
Journal of Computational and Applied Mathematics
Copyright © 2003 Elsevier B.V. All rights reserved

Volume 123, Issues 1-2, Pages 1-531 (1 November 2000)

 Display Checked Docs | E-mail Articles | Export Citations View: Citations

1. gfedc
Iterative solution of linear systems in the 20th century, Pages 1-33
Yousef Saad and Henk A. van der Vorst
SummaryPlus | Full Text + Links | PDF (188 K)

2. gfedc
Eigenvalue computation in the 20th century, Pages 35-65
Gene H. Golub and Henk A. van der Vorst
SummaryPlus | Full Text + Links | PDF (181 K)

3. gfedc
QR-like algorithms for eigenvalue problems, Pages 67-83
David S. Watkins
SummaryPlus | Full Text + Links | PDF (130 K)

4. gfedc
The ubiquitous Kronecker product, Pages 85-100
Charles F. Van Loan
SummaryPlus | Full Text + Links | PDF (130 K)

5. gfedc
Preconditioning eigenvalues and some comparison of solvers, Pages 101-115
Ronald B. Morgan
SummaryPlus | Full Text + Links | PDF (150 K)

6. gfedc
For tridiagonals T replace T with LDLt, Pages 117-130

Beresford N. Parlett
SummaryPlus | Full Text + Links | PDF (306 K)

7. gfedc
An overview of relative sin theorems for invariant subspaces of complex matrices, Pages 131-153
Ilse C. F. Ipsen
SummaryPlus | Full Text + Links | PDF (148 K)

8. gfedc
The trace minimization method for the symmetric generalized eigenvalue problem, Pages 155-175
Ahmed Sameh and Zhanye Tong
SummaryPlus | Full Text + Links | PDF (202 K)

9. gfedc
Successive overrelaxation (SOR) and related methods, Pages 177-199
A. Hadjidimos
SummaryPlus | Full Text + Links | PDF (181 K)

10. gfedc
On asynchronous iterations, Pages 201-216
Andreas Frommer and Daniel B. Szyld
SummaryPlus | Full Text + Links | PDF (128 K)

11. gfedc
Iterative methods for large continuation problems, Pages 217-240
D. Calvetti and L. Reichel
SummaryPlus | Full Text + Links | PDF (458 K)

12. The matrix and polynomial approaches to Lanczos-type algorithms, Pages 241-260

gfedc
C. Brezinski, M. Redivo-Zaglia and H. Sadok
SummaryPlus | Full Text + Links | PDF (157 K)

13. gfedc
Analysis of acceleration strategies for restarted minimal residual methods, Pages 261-292
Michael Eiermann, Oliver G. Ernst and Olaf Schneider
SummaryPlus | Full Text + Links | PDF (250 K)

14. gfedc
Refining an approximate inverse, Pages 293-306
Robert Bridson and Wei-Pai Tang
SummaryPlus | Full Text + Links | PDF (102 K)

15. gfedc
Scalable preconditioned conjugate gradient inversion of vector finite element mass matrices, Pages 307-321
Joe Koning, Garry Rodrigue and Dan White
SummaryPlus | Full Text + Links | PDF (429 K)

16. gfedc
Robust multigrid methods for nonsmooth coefficient elliptic linear systems, Pages 323-352
Tony F. Chan and W. L. Wan
SummaryPlus | Full Text + Links | PDF (275 K)

17. gfedc
The Rook's pivoting strategy, Pages 353-369
George Poole and Larry Neal
SummaryPlus | Full Text + Links | PDF (241 K)

18. gfedc
Numerical methods in control, Pages 371-394
Volker Mehrmann and Hongguo Xu
Abstract | PDF (169 K)

19. gfedc
Krylov-subspace methods for reduced-order modeling in circuit simulation, Pages 395-421
Roland W. Freund
Abstract | PDF (320 K)

20. gfedc
Tikhonov regularization and the L-curve for large discrete ill-posed problems, Pages 423-446
D. Calvetti, S. Morigi, L. Reichel and F. Sgallari
SummaryPlus | Full Text + Links | PDF (527 K)

21. gfedc
Symbiosis between linear algebra and optimization, Pages 447-465
Dianne P. O'Leary
SummaryPlus | Full Text + Links | PDF (124 K)

22. gfedc
Some computational problems arising in adaptive optics imaging systems, Pages 467-487
Robert J. Plemmons and Victor P. Pauca
SummaryPlus | Full Text + Links | PDF (264 K)

23. gfedc
Numerical linear algebra algorithms and software, Pages 489-514
Jack J. Dongarra and Victor Eijkhout
SummaryPlus | Full Text + Links | PDF (158 K)

24. gfedc
The impact of high-performance computing in the solution of linear systems: trends and problems, Pages 515-530
Iain S. Duff
SummaryPlus | Full Text + Links | PDF (193 K)

25. gfedc
Index, Page 531
Unknown
PDF (40 K)

26. gfedc
Numerical Analysis 2000 Vol. III: Linear Algebra, Pages ix-xii

SummaryPlus | Full Text + Links | PDF (37 K)

Journal of Computational and Applied Mathematics 123 (2000) ix–xii
www.elsevier.nl/locate/cam

Foreword

Numerical Analysis 2000
Vol. III: Linear Algebra

With the year 2000 being elected “The World Mathematical Year”, the Journal of Computational
and Applied Mathematics decided to publish a series of volumes dedicated to various disciplines
of applied mathematics and numerical analysis. The series received the ambitious title “Numerical
Analysis in the 20th Century” and contains seven volumes of which the present one is devoted to
“Linear Algebra”.
From the early days of scienti�c computing, numerical linear algebra has been driven by the

necessity to be able to solve linear systems, to solve eigenproblems, and to understand the meaning
of the results. Because many of these problems have to be solved repeatedly in other computational
problems, the algorithms have to be robust and as fast as possible. This has led to much activity,
and other than only developing algorithms on demand, the involved research has been equally intel-
lectually challenging as in other sciences. The behavior of algorithms under rounding errors was a
great source of inspiration for the further development of perturbation theory.
Also, the possibility and the necessity to solve larger problems has led to algorithms for the

reduction of the information to lower dimensional subspaces. The theories of iterative methods have
been pushed forward by curiosity-driven research as well as by strong pressure from applications.
Numerical analysis and numerical linear algebra in particular, have strongly contributed to the

giant leaps that could be made, in scienti�c computing in recent decades. The scienti�c problems
that can be solved nowadays are bigger by many orders of magnitude than those that could be
solved, say, some 30 years ago. Roughly, half of the increased computational power must be at-
tributed to improved algorithms, and the other half has been made possible by the increase of
computational speeds in hardware. This impressive increase in scale of computation has led to more
complicated applications and this in turn has led to more complicated numerical linear algebra prob-
lems, such as Kronecker structures, highly nonnormal matrices, ill-posed problems, nonlinear eigen-
problems, etc.
At this point in time, we can conclude that numerical linear algebra has reached a certain level

of maturity. There is a solid theoretical basis for the study of various phenomena and the theory
is still in ux. There have been times, not so long ago, when leading researchers believed that the
theory for this area was more or less complete and that further progress in scienti�c computing
was simply a matter of scaling. Simply stated: one had only to increase the order of the problem
and to implement the well-known algorithms e�ciently on modern computers. It has turned out that
this was a too simple and too pessimistic point of view. Not only have we seen new challenging

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00453-2

x

problems, but also the rapidly growing problem sizes led to new algorithms. Even parallel processing
led to new classes of problems, such as domain decomposition techniques.
Research in numerical linear algebra is active as ever before and witnesses many new develop-

ments. As a consequence, we collected in this volume some survey and=or tutorial papers, that illus-
trate the current high level of knowledge and progress, as well as papers with emerging or promising
ideas. In order to cover most research areas of linear algebra, we invited leading researchers to sub-
mit a paper in their respective �eld of interest. Our initial list of invitations contained 30 names, well
spread over the areas that we considered as being most representative for Numerical Linear Algebra.
The response was quite impressive as can be seen below. In hindsight with respect to our original
list, the only major topics missing on the �nal list are error analysis, perturbation analysis, and the
Krylov methods for eigenproblems. Impressive progress has been made in these areas and we wish
to mention Wilkinson’s book “The Algebraic Eigenvalue Problem” as a landmark in numerical linear
algebra.
All papers have been refereed in the usual way, and it was certainly a surprise for us that the

whole process could be completed almost as scheduled. The involvement of the leading researchers
in numerical linear algebra is nicely illustrated by the observation that most of those who could not
�nd time to write a contribution helped us in the refereeing process.
This volume starts with two historical surveys, one on iterative methods for linear systems, by

Y. Saad and H. van der Vorst, and the other on eigenproblems, written by G. Golub and H. van
der Vorst.
These two surveys cover the major developments that have taken place in the twentieth century.

The reader may �nd interesting details on how the major algorithmic developments evolved in time.
The two papers contain many references, which may serve as starting points for further research in
these areas (including the “missing” topics mentioned before).
The papers in this volume can be roughly subdivided into the following groups:

1. Eigenproblems (including SVD)
The papers in this group reect established as well as current research. The QR methods represent
a success story in numerical linear algebra. In these methods, we see various ideas that click
together in an algorithm that leads to very fast and robust algorithms. D. Watkins presents new
views on QR-like methods for the eigenproblem, which leads to a better understanding of how
the various approaches are related.
C. Van Loan shows that Kronecker products do occur in many contexts of linear algebra and he

gives a nice survey on the topic. Preconditioning for eigenproblems, that is the idea to solve nearby
easier problems in order to get good starting values for iterative solution procedures, is currently
an important research topic. This aspect is taken care of in a contribution by R. Morgan. An
important problem, related to stability, is how to compute the eigenvalues of tridiagonal matrices.
B. Parlett gives a brief motivation for the new class of tridiagonal eigensolvers and shows that
the key feature here is to represent them as a product of two bidiagonals.
I. Ipsen has contributed a paper on the separation of invariant subspaces of complex ma-

trices. This is an interesting problem, in particular when classical eigenvector computations
are suspect because of small mutual angles. An alternative approach for studying sensitivity
in eigenproblems, the theory of pseudo-spectra, is not represented in our collection of papers.
We refer to the discussion in the Golub-van der Vorst paper for further background and
information.

xi

The Jacobi–Davidson method is a relatively new branch in the tree of eigenproblem solvers.
The underlying idea permits to attack non-standard eigenproblems, such as polynomial
eigenproblems. A. Sameh and Z. Tong show that a variant of the trace minimization algorithm
is related to the Jacobi–Davidson method and they present a numerical comparison.

2. Linear systems
This has traditionally been the core business of numerical linear algebra, with more emphasis
on iterative approaches during the last few decades of the past century. The current issues are
represented by the following contributions. A. Hadjidimos highlights the SOR methods, which
have played a dominant role in iterative solution approaches for a long time. D. Szyld and A.
Pfrommer consider asynchronous iteration methods, inspired by parallel processing possibilities.
Iterative techniques, based on the block-Lanczos algorithm, for the computation of solution

paths for continuation problems are discussed by D. Calvetti and L. Reichel.
Two di�erent views on the Lanczos method are discussed in a paper by C. Brezinski, M.

Redivo–Zaglia, and H. Sadok: the matrix approach and the formal orthogonal polynomial ap-
proach. This leads to convenient treatment of breakdowns in the two-sided Lanczos method for
unsymmetric linear systems.
Minimal residual methods (including GMRES) are powerful tools for the iterative solution of

large linear systems. A common approach is to restart them when the storage requirements or
CPU-time per iteration becomes too high. M. Eiermann, O. Ernst, and O. Schneider present an
analysis for e�cient restarting techniques.
Preconditioning has always been an essential ingredient for many iterative methods. In the

1990s, the concept of sparse approximate inverses became popular. R. Bridson and W.-P. Tang
consider re�nement techniques for this way of preconditioning. This includes symbolic factoriza-
tion algorithms, reorderings, and blocking techniques.
Parallel aspects of the popular conjugate gradients method, for problems related to �nite element

discretization techniques, are discussed in a paper by G. Rodrigue, J. Koning and D. White.
Many of the large-scale linear problems originate from PDEs, and the study of such systems

has signi�cant overlap with research in numerical analysis. Multigrid methods is one particular
area where insights from linear algebra and analysis merge fruitfully. T. Chan and J. Wan survey
robust multigrid methods for elliptic PDEs with non-smooth coe�cients. They highlight how to
recover the usual multigrid e�ciency for this more di�cult class of problems.
The paper by G. Poole and L. Neal on pivoting strategies for direct linear solution methods

goes back to the basics. These pivoting strategies and relevant for exploiting the possibilities of
modern computer architectures.

3. Miscellaneous problems
As we have stated before, numerical linear algebra plays an important role in many other research
�elds and scienti�c applications. V. Mehrmann and H. Xu give a compact survey of some key
numerical linear algebra problems of control theory and discuss the new developments in the area.
R. Freund describes how to use Krylov subspace methods for generating reduced-order models

of linear electric circuits.
D. Calvetti, S. Morigi, L. Reichel and F. Sgallari present existing and new iterative methods

for the determination of the Tikhonov regularization parameter for classes of ill-posed problems.
D. O’Leary’s paper gives a good impression on how numerical linear algebra has intruded

other research areas. She discusses, in particular, the role of linear algebra in Optimization.

xii

Imaging problems give rise to large linear systems for reconstruction from ray tracing infor-
mation. Computational problems, related to image reconstruction in Adaptive Optics Imaging, are
discussed in a paper by R. Plemmons and V. Pauca.

