j2k2k1

=
vCj3j4k1k2
vCj3j4k2k1

. (17.84)

2. For any 1 ≤ il, j, jl, kl ≤ 3 where 1 ≤ l ≤ 2,

vCj1j2k1k2
vCj2j1k1k2

= −
uC

′′C
i1i2jj1

uC
′′C

i1i2jj2

. (17.85)

Notice that (17.84) and (17.85) are groups of degree 6 constraints on T .
(17.84) is closely related to Faugeras and Mourrain’s third group of degree 6
constraints:

|T.k1k2 T.k1l2 T.l1l2 ||T.k1k2 T.l1k2 T.l1l2 |
= |T.l1k2 T.k1l2 T.l1l2 ||T.k1k2 T.l1k2 T.k1l2 |,

(17.86)

where T.k1k2 = (Tkk1k2)k=1..3.
Let us express (17.86) in terms of Grassmann-Cayley algebra. Using the

fact that −T.k1k2 is the coordinates of C ∧ ((C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)), we get

|T.k1k2 T.k1l2 T.l1l2 |C
=
(
C ∧

(
(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨C
(
C ∧

(
(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
)
))

∨C
(
C ∧

(
(C ′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

l2
)
))

= C
(
C ∧

(
(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨
(
C ∧

(
(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
)
))

∨ (C ′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

l2
).

By (17.31), we have

|T.k1k2 T.k1l2 T.l1l2 |
=
(
C ∧

(
(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨(C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
) ∨ (C ′ ∧ êC′

l1
) (C ′′ ∧ êC′′

l2
) ∨ C

= − (C ′ ∧ êC′

k1
) ∨ C (C ′′ ∧ êC′′

l2
) ∨ C

(C ′ ∧ êC′

k1
) ∨ (C ′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

k2
) ∨ (C ′′ ∧ êC′′

l2
).

(17.87)

Define a mapping V C : (C ′∧G2
4)×(C ′∧G2

4)×(C ′′∧G2
4)×(C ′′∧G2

4) −→ R

as follows:

446 Hongbo Li, Gerald Sommer

V C(LC
′

1 , LC
′

2 , LC
′′

1 , LC
′′

2) = −(LC
′

1 ∨ C)(LC
′′

2 ∨ C)(LC
′

1 ∨ LC′

2 ∨ LC′′

1 ∨ LC′′

2).
(17.88)

Then

V C(C ′ ∧ êC′

k1 , C
′ ∧ êC′

l1 , C
′′ ∧ êC′′

k2 , C
′′ ∧ êC′′

l2) = vCk1l1k2l2 , (17.89)

According to (17.87),

|T.k1k2 T.k1l2 T.l1l2 | = vCk1l1k2l2 . (17.90)

Similarly, we have

|T.k1k2 T.l1k2 T.l1l2 | = vCl1k1l2k2 ,

|T.l1k2 T.k1l2 T.l1l2 | = vCl1k1k2l2 ,

|T.k1k2 T.l1k2 T.k1l2 | = vCk1l1l2k2 .

(17.91)

Now (17.86) is equivalent to

vCk1l1k2l2
vCk1l1l2k2

=
vCl1k1k2l2
vCl1k1l2k2

, (17.92)

or more explicitly, the following identity:

LC
′

1 ∨ C LC
′′

2 ∨ C LC
′

1 ∨ LC′

2 ∨ LC′′

1 ∨ LC′′

2

LC
′

1 ∨ C LC
′′

1 ∨ C LC
′

1 ∨ LC′

2 ∨ LC′′

2 ∨ LC′′

1

=
LC

′

2 ∨ C LC
′′

2 ∨ C LC
′

2 ∨ LC′

1 ∨ LC′′

1 ∨ LC′′

2

LC
′

2 ∨ C LC
′′

1 ∨ C LC
′

2 ∨ LC′

1 ∨ LC′′

2 ∨ LC′′

1

.

(17.93)

(17.84) is a straightforward generalization of it.

17.5.8 A Unified Treatment of Degree-six Constraints

In this section we make a comprehensive investigation of Faugeras and Mour-
rain’s three groups of degree-six constraints. We have defined uC

′′C
i1i2j1j2

in
(17.47) to derive and generalize the first group of constraints. We are go-
ing to follow the same line to derive and generalize the other two groups of
constraints.

The trifocal tensor T induces 6 kinds of linear mappings as shown in table
17.1. We have defined two linear mappings tC

′′C
i and tCC

′

j in (17.19) and
(17.30) respectively, which are generated by the T ’s. There are 6 such linear
mappings as shown in table 17.2. Let

mC′

= LC
′

1 ∨ LC′

2 , mC′′

= LC
′′

1 ∨ LC′′

2 , LC = mC
1 ∧C mC

2 .

Here

tC
′′

ijk = Ti1j1kTi2j2k − Ti1j2kTi2j1k, (17.94)

where i ≺ i1 ≺ i2 and j ≺ j1 ≺ j2. t
C
ijk and tC

′

ijk have been defined in (17.13)
and (17.25) respectively.

17. Coordinate-Free Projective Geometry for Computer Vision 447

Table 17.1. Linear mappings induced by T

Mapping Definition Matrix

TC′C
i C′′ ∧ G2

4 −→ C′ ∧ � 4 (−Tijk)j,k=1..3

LC′′ 7→ C′ ∧ ((C ∧ eC
i) ∨ LC′′

)

TC′′C
i C′ ∧ G2

4 −→ C′′ ∧ � 4 (−Tijk)T
j,k=1..3

LC′ 7→ C′′ ∧ ((C ∧ eC
i) ∨ LC′

)

TCC′

j C′′ ∧ G2
4 −→ C ∧ G2

4 (−Tijk)i,k=1..3

LC′′ 7→ C ∧ ((C′ ∧ êC′

j) ∨ LC′′

)

TC′′C′

j C ∧ � 4 −→ C′′ ∧ � 4 (−Tijk)T
i,k=1..3

mC 7→ C′′ ∧ (mC ∨ (C′ ∧ êC′

j))

TCC′′

k C′ ∧ G2
4 −→ C ∧ G2

4 (−Tijk)i,j=1..3

LC′ 7→ C ∧ (LC′ ∨ (C′′ ∧ êC′′

k))

TC′C′′

k C ∧ � 4 −→ C′ ∧ � 4 (−Tijk)T
i,j=1..3

mC 7→ C′ ∧ (mC ∨ (C′′ ∧ êC′′

k))

The mappings t’s are well-defined because

tC
′C

i (mC′′

) = − (C ∧ eCi) ∨mC′′

C ′ ∧ C ∧ eCi ,
tC

′′C
i (mC′

) = − (C ∧ eCi) ∨mC′

C ′′ ∧ C ∧ eCi ,
tCC

′

j (mC′′

) = (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨mC′′

),

tC
′′C′

j (LC) = − (C ′ ∧ êC′

j) ∨ C C ′′ ∧ (LC ∨ (C ′ ∧ êC′

j)),

tCC
′′

k (mC′

) = (C ′′ ∧ êC′′

k) ∨ C C ∧ (mC′ ∨ (C ′′ ∧ êC′′

k)),

tC
′C′′

k (LC) = − (C ′′ ∧ êC′′

k) ∨ C C ′ ∧ (LC ∨ (C ′′ ∧ êC′′

k)).

(17.95)

For any 1 ≤ i1, i2, j1, j2, k1, k2 ≤ 3, let

448 Hongbo Li, Gerald Sommer

Table 17.2. Linear mappings induced by t

Mapping Definition Matrix

tC
′C

i C′′ ∧ � 4 −→ C′ ∧ G2
4 (tCijk)j,k=1..3

mC′′ 7→ TC′C
i (LC′′

1) ∧C′ TC′C
i (LC′′

2)

tC
′′C

i C′ ∧ � 4 −→ C′′ ∧ G2
4 (tCijk)T

j,k=1..3

mC′ 7→ TC′′C
i (LC′

1) ∧C′′ TC′′C
i (LC′

2)

tCC′

j C′′ ∧ � 4 −→ C ∧ � 4 (tC
′

ijk)i,k=1..3

mC′′ 7→ TCC′

j (LC′′

1) ∨C TCC′

j (LC′′

2)

tC
′′C′

j C ∧ G2
4 −→ C′′ ∧ G2

4 (tC
′

ijk)T
i,k=1..3

LC 7→ TC′′C′

j (mC
1) ∧C′′ TC′′C′

j (mC
2)

tCC′′

k C′ ∧ � 4 −→ C ∧ � 4 (tC
′′

ijk)i,j=1..3

mC′ 7→ TCC′′

k (LC′

1) ∨C TCC′′

k (LC′

2)

tC
′C′′

k C ∧ G2
4 −→ C′ ∧ G2

4 (tC
′′

ijk)T
i,j=1..3

LC 7→ TC′C′′

k (mC
1) ∧C′ TC′C′′

k (mC
2)

uC
′′C

i1i2j1j2
=

3∑
k=1

tCi1j1kTi2j2k,

uC
′′C′

i1i2j1j2
=

3∑
k=1

tC
′

i1j1k
Ti2j2k,

uC
′C

i1i2k1k2
=

3∑
j=1

tCi1jk1Ti2jk2 ,

uC
′C′′

i1i2k1k2
=

3∑
j=1

tC
′′

i1jk1
Ti2jk2 ,

uCC
′

j1j2k1k2
=

3∑
i=1

tC
′

ij1k1
Tij2k2 ,

uCC
′′

j1j2k1k2
=

3∑
i=1

tC
′′

ij1k1
Tij2k2 .

(17.96)

Then

17. Coordinate-Free Projective Geometry for Computer Vision 449

uC
′′C

i1i2j1j2
C ′′ = tC

′′C
i1

(C ′ ∧ eC′

j1
) ∨ TC

′′C
i2

(C ′ ∧ êC′

j2
),

uC
′′C′

i1i2j1j2
C ′′ = tC

′′C′

j1
(C ∧ êCi1) ∨ TC

′′C′

j2
(C ∧ eCi2),

uC
′C

i1i2k1k2
C ′ = tC

′C
i1 (C ′′ ∧ eC′′

k1
) ∨ TC

′C
i2 (C ′′ ∧ êC′′

k2
),

uC
′C′′

i1i2k1k2
C ′ = tC

′C′′

k1
(C ∧ êCi1) ∨ TC

′C′′

k2
(C ∧ eCi2),

uCC
′

j1j2k1k2
C = tCC

′

j1 (C ′′ ∧ eC′′

k1
) ∨ TCC

′

j2 (C ′′ ∧ êC′′

k2
),

uCC
′′

j1j2k1k2
C = tCC

′′

k1
(C ′ ∧ eC′

j1) ∨ TCC
′′

k2
(C ′ ∧ êC′

j2).

(17.97)

Expanding the right-hand side of the above equalities, we can get a factored
form of the u’s, from which we get the following constraints.

Constraints from uC
′′C

i1i2j1j2
: (see also subsection 17.5.5)

uC
′′C

i1i2j1j2 =

0, if i1 = i2;

− FCC
′

i1j1 E
C′C
j2 ECC

′′

i , if i ≺ i1 ≺ i2;

FCC
′

i1j1
EC

′C
j2

ECC
′′

i , if i ≺ i2 ≺ i1.

(17.98)

Two constraints can be obtained from uC
′′C

i1i2j1j2
:

1. For any 1 ≤ il, jl ≤ 3, where 1 ≤ l ≤ 4,

uC
′′C

i1i2j1j2

uC
′′C

i1i2j1j3

=
uC

′′C
i3i4j4j2

uC
′′C

i3i4j4j3

. (17.99)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC
′′C

i1i2j1j2

uC
′′C

i1ij1j2

=
uC

′′C
i1i2j3j4

uC
′′C

i1ij3j4

. (17.100)

Define UC
′′C : (C ∧ R4) × (C ∧ R4) × (C ′ ∧ R4) × (C ′ ∧ G2

4) −→ R by

UC
′′C(mC

1 ,m
C
2 ,m

C′

, LC
′

) =

− (mC
1 ∨mC′

)(C ∨ LC′

)(C ′′ ∨ (mC
1 ∧C mC

2)).
(17.101)

Then

UC
′′C(C ∧ eCi1 , C ∧ eCi2 , C ′ ∧ eC′

j1 , C
′ ∧ êC′

j2) = uC
′′C

i1i2j1j2 . (17.102)

Constraints from uC
′′C′

i1i2j1j2
: If i1 6= i2, then

450 Hongbo Li, Gerald Sommer

uC
′′C′

i1i2j1j2 =

0, if j1 = j2;

EC
′C

j1 ECC
′′

i1 FCC
′

i2j , if j ≺ j1 ≺ j2;

−EC
′C

j1
ECC

′′

i1
FCC

′

i2j
, if j ≺ j2 ≺ j1.

(17.103)

Two constraints can be obtained from uC
′′C′

i1i2j1j2 :
1. Let i1 6= i2, i3 6= i4. Then for any 1 ≤ j1, j2 ≤ 3,

uC
′′C′

i1i2j1j2

uC
′′C′

i1i2j2j1

=
uC

′′C′

i3i4j1j2

uC
′′C′

i3i4j2j1

. (17.104)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC
′′C′

i1i2j1j2

uC
′′C′

ii2j1j2

=
uC

′′C′

i1i2j3j4

uC
′′C′

ii2j3j4

. (17.105)

Define UC
′′C′

: (C ∧ G2
4) × (C ∧ R4) × (C ′ ∧ G2

4) × (C ′ ∧ G2
4) −→ R by

UC
′′C′

(LC ,mC , LC
′

1 , LC
′

2) = (LC ∨ C ′′)(LC
′

1 ∨ C)(mC ∨ LC′

1 ∨ LC′

2).
(17.106)

When i1 6= i2,

UC
′′C′

(C ∧ êCi1 , C ∧ eCi2 , C ′ ∧ êC′

j1 , C
′ ∧ êC′

j2) = uC
′′C′

i1i2j1j2 . (17.107)

Constraints from uC
′C

i1i2k1k2
:

uC
′C

i1i2k1k2 =

0, if i1 = i2;

−EC
′′C

k2
ECC

′

i FCC
′′

i1k1
, if i ≺ i1 ≺ i2;

EC
′′C

k2
ECC

′

i FCC
′′

i1k1
, if i ≺ i2 ≺ i1.

(17.108)

Two constraints can be obtained from uC
′C

i1i2k1k2
:

1. For any 1 ≤ il, kl ≤ 3 where 1 ≤ l ≤ 4,

uC
′C

i1i2k1k2

uC
′C

i1i2k1k3

=
uC

′C
i3i4k4k2

uC
′C

i3i4k4k3

. (17.109)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uC
′C

i1i2k1k2

uC
′C

i1ik1k2

=
uC

′C
i1i2k3k4

uC
′C

i1ik3k4

. (17.110)

17. Coordinate-Free Projective Geometry for Computer Vision 451

Define UC
′C : (C ∧ R4) × (C ∧ R4) × (C ′′ ∧ R4) × (C ′′ ∧ G2

4) −→ R by

UC
′C(mC

1 ,m
C
2 ,m

C′′

, LC
′′

) =

− (mC
1 ∨mC′′

)(C ∨ LC′′

)(C ′ ∨ (mC
1 ∧C mC

2)).
(17.111)

Then

UC
′C(C ∧ eCi1 , C ∧ eCi2 , C ′′ ∧ eC′′

k1 , C
′′ ∧ êC′′

k2) = uC
′C

i1i2k1k2 . (17.112)

Constraints from uC
′C′′

i1i2k1k2
: If i1 6= i2, then

uC
′C′′

i1i2k1k2 =

0, if k1 = k2;

EC
′′C

k1
ECC

′

i1
FCC

′′

i2k
, if k ≺ k1 ≺ k2;

−EC
′′C

k1
ECC

′

i1
FCC

′′

i2k
, if k ≺ k2 ≺ k1.

(17.113)

Two constraints can be obtained from uC
′C′′

i1i2k1k2
:

1. Let i1 6= i2 and i3 6= i4. Then for any 1 ≤ k1, k2 ≤ 3,

uC
′C′′

i1i2k1k2

uC
′C′′

i1i2k2k1

=
uC

′C′′

i3i4k1k2

uC
′C′′

i3i4k2k1

. (17.114)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uC
′C′′

i1i2k1k2

uC
′C′′

ii2k1k2

=
uC

′C′′

i1i2k3k4

uC
′C′′

ii2k3k4

. (17.115)

Define UC
′C′′

: (C ∧ G2
4) × (C ∧ R4) × (C ′′ ∧ G2

4) × (C ′′ ∧ G2
4) −→ R by

UC
′C′′

(LC ,mC , LC
′′

1 , LC
′′

2) = (LC ∨ C ′′)(LC
′′

1 ∨ C)(mC ∨ LC′′

1 ∨ LC′′

2).
(17.116)

When i1 6= i2,

UC
′C′′

(C ∧ êCi1 , C ∧ eCi2 , C ′′ ∧ êC′′

k1 , C
′′ ∧ êC′′

k2) = uC
′C′′

i1i2k1k2 . (17.117)

Constraints from uCC
′

j1j2k1k2
: If k1 6= k2, then

uCC
′

j1j2k1k2 =

0, if j1 = j2;

−EC
′C

j1
EC

′′C
k2

FC
′C′′

jk1
, if j ≺ j1 ≺ j2;

EC
′C

j1
EC

′′C
k2

FC
′C′′

jk1
, if j ≺ j2 ≺ j1.

(17.118)

Two constraints can be obtained from uCC
′

j1j2k1k2
:

452 Hongbo Li, Gerald Sommer

1. Let k1 6= k2 and k3 6= k4. Then for any 1 ≤ j1, j2 ≤ 3,

uCC
′

j1j2k1k2

uCC
′

j2j1k1k2

=
uCC

′

j1j2k3k4

uCC
′

j2j1k3k4

. (17.119)

2. Let k ≺ k1 ≺ k2, then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uCC
′

j1j2k1k2

uCC
′

j1j2k1k

=
uCC

′

j3j4k1k2

uCC
′

j3j4k1k

. (17.120)

Define UCC
′

: (C ′ ∧ G2
4) × (C ′ ∧ G2

4) × (C ′′ ∧ R4) × (C ′′ ∧ G2
4) −→ R by

UCC
′

(LC
′

1 , LC
′

2 ,mC′′

, LC
′′

) =

− (LC
′

1 ∨ C)(LC
′′ ∨ C)(LC

′

1 ∨ LC′

2 ∨mC′′

).
(17.121)

When k1 6= k2,

UCC
′

(C ′ ∧ êC′

j1 , C
′ ∧ êC′

j2 , C
′′ ∧ eC′′

k1 , C
′′ ∧ êC′′

k2) = uCC
′

j1j2k1k2 . (17.122)

Constraints from uCC
′′

j1j2k1k2
: If j1 6= j2, then

uCC
′′

j1j2k1k2 =

0, if k1 = k2;

EC
′C

j2
EC

′′C
k1

FC
′C′′

j1k
, if k ≺ k1 ≺ k2;

−EC
′C

j2 EC
′′C

k1
FC

′C′′

j1k
, if k ≺ k2 ≺ k1.

(17.123)

Two constraints can be obtained from uCC
′′

j1j2k1k2
:

1. Let j1 6= j2 and j3 6= j4. Then for any 1 ≤ k1, k2 ≤ 3,

uCC
′′

j1j2k1k2

uCC
′′

j1j2k2k1

=
uCC

′′

j3j4k1k2

uCC
′′

j3j4k2k1

. (17.124)

2. Let j ≺ j1 ≺ j2, then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uCC
′′

j1j2k1k2

uCC
′′

j1jk1k2

=
uCC

′′

j1j2k3k4

uCC
′′

j1jk3k4

. (17.125)

Define UCC
′′

: (C ′ ∧ R4) × (C ′ ∧ G2
4) × (C ′′ ∧ G2

4) × (C ′′ ∧ G2
4) −→ R by

UCC
′′

(mC′

, LC
′

, LC
′′

1 , LC
′′

2) = (LC
′′

1 ∨ C)(LC
′ ∨ C)

(mC′ ∨ LC′′

1 ∨ LC′′

2).
(17.126)

When j1 6= j2,

UCC
′′

(C ′ ∧ eC′

j1 , C
′ ∧ êC′

j2 , C
′′ ∧ êC′′

k1 , C
′′ ∧ êC′′

k2) = uCC
′′

j1j2k1k2 . (17.127)

17. Coordinate-Free Projective Geometry for Computer Vision 453

We have

V C
′′

(mC
1 ,m

C
2 , L

C′

1 , LC
′

2)

=

UC
′′C(mC

1 ,m
C
2 , L

C′

1 ∨ LC′

2 , LC
′

2), if LC
′

1 ∨ LC′

2 6= 0;

−UC′′C′

(mC
1 ∧C mC

2 ,m
C
1 , L

C′

2 , LC
′

1), if mC
1 ∨mC

2 6= 0.

(17.128)

Thus

vC
′′

i1i2j1j2 =

uC
′′C

i1i2jj2 , if j ≺ j1 ≺ j2;

− uC
′′C

i1i2jj2
, if j ≺ j2 ≺ j1;

− uC
′′C′

ii1j2j1 , if i ≺ i1 ≺ i2;

uC
′′C′

ii1j2j1
, if i ≺ i2 ≺ i1.

(17.129)

Comparing these constraints, we find that the constraints (17.65), (17.66)
from V C

′′

are equivalent to the constraints (17.104), (17.105) from UC
′′C′

,
and are included in the constraints (17.99), (17.100) from UC

′′C . Faugeras
and Mourrain’s first group of constraints is a special case of any of (17.65),
(17.104) and (17.99). Similarly, Faugeras and Mourrain’s second group of
constraints is a special case of any of (17.109), (17.114).

We also have

V C(LC
′

1 , LC
′

2 , LC
′′

1 , LC
′′

2)

=

UCC
′

(LC
′

1 , LC
′

2 , LC
′′

1 ∨ LC′′

2 , LC
′′

2), if LC
′′

1 ∨ LC′′

2 6= 0;

−UCC′′

(LC
′

1 ∧C LC
′

2 , LC
′

1 , LC
′′

2 , LC
′′

1), if LC
′

1 ∨ LC′

2 6= 0.

(17.130)

Thus

vCj1j2k1k2 =

uCC
′′

jj1k2k1
, if j ≺ j1 ≺ j2;

− uCC
′′

jj1k2k1
, if j ≺ j2 ≺ j1;

− uCC
′

j1j2kk2
, if k ≺ k1 ≺ k2;

uCC
′

j1j2kk2
, if k ≺ k2 ≺ k1.

(17.131)

The constraints (17.84), (17.85) from V C are equivalent to the constraints
(17.124), (17.125) from UC

′′C′

, and are also equivalent to the constraints
(17.119), (17.120) from UC

′′C . Faugeras and Mourrain’s third group of con-
straints is a special case of any of (17.84), (17.124) and (17.119).

17.6 Conclusion

In this chapter we propose a new algebraic representation for image points
obtained from a pinhole camera, based on Hestenes and Ziegler’s idea of pro-
jective split. We reformulate camera modeling and calibration, epipolar and

454 Hongbo Li, Gerald Sommer

trifocal geometries with this new representation. We also propose a system-
atic approach to derive constraints on epipolar and trifocal tensors, by which
we have not only derived all known constraints, but also made considerable
generalizations.

18. The Geometry and Algebra of

Kinematics∗

Eduardo Bayro-Corrochano

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

18.1 Introduction

This chapter presents the geometric algebra framework for dealing with 3D
kinematics. The reader will see the usefulness of this mathematical approach
with respect to the modelling of the motion of points, lines and planes. Chap-
ters 19 and 21 illustrate the application of this mathematical system for the
direct and inverse kinematics of robot manipulators and for the problem of
estimating line motions, respectively.

In the literature we find diverse approaches for representing the kinemat-
ics. The foundations of the screw theory can be traced back to the contri-
butions of Chasles and Poinsot in the early 1830s, see e.g. [12]. The dual
quaternions were introduced by Clifford in his seminal paper Preliminary
sketch of bi-quaternions [45]. Later on Study [230] utilized the dual numbers
to represent the relative position of two skew lines in space. Selig [212] and
McCarthy [172] studied planar manipulators, the former using matrices and
the later using coplanar quaternions. Rooney [198] compared matrices and
dual numbers approaches for 2D and 3D kinematics. Murray et al. [178] use
the twist or infinitesimal generator of the Euclidean group as a Lie algebra
matrix approach to describe rigid 3D motions. The work of Chevalier [41]

∗ This work has been supported by DFG Grant So-320-2-1.

456 Eduardo Bayro-Corrochano

who presented a geometrical formulation of the dual quaternions in the Lie
algebra framework is also worth mentioning.

In the area of robotics Gu and Luh [99] used the dual–number transfor-
mation for the treatment of the manipulator kinematics and Pennock and
Yang [188] presented closed–form solutions for the inverse kinematics prob-
lem for various types of robot manipulators employing dual matrices. Funda,
and Paul [87] carried out a computational analysis of screw transformations
in robotics. They showed that the dual quaternions represent simultaneously
the rotation and the translation transformations for dealing with the kine-
matics of robot chains more efficiently than any other approach. McCarthy
[171, 172] analyzed multi–links and similarly to Gu and Luh [99] he computed
the dual form of the Jacobian of a manipulator using again dual orthogonal
matrices. Kim and Kumar [132] applied the dual quaternion formalism as a
line transformation operator and solved the inverse kinematics of a six degree
of freedom robot manipulator. White [244] used Grassman–Cayley algebra
for analyzing critical configurations of robot manipulators in 3D projective
space. Aspragathos and Dimitros [9] confirmed that the homogeneous trans-
formation is the approach commonly used in robotics tasks and that the
approaches of dual quaternion and Lie algebra allow the reduction of the
number of representation parameters.

Interesting approaches for 3D kinematics have been also developed in the
area of visual robotics. For the case of the so called hand–eye calibration
problem several authors considered computation descriptions in terms of the
rotation axis and angle [216, 238], the use of quaternions [43] and a canonical
matrix representation [154]. Using the matrix screw theory Chen [39] found
a key invariant of the screw between two 3D axes, namely that the rotation
angle and the translation along the screw axis remain constant. Dual quater-
nions or motors were used for the linearization of the 3D Euclidean trans-
formation for solving the hand–eye calibration problem, see [55]. In other
applications authors applied successfully dual quaternions like Walker [243]
for estimating 3D location, twists and exponential maps, as well as Bregler
and Malik [31] for tracking the kinematic chains of moving persons.