4. Software
Numerical linear algebra has a long tradition in high-quality software. This started with the fa-
mous Wilkinson–Reinsch collection, which formed the basis for well-known packages such as
EISPACK, LINPACK, and, more recently, LAPACK and ScaLAPACK. This has been very im-
portant for the current popularity and inuence of our research area. J. Dongarra and V. Eijkhout
present an overview of the linear algebra algorithms for which mature software is available.
Modern computer architectures have had a signi�cant impact on the design of linear algebra

software, and the linear algebra algorithms have, in turn, inuenced the design of computer ar-
chitectures. Think, for instance, of the famous LINPACK benchmark. I. Du� discusses the trends
and current problems related to high-performance computing.

We would like to thank all the people who have contributed to the successful completion of this
volume: Luc Wuytack for taking the initiative and for inviting us to be the editors, the authors
for their contributions and, last but not least, the referees for their careful reading and constructive
criticisms.

Apostolos Hadjidimos
Department of Mathematics

University of Crete; GR-714 09 Heraklion
Greece

Henk van der Vorst
Mathematisch Instituut; Universiteit Utrecht

Budapestlaan 6; NL-3584 CD Utrecht
The Netherlands

E-mail address: vorst@math.uu.nl

Paul Van Dooren
Department of Mathematical Engineering

Universit�e Catholique de Louvain
Av. Lemaitre 4; B-1348 Louvain la Neuve

Belgium

Journal of Computational and Applied Mathematics 123 (2000) 1–33
www.elsevier.nl/locate/cam

Iterative solution of linear systems in the 20th century
Yousef Saada ;1, Henk A. van der Vorstb;∗

aDepartment of Computer Science and Engineering, University of Minnesota, Minneapolis, USA
bDepartment of Mathematics, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, Netherlands

Received 23 January 2000; received in revised form 2 March 2000

Abstract

This paper sketches the main research developments in the area of iterative methods for solving linear systems during
the 20th century. Although iterative methods for solving linear systems �nd their origin in the early 19th century (work
by Gauss), the �eld has seen an explosion of activity spurred by demand due to extraordinary technological advances in
engineering and sciences. The past �ve decades have been particularly rich in new developments, ending with the avail-
ability of large toolbox of specialized algorithms for solving the very large problems which arise in scienti�c and industrial
computational models. As in any other scienti�c area, research in iterative methods has been a journey characterized by a
chain of contributions building on each other. It is the aim of this paper not only to sketch the most signi�cant of these
contributions during the past century, but also to relate them to one another. c© 2000 Elsevier Science B.V. All rights
reserved.

Keywords: ADI; Krylov subspace methods; Multigrid; Polynomial acceleration; Preconditioning; Relaxation methods;
SOR; Sparse approximate inverse

1. Introduction

Numerical linear algebra is an exciting �eld of research and much of this research has been
triggered by a problem that can be posed simply as: given A ∈ Cm×n; b ∈ Cm, �nd solution vector(s)
x ∈ Cn such that Ax = b. Many scienti�c problems lead to the requirement to solve linear systems
of equations as part of the computations. From a pure mathematical point of view, this problem
can be considered as being solved in the sense that we explicitly know its solution in terms of
determinants. The actual computation of the solution(s) may however lead to severe complications,
when carried out in �nite precision and when each basic arithmetic operation takes �nite time. Even

∗ Corresponding author.
E-mail addresses: saad@cs.umn.edu (Y. Saad), vorst@math.uu.nl (H.A. van der Vorst).
1 Work supported by NSF=CCR and by the Minnesota Supercomputer Institute.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00412-X

2 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

the “simple” case when n=m and A is nonsingular, which is a trivial problem from a mathematical
point of view, may become very complicated, from a computational point of view, and may even
turn out to be impossible.
The traditional way to solve a nonsingular linear system is to employ Gaussian elimination, and,

with all its enhancements, to overcome numerical instabilities. This process can be carried out
in O(n3) basic oating point operations (additions and multiplications, assuming n = m). Many
applications lead to linear systems with a large n (where the notion of “large” depends, of course,
on the capacity of the available computer), and it became soon evident that one has to exploit speci�c
properties of the A at hand in order to make solution of the system feasible. This has led to variants
of Gaussian elimination in which the nonzero structure of A is exploited, so that multiplications with
zero result are avoided and that savings in computer storage could be realized.
Another direction of approach was based on the solution of a nearby linear system, with a ma-

trix that admits a computationally inexpensive process (in terms of computing time and computer
storage), and to embed this in an iterative process. Both approaches aim at making the impos-
sible possible, and for the novice in this �eld this may seem to be just a collection of clever
programming tricks: “in principle solving the problem is well understood but one has to be well
organized to make the computational process a little faster”. For this novice it will certainly come
as a big surprise that a whole, still incomplete, mathematical framework had to be developed with
deep and elegant results. As a result, relevant systems could be solved many orders of magnitude
faster (and also often more accurate) than by a straightforward Gaussian elimination approach. In
this paper, we will sketch the developments and progress that has taken place in the 20th century
with respect to iterative methods alone. As will be clear, this sub�eld could not evolve in isola-
tion, and the distinction between iterative methods and Gaussian elimination methods is sometimes
arti�cial – and overlap between the two methodologies is signi�cant in many instances. Neverthe-
less, each of the two has its own dynamics and it may be of interest to follow one of them more
closely.
It is likely that future researchers in numerical methods will regard the decade just passed as the

beginning of an era in which iterative methods for solving large linear systems of equations started
gaining considerable acceptance in real-life industrial applications. In looking at past literature, it is
interesting to observe that iterative and direct methods have often been in competition for solving
large systems that arise in applications. A particular discovery will promote a given method from
one camp only to see another discovery promote a competing method from the other camp. For
example, the 1950s and 1960s saw an enormous interest in relaxation-type methods – prompted by
the studies on optimal relaxation and the work by Young, Varga, Southwell, Frankel and others.
A little later, sparse direct methods appeared that were very competitive – both from the point of
view of robustness and computational cost. To this day, there are still applications dominated by
direct solvers and others dominated by iterative solvers. Because of the high memory requirement
of direct solvers, it was sometimes thought that these would eventually be replaced by iterative
solvers, in all applications. However, the superior robustness of direct solvers prevented this. As
computers have become faster, very large problems are routinely solved by methods from both
camps.
Iterative methods were, even halfway in the 20th century, not always viewed as promising. For

instance, Bodewig [23, p. 153], in 1956, mentioned the following drawbacks of iterative methods:
nearly always too slow (except when the matrix approaches a diagonal matrix), for most problems

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 3

they do not converge at all, they cannot easily be mechanised 2 and so they are more appropriate
for computing by hand than with machines, and do not take advantage of the situation when the
equations are symmetric. The only potential advantage seen was the observation that Rounding
errors do not accumulate, they are restricted to the last operation. It is noteworthy that Lanczos’
method was classi�ed as a direct method in 1956.
The penetration of iterative solvers into applications has been a slow process that is still ongoing.

At the time of this writing for example, there are applications in structural engineering as well as
in circuit simulation, which are dominated by direct solvers.
This review will attempt to highlight the main developments in iterative methods over the past

century. It is clear that a few pages cannot cover an exhaustive survey of 100 years of rich devel-
opments. Therefore, we will emphasize the ideas that were successful and had a signi�cant impact.
Among the sources we used for our short survey, we would like to mention just a few that are

notable for their completeness or for representing the thinking of a particular era. The books by
Varga [188] and Young [205] give a complete treatise of iterative methods as they were used in the
1960s and 1970s. Varga’s book has several excellent historical references. These two masterpieces
remained the handbooks used by academics and practitioners alike for three decades. Householder’s
book [102] contains a fairly good overview of iterative methods – speci�cally oriented towards
projection methods. Among the surveys we note the outstanding booklet published by the National
Bureau of Standards in 1959 which contains articles by Rutishauser [150], Engeli [68] and Stiefel
[170]. Later Birkho� [21], who supervised David Young’s Ph.D. thesis in the late 1940s, wrote
an excellent historical perspective on the use of iterative methods as he experienced them himself
from 1930 to 1980. The more recent literature includes the books by Axelsson [7], Brezinski [29],
Greenbaum [88], Hackbusch [97], and Saad [157], each of which has a slightly di�erent perspective
and emphasis.

2. The quest for fast solvers: a historical perspective

Iterative methods have traditionally been used for the solution of large linear systems with diag-
onally dominant sparse matrices. For such systems the methods of Gauss–Jacobi and Gauss–Seidel
could be used with some success, not so much because of the reduction in computational work,
but mainly because of the limited amount of memory that is required. Of course, reduction of the
computational work was also a serious concern, and this led Jacobi (1846) to apply plane rotations
to the matrix in order to force stronger diagonal dominance, giving up sparsity. Jacobi had to solve
many similar systems in the context of eigenvalue computations; his linear systems were rather
small: of order 7.
In this century, simple iterative methods were predominantly applied for solving discretized elliptic

self-adjoint partial di�erential equations, together with a local parameter for accelerating the iteration
process. The �rst and simplest of these methods in Richardson’s method [146]. Actually, this method

2 This remark was removed from the second edition (in 1959); instead Bodewig included a small section on methods
for automatic machines [24, Chapter 9]. The earlier remark was not as puzzling as it may seem now, in view of the very
small memories of the available electronic computers at the time. This made it necessary to store intermediate data on
punched cards. It required a regular ow of the computational process, making it cumbersome to include techniques with
row interchanging.

4 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

was later viewed as a polynomial method and many authors have sought to optimize it by selecting its
parameters so that the iteration polynomials became the Chebyshev polynomials; this was work done
in the period 1950–1960 by Young, Lanczos and others. In the second half of this decade it became
apparent that using the explicit three-term recurrence relation between Chebyshev polynomials, which
led to three-term recurrence iteration methods (rather than the classical methods that are two-term
iterations), were numerically superior in terms of stability [87].
The acceleration of the slightly more di�cult to analyze Gauss–Seidel method led to point succes-

sive overrelaxation techniques introduced simultaneously by Frankel [78] and by Young [203]. It was
shown, for rather simple Dirichlet problems, that a suitably chosen relaxation parameter could lead to
drastic improvements in convergence. Young showed that these improvements could be expected for
a larger class of matrices, characterized by his property A [203]. Successive overrelaxation methods,
and numerous variants, became extremely popular and were the methods of choice in computer codes
for large practical problems, such as nuclear reactor di�usion, oil reservoir modeling and weather
prediction. Although their popularity has been overshadowed later, around after 1980, by more pow-
erful techniques, they are still used in some applications either as the main iterative solution method
or in combination with recent techniques (e.g. as smoothers for multigrid or as preconditioners for
Krylov methods). The successive over-relaxation (SOR) methods made it possible to solve e�ciently
systems within the order of 20,000 unknowns by 1960 [188], and by 1965 systems of the order of
100,000 could be solved in problems related to eigenvalue computations in nuclear di�usion codes.
The success of the SOR methods has led to a rich theory for iterative methods; this could be used
fruitfully for the analysis of later methods as well. In particular, many methods, including SOR,
could be viewed as simple Richardson iterations for speci�c splittings of the matrix of the linear
system.
In 1955, Peaceman and Rachford [141] suggested a splitting that was motivated by the observation

that the matrix for a three-point �nite di�erence stencil for a one-dimensional second-order PDE is
tridiagonal and this system can easily be solved. Their suggestion was to view the �ve-point �nite
di�erence approximation for a two-dimensional problem as the direct sum of two one-dimensional
approximations. This led to an iteration in which alternatingly a tridiagonal associated with one of
the two directions was split o�, and this became popular as the alternating direction iteration (ADI).
With the inclusion of iteration parameters, that steered the inclusion of a diagonal correction to the
iteration matrices, the resulting ADI iterations could be tuned into a very e�ective method. Varga
[188] gives a good overview of the theory for understanding ADI methods. He, as well as Birkho�
[21] mentions that ADI was initially derived as a by-product of numerical methods for parabolic
equations (the correction to the diagonal was motivated by the e�ect of the time derivative in these
methods). Sheldon and Wachspress, in 1957, gave an early proof for the convergence of ADI for
�xed parameters [192]. Wachspress discusses these ADI methods in his book [193] and considers
also other grid-oriented acceleration techniques. One of these techniques exploits approximations
obtained on coarser grids and can be viewed as a primitive predecessor to multigrid.
The �rst half of the century begins also with simple local projection methods, in which one

attempts to solve a set of equations by solving each separate equation by a correction that is small
in some norm. These methods could be used for over- or underdetermined linear systems, such
as those that arise in tomography problems. This has led to the methods of Cimmino [44] and
Kaczmarz [106], which were later identi�ed as instances of Gauss–Jacobi and or Gauss–Seidel for
related systems with AT A or AAT. Modern variants of these methods, under the name of ART and

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 5

SIRT are very popular, for instance in medical and seismic tomography. ART and SIRT can be
related to SOR and Block SOR. Spakman and Nolet [168] report on the solution of 292, 451 by
20,070 systems related to structures of the upper earth mantle, with these methods (and with LSQR).
The second half of the century was marked by the invention (paper published in 1952) of the

conjugate gradient method by Hestenes and Stiefel [101] and the Lanczos algorithm for linear systems
[117]. This started the era of Krylov iterative methods. Initially, these were not viewed as truly
iterative techniques, but rather as direct solution algorithms since they terminated in exact arithmetic
in fewer than n steps, if n is the order of the matrix (see, for instance, Householder’s book where
conjugate gradients is discussed in the chapter on direct methods [102, Chapter 5.7]). Hestenes and
Stiefel already recognized that the method behaves as an iterative method, in the sense that the
norm of the residual often decreases quite regularly, and that this might lead for some systems to
acceptable approximations for the solution within n steps. A little earlier, papers by Lanczos [115]
and by Arnoldi [2] had addressed the issue of transforming a matrix into simpler form for the
purpose of diagonalizing it. These four papers together set the foundations of many methods that
were developed later.
A famous publication by Engeli et al. [69] considered the method as a truly iterative process and

showed that in rounding precision arithmetic, the conjugate gradient method did not terminate in the
expected number of iteration steps (equal to at most the order of the matrix). This was shown for a
matrix of order 64, a discretized biharmonic problem. Convergence occurred only after a few hundred
steps. Notwithstanding this apparent failure, the method appeared later in the famous Wilkinson and
Reinsch collection [202] as a kind of memory-friendly direct technique. It was mentioned that actual
convergence might occur only after m iterations, where m could be 3 up to �ve times the order of the
matrix. Because of this not well-understood behavior in rounded arithmetic, the method did not make
it to the �rst universal linear algebra package LINPACK (mid-1970s). In the early to mid-1960s it
became clear that the convergence of the conjugate gradient method depends on the distribution of
the eigenvalues of the matrix, and not so much on the order of the matrix, as was, for example,
explained in a paper by Kaniel [109]. Daniel [50,51] studied the conjugate gradient method as an
iterative method for the minimization of functionals in (in�nite dimensional) Hilbert spaces. This is a
natural consequence of the observation that conjugate gradients, like other Krylov subspace methods,
requires the action of the matrix as a linear operator and does not exploit the actual representation of
the matrix (that is, the method does not require knowledge of the individual entries of the matrix).
Also, Daniel expressed concerns about the convergence behavior of the method in �nite precision,
and he discussed modi�cations with guaranteed convergence [51, p. 134]. Note also that much of
the convergence theory developed for the conjugate gradient and the Lanczos methods was almost
invariably set in the context of operators on in�nite-dimensional spaces, see, for example [109].
It was Reid [145] who suggested to use the conjugate gradient method again as an iterative

technique, but now for large sparse linear systems arising in the discretization of certain PDEs.
Soon after this, the notion of preconditioning (already proposed in the Hestenes and Stiefel paper)
became quite popular. Thus, the incomplete Choleski decompositions of Meijerink and van der Vorst
[125] led to the ICCG process, which became the de facto iterative solver for SPD systems.
Hence, it took about 25 years for the conjugate gradient method to become the method of choice

for symmetric positive-de�nite matrices (the incomplete Choleski decompositions were shown to
exist for M matrices). A good account of the �rst 25 years of the history of the CG method was
given by Golub and O’Leary [86].

6 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

The unsymmetric variants of the Krylov methods required a similar amount of time to mature.
The late 1960s and early 1970s, saw the roots for such methods. Techniques named ORTHODIR,
ORTHOMIN, FOM, and others, were introduced but in their original formulations, these methods
su�ered from breakdowns and numerical instabilities. The GMRES variant, introduced by Saad and
Schultz [158], was designed to avoid these undesirable features and became the de facto standard
for unsymmetric linear systems. However, it su�ered from the disadvantage of requiring increasing
computational resources for increasing numbers of iterations. Bi-CG, the unsymmetric variant of con-
jugate gradients, did not have these disadvantages. The method, based on the unsymmetric Lanczos
method (1952), was introduced by Fletcher in 1976 [76], but it is mathematically equivalent to a
technique that had already been described in Lanczos’ paper. Bi-CG, however, su�ered from other
practical problems, known as breakdowns of the �rst and second kind, which prevented early success.
Moreover, the occurrence of nonorthogonal transformations led to much suspicion among numerical
analysts. Nevertheless, the method became quite popular in a variant known as CGS (Sonneveld,
1984) [166] which, for virtually equal cost could essentially apply Bi-CG twice, leading often to
a twice as fast convergence, but also amplifying the problems of Bi-CG. In the 1980s, Parlett and
co-authors [140] and later Freund and Nachtigal [81] have shown how to repair the de�ciencies in
the Bi-CG method so that rather reliable software could be constructed. More recently, we have seen
hybrids of the Bi-CG and GMRES approaches, with Bi-CGSTAB [186] as one of the most popular
ones.
Originally, the usage of iterative methods was restricted to systems related to elliptic partial di�er-

ential equations, discretized with �nite di�erence techniques. Such systems came from oil reservoir
engineering, weather forecasting, electronic device modeling, etc. For other problems, for instance
related to various �nite element modeling, practitioners preferred the usage of direct solution tech-
niques, mainly e�cient variants of Gaussian elimination, because of the lack of robustness of iterative
methods for large classes of matrices. Until the end of the 1980s almost none of the big commercial
packages for �nite element problems included iterative solution techniques. Simon [164] presented
results, obtained for matrices of the order of 55,000, for direct solution techniques. On the then
fastest supercomputers, this required in the order of a few minutes of computing time. He claimed
that direct sparse solvers would remain the method of choice for irregularly structured problems.
Although this is certainly true if the structure of the matrix allows for an e�cient elimination pro-
cess, it became clear that for many PDE-related problems, the complexity of the elimination process
increased too much to make realistic three-dimensional modeling feasible. Irregularly structured �-
nite element problems of order 1,000,000, as foreseen by Simon, may be solved by direct methods
– given a large enough computer (memory wise) but at tremendous cost and di�culty. However,
some of them can be solved with iterative techniques, if an adequate preconditioning can be con-
structed. In the last decade of this century, much e�ort was devoted to the identi�cation of e�ective
preconditioners for classes of matrices. For instance, Pomerell [142] in 1994 reports on successful
application of preconditioned Krylov methods for very ill-conditioned unstructured �nite element
systems of order up to 210,000 that arise in semiconductor device modeling.
While using iterative methods still requires know-how, skill, and insight, it can be said that

enormous progress has been made for their integration in real-life applications. Still, linear systems
arising from many relevant problems, for instance large electric and electronic circuits, are not easy
to solve in an e�cient and reliable manner by iterative methods. Steady progress is being made but
the �eld as a whole can still be viewed as being in its infancy.

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 7

3. Relaxation-based methods

The Gauss–Seidel iteration was the starting point for the successive over-relaxation methods which
dominated much of the literature on iterative methods for a big part of the second half of this century.
The method was developed in the 19th century, originally by Gauss in the mid-1820s and then later
by Seidel in 1874 (see references in [102]). In fact, according to Varga [188], the earliest mention
on iterative methods is by Gauss (1823).
Indeed, on December 26, 1823, Gauss writes a letter to Gerling, in which he describes an iterative

technique for the accurate computation of angles occurring in geodesy [84, p. 278]. The corrections
for the four angles in a quadrangle, determined by four church towers, were computed from a singular
linear systems of four equations with four unknowns (the singularity comes from the observation that
the four angles sum up to 360◦). The technique that Gauss describes is what we now know as the
Gauss–Seidel algorithm. The order of processing of the equations was determined by the unknown
that helped to reduce the residual most. Gauss recognized that the singularity of the system led to
convergence to the solution modulo a vector in the null space, for which he could easily make a
correction. The three pages of his letter are full of clever tricks. He concludes by recommending
the new method to Gerling, arguing that the method is self correcting, and that one can easily
determine how far to go and then ends his letter with the remark that the computations were a
pleasant entertainment for him. He said that one could do this even half asleep, or one could think
of other things during the computations. In view of this remark it may hardly be a surprise that the
method became so popular in the era of electronic computing.
The method as it was developed in the 19th century was a relaxation technique, in which relaxation

was done by “hand”. It was therefore natural to eliminate the largest components, see for example
[55,118]. This method is referred to as Nekrasov’s method in the Russian literature [130]. Referring
to the more modern method in which relaxation was done in a cyclic manner, Forsythe is quoted
as having stated that “the Gauss–Seidel method was not known to Gauss and not recommended by
Seidel”, see [102, p. 115].
However, the blossoming of overrelaxation techniques seems to have been initiated by the Ph.D.

work of David Young [203]. Young introduced important notions such as consistent ordering and
property A, which he used for the formulation of an elegant theory for the convergence of these
methods. Generalizations of Young’s results to other relevant classes of matrices were due to Varga,
who published his book on Matrix Iterative Analysis in 1962. For decades to come this book was the
standard text for iterative methods for linear systems. It covered important notions such as regular
splittings, a rather complete theory on Stieltjes and M-matrices, and a treatment of semi-iterative
methods, including the Chebyshev semi-iteration method. The latter method, analyzed by Golub and
Varga [87], also became more widely known, especially in the period when inner products were
relatively expensive.
The accelerated Gauss–Seidel methods have motivated important developments in the theory of

matrix linear algebra. In particular, relevant properties for M -matrices, introduced by Ostrowski
[135], were uncovered and convergence results for so-called regular splittings, introduced by Varga
[189] were established. A cornerstone in the convergence theory was the theorem of Stein–Rosenberg
(1948) [169] which proved relations between the asymptotic rates of convergence for the successive
overrelaxation methods, including the Gauss–Seidel method, and the Gauss–Jacobi method. The
concept of irreducibility of a matrix, a natural property for grid-oriented problems, helped to extend

8 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

results for strongly diagonally dominant matrices to matrices for which the strict diagonal dominance
inequality is required to hold only for one single equation at least. Another important notion is the
concept of cyclic matrices: an irreducible matrix with k eigenvalues of modulus �(A) is said to
be of index k. Varga [188] gives a good overview of the relevant theory and the implications of
this concept for iterative methods. It has a close relationship with Young’s property A [188, p. 99],
and provides the basis for the convergence theory of the SOR methods. Su�cient conditions for
the convergence of the SOR methods were given by theorems of Ostrowski [136] and Reich [144].
Lower bounds for the spectral radius of the SOR iteration matrix were derived by Kahan [107]. This
together provided the basis for a theory for iterative methods, published in Varga’s book [188] from
which many new methods emerged. Later, in the 1970s major part of this theory served well in the
development of preconditioners for Krylov methods.
The following is a quotation from Varga’s book (page 1) “As an example of the magnitude of

problems that have been successfully solved on digital computers by cyclic iterative methods, the
Bettis Atomic Power laboratory of the Westinghouse Electric Corporation had in daily use in 1960
a two-dimensional program which would treat as a special case, Laplacean-type matrix equations of
order 20,000”. So the state of the art in 1960 was a 20; 000× 20; 000 Laplace equation.
In the late 1960s and early 1970s a number of methods appeared in which the order of re-

laxation was not prescribed or even deterministic. These were appropriately termed “chaotic” or
“asynchronous” relaxations. It was established that if a variable is relaxed an in�nite number of
times, the global method would always converge for any order in which the relaxation takes place.
A few of the main contributions were by Chazan and Miranker [41], Miellou [128], Robert [147]
and Robert et al. [148]. These methods were motivated by parallelism and were essentially ahead
of their time for this reason.

4. Richardson and projection methods

Another line of development started with Richardson’s method [146].

xk+1 = xk + !rk = (I − !A)xk + !b;
which can be viewed as a straightforward iteration associated with the splitting A = K − R, with
K = (1=!)I , R= (1=!)I − A. Here rk is the residual vector of the current iterate:

rk = b− Axk:
For the residual at the (k + 1)th step, one obtains

rk+1 = (I − !A)k+1r0 = Pk+1(A)r0;
where Pk+1(A) is a k + 1 degree polynomial in A, with Pk+1(t) = (1 − t)k+1. It is easy to see
that for symmetric positive-de�nite matrices the process will converge for ! in the open interval
0¡!¡ 2=�max where �max is the largest eigenvalue of A. In addition the best ! is known to be
2=(�min + �max), see, e.g., [188,157] for details.
The original Richardson iteration is readily generalized by taking a di�erent ! = !k for each

iteration, which leads to the generalized Richardson iteration

xk+1 = xk + !krk : (1)

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 9

The sequence of !ks can be selected in a number of di�erent ways. Note that the residual vector
after step k + 1 is given by

rk+1 = (I − !kA)(I − !k−1A) · · · (I − !0A)r0; (2)

which shows that we can obtain any desired polynomial Pk+1 with the property that Pk+1(0) = 1,
by selecting its roots as the iteration parameters in (1). This process is referred to as polynomial
acceleration of the simple splitting for A that we gave above. It was studied by, among others,
Young [204], Shortley [162], and Lanczos [116]. By 1962 it was not considered competitive, since,
as quoted from [188, p. 159]: “Richardson’s method has the disadvantage of being numerically
unstable”.
In fact, the Chebyshev semi-iteration method [87] can, in exact arithmetic, be obtained from these

polynomial accelerated methods, by choosing the acceleration parameters in successive Richardson
iterations properly, but this approach is unstable. In the Chebyshev semi-iteration method one exploits
the three term recurrence relation for Chebyshev polynomials, which leads to a stable three term
recurrence iterative method. The main problem with these Chebyshev methods is that one needs fairly
accurate information about extremal eigenvalues, since these de�ne the interval for the Chebyshev
polynomials.
The method of steepest descent which is attributed to Cauchy (1847) is also of the form (1).