The review shows two key aspects: the use of dual numbers and the rep-
resentation of screw transformations in terms of matrices or quaternions. In
this regard when we use geometric algebra for kinematics we should consider
isomorphic dual representations avoiding redundant entries as in the case of
the matrix representations.

The chapter is organized as follows: after a brief literature review in the
introduction part, section two describes how a 3D geometric algebra can
be used to represent rotations in 3D space using rotors. This concept of
representing transformations by elements of a geometric algebra is extended
to translations employing a 4D geometric algebra, i.e. the algebra of motors,
in section three. Section four describes how points, lines and planes in 3D
space can be represented in the 3D and 4D geometric algebras introduced in

18. The Geometry and Algebra of Kinematics 457

sections two and three, respectively. Finally the modelling of the motion of
the geometric entities point, line and plane within these geometric algebras is
explained in section five. The chapter ends with the conclusions section six.

18.2 The Euclidean 3D Geometric Algebra

In the case of modelling the Euclidean 3D space we choose the geometric
algebra G3,0,0 which has dimension 23 = 8. A basis of G3,0,0 is given by:

1︸︷︷︸
scalar

, {σ1, σ2, σ3}︸ ︷︷ ︸
vectors

, {σ1σ2, σ2σ3, σ3σ1}︸ ︷︷ ︸
bivectors

, σ1σ2σ3 ≡ I︸ ︷︷ ︸
trivector

. (18.1)

The highest grade element in 3D space is a trivector and is called unit
pseudoscalar I ≡ σ1σ2σ3 which squares to −1 and commutes with the scalars
and bivectors in 3D space. In the space of 3 dimensions we can construct an
arbitrary trivector a∧b∧c = λI , where the points are in general position and
λ ∈ R.

18.2.1 3D Rotors

Multiplication of the three basis vectors σ1, σ2, and σ3 by I results in the
three basis bivectors σ1σ2 = Iσ3 , σ2σ3 = Iσ1 and σ3σ1 = Iσ2. These sim-
ple bivectors rotate vectors in their own plane by 90∗3 , e.g. (σ1σ2)σ2 = σ1,
(σ2σ3)σ2 = −σ3 etc. Identifying the i, j, k of the quaternion algebra with
Iσ1,−Iσ2, Iσ3 the famous Hamilton relations i2 = j2 = k2 = ijk = −1 can
be recovered. Since the i, j,k are bivectors, it comes as no surprise that they
represent 90∗3 rotations in orthogonal directions and provide a well-suited
system for the representation of general 3D rotations, see Figure 18.1.

In geometric algebra a rotor (short name for rotator), R, is an even-

grade element of the algebra which satisfies RR̃ = 1, where R̃ stands for the
conjugate of R. If A = {a0, a1, a2, a3} ∈ G3,0,0 represents a unit quaternion ,
then the rotor which performs the same rotation is simply given by

R = a0︸︷︷︸
scalar

+ a1(Iσ1) − a2(Iσ2) + a3(Iσ3)︸ ︷︷ ︸
bivectors

. (18.2)

The quaternion algebra is therefore seen to be a subset of the geometric
algebra of 3-space.

A rotation can be performed by a pair of reflections, see Figure 18.1.
It can easily be shown that the result of reflecting a vector a in the plane
perpendicular to a unit vector n is a⊥ − a‖ = −nan, where a⊥ and a‖
respectively denote projections of a perpendicular and parallel to n. Thus,
a reflection of a in the plane perpendicular to n, followed by a reflection in
the plane perpendicular to another unit vector m results in a new vector

458 Eduardo Bayro-Corrochano

+
,- .0/ 13204

576
809;:=<>8?<A@CB

D;E(FHG?I FKJ�L0E=F"M N3G?NOJCLQP FRJCLE(FSN>GTM FSNUPVJCLWEYX)G[ZX
Fig. 18.1. The rotor
in the 3D space formed
by a pair of reflections

b = −m(−nan)m = (mn)a(nm) = RaR̃. Using the geometric product
we can show that the rotor R of equation (18.2) is a multivector consisting
of both a scalar part and a bivector part, i.e. R = mn = m·n+m∧n. These
components correspond to the scalar and vector parts of an equivalent unit
quaternion in G3,0,0. Considering the scalar and the bivector parts, we can
further write the Euler representation of a rotor as follows

R = en
θ
2 = cos

θ

2
+ nsin

θ

2
, (18.3)

where the rotation axis n = n1σ2σ3 + n2σ3σ1 + n3σ1σ2 is spanned by the
bivector basis.

The transformation in terms of a rotor a 7→ RaR̃ = b is a very general
way of handling rotations; it works for multivectors of any grade and in spaces
of any dimension in contrast to quaternion calculus. Rotors combine in a
straightforward manner, i.e. a rotor R1 followed by a rotor R2 is equivalent
to a total rotor R where R = R2R1.

18.3 The 4D Geometric Algebra for 3D Kinematics

In the case of 3D rigid motion or Euclidean transformation we are confronted
with a non–linear mapping. However, if we employ a 4D geometric algebra we
will linearize the 3D rigid motion of the 3D Euclidean space. Instead of using
homogeneous coordinates we will embed the Euclidean transformation into a
degenerate 4D geometric algebra. That is why we choose three basis vectors
which square to one and one to zero to provide dual copies of the multivectors
of the 3D space. In other words, we extend the Euclidean geometric algebra
G3,0,0 to the special or degenerate geometric algebra G3,0,1 which is spanned

18. The Geometry and Algebra of Kinematics 459

via following basis

1︸︷︷︸
scalar

, {γk}︸︷︷︸
4 vectors

,
{γ2γ3, γ3γ1, γ1γ2,

γ4γ1, γ4γ2, γ4γ3}
︸ ︷︷ ︸

6 bivectors

, {Iγk}︸ ︷︷ ︸
4 pseudovectors

, γ1γ2γ3γ4 ≡ I︸ ︷︷ ︸
unit pseudoscalar

,(18.4)

with k = 1, 2, 3, 4 and γ2
4 = 0 and γ2

i = +1 for i = 1, 2, 3. The unit pseu-
doscalar squares to zero, i.e. I2 = 0.

18.3.1 The Motor Algebra

Clifford introduced the motors with the name bi-quaternions [45]. The word
motor is an abbreviation of “moment and vector”. Motors are isomorphic to
the dual quaternions with the necessary condition of I2 = 0. They can be
found in the special 4D even subalgebra of G3,0,1 introduced in the previous
section. This even subalgebra will be denominated by G+

3,0,1 and is spanned
only via a bivector basis as follows

1︸︷︷︸
scalar

, {γ2γ3, γ3γ1, γ1γ2, γ4γ1, γ4γ2, γ4γ3}︸ ︷︷ ︸
6 bivectors

, I︸︷︷︸
unit pseudoscalar

. (18.5)

Note that the bivector basis corresponds to the same basis for spanning 3D
lines. Note also that the dual of a scalar is a pseudoscalar and the duals of
the first three basis bivectors are the next three ones, that is for example the
dual of γ2γ3 is Iγ2γ3 or γ4γ1.

According to Clifford [45] a basic geometric interpretation of a motor
can be seen as the necessary operation to convert the rotation line axis of
one rotor into another one. Each rotor can be geometrically represented as a
rotation plane with a rotation axis normal to this plane. Thus, one rotor can
be spanned by the bivector basis γ2γ3, γ3γ1, γ1γ2 and the dual one by γ4γ1,
γ4γ2, γ4γ3. Figure 18.2 depicts a detailed motor action where the rotor axis is
now considered as a rotation line. Let us first turn the orientation of the axis
of one rotor, i.e. Ra, parallel to the other one, i.e. Rb, by applying the rotor
Rs. Then slide it the distance d along the connecting axis into the position
of the axis of the second rotor. These operations can be seen together as
forming a screw with the line axis l and with the relation called pitch which
equals to d

θ for θ 6= 0. We said in the last section that a rotor relates two
vectors, now in the case of a motor it relates the rotation axes of two rotors.
A motor is specified only by its direction and position of the screw axis line,
twist angular magnitude and pitch.

18.3.2 Motors, Rotors, and Translators

Since a rigid motion consists of rotation and translation, it should be possible
to split a motor multiplicatively in terms of these two transformations which
we will call a rotor and a translator.

460 Eduardo Bayro-Corrochano

\�]
^

_�`badcfeg hji
kml

nCo
p

qOrQsutwv s
qyx

zK{}|
~f�

� ���j���;�?��K� ���
�K� �R�

���
��������

���
�y�

��� ¢¡

Fig. 18.2. Screw motion about the line axis $ (£ s: longitudinal displacement in d
and rotation in θ) a) the motor relating two axis lines b) motor applied to an object
c) degenerate motor relating two coplanar rotors

Let us now express this procedure algebraically. First of all let us consider
a simple rotor in its Euler representation for a rotation with angle θ,

R = a0 + a1γ2γ3 + a2γ3γ1 + a3γ1γ2

= a0 + a

= cos(
θ

2
) + sin(

θ

2
)n

= ac + asn , (18.6)

where n is the unit 3D vector of the rotation–axis spanned by the bivector
basis γ2γ3, γ3γ1, γ1γ2 and ac, as ∈ R. Now dealing with the rotor of a screw
motion the rotation axis vector should be represented as screw axis line. For
that we have to relate this rotation axis to a reference coordinate system in
the distance tc. A translation in 3D in the motor algebra is represented using
the dual part of a motor called translator. Applying a translator from the
left and its conjugated from the right to the rotor R we get

18. The Geometry and Algebra of Kinematics 461

Rs = T cRT̃ c

= (1 + I
tc

2
)(a0 + a)(1 − I

tc

2
)

= a0 + a + Ia0
tc

2
+ I

tc

2
a − Ia0

tc

2
− Ia

tc

2

= a0 + a + I(
tc

2
a − a

tc

2
)

= a0 + a + I(a∧tc) . (18.7)

Here tc is the 3D vector of the translation spanned by the bivector basis γ2γ3,
γ3γ1, γ1γ2. Expressing the last equation in Euler terms we get

Rs = a0 + asn + Iasn∧tc

= ac + as(n + Im)

= cos(
θ

2
) + sin(

θ

2
)(n + Im)

= cos(
θ

2
) + sin(

θ

2
)l . (18.8)

This result is indeed interesting because the new entity called Rs is a rotor
to be applied now with respect to an axis line l expressed in dual terms of
direction n and moment m = n∧tc. Now to finally define the motor let us
slide the distance ts = dn along the rotation axis line l. Since a motor is
applied from the left and its conjugated from the right we should use the half
of ts when we define the motor

M = T sRs = (1 + I
ts

2
)(a0 + a + Ia∧tc)

= (1 + I
dn

2
)(ac + asn + Iasn∧tc)

= ac + asn + Iasn∧tc + I
d

2
acn − I

d

2
asnn

= (ac − I
d

2
as) + (as + Iac

d

2
)(n + In∧tc)

= (ac − Ias
d

2
) + (as + Iac

d

2
)l . (18.9)

Note that this expression of the motor makes explicit the unit line vector of
the screw axis line l.

Now let us express a motor as an Euler representation. Substituting the
constants ac = cos(θ2) and as = sin(θ2) in the motor equation (18.9) and
using the Taylor series expansion of a differentiable real function f : R 7→ R

with a dual argument α+ Iβ, where α, β ∈ R and 0 = I2 = I3 = . . . , i.e.

f(α+ Iβ) = f(α) + If ′(α)β + I2f ′′(α)
β2

2!
+ . . . (18.10)

= f(α) + If ′(α)β , (18.11)

we get

462 Eduardo Bayro-Corrochano

M = T sRs =
(
cos(

θ

2
) − Isin(

θ

2
)
d

2

)
+
(
sin(

θ

2
) + Icos(

θ

2
)
d

2

)
l

= cos(
θ

2
+ I

d

2
) + sin(

θ

2
+ I

d

2
)l . (18.12)

Now we will analyze the obtained expressions

R = cos(
θ

2
) + sin(

θ

2
)n

Rs = cos(
θ

2
) + sin(

θ

2
)l

M = cos(
θ

2
+ I

d

2
) + sin(

θ

2
+ I

d

2
)l . (18.13)

We can see how from a simple rotor R expressed in terms of an angle and
the rotation axis n, we change this axis to a rotation line axis l resulting Rs.
Finally, the motor information of the sliding distance d is made explicit in
terms of dual arguments of the trigonometric functions. It is also nice to see
that the expression for the motor simply extends the expression of Rs using
dual angles instead.

If we expand the exponential function of the dual bivectors using a Taylor
series, the result will follow the general expression eα+Iβ = eα + Ieαβ =
eα(1 + Iβ) as a special case of equation (18.10). We get again the motor
expression

el(
θ
2 +I ts

2) = (1 + I
ts

2
)el

θ
2 = T sRs , (18.14)

where I ts

2 = 1
2I(ts1σ2σ3+ts2σ3σ1+ts3σ1σ2) = 1

2 (ts1σ4σ1+ts2σ4σ2+ts3σ4σ3).
If we want to express the motor using only rotors, we proceed as follows

M = T sRs = (1 + I
ts

2
)Rs

= Rs + I
ts

2
Rs . (18.15)

Let us consider in detail the dual part of the motor. This is the geometric
product of the bivector ts and the rotor Rs. Since both are expressed in terms
of the same bivector basis, their geometric product will be also expressed in
this basis and this can be seen as a new rotor R′

s. Thus, we can further write

M = Rs + I
ts

2
Rs = Rs + IR′

s . (18.16)

In this equation the line axes of the rotors are skew ones, see Figure 18.2.a.
That means that they represent the general case of non-coplanar rotors. If
the sliding distance ts is zero, then the motor will degenerate to a rotor

M = T sRs = (1 + I
0

2
)Rs = Rs . (18.17)

18. The Geometry and Algebra of Kinematics 463

In this case the two axes lines of the rotors are coplanar, thus the motor is
called a degenerate one, see Figure 18.2.c.

The bivector ts can be expressed in terms of the rotors using previous
results

R′
sR̃s = (

ts

2
Rs)R̃s , (18.18)

therefore,

ts = 2R′
sR̃s . (18.19)

Figure 18.2 shows that t is the 3D vector, expressed in the bivector basis,
referred to the rotation axis of a rotor, and ts is a bivector along the motor
axis line. Thus, t considered here as a bivector can be computed in terms of
the bivectors tc and ts as follows

t = t⊥ + t‖

t = (tc − RstcR̃s) + (t · n)n = (tc − RstcR̃s) + dn

= tc − RstcR̃s + ts

= tc − RstcR̃s + 2R′
sR̃s . (18.20)

18.3.3 Properties of Motors

A general motor can be expressed as

Mα = αM , (18.21)

where α ∈ R and M is a unit motor as in previous sections. In this section we
deal further with unit motors. The norm of a motor M is defined as follows

|M | = MM̃ = T sRsR̃sT̃ s = (1 + I
ts

2
)RsR̃s(1 − I

ts

2
)

= 1 + I
ts

2
− I

ts

2
= 1 , (18.22)

where M̃ is the conjugate motor and 1 is the identity of the motor mul-
tiplication. Now using the equation (18.16) and considering the unit motor
magnitude we find two useful properties

|M | = MM̃ = (Rs + IR′
s)(R̃s + IR̃′

s)

= RsR̃s + I(R̃sR
′
s + R̃sRs) = 1 . (18.23)

This requires the following two constraints equations

RsR̃s = 1

R̃sR
′
s + R̃sRs = 0 . (18.24)

The combination of two rigid motions can be expressed using two con-
catenated motors. The resultant motor describes the overall displacement,
namely

464 Eduardo Bayro-Corrochano

M c = MaM b = (Rsa + IR′
sa

)(Rsb
+ IR′

sb
)

= RsaRsb
+ I(RsaR′

sb
+ R′

sa
Rsb

)

= Rsc + IR′
sc
. (18.25)

Note that pure rotations combine multiplicatively and dual parts containing
the translation combine components additively.

Using the equation (18.16) let us express a motor in terms of a scalar,
bivector, dual scalar and dual bivector

M = T sRs = Rs + IR′
s

= (a0 + a1γ2γ3 + a2γ3γ2 + a3γ2γ1) +

I(b0 + b1γ2γ3 + b2γ3γ2 + b3γ2γ1)

= (a0 + a) + I(b0 + b) . (18.26)

We can use another notation to enhance the components of the real and dual
parts of the motor as follows

M = (a0,a) + I(b0, b) , (18.27)

where each term within the brackets consists of a scalar part and a 3D bivec-
tor.

A motor expressed in terms of a translator and a rotor is applied simi-
larly as in the case of a rotor from the left and its conjugate from the right
(motor reflections) to build an automorphism equivalent to the screw. Yet
conjugating only the rotor or only the translator for the second reflection we
can derive different types of automorphisms.

Changing the sign of the scalar and bivector in the real and the dual parts
of the motor, we get the following variants of a motor

M = (a0 + a) + I(b0 + b) = T sRs

M̃ = (a0 − a) + I(b0 − b) = R̃sT̃ s

M = (a0 + a) − I(b0 + b) = RsT̃ s

M̃ = (a0 − a) − I(b0 − b) = R̃sT s . (18.28)

The first, the second and the third versions will be used for the modelling
of the motion of points, lines and planes.

Using the relations from above it is straightforward to compute the ex-
pressions for the individual components

a0 =
1

4
(M + M̃ + M + M̃)

Ib0 =
1

2
(M − M̃) =

1

4
(M + M̃ − M − M̃)

a =
1

4
(M − M̃ + M − M̃)

Ib =
1

4
(M − M̃ − M + M̃) . (18.29)

18. The Geometry and Algebra of Kinematics 465

This expressions are useful for the straightforward computation of the indi-
vidual components.

18.4 Representation of Points, Lines, and Planes Using

3D and 4D Geometric Algebras

This section introduces the representation of lines, points and planes in 3D
and 4D geometric algebra for applications in computer vision and kinematics.
Let us start with the representations in the 3D space by reformulating the
classical expressions of the vector calculus using the multivector concept of
the geometric algebra. Thereafter we will extend these representations in the
4D space in a natural manner.

18.4.1 Representation of Points, Lines, and Planes in the 3D GA

The modelling of points, lines and planes in the 3D Euclidean space will be
done using the Euclidean geometric algebra G3,0,0 where the pseudoscalar
I2 = −1. A point in the 3D space represents a position, thus it can be simply
spanned using the vector basis of G3,0,0

x = xσ1 + yσ2 + zσ3 , (18.30)

where x, y, z ∈ R.
In the classical vector calculus a line is described by a position vector

x touching any point of the line and a vector n for the line direction, i.e.
l = x + αn, where α ∈ R. In geometric algebra we have the multivector
concept, thus we can represent a line compactly using a vector n for its
direction and a bivector m for the moment, namely

l = n + x∧n = n + m , (18.31)

note that the moment m is a bivector computed as the outer product of the
position vector x and the vector n for the line direction.

The representation of the plane is even more striking. The plane is a
geometric entity one grade higher than the line, so we should expect that
the multivector representation of the plane should be a natural multivector
grade extension from that of a line. In the classical vector calculus a plane
is described in terms of the Hesse distance from the origin to the plane and
a vector indicating the plane orientation, i.e. {d , n}. Again in the geometric
algebra we can resort to a compact expression with clear geometric sense.
The extension of the line expression to a plane should be done in terms of a
bivector and a trivector as follows

h = n + x∧n = n + Id , (18.32)

where n is now a bivector indicating the plane orientation, and the outer
product of the position vector x and the bivector n builds a trivector which

466 Eduardo Bayro-Corrochano

¤0¥§¦ ¨�©

ªm« ¬C

®f¯ °�±C²

³0´ µ�¶
·�¸

¹0º »�¼
½�¾

¿0À Á�Â
Ã�Ä

Å0Æ Ç�È
É�Ê

Ë0Ì Í�Î
Ï�Ð

Ñ0Ò Ó�Ô
Õ�Ö ×�ØÙ×CÚ

Û ÜwÝÞ ß�àá â�ã

ä

å
æç

è éê ë
ì
í�î ï�ðwïyñò�ówòCô

õ ö�÷

ø�ùÙøCú
û�üwûyýþ�ÿwþ��

�������

�����	�
���
��

���	� �������

�������

�
�

�

Fig. 18.3. Comparison of representations of points, lines and planes using (a) vector
calculus, (b) G3,0,0 Euclidean 3D geometric algebra and (c) G+

3,0,1 motor algebra

can be expressed using the Hesse distance d, a scalar value, and the pseu-
doscalar I . Figure 18.3 presents a comparison of the representations using
classical vector calculus, the Euclidean geometric algebra G3,0,0 and the mo-
tor algebra G+

3,0,1.

18.4.2 Representation of Points, Lines, and Planes in the 4D GA

Now we will model points, lines and planes in the 4D space. For that we
choose the special algebra of motors G+

3,0,1 which spans in 4D the line space
using bivector basis.

For the case of the point representation, we proceed embedding a 3D point
on the hyperplane X4 = 1, the equation of the point X in G+

3,0,1 reads

X = 1 + x1γ4γ1 + x2γ4γ2 + x3γ4γ3

= 1 + I(x1γ2γ3 + x2γ3γ1 + x3γ1γ2)

= 1 + Ix (18.33)

or X = (1, 0) + I(0,x). We can see that in this expression the real part
consists of the scalar 1 and the dual part of only of 3D bivector .

A line will be expressed in G+
3,0,1 using the bivector basis {γ2γ3, γ3γ1, γ1γ2}

and the dual bivector basis {γ4γ1, γ4γ2, γ4γ3}. In the degenerate geometric
algebra G+

3,0,1 the line is represented by

18. The Geometry and Algebra of Kinematics 467

L = n + Im , (18.34)

where the coefficients of the bivectors for the line direction and moment are
computed using two bivector points x1 and x2 lying on the line as follows

n = (x2 − x1)

= (x21 − x11)γ2γ3 + (x22 − x12)γ3γ1 + (x23 − x13)γ1γ2

= Ln1γ2γ3 + Ln2γ3γ1 + Ln3γ1γ2

m = (x12x23 − x13x22)γ2γ3 + (x13x21 − x11x23)γ3γ1 +

= (x11x22 − x12x21)γ1γ2

= Lm1γ2γ3 + Lm2γ3γ1 + Lm3γ1γ2 . (18.35)

This line representation using dual numbers is easier to understand and to
manipulate algebraically and it is fully equivalent to the one in terms of
Plücker coordinates. Using the notation with brackets the line equation reads
Ld = (0,n) + I(0,m), where the n and m are spanned with a 3D bivector
basis.

For the equation of the plane we can proceed similarly as for the equation
(18.32). We represent the orientation of the plane via the bivector n and the
the outer product between a bivector x touching the plane and its orientation
n. Since this outer product results in a 4-vector, we can express it as the Hesse
distance d = (x · n) multiplied by the unit pseudoscalar

H = n + x∧n = n + I(x · n) = n + Id = n + Id

or H = (0,n)+ I(d, 0). Note that the plane equation is the dual of the point
equation

H = (d+ In)∗ = (In)∗ + (d)∗ = n + Id . (18.36)

where instead of the plane orientation we consider the unit bivector n and
for the scalar 1 the Hesse distance d.

18.5 Modeling the Motion of Points, Lines, and Planes

Using 3D and 4D Geometric Algebras

This section concerns the modelling of the motion of basic geometric enti-
ties in the 3D and 4D space, respectively. The comparison of these motion
models will show the power of the geometric algebra representation and the
linearization of the translation transformation achieved in the 4D geometric
algebra.

18.5.1 Motion of Points, Lines, and Planes in the 3D GA

The 3D motion of a point x in G3,0,0 has the following equation

468 Eduardo Bayro-Corrochano

x′ = RxR̃ + t . (18.37)

Using the equation (18.31), the motion of the line reads

l′ = n′ + m′ = n′ + x′∧n′

= RnR̃ + (RxR̃ + t)∧(RnR̃)

= RnR̃ + RxR̃∧RnR̃ + t∧RnR̃

= RnR̃ + RxR̃∧RnR̃ +
t

2
RnR̃ − RnR̃

t

2

= RnR̃ + Rn
t

2
R̃ +

t

2
RnR̃ + RmR̃ , (18.38)

where x′ stands for the rotated and shifted position vector, n′ stands for the
rotated orientation vector and m′ for the new line moment.

The model of the motion of the plane in G3,0,0 can be expressed in terms
of the multivector Hesse equation (18.32) as follows

h′ = n′ + Id′ = n′ + x′∧n′

= RnR̃ + (RxR̃ + t)∧(RnR̃)

= RnR̃ + t∧RnR̃ + Rx∧nR̃

= RnR̃ + t∧RnR̃ + R(Id)R̃

= RnR̃ + t∗ · RnR̃ + Id

= RnR̃ + I(t · RnR̃ + d) , (18.39)

where n′ stands for the rotated bivector plane orientation, x′ stands for the
rotated and shifting position vector and d′ is the new Hesse distance. Here we
use the concept of duality to claim that t∧RnR̃ = t∗ · RnR̃ = (It) · RnR̃.

18.5.2 Motion of Points, Lines, and Planes in the 4D GA

The modelling of the 3D motion of the geometric primitives using the motor
algebra G+

3,0,1 takes place in a 4D space where the rotation and translation
are applied as multiplicative operators; as a result the 3D general motion
becomes linear. Having a linear method we can then compute for example the
unknown rotation and translation simultaneously using the motor extended
Kalman filter or in cases like the hand-eye problem estimate motion [55].
In these kind of problems if we would use instead the 3D geometric algebra
G3,0,0 we were unfortunately compelled to compute the translation decoupled
of rotation increasing therefore the inaccuracy.

Using the representation of points given in (18.33), we can model the
transformation of a point X under a rigid motion represented by M = T sRs

in the following way

18. The Geometry and Algebra of Kinematics 469

X ′ = 1 + Ix′ = MXM̃ = M(1 + Ix)M̃

= T sRs(1 + Ix)R̃sT s

= (1 + I
ts

2
)Rs(1 + Ix)R̃s(1 + I

ts

2
)

= (1 + I
ts

2
)(1 + IRsxR̃s)(1 + I

ts

2
)

= 1 + I
ts

2
+ IRsxR̃s + I

ts

2

= 1 + I(RsxR̃s + ts) . (18.40)

Note that the dual part of this equation in the 4D space is in the 3D space
fully equivalent to the equation (18.37).

Using the line equation (18.34), we can express the transformation of a
line L under a rigid motion as follows

L′ = n′ + Im′ = M L M̃ = M(n + Im)M̃

= T sRs(n + Im)R̃sT̃ s

= (1 + I
ts

2
)Rs(n + Im)R̃s(1 − I

ts

2
)

= (1 + I
ts

2
)(RsnR̃s + IRsmR̃s − IRsnR̃s

ts

2
)

= RsnR̃s + I(−RsnR̃s
ts

2
+

ts

2
RsnR̃s + RsmR̃s)

= RsnR̃s + I(RsnR̃s

′
+ R′

snR̃s + RsmR̃s) . (18.41)

Note that in equation (18.41) before we merge the bivector ts

2 with the rotors

Rs or R̃s the real and the dual parts are fully equivalent with the elements
of the line equation (18.38) of G3,0,0.

The transformation of a plane under a rigid motion in G+
3,0,1 can be seen

as the motion of the dual of the point, thus using the expression of equation
(18.36), the motion equation of the plane is

H ′ = n′ + Id′ = M H M̃ = M (n + Id)M̃

= T sRs(n + Id)R̃sT s

= (1 + I
ts

2
)(RsnR̃s + Id)(1 + I

ts

2
)

= RsnR̃s + I(RsnR̃s
ts

2
+

ts

2
RsnR̃s + d)

= RsnR̃s + I((RsnR̃s) · ts + d) . (18.42)

Note that the real part and the dual part of this expression are fully equivalent
to the bivector and trivector parts of the equation (18.39) in G3,0,0.

470 Eduardo Bayro-Corrochano

18.6 Conclusion

This chapter has presented the motor algebra as a suitable geometric alge-
bra for kinematics. The modelling of motion of points, lines and planes in
that degenerate geometric algebra results in linearization of the Euclidean
transformation of lines. This can be comfortably used if the motion of lines
is of interest as in the following chapters. While the effect of an Euclidean
transformation on points is a linear one in Euclidean geometric algebra, this
nice property is lost in motor algebra. This is the price to be payed by gaining
linear expressions for the motion of a higher order entity. The motor alge-
bra does also not linearize rigid motion of planes. Chapter 19 illustrates the
application of the 4D motor algebra for the computation of the direct and
inverse kinematics of robot manipulators. Another application with respect
to estimation of line motion by Kalman filtering can be found in Chapter 21.
In Chapter 20 the dual quaternion algebra which is isomorphic to the mo-
tor algebra is presented and studied with respect to motion alignment. The
author believes that this framework is a modern geometric approach with
computational advantages for the solution of problems of visually guided
robotics.

19. Kinematics of Robot Manipulators

in the Motor Algebra∗

Eduardo Bayro-Corrochano and Detlef Kähler

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

19.1 Introduction

In the literature we find a variety of mathematical approaches for solving
problems in robotics which we will review now briefly. Denavit and Harten-
berg [60] introduced the mostly used kinematic notation for lower pair mech-
anisms based on matrix algebra, Walker [243] used the epsilon algebra for
the treatment of the manipulator kinematics, Gu and Luh [99] utilized dual–
matrices for computing the Jacobians useful for kinematics and robot dy-
namics and Pennock and Yang [188] derived closed–form solutions for the
inverse kinematics problem for various types of robot manipulators employ-
ing dual–matrices. McCarthy [171] used the dual form of the Jacobian for the
analysis of multi–links similarly. Funda and Paul [87] gave a detailed compu-
tational analysis of the use of screw transformations in robotics. These au-
thors explained that since the dual quaternion can represent the rotation and
translation transformations simultaneously it is more effective than the unit
quaternion formalism for dealing with the kinematics of robot chains. Kim
and Kumar [132] computed a closed–form solution of the inverse kinematics
of a 6 degree of freedom robot manipulator in terms of line transformations
using dual quaternions. Aspragathos and Dimitros [9] confirmed once again

∗ This work has been supported by DFG Grant So-320-2-1.

472 Eduardo Bayro-Corrochano, Detlef Kähler

that the use of dual quaternion and Lie algebra in robotics were overseen so
far and that their use helps to reduce the number of representation parame-
ters.

We can see in all these mathematical approaches that the authors take
into account basically two key aspects: the obvious use of dual numbers and
the representation of the screw transformations in terms of matrices or dual
quaternions. In this regard in this chapter we are concerned with the ex-
tension of the representation capabilities of the dual numbers, particularly
using the motor algebra beside the point and line representation we are able
to model the motion of planes. This widens up the possibilities for the mod-
elling of the motion of the basic geometric objects referred to frames attached
to the robot manipulator which according to the circumstances simplify the
complexity of the problem preserving the underlying geometry. After giving
the modelling of prismatic and revolute transformations of a robot manipu-
lator using points, lines and planes we solve the direct and inverse kinematics
of robot manipulators. Using the motion of points, lines and planes in terms
of motors we present constraints for a simple grasping task. The chapter
shows clearly the advantages of the use of representations in motor algebra
for solving problems related to robot manipulators.

The organization of the chapter is as follows: section two describes the
prismatic and revolute transformations of robot manipulators in the motor
algebra framework. The third section deals with the computation of the direct
kinematics of robot manipulators. The fourth section is dedicated to the
solution of the inverse kinematics of one standard robot manipulator. Finally,
section five presents the conclusions.

19.2 Motor Algebra for the Kinematics of Robot

Manipulators

The study of the rigid motion of objects in 3D space plays an important
role in robotics. In order to linearize the rigid motion of the Euclidean space
homogeneous coordinates are normally utilized. That is why in the geometric
algebra framework we choose the special or degenerated geometric algebra to
extend the algebraic system from 3D Euclidean space to the 4D space. In this
system we can nicely model the motion of points, lines and planes with com-
putational advantages and geometric insight, see chapter 18 for more details.
Let us start with a description of the basic elements of robot manipulators in
terms of the special or degenerated geometric algebra G+

3,0,1 or motor algebra.
The most basic parts of a robot manipulator are revolute joints, prismatic
joints, connecting links and the end–effectors. In the next subsections we will
treat the kinematics of the prismatic and revolute manipulator parts using
the 4D geometric algebra G+

3,0,1 and will illustrate an end–effector grasping
task.

19. Kinematics of Robot Manipulators in the Motor Algebra 473

��� ���
�! " #

$ %

&�' ()
*,+

-/.021

3/4
576

8:9;�<

=7>

?A@B7C

DFEHGID�JK/L

MON

PRQ
SHTU!V WYX Z/[

\Y]H^Y\I_

Fig. 19.1a. SCARA type manipulator according to the DH parameters in table
19.1. Variable parameters are encircled

19.2.1 The Denavit–Hartenberg Parameterization

The computation of the direct or inverse kinematics requires both the exact
description of the robot manipulators structure and its configuration. The
mostly used description approach is known as Denavit–Hartenberg proce-
dure [60]. This is based on the uniform description of the position of the
reference coordinate system of a joint relative to the next one in considera-
tion. Figure 19.2a shows how coordinate frames are attached to a joint of a
robot manipulator. Table 19.1 presents the specifications of two robot ma-
nipulators: the SCARA and the Stanford manipulator as shown in figures
19.1a and 19.1b, respectively.

In table 19.1 a variable parameter is indicated by the letter v and a
constant one by c. This tells us whether the joint is for rotation (revolute) or
for translation (prismatic). The transformation of the reference coordinate
system between two joints will be called joint–transition . Figure 19.2b shows
the involved screws in a joint–transition according to the Denavit–Hartenberg
parameters . The frame or reference coordinate system related to the i-th
joint is attached at the end of this link and it is called Fi. The position and
orientation of the end–effector in relation to the reference coordinate system
of the robot basis can be computed by linking all joint–transitions. In this

474 Eduardo Bayro-Corrochano, Detlef Kähler

`�a

bdc

e�f

g,h

i�j

k l

m n

o p qHo r s t uHs v

wyx

zy{

|	} ~y�

�y�

����O� �	���� ����

�H�

�/�

�/�

�H�
� � � � �/��H�

�H�
� �

�/�
 H¡¢ £

¤H¥¦�§©¨Iª

«H¬
I®

¯H°

Fig. 19.1b. Stanford
type manipulator ac-
cording to the DH pa-
rameters in table 19.1.
Variable parameters are
encircled

way we get straightforwardly the direct kinematics.
Conversely for the inverse kinematics given the position and orientation

of the end–effector we have to find values of the variable parameters of the
joint–transitions which satisfy this requirement. In the next sections we will
go more into details about the computation of direct and inverse kinematics
of robot manipulators.

19.2.2 Representations of Prismatic and
Revolute Transformations

The transformation of any point , line or plane between coordinate systems
Fi−1 and Fi is a revolute one when the degree of freedom is only a variable
angle θi and a prismatic one when the degree of freedom is only a variable
length di. The transformation motor i−1M i between Fi and Fi−1 consists of
a sequence of two screw transformations , one fixed, i.e. M x

α̂i
, and another

variable , i.e. Mz
θ̂i

, see figure 19.2b. Note that we use dual angles θ̂i = θi+Idi
and α̂i = αi + Ili, see chapter 18. In the revolute case the latter has as a
variable parameter the angle θi and in the prismatic case the displacement
di. The transformation reads

19. Kinematics of Robot Manipulators in the Motor Algebra 475

Table 19.1. Kinematic configuration of two robot manipulators

Robot type link revolute θi v/c prismatic di v/c twist link
angle αi length li

SCARA 1 θ1 v d1 c 0 l1
2 θ2 v d2 c 0 l2
3 θ3 v 0 0 0
4 0 d4 v 0 0

Stanford 1 θ1 v d1 c -90 deg 0
2 θ2 v d2 c 90 deg 0
3 0 d3 v 0 0
4 θ4 v 0 -90 deg 0
5 θ5 v 0 90 deg 0
6 θ6 v d6 c 0 0

±7²³µ´ ¶!·

¸�¹ º!»
¼R½ ¾�¿À/Á Â�Ã

Ä	Å

Æ Ç
ÈµÉ Ê,ËÌRÍ

Î/Ï

Ð2Ñ

ÒRÓ

Ô�Õ Ö�×
Ø�Ù Ú	Û

ÜAÝ Þ�ßàIá â	ã

äæå
çOè

éAê

ëIì

í î�ï ð í

ñóò ôõ:ö

÷óø ùú û

üdý

Fig. 19.2. a) The i-th joint of a robot manipulator and the attached coordinate
frames according to the Denavit–Hartenberg procedure. Here the encircled θi is the
variable parameter, b) the transformation from frame Fi to Fi−1 is represented by
i−1þ

i. The motor i−1þ
i consists of two screw transformations þ x

α̂i
and þ z

θ̂i

i−1M i = Mz
θ̂i

Mx
α̂i

= T z
di

Rz
θi

T x
liR

x
αi

= (1 +
I

2

0

0

di

)Rz

θi
(1 +

I

2

li

0

0

)Rx

αi
. (19.1)

For the sake of clearness the dual bivectors of translators are given as a
column vector simply to make the variable parameters explicit.

Since i−1M i
i−1M̃ i = 1, we obtain

iM i−1 = M̃x
α̂i

M̃z
θ̂i

= T̃ x
liR̃

x
αi

T̃ z
di

R̃z
θi
. (19.2)

476 Eduardo Bayro-Corrochano, Detlef Kähler

Be aware for the rest of the chapter that jM i denotes a motor transformation
from Fi to Fj .

We will now give general expressions for the transformation of points, lines
and planes with one of the parameters θi and di, respectively, as a variable
and with two fixed parameters αi and li. In the joint depicted in figure 19.2b
a revolute transformation will take place only when θi varies and a prismatic
transformation only when di varies. Now taking a point X represented in the
frame Fi−1, we can describe its transformation from Fi−1 to Fi in the motor
algebra according to chapter 18 with either θi or di as variable parameter.
We will call this transformation a forward transformation .

The multivector representation of point X related to the frame Fi will
be expressed as iX with

iX = iM i−1
i−1X iM̃ i−1 = M̃x

α̂i
M̃ z

θ̂i

i−1X Mz
θ̂i

Mx
α̂i

= T̃ x
liR̃

x
αi

T̃ z
di

R̃z
θi

i−1X Rz
θi

T̃ z
di

Rx
αi

T̃ x
li

= 1 + I ix , (19.3)

where ix is a bivector representing the 3D position of X referred to Fi.
Thinking in a transformation in the reverse sense we call it a backward trans-
formation which transforms a point X represented in the frame Fi to the
frame Fi−1 as follows

i−1X = i−1M i
iX i−1M̃ i = M z

θ̂i
Mx

α̂i

iX M̃x
α̂i

M̃z
θ̂i

= 1 + I i−1x . (19.4)

Note that the motor applied from the right side is not purely conjugated as in
the line case. This will be also the case for a plane, see chapter 18 for details
of the point and plane transformations.

Consider a line L represented in the frame Fi−1 by i−1L = i−1n + I i−1m,
where n and m are bivectors indicating the orientation and moment of the
line, respectively. We can write its forward transformation related to the
frame Fi according to chapter 18 as follows

iL = iM i−1
i−1L iM̃ i−1 = M̃x

α̂i
M̃z

θ̂i

i−1L Mz
θ̂i

Mx
α̂i

= in + I im . (19.5)

Its backward transformation reads

i−1L = i−1M i
iL i−1M̃ i = Mz

θ̂i
Mx

α̂i

iL M̃x
α̂i

M̃z
θ̂i

= i−1n + I i−1m . (19.6)

Finally, the forward transformation of a plane H represented in Fi−1

reads

iH = iM i−1
i−1H iM̃ i−1 = M̃x

α̂i
M̃z

θ̂i

i−1H Mz
θ̂i

Mx
α̂i

= in + I idH . (19.7)

19. Kinematics of Robot Manipulators in the Motor Algebra 477

ÿ��

����

���

	�
 ��
���

����

���

���

�

Fig. 19.3. Two finger grasper approaching to an object

and similarly as above, its backward transformation equation is

i−1H = i−1M i
iH i−1M̃ i = Mz

θ̂i
Mx

α̂i

iH M̃x
α̂i

M̃z
θ̂i

= i−1n + I i−1dH . (19.8)

19.2.3 Grasping by Using Constraint Equations

In this subsection we will illustrate grasping as a manipulation related task.
grasping operation. This task involves the positioning of a two finger grasper
in front of a static object. Figure 19.3 shows the grasper and the consid-
ered object O. The manipulator moves the grasper near to the object and
together they should fulfill some conditions to grasp the object firmly. In or-
der to determine the overall transformation 0Mn, which moves the grasper
to an appropriate grasping position, we claim that 0Mn has to fulfill three
constraints. For the formulation of these constraints we can take advantages
of the point, line and plane representations of the motor algebra. In the fol-
lowing we assume that the representations of geometric entities attached to
the object O in frame F0 are known.

Attitude condition: The grasping movement of the two fingers should
be in the reference plane HO of O. That is, the yz-plane of the end–effector
frame Fn should be equal to the reference plane HO. The attitude condition
can be simply formulated in terms of a plane equation as follows

0Mn
nHyz

n
0M̃n − 0HO ≈ 0 , (19.9)

where nHyz
n = (1, 0, 0)T + I 0 = (1, 0, 0)T , see figure 19.3.

Alignment condition: The grasper and object should be aligned parallel
after the application of the motor 0Mn. That is, the direction of the y-axis

478 Eduardo Bayro-Corrochano, Detlef Kähler

�� �"! ��$#$!&%&%&%�! ��&' (*),+
- .*/�0"132546.*7 0�8:9&2;.*1=<

>*?6@$A�B�C;AED6>*? A"F:GIHJ>*KLC Fig. 19.4. Direct and inverse kine-
matics

and the line LO should be the same. This condition can be simply expressed
in terms of a line equation

〈0Mn
nLy

n
0M̃n〉d − 〈0LO〉d ≈ 0 , (19.10)

where nLy
n = (0, 1, 0)T + I(0, 0, 0)T = (0, 1, 0)T and 〈L〉d denotes the compo-

nents of direction of line L.
Touching condition: The motion 0Mn should also guarantee that the

grasper is in the right grasping position. That is, the origin P o
n of the end–

effector frame Fn should touch the reference point XO of O. A formulation
of this constraint in our framework is

0Mn
nP o

n
0M̃n − 0XO ≈ 0 . (19.11)

By these three conditions we get constraints for the components of 0Mn,
and we can determine 0Mn numerically. The next step is to determine the
variable joint parameters of the robot manipulator which leads to the position
and orientation of the end–effector frame Fn described by 0Mn. This problem
is called the inverse kinematics problem of robot manipulators and will be
treated in section 19.4.

19.3 Direct Kinematics of Robot Manipulators

The direct kinematics involves the computation of the position and orien-
tation of the end–effector or frame Fn given the parameters of the joint–
transitions, see figure 19.4. In this section we will show how the direct kine-
matics can be computed when we use as geometric object a point, line or
plane. The notation for points, lines and planes we will use in the next sec-
tions is illustrated in figure 19.5. The direct kinematics for the general case
of a manipulator with n joints can be written as follows

0Mn = 0M1
1M2

2M3 · · · n−1Mn =
n∏

i=1

i−1M i . (19.12)

Now we can formulate straightforwardly the direct kinematics in terms of

19. Kinematics of Robot Manipulators in the Motor Algebra 479

MON PRQTSRULV W

XJYTZ\[3] ^
_J`Ta_3b c dfeg

h�ij

kmln

o�pq
rJsTt\u3v w

xJyTz\x3{ |

}�~���

���"��

���=���O� �R�T�R�L� �

Fig. 19.5. Notations for frame specific entities as the origin, the coordinate axis
and coordinate planes

point, line or plane representations as follows

0X = 0Mn
nX 0M̃n =

n∏

i=1

i−1M i
nX

n∏

i=1

n−iM̃n+1−i ,

0L =

n∏

i=1

i−1M i
nL

n∏

i=1

n−iM̃n+1−i ,

0H =

n∏

i=1

i−1M i
nH

n∏

i=1

n−iM̃n+1−i . (19.13)

Let us now write the motor 0M4 for the direct kinematics for points, lines
and planes like equation (19.13) for the SCARA manipulator specified by the
Denavit–Hartenberg parameters of table 19.1. Firstly, using equation (19.12)
with n=4, we can write down straightforwardly the required motor 0M4 as
follows

0M 4 = 0M1
1M2

2M3
3M 4 = (Mz

θ̂1
Mx

α̂1
) · · · (M z

θ̂4
Mx

α̂4
)

= (T z
d1R

z
θ1T

x
l1R

x
α1

) · · · (T z
d4R

z
θ4T

x
l4R

x
α4

)

= (1 +
I

2

0

0

d1

)Rz

θ1(1 +
I

2

l1

0

0

)(1 +

I

2

0

0

d2

)

Rz
θ2(1 +

I

2

l2

0

0

)Rz

θ3(1 +
I

2

0

0

d4

) . (19.14)

480 Eduardo Bayro-Corrochano, Detlef Kähler

����L�
���� �

���
�;�
 ¢¡£6¤

¥�¦§;¨
©«ª¬R©«®¯�°

±J²

³�´
µ¶·$¸ ¹\º

» ¼¾½¿

À Á¾ÂÀ6ÃÅÄ
Æ ÇÉÈ

ÊRËÌ\Ê¢Í

Fig. 19.6. The representation 0Î o
4 of Î o

4 in frame F0 is computed using 0þ
4

Note that translators with zero translation and rotors with zero angle become
1.

Applying the motor 0M4 from the left and 0M̃ 4 from the right for point

and plane equations and the motor 0M 4 from the left and 0M̃ 4 from the
right for line equations as indicated by equations (19.13), we get the direct
kinematics equations of points, lines and planes for the SCARA robot ma-
nipulator.

19.3.1 Maple Program for Motor Algebra Computations

Since the nature of our approach requires symbolic computation we chose
Maple to implement a program suitable for computations in the motor algebra
framework G+

3,0,1. We have developed a comfortable program for computations
in the frame of different geometric algebras. When dealing with the motor
algebra we have simply to specify its vector basis. The program has a variety
of useful algebraic operators to carry out computations involving reversion,
Clifford conjugations, inner and wedge operations, rotations, translations,
motors, extraction of the i–blade of a multivector etc.

As a first illustration using our Maple program, we computed the direct
kinematic equation of the origin P o

4 of F4 for the SCARA manipulator spec-
ified by the Denavit–Hartenberg parameters of table 19.1. The figure 19.6

19. Kinematics of Robot Manipulators in the Motor Algebra 481

shows the frames and the point P o
4 refered to F0. The final result is

0P o
4 = 0M4

4P o
4

0M̃4 = 0M 4

(
1 + I

0

0

0

)

0M̃4

= 1 + I

l2 cos(θ1 + θ2) + l1 cos(θ1)

l2 sin(θ1 + θ2) + l1 sin(θ1)

d1 + d2 + d4

 . (19.15)

19.4 Inverse Kinematics of Robot Manipulators

Since the inverse kinematics is more complex than the direct kinematics our
aim should be to find a systematic way to solve it exploiting the point, line
and plane motor algebra representations. Unfortunately the procedure is not
amenable for a general formulation as in the case of the direct kinematics
equation (19.12). That is why we better choose a real robot manipulator and
compute its inverse kinematics in order to show all the characteristics of the
computational assumptions.

The Stanford robot manipulator is well known among researchers con-
cerned with the design of strategies for the symbolic computation of the
inverse kinematics. According to table 19.1 the variable parameters to be
computed are θ1, θ2, θ4, θ5, θ6 and d3. By means of this example we will
show that in the motor algebra approach we have the freedom to switch be-
tween the point, line or plane representation according to the geometrical
circumstances. This is one of the most important advantages of our motor
algebra approach.

According to the mechanical characteristics of the Stanford manipula-
tor we can divide it into two basic parts: one dedicated for the positioning
involving the joints 1,2 and 3 and one dedicated for the orientation of the
end–effector like a wrist comprising the joints 4 to 6. Since the philosophy of
our approach relies on the application of point, line or plane representation
where it is needed, we should firstly recognize whether a point or a line or a
plane representation is the suitable representation for the joint–transitions.
As a result on the one hand a better geometric insight is guaranteed and
on the other hand the solution method is easier to be developed. The first
three joints of the Stanford manipulator are used to position the origin of the
coordinate frame F3. Therefore we apply a point representation to describe
this part of the problem. The last three joints are used to achieve to desired
orientation of the end–effector frame. For the formulation of this subproblem
we use a line and a plane representation because with these entities we can
model orientations.

482 Eduardo Bayro-Corrochano, Detlef Kähler

Ï

Ð*ÑÒÓÕÔ Ö ×¢ØÙ Ú ÛIÜ�Ý Þ
ß�à

á�âIã�äåçæ
èmé¢êÕë

ìmí

î�ïLð«ñ6ïLòJóIô&õ6ö÷ îùø"úûï

üJý=þ�ÿ ý��������� 	
	
	�
�
�
� ������������������
��� ���������� ���� "!�#%$'&�!�(�)+*�(�!�,
-�. /�(�0�!�*�1 /�,�-

Fig. 19.7. Rendezvous method: If i2 and j2 are known, we can compute k2 for
each i ≤ k ≤ j in two different ways: by successive forward transformations of i2
and by successive backward transformation of j2

19.4.1 The Rendezvous Method

The next important step is to represent the motor transformations from the
beginning of a chain of joint–transitions to the end and vice versa as it is de-
picted in figure 19.7. As a result we gain a set of equations for each meeting
point. In each of these points the forward equation is equal with the back-
ward equation. Using these equalities we have a guideline to compute the
unknowns. We will call this procedure the rendezvous method . This simple
idea has proved to be very useful as a strategy for the solution of the inverse
kinematics.

19.4.2 Computing θ1, θ2 and d3 Using a Point Representation

In the case of the Stanford manipulator the orientation and position of frame
F6 uniquely determines the position of frame F3. This will be explained in
the following.

The position of frame F3 with respect to F0 is described by the multi-
vector representation 0P o

3 of P o
3 in F0. By successive forward transformation

applied on 3P o
3 = 1 we get the representation 6P o

3 of P o
3 in F6 by

6P o
3 = 6M3

3P o
3

6M̃3 = 1 − I

0

0

d6

 . (19.16)

Now we can compute 0P o
3 by

19. Kinematics of Robot Manipulators in the Motor Algebra 483

354

687 9;:

<5= >@?A
B C�DB"E+FG HJIK5LNM
OQP RS�TVUTVWTYX

Z[\]�^_` a�bc

d e fhg e i j k l mn d o p'e

qsrt%u

v�w
Fig. 19.8. The rendezvous
method applied to Î o

3 in or-
der to determine the equa-
tions shown in table 19.2.
The equations of rendezvous
frame F1 are choosen to
compute the variable pa-
rameters θ1, θ2 and d3

0P o
3 = 0M6

6P o
3

0M̃6 = 0M 6 (1 − I

0

0

d6

) 0M̃6

= 1 + I

Px

Py

Pz

 , (19.17)

note that 0M 6 is given. The vector (Px, Py, Pz)
T describes the position of the

origin P o
3 of frame F3 in frame F0 for a given overall transformation 0M6.

Now we can apply the rendezvous method since we know the representation
of P o

3 in the two different frames F0 and F3, see figure 19.8.
Applying successive forward transformations we obtain

1P o
3 = 1M0

0P o
3

1M̃0 ,

2P o
3 = 2M1

1P o
3

2M̃1 ,

3P o
3 = 3M2

2P o
3

3M̃2 . (19.18)

These computations were carried out with our Maple program getting the
left hand sides of the four groups of equations of the table 19.2.