Kantorovitch later considered the method in a 1945 paper [110] that appeared in the Russian Doklady
Akademii Nauk SSSR. In this case, the scalar !k is selected so as to minimize the quadratic form

J (x) = 1
2(Ax; x)− (b; x)

in the direction of rk .
In the 1950s and 1960s other matrix splittings were suggested as basis for iteration methods. We

mentioned before one such splitting, namely the ADI method of Peaceman and Rachford [141]. In
1968, Stone [171] proposed the strongly implicit procedure, which is, in fact, a simple Richardson
iteration with a series of splittings of the matrix. The idea, for a �ve-point �nite di�erence stencil,
is to factor the matrix in a lower triangular matrix and an upper triangular matrix each with a
three-point stencil (as in incomplete LU with no �ll-in). The factors are chosen in such a way that
the �ll-in is spread over the seven-point stencil of the product matrix. This is di�erent from the
Kendall–Dupont–Rachford [60] decomposition, where the �ll-in is compensated by a correction to
the diagonal in such a way that the sum of the elements of the error matrix equals zero for each
row. Convergence in the SIP method is achieved by a set of iteration parameters (up to 18) for
di�erent distributions of the elements in the error matrix. The choice of the parameters is motivated
by a Fourier analysis. Each value of the iteration parameter kills some components in the error (but
may lead to increase in other components). Successful application of SIP requires to apply a special
order of the iteration parameters, and for each value the decomposition has to be carried out from
top to bottom and next from bottom to top. The SIP method gained quite some popularity in oil
reservoir simulation and groundwater simulation problems, but its usage seem to have declined in
favor of the Krylov methods. The Dupont–Kendall–Rachford splitting was proposed to be used in
combination with Chebyshev polynomial acceleration.
In 1937 and 1938 two papers were published on methods that can be termed ‘row-projection

methods’ (or column projection methods). These methods proposed by Kaczmarz [106] and Cimmino

10 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

[44] were also based on one-dimensional corrections:

xk+1 = xk + !kai; :; (3)

where ai; :=ATei is the ith row vector of A. These rows are cycled through from 1 to n. Here !k is
selected so that the ith component of rk+1 becomes zero. Because rk+1 = rk −!kAATei, it is easy to
see that this method is mathematically equivalent to the Gauss–Seidel iteration applied to the normal
equations

AATy = b; x = ATy:

The method proposed by Cimmino was the Jacobi equivalent of this approach. It is also possible to
de�ne similarly a Gauss–Seidel approach for the normal equations

ATAx = b

as was noted by Bj�orck and Elfving [22], and this would correspond to taking directions dk along
the columns of the matrix. This class of methods regained interest in the 1970s and 1980s with the
work of Bj�orck and Elfving [22], Tanabe [174], and later Kamath and Sameh [108] and Bramley
and Sameh [25].
However, one-dimensional projections methods of a di�erent type, based on very general de�ni-

tions of norms were very popular in the later 1950s. Here, we mention the work of Gastinel among
others. Gastinel’s approach [83] consisted of de�ning generating vectors for norms. Consider an
arbitrary vector norm � (for example the norm ‖:‖1). Gastinel de�nes the vector v which realizes
the norm of a vector r in the sense

(v; r) = �(r):

For example, for the 1-norm, the components of v can be de�ned as vi=sign(eTi r), where r= b−Ax
is the current residual vector. This vector v is chosen to do an orthogonal projection step. The
method can be shown to converge for any nonsingular matrix.

5. Second-order and polynomial acceleration

An important observation regarding all acceleration methods of the form (1) is that their resid-
uals take the form (2), so there is room for improvement to the scheme if successive iterates are
considered.
In 1950 Frankel [78] proposed an acceleration method which used a three-term recurrence of the

form

xk+1 = xk + �k�k ; �k = rk − �k�k−1:
This “second-order Richardson process” is initialized by �−1 = r−1 = 0. Frankel’s method [78] uses
constant coe�cients and results in a residual polynomial which is a combination of Chebyshev
polynomials of the �rst and second kind.
Naturally Chebyshev polynomials should give rise to optimal-like behavior and a number of

authors discovered, rediscovered, or enhanced the method at various times. The paper by Flanders
and Shortley [75] showed how to use Chebyshev polynomials for eigenvalue calculations. Later

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 11

Shortley [162] adapted this method for the solution of linear systems. In the Russian literature,
Gavurin [85] also introduced the idea independently in 1950. In 1954, Young [204] proposed a
method which amounted to compounding (or restarted) Chebyshev iterations. However the method
was in the form (1) – which is unstable. Young gave some remedies to the process which consisted
of reordering the roots !k before applying the polynomial.
In the particular case where A is symmetric positive de�nite the eigenvalues are located in an

interval [�min; �max]. The best residual polynomial 1 − �s(�) in this case is a shifted and scaled
Chebyshev polynomial of the �rst kind, and its three-term recurrence results in a simple three-term
recurrence for the approximate solution, see, e.g., [157].
Using a di�erent approach altogether, Lanczos in a 1952 paper [116] discusses the use of certain

polynomials that are optimal in a least-squares sense. This paper, which was by and large overlooked
by researchers, made a number of contributions. Its focus is on symmetric positive-de�nite matrices
– for general matrices the author resorts to the normal equations. One of the main ideas proposed
is to consider the problem of approximating the delta function in the interval [0; 1] which contains
all eigenvalues (after the matrix is scaled by its largest eigenvalue). He then transforms the variable
using the change of variables x = (1 − cos �)=2. Now a least-squares approximation to the delta
function is sought in the trigonometric basis. This leads to the so-called Dirichlet kernel whose
solution is well known

Pk(�) =
sin(k + 1

2)�
(k + 1

2)sin �

=
1

k + 1
2

[1
2 + cos �+ cos 2�+ · · ·+ cos k�

]
:

To avoid the high oscillations around discontinuities, the so-called Gibbs phenomenon, Lanczos
suggested a strategy due to Fejer.
Later, a remarkable paper by Stiefel gave a fairly complete view on similar ideas revolving around

least-squares polynomials [170]. The above paper by Lanczos was not referenced by Stiefel. It is
only in 1983 that the idea of using least-squares polynomials resurfaced in force again, motivated
essentially by parallelism and vector processing. Earlier in 1979 a paper by Dubois et al. [58]
suggested using simple Neumann series expansion of the matrix. In 1976 Axelsson addressed the
problem of computing good polynomials when the spectrum is located in two intervals, and he was
followed later in 1980 by deBoor and Rice [54] who showed how to compute the best min–max
polynomial in this situation and the more general situation of multiple intervals. The least-squares
alternative considered by Johnson et al. in [104] was for a single interval, assuming that A is
symmetric positive de�nite. In other words, we need to solve

Find s ∈ �k that minimizes:

‖1− �s(�)‖w; (4)

where w is some weight function on the interval (�min; �max), and ‖:‖w is the L2-norm associated
with the corresponding inner product. Because the distribution of eigenvalues matters more than
condition numbers for the preconditioned conjugate gradient method, the authors observed in [104]

12 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

that least-squares polynomials tend to perform better than those based on the uniform norm, because
they result in a better clustering of the spectrum. Moreover, Lanczos [116] and Rutishauser [150]
already noted that the eigenvalue estimates need not be accurate: in fact, it su�ces to use the simple
bounds that are provided by Gershgorin’s theorem. Further experiments in [151] did con�rm that in
some cases the least-squares polynomial over the Gershgorin interval, may perform as well as the
in�nity norm polynomial over [�min; �max]. Note that this is only a minor advantage of least-squares
polynomials since e�ective adaptive procedures exist to compute �min; �max; see [98] for symmetric
problems and [123,66] for nonsymmetric problems. We should add that the observations made in
[104,151], and the simplicity of a method that bypasses eigenvalue estimates, have made least-squares
polynomials more popular for polynomial preconditionings.
In the more general nonsymmetric case the interval (or union of intervals) that contains the spec-

trum is to be replaced by a more complex continuum E in C, which ideally would contain the
eigenvalues of the matrix A. Several choices have been used for E. The �rst idea, proposed by
Manteu�el in 1977–1978 [122,123], is to use an ellipse E that encloses an approximate convex hull
of the spectrum, or more precisely, the �eld of values of A. Then the shifted and scaled Chebyshev
polynomials are optimal or nearly optimal and the use of these polynomials leads again to an attrac-
tive three-term recurrence. He exploited the fact that an unaccurate guess of extremal eigenvalues
leads to either divergence or very slow convergence, in which the eigenvectors corresponding to the
unidenti�ed extremal eigenvalues play a dominant role. After a few iterations these directions can
be identi�ed and the parameters for the Chebyshev iteration polynomials can be adjusted. Although
superseded by the parameter-free Krylov iteration methods, the Chebyshev methods are still of in-
terest on computer platforms where the inner products are relatively expensive. They can be used
in combination with Krylov methods, either as polynomial-type preconditioners in order to damp
dominating parts of the spectrum, or to continue the iteration with the eigenvalue guesses that can
be obtained from the Krylov methods (the Ritz values).
A second alternative is to use a polygon H that contains �(A) [160,152]. A notable advantage of

using polygons is that they may better represent the shape of an arbitrary spectrum. The polynomial
is not explicitly known but it may be computed by a Remez algorithm. As in the symmetric case
an alternative is to use some weighted L2-norm instead of the in�nity norm. Saylor and Smolarski
used a discrete norm on the polygon [160]. Saad [152] used an L2-norm associated with Chebyshev
weights on the edges of the polygon and expressed the best polynomial as a linear combination of
Chebyshev polynomials associated with the ellipse of smallest area containing H .
Yet another attractive possibility, with polygons instead of ellipses, proposed by Fischer and

Reichel [74] is to avoid the problem of best approximation altogether and interpolate the function
1=z with a polynomial at the Fejer points of E, i.e., the points e2ji�=k , j=0; : : : ; k that are conformally
mapped from the unit circle to H . This is known to be an asymptotically optimal process. There are
numerous publications related to this approach and the use of Faber polynomials; see the references
in [74].

6. Krylov subspace methods: the �rst period

In the early 1950s a number of new methods appeared that dramatically changed the landscape of
iterative methods. In separate contributions Lanczos [117] and Hestenes and Stiefel [101] propose

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 13

in e�ect di�erent versions of what is now known as the conjugate gradient method. Amazingly,
Hestenes and Stiefel actually discovered the same method independently. 3 The method proposed
by Lanczos is, for symmetric positive-de�nite matrices, mathematically equivalent to the conjugate
gradient method, but it was described for the general case of nonsymmetric matrices.
There is no doubt that the origin of this class of methods was deeply rooted in approximation

theory and, in particular in orthogonal polynomials. The ideas behind “gradient methods” as this
class of methods was referred to, are based on some kind of global minimization. For instance,
for positive-de�nite symmetric A, the CG method minimizes the so-called A-norm: ‖xi − x‖2A ≡
(xi − x; A(xi − x)), for xi that are in the Krylov subspace Ki(A; r0) ≡ {r0; : : : Ai−1r0}. For some
PDE problems this norm is known as the energy norm, which has physical relevance. Another
interpretation of the gradient methods is that the residual is orthogonal to the space of previously
generated residuals, or some related space. Both interpretations are useful for the formulation of
methods as well as for the analysis. A very useful consequence from the Krylov subspace basis
is that xi can be expressed as a polynomial in A of degree i − 1, acting on r0. The minimization
interpretation makes it possible to bound the error for CG by replacing the “CG-polynomial” by
easier to analyze polynomials, for instance a Chebyshev polynomial. This leads to the well-known
upper bound [109,50,47,4]

‖xi − x‖A62
(√

� − 1√
� + 1

)i
‖x0 − x‖A (5)

for symmetric positive-de�nite matrices, in which � = �max(A)=�min(A). This upper bound describes
well the convergence behavior for matrices A of which the eigenvalues are distributed rather homo-
geneously. For more uneven distributions one can obtain bounds by making more subtle choices for
the approximating polynomials, for instance, products of suitably chosen Chebyshev polynomials [4].
These choices do not reveal the superlinear convergence that is often observed for CG and also for
other Krylov subspace methods. The notion of superlinear convergence refers to the observation that
the convergence of CG accelerates in the course of the process. Proofs for superlinear convergence
had been given already in the early 1950s [111,99], but these did not reveal that the superlinear
behavior may take place in early phases of the iteration process; they were qualitative rather than
quantitative. Concus et al. [47] related this convergence behavior to the Krylov subspace approx-
imations, by stating that “the extremal eigenvalues are approximated especially well (by the Ritz
values corresponding to the Krylov subspace) as CG proceeds, the iteration then behaving as if the
corresponding eigenvectors are not present (thus leading to a smaller “e�ective” condition number
in (5), which might then explain the faster convergence”. In 1986, this was proven in a quantitative

3 The anecdote told at the recent “Conference on preconditioning methods for sparse matrix problems in indus-
trial applications” held in Minneapolis, by Emer. Prof. Marvin Stein, the post-doc who programmed the algorithm for
M. Hestenes the �rst time, is that Stiefel was visiting UCLA at the occasion of a conference in 1951. Hestenes, then a
faculty member at UCLA, o�ered to demonstrate this e�ective new method to Stiefel, in the evening after dinner. Stiefel
was impressed by the algorithm. After seeing the deck of cards he discovered that this was the same method as the one
he had developed independently in Zurich. Stiefel also had an assistant, by the name of Hochstrasser, who programmed
the method.