On the other hand, applying successive backward transformations to the
origin of F3 given by

484 Eduardo Bayro-Corrochano, Detlef Kähler

3P o
3 = 1 + I

0

0

0

 = 1 , (19.19)

we get

2P o
3 = 2M3

3P o
3

2M̃3 = 1 + I

0

0

d3

 ,

1P o
3 = 1M2

2P o
3

1M̃2 = 1 + I

d3 sin(θ2)

−d3 cos(θ2)

d2

 ,

0P o
3 = 0M1

1P o
3

0M̃1 = 1 + I

d3 sin(θ2) cos(θ1) − d2 sin(θ1)

d3 sin(θ2) sin(θ1) + d2 cos(θ1)

d3 cos(θ2) + d1

.(19.20)

These equations correspond to the right hand sides of the four groups of
equations of table 19.2. For simplicity we use the abbreviations si for sin(θi)
and ci for cos(θi). Using the third equation of the rendezvous frame F1, we

Table 19.2. Rendezvous equations obtained for Î o
3 regarding

frames F0,F1,F2 and F3

Frame Eq. forward backward

1 Px = d3s2c1 − d2s1
F0 2 Py = d3s2c1 + d2c1

3 Pz = d3c2 + d1

1 Pys1 + Pxc1 = d3s2
F1 2 d1 − Pz = −d3c2

3 Pyc1 − Pxs1 = d2

1 −Pzs2 + d1s2 + Pxc1c2 + Pys1c2 = 0
F2 2 d2 − Pyc1 + Pxs1 = 0

3 Pzc2 − d1c2 + Pxc1s2 + Pys1s2 = d3

1 −Pzs2 + d1s2 + Pxc1c2 + Pys1c2 = 0
F3 2 d2 − Pyc1 + Pxs1 = 0

3 Pzc2 − d1c2 + Pxc1s2 + Pys1s2 − d3 = 0

19. Kinematics of Robot Manipulators in the Motor Algebra 485

compute

θ1 = arctan2(x1/2, y1/2) , (19.21)

where

x1/2 =
d2 − Pyy1/2

−Px
, y1/2 =

Pyd2 ± Px

√
P 2
x + P 2

y − d2
2

P 2
x + P 2

y

(19.22)

and

arctan2(x, y) =

arctan(xy) : y > 0

π
2 : y = 0 and x > 0

undefined : y = 0 and x = 0

−π
2 : y = 0 and x < 0

arctan(xy) + π : y < 0 .

(19.23)

This gives two values for θ1. Now let us look for d3 and θ2. For that we
consider the first and second equation of the rendezvous frame F1. With
a1/2 = Pyx1/2 + Pxy1/2 and b = Pz − d1 we get two values for d3. Since for
the Stanford manipulator d3 must be positive, we choose

d31/2
=
√
a2
1/2 + b2 . (19.24)

Using this value in equations 1 and 2, we compute straightforwardly

θ2 = arctan2(
a1/2

d31/2

,
b

d31/2

) . (19.25)

19.4.3 Computing θ4 and θ5 Using a Line Representation

These variables will be computed using the joint–transition from F3 to F6.
According to the geometric characteristics of the manipulator it appears ap-
pealing that we should use the line representation to set up an appropriate
equation system. The representation 0Lz

6 of the line Lz
6 in frame F0 can be

computed using 0M6

0Lz
6 = 0M6

6Lz
6

0M̃6 = 0M 6

(

0

0

1

+ I

0

0

0

)

0M̃6 . (19.26)

Since the z-axis of F6 frame crosses the origin of F3, we can see that the
z-axis line related to this frame has zero moment. Thus we can claim that Lz6
in F3 frame is

486 Eduardo Bayro-Corrochano, Detlef Kähler

3Lz
6 = 3M 0

0Lz
6

3M̃0 =

Ax

Ay

Az

+ I

0

0

0

 . (19.27)

Note that 3M 0 is known since we have already computed θ1, θ2 and d3.
Now applying successively forward transformations as follows

4Lz
6 = 4M3

3Lz
6

4M̃3 ,
5Lz

6 = 5M4
4Lz

6
5M̃4 ,

6Lz
6 = 6M5

5Lz
6

6M̃5 , (19.28)

we get the left hand sides of the four groups of equations of table 19.3. The z-
axis line Lz

6 of F6 represented in F6 has zero moment, thus it can be expressed
as

6Lz6 =

0

0

1

+ I

0

0

0

 . (19.29)

Now applying successive backward transformations, we have

5Lz
6 = 5M6

6Lz
6

5M̃6 ,
4Lz

6 = 4M5
5Lz

6
4M̃5 ,

3Lz
6 = 3M4

4Lz
6

3M̃4 . (19.30)

Using our Maple program, we compute the right hand sides of the four groups
of equations of table 19.3. We will consider the equations of rendezvous frame

Table 19.3. Rendezvous equations obtained for x z
6 regarding frames

F3,F4,F5 and F6

Frame Eq. forward backward

1 Ax = −c4s5
F3 2 Ay = −s4s5

3 Az = −c5
1 Ays4 +Axc4 = −s5

F4 2 Az = −c5
3 Ayc4 −Axs4 = 0

1 −Azs5 +Axc4c5 +Ays4c5c6 = 0
F5 2 Ayc4 −Axs4 = 0

3 −Azc5 −Axc4s5 −Ays4s5 = 1

1 Axs4s6 −Ayc4s6 +Ays4c5c6 +Axc4c5c6 −Azs5c6 = 0
F6 2 −Axs4c6 +Ayc4c6 +Ays4c5c6 +Axc4c5s6 −Azs5s6 = 0

3 −Azc5 −Axc4s5 −Ays4s5 = 1

19. Kinematics of Robot Manipulators in the Motor Algebra 487

F4. Using the third equation, we compute

θ4 = arctan2(x1/2, y1/2) , (19.31)

where

x1/2 = −Ayy1/2−Ax = ± Ay√
A2
x +A2

y

, y1/2 = ± Ax√
A2
x +A2

y

. (19.32)

This results in two values for θ4 which substituted in the first and second
equation helps us to find two solutions for θ5

θ5 = arctan2(s5, c5) = arctan2

(
(−Ays4 −Axc4),−Az

)
. (19.33)

19.4.4 Computing θ6 Using a Plane Representation

Since θ1, θ2, d3, θ4 and θ5 are now known, we can compute the motor 5M0.
The yz–plane H

yz
6 represented in F6 has the Hesse distance 0, thus

6H
yz
6 =

1

0

0

+ I0 =

1

0

0

 . (19.34)

Its transformation to F0 reads

0H
yz
6 = 0M6

6H
yz
6

0M̃ 6 = 0M6

1

0

0

0M̃6 . (19.35)

Now we compute 5H
yz
6 by

5H
yz
6 = 5M0

0H
yz
6

5M̃0 =

Nx

Ny

Nz

+ I 5dHyz

6
. (19.36)

The orientation bivector (Nx, Ny, Nz)
T describes the orientation of the yz-

plane of frame F6 in frame F5 given the values of the joint variables
θ1, θ2, θ4, θ5 and d3. Now applying forward transformation from F5 to F6,
we obtain

6H
yz
6 = 6M5

5H
yz
6

6M̃5 . (19.37)

Using our Maple program, we get the left hand sides of the two groups of
equations of the table 19.4. Since the values for θ1, θ2, d3, θ4 and θ5 are not

488 Eduardo Bayro-Corrochano, Detlef Kähler

Table 19.4. Rendezvous equations obtained
for y yz

6 regarding frames F5 and F6

Frame Eq. forward backward

1 Nx = c6
F5 2 Ny = s6

3 Nz = 0

1 Nys6 +Nxc6 = 1
F6 2 Nxs6 −Nyc6 = 0

3 Nz = 0

unique we, will get different values for the equations. Applying 5M6 to 6H
yz
6

we get, the right hand sides of the two groups of equations of table 19.4 by

5H
yz
6 = 5M6

6H
yz
6

5M̃6 = 5M6

1

0

0

5M̃6 =

sin(θ6)

cos(θ6)

0

 . (19.38)

We will consider the equations of the rendezvous frame F5. Using the first
and second equation, we can compute θ6 by

θ6 = arctan2(s6, c6) = arctan2(Nx, Ny) . (19.39)

Note that since we had two values for θ4 and two values for θ5, there is more
than one solution for θ6.

19.5 Conclusion

This chapter presented the application of the algebra of motors for the treat-
ment of the direct and inverse kinematics of robot manipulators. When deal-
ing with 3D rigid motion it is usual to use homogeneous coordinates in the
4D space to linearize this non–linear 3D transformation. With the same effect
we model the prismatic and revolute motion of points, lines and planes using
motors which are equivalent to screws. The fact that in our approach we can
also use the representation of planes widens up the geometric language for
the treatment of robotic problems.

The chapter has shown the flexibility of the motor algebra approach for
the solution of the direct and inverse kinematics of robot manipulators. Using
a standard robot manipulator, we show that according to the need we can
resort for solving its inverse kinematics either to a point, a line or a plane
representation. Thus, the main contribution of this chapter is to show that
while preserving the geometric insight during the computation our approach
gains more flexibility. The authors of this chapter believe that the increasing
complexity of future multi–links mechanisms will profit from the versatility
of the motor algebra framework.

20. Using the Algebra of Dual

Quaternions for Motion Alignment

Kostas Daniilidis

GRASP Laboratory,
University of Pennsylvania, Philadelphia

20.1 Introduction

Whenever measurements have to be taken with respect to two different coor-
dinate frames the problem arises how to relate these measurements to each
other. When these measurements are rigid 3D-displacements we obtain de-
scriptions of motions with respect to two different coordinate systems. These
systems might for example be the motor coordinate system of a vehicle and
the coordinate system of a sensor mounted on the vehicle. If we use conven-
tional homogeneous coordinates notation we usually obtain the well known
equation AX = XB where all the variables are 4 × 4 matrices representing
rigid motions. On the other hand, we might have line measurements with
respect to two coordinate frames in which case we usually have a problem
of the form P = QX where P ,Q are matrices containing the Plücker co-
ordinates of the lines and X a matrix encoding the rigid motion which we
will describe later. We will first make a short break in our motivation in
order to introduce the Clifford algebra we will use. Our geometric algebra
treatment is inspired by [159], [172], and [22]. Then, we will describe 3D-lines
and 3D-motions in this framework and we will present two examples of the
algorithmic superiority of this representation.

490 Kostas Daniilidis

20.2 Even Subalgebras of Non-degenerate R z|{ }�{ ~
We briefly repeat some facts in order to facilitate a smooth transition from
the other chapters to our notation. Assume n basis vectors e1, e2, . . . , en of
an n-dimensional vector space on the reals and define a vector product as
follows

eiej = −ejei for i 6= j

e2
i = 1 for i = 1, . . . , p

e2
i = −1 for i = p+ 1, . . . , p+ q

e2
i = 0 for i = p+ q + 1, . . . , p+ q + r = n.

(20.1)

Choose then m basis vectors and consider all linear combinations of the
 n

m

 products of them. The result is defined as a multivector of rank p.

For example, for n = 3 and m = 2 we obtain the bivector a1e2e3 + a2e1e3 +
a3e1e2. The multivector of rank n contains only one component e1 . . . en
called pseudoscalar.

If we consider the sum of multivectors of all ranks we obtain a vector space
of dimension 2n which with the above product defines an 2n-dimensional
associative algebra called the Clifford algebra Rp,q,r. The exponents p, q and
r denote the cardinalities of the three different kinds of basis vectors in (20.1).

Algebras Rp,q,r with r 6= 0 – which means with no basis vectors squaring
to zero – are called non-degenerate algebras.

Consider now the subset of Rp,q,r containing multivectors of only even
rank. This is a subalgebra of Rp,q,r since the product of two products with
even numbers of basis vectors contains also an even number of basis vectors.

Our first example is the even subalgebra of R2,0,0 consisting of all numbers

a+ be1e2.

The square of the pseudoscalar (e1e2)(e1e2) = −e1e2e2e1 = −1. Hence, this
even subalgebra is isomorphic to the complex numbers a+ bi if we identify i
with the pseudoscalar e1e2. We have the freedom to write a point or vector
(x, y) in the plane either as x + ye1e2 or as xe1 + ye2. The rotation of a
vector by angle φ can then be written either as

(x+ ye1e2)(cosφ+ sinφe1e2)

or as

(cos
φ

2
− sin

φ

2
e1e2)(xe1 + ye2)(cos

φ

2
+ sin

φ

2
e1e2).

We increase the dimension by one and consider the even subalgebra of
R3,0,0 with elements of the form

20. Using the Algebra of Dual Quaternions for Motion Alignment 491

q0 + q1e2e3 + q2e1e3 + q3e1e2.

If we set i = e2e3, j = e1e3, and k = e1e2 we obtain i2 = j2 = k2 = −1 and
ij = k = −ji, jk = i = −kj, ki = j = −ik. The above described subalgebra
is the associative algebra of quaternions.

If we summarize the three real coefficients of the bivector part of a quater-
nion q into a vector q and write the quaternion as a pair (q0, q) then the
quaternion product can be written in terms of inner and cross products, pTq

and p × q, respectively:

pq = (p0q0 − pTq, p0q + q0p + p × q). (20.2)

The norm of a quaternion is defined via the conjugate quaternion q̄ as
|q|2 = qq̄. The unit quaternions (qq̄ = 1) act isomorphically to the group
of rotations in three-dimensions. If the rotation axis is the unit vector
(nx, ny, nz) and the angle of rotation is θ then the unit quaternion repre-
senting this rotation reads

q = cos
θ

2
+ sin

θ

2
(nxi+ nyj + nzk). (20.3)

Using the unit quaternions we have two ways to describe a rotation in
3D-space dependent on whether we stay inside the even subalgebra or not.
We can describe points of R3 with bivectors xi+ yj + kz also called vector-
quaternions.

On the other hand we can describe vectors as xe1 + ye2 + ze3 which is
the natural representation for vectors in geometric algebra. In the former case
the bivector x is rotated into the bivector qxq̄. In the latter case, the vector
x is rotated into the vector rxr̄ where r is called a rotor and equals

r = q0 + q1e2e3 − q2e1e3 + q3e1e2

= q0 + ω(q1e1 + q2e2 + q3e3)

= q0 + ωq,

(20.4)

where ω is the pseudoscalar e1e2e3. It can be easily proved that the pseu-
doscalar commutes with vectors and that ω2 = −1.

20.3 Even Subalgebras of Degenerate R z|{h}�{ ~
We already mentioned that if any of the basis vectors ei squares to zero the
algebra is called degenerate. Let us consider the even subalgebra of R1,0,1

with e2
1 = 1 and e2

2 = 0. The pseudoscalar squares then also to zero:

e1e2e1e2 = −e1e2e2e1 = 0.

492 Kostas Daniilidis

We call it ε and the elements of the even subalgebra are the dual numbers
invented by Clifford [45] and further developed by Study [229]:

a+ be1e2 = a+ bε where ε2 = 0.

Considering the sum and the product, the dual numbers are an abelian ring
but not a field because only dual numbers with not vanishing real part possess
an inverse element. An important property is associated with the derivatives
of functions with dual arguments. Since all powers greater equal two of ε
vanish a Taylor expansion always yields

f(a+ εb) = f(a) + εbf ′(a). (20.5)

We jump to the four-dimensional Clifford algebra R3,0,1 with

e2
1 = e2

2 = e2
3 = 1 and e2

4 = 0.

Its even subalgebra consists of elements q0 + q1e2e3 + q2e1e3 + q3e1e2 +
q′1e4e1 + q′2e2e4 + q′3e4e3 + q′0e1e2e2e3. Let us denote the pseudoscalar with
ε. Then we can easily prove the following facts:

1. ε2 = 0;
2. ε commutes with bivectors: εeiej = eiejε;
3.

q′1e4e1 + q′2e2e4 + q′3e4e3 = ε(q′1e2e3 + q′2e1e3 + q′3e1e2).

Because of (2) and (3) we can write every element of the even subalgebra of
R3,0,1 as

(q0 + εq′0) + (q1 + εq′1)e2e3 + (q2 + εq′2)e1e3 + (q3 + εq′3)e1e2

It is now obvious that this is a quaternion with the real coefficients having
been replaced by dual numbers. It is also known as dual quaternion and has
been discovered almost simultaneously with the dual numbers [45, 229]. With
respect to addition and multiplication the even subalgebra of R3,0,1 is a non-
abelian ring with unit element (1,0) and an associative algebra over the dual
numbers. We will denote the dual quaternions with q̌ in order to differentiate
them from the quaternions. Thus, a dual quaternion can be written as the
sum of a non-dual and a dual part q̌ = q + εq′, but also as a pair of a dual
scalar and a dual bivector q̌ = (q̌0, q̌). Dual bivectors q̌ can be written as
dual bivectors (0, q̌) and their product property

(0, q̌1)(0, q̌2) = (−q̌T1 q̌2, q̌1 × q̌2). (20.6)

The norm of a dual quaternion is defined as ‖q̌‖2 = q̌ ¯̌q and is a dual number
with positive real part. If the norm has a non vanishing real part then the dual
quaternion has an inverse q̌−1 = ‖q̌‖−1 ¯̌q. If the norm is equal one then an

20. Using the Algebra of Dual Quaternions for Motion Alignment 493

inverse element exists and is equal to the conjugate quaternion. If q̌ = q+εq′

then the unity condition q̌¯̌q = 1 can be written

qq̄ = 1 and q̄q′ + q̄′q = 0. (20.7)

As we shall describe in the following, unit dual quaternions represent general
motions of lines and the expression q̌x̌¯̌q valid for rotation of points in case
of real quaternions is also true for general motion of lines in case of dual
quaternions.

A line in space with direction l through a point p can be represented
with the 6-tuple of the Plücker coordinates (l,m) where m is called the line
moment and is equal to p×l. The line moment is normal to the plane through
the line and the origin with magnitude equal to the distance from the line to
the origin. The constraints ‖l‖ = 1 and l Tm = 0 guarantee that the degrees
of freedom of an arbitrary line in space are four. On the other hand a line can
be written as the outer product of two points (vectors) and is thus a bivector
which can be written as

l1e2e3 + l2e1e3 + l3e1e2 +m1e4e1 +m2e2e4 +m3e4e3

where l = (l1, l2, l3) and m = (m1,m2,m3) the Plücker coordinates defined
above.

20.4 Line Transformation

We will next prove that the law that rotates points qxq̄ is exactly the same
as the law that translates and rotates lines in space if we replace the vector
with a line and the quaternion with a dual quaternion.

Proposition 20.4.1. If a line given by the bivector ľa = la + εma is trans-
formed with a rotation R and a translation t into a line ľb then a unit dual
quaternion q̌ exists such that ľa = q̌ľb¯̌q.

Proof. Applying a rotation R and a translation t to a line (lb,mb) we obtain
the transformed line (la,ma)

la = Rlb (20.8)

ma = pa × la = (Rpb + t) × Rlb

= R(pb × lb) + t × Rlb

= Rmb + t × Rlb. (20.9)

We change from vector to quaternion notation which means that the vector
l is represented by a quaternion with zero scalar part l = (0, l). The terms
containing rotation can be easily written with quaternions. The difficulty
with the cross-product is tackled with the identity

494 Kostas Daniilidis

(0, t × q) =
1

2
(qt̄ + tq) (20.10)

where t is the translation quaternion (0, t) and q the rotation quaternion
(0, q). Using the identity (20.10) we obtain

la = qlbq̄

ma = qmbq̄ +
1

2
(qlbq̄t̄ + tqlbq̄). (20.11)

We define a new quaternion q′ = 1
2tq and a dual quaternion q̌ = q + εq′. It

can be easily shown that (20.11) is equivalent to

la + εma = (q + εq′)(lb + εmb)(q̄ + εq̄′). (20.12)

Denoting also the lines by dual quaternions ľa and ľb we obtain

ľa = q̌ľb¯̌q

ut

Lines can thus be rigidly transformed using a single operation (multiplying
left and right with the conjugate) in the non-abelian ring of dual quaternions.
The norm

|q̌|2 = q̌¯̌q = qq̄ + ε(qq̄′ + q′q̄) = qq̄ + ε/2(qq̄t̄ + tqq̄) = 1

hence q̌ is a unit dual quaternion. The above relations give also explicitly
the transformation from (R, t) to q + εq′. The dual part q′ = 1

2tq and the
quaternion q can be obtained from the rotation matrix by finding the axis
and the angle of rotation. If q̌ is a solution then −q̌ is also a solution. It
is sufficient to enforce like in non-dual quaternions that the scalar non-dual
part is positive in order to eliminate this ambiguity.

Reversely, the translation t can be recovered from the dual quaternion as

t = 2q′q̄. (20.13)

The unit dual quaternion q̌ can be written as the concatenation of a pure
translational unit dual quaternion and a pure rotational quaternion with dual
part equal zero i.e.

q̌ = (1, ε
t

2
)q.

20.5 Motion Estimation from 3D-Line Matches

If ((la,ma), (lb,mb)) are the Plücker coordinates before and after the motion,
respectively, then given at least two non-parallel lines we can estimate the

20. Using the Algebra of Dual Quaternions for Motion Alignment 495

rotation from eq. (20.8) and then insert it into (20.9) in order to solve for the
translation. We next propose a novel algorithm which simultaneously solves
for rotation and translation without requiring a non-linear minimization as
in existing algorithms [201].

We split eq. (20.12) in its non-dual part

la = qlbq̄ (20.14)

and its dual part

ma = qlbq̄
′ + qmbq̄ + q′lbq̄. (20.15)

Multiplying both equations on the right with q and applying the identity
q̄q′ + q̄′q = 0 in the first term of the right hand side of the second equation
we obtain

laq = qlb

maq = −laq
′ + qmb + q′lb.

The scalar parts of all line quaternions are zero, hence each of the above
equations consists actually of three scalar equations. We introduce again the
direction and moment vectors of the lines and we rewrite the above equations
into a homogeneous linear system

 la − lb [la + lb]× 03×1 03×3

ma − mb [ma + mb]× la − lb [la + lb]×

 q

q′

 = 0 (20.16)

where the matrix - we will call S - is a 6×8 matrix and the vector of unknowns
(qT , q′T) is 8-dimensional.

Recall that we have two constraints on the unknowns so that the result
is a unit dual quaternion

qTq = 1 and qTq′ = 0. (20.17)

Unfortunately, the six equations are dependent because the vectors la and lb
are unit vectors and the vectors ma and mb are perpendicular to la and lb,
respectively, so that two equations are redundant. As already known [201] we
need two non-parallel lines correspondences to solve the absolute orientation
problem.

Suppose now that N ≥ 2 correspondences are given. We construct the
6n× 8 matrix

T =
(

ST
1 ST

2 . . . ST
n

)T
(20.18)

which in the noise-free case has rank 6. Since in the noise-free case the equa-
tions arise from natural constraints the null-space contains at least the actual
solution (q, q′). It is trivial to see that an additional orthogonal solution is
(04×1, q). Hence, the matrix is maximally of rank 6. The solution is the el-
ement of the two-parametric kernel that satisfies the two conditions for the
dual quaternion to be a unit dual quaternion (20.17).

496 Kostas Daniilidis

20.6 The Principle of Transference

We have shown in the last section that the same law is valid for vector
rotation as well as for general line displacement. In this section we will show
that the dual quaternion representing the rigid displacement has exactly the
same form as the rotation quaternion if we replace the rotation angle with a
special dual angle and the rotation axis with the Plücker coordinates of the
screw axis. According to Chasles’ theorem [39] a rigid transformation can be
modeled as a rotation with the same angle about an axis not through the
origin and a translation along this axis. As the screw axis is a line in space
it depends on four parameters which together with the rotation angle θ and
the translation along the axis d (pitch) constitute the six degrees of freedom
of a rigid transformation.

In the following we will compute the pitch d as well as the screw axis
given by its direction and moment pair (l,m) as a function of the rotation
R about an axis through the origin and a translation t.

The direction l is parallel to the rotation axis. The pitch d is the projection
of translation on the rotation axis, therefore equal t T l. The not mentioned
angle θ is the same in both the (R, t) and the screw representation. In order
to recover the moment m we introduce a point c on the screw axis being the
projection of the origin on the axis (Fig. 20.1).

�

��

�
��

��

Fig. 20.1. The ge-
ometry of a screw:
Every motion can be
modeled as a rotation
with angle θ about
an axis at � with di-
rection $ and a sub-
sequent translation d
along the axis.

The coordinate system is shifted to this point and then transformed. The
resulting translation is then dl+(I−R)c. The so called pitch d reads d = l T t.
Using the Rodrigues formula

Rc = c + sin(θ)l × c + (1 − cos θ)l × (l × c)

and c T l = 0 it follows that

c =
1

2
(t − (t T l)l + cot

θ

2
l × t). (20.19)

This point c and hence the screw axis is not defined if the angle θ is either 0

20. Using the Algebra of Dual Quaternions for Motion Alignment 497

or 180 degrees. Otherwise the moment vector reads then

m = c × l =
1

2
(t × l + l × (t × l) cot

θ

2
). (20.20)

We proceed then with the computation of the corresponding dual quater-
nion: given the screw parameters (θ, d, l,m).

The quaternion derived from the rotation matrix R reads

(q0, q) = (cos
θ

2
, sin

θ

2
l) (20.21)

hence the moment equation (20.20) can be written

sin
θ

2
m =

1

2
(t × q + q0t − cos

θ

2
(l T t)l).

Using l T t = d and rewriting

sin
θ

2
m +

d

2
cos

θ

2
l =

1

2
(t × q + q0t)

which is the vector part of the dual part q′ of the dual quaternion q̌. Applying
(20.21) and q′ = 1

2tq we obtain

q̌ =

 q0

q

+ ε

 − 1

2q T t

1
2 (q0t + t × q)

 =

 cos θ2

sin θ
2 l

+ ε

 −d

2 sin θ
2

sin θ
2m + d

2 cos θ2 l

 .

(20.22)

Every function f of dual numbers obeys the rule

f(a+ εb) = f(a) + εbf ′(a)

hence

cos(
θ + εd

2
) = cos

θ

2
− ε

d

2
sin

θ

2
and sin(

θ + εd

2
) = sin

θ

2
+ ε

d

2
cos

θ

2
.

It is now straightforward to see that a dual quaternion can also be written
as

q̌ =

 cos(θ+εd2)

sin(θ+εd2)(l + εm)

 . (20.23)

This representation is very powerful since it algebraically separates the angle
and pitch information from the line information characterizing the pose of
the screw axis. Moreover, writing the dual angle θ̌ = θ + εd and the dual
vector ľ = l + εm (20.23) becomes equivalent to the pure rotation non-dual
equation (20.21). We can easily verify that

498 Kostas Daniilidis

q̌ = (cos θ̌/2, ľ sin θ̌/2)

is a unit quaternion q̌¯̌q = 1.
This completes the last part of the proof of one aspect of the well-known

principle of transference which we quote from Rooney as cited in [167]:

All valid laws and formulae relating to a system of intersecting line
vectors (and hence involving real variables) are equally valid to an
equivalent system of skew unit line vectors, if each real variable a in
the formulae is replaced by the corresponding dual variable a+ εa′.

In the sense of the even subalgebra of R3,0,1 described here we must em-
phasize that the vectors in the rotation formulae must be written as bivectors
before being replaced by the dual quantities. Chevallier [42] shows counterex-
amples for which the substitution with dual numbers of a theorem for vectors
does not lead to a theorem true for lines.

20.7 Relating Coordinate Systems to Each Other

Suppose that we describe a rigid motion with respect to two different coordi-
nate systems, for example, with respect to a camera sensor A as well as with
respect to an infrared position measurement device B. The two motions are
related by the transformation X between these two coordinate systems. This
is well known – mainly from results in hand-eye calibration – that it yields
the equation AX = XB which can be decomposed in one matrix equation

RARX = RXRB (20.24)

and one vector equation

(RA − I)tX = RXtB − tA. (20.25)

The majority of the approaches regards the rotation estimation in (20.24)
decoupled from translation estimation, the latter following the former. At
least two rotations containing motions with not parallel rotation axes are
required to solve the problem [238, 216, 43].

Let ǎ denote the screw described in coordinate system A and b̌ denote the
screw as described in coordinate system B. The rigid transformation between
them is unknown and it will be denoted by the unit dual quaternion q̌. The
screw concatenation yields then

ǎ = q̌b̌¯̌q. (20.26)

The scalar part of a dual quaternion ǎ is (ǎ + ¯̌a)/2, hence

20. Using the Algebra of Dual Quaternions for Motion Alignment 499

Sc(ǎ) = 1
2 (ǎ + ¯̌a) = 1

2 (q̌b̌¯̌q + q̌¯̌b¯̌q)

= 1
2 q̌(b̌ + ¯̌b)¯̌q = q̌Sc(b̌)¯̌q = Sc(b̌) q̌¯̌q = Sc(b̌).

(20.27)

According to (20.23) the scalar parts are equal to the cosine of the respective
dual angles:

cos
(θa + εda)

2
= cos

(θb + εdb)

2
.

which is equivalent to

cos
θa
2

= cos
θb
2

and da sin
θa
2

= db sin
θb
2
.

Hence, the angle and the pitch remain invariant under coordinate transfor-
mations. This is also known as the Screw Congruence Theorem [39], its proof
without dual unit quaternions is, however, considerably longer than the one
line proof in (20.27).

The fundamental equation ǎ = q̌b̌¯̌q consists of four dual equations. Since
the scalar parts are equal, only the vector components contribute to the
computation of the unknown q̌:

sin
θ̌a
2

(0, ǎ) = q̌(0, sin
θ̌b
2

b̌)¯̌q = sin
θ̌b
2

q̌(0, b̌)¯̌q.

If the angles θa,b are not 0 or 360 degrees the sines can be simplified yielding

(0, ǎ) = q̌(0, b̌)¯̌q (20.28)

which is nothing else than the motion of the lines of the screw axes.
Thus:

1. The angle and the pitch of a rigid motion are independent of the coordi-
nate frame where the motion is described.

2. Relating two coordinate systems to each other is equivalent to the 3D
motion estimation problem from 3D-line correspondences where the lines
are the screw axes of the motions. The solution requires the computation
of the kernel of a matrix (20.18) using the Singular Value Decomposition.

In [54] we show the details of the computational algorithm and extensive
results on real experiments on the hand-eye calibration problem.

20.8 Conclusion

In this chapter we studied the properties of the even subalgebra of R3,0,1

known also as dual quaternions. Although we agree with Hestenes’s argument
that quaternions fail to distinguish among vectors and bivectors we believe

500 Kostas Daniilidis

that this argument does not apply here because 3D-lines are bivectors per se.
On the contrary, we showed how the use of dual quaternions enables a better
insight into the problem and facilitates a novel, elegant, and computationally
simple approach to relating motions to each other that has not been possible
with any other representation.

21. The Motor Extended Kalman

Filter for Dynamic Rigid Motion

Estimation from Line Observations∗

Yiwen Zhang, Gerald Sommer, and
Eduardo Bayro-Corrochano

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

21.1 Introduction

The motion estimation of a moving object in front of an observer is fun-
damental for various tasks in visual robotics like tracking, object collision
avoidance, surveillance and visual navigation.

The issue we are here interested in is the estimation of the rigid motion
of an object in observer frame or equivalently, the motion of an observer in a
world frame. Fig. 21.1 gives a more detailed illustration. The 3-D coordinate
frame A is supposed as observer frame, the coordinate frame B is fixed on a
moving rigid body. The position and orientation of the rigid body in frame
A are sampled by the observer at discrete time ti, i = 0, 1, · · · . At time t0,
frame A and frame B are duplicate. At time ti, frame B goes to Bi, and an
observed feature L on the surface of the rigid body goes to Li with respect
to frame A. We use state vector Xi to describe the position and orientation
of the coordinate frame Bi relative to the frame A. Xi satisfies the dynamic
model (which is also known as the plant model)

∗ This work has been supported by DFG Grants So-320-2-1, So-320-2-2, and
Graduiertenkolleg No. 357.

502 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

Xi = Φi/i−1(X i−1,W i), (21.1)

where W i is independent normally distributed noise with zero mean and
known statistics. We will assume that the measurement of the feature Li is
also corrupted by independent normally distributed noise V i, which is also
zero mean and with known statistics, and it is uncorrelated with W i. The
real observed measurement Li is expressed as

Li = L′

i + V i. (21.2)

where L′

i are the accurate data. The relationship between the measurements
and the state is given by the measurement model as

f(L0,Li,Xi,V 0,V i) = 0. (21.3)

B

B

1

L

L

0

0

1

L

A(B)

1/0

2/1

L2

x1 x2

B 2

.

..

.

.

x i

.
B

i

j

x j
L

i

j...

X

X

j/iX

Fig. 21.1. Coordinate frames for observation of rigid motions

In such a noisy scenario we urgently require a method able to estimate a
“best” state variable vector X̂i.

The basic 3-D geometric primitives of the visual space for the motion
registration are points (corners) or lines (edges). These local features are
sensitive to noise and quantization errors which jeopardize to some extent
the motion estimation. Alternatively the use of global features such as planes
or surfaces makes the motion estimation process more robust, however with
higher computational complexity.

21. The Motor Extended Kalman Filter 503

In the literature we distinguish basically two main groups of estimation
methods: batch and sequential processing.

The batch approaches include SVD and the analytical solutions by mini-
mization techniques in terms of least square error. They use all the features’
measurements observed at time ti and tj to estimate the optimal motion pa-
rameters Xj/i (so called two-view motion parameters) [123] [8] [201]. These
batch methods do not use a priori information given by (21.1).

The sequential processing scheme is also called Kalman filtering [126]
[170] [225]. The state Xi is estimated from the current predicted a priori
state (using (21.1)) and the current measurements. The Kalman filter is a
recursive algorithm: the new solution is based on the new measurements and
the old solution. If the model equations (21.1) and (21.3) are nonlinear, the
extended Kalman filter (EKF) can be used. In computer vision the measure-
ment models are usually nonlinear. For applying the extended Kalman filter,
such nonlinear models must be linearized about the current observations and
current predicted state.

Former research shows that when we use both the batch and EKF algo-
rithms to estimate the motion parameters with the same given measurements,
the later gains better estimates [247].This results from the use of additional a
priori information of the dynamic model (21.1) in case of Kalman filter pro-
cessing. In other words, Kalman filtering is the best solution to our problem
stated above.

The application of the Kalman filter as a recursive minimum variance es-
timator has become popular since the sixties. In order to estimate dynamic
motion parameters, authors used the Kalman filter together with different
types of state variable representations. For instance, Bar-Itzhack et al. used
point sets for the quaternion EKF to estimate dynamic rotation [13] and
Zhang and Faugeras used line segments with their midpoints to estimate all
dynamic motion parameters with a standard EKF [247]. Recently Azarbaye-
jani and Pentland [11] applied the EKF for estimation of motion and structure
using relative orientation constraints in terms of quaternions. These meth-
ods are all based on point measurements (a line segment is defined by its
midpoint and direction). We have not yet seen a method using straight line
measurements.

With recently developed Hough transformation techniques [149], [186] one
can extract a 2-D straight line from the image of the object boundary and
then reconstruct a 3-D straight line by calibrated images. The coordinates
of 3-D reconstructed straight lines are more reliable than 3-D reconstructed
points. This motivated us to develop a Kalman filter from straight lines ob-
servations.

In this paper, we present the development of a novel EKF in the geometric
algebra framework. The key for the filter design is that the measurement
model of straight lines is established in the geometric algebra G+

3,0,1 called
motor algebra, which is of the homogeneously extended Euclidean space E3.

504 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

This aims at the useful property that the nonlinear motion model of a straight
line in space E3 can be written linearly in motor algebra. The modeling of
the problem at hand in algebra G+

3,0,1 corresponds to the implicit assumption
of a line geometry. That means that lines are the basic primitive entities
(instead of points in E3) and the known approaches of Kalman filter can be
used in this algebraic framework. The real experiments show that the motor
extended Kalman filter (MEKF) is indeed an attractive estimation approach.
Compared with a batch method, the MEKF gives more accurate results in
the dynamic motion estimation problem.

This paper is organized as follows. Section 21.2 reviews the basic knowl-
edge of Kalman filter techniques. Section 21.3 represents the 3-D line motion
model in geometric algebra G+

3,0,1 and gives an outline of the geometric al-
gebra of rotors and motors. In section 21.4 we present the motor extended
Kalman filter algorithm. Section 21.5 provides the experimental results of our
MEKF, and finally, the conclusions are presented in section 21.6.

21.2 Kalman Filter Techniques

We will review in this section the principal equations for both the Kalman
filter and the extended Kalman filter [126], [170] in order to introduce the
necessary notations for the following sections.

21.2.1 The Kalman Filter

Consider a dynamical system whose state is described by a linear, vector
difference equation. The system dynamic model is given by

Xi = Φi/i−1Xi + W i. (21.4)

The state of the system at ti is given by the n-dimensional vector X i. Φi/i−1

is an n×n matrix and W i is a vector random sequence with known statistics

E[W i] = 0, i = 0, 1, ... (21.5)

E[W iW
T
j] = Qiδij (21.6)

where δij is the Kronecker delta function. The matrix Qi is assumed to be
nonnegative-definite.

Suppose that at each time ti there is available an m-dimensional vector of
measurement Zi that is linearly related to the state and which is corrupted
by additive noise V i.

Zi = HiXi + V i (21.7)

Hi is a known m × n observation matrix. The vector V i is an additive,
random sequence with known statistics

21. The Motor Extended Kalman Filter 505

E[V i] = 0, i = 0, 1, ... (21.8)

E[V iV
T
j] = Ciδij . (21.9)

The matrix Ci is assumed to be nonnegative-definite.
Further, assume that the random processes W i and V i are mutually

uncorrelated. These processes will also be called white noise sequence. That
means

E[W iV
T
j] = O i = 0, 1, ... (21.10)

matrix O is null matrix.
Given the preceding models ((21.4) and (21.7)), we shall determine an

estimate X̂i of the state at ti that is a linear combination of an estimate
X̂i−1 at ti−1 and the measurement data Zi at ti. By defining an unknown
gain matrix Ki (n×m), the estimate X̂i is given by

X̂i = Φi/i−1X̂i−1 + Ki[Zi − HiΦi/i−1X̂i−1] (21.11)

The matrix Ki shall be determined so that the estimate must be “best” in
the sense that the expected value of the sum of the squares of the error in
the estimate is a minimum. That is, the X̂i is to be chosen so that

Emin = Min{E[(X̂i − Xi)
T (X̂i − X i)]}. (21.12)

Equation (21.12) is equivalent to minimization of the trace of state error
covariance matrix P i

Emin = Min{tracePi} = Min{traceE[(X̂i − Xi)(X̂ i − Xi)
T]}.

(21.13)

By substituting (21.7) into (21.11), and then substituting (21.11) and (21.4)
into (21.13), we can see that the trace of matrix P i will be minimized by
choosing the optimal gain matrix Ki such as

Ki = P i/i−1H
T
i (HiP i/i−1H

T
i + Ci)

−1, (21.14)

where P i/i−1 is called predicted state error covariance matrix

P i/i−1 = Φi/i−1P iΦ
T
i/i−1 + Qi, (21.15)

which is the error covariance matrix of the predicted state X̂i/i−1

X̂i/i−1 = Φi/i−1X̂i. (21.16)

With this optimal gain matrix Ki, the matrix P i reduces to

P i = P i/i−1 − KiHiP i/i−1. (21.17)

Equations (21.11), (21.15), (21.14) and (21.17) constitute the Kalman fil-
ter for the model of the system (21.4) and that of the measurement (21.7),
respectively.

506 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

Looking at (21.14), we see that as the measurement error covariance ma-
trix Ci approaches zero, the gain matrix Ki weights the residual more heavily.
Specifically,

lim
Ci→O

Ki = H−1
i . (21.18)

On the other hand, as the estimated state error covariance P i approaches
zero, the gain Ki weights the residual less heavily. Specifically,

lim
P i→O

Ki = O. (21.19)

Another way of thinking about the weighting by Ki is that as the measure-
ment error covariance matrix Ci approaches zero, the actual measurement Zi

is ”trusted” more and more, while the predicted state Φi/i−1X̂i is trusted
less and less. On the other hand, as the estimated state error covariance P i

approaches zero the actual measurement Z i is trusted less and less, while the
predicted state Φi/i−1X̂i (the dynamic model) is trusted more and more.

21.2.2 The Extended Kalman Filter

As described in section 21.2.1, the Kalman filter addresses the general prob-
lem of trying to estimate the state X i of a discrete-time controlled process
that is governed by a linear stochastic difference equation. But what hap-
pens if the process and (or) the relation between the measurement and the
state is non-linear? Some of the most interesting and successful applications
of Kalman filtering are concerned with such situations. A Kalman filter that
linearizes about the current predicated state X̂i/i−1 and measurement Zi is
referred to as an extended Kalman filter or EKF.

In computer vision the measurement model is usually found to be de-
scribed by a nonlinear observation equation f i(Z0,i,Xi) = 0. The parameter
Z0,i is the accurate measurement. In practice, such measurement is affected
by random errors. We assume that the measurement system is disturbed by
additive white noise, i.e., the real observed measurement Z i is expressed as

Zi = Z0,i + V i, (21.20)

the statistics of noise V i are given by (21.8) and (21.9).
For applying the Kalman filter technique, we must expand the nonlinear

observation equation into a first order Taylor series about (Z i, X̂i/i−1)

f i(Z0,i,Xi) = f i(Zi, X̂i/i−1) +

+
∂f i(Zi, X̂i/i−1)

∂Z0,i
(Z0,i − Zi) +

+
∂f i(Zi, X̂i/i−1)

∂Xi
(X i − X̂i/i−1) + R2 = 0. (21.21)

21. The Motor Extended Kalman Filter 507

By ignoring the second order term R2, the linearized measurement equation
(21.21) becomes

Y i = HiXi + N i, (21.22)

where Y i is the new measurement vector, N i is the noise vector of the new
measurement, and Hi is the linearized transformation matrix. The compo-
nents of the equation (21.22) are given by

Y i = −f i(Zi, X̂i/i−1) +
∂f i(Zi, X̂i/i−1)

∂Xi
X̂ i/i−1,

Hi =
∂f i(Zi, X̂i/i−1)

∂Xi
,

N i =
∂f i(Zi, X̂i/i−1)

∂Z0,i
(Z0,i − Zi),

E[N i] = 0,

E[N iN
T
i] = Ci/i−1

=
∂f i(Zi, X̂i/i−1)

∂Z0,i
Ci
∂f i(Zi, X̂i/i−1)

∂Z0,i

T

,

where Ci is given by the statistics of measurement (21.9). This linearized
equation (21.22) is a general form for a nonlinear model. We will use this
form for our particular nonlinear measurement model later in section 21.4.

21.3 3-D Line Motion Model

A line is one of the basic rigid geometric entities. In Euclidean space E3, the
operation of the line rigid motion is nonlinear. Whereas using the 4-D geo-
metric algebra G+

3,0,1, also called motor algebra, the transformation becomes
linear. In this section we first introduce the structure of the geometric algebra
G+

3,0,1, and then give the Plücker line model and its motion model in G+
3,0,1.

21.3.1 Geometric Algebra G+
3,0,1 and Plücker Line Model

Given a homogeneous extension of the Euclidean space E3 by an orthonormal
set of vectors γ1, γ2, γ3, γ4, which in geometric algebra G+

3,0,1 satisfy:

γ2
i = 1 for i = 1, 2, 3, (21.23)

γ2
4 = 0, (21.24)

γiγj = −γjγi for i 6= j. (21.25)

The basis of the linear space spanned by G+
3,0,1 is composed by one scalar, six

bivectors, and one pseudoscalar, that means the basis BG+
3,0,1

is

508 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

BG+
3,0,1

= {1, γ2γ3, γ3γ1, γ1γ2, γ4γ1, γ4γ2, γ4γ3, I = γ1γ2γ3γ4}, (21.26)

with I2 = 0.
A multivector A ∈ G+

3,0,1,

A = a0 + a1γ2γ3 + a2γ3γ1 + a3γ1γ2 +

+I(a′0 + a′1γ2γ3 + a′2γ3γ1 + a′3γ1γ2), (21.27)

can be also expressed in a condensed dual form

A = B + IB′, (21.28)

where B and B′ are equivalent to quaternions.
A line L with Plücker coordinates in G+

3,0,1 can be represented as

L = n + Im, (21.29)

where n and m are bivectors,

n = n1γ2γ3 + n2γ3γ1 + n3γ1γ2 (21.30)

m = m1γ2γ3 +m2γ3γ1 +m3γ1γ2. (21.31)

Here n is the direction of the line and m is its moment. Any point p on the
line,

p = p1γ2γ3 + p2γ3γ1 + p3γ1γ2, (21.32)

satisfies

m = p∧n. (21.33)

If n is the normal direction of the line, then the norm of the moment
calculated by (21.33) is the distance from the origin to the line (see Fig.
21.2).

L

O

γγ 2

||m||

γ 3γ 1

p

n, ||n|| = 1γ γ2 3

1

m

Fig. 21.2. Plücker coordinates of a line x

21. The Motor Extended Kalman Filter 509

21.3.2 Plücker Line Motion Model in G+
3,0,1

In general, rigid motion consists of rotation and translation. The rotation is
defined by both its rotation axis and rotation angle. A certain rigid motion has
a unique rotation angle and a unique rotation axis direction, but the rotation
axis can be placed anywhere in a 3-D coordinate system, the corresponding
translation is then dependent on the position of the rotation axis. There are
two positions of rotation axis having particular meaning. One is the axis
passing through the origin of a reference coordinate system, the translation
is applied after rotation. The other is so called screw motion, the rotation
axis is in such a place that a rigid motion consists of rotation about this axis
in space through an angle of θ, followed by translation along the same axis by
an amount d. The screw motion plays a very important role in rigid motion
study [178]. In this section, we will discuss the features of motion of lines in
Plücker coordinates.

n

θ

p’

L

L’

O

γ2γ3

γ3γ1

γ1γ2

n’ θ

p

r
_

Fig. 21.3. The representation of pure rotation of a line

We first discuss the case of pure rotation as depicted in Fig. 21.3. The
line is rotated by an angle θ about an axis r̄ going through the origin O, r̄

is a unit bivector. We can use a unit rotor R to represent this rotation,

510 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

R = r0 + r1γ2γ3 + r2γ3γ1 + r3γ1γ2

= r0 + r

= cos(θ/2) + sin(θ/2)r̄ (21.34)

R̃ = r0 − r1γ2γ3 − r2γ3γ1 − r3γ1γ2 = r0 − r, (21.35)

where R̃ is the inversion of R with the constraint

RR̃ = r20 − r · r = 1. (21.36)

L = n+Im and L′ = n′ +Im′ are line coordinates before and after motion.
p is a point on the line L, after motion it goes to p′. Then

L′ = n′ + Im′

= RnR̃ + I(RpR̃)∧(RnR̃)

= RnR̃ + IR(p∧n)R̃

= R(n + Im)R̃

= RLR̃, (21.37)

In the case of pure translation t, where t is the bivector,

t = t1γ2γ3 + t2γ3γ1 + t3γ1γ2,

the direction n of the line L remains unchanged. A point p on the line is
moving to p′ = p + t. The translated line L′ is given by

L′ = n′ + Im′

= n + I(p + t)∧n

= n + I(m + t∧n)

= n + I(m + (tn − nt)/2)

= (1 + I
t

2
)(n + Im)(1 − I

t

2
)

= TLT̃ (21.38)

With line rotation model (21.37) and translation model (21.38), the trans-
formation of a line (see Fig. 21.4) can be modeled by, e.g., applying a rotation
R followed by a translation T

L′ = TRLR̃T̃

= MLM̃ , (21.39)

where M is a motor ,

M = TR = (1 + I
t

2
)R = R + IR′ = r0 + r + I(r′0 + r′) (21.40)

M̃ = R̃T̃ = R̃(1 − I
t

2
) = R̃ + IR̃′ (21.41)

and

21. The Motor Extended Kalman Filter 511

n

θ

r

L

O

γ2γ3

γ3γ1

γ1γ2

θ

p

L’

p’

t

n’

_

Fig. 21.4. The representation of rigid motion of a line

MM̃ = (1 + I
t

2
)RR̃(1 − I

t

2
) = 1

= (R + IR′)(R̃ + IR̃′) = 1 + I(RR̃′ + R′R̃). (21.42)

Deduced from the dual part of (21.42) we then get the following constraint

RR̃′ + R′R̃ = 2(r0r
′
0 − r · r′) = 0. (21.43)

As we mentioned above, the motion can also be seen as a screw motion.
First let us consider a line L rotating about another straight line Ls =

r̄ + Itc ∧ r̄ by an angle θ, where the rotation axis Ls is in some general
position of a 3-D coordinate system and tc is pointing to an arbitrary point
on Ls. We call such a rotation as general rotation Rs. Rs can be seen as
a combined motion, represented by a translation −tc first, then a rotation
by rotor R, finally followed by translation tc. That means, we first translate
the rotation axis Ls to pass the origin of the 3-D coordinate system, after
that we perform a rotation and finally we translate this axis Ls back to its
original position:

Rs = (1 + Itc/2)(cos(θ/2) + sin(θ/2)r̄)(1 − Itc/2)

= cos(θ/2) + sin(θ/2)(r̄ + Itc∧r̄)

= cos(θ/2) + sin(θ/2)Ls. (21.44)

A line rotated in this way can be easily given by

512 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

L′ = n′ + Im′

= RsLR̃s. (21.45)

n

L

θp’

L’

O

γ1γ2

γ2γ3

γ3γ1

n’

tc

ts
θ

p

L s

Fig. 21.5. The representation of screw motion of a line

Now, we can describe a screw motion easily. A screw motion is the com-
bination of a general rotation, represented by Rs and a translation ts which
is parallel to the line Ls, see Fig. 21.5. The screw motion equation is

L′ = T sRsLR̃sT̃ s

= MLM̃ . (21.46)

From the above discussion we see that using motor algebra, we can deal
with rigid motion easily and efficiently. For example, if we use matrix algebra
to describe a rigid motion, we must deal with 12 parameters, 9 for rotation
and 3 for translation, using 6 constraints. In motor algebra, on the other hand,
we only deal with 8 parameters and 2 constraints given by equations (21.36)
and (21.43), respectively. Furthermore, motor algebra is algebraically isomor-
phic to dual-quaternion algebra. In reference [87], J. Funda et al. compared
several methods of line-oriented representations of general spatial displace-
ments of rigid bodies and drew the conclusion that dual-quaternion algebra
is the best for the line transformations. As pointed out by D. Hestenes et
al. in chapter 1 , “the drawback of quaternions is that they are limited to
3-D applications, and even there they fail to make the important distinction

21. The Motor Extended Kalman Filter 513

between vectors and bivectors”. “It should be clear that geometric algebra
retains all of the advantages and none of the drawbacks of quaternions, while
extending the range of applications enormously”. Another important advan-
tage is that motors and rotors are both spinors. In spinor representation of
Euclidean transformation, the group of several transformations corresponds
to the geometric product of the spinors representing these transformations.
We will use (21.46) for the motion estimation which will be discussed in the
following section.

21.3.3 Interpretation of the Plücker Line Motion Model in Linear
Algebra

The Plücker line motion model presented in the last section is considered in
geometric algebra G+

3,0,1. Because the EKF algorithm is computed in linear

algebra, we should interpret the line motion model L′ = MLM̃ in the frame
of linear algebra. This can be done by remembering that G+

3,0,1 spans the 8-
dimensional linear space represented by (21.26), which is the union of a real
and a dual 4-dimensional subspace, respectively. In that space the lines are
the basic geometric entities and their mutual relations correspond to linear
transformations by rotors or motors. This is just as the rotation of points in
E3 can be linearly transformed using a rotation matrix R.

First let us see some basic conversions.
The multiplication of two rotors U and V in geometric algebra G+

3,0,1

reads

W = UV = (u0 + u)(v0 + v)

= u0v0 + u · v + u0v + v0u + u∧v. (21.47)

Multiplication of these two rotors in linear algebra is

W = URlV = VRrU , (21.48)

where U = (u0 u1 u2 u3)
T , V = (v0 v1 v2 v3)

T and

URl =

u0 −u1 −u2 −u3

u1 u0 u3 −u2

u2 −u3 u0 u1

u3 u2 −u1 u0

,

VRr =

v0 −v1 −v2 −v3
v1 v0 −v3 v2

v2 v3 v0 −v1
v3 −v2 v1 v0

.

514 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

We call URl “left-multiplication matrix of motor U” and VRr “right-
multiplication matrix of motor V ”.

Multiplication of two motors S = U +IU ′ and T = V +IV ′ in geometric
algebra G+

3,0,1 results

Q = ST = (U + IU ′)(V + IV ′)

= UV + I(UV ′ + U ′V). (21.49)

Here U , U ′, V and V ′ are all in the form of rotors. Multiplication of these
two motors in linear algebra is given by

Q = SMlT = T MrS, (21.50)

where

S = (u0 u1 u2 u3 u′0 u′1 u′2 u′3)
T ,

T = (v0 v1 v2 v3 v′0 v′1 v′2 v′3)
T ,

SMl =

 URl 04×4

U ′

Rl URl

 ,

T Mr =

 VRr 04×4

V ′

Rr VRr

 ,

We call SMl “left-multiplication matrix of motor S” and T Mr “right-
multiplication matrix of motor T ”.

To convert the Plücker line motion model (21.46) to linear algebra we can
handle the real and dual components n, m, n′ and m′ of the lines L and L′

as rotors with zero scalar. By right multiplication of both sides of equation
(21.46) by M we get

L′M − ML = 0. (21.51)

This results in the following linear motion equation

(L′

Ml − LMr)M = AMM = 0. (21.52)

The constraints of equations (21.36) and (21.43), respectively, now are

RTR = 1, (21.53)

RTR′ = 0, (21.54)

with R = (r0 r1 r2 r3)
T , R′ = (r′0 r

′
1 r

′
2 r

′
3)
T and M = R + IR′.