14 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

way [179] and it was shown that the relevant eigenvalues needed to be approximated only in a
modest degree by Ritz values, for an acceleration to set in.
As was mentioned in Section 2, the actual behavior of CG, in �nite precision arithmetic, was

initially not quite well understood. Several attempts to analyze this have been made, but it was in
the early 1990s that this problem was satisfactorily explained. Greenbaum and Strako�s showed that
CG in �nite precision could be regarded as the exact process applied to an expanded system that
is closely related to the given system, and the matrix of the expanded system has almost multiple
exterior eigenvalues when the orthogonality in the process is lost. This helps explain why �nite
precision leads to a delay in the iteration process, but does not prevent the algorithm to deliver
accurate approximate solutions (for symmetric positive-de�nite systems). For details, see [89,172],
and [88, Chapter 4].
Surprisingly, it took some time before the ideas of the CG were generalized to other classes of

matrices. Paige and Saunders [137], in 1975, showed that the underlying Lanczos method, could
also be used for e�cient implementations of related approaches for symmetric inde�nite matrices.
In MINRES, the norm of the residual ‖Axi − b‖2 is minimized, and this required a more careful
approach in order to avoid breakdowns. Conjugate gradient can be interpreted as a process in which
A is projected to the Krylov subspace (in fact, the Lanczos approach), which leads to a tridiagonal
matrix T of low dimension. The actual approximation xi is determined by solving a small linear
system with T , and this is done with LU without pivoting. This leads to the elegant short recurrences
in CG. For inde�nite matrices, the LU factorization could lead to numerical di�culties.
Paige and Saunders circumvented this by employing a QR decomposition of T , which leads again

to regular short recurrences, making the MINRES method attractive because of its minimal overhead
and its economy of storage. It may come as a small wonder that one can also minimize ‖xi − x‖2,
without knowledge of the solution x. Paige and Saunders accomplished this in their SYMMLQ,
by restricting xi to AKi(A; r0). The advantage of SYMMLQ over MINRES appears to be in less
sensitivity to ill-conditioning of A, the price one has to pay is that SYMMLQ often takes more
steps. A slight disadvantage is also that although the method minimizes the norm of the error, the
value of this norm is not known and the only practical information one has is the norm of the
residual.
In 1976, Concus and Golub [45] and Widlund [200] came up with the idea of splitting a matrix

into its symmetric and nonsymmetric parts and using the symmetric part as a preconditioner. With the
proper inner product, the resulting algorithm corresponds to an iteration with a skew-Hermitian matrix
– and therefore a three-term recurrence – CG-like – algorithm (called CGW) can be formulated.
The Bi-CG method, proposed in 1976 by Fletcher [76], is actually an implementation of the

two-sided Lanczos process, which was suggested by Lanczos in 1952. In Bi-CG, the residual is
constructed to be orthogonal to a Krylov subspace generated with AT and some vector s0. Initially,
many numerical analysts were very skeptical of the Bi-CG, mainly because of the various breakdown
situations that may occur. Also, Bi-CG did not minimize any norm of interest and the convergence
behavior can be very irregular. The fact that the underlying two-sided Lanczos process works with
nonorthogonal projections led to serious doubts on the usefulness of the method. A good example
of this concern is in [201, pp. 394, 395], where the two-sided Lanczos method (viewed as a �nite
method for reducing a nonsymmetric matrix to tridiagonal form) is commented on: “: : : we may
well have to pay a heavy price in terms of numerical instability: : :” and “: : : it is di�cult to think
of any reason why we should use Lanczos’ method in preference of Householder’s”. Wilkinson’s

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 15

analysis is, of course, still valid. However in the context of solving large sparse linear systems, we
have learned to make the two-sided Lanczos method and the Bi-CG into useful solution techniques
thanks to a number of enhancements and a better understanding of these processes.

7. Krylov subspace methods: the second period

Of course, the success of Krylov methods for symmetric matrices has inspired the construction
of similar methods for unsymmetric matrices. The classical Lanczos method leads to a tridiagonal
system, the projection of A with respect to the Krylov subspace. Factorization of this tridiagonal
matrix as the product of a lower and an upper bidiagonal matrix, leads to the coupled two-term
recurrences as in Bi-CG. As said before, Bi-CG su�ered from several breakdown conditions. One
breakdown, associated with the inde�niteness of the implicitly generated projected tridiagonal sys-
tem, can be cured by admitting 2 × 2 blocks along the diagonal of one of the factors. This re-
quires the combination of two successive iteration steps, which explains the name Composite step
Bi-CG [12]. A similar idea had been used much earlier by Luenberger, in order to make the con-
jugate gradient algorithm robust for symmetric-inde�nite matrices [119]. The other breakdown, a
more serious one, arises when the bi-orthogonalization process leads to a zero inner product of
the two new vectors in the Krylov subspace and its adjoint space (that is the Krylov subspace,
generated in the two-sided Lanczos process, with AT). Likewise, a near breakdown should also
be avoided since it may lead to inaccuracies in the approximated solution. This breakdown can
be cured with a look-ahead strategy, �rst proposed by Parlett et al. [140]. The idea is to ex-
pand the Krylov subspaces by two vectors simultaneously, and to make the new vectors block
bi-orthogonal with respect to the similarly expanded adjoint space. Parlett et al. considered only
look-aheads of length two, but a few years later, around 1990, the idea was picked up almost
simultaneously by a number of other researchers who generalized it to look-aheads of arbitrary
length. The most well known of these approaches were those published by Gutknecht and co-authors
[95], Joubert [105], Parlett [139], Freund and Nachtigal [80], and Brezinski and co-authors [31,32].
In the latter work, the look-ahead strategy was related to the theory of orthogonal polynomials
and referred to as recursive zoom technique. The connection between orthogonal polynomials and
the Lanczos algorithms (and also the �-algorithm) is discussed in [28]. This has proved to be
very useful for getting more insight in the Lanczos and two-sided Lanczos algorithms. It also has
helped to construct breakdown free variants of the hybrid Bi-CG algorithms, for details on this see
[29].
Curing the breakdowns in Bi-CG was important, but there were other aspects as well that motivated

further research. The convergence behavior of Bi-CG is usually quite irregular, in the sense that the
norms of successive residuals can behave erratically. This motivated Freund and Nachtigal [80]
to propose an algorithm in which the projected overdetermined tridiagonal system is solved in a
least-squares sense. Since the basis vectors for the Krylov subspace, generated by the two-sided
Lanczos process, are in general not orthogonal, this approach does not lead to a minimum residual
approximate solution (as with MINRES), and this inspired for the name quasi-minimum residual
(QMR). The full QMR method includes a look-ahead strategy, but it became also popular without
it, since the �rst breakdown condition is cured by the least-squares solution of the tridiagonal system.
For a template for this simpli�ed QMR, see [13].

16 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

The other clear disadvantage in the basic two-sided Lanczos method was the necessity to construct
two Krylov subspaces: Ki(A; r0); and Ki(AT; s0). Of the two vector bases generated only one is
exploited for the solution, the other can be regarded as an auxiliary set used to generate the inner
products needed to generate the bi-orthogonal basis. Sonneveld [166] made the clever observation
that the operations with AT could be reformulated to operations with A; and these operations can
be used for a further reduction of the residual norm. Whereas the previous approaches, look-ahead,
composite-step, and QMR, help to cure de�ciencies of the Lanczos method, they do not lead to
essential faster convergence. However, Sonneveld’s trick can lead to much faster convergence, for
practically the same costs per iteration. The idea is based on the observation that the residual ri
can be expressed formally as ri = pi(A)r0; with pi a polynomial of degree i. Likewise, the shadow
residual in the adjoint space can be expressed as si=pi(AT)s0. The iteration coe�cients for Bi-CG are
computed from inner-products such as (ri; si); and such an inner product can be rewritten formally,
as (pi(A)r0; pi(AT)s0) = (p2i (A)r0; s0). This observation leads to an algorithm that generates x̃i ∈
K2i(A; r0); for which the corresponding residual r̃i can be expressed as r̃i=p2i (A)r0. For the situation
where Bi-CG delivers a residual ri (=pi(A)r0) that is small compared with r0, one may conclude
that pi(A) has transformed r0 into a small vector, and hopefully, if we apply pi(A) twice, then this
leads to a double reduction. Indeed, the resulting method, conjugate gradients squared (CGS), often
leads to a convergence about twice as fast as Bi-CG. This algorithm is also referred to as Bi-CGS,
which is actually more appropriate. The downside of the squaring of pi is that the convergence of
CGS is usually much more irregular than for Bi-CG. This can lead to serious accuracy problems in
�nite precision arithmetic; we will come back to this aspect later.
Soon after the discovery of the CGS method, it was recognized that the operations with AT could

also be transformed to other polynomials in A. The �rst idea in this direction was Bi-CGSTAB [186],
in which Bi-CG was combined with minimum residual steps of degree one. This led to a convergence
that is rather smooth as well as faster than Bi-CG and it gave rise to many other hybrids. Gutknecht
suggested to combine 2i Bi-CG steps with i times a minimum residual method of degree 2. This
was generalized by Sleijpen and Fokkema [165] to Bi-CGSTAB(‘). The same principles can also
be applied to QMR, and the analogue of CGS led to TFQMR [79]. The analogue of Bi-CGSTAB
is QMRSTAB, suggested by Chan et al. [38]. Zhang [207] describes more general product methods
based on Bi-CG. His framework includes the previously described methods, but also admits hybrid
variants in which one can shift from CGS to Bi-CGSTAB at some iteration step. This principle
admits further possibilities for reducing the residual in some norm. An interesting variant of CGS
has been suggested by Fokkema et al. [77]. Here, the polynomial p2i that generates the residuals,
is replaced by the product pip̃i, where p̃i is the polynomial that corresponds to a ‘nearby’ Bi-CG
process. The principle can be used to help reduce severe irregularities in the convergence, while the
quadratically reduced errors in important eigenvector directions are still realized. According to the
authors, this is an advantage in the context of iterative solutions of Jacobian systems in a Newton
process for nonlinear systems of equations. Similar ideas were also considered by Brezinski and
Redivo Zaglia [30]. Their approach is to compute approximations by two di�erent methods and to
combine the two results in an e�ort to get a better approximation. For some methods, the combined
method can be executed at reduced costs, that is some of the matrix vector products can be used
for both methods. For a detailed overview of this approach see [29, Chapter 5].
A di�erent direction is to try to minimize the norm of the residual over all vectors in the

Krylov subspace, similar to the MINRES approach for symmetric A. A number of methods were

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 17

proposed that achieved this goal, among them ORTHODIR [103], GCR [62], ORTHOMIN [190], and
Axelsson’s method [5], but many of these methods su�ered from some numerical instability. An early
specimen of this approach was suggested by Khabaza in 1963 [112]. He proposed a method which,
in exact arithmetic, leads to the same iterands as GMRES(m). However, he used the de�ning vec-
tors r0; Ar0; : : : ; Am−1r0 as the basis vectors, without further orthogonalization. The observation that
Khabaza considered matrices with a condition number of 200 as being ill-conditioned, may serve as
an illustration for the numerical problems that were encountered.
GMRES [158] developed in 1986; was mathematically equivalent to these techniques but soon

it came to be preferred because of its better numerical behavior and its lower cost, both in terms
of memory and arithmetic. An advantage of GMRES is its guarantee to compute the approximate
solution with minimum residual norm, but the price to be paid is that the overhead costs per iteration,
that is the computations other than the matrix vector product, increase linearly with the iteration
count. Also, all basis vectors for the Krylov subspace have to be stored. The obvious solution
seems to be to restart after a convenient number of iterations, before the costs for computation
and storage become prohibitive. This is known as restarted GMRES, or simply GMRES(m). The
disadvantage of this approach is that it decreases the robustness of the method since convergence
is no longer guaranteed. Moreover, by restarting the convergence behavior may become very slow
and one runs the risk to miss the faster convergence that might have occurred for a larger value
of m. For that reason, researchers have tried to �nd ways to reduce the number of iteration steps,
other than by preconditioning, or even in addition to preconditioning. One idea is to try to improve
the preconditioner with updates from the Krylov subspace. This has been suggested �rst by Eirola
and Nevanlinna [61]. Their approach leads to iterative methods that are related to Broyden’s method
[35], which is a Newton-type method. For speci�c but obvious choices, one recovers a method that
is equivalent to GMRES. The Broyden method can be obtained from this update-approach if we
do not restrict ourselves to Krylov subspaces. See [191] for a discussion on the relation of these
methods.
The idea of preconditioning is to approximate A−1p for vectors p generated by the iteration

method. One could do this in a di�erent way for every iteration step, for instance, by incorporating
information from previous iteration steps in the preconditioner, or by approximating A−1p by some
iteration method again. The updated preconditioners cannot be applied immediately to GMRES, since
the preconditioned operator now changes from step to step, and we are not forming a regular Krylov
subspace. However, we can still minimize the residual over the new subspace. The idea of variable
preconditioning has been exploited in this sense, by di�erent authors. Axelsson and Vassilevski [11]
have proposed a Generalized Conjugate Gradient method with variable preconditioning, Saad [155]
has proposed a scheme very similar to GMRES, called Flexible GMRES (FGMRES), and Van
der Vorst and Vuik [187] have published a scheme called GMRESR. FGMRES has received more
attention, possibly because it is fairly easy to implement: only the update directions in GMRES have
to be preconditioned, and each update may be preconditioned di�erently. This means that only one
line in the GMRES algorithm has to be adapted. The price to be paid is that the method is no longer
robust; it may break down. GMRESR and the generalized conjugate gradient method produce, in
exact arithmetic, the same results, but GMRESR is numerically more stable and more e�cient. In
GMRESR the residual vectors are preconditioned and if this gives a further reduction then GMRESR
does not breakdown. This gives slightly more control over the method in comparison with FGMRES.
In most cases though the results are about the same.