These properties will be used for the implementation of the MEKF algo-
rithm in the next section.

21. The Motor Extended Kalman Filter 515

21.4 The Motor Extended Kalman Filter

In this section, we will formulate the motor extended Kalman filter (MEKF)
algorithm . For applying Kalman filter techniques which were introduced in
section 21.2, we know that we must be given both a dynamic model and a
measurement model. We will first present the dynamic model using motor
as state, then linearize the measurement equation (21.52) to get a linearized
measurement equation, use (21.53) and (21.54) to modify the estimation to
construct a proper motor estimation and finally, we present the MEKF algo-
rithm.

21.4.1 Discrete Dynamic Model Using Motor State

Let us assume that we have a rigid object moving in 3-D space with ap-
proximately known trajectory. The object includes a number of lines (L1,
L2, ..., Ln, n ≥ 2), we use the notation L to represent any one of these lines.
The 3-D coordinates of these lines are sampled at a number of time instants
t0, t1, ..., tN . Suppose at time ti, the rigid motion parameters with respect
to time t0 are described by the motor M i, the relationship of the Plücker
coordinates of a line at time t0 (denoted as L0) and at time ti (Li) in G+

3,0,1

is

Li = M iL0M̃ i. (21.55)

The change of motion parameters from time ti−1 to ti is described by the
motor V i/i−1, that is

Li = V i/i−1Li−1Ṽ i/i−1. (21.56)

By substituting (21.55) into (21.56), we get

Li = V i/i−1M i−1L0M̃ i−1Ṽ i/i−1

= M iL0M̃ i. (21.57)

Then we get the ideal dynamic motion model

M i = V i/i−1M i−1. (21.58)

The motor V i/i−1 encodes the velocity information. For example, suppose
the motion is a screw motion with rotation of constant angular velocity ω
about an axis of known line (Ls = r̄ + Itc∧r̄) and with constant translation
velocity vs which is parallel to the axis. The data are sampled by a constant
time interval and such a time interval is normalized to 1, then

V i/i−1 = V = (1 + Ivs/2)(cos(ω/2) + sin(ω/2)Ls). (21.59)

In real applications we can only know the relation between M i−1 and
M i approximately. That means that such a dynamic motion model has to
contain a process noise W i. Thus, the real dynamic model is given by

516 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

M i = V i/i−1M i−1 + W i, (21.60)

where the statistics of W i is given by (21.5) and (21.6). In linear algebra,
(21.60) is expressed as

M i = V i/i−1,MlM i−1 + W i. (21.61)

It must be noted that the motion parameters M and V should be described
in the same coordinate system of the line L, which is spanned by the algebra
G+

3,0,1.

21.4.2 Linearization of the Measurement Model

It is obvious that in (21.52) the relation between the measurement AM and
the state M is nonlinear, we must therefore first linearize it.

Suppose the measurement AM i is the true data AM 0,i contaminated by
measurement noise NAM ,i

AM i = AM 0,i + NAM ,i. (21.62)

The noise matrix NAM ,i is zero mean and we know the covariance of every
component of the noise matrix. We define a function fM,i depending on the
variables (AM 0,i,M i) as follows

fM,i(AM 0,i,M i) = AM 0,iM i = 0. (21.63)

Expanding (21.63) into a first order Taylor series about the measurement and
the predicted state (AM i, M̂ i/i−1), we get

fM,i(AM 0,i,M i)

= fM,i(AM i,M̂ i/i−1) +

+
∂fM,i(AM i,M̂ i/i−1)

∂M i
(M i − M̂ i/i−1) +

+(AM 0,i − AM i)
∂fM,i(AM i,M̂ i/i−1)

∂AM 0,i

+ R2

= 0, (21.64)

where

∂fM,i(AM i,M̂ i/i−1)

∂M i
= AM i, (21.65)

∂fM,i(AM i,M̂ i/i−1)

∂AM 0,i

= M̂ i/i−1. (21.66)

Substituting (21.65) and (21.66) into (21.64), omitting the second order terms
R2, and using (21.62), (21.64) can be written as follows

21. The Motor Extended Kalman Filter 517

AM iM̂ i/i−1 + AM i(M i − M̂ i/i−1) +

+(AM 0,i − AM i)M̂ i/i−1

= AM iM̂ i/i−1 + AM i(M i − M̂ i/i−1) − NAM ,iM̂ i/i−1

= 0. (21.67)

Then the linearized measurement equation for MEKF at step i is

Zi = −AM iM i + NAM ,iM̂ i/i−1

= HiM i + NZ,i

= 0, (21.68)

where Hi = −AM i and NZ,i = NAM ,iM̂ i/i−1. The covariance matrix of
NZ,i is Ci.

21.4.3 Constraints Problem

According to the Kalman filter algorithm ((21.11), (21.15), (21.14) and
(21.17)), we can compute the estimation M ∗

i as

M∗
i = Φi/i−1M̂ i−1 + Ki(Zi − HiΦi/i−1M̂ i−1)

= V i/i−1,MlM̂ i−1 + Ki(−HiV i/i−1,MlM̂ i−1)

= (R∗T
i R′∗T

i)T (21.69)

The 4-dimensional vectors R∗
i and R′∗

i are the first 4 components and the
last 4 components of M∗

i , respectively. They must be modified to satisfy the
constraints (21.53) and (21.54). For the constraint (21.53), this can be done
simply by

R̂i =
R∗
i

‖ R∗
i ‖

. (21.70)

But to satisfy the constraint (21.54) is not so simple. Now, we rewrite (21.54)

as R′TR = 0, this equation means that the rotor R and the dual rotor R′,
in their vector form, must be orthogonal to each other. Unfortunately, the
estimated rotor R∗

i is usually not orthogonal to the estimated dual rotor R′∗
i ,

see Figure 21.6. Suppose the angle between estimates R∗
i and R′∗

i is ϕ, then

cos(ϕ) =
R′∗T

i R∗
i

‖ R′∗
i ‖ · ‖ R∗

i ‖
(21.71)

Using (21.70), (21.71) can be simplified by introducing the unit rotor R̂i as

cos(ϕ) =
R′∗T

i R̂i

‖ R′∗
i ‖

. (21.72)

It can be easily understood that the best modified dual rotor R̂′

i should be
closest to the estimated dual rotor R′∗

i . That means that the difference of

518 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

R

R’

R’δ

O

i+1

i+1

i+1

Ri+1

*

R’
i+1

*

*

ϕ ϕ

Fig. 21.6. Constraint of ˆ� ∗T ˆ��� ∗
= 0

these two vectors, δR′∗
i , should be orthogonal to the modified dual rotor R̂′

i

and should be parallel to the rotor R̂i. In other words, the length of δR′∗
i is

‖ R′∗
i ‖ cos(ϕ) and the direction of it is equal to that of the rotor R̂i. Then,

δR′∗
i =‖ R′∗

i ‖ cos(ϕ)R̂i = (R′∗T
i R̂i)R̂i, (21.73)

so that

R̂′

i = R′∗
i − (R′∗T

i R̂i)R̂i. (21.74)

R̂i and R̂′

i are the modified estimations at i and satisfy the constraints
(21.53) and (21.54).

21.4.4 The MEKF Algorithm

The MEKF algorithm is summarized in Fig. 21.7. At time 0, it begins with
a given initial predicted state M̂1/0 and the initial predicted state error co-
variance matrix P1/0 as a prediction of time 1. If we do not know the initial
predicted state, we can simply set

M̂1/0 = [1 0 0 0 0 0 0 0]T (21.75)

P1/0 = I8×8 (21.76)

At time 1, we first compute the matrix H1 of the linearized measurement
equation and the Kalman gain matrix K1, then we can calculate the esti-
mation M∗

1. This estimation must be modified to be M̂1 which satisfies the
motor constraints. M̂1 serves as the result of the estimation and then we can
get the prediction M̂2/1 of time 2 by dynamic model. The MEKF will run
recursively till time N . The MEKF algorithm is listed in Fig. 21.7.

It must be noted that the numerical instability of Kalman filter imple-
mentation is well known. Several techniques are developed to overcome those

21. The Motor Extended Kalman Filter 519

• Initialization of the prediction

ˆþ
1/0 = E[þ 1/0]�
1/0 = E[(þ 1/0 − ˆþ

1/0)(þ 1/0 − ˆþ
1/0)T]

• Linearization�
i = − ��� i

• Kalman gain matrix�
i =

�
i/i−1

�
T
i (

�
i
�

i/i−1

�
T
i + � i)

−1

• Update

þ ∗
i = ˆþ

i/i−1 +
�

i(−
�

i
ˆþ

i/i−1)�
i = (� − �

i

�
i)
�

i/i−1

• Modification of the state estimation

ˆ�
i =

� ∗
i ‖

� ∗
i ‖−1

ˆ� �
i =

� ′∗
i − (

� � ∗T
i

ˆ�
i) ˆ�

i

ˆþ
i = (ˆ� T

i
ˆ� � T

i)T

• Prediction of the state for next time

ˆþ
i+1/i = � i+1/i

ˆþ
i�

i+1/i = � i+1/i

�
i � T

i+1/i + ��� i

Fig. 21.7. MEKF algorithm

problems, such as square-root filtering and U-D factorization. See [170] for a
thorough discussion.

21.4.5 A Batch Method of Analytical Solution

In [247], Zhang and Faugeras have presented an analytical method to recover
the motion parameters from Plücker line measurements. We will introduce
it here for the purpose of comparing it with the method of the MEKF. This
analytical solution can also be used for estimating the initial prediction in
our MEKF algorithm.

Assume that there are n lines of the rigid object, which are measured
before and after motion M i. The coordinates of these lines are Lk

0 = nk0 +
Imk

0 and Lk
i = nki + Imk

i , k = 1, 2, ..., n, where the subscript numbers 0 and
i correspond to the case before and after motion, respectively. The motor M i

can also be seen as a combined motion of a rotation Ri and a translation ti,
which in G+

3,0,1 satisfies

M i = (1 + Iti/2)Ri. (21.77)

Then, the relation between a line L0 = Lk
0 and the transformed line Li = Lk

i

is given by

520 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

Li = ni + Imi

= M iL0M̃ i

= (1 + Iti/2)Ri(n0 + Im0)R̃i(1 − Iti/2)

= Rin0R̃i + I(Rim0R̃i + (ti(Rin0R̃i) − (Rin0R̃i)ti)/2)

= Rin0R̃i + I(Rim0R̃i + ti∧(Rin0R̃i)). (21.78)

By separating the real and dual part of above equation, we get

ni = Rin0R̃i (21.79)

mi = Rim0R̃i + ti∧ni. (21.80)

Because Lk
0 and Lk

i are the noisy measurements, we use a least square method
to estimate a best solution of rotation and translation. We determine first
the rotation using (21.79) by minimizing the following criterion

Emin = Min{
n∑

k=1

‖ nki − Rin
k
0R̃i ‖2}. (21.81)

After right-multiplying both sides of (21.79) with the rotor Ri, we get

niRi − Rin0 = 0. (21.82)

In linear algebra, (21.82) is expressed as

(ni)RlRi − (n0)RrRi = ARRi = 0. (21.83)

Then, (21.81) can be further restated as

E′
min = Min{

n∑

k=1

RT
i Ak

R

T
Ak
RRi} = Min{RT

i ARi}, (21.84)

where

Ak
R =

n∑

k=1

((nki)Rl − (nk0)Rr), (21.85)

A =

n∑

k=1

Ak
R

T
Ak
R. (21.86)

Since A is a symmetric matrix and ‖ Ri ‖= 1, the solution to this problem is
the 4-dimensional vector R̂i corresponding to the smallest eigenvalue of A.

With the recovered rotation R̂i we can then determine the translation
using (21.80). In linear algebra, (21.80) is expressed as

mi = Rim0 − (ni)×ti, (21.87)

where

Ri = (Ri)Rl(R̃i)Rr, (21.88)

21. The Motor Extended Kalman Filter 521

and the matrix (ni)× is the skew-symmetric matrix of ni, which performs
the outer product of the bivector ni with another bivector. If n1,i, n2,i and
n3,i are three components of the bivector ni, then

(ni)× =

0 n3,i −n2,i

−n3,i 0 n1,i

n2,i −n1,i 0

 . (21.89)

We estimate the translation t̂i by minimizing the following criterion

E′′
min = Min{

n∑

k=1

‖ mk
i − R̂im

k
0 + (nki)×t̂i ‖2}. (21.90)

By differentiating the criterion (21.90) with respect to t0 and setting the
result equal to zero, we obtain

n∑

k=1

2
(
mk
i − R̂im

k
0 + (nki)×t̂i

)T
(nki)× = 0. (21.91)

Then, t̂i can be solved by the equation:
(

n∑

k=1

(nki)
T
×(nki)×

)
t̂i =

n∑

k=1

(nki)
T
×(R̂im

k
0 − mk

i). (21.92)

It can be shown that the matrices A and B =
∑n
k=1(n

k
i)×(nki)

T
× are always

of full rank if two of the lines Lk
i (k = 1...n) are non-parallel. In other words,

to determine a unique motion displacement there must be at least two non-
parallel lines.

21.5 Experimental Analysis of the MEKF

To further verify the analyses presented above and to demonstrate the per-
formance of the MEKF algorithm, experiments using both simulated data
and real 3-D reconstructed lines have been performed.

21.5.1 Simulation

The routine of the MEKF is programmed in MATLAB. The goal of the
simulated experiments is to test the routine of MEKF, and by filter tuning
to improve the accuracy and the converge rate of the estimate.

Let us suppose a rigid object is moving along a screw in 3-D with constant
angular velocity ω/2 = −π/15 about an axis of known line (Ls = r̄ + Itc∧r̄)
and constant translation velocity vs = 0.3r̄ which is parallel to the axis. A

522 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

O

Ls

Fig. 21.8. The object moving in 3-D with screw trajectory

box moving in this way is shown in Fig. 21.8. The line Ls is given by

Ls = r̄ + Itc∧r̄

= 0.7071γ2γ3 + 0.3536γ3γ1 + 0.6124γ1γ2 +

+I(−0.7418γ2γ3 + 0.3813γ3γ1 + 0.6364γ1γ2).

Assume the measurements are sampled by equal time intervals which are
normalized to 1. Then the motion between times i−1 and i can be described
by the motor V , which can be calculated by (21.59).

V = (1 + Ivs0/2)(cos(ω/2) + sin(ω/2)Ls)

= (1 + I0.3r̄/2)(cos(−π/15) + sin(−π/15)Ls

= 0.9832− 0.1289γ2γ3 − 0.0645γ3γ1 − 0.1117γ1γ2 +

+I(−0.0266 + 0.2367γ2γ3 − 0.0188γ3γ1 − 0.0283γ1γ2). (21.93)

Then we get the dynamic motion equation in linear algebra

M i = VMlM i−1. (21.94)

In simulation, the real applied motion parameters V i/i−1 between times
i− 1 and i are contaminated by noise:

ωi = ω + nωi ,

vsi = vs + nvsi
,

V i/i−1 = (1 + Ivsi/2)(cos(ωi/2) + sin(ωi/2)Ls),

21. The Motor Extended Kalman Filter 523

MEKF
Analytical solution

Ground truth

Analytical solution

Analytical solution

Analytical solution

Analytical solution
Analytical solution

Analytical solution

Analytical solution

MEKF

MEKF

MEKF

MEKF

Ground truth

Ground truth

Ground truth

r

r

r

r

r’

r’

r’

r’

1 1

2 2

3 3

4 4

MEKF

MEKF
Ground truth

Ground truth
MEKF Ground truth

Ground truth

time

time

time

timetime

time

time

time

Fig. 21.9. The estimation results of the motor parameters by simulation

524 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

where the noises nωi and nvsi
are independent normally distributed with

zero mean and known deviation σω and σvs . Then the ground truth of motor
trajectories M0,i can be computed by

M0,i =
(
r0i r1i r2i r3i r

′
0i r

′
1i r

′
2i r

′
3i

)T

= V i/i−1Ml
M 0,i−1, (21.95)

with initial state M0,0 = (1 0 0 0 0 0 0 0).
At i-th (i = 1, 2, ..., N) time step of MEKF algorithm we first generate two

3-D points x′
0 and y′

0 to define a line L′
0 in an observer coordinate frame A.

The points are then moved to x′
i and y′

i by the motor M i = (V i/i−1)MlM i−1

which can be decomposed to rotation Ri and translation ti, where Ri is the
real part of M i. If R′

i is the dual part of M i, from (21.41) we can get
ti = 2R′

iR̃i.
The coordinate of this line after motion is L′

i relative to the frame A. We
obtain thus a pair of noise-free coordinates of the same line in two positions
(the initial position L′

0 and the position L′
i at time i). To simulate the noisy

observation, independent Gaussian noise with zero mean and known standard
deviation σ is added to both lines L′

0 and L′
i+1 and we obtain thus the noisy

observation L0 and Li.
In Fig. 21.9, we show the eight components of motor trajectories esti-

mated by MEKF algorithm and by batch method of the analytical solution.
In MEKF algorithm we use the analytical solution to estimate the initial
prediction. Comparing with ground truth, we can see that the MEKF gives
more accurate and more stable estimates.

21.5.2 Real Experiment

Fig. 21.10 shows the physical setup of our experiment. Two grey-scale-CCD
640× 480 cameras are fastened to the last joint of the robot arm RX90. The
RX90 has six rotation joints which can be controlled by six parameters (x, y,
z,roll, pitch, and yaw). The coordinates (x, y, z) that describe the position of
the end joint are referred to the base coordinate system W which is fixed on
the base of the arm. The rotation parameters (roll, pitch, yaw) that describe
the orientation of the end joint are Z-Y-Z Euler angles [50]. The sample object
is placed below the cameras.

We want to estimate the relative motion between the end joint and the
sample object based on the cameras’ images while the arm is moving with a
given trajectory.

In practice, we use 3 cameras to reconstruct a 3-D line. In the experimental
setup, the third camera was realized by applying a certain motion to one of
the cameras.

We have no ground truth of the relative motion of the sample object.
But we can compare the estimation with the given motion trajectory of the
robot arm. A coordinate system T which is fixed on the end joint is called a
tool coordinate system.We control the robot arm by controlling the relative

21. The Motor Extended Kalman Filter 525

Fig. 21.10. The physical setup of the experiment

x

y

z

y

z

y y
z z

X

X
T

C

1

x xx

T2 2C

1C

T

Fig. 21.11. The relationship between the tool system T and the camera system C

526 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

position and orientation between the tool system T and the base system W .
After camera calibration, we get a matrix P , which describes the relation-
ship between the point coordinates in the 2-D image and the correspondent
3-D world point coordinates with respect to a system C (up to a scalar λ).
The system C is fixed on the end joint and there exists a certain transfor-
mation X between the tool system T and the system C, see Fig. 21.11. The
transformation X is determined by hand-eye calibration. If the tool system
is transformed from T1 to T2 by transformation T , the system C will be
transformed from C1 to C2 by a certain transformation C, which is given by

C = XTX−1. (21.96)

Using (21.96) we can compare the relative motion C of the sample object
referring to system C with the given motion T of the robot arm.

The steps of the experiment are as follows:
1) Cameras calibration [77] to determine the P matrix;
2) Hand-eye calibration [139] to determine the unknown transformation

X; (an alternative would be [16] using motors)
3) Taking the images in discrete time steps with constant time intervals

while the robot arm is moving, see Figs. 21.12 and 21.14;
4) Extracting 2-D lines from the images using Hough transformation [149]

[186], see Figs. 21.13 and 21.15;
5) 3-D line reconstruction by 3 matched image lines [77], see Tab. 21.1 ;
6) Estimation the motion based on 3-D line observations using MEKF,

see Fig. 21.16 .
The algorithm of motion estimation will run online recursively from step

3) to 6).
In our experiment, the given relative motion of the sample object with

respect to system C is a screw motion with constant angular velocity ω =
−π/90 and constant translation velocity vs = 0.2 which is parallel to the
rotation axis. The rotation axis Ls is parallel to the z axis of the system C,
and one point on Ls is (1.5, 0, 0). In G+

3,0,1 the screw axis Ls is given by

Ls = γ1γ2 + I(1.5γ2γ3)∧(γ1γ2)

= γ1γ2 + I1.5γ3γ1. (21.97)

Just like (21.93), the motor V can be calculated as

V = (1 + Ivs0/2)(cos(ω/2) + sin(ω/2)Ls)

= 0.9994− 0.0349γ1γ2 + I(0.0035− 0.0523γ3γ1 + 0.0999γ1γ2).

(21.98)

The motor M i+1 is in linear algebra given by

M i = VMlM i−1, (21.99)

with initial data M 0 = (1 0 0 0 0 0 0 0)T .
We use the reconstructed 3-D lines listed in Tab. 21.1 to estimate the rel-

ative motion of the sample object. The results are shown in Fig. 21.16, which

21. The Motor Extended Kalman Filter 527

Left view image Up view image Right view image

Fig. 21.12. A stereo triplet of a sample object at time i = 0

Left view image Up view image Right view image

Fig. 21.13. Edge images of Fig. 21.12 overlapped by extracted 2-D lines

Left view image Up view image Right view image

Fig. 21.14. A stereo triplet of a sample object at time i = 4

Left view image Up view image Right view image

Fig. 21.15. Edge images of Fig. 21.14 overlapped by extracted 2-D lines

528 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

Table 21.1. Reconstructed 3-D lines

Time Line item A point on the line direction

0 1 (0.000 3.087 -2.327) (-0.345 0.937 -0.027)

2 (0.556 0.000 -2.250) (0.941 0.336 0.023)

1 1 (1.125 0.000 -2.027) (-0.404 0.914 0.013)

2 (0.701 0.000 -2.049) (0.915 0.401 0.029)

2 1 (1.111 0.000 -1.82) (-0.462 0.886 0.017)

2 (0.794 0.000 -1.83) (0.880 0.471 0.055)

...

14 1 (0.018 0.000 0.648) (-0.971 0.236 -0.036)

2 (1.103 0.000 0.538) (0.241 0.965 0.103)

15 1 (-0.680 0.000 0.753) (-0.986 0.159 -0.025)

2 (0.000 -6.341 0.783) (0.171 0.985 -0.003)

shows the trajectories of eight components of the estimated motor trajecto-
ries M̂ i (star-solid lines) and the given motor trajectories M i (solid lines).
Although we use an inaccurate initial predicted motor for the algorithm, after
three or four time steps the estimations approach the truth and follow the
given trajectories very well.

21.6 Conclusion

In this paper, we presented a new MEKF algorithm based on motor alge-
bra to estimate 3-D motion parameters from line observations. Using motor
algebra, we modeled in the 4-D space the motion of lines and the dynamic mo-
tion system. This kind of modeling linearizes the 3-D Euclidean rigid motion
transformation and describes the discrete dynamic system straightforwardly.

The MEKF has the virtue that it can estimate the motion parameters
from Plücker line observations. Since all recursive algorithms of the literature
estimate motion parameters from observations of points or line segments with
its middle point, we can claim that the use of Plücker lines is one of the most
important advantages of the MEKF. Additionally, using the modeling of the
lines in the motor algebra, we could linearize the nonlinear measurement
model which dose not face singularities, this was also a big problem of many
researchers who tried in some way to apply the Kalman filter using Plücker
line observations.

We first introduced the Kalman filter techniques and then presented the
measurement model based on motor algebra and its constraints. This mea-

21. The Motor Extended Kalman Filter 529

time

time

time

timetime

time

time

time

Estimation
Given motion

Estimation

Estimation

Estimation

Estimation
Given motion

Given motion

Given motion

Given motion

Given motion

Given motion

Given motion

Estimation

Estimation

Estimation

r’

r’

r’

r’r

r

r

r

1

2 2

1

3 3

4 4

Fig. 21.16. The estimation results of the motor parameters by MEKF in real
experiment

530 Yiwen Zhang, Gerald Sommer, Eduardo Bayro-Corrochano

surement model was then linearized for Kalman filtering. We also described
the dynamic motion model using motors as states from which we observe
that the motor algebra is useful to effectively formulate and to compute the
screw motion of a line as minimal rigid entity. In the algorithm of MEKF, we
modified the estimation to satisfy the constraints, which made the estimation
converge to a proper motor state.

Tests with both simulated data and real experimental data showed that
the MEKF algorithm is effective to dynamically estimate the motion param-
eters from Plücker line observations. We also compared the MEKF with an
analytical solution using least squares and the results show that the MEKF
gives more accurate and more stable estimations.

100

1. L.V. Ahlfors. Möbius transformations and Clifford numbers. In I. Chavel and
H.M. Farkas, editors, Differential Geometry and Complex Analysis. Springer-
Verlag, Berlin, 1985.

2. L.V. Ahlfors. Möbius transformations in ∇n expressed through 2 × 2 matrices
of Clifford numbers. Complex Variables Theory, 5:215–224, 1986.

3. Y. Akishige. Perceptual space and the law of conservation of perceptual infor-
mation. In XVIII Int. Congr. Psycho. Symp. 19: Perception of Space and Time,
1966.

4. Y. Akishige. Studies on constancy problem in Japan. Psychologia, 11(1/2):43–
55, 1968.

5. B. Anup. Active calibration: alternative strategy and analysis. IEEE Conf. on
Computer Vision and Pattern Recognition, pages 495–500, 1993.

6. P. Arena, L. Fortuna, R. Re, and M. G. Xibilia. Multilayer perceptrons to
approximate complex valued functions. Neural Systems, 6:435–446, 1995.

7. P. Arena et al. Multilayer perceptrons to approximate quaternion valued func-
tions. Neural Networks, 9:1–8, 1996.

8. K.S. Arun, T.S. Huang, and S. D. Blostein. Least-squares fitting of two 3d point
sets. IEEE Trans. Pattern Anal. Machine Intell. PAMI, 9(5):698–700, 1987.

9. N.A. Aspragathos and J.K. Dimitros. A comparative study of three methods
for robot kinematics. IEEE Transactions an Systems, Man and Cybernetics -
Part B: Cybernetics, 28(2):135–145, April 1998.

10. M. F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra.
Addison-Wesley Publishing Co., London, 1969.

11. A.J. Azarbayejani, H. Bradley, and A. Pentland. Recursive estimation of struc-
ture and motion using relative orientation constraints. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Los Alamitos, CA, June, 1993, 1993.

12. R.S. Ball. A Treatise on the Theory of Screws. Cambridge University Press,
1900.

13. LY. Bar-Itzhack and Y. Oshman. Attitude determination from vector obser-
vations: quaternion estimation. IEEE Trans. on Aerospace and Electronic Sys-
tems, 21(1):128–135, 1985.

14. M. Barnabei, A. Brini, and G-C. Rota. On the exterior calculus of invariant
theory. J. of Algebra, 96:120–160, 1985.

15. E. Bayro-Corrochano and S. Buchholz. Geometric neural networks. In G. Som-
mer and J. J. Koenderink, editors, Algebraic Frames for the Perception–Action
Cycle, Lecture Notes in Computer Science, vol. 1315, pages 379–394. Springer-
Verlag, Berlin, Heidelberg, 1997.

16. E. Bayro-Corrochano, K. Daniilidis, and G. Sommer. Hand-eye calibration
in terms of motions of lines using geometric algebra. In 10th Scandinavian
Conference an Image Analysis, Lappeenranta, volume 1, pages 397–404, 1997.

532 References

17. E. Bayro-Corrochano and J. Lasenby. A unified language for computer vision
and robotics. In G. Sommer and J.J. Koenderink, editors, Algebraic Frames
for the Perception–Action Cycle, volume 1315 of Lecture Notes in Computer
Science, pages 219–234. Springer–Verlag, Berlin, Heidelberg, 1997.

18. E. Bayro-Corrochano and J. Lasenby. Geometric techniques for the computa-
tion of projective invariants using n uncalibrated cameras. In Proceedings of the
Indian Conference on Computer Vision and Image Processing, pages 95–100,
New Delhi, India, 1998.

19. E. Bayro-Corrochano, J. Lasenby, and G. Sommer. Geometric algebra: A frame-
work for computing point and line correspondences and projective structure us-
ing n uncalibrated cameras. In IEEE Proceedings of ICPR’96, volume I, pages
334–338, Viena, Austria, August 1996.

20. R. Bellman. Introduction to Matrix Analysis. McGraw-Hill Book Company,
Inc., New York, Toronto, London, 1960.

21. E. Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giorn.
Mat., 6:248–312, 1868.

22. W. Blaschke. Kinematik und Quaternionen. VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1960.

23. L. M. Blumenthal. Theory and Applications of Distance Geometry. Cambridge
University Press, Cambridge, 1953. reprinted by Chelsea, London, 1970.

24. L. M. Blumenthal. A Modern View of Geometry. Dover, New York, 1961.
25. J. Bolyai. Appendix, scientiam spatii absolute veram exhibens. In tentamen

Juventutem studiosam in elementa Matheseos purae. W. Bolyai, Maros Vasarhe-
lyini, 1832.

26. A.C. Bovik, M. Clark, and W. Geisler. Multichannel texture analysis using
localized spatial filters. IEEE Trans. Pattern Analysis and Machine Intelligence,
12(1):55–73, 1990.

27. C. B. Boyer. The History of the Calculus and its Conceptual Development.
Dover Publications Inc., New York, 1959 (1949).

28. R. Bracewell. The Fourier Transform and its Applications. McGraw Hill, 1986.
29. R.N. Bracewell. Affine theorem for the Hartley transform of an image. Pro-

ceedings of the IEEE, 82:388–390, 1994.
30. F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis. Pitman, Boston,

1982.
31. A. Bregler and J. Malik. Tracking people with twists and exponential maps. In

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, Brisbane, pages 8–15, 1998.

32. P. Brodatz. Textures: A Photographic Album for Artists and Designers. New
York: Dover, 1966.

33. S. Buchholz. Algebraische Einbettungen Neuronaler Netze. Master’s thesis,
Cognitive Systems Group, Inst. of Comp. Sci., Univ. of Kiel, Germany, 1997.

34. T. Bülow. Hypercomplex Spectral Signal Representations for the Processing and
Analysis of Images. PhD thesis, Christian-Albrechts-University of Kiel, 1999.

35. T. Bülow and G. Sommer. Algebraically Extended Representation of Multi-
Dimensional Signals. In Proceedings of the 10th Scandinavian Conference on
Image Analysis, Lappeenranta, vol. 2, pages 559–566, 1997.

36. T. Bülow and G. Sommer. Multi-dimensional signal processing using an alge-
braically extended signal representation. In G. Sommer and J.J. Koenderink,
editors, Int. Workshop on Algebraic Frames for the Perception-Action Cycle,
volume 1315 of Lecture Notes in Computer Science, pages 148–163. Springer,
1997.

References 533

37. J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry. Hyperbolic ge-
ometry. In S. Levy, editor, Flavors of Geometry. Cambridge University Press,
Cambridge, 1997.

38. B. Caprile and V. Torre. Using vanishing points for camera calibration. Inter-
national Journal of Computer Vision, 4:127–140, 1990.

39. H. Chen. A screw motion approach to uniqueness analysis of head-eye geometry.
In IEEE Conf. Computer Vision and Pattern Recognition, pages 145–151, Maui,
Hawaii, June 3-6, 1991.

40. V. M. Chernov. Discrete orthogonal transforms with data representation in
composition algebras. In In Proceedings of the 9th Scandinavian Conference on
Image Analysis, Uppsala, Sweden, 1995, pages 357–364, 1995.

41. D.P. Chevallier. Lie algebras, modules, dual quaternions, and algebraic methods
in kinematics. Mechanics and Machine Theory, 26:613–627, 1991.

42. D.P. Chevallier. On the transference principle in kinematics: its various forms
and limitations. Mechanics and Machine Theory, 31:57–76, 1996.

43. J.C.K. Chou and M. Kamel. Finding the position and orientation of a sensor on
a robot manipulator using quaternions. Intern. Journal of Robotics Research,
10(3):240–254, 1991.

44. Roberto Cipolla and Edmond Boyer. 3d model acquisition from uncalibrated
images. In Proc. IAPR Workshop on Machine Vision Applications, Chiba,
Japan, pages 559–568, 1998.

45. W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London
Mathematical Society, 4:381–395, 1873.

46. W. K. Clifford. Applications of Grassman’s extensive algebra. American Jour-
nal of Mathematics, I:350–358, 1878.

47. W. K. Clifford. Mathematical Papers. Edited by R. Tucker. Macmillan, 1882.
48. S. Cornbleet. Geometrical optics reviewed: A new light on an old subject.

Proceedings of the IEEE, 71(4), April 1983.
49. Digital Equipment Corporation. Digital Semiconductor Alpha 21164PC Micro-

processor Data Sheet1, 1997.
50. J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison Wesley

Publishing Company, 1989.
51. T. W. Cronin and N. J. Marschal. A retina with at least ten spectral types of

photoreceptors in a mantis shrimp. Nature, 339:137–140, 1989.
52. M. J. Crowe. A History of Vector Analysis. Dover Publications Inc., New York,

1994 (1967).
53. G. Cybenko. Approximation by superposition of a sigmoidal function. Mathe-

matics of Control, Signals and Systems, 2:303–314, 1989.
54. K. Daniilidis. Hand-eye calibration using dual quaternions. International Jour-

nal of Robotics Research, 18:286–298, 1999.
55. K. Daniilidis and E. Bayro-Corrochano. The dual–quaternion approach to

hand–eye calibration. In Proc. 13th Int. Conf. on Pattern Recognition, vol-
ume A, pages 318–322. IEEE Computer Soc. Press, Vienna, 1996.

56. K. Daniilidis and J. Ernst. Active intrinsic calibration using vanishing points.
Pattern Recognition Letters, 17:1179–1189, 1996.

57. J. G. Daugman. Two-dimensional spectral analysis of cortical receptive field
profiles. Vision Res., 20:847–856, 1980.

58. C.M. Davenport. A Commutative hypercomplex algebra with associated func-
tion theory. In R. Ablamowicz, editor, Clifford Algebras with Numeric and
Symbolic Computations, pages 213–227. Birkhäuser, Bosten, 1996.

1 http://ftp.digital.com/pub/DECinfo/semiconduc-
tor/literature/164pcds.pdf

534 References

59. M.A. Delsuc. Spectral representation of 2D NMR spectra by hypercomplex
numbers. Journal of Magnetic Resonance, 77:119–124, 1988.

60. J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mech-
anisms based on matrices. ASME Journal of Applied Mechanics, 22:215–221,
1955.

61. R. Descartes. La Geometrie. Dover Publ. Inc., New York, 1954 (1637,1925).
62. F. Devernay and O. D. Faugeras. From Projective to Euclidean Reconstruction.

Technical Report 2725, INRIA, Sophia Antipolis, 1995.
63. C. Doran, D. Hestenes, F. Sommen, and N. Van Acker. Lie groups as spin

groups2. J. Math. Phys., 34:3642–3669, 1993.
64. C. Doran, A. Lasenby, and S. Gull. Chapter 6: Linear algebra. In W.E. Baylis,

editor, Clifford (Geometric) Algebras with Applications in Physics, Mathematics
and Engineering. Birkhäuser, Boston, 1996.

65. A. Dress and T. Havel. Distance geometry and geometric algebra. Foundations
of Physics, 3642–3669(23), 1993.

66. L. Dron. Dynamic camera self–calibration from controlled motion sequences.
In IEEE Conf. on Computer Vision and Pattern Recognition, pages 501–506,
1993.

67. F. Du and M. Brady. Self-calibration of the intrinsic parameters of cameras
for active vision systems. In IEEE Conf. on Computer Vision and Pattern
Recognition, pages 477–482, 1993.

68. L. Eisenhart. A Treatise on the Differential Geometry of Curves and Surfaces.
Ginn & Co, The Athaenum Press, Boston, Massachussetts, 1909.

69. T. A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of
Minnesota, 1992.

70. T.A. Ell. Quaternion Fourier transforms for analysis of 2-dimensional linear
time-invariant partial-differential systems. In Proc. 32nd IEEE Conf. on Deci-
sion and Control, San Antonio, TX, USA, 15-17 Dec., pages 1830–1841, 1993.

71. R. Enciso and T. Vieville. Self-calibration from four views with possibly varying
intrinsic parameters. Image and Vision Computing, 15:293–305, 1997.

72. R.R. Ernst, W.P. Aue, P. Bachmann, J. Karhan, A . Kumar, and L. Müller.
Two-dimensional NMR spectroscopy. In Proc. 4th Ampère Int. Summer School,
Pula, Yugoslavia, 1976.

73. R.R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic
Resonance in One and Two Dimensions. Oxford Science Publications, 1985.

74. C. Daul et al. A fast image processing algorithm for quality control of wo-
ven textiles. In P. Levi et al., editor, Levi, P. and et al. (Eds.), 20. DAGM
Symposium Mustererkennung, Stuttgart, pages 471–479. Springer-Verlag, 1998.

75. L. Euler. Trigonometria sphaerica universa ex primis principiis breviter et
dilucide derivata. Acta Acad. Sci. Petrop., 3:72–86, 1782.

76. O. Faugeras and B. Mourrain. On the geometry and algebra of the point and
line correspondences between n images. In Proceedings of ICCV’95, pages 951–
956, Boston, 1995. IEEE Computer Society Press.

77. O. D. Faugeras. Three-Dimensional Computer Vision: A Geometrie Viewpoint.
MIT Press, Cambridge, MA, 1993.

78. O. D. Faugeras. Stratification of three dimensional vision: projective, affine and
metric representations. Journal of the Optical Society of America - A, 12(3),
1995.

79. O. D. Faugeras and S. Maybank. Motion from point matches: Multiplicity of
solutions. International Journal of Computer Vision, 4:225–246, 1990.

2 Available at the Geometric Calculus Web Site:
http://ModelingNTS.la.asu.edu/GC R&D.html

References 535

80. O. D. Faugeras and B. Mourrain. On the Geometry and Algebra of the Point
and Line Correspondences between N Images. Technical Report No. 2665, IN-
RIA, Sophia Antipolis, 1995.

81. O. D. Faugeras and T. Papadopoulo. Grassmann-Cayley Algebra for Modelling
Systems of Cameras and the Algebraic Equations of the Manifold of Trifocal
Tensors. Technical Report No. 3225, INRIA, 1997.

82. O. D. Faugeras and T. Papadopoulo. Grassmann-Cayley Algebra for Modelling
Systems of Cameras and the Algebraic Equations of the Manifold of Trifocal
Tensors. Phil. Trans. R. Soc. Lond. A, 356(1740):1123–1152, 1998.

83. O. D. Faugeras and T. Papadopoulo. A nonlinear method for estimating the
projective geometry of three views. In Proceedings of ICCV’98, pages 477–484,
1998.

84. O. D. Faugeras and Theodore Papadopoulo. A Nonlinear Method for Estimat-
ing the Projective Geometry of Three Views. Technical Report 3221, INRIA,
Sophia Antipolis, 1997.

85. M. Felsberg and G. Sommer. Structure multivector for local analysis of images.
Technical Report Number 2001, Christian-Albrechts-Universit”at zu Kiel, In-
stitut für Informatik und Praktische Mathematik, Februar 2000.

86. T. Frankel. The Geometry of Physics. Cambridge University Press, Cambridge,
1997.

87. J. Funda and R.P. Paul. A computational analysis of screw transformations in
robotics. IEEE Trans. Robotics and Automation, 6:348–356, 1990.

88. D. Gabor. Theory of communication. Journal of the IEE, 93:429–457, 1946.
89. A. Garrett. An advertisement for Clifford algebra. Physics World, Sept. 1992,

1992.
90. G. Georgiou and C. Koutsougeras. Complex domain backpropagation. IEEE

Trans. Circ. and Syst. II, 39:330–334, 1992.
91. C. Geyer and K. Daniilidis. Geometric properties of central catadioptic projec-

tions. In Proc. Algebraic Frame of the Perception-Action Cycle, AFPAC 2000,
Lecture Notes in Computer Science. Springer Verlag, 1999.

92. G.H.Granlund and H. Knutsson. Signal Processing for Computer Vision.
Kluwer Academic Publishers, 1995.

93. J. W. Gibbs. Quaternions and the algebra of vectors. Nature, 47:463–464,
March 16 1893.

94. J. J. Gibson. Optical motions and transformations as stimuli for visual percep-
tion. Psych. Rev., 64(5):288–295, 1957.

95. J. J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin
Company, 1979.

96. G.H. Golub and C.F. van Loan. Matrix computations. Johns Hopkins University
Press, 1983.

97. H. Grassmann. Der Ort der Hamilton’schen Quaternionen in der Aus-
dehnungslehre. Mathematische Annalen, 12:375, 1877.

98. H. Grassmann. “Linear Extension Theory” (Die Lineare Ausdehnungslehre)
translated by L. C. Kannenberg. In The Ausdehnungslehre of 1844 and Other
Works, Chicago, 1995. La Salle: Open Court Publ.

99. Y.-L. Gu and J.Y.S. Luh. Dual-number transformation and its application to
robotics. IEEE Journal of Robotics and Automation, 3:615–623, 1987.

100. S. L. Hahn. Multidimensional complex signals with single-orthant spectra.
Proc. IEEE, 80(8):1287–1300, 1992.

101. S. L. Hahn. Hilbert Transforms in Signal Processing. Artech House, Boston,
London, 1996.

102. W. R. Hamilton. Elements of Quaternions, volume I-II. Chelsea Publ. Co.,
New York, 1969 (1899).

536 References

103. R.M. Haralick. Statistical and structural approaches to texture. Proceedings
of the IEEE, 67:786–804, 1979.

104. J. Harris. Algebraic Geometry. Springer-Verlag, New York, 1992.
105. R. Hartley. Lines and points in three views – a unified approach. In ARPA

Image Understanding Workshop, Monterey, California, 1994.
106. R. Hartley. Lines and points in three views and the trifocal tensor. The

International Journal of Computer Vision, 22(2):125–140, 1997.
107. R. I. Hartley. An algorithm for self–calibration from several views. In In Proc.

Conference on Computer Vision and Pattern Recognition, pages 908–912, 1994.
108. R. I. Hartley. In defence of the 8-point algorithm. In IEEE Int. Conf. Com-

puter Vision, pages 1064–1070, 1995.
109. R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977.
110. T. Havel. Distance geometry: Theory, algorithms and chemical applications.

In Encyclopedia of Computational Chemistry. J. Wiley & Sons, 1998.
111. O. Heaviside. Vectors versus quaternions. Nature, 47:533–534, April 6 1893.
112. E. Hecht and A. Zajac. Optics. Addison-Wesley Publishing Company, 1974.
113. D. Hestenes. Space-Time Algebra. Gordon and Breach, New York, 1966.
114. D. Hestenes. The design of linear algebra and geometry. Acta Applicandae

Mathematicae, 23:65–93, 1991.
115. D. Hestenes. Grassmann’s vision2. In Gert Schubring, editor, Hermann Gun-

ther Grassmann (1809-1877): Visionary Mathematician, Scientist and Neohu-
manist Scholar, Dordrecht, 1996. Kluwer Academic Publishers.

116. D. Hestenes. New Foundations for Classical Mechanics. D. Reidel, Dor-
drecht/Boston, 2nd edition, 1998.

117. D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A Uni-
fied Language for Mathematics and Physics. D. Reidel Publishing Co., Dor-
drecht, 1984 (1992).

118. D. Hestenes and R. Ziegler. Projective geometry with Clifford algebra2. Acta
Applicandae Mathematicae, 23:25–63, 1991.

119. A. Heyden and G. Sparr. Reconstruction from calibrated cameras - a new
proof of the Kruppa-demazure theorem. Journal of Mathematical Imaging and
Vision, 10:123–142, 1999.

120. Anders Heyden. A common framework for multiple view tensors. In
H. Burkhardt and B. Neumann, editors, Proceedings ECCV 98, number 1406
in LNCS, pages 3–19. Springer-Verlag, 1998.

121. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2:359–366, 1989.

122. M. K. Hu. Visual pattern recognition by moment invariants. IEEE Trans. on
Information Theory., 8:179–187, 1962.

123. T.S. Huang, S.D. Blostein, and E.A. Margerum. Least-squares estimation
of motion parameters from 3d point correspondences. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition. Miami Beach,FL, 1986.

124. B. Iversen. Hyperbolic Geometry. Cambridge University Press, Cambridge,
1992.

125. B. Jähne. Digitale Bildverarbeitung. Springer, Berlin, 1997.
126. A. Jazwinsky. Stochastic Processes and Filtering Theory. Academic Press,

New York, 1970.
127. B. Julesz. Textons, the elements of texture perception, and their interpreta-

tions. Nature, 290(12):91–97, 1981.
128. K. Kanatani. Geometric Computation for Machine Vision. Oxford University

Press, Oxford, 1993.
129. I. L. Kantor and A. S. Solodovnikov. Hypercomplex Numbers. Springer-Verlag,

New-York, 1989.

References 537

130. G. Kienle. Experiments concerning the non–Euclidian structure of the visual
space. Bioastronautics., 4:386–400, 1964.

131. W. Killing. Ueber zwei Raumformen mit constanter positiver Krümmung. J.
Reine Angew. Math., 86:72–83, 1878.

132. J. Kim and V.R. Kumar. Kinematics of robot manipulators via line transfor-
mations. Journal of Robotic Systems, 7:649–674, 1990.

133. F. Klein. Ueber Liniengeometrie und metrische Geometrie. Math. Ann., 5:257–
277, 1872.

134. F. Klein. Ueber die sogenannte Nicht-Euklidische Geometrie (Zweiter Auf-
satz.). Math. Ann., 6:112–145, 1873.

135. F. Klein. Elementary Mathematics from an Advanced Standpoint, Geometry.
Reprinted Dover (1939), New York, 1908.

136. F. Klein. Das Erlanger Programm. Vergleichende Betrachtungen über neuere
geometrische Forschungen, volume 253 of Oswalds Klassiker der exakten Natur-
wissenschaften. Harri Deutsch, Frankfurt, 1995.

137. G. Kowalewski. Vorlesungen über Allgemeine natürliche Geometrie und Li-
esche Transformationsgruppen. Walter de Gruyer, Berlin, 1931.

138. E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perspektiven mit in-
nerer Orientierung. Sitz.–Ber. Akad. Wiss., Wien, math. naturw. Kl. Abt. IIa.,
122:1939–1948, 1913.

139. S. Kunze. Ein Hand-Auge-System zur visuell basiertern Lokalisierung und
Identifikation von Objekten. Master’s thesis, Christian-Albrechts-Universität
zu Kiel, Institut für Informatik und Praktische Mathematik, Kiel, 1999.

140. E. V. Labunets. Group-Theoretical Methods in Image Recognition. Technical
report, LiTH–ISY–R–1855. Linkoping University, 1996.

141. E. V. Labunets, V. G. Labunets, and M.V. Assonov. Modular invariants used
in pattern invariant recognition. In New Informations Methods in Research of
Discrete Structures., Ekatarinburg. IMM UD RAS:52–58, 1996. in Russian.

142. E. V. Labunets, V. G. Labunets, and R. Creutzburg. Fast fractional trigono-
metrical transform. In Second Workshop on Transforms and Filterbanks, Bran-
denburg, 1999.

143. E. V. Labunets, V. G. Labunets, K. Egiazarian, and J. Astola. Hypercomplex
moments application in invariant image recognition. In Int. Conf. on Image
Processing 98, pages 256–261, 1998.

144. J. H. Lambert. Observations trigonometriques. Mem. Acad. Sci. Berlin,
24:327–354, 1770.

145. J. Lasenby and E. Bayro-Corrochano. Computing 3–d projective invariants
from points and lines. In G. Sommer, K. Daniilidis, and J. Pauli, editors,
Computer Analysis of Images and Patterns, volume 1296 of LNCS, pages 82–
89. Springer-Verlag, Berlin, Heidelberg, 1997.

146. J. Lasenby and E. Bayro-Corrochano. Computing Invariants in Computer
Vision using Geometric Algebra. Technical Report CUED/F - INFENG/TR.
224, Cambridge University, Engineering Department, 1997.

147. J. Lasenby and A. N. Lasenby. Estimating tensors for matching over multiple
views. Phil. Trans. R. Soc. Lond. A, 356(1740):1267–1282, 1998.

148. J. Lasenby, A. N. Lasenby, C. J. L. Doran, and W. J. Fitzgerald. New geo-
metric methods for computer vision – an application to structure and motion
estimation. International Journal of Computer Vision, 26(3):191–213, 1998.

149. V. Leavers. Survey: Which Hough transform? CVGIP: Image Understanding,
58:250–264, 1993.

150. G. W. Leibniz. Nova methodus pro maximis et minimis, itemque tangentibus,
quae nec fractas nec irrationales quantitates moratur, et singulare pro illis cal-
culi genus (A new method for maxima and minima, als well as tangents, which

538 References

ist not obstructed by fractional and irrational quantities, and a curious type of
calculus for it). Acta Eruditorium, 1684.

151. G. W. Leibniz. The Early Mathematical Manuscripts. Trans. from the latin
texts of C. I. Gerhardt, Chicago, 1920.

152. H. Leung and S. Haykin. The complex backpropagation algorithm. IEEE
Transactions on Signal Processing, 39(9):2101–2104, 1992.

153. H. Li. Hyperbolic geometry with Clifford algebra. Acta Appl. Math.,
48(3):317–358, 1997.

154. M. Li and D. Betsis. Hand–eye calibration. In Proc. Int. Conf. on Computer
Vision, pages 40–46, 1995.

155. S. Lie. Geometrie der Berührungstransformationen. Chelsea Publishing Co.,
New York, (1892) 1977.

156. J. Liouville. Extension au cas trois dimensions de la question du tracé
géographique. In Applications de l’analyse à géometrie, pages 609–616, G.
Monge, Paris (1850).

157. H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Nature, 293:133–135, 1981.

158. P. Lounesto. Marcel Riesz’s work on Clifford algebras. In E.F. Bolinder
and P. Lounesto, editors, Clifford Numbers and Spinors, pages 119–241. Kluwer
Academic Publishers, 1993.

159. P. Lounesto. Clifford Algebras and Spinors. Cambridge University Press,
Cambridge, 1997.

160. R. K. Luneburg. Metric methods in binocular visual perception. Studies and
Essays. Courant Anniv., 1:215–239, 1948.

161. R. K. Luneburg. The metric methods in binocular visual space. J. Opt. Soc.
Amer., 40(10):627–642, 1950.

162. Q. T. Luong and O. D. Faugeras. An optimization framework for efficient
self–calibration and motion determination. In Proc. Conference on Computer
Vision and Pattern Recognition, Jerusalen, Israel, volume A, pages 248–252,
1994.

163. Q. T. Luong and O. D. Faugeras. Self-Calibration of a moving camera from
point correspondences and fundamental matrices. International Journal of
Computer Vision, 22(3):261–289, 1997.

164. Q.T. Luong and O. D. Faugeras. Self-Calibration of a Stereo Rig from Un-
known Camera Motions and Point Correspondences. Technical Report 2014,
INRIA, Sophia Antipolis, 1993.

165. D. MacKay. MacOpt - a nippy wee optimizer.
http://wol.ra.phy.cam.ac.uk/mackay/c/macopt.html.

166. F. J. MacWilleams and N. J. A. Sloane. The Theory of Error–Correcting
Codes. N.J., 1976.

167. J. M. Rico Martinez and J. Duffy. The principle of transference: History,
statement, and proof. Mech. Machine Theory, 28:165–177, 1993.

168. J. C. Maxwell. A Treatise on Electricity and Magnetism, volume I-II. Dover
Publications Inc., N.Y., 1954 (1891).

169. S. J. Maybank and O. D.Faugeras. A theory of self–calibration of a moving
camera. International Journal of Computer Vision, 8(2):123–151, 1992.

170. P. Maybeck. Stochastic Models, Estimation and Control. Academic Press,
New York, 1979.

171. J.M. McCarthy. Dual orthogonal matrices in manipulator kinematics. Intern.
Journal of Robotics Research, 5(2):45–51, 1986.

172. J.M. McCarthy. Introduction to Theoretical Kinematics. MIT Press, Cam-
bridge, MA, 1990.

References 539

173. K. Menger. New foundation of Euclidean geometry. Am. J. Math., 53(721–
745), 1931.

174. M. Michaelis. Low Level Image Processing Using Steerable Filters. PhD thesis,
Christian-Albrechts University, Kiel, 1995.

175. C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W.H. Freeman,
New York, 1973.

176. A. F. Möbius. Die Theorie der Kreisverwandtschaft in rein geometrischer
Darstellung. Abh. Königl. Sächs. Ges. Wiss. Math.-Phys, Kl. 2:529–595, 1855.