18 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

Other methods that proved to be very useful include the LSQR method, suggested in 1982 by
Paige and Saunders [138]. LSQR is a clever implementation of the Lanczos method that leads to
a factorization of the tridiagonal reduced matrix for ATA. This is often the method of choice for
overdetermined or underdetermined systems; it minimizes the norm of the residual over the Krylov
subspace generated with ATA. For square systems the method is not so e�ective, unless one �nds
a good preconditioner, since the convergence behavior of LSQR is dictated by the square of the
condition number of the system involved. The condition number, however, does not always give a
good indication for the behavior of Krylov methods; Nachtigal et al. describe examples of matrices
for which the singular values may predict the convergence behavior (much) better [129]. In extreme
cases, GMRES with A may converge much slower than LSQR, or in fact, any method based on
the normal equations. LSQR may also be viewed, in exact arithmetic, as CG applied to the normal
equations. Applying CG in this fashion, however, will result in poorer stability. Craig’s method
[138] is a Krylov method which also works with ATA and in which the error ‖xi−x‖2 is minimized,
without computing the value of this norm.
Finally, we mention that Weiss, in the early 1990s, gave generalizations of SYMMLQ for unsym-

metric matrices. These methods are known as GMERR methods [196,198]. It may have an advantage
to have a method in which the norm of the error is minimized, but since this is done over a di�erent
subspace, namely ATKi(AT; r0); it is not clear yet when this leads to advantages over, for example,
GMRES, in terms of e�ciency or stability.
Convergence results for Krylov methods in the non-Hermitian case were established follow-

ing essentially similar ideas as for the CG algorithm, see [157, Chapter 6.11]; [88, Chapter 3]
for overviews. However, this simple analysis which was given, for example, for GMRES [158]
was soon viewed as insu�cient. The traditional bounds on the norm of the error or the residual
are expressed in terms of eigenvalues of A and the condition number of the eigenvector ma-
trix. For highly nonnormal matrices this does not always lead to informative results. Embree,
in his thesis [67], describes situations for which the �eld of values of A; or its pseudospec-
tra, are used for understanding the observed convergence behavior of GMRES (see also [88,
Chapter 3]).
Many attempts to get a better understanding of the behavior of GMRES were made. Work by

Brown [34] and later by Cullum and Greenbaum [49] established relations between certain methods
(GMRES and FOM, and then BiCG and QMR). Greenbaum and Strakos [90] showed a number
of interesting properties of GMRES – in particular they characterize all linear systems that have
the same GMRES convergence behavior. In a later paper, Greenbaum et al. [91] established that
essentially any convergence behavior is possible for the same spectrum.
One fundamental question that was asked in the early 1980s was whether a short recurrence

iterative process could be found that was also optimal for non-Hermitian matrices. Indeed, it was
known how to generate short-term recurrence algorithms for nonsymmetric matrices (e.g. the Bi-CG)
but these do not verify obvious optimality properties. On the other hand the optimal processes
that were known required long recurrences (e.g., GMRES). The answer to this question was given
by the excellent paper by Faber and Manteu�el in 1984, and alas is was a negative one [71]:
short-term solution algorithms that are also optimal can essentially be devised only for a restricted
class of matrices; for all practical purposes, these matrices are either hermitian or skew-hermitian.
An essentially equivalent result had been published by Voevodin, just one year before Faber and
Manteu�el [180].

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 19

For the Bi-CG and related methods, very little theory is available on convergence. An attempt on
this was to introduce variable metrics, see [14] and the survey by Weiss [197].

8. Accelerators are not enough: preconditioning methods

The convergence of iterative methods depends on spectral properties of the matrix of the linear
system and in order to improve these properties one often transforms the linear system by a suitable
linear transformation. This process is known as preconditioning.
We do not know for sure who coined the term ‘preconditioning’ �rst – it may have been Turing

(according to Golub and O’Leary [86]) or Forsythe (see below). Regardless, the idea was known
quite early on. Cesari, in 1937 [37], proposed to multiply a given system Ax= b with a polynomial
P(A), in an attempt to speed up the convergence of the Richardson iteration (see also [23, p. 156]
for a discussion on this; in this reference the Richardson process is referred to as Mises’ iteration –
Cesari calls it the von Mises’ iteration). In the 1952 paper by Lanczos [116] the notion of polynomial
preconditioning is clearly de�ned: “The construction of the inverse matrix is equivalent to a linear
transformation which transforms the given matrix into the unit matrix. The unit matrix can be
conceived as the extreme case of a well-conditioned matrix whose eigenvalues are all 1. We will
ask for much less if we merely demand the transformation of the original system whose dispersion
is moderate”. Lanczos then states that the goal of the procedure is to “reduce the initial skewness” of
the system, not bring about the exact solution. Forsythe in his report on this paper in the mathematical
reviews (review MR 16-751, 1955) does employ the term “preconditioning” explicitly. Polynomial
preconditioning is also clearly mentioned in the review paper in Stiefel [170] – in 1959. Hestenes in
1956 [100], viewed the conjugate gradient method as an acceleration technique for suitable matrix
splittings. His formulation of the algorithm is equivalent with preconditioned conjugate gradients.
Finally, we mention Faddeev and Faddeeva, who used the term “preparing” in their 1963 book [72,
p. 188] (a translation of the Russian text of 1960) for transforming a system Ax = b to KAx = Kb;
with K such that KA is close to a unit matrix.
Modern preconditioning methods started in the late 1960s and early 1970s. Evans [70] used the

term preconditioning explicitly for the acceleration of SSOR by the Chebyshev iteration. However,
this combination had already been studied by Sheldon in 1955 [161]. In 1972, Axelsson [3] proposed
to use the SSOR method as a preconditioner for the conjugate gradient method. The incomplete
Cholesky decompositions (Meijerink and van der Vorst, 1974, 1977), became quite popular and led
to the ICCG process [125]. Concus, Golub and O’Leary [47] wrote an inuential paper on the usage
and e�ect of preconditioning for the CG method.

8.1. Incomplete factorizations

Preconditioning as we know it today refers mostly to approximate or incomplete factorizations
of the coe�cient matrix. Some of the early publications on such factorizations that are often cited
include Buleev [36], Varga [189] and Oliphant [132]. Later in the 1960s a few other procedures were
developed speci�cally for matrices arising from �nite di�erence approximations to elliptic operators,
these include the work by Dupont et al. [60]. In 1977, Meijerink and Van der Vorst introduced the
more general incomplete LU factorization [125]. The paper suggests that the combination of this
“preconditioning” and the conjugate gradient method could lead to a robust and very fast combination.

20 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

Similar ideas were in existence before. However, the paper provided a much needed stimulus to the
whole area of iterative methods.
The Dupont–Kendall–Rachford splitting can be viewed as an incomplete LU factorization with

zero �ll-in, in which the elimination errors are compensated by corrections to the diagonal of the
decomposition. In 1977, this procedure was generalized by Gustafsson [94] in 1978, as a modi�ed
form of the incomplete LU factorizations: MILU.
Several developments marked the years that followed. Two distinct ways of developing incomplete

factorization preconditioners with improved accuracy were developed. The �rst approach is based on
a symbolic factorization view, i.e., it only requires the nonzero structure of the matrix to determine
which �ll-ins to drop. A method proposed by Watts [195] for irregular sparse matrices attributes
a “level of �ll” recursively to each �ll-in element from the levels of �ll-in of its parents, in the
Gaussian elimination process. Then each �ll-in that is introduced and whose level exceeds a certain
threshold is dropped. In practice for M -matrices, the higher the �ll-in the lower the level. The second
common approach is to modify a given direct solver by including a dropping rule, based on the
numerical size of the �ll-ins introduced [82,134,53,52,208,206].
Although the relation between the size of the dropped elements and the number of iterations re-

quired to achieve convergence is far from being understood, on the average dropping small elements
is more likely to produce a better quality preconditioner than dropping large elements. However, ex-
perience reveals that this is not always true. Another drawback of the level-of-�ll approach is that
it is di�cult to predict the amount of �ll-in that will be generated.
The number of variations that can be found on incomplete factorization preconditioner is truly

astounding and we will not attempt to list them all. It su�ces to say that there were variants
developed for speci�c architectures. (e.g., Twisted Factorizations), or for speci�c applications (e.g.,
element-by-element preconditioners), or to exploit speci�c features of the equations (e.g., block
factorizations), among other classes. See [57] for an overview of these preconditioners, specially in
view of their implementation for high-speed computers.
One of the interesting recurring themes in preconditioning methods is whether or not reordering

the matrix prior to applying the ILU factorization can be helpful. Two early papers examined this
carefully and concluded rather negatively. The �rst is a paper by Simon [163] who considered large
nonsymmetric linear systems. For the systems he considered he concluded that standard techniques
used for sparse direct solvers were not too helpful for use in preconditioners based on level-of-�ll.
Immediately following this was a paper by Du� and Meurant [59] which concluded, similarly, that
ICCG does not in general bene�t in any signi�cant manner form reordering. These studies were
limited to certain types of reorderings and certain types of preconditioners. It is now known [19]
that certain reorderings, such as Reverse Cuthill McKee are bene�cial in preconditioning methods,
in particular with some form of dropping strategy. The bene�cial impact of well-chosen �ll-ins
was already demonstrated in [59] for some orderings. What seems to be also clear is that the best
approaches for direct solvers (such as Nested Dissection and minimal degree ordering) are not the
best for iterative solvers.
Since ILU and IC factorizations were the most popular preconditioners, at least in a sequential

environment, many attempts have been made to improve them, for instance by including more �ll
[126], by modifying the diagonal of the ILU factorization in order to force rowsum constraints
[94,8,7,131,181,64], or by changing the ordering of the matrix [183,184]. A set of experiments with
respect to the e�ects of ordering is contained in [59].

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 21

Saad [153] proposed a few variants on the incomplete LU approach for the matrix A, one of which
is in fact an incomplete LQ decomposition. In this approach it is not necessary to form the matrix
Q explicitly, and it turns out that the lower triangular matrix L can be viewed as the factor of an
incomplete Cholesky factorization of the matrix ATA. This can be exploited in the preconditioning
step, avoiding the use of Q. The second approach was to introduce partial pivoting in ILU, which
appears to have some advantages for convection-dominated problems. This approach was further
improved by including a threshold technique for �ll-in as is done in the ILUT algorithm, see [157,
p. 287].
Another major step forward, for important classes of problems, was the introduction of block

variants of incomplete factorizations [176,46,6], and modi�ed variants of them [46,6,120]. It was
observed, by Meurant, that these block variants were more successful for discretized two-dimensional
problems than for three-dimensional problems, unless the two-dimensional’ blocks in the latter case
were solved accurately. For discussions and analysis on ordering strategies, in relation to modi�ed
(block) incomplete factorizations, see [127,121].

8.2. Parallel preconditioners

Parallel preconditioners were discussed as early as with the �rst appearance of vector and parallel
computers. It soon became apparent that the standard ILU-based preconditioners which were just
becoming quite popular, were also very sequential in nature and had either to be replaced or imple-
mented di�erently. The �rst ideas that were promoted or discussed were based on approximating the
LU-solves by means of Neuman expansions in the L and U solves [182] as well as from the start by
approximating the inverse of the original matrix by the Neuman series expansion of its inverse [58].
This gave rise to a number of papers on “polynomial preconditioners”. The survey paper [154] gives
an account of the state of the art toward the end of the 1980s and it can be seen that polynomial
preconditioners �gured prominently in the article. Another approach – termed “level-scheduling” or
“wavefront” approach, was to unravel parallelism from the forward and backward solves. Because
of sparsity, many equations can be solved at the same time in several levels during the forward and
the backward solves – and a technique known in graph theory as “topological sorting” allows to
determine these levels [1,15,20,159,184,185].
However, these two methods were soon viewed as having a limited potential. Level scheduling has

limited parallelism and the �rst and last (smallest) levels were small enough to cause bottlenecks.
A number of strategies could be used to improve the situation however. Polynomial precondition-
ers faced more serious challenges. Their performance relative to existing alternatives was not too
convincing, especially for small number of processors. In addition, it is di�cult to �nd a good poly-
nomial in the case of inde�nite matrices. Current interest in these techniques has all but vanished.
This is a case where good mathematically based methods are not enough to overcome an inherent
limitation of a given approach.
Red-black ordering is an obvious approach to improve parallel properties for well-structured prob-

lems, but experimental results were disappointing [59] so it was avoided. If carefully done though,
they can lead to signi�cant gains in e�ciency. Elman and Golub [65] suggested such an approach,
in which Red-Black ordering was combined with a reduced system technique. The idea is simply
to eliminate the red points, and construct an ILU for the reduced system of black points. Recently,
DeLong and Ortega [56] and Saad [156] suggested carrying out a few steps of red-black ordered