177. J.L. Mundy and A. Zisserman. Geometric Invariance in Computer Vision.
MIT Press, Cambridge, Massachusetts, USA., 1992.

178. R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, 1994.

179. A. Naeve. Projective Line Geometry of the Visual Operator. Technical Re-
port TRITA-NA-8606, Computational Vision and Active Perception Laboratory
(CVAP-29), KTH, 1986.

180. A. Naeve. Focal Shape Geometry on Surfaces in Euclidean Space. PhD thesis,
Computational Vision and Active Perception Laboratory (CVAP-130), TRITA-
NA-P9319, KTH, 1993.

181. A. Naeve and J. O. Eklundh. On projective geometry and the recovery of
3D-structure. In Proceedings of the first International Conference on Computer
Vision (ICCV), pages 128–135, London, 1987.

182. I. Newton. Philosophiae Naturalis Principia Mathematica. Cambridge, 1687.
183. I. Newton. De analysi per aequationes numero terminorum infinitas. Opera

omnia, I:257–282, (written 1669, published 1711). Opulusca, I, pp. 3–28.
184. T. Papadopoulo and O.D. Faugeras. A New Characterization of the Trifocal

Tensor. On INRIA Sophia Antipolis Web-Site.
185. R.C. Pappas. Oriented projective geometry with Clifford algebra. In

R. Ab lamowicz, P. Lounesto, and J.M. Parra, editors, Clifford Algebras with
Numeric and Symbolic Computations, pages 233–250. Birkhäuser, Boston, 1996.

186. J. Pauli. Geometric/photometric consensus and regular shape (quasiinvari-
ants for object localization and boundary extraction). Technical Report 9805,
Christian-Albrechts-Universität zu Kiel, Institut fü r Informatik und Praktische
Mathematik, Kiel, 1998.

187. J. K. Pearson. Clifford Networks. PhD thesis, Univ. of Kent, 1994.
188. G.R. Pennoc and A.T. Yang. Application of dual-number matrices to the

inverse kinematics problem of robot manipulators. Journal of Mechanisms,
Transmissions, and Automation in Design, 107:201–208, 1985.

189. C.B.U. Perwass and J. Lasenby. A geometric analysis of the trifocal tensor.
In R. Klette, G. Gimel’farb, and R. Kakarala, editors, Image and Vision Com-
puting New Zealand, IVCNZ’98, Proceedings, pages 157–162. The University of
Auckland, 1998.

190. C.B.U. Perwass and J. Lasenby. A Geometric Derivation of the Trifocal Tensor
and its Constraints. Technical Report CUED/F - INFENG/TR. 331, Cambridge
University, Engineering Department, 1998.

191. C.B.U. Perwass and J. Lasenby. A Geometric Algebra Approach to 3D-
Reconstruction from Vanishing Points. Technical Report CUED/F - IN-
FENG/TR. 364, Cambridge University, Engineering Department, 1999.

192. P. Plücker. On a new geometry of space. Phil. Trans. R. Soc.Lond., 155, 1865.
193. H. Poincaré. Science et Méthode. E. Flammarion, Paris, 1908.
194. I. R. Porteous. Clifford Algebras and the Classical Groups. Cambridge Uni-

versity Press, Cambridge, 1995.
195. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in Pascal. Cambridge University Press, 1990.

540 References

196. W. Press et al. Numerical Recipes in C. Cambridge University Press, 1994.
197. M. Riesz. Clifford numbers and spinors. Edited by E.F. Bolinder and P.

Lounesto. Kluwer Academic Publishers, 1993.
198. J. Rooney. On the three types of complex numbers and planar transformations.

Environment and Planning B, 5:89–99, 1978.
199. C. Rothwell, G. Csurka, and O. D. Faugeras. A Comparison of Projective

Reconstruction Methods for Pairs of Views. Technical Report 2538, INRIA,
Sophia Antipolis, 1995.

200. C. Rothwell, O. D. Faugeras, and G. Csurka. A comparison of projective
reconstruction methods for pairs of views. Computer Vision and Image Under-
standing, 68-1:37–58, 1997.

201. B. Sabata and J.K. Aggarwal. Estimation of motion from a pair of range
images: a review. CVGIP: Image Understanding, 54:309–324, 1991.

202. P. Samuel. Projective Geometry. Springer-Verlag, New York, 1988.
203. S. J. Sangwine. Fourier-transforms of color images using quaternion of hyper-

complex numbers. Electronic Letters, 32(21):1979–1980, October 1996.
204. S.J. Sangwine. Colour image edge detector based on quaternionic convolution.

Electronics Letters, 34(10):969–971, 1998.
205. S.J. Sangwine and R.E.N. Horne, editors. The Colour Image Processing Hand-

book. Chapman & Hall, 1998.
206. R. Sauer. Projektive Liniengeometrie. Göschens Lehrbücherei, Gruppe Reine

und Angewandte Mathematik, Band 23, Walter de Gruyer & Co, Berlin, 1937.
207. L. Schläfli. Theorie der vielfachen Kontinuität, volume 38 of Denkschriften

der Schweizerischen naturforschenden Gesellschaft. Zürcher & Furrer, Zürich,
1901.

208. H. Seidel. Quaternionen in der graphischen Datenverarbeitung. In Ge-
ometrische Verfahren der Graphischen Datenverarbeitung. Springer-Verlag,
1990.

209. J. J. Seidel. Angles and distance in n-dimensional Euclidean and non-
Euclidean geometry, I–III. Indag. Math., 17(329–340):65–76, 1952.

210. J. J. Seidel. Distance-geometric development of two-dimensional Euclidean,
hyperbolic and spherical geometry I, II. Simon Stevin, 5355–541(29):32–50,
1955. reprinted by Proc. Ned. Akad. Wetensch.

211. J. M. Selig. Geometrical Methods in Robotics. Springer-Verlag, New York,
1996.

212. J.M. Selig. Introductory Robotics. Prentice Hall, 1992.
213. J.G. Semple and G.T.Kneebone. Algebraic Projective Geometry. Oxford Uni-

versity Press, 1952.
214. A. Shashua. Trilinearity in visual recognition by alignment. In J.O. Ek-

lundh, editor, Computer Vision - ECCV’94, volume 800 of LNCS, pages 479–
484. Springer-Verlag, 1994.

215. A. Shashua. Trilinear tensor: the fundamental construct of multiple-view
geometry and its applications. In G. Sommer and J.J. Koenderink, editors,
Algebraic Frames for the Perception-Action Cycle, number 1315 in LNCS, pages
190–206. Springer-Verlag, Berlin, Heidelberg, 1997.

216. Y.C. Shiu and S. Ahmad. Calibration of wrist-mounted robotic sensors by
solving homogeneous transform equations of the form ax = xb. IEEE Trans.
Robotics and Automation, 5:16–27, 1989.

217. Silicon Graphics, Inc.,. MIPS RISC Technology R10000 Microprocessor Tech-
nical Brief3, 1998.

3 http://www.sgi.com/processors/r10k/tech info/Tech Brief.html

References 541

218. E. Snapper and R. J. Troyer. Metric Affine Geometry. Dover Publications
Inc., New York, 1989. First publ. by Academic Press, Inc., New York, 1971.

219. G. Sobczyk. Simplicial calculus with geometric algebra2. In A. Micali et al., ed-
itors, Clifford Algebras and their Applications in Mathematical Physics. Kluwer
Academic Publishers, Dordrecht/Boston, 1992.

220. G. Sommer. Algebraic aspects of designing behavior based systems. In G. Som-
mer and J.J. Koenderink, editors, Algebraic Frames for the Perception–Action
Cycle, volume 1315 of Lecture Notes in Computer Science, pages 1–28. Springer–
Verlag, Berlin, Heidelberg, 1997.

221. G. Sommer. The global algebraic frame of the perception-action cycle, pages
221–264. Academic Press, San Diego, 1999.

222. G. Sommer, E. Bayro-Corrochano, and T. Bülow. Geometric algebra as a
framework for the perception–action cycle. In F. Solina, W.G. Kropatsch,
R. Klette, and R. Bajcsy, editors, Advances in Computer Vision, pages 251–
260. Springer-Verlag, Wien, New York, 1997.

223. G. Sommer and J.J. Koenderink. Algebraic Frames for the Perception-Action
Cycle, volume 1315 of LNCS. Springer-Verlag, Berlin, Heidelberg, 1997.

224. G. Sommer, B. Rosenhahn, and Y. Zhang. Pose estimation using geometric
constraints. Technical Report Number 2003, Christian-Albrechts-Universit”at
zu Kiel, Institut für Informatik und Praktische Mathematik, 2000.

225. H.W. Sorenson. Kalman filtering techniques. Advances in Control Systems
Theory and Applications. 3, Edited by Leondes, C.T., 219-292. Academic Press,
New York, 1966.

226. H. Stark. An extension of the Hilbert transform product theorem. Proc. IEEE,
59:1359–1360, 1971.

227. J. Stolfi. Oriented Projective Geometry. Academic Press, 1991.
228. D. J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley,

Reading, Massachusetts, 1950.
229. E. Study. Von den Bewegungen und Umlegungen. Mathematische Annalen,

39:441–566, 1891.
230. E. Study. Geometrie der Dynamen. ???, Leipzig, 1903.
231. Sun Microsystems, Inc. UltraSPARC-II Data Sheet4, 1998.
232. L. Svensson. On the Use of the Double Algebra in Computer Vision. Printed

as a Computational Vision and Active Perception Laboratory report (CVAP-
122), ISRN KTH/NA/P-93/10, KTH, 1993, Nice, France, June 1992. Talk at
the INRIA Workshop on Invariants in Computer Vision.

233. M. Swain and D. Ballard. Color indexing. International Journal of Computer
Vision., 7:11–32, 1992.

234. M. Teague. Image analyses via the general theory of moments. J. Opt. Soc.
Am., 70:920–930, 1980.

235. B. Triggs. Autocalibration and the absolute quadric. In IEEE Conf. on
Computer Vision and Pattern Recognition, pages 609–614, 1997.

236. B. Triggs. Linear projective reconstruction from matching tensors. Image and
Vision Computing, 15:617–625, 1997.

237. B. Triggs. Autocalibration from planar scenes. In H. Burkhardt and B. Neu-
mann, editors, Computer Vision - ECCV’98, volume 1406 of LNCS, pages 89–
105. Springer-Verlag, Berlin, Heidelberg, 1998.

238. R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous and efficient
3d robotics hand/eye calibration. IEEE Trans. Robotics and Automation, 5:345–
358, 1989.

4 http://www.sun.com/microelectronics/datasheets/stp1031/index2.html

542 References

239. K. Vahlen. Über Bewegungen und komplexe Zahlen. Math. Ann., 55:585–593,
1902.

240. R. L. De Valois and K. K. De Valois. Spatial Vision. Oxford University Press,
New York, 1988.

241. S. Venkatesh, J. Cooper, and B. White. Local energy and pre-envelope. Pat-
tern Recognition, 28(8):1127–1134, 1995.

242. S. Venkatesh and R. Owens. On the classification of image features. Pattern
Recognition Letters, 11:339–349, 1990.

243. M.W. Walker. Manipulator kinematics and the epsilon algebra. IEEE Journal
of Robotics and Automation, 4:186–192, 1988.

244. N. White. Geometric applications of the Grassmann-Cayley algebra. In J.E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry. CRC Press, Florida, 1997.

245. I.M. Yaglom. Felix Klein and Sophus Lie. Evolution of the Idea of Symmetry
in the Nineteenth Century. Birkhäuser, Boston, 1988.

246. C. Zeller and O. D. Faugeras. Camera Self-Calibration from Video Sequences:
the Kruppa Equations Revisited. Technical Report 2793, INRIA, Sophia An-
tipolis, 1996.

247. Z. Zhang and O. D. Faugeras. 3-D Dynamic Scene Analysis. Springer-Verlag,
Berlin, Heidelberg, 1992.

Author Index

Bayro-Corrochano, Eduardo 393, 455, 471, 501
Buchholz, Sven 291, 315
Bülow, Thomas 187, 209, 231, 255

Chernov, Vladimir 231

Daniilidis, Kostas 489
Dorst, Leo 127

Felsberg, Michael 187, 209, 231

Hestenes, David 3, 27, 61, 77

Kähler, Detlef 471

Labunets, Valeri 155
Lasenby, Joan 337
Li, Hongbo 3, 27, 61, 77, 415

Naeve, Ambjörn 105

Perwass, Christian B. U. 337

Rockwood, Alyn 3, 27, 61, 77
Rosenhahn, Bodo 393
Rundblad-Labunets, Ekaterina 155

Sommer, Gerald 187, 209, 231, 255, 291, 315, 415, 501
Svensson, Lars 105

Zhang, Yiwen 501

543

544 Author Index

Subject Index

π-phase 236

activation function 295
affine
– groups 164
– model 35
– model for Euclidean space 24
– space 108
– subspaces 146
– theorem of quaternionic Fourier

transform 203
affine transformation 24
‘algebra of directions’ 131
analytic signal
– n-dimensional 267
– 1-D 257, 258
– Clifford 269
– partial 262
– quaternionic 266
– total 261
anti-automorphism 6
anti-Euclidean algebra 13
antipodal transformation 73
associativity 5
automorphism 6

back–propagation 297
backward transformation 476
barycentric coordinates 23
base point of a simplex 20
basis see frame
bi-quaternion 459
biholomorphic function 310
bilinear form
– extended 134
binary moment 177, 180
bivector 490
blade 131
boundary
– of a simplex 22, 44

– operator 22
bracket 110, 338
– dual 338
– inverse dual 338
bunch of spheres and hyperplanes 51

C-transform 189
calibration
– hand-eye 498
camera
– pinhole see pinhole camera
canonical form of an orthogonal

transformation 16
Cartan-Dieudonné theorem 17
Cayley-Menger determinant 44
central moment 169
– s− ary 175
– one-index 176
Chasles theorem 25
chord distance 62
chromaticity 165
– number 166
Clifford
– algebra 129, 293, 490
– Fourier transform 205, 206
– Fourier transform,inverse 206
– neuron 297
– number 163
collineation 375
– of plane at infinity 378
– tensor 377
color
– group of similarities 178
– image 165
– number 177
– representation 165
– transformation 165
– triplet algebra 166
commutative hypercomplex algebra
– 2-D 212

545

546 Subject Index

– n-D 222
commutative hypercomplex Fourier

transform 242
– 2-D 213
– n-D 227
commutator product 8
complex signal
– with single orthant spectrum 263
computation of 2-D Euclidean

transformation 303
concentric
– bunch 52
– pencil 51
concurrent
– bunch 52
– pencil 51
conformal
– ball model 92
– group 57
– split 32
– transformations 52
conic 395
– at infinity 399
conjugate 457
– of a quaternion 192
conjugation 294
content of a simplex 21, 44
continuation method 414
contraction 131, 134
– rule 4
convolution
– 2-D 217
– theorem of Fourier transform 198
– theorem of quaternionic Fourier

transform 198
– n-D 228
cosine transform 189

Denavit–Hartenberg
– parameters 473
– procedure 473
derivative theorem
– quaternionic Fourier transform 202
determinant see bracket
determinants 341
DHFT see discrete HFT
dilation 56
direct kinematics 478
directance 20
directed measure see r-volume, 21
directed union see join
directional derivative 12
discrete

– HFT 243
– quaternionic Fourier transform 233
distances between subspaces 148
division algebra 294
divisor of zero 295
double algebra see Grassmann-Cayley

algebra
double covering group 18
double-hyperbolic space 79
DQFT see discrete quaternionic

Fourier transform
dual 131, 338
– angles 474
– numbers 25, 492
– of a multivector 7
– quaternion 25
– quaternion model 26
– quaternions 492
– bracket 338
– inverse dual bracket 338
– representation 339
duality
– of inner and outer product 8
– between outer product and

contraction 135
dynamic model 501, 504, 515

end–effector 473
envelope of curves 115
epipoles 340, 403
– from fundamental matrix see

fundamental matrix
– from quadfocal tensor 363
– from trifocal tensor 357
equivalence class 159
essential matrix 409
Euclidean
-D similarity transformation 305
-D similarity transformation 307
– algebra 13
– distance between affine subspaces

148
Euler angles 193
even subalgebra 459
evolute of a curve 115
evolvent of a curve 115
extended Kalman filter 506
‘exterior algebra’ 130

face
– operator 22
– opposite 22
fast

Subject Index 547

– hypercomplex Fourier transform
244

– quaternionic Fourier transform 234
FHFT see fast hypercomplex Fourier

transform
focal surface 114
forward transformation 476
Fourier transform
– 1-D 189
– 2-D 191
– basis functions 197
FQFT see fast quaternionic Fourier

transform
fractional-linear transformation 310
frame 11, 338
– of a simplex 20
– dual 11
– line 339
– pseudoscalar for a 11
– reciprocal 339
fundamental matrix 341
– degrees of freedom 345
– derivation 341
– epipoles 346
– rank 343
– transferring points 345
fundamental theorem 15

GA see geometric algebra
Gabor filter
– complex 270
– quaternionic 272
Galois field 185
GC see geometric calculus
– web site 4
general linear group 300
generalized
– complex numbers 161
– homogeneous coordinates 33
– point 81
– sphere 83
generic neuron 295
geometric
– algebra 4, 125
– calculus 4, 132
– filters 136
– group 178
– moment 169
– objects 4
– product 4, 131, 293
grade 5
Grassmann-Cayley algebra 109
group

– of motions 164
– of rotations 171
– of similarities 171
– of transformations 157

half-space model 94
harmonic transforms 188ff
– hierarchy of 194f
Hartley transform
– 1-D 189
– 2-D 191
hemisphere model 93
Hermite symmetry 190, 193
– quaternionic 193
HFT see commutative hypercomplex

Fourier transform
HFT2 see commutative hypercomplex

Fourier transform
– affine theorem 220
– convolution theorem 217
– correspondence to QFT 214
– derivative theorem 221
– Parseval equation 221
– relation to FT 219
– shift theorem 216
– symmetry 217
HFTn see commutative hypercomplex

Fourier transform
– convolution theorem 228
– derivative theorem 228
– Parseval equation 228
– shift theorem 227
– symmetry 227
Hilbert
– pair 258
– quadruple 266
– transform, partial 261
– transform, total 260
– transform,1-D 257
HMI, Hu moment invariant 174
homogeneous
– coordinate 144, 394
– coordinates, generalized 34
– model 34, 62, 84
– points 62, 84
horo-distance 80
horosphere 83
hyperbolic distance 80
hyperboloid model 79
hypercomplex
– algebra 212
– number 210
hyperimagenary units 162

548 Subject Index

hyperplane 20, 33, 64, 81
hyperspace 40
hypersphere 83

iDHFT see inverse discrete HFT
iDQFT see inverse discrete quater-

nionic Fourier transform
iFQFT see inverse fast quaternionic

Fourier transform
imaginary point 81
index set method 137
inner product 131
– of blades 6
– of vectors 5
input-output representation 302
instantaneous
– amplitude 258
– phase 258
intensity number 166
‘interior algebra’ 130
intersecting
– bunch 52
– pencil 51
intersection see meet
invariance 155
invariant 155
– absolute 158, 169
– complex-valued 174
– hypercomplex-valued 160
– relative 158, 169, 173
inverse
– discrete HFT 243
– discrete quaternionic Fourier

transform 233
– fast quaternionic Fourier transform

235
– kinematics 481
– of a multivector 5
inversion see main involution of GA,

54, 73, 294
inversive product 48, 67
invertible multivector 5
involution 7, 124, 294
– of the quaternion algebra 237
– of � 193

Jacobi identity 8
join 131, 146, 339
joint 473
– transition 473

Kalman filter 504
kinematics
– direct 478

– inverse 481
Klein ball model 97
Kravchuk transform 173
Kruppa equations 396, 402
– using brackets 403

Lie
– algebra 8, 19
– group 19
line
– Plücker coordinates 508
– rotation 509
– screw motion 511
– transformation 510
– translation 510
linear
– dependence 10
– operator 300
– transformation 13, 299
local phase
– complex 270
– quaternionic 273
Lorentz
– group 29
– transformations 29
luminance 165

Möbius
– transformation 58, 312
– transformation of � p,q 310
Möbius
– group 310
magnitude of a vector 5
main
– anti-automorphism of GA 6
– involution of GA 7
manifold 168
manipulator
– SCARA 473
– Stanford 473
measurement model 502, 506, 516
meet 8, 131, 339
– magnitude of the 145
– of subspaces 146
– semantics of the 145
Minkowski
– algebra 29
– hyperspace 40
– plane 29
– signature 29
– space 29
model-based computation 298, 304
modulation theorem

Subject Index 549

– quaternionic Fourier transform 201
moment 20
– s-ary 184
– s-ary central 175
– central 169
– invariant 169
– of a simplex 21, 44
– transformation 171, 177
mother algebra 13
motion 501
– estimation, analytical solution 519
– estimation, EKF 506
– estimation, MEKF 515
– of points, lines, planes 467–469
– rotation 509
– screw motion 511
– translation 510
motor 459, 510
– algebra 507
– extended Kalman filter 515
– extended Kalman filter, algorithm

518
multi-linearity 5
multiple view tensors
– comparison 368
– fundamental matrix 341
– quadfocal tensor 358
– trifocal tensor 346
multivector 5, 293, 490
– derivative 12

n-distance 20
Newton–Raphson method 414
nilpotence 25
non-degenerate
– GA 13
– vector space 7
norm
– of a quaternion 192
normal
– congruence 114
– distance 63, 80
normalized
– central moment 169
– homogeneous camera frame 374
normed algebra 192
null
– blade 10
– cone 33
– vector 5

orbit
– of template image 159

orientation of a simplex 21
oriented
– generalized point 81
– imaginary point 82
– point at infinity 81
orthogonal
– decomposition 11
– group 18, 301
– multivectors 10
– trajectory 115
– transformation 16
– transformation group 301
outer product 130
– of blades 6
– of vectors 5
outermorphism 14
outward normal to a face 23
overlapping 237

parallel
– bunch 52
– pencil 51
parity
– conjugation see main involution of

GA
– even 7
– odd 7
Pascal’s theorem 396
pencil
– of hyperplanes 50
– of lines 394
– of spheres 50
perceptive color space 166
perceptual color space 165
perpendicular
– multivectors see orthogonal

multivectors
– subspace 131
phase
– of a quaternion 193
Pin group 18, 301
pinhole camera 340
Plücker coordinates 20, 489, 508
place of a simplex see base point of a

simplex
plane at infinity 378
plane projective transformation 310
point at infinity 81
Poncelet
– bunch 52
– pencil 51
– points 47, 51, 67
– sphere 52

550 Subject Index

projection
– algebra 131
– of a vector 10
– line 340, 348
– point 340, 349
projective
– invariant 395
– space 109
– split 32, 338
projective geometry 338
propagation function 295
proper Lorentz group 29
pseudometric space 162
pseudometrics 163
pseudoscalar 7, 338
– characteristic 338
Ptolemy’s theorem 46, 69, 90

QFT see quaternionic Fourier
transform

quadfocal tensor
– constraints 361
– degrees of freedom 361
– derivation 358
– epipoles 363
– rank 359
– relation to trifocal tensor 362
– transferring lines 359
quadratic
– forms 292
– p-relations,equivalent in GA 353
– space 292
quadrature filters 270
quaternion 161, 192, 457
– unit 193
quaternionic
– Fourier transform 192, 196
– Fourier transform, history 206
– Fourier transform, of color images

207
– Fourier transform,basis functions

197
– Fourier transform,inverse 196
– Gabor filter, separability of 278
– Hermite symmetry 236

r-blade 5
r-flat see r-plane
r-plane 20
r-simplex see simplex
r-vector 5, 293
– part 293
r-volume 9

radix-2 method 234
Rayleigh’s theorem
– Fourier transform 199
– quaternionic Fourier transform 199
real neuron 296
reconstruction 382
– algorithm 386
– from real data 390
– from synthetic data 387
– image point normalisation 386
– overview 371
– projective with trifocal tensor 364
reduction rule 124
reflection 55, 72, 457
rejection 10
relative distance 81
rendezvous method 482
reversion see main anti-automorphism

of GA, 294
rigid displacement 23
rotation 17, 56, 73
– group 19
rotor see spinor, 457
row-column algorithm 247

S-transform 189
scalar product of GA 7
SCARA manipulator 473
screw 473, 496
– displacement 24
– transformation 474
shift theorem
– Fourier transform 200
– quaternionic Fourier transform 200
signal
– hypercomplex-valued 167
signature of a vector space 5
signed distance 20, 82
simple multivector 131
simplex 20
Simson’s
– theorem 37, 100
– triangle 37
sine transform 189
space of paravectors 302
space-color algebra 177, 180
spacetime algebra 19
spatial number 177
spatial-color
– number 177
– space 168
spatial-multicolor Clifford algebra 183
special orthogonal group 18, 301

Subject Index 551

spectral coefficients 173
sphere 64, 83
– at infinity 81
spherical distance 62
spin group 19, 301
spinor 16
– group 164
– neuron 304
split 133, 143
– conformal 133
– projective 133, 143
‘split algebras’ 132
Stanford manipulator 473, 482
stereographic
– distance 63
– projection 70, 90
Stokes theorem (generalized) 21
subalgebra
– degenerate 491
– even 490, 491
subspace 9
– algebra of 9
sum-of-squared error 296

tangent
– bunch 52
– of a simplex 21, 44
– pencil 51
– of an r-plane 20
tangential distance 80
texture segmentation 279
theorem of Malus and Dupin 115
tidal transformation 74
total sphere 83
transference principle 496
transformation
– groups 156
– law for inner products see

fundamental theorem
– of points, lines, planes 474
– backward 476
– forward 476
translation 56
translator 475
transversion 56
trifocal tensor 346
– constraints 351
– degrees of freedom 351
– derivation 346
– epipoles 357
– projective reconstruction with 364
– rank 350
– relation to fundamental matrix 353

– second order constraints 356
– transferring lines 348
– transferring points 349
Tschirnhausen’s caustics 114

unifocal tensor 341
unit pseudoscalar 7

Vahlen matrix 311
vanishing points 380
– calculation of 380
– calculation of collineation tensor for

plane at infinity 381
– from multiple parallel lines 381
vector
– algebra of Gibbs 113
– derivative 11
– valued moment 171
– variable 11
– inverse 130
versor 16
– group 18
volume see content of a simplex
– of a simplex 44