22 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

SOR as a preconditioner for GMRES and Bi-CGSTAB. The key to success in these cases seems to
be a combined e�ect of fast convergence of SOR for red-black ordering, and the ability of the Krylov
subspace to remove stagnations in convergence behavior associated with a few isolated eigenvalues
of the preconditioned matrix.
Another stream of ideas for deriving parallel preconditioning methods came from domain decompo-

sition-type methods. Such methods were in existence in the partial di�erential equations (PDE) lit-
erature already in a di�erent form, see, e.g., the survey paper [40]. Though domain decomposition
methods were motivated by parallel computing it appeared that the approach could be used with
success also for the construction of sequential preconditioners. Domain decomposition has been used
for problems that arise from discretization of a PDE over a given domain. The idea is to split the
given domain into subdomains, and to solve the discretized PDEs over each subdomain separately.
The main problem is to �nd proper boundary conditions along the interior boundaries of the sub-
domains. Domain decomposition is used in an iterative fashion and usually the interior boundary
conditions are based upon information on the approximate solution of neighboring subdomains that
is available from a previous iteration step.
It was shown by Chan and Goovaerts [39] that domain decomposition can actually lead to im-

proved convergence rates, provided the number of domains is not too large. A splitting of the matrix
with overlapping sub-blocks along the diagonal, which can be viewed as a splitting of the domain,
if the matrix is associated with a discretized PDE and has been ordered properly, was suggested by
Radicati and Robert [143]. They suggested to construct incomplete factorizations for the sub-blocks.
These sub-blocks are then applied to corresponding parts of the vectors involved, and some averaging
was applied on the overlapping parts. A more sophisticated domain-oriented splitting was suggested
in [194], for SSOR and MILU decompositions, with a special treatment for unknowns associated
with interfaces between the sub-domains.
The isolation of sub-blocks was done by Tang [175] in such a way that the sub-blocks correspond

to subdomains with proper internal boundary conditions. In this case it is necessary to modify the
sub-blocks of the original matrix such that the sub-blocks could be interpreted as the discretizations
for subdomains with Dirichlet and Neumann boundary conditions in order to force some smoothness
of the approximated solution across boundaries. In [173] this was further improved by requiring also
continuity of cross-derivatives of the approximate solution across boundaries. The local �ne tuning of
the resulting interpolation formulae for the discretizations was carried out by local Fourier analysis.
It was shown that this approach could lead to impressive reductions in numbers of iterations for
convection dominated problems.
Note that domain decomposition methods for general sparse linear systems became successful at

the same time as the machines for which they were designed (distributed memory, MIMD computers)
were gaining importance. Currently, most of the parallel iterative solvers packages utilize essentially
DD-type preconditioners.
For an overview of parallel preconditioners, and guidelines for their e�cient implementation, see

[57].

8.3. Multilevel preconditioners

Methods based on multilevel techniques, such as multigrid, have been popular for solving certain
types of PDEs [96]. They are often designed speci�cally for problems arising from PDEs with regular

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 23

meshes. Algebraic multilevel solution methods were developed as an attempt to extend the scope of
these methods [149]. Clearly, nothing can prevent the use of these techniques as preconditioners for
Krylov solvers. Since the multigrid method is viewed as optimal, its users have often avoided to use
an accelerator such as GMRES or BICGSTAB to accelerate it. A study by Oosterlee and Washio
[133] did, however, indicate that such a combination could be bene�cial and lead to a much more
robust solver than a multigrid solver alone.
Recently, a class of preconditioners that tended to close the gap between multilevel methods and

preconditioned Krylov methods drew much attention. It was discovered that a multigrid-inspired
ordering can be very e�ective for discretized di�usion–convection equations, leading in some cases
to almost grid-independent speeds of convergence [177,178], see also [52]. These preconditioners
can be viewed also from the angle of ILU factorization combined with a reordering as in the ILUM
strategy, see [157, p. 371]. This type of approach can be fairly robust and scale well with problem
size, unlike other ILU preconditioners.
In earlier related work, Axelsson and Vassilevski developed a method which was later referred to

as AMLI [9,10] that is based on a set of nested �nite element grids. The equations associated with
the �ner mesh are reduced (approximately) and the process is repeated to a number of levels until
the coarsest mesh is reached.
It is interesting to note that currently, this general approach o�ers an excellent potential for

providing a global method that can encompass most of the successful approaches for solving linear
systems. By restricting the number of levels to one and performing the factorization accurately, one
obtains a direct solver. A standard ILU solver can also be obtained by dropping �ll-in.

8.4. Sparse approximate inverses

Many researchers and practitioners became aware of an important and damaging phenomenon in
ILU techniques. An ILU factorization can be an accurate approximation to the original matrix but
it can yield a very ill-conditioned factorization [181]. This phenomenon of instability of the LU
factors was analyzed in particular by Elman [63]. This weakness of ILU factorizations, coupled with
their sequential nature, spurred researchers to consider radical alternatives. The approximate inverse
methods which were �rst proposed in the late 1970s [16] were in this category. It is only with
the advent of massive parallel processing that such methods were considered as serious contenders
of the now standard ILU methods [93]. A urry of publications followed this work and the work
by Kolotilina and Yeremin [113,114]. To cite just a few, [48,92] de�ne strategies for determining
the best pattern for the inverse, [43,42,18,17] de�ne alternative schemes. While at the beginning,
these preconditioning methods were received with much skepticism, it is fair to say that substantial
progress has been made and a number of recent papers reported that approximate inverse schemes
can often be competitive with ILU factorization methods – even in a sequential environment.
One idea for constructing an approximate inverse is to �nd a sparse matrix M such that ‖AM − I‖

is small for some convenient norm. Kolotilina and Yeremin [114] presented an algorithm in which the
inverse was delivered in factored form, which has the advantage that singularity of M is avoided. In
[48] an algorithm is presented which uses the 1-norm for the minimization. We also mention Chow
and Saad [43], who use GMRES for the minimization of ‖AM − I‖F . Drop-tolerance strategies are
applied to limit the amount of �ll-in allowed. The approach can also be used to correct explicitly
some given implicit approximation, such as a given ILU decomposition.

24 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

An elegant approach was suggested by Grote and Huckle [92]. They also attempt to minimize the
F-norm, which is equivalent to the Euclidean norm for the errors in the columns mi of M

‖AM − I‖2F =
n∑
i=1

‖Ami − ei‖22:

Based on this observation they derive an algorithm that produces the sparsity pattern for the most
error-reducing elements of M . This is done in steps, starting with a diagonal approximation, each
steps adds more nonzero entries to M , and the procedure is stopped when the norms are small
enough or when memory requirements are violated.

9. Multigrid methods

As was mentioned above, among the earliest preconditioning methods were the simple relaxation
schemes since these have, historically, been quite popular techniques. Thus Krylov subspace methods
were viewed as methods for accelerating such techniques. Another powerful way of accelerating
relaxation techniques is to use multigrid – or multilevel methods. Although we have given little
emphasis to these methods in this survey, they are nevertheless important methods which can give
rise to very e�cient solvers, actually of optimal complexity in some cases. The main observation of
multigrid techniques is based on a Fourier analysis of the residual (or error) vector of a sequence of
iterates that are generated by a scheme such as Jacobi or Gauss–Seidel. This means that these residual
vectors are analyzed in the eigen-basis associated with the iteration matrix M – assuming that M
has a complete set of eigenvectors. In the case of Jacobi, the observation is that the components
associated with the largest eigenvalues (in the original matrix) will decrease rapidly. However, those
associated with the smallest eigenvalues will converge much more slowly. As a result after a few
steps, the “high-frequency” components may have converged while the “low-frequency” components
may have made very little progress in comparison. To correct this situation, researchers developed
methods that used several grids. The simplest idea is to use two meshes one �ne and one that is
coarser, where the �ne mesh can be viewed as the result of re�ning the coarse one. The iteration
initially takes place on the �ne mesh. After a few steps, the residual is projected onto the coarse
mesh, by some form of restriction. Let A2h be the matrix for the problem on the coarse mesh and
r2h this projected residual. The system A2h�= r2h is then solved on the coarse mesh by means of a
few steps of relaxation. This is called a correction step. The vector � is then extrapolated into the
�ner mesh and the result is added as a correction to the iterate on the �ne mesh.
An early paper describing essentially such an idea can be traced back to 1935, when Southwell

[167] discusses a “group-relaxation” scheme for a two-level setting. It is clear that we do not have to
stop at two levels of meshes. Much later Fedorenko [73] described the �rst true multigrid technique
– which employs more than two grids. The idea laid dormant for some time until Achi Brandt
published a series of articles, the �rst of which in 1972 [26]. The paper [27] provided the needed
analysis to boost this class of techniques. Many variants of multigrid methods have been developed
and the literature is perhaps richer than that of Krylov subspace methods. The excellent “frontiers
in applied mathematics” [124] volume published in 1987 listed already 607 references. A number of
excellent books have been written on multigrid. For a quick tutorial see [33]. More complete texts

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 25

include Hackbusch [96], and Wesseling [199]. The volume [124] contains an excellent collection of
articles on multigrid and algebraic multigrid.
It is often asked what is the best method to use: preconditioned Krylov subspace methods or

a multigrid approach? Users of iterative techniques are really split in two camps: those who use
exclusively multigrid methods and those who use exclusively (preconditioned) Krylov subspace
methods. Combination of the two methods have been advocated however, see Section 8.3, but this
is an exception rather than a rule. When multigrid techniques work, they can be extremely e�cient –
far more so than preconditioned Krylov methods. However, their e�ciency relies essentially on the
inter-level restriction, and prolongation operators, the choice of which will vary from one application
to the next. Such e�ciencies can be achieved for regular meshes and for smooth elliptic PDEs.
Standard multigrid methods cannot be applied without the existence of an underlying mesh – hence
its major limitation.
This led to the development of algebraic multi-grid (AMG) initiated by Ruge and Stuben [149].

AMG was de�ned for algebraic systems – in the same manner as general sparse linear systems
solvers – by de�ning restriction and prolongation operators algebraically. The overall success of
AMG, which is derived based on an underlying PDE problem, has been somewhat limited.

10. Outlook

It is rather di�cult to predict what the future will bring in the area of iterative methods. How-
ever, it is almost certain that the usage of these methods will increase substantially in the application
areas. This is partly due to the impact of parallel architectures. Direct methods are more complex
to implement in parallel than are iterative methods. Also it is clear that problem sizes are increas-
ing to the point of making direct solvers exceedingly expensive – both in terms of memory and
arithmetic costs. One ray of hope for those problems that are hard to solve by iterative techniques,
is to combine techniques from direct and iterative solution technologies. As the communities from
direct and iterative solvers are getting to learn each other’s tricks, the distinction between the two
methodologies is getting to be blurred and this results in better, more robust, methods. Indeed, if
memory is the only di�culty with direct solvers, it may be possible to �nd preconditioners that are
far more accurate than current ones – but which use moderate amounts of memory.

Acknowledgements

We wish to thank our colleages Michele Benzi, Claude Brezinski, Mark Embree, Gerard Meurant,
Nick Trefethen, and Gerard Sleijpen, for their careful reading of the text and for adding useful infor-
mation. Michele Benzi brought the early (and not very well-known) paper of Cesari, on polynomial
preconditioning, to our attention.

References

[1] E.C. Anderson, Y. Saad, Solving sparse triangular systems on parallel computers, Internat. J. High Speed Comput.
1 (1989) 73–96.

26 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

[2] W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl.
Math. 9 (1951) 17–29.

[3] O. Axelsson, A generalized SSOR method, BIT 12 (1972) 443–467.
[4] O. Axelsson, Solution of linear systems of equations: iterative methods, in: V.A. Barker (Ed.), Sparse Matrix

Techniques, Springer, Berlin, 1977, Copenhagen, 1976, pp. 1–51.
[5] O. Axelsson, Conjugate gradient type-methods for unsymmetric and inconsistent systems of linear equations, Linear

Algebra Appl. 29 (1980) 1–16.
[6] O. Axelsson, A general incomplete block-factorization method, Linear Algebra Appl. 74 (1986) 179–190.
[7] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1994.
[8] O. Axelsson, G. Lindskog, On the eigenvalue distribution of a class of preconditioning methods, Numer. Math. 48

(1986) 479–498.
[9] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, I, Numer. Math. 56 (1989) 157–177.
[10] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, II, SIAM J. Numer. Anal. 27 (6) (1990)

1569–1590.
[11] O. Axelsson, P.S. Vassilevski, A black box generalized conjugate gradient solver with inner iterations and

variable-step preconditioning, SIAM J. Matrix Anal. Appl. 12 (4) (1991) 625–644.
[12] R.E. Bank, T.F. Chan, An analysis of the composite step biconjugate gradient method, Numer. Math. 66 (1993)

295–319.
[13] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der

Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 1994.

[14] T. Barth, T. Manteu�el, Variable metric conjugate gradient methods, in: Advances in Numerical Methods for Large
Sparse Sets of Linear Equations, Number 10, Matrix Analysis and Parallel Computing, PCG 94, Keio University,
Yokohama, Japan, 1994, pp. 165–188.

[15] D. Baxter, J. Saltz, M.H. Schultz, S.C. Eisenstat, K. Crowley, An experimental study of methods for parallel
preconditioned Krylov methods, in: Proceedings of the 1988 Hypercube Multiprocessors Conference, Pasadena,
CA, January 1988, pp. 1698–1711.

[16] M.W. Benson, P.O. Frederickson, Iterative solution of large sparse linear systems arising in certain multidimensional
approximation problems, Utilitas Math. 22 (1982) 127–140.

[17] M. Benzi, J. Mar��n, M. T�uma, A two-level parallel preconditioner based on sparse approximate inverses, in:
D.R. Kincaid, A.C. Elster (Eds.), Iterative Methods in Scienti�c Computation, II, IMACS, New Brunswick, NJ,
1999, pp. 167–178.

[18] M. Benzi, C.D. Meyer, M. T�uma, A sparse approximate inverse preconditioner for the conjugate gradient method,
SIAM J. Sci. Comput. 17 (1996) 1135–1149.

[19] M. Benzi, D.B. Szyld, A. van Duin, Orderings for incomplete factorization preconditioning of nonsymmetric
problems, SIAM J. Sci. Comput. 20 (1999) 1652–1670.

[20] H. Berryman, J. Saltz, W. Gropp, R. Mirchandaney, Krylov methods preconditioned with incompletely factored
matrices on the CM-2, J. Partial Distrib. Comput. 8 (1990) 186–190.

[21] G. Birkho�, Solving elliptic problems: 1930–1980, in: M.H. Schultz (Ed.), Elliptic Problem Solver, Academic
Press, New York, 1981, pp. 17–38.

[22] A. Bj�orck, T. Elfving, Accelerated projection methods for computing pseudo-inverse solutions of systems of linear
equations, BIT 19 (1979) 145–163.

[23] E. Bodewig, Matrix Calculus, North-Holland, Amsterdam, 1956.
[24] E. Bodewig, Matrix Calculus (second revised and enlarged edition), North-Holland, Amsterdam, 1959.
[25] R. Bramley, A. Sameh, Row projection methods for large nonsymmetric linear systems, SIAM J. Sci. Statist.

Comput. 13 (1992) 168–193.
[26] A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solutions to boundary problems, in: H.

Cabannes, R. Temam (Eds.), Proceedings of the Third International Conference on Numerical Methods in Fluid
Mechanics, Paris, 1972, Springer, Berlin, 1973, pp. 82–89.

[27] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comp. 31 (1977) 333–390.
[28] C. Brezinski, Pad�e-Type Approximation and General Orthogonal Polynomials, Birkh�auser, Basel, 1980.
[29] C. Brezinski, Projection Methods for Systems of Equations, North-Holland, Amsterdam, 1997.

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 27

[30] C. Brezinski, M. Redivo-Zaglia, Look-ahead in bicgstab and other product methods for linear systems, BIT 35
(1995) 169–201.

[31] C. Brezinski, M. Redivo-Zaglia, H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms,
Numer. Algorithms 1 (1991) 261–284.

[32] C. Brezinski, M. Redivo-Zaglia, H. Sadok, A breakdown-free Lanczos’ type algorithm for solving linear systems,
Numer. Math. 63 (1992) 29–38.

[33] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
[34] P.N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput. 12

(1991) 58–78.
[35] G.C. Broyden, A new method of solving nonlinear simultaneous equations, Comput. J. 12 (1969) 94–99.
[36] N.I. Buleev, A numerical method for the solution of two-dimensional and three-dimensional equations of di�usion,

Math. Sb. 51 (1960) 227–238 (in Russian).
[37] L. Cesari, Sulla risoluzione dei sistemi di equazioni lineari per approssimazioni successive, Atti Accad. Naz. Lincei.

Rend. Cl. Sci. Fis. Mat. Nat. Ser. 6a 25 (1937) 422–428.
[38] T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB

algorithm for nonsymmetric systems, SIAM J. Sci. Comput. 15 (1994) 338–347.
[39] T.F. Chan, D. Goovaerts, A note on the e�ciency of domain decomposed incomplete factorizations, SIAM J. Sci.

Statist. Comput. 11 (1990) 794–803.
[40] T.F. Chan, D. Resasco, A framework for the analysis of domain decomposition preconditioners, in: Proceedings of

the First International Symposium on Domain Decomposition Methods for Partial Di�erential Equations, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1988, pp. 217–230.

[41] D. Chazan, M. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969) 199–222.
[42] E. Chow, Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM J. Sci. Comput. 18 (1997)

1657–1675.
[43] E. Chow, Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Comput. 19

(1998) 995–1023.
[44] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, Ric. Sci. Progr. Tecn. Econom.

Naz. 9 (1938) 326–333.
[45] P. Concus, G.H. Golub, A generalized conjugate gradient method for nonsymmetric systems of linear equations, in:

R. Glowinski, J.L. Lions (Eds.), Computing Methods in Applied Sciences and Engineering, Springer, New York,
1976, pp. 56–65.

[46] P. Concus, G.H. Golub, G. Meurant, Block preconditioning for the conjugate gradient method, SIAM J. Sci. Statist.
Comput. 6 (1985) 220–252.

[47] P. Concus, G.H. Golub, D.P. O’Leary, A generalized conjugate gradient method for the numerical solution of elliptic
partial di�erential equations, in: J.R. Bunch, D.J. Rose (Eds.), Sparse Matrix Computations, Academic Press, New
York, 1976, pp. 309–332.

[48] J.D.F. Cosgrove, J.C. D��az, A. Griewank, Approximate inverse preconditioning for sparse linear systems, Internat.
J. Comput. Math. 44 (1992) 91–110.

[49] J. Cullum, A. Greenbaum, Relations between Galerkin and norm-minimizing iterative methods for solving linear
systems, SIAM J. Matrix Anal. Appl. 17 (1996) 223–247.

[50] J.W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4
(1967) 10–26.

[51] J.W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, Englewood Cli�s, NJ, 1971.
[52] E.F. D’Azevedo, F.A. Forsyth, W.P. Tang, Ordering methods for preconditioned conjugate gradient methods applied

to unstructured grid problems, SIAM J. Matrix Anal. Appl. 13 (1992) 944–961.
[53] E.F. D’Azevedo, F.A. Forsyth, W.P. Tang, Towards a cost e�ective ILU preconditioner with high level �ll, BIT

31 (1992) 442–463.
[54] C. de Boor, J.R. Rice, Extremal polynomials with applications to Richardson iteration for inde�nite systems, SIAM

J. Sci. Statist. Comput. 3 (1982) 47–57.
[55] R. Dedekind, Gauss in seiner Vorlesung �uber die Methode der kleisten Quadrate, Gesammelte Math. Werke 2

(1901) 293–306.
[56] M.A. DeLong, J.M. Ortega, SOR as a preconditioner, Appl. Numer. Math. 18 (1995) 431–440.

28 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

[57] J.J. Dongarra, I.S. Du�, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for High-Performance
Computers, SIAM, Philadelphia, PA, 1998.

[58] P.F. Dubois, A. Greenbaum, G.H. Rodrigue, Approximating the inverse of a matrix for use on iterative algorithms
on vectors processors, Computing 22 (1979) 257–268.

[59] I.S. Du�, G.A. Meurant, The e�ect of ordering on preconditioned conjugate gradients, BIT 29 (1989) 635–657.
[60] T. Dupont, R. Kendall, H. Rachford, An approximate factorization procedure for solving self-adjoint elliptic

di�erence equations, SIAM J. Numer. Anal. 5 (1968) 559–573.
[61] T. Eirola, O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra Appl. 121 (1989) 511–520.
[62] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear

equations, SIAM J. Numer. Anal. 20 (1983) 345–357.
[63] H.C. Elman, A stability analysis of incomplete LU factorizations, Math. Comp. 47 (1986) 191–217.
[64] H.C. Elman, Relaxed and stabilized incomplete factorizations for non-self-adjoint linear systems, BIT 29 (1989)

890–915.
[65] H.C. Elman, G.H. Golub, Line iterative methods for cyclically reduced discrete convection–di�usion problems,

SIAM J. Sci. Statist. Comput. 13 (1992) 339–363.
[66] H.C. Elman, Y. Saad, P. Saylor, A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems

of linear equations, SIAM J. Sci. Statist. Comput. 7 (1986) 840–855.
[67] M. Embree, Convergence of Krylov subspace methods for non-normal matrices, Ph.D. Thesis, Oxford University

Computing Laboratory, Oxford, UK, 1999.
[68] M. Engeli, Overrelaxation and related methods, Re�ned Iterative Methods for Computation of the Solution and

the Eigenvalues of Self-Adjoint Boundary Value Problems, Institute of Applied Mathematics, Z�urich, Birkh�auser,
Basel, 1959, pp. 79–107.

[69] M. Engeli, T. Ginsburg, H. Rutishauser, E. Stiefel, Re�ned Iterative Methods for Computation of the Solution and
the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkh�auser, Basel, 1959.

[70] D.J. Evans, The use of pre-conditioning in iterative methods for solving linear equations with symmetric positive
de�nite matrices, J. Inst. Math. Appl. 4 (1968) 295–314.

[71] V. Faber, T. Manteu�el, Necessary and su�cient conditions for the existence of a conjugate gradient method, SIAM
J. Numer. Anal. 21 (1984) 352–361.

[72] D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra, Freeman and Company, San Francisco,
1963.

[73] R.P. Fedorenko, On the speed of convergence of an iteration process, USSR Comput. Math. Math. Phys. 4 (1964)
227–235.

[74] B. Fischer, L. Reichel, A stable Richardson iteration method for complex linear systems, Numer. Math. 54 (1988)
225–241.

[75] D.A. Flanders, G. Shortley, Numerical determination of fundamental modes, J. Appl. Phys. 21 (1950) 1322–1328.
[76] R. Fletcher, Conjugate gradient methods for inde�nite systems, in: G.A. Watson (Ed.), Proceedings of the Dundee

Biennal Conference on Numerical Analysis 1974, Springer, New York, 1975, pp. 73–89.
[77] D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl.

Math. 71 (1994) 125–146.
[78] S. Frankel, Convergence rates of iterative treatments of partial di�erential equations, MTAC (1950) 65–75.
[79] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci.

Comput. 14 (2) (1993) 470–482.
[80] R.W. Freund, N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices,

Part 2, Technical Report 90.46, RIACS, NASA Ames Research Center, 1990.
[81] R.W. Freund, N.M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer.

Math. 60 (1991) 315–339.
[82] K. Gallivan, A. Sameh, Z. Zlatev, A parallel hybrid sparse linear system solver, Comput. Systems Eng. 1 (2–4)

(1990) 183–195.
[83] N. Gastinel, Analyse Num�erique Lin�eaire, Hermann, Paris, 1966.
[84] C.F. Gauss, Werke, Band IX, Teubner, Leipzig, 1903.
[85] M.K. Gavurin, Application of the best approximation polynomial to improving the convergence of iterative methods,

Uspehi Mat. Nauk. 5(3) (1950) 156–160 (in Russian).

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 29

[86] G.H. Golub, D.P. O’Leary, Some history of the conjugate gradient and Lanczos algorithms: 1948–1976, SIAM
Rev. 31 (1989) 50–102.

[87] G.H. Golub, R.S. Varga, Chebyshev semi iterative methods successive overrelaxation iterative methods and second
order Richardson iterative methods, Numer. Math. 3 (1961) 147–168.

[88] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.
[89] A. Greenbaum, Z. Strako�s, Predicting the behavior of �nite precision Lanczos and conjugate gradient computations,

SIAM J. Matrix Anal. Appl. 13 (1992) 121–137.
[90] A. Greenbaum, Z. Strako�s, Matrices that generate the same Krylov residual spaces, in: G. Golub, M. Luskin, A.

Greenbaum (Eds.), Recent Advances in Iterative Methods, IMA Volumes in Mathematics and Its Applications, Vol.
60, Springer, New York, 1994, pp. 95–119.

[91] A. Greenbaum, V. Ptak, Z. Strako�s, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix
Anal. Appl. 17 (1996) 465–469.

[92] M. Grote, T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput. 18 (1997)
838–853.

[93] M. Grote, H.D. Simon, Parallel preconditioning and approximate inverses on the connection machine, in: R.F.
Sincovec, D.E. Keyes, L.R. Petzold, D.A. Reed (Eds.), Parallel Processing for Scienti�c Computing, Vol. 2, SIAM,
Philadelphia, PA, 1992, pp. 519–523.

[94] I. Gustafsson, A class of �rst order factorization methods, BIT 18 (1978) 142–156.
[95] M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J.

Matrix Anal. Appl. 13 (1992) 594–639.
[96] W. Hackbusch, Multi-Grid Methods and Applications, Springer, New York, 1985.
[97] W. Hackbusch, Iterative Solution of Large Linear Systems of Equations, Springer, New York, 1994.
[98] A.L. Hageman, D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981.
[99] R.M. Hayes, Iterative methods of solving linear systems on Hilbert space, National Bureau of Standards, Appl.

Math. Ser. 39 (1954) 71–103.
[100] M.R. Hestenes, The conjugate-gradient method for solving linear systems, in: Sympos. Appl. Math., Numerical

Analysis, Vol. VI, McGraw-Hill, New York, 1956, pp. 83–102.
[101] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards

Section B 49 (1952) 409–436.
[102] A.S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, Johnson, CO, 1964.
[103] K.C. Jea, D.M. Young, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear

Algebra Appl. 34 (1980) 159–194.
[104] O.G. Johnson, C.A. Micchelli, G. Paul, Polynomial preconditionings for conjugate gradient calculations, SIAM J.

Numer. Anal. 20 (1983) 362–376.
[105] W.D. Joubert, Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of

linear equations, Ph.D. Thesis, University of Texas, Austin, Center for Numerical Analysis, Austin, TX, 1990
[106] S. Kaczmarz, Angen�aherte Au�osung von Systemen linearer Gleichungen, Bull. Internat. Acad. Pol. Sci. Lett.

A 35 (1937) 355–357.
[107] W. Kahan, Gauss–Seidel methods of solving large systems of linear equations, Ph.D. Thesis, University of Toronto,

1958.
[108] C. Kamath, A. Sameh, A projection method for solving nonsymmetric linear systems on multiprocessors, Parallel

Comput. 9 (1988=89) 291–312.
[109] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp. 20 (1966) 369–378.
[110] L. Kantorovitch, On an e�cient method for solving optimization problems for quadratic functionals, DAN SSSR

48(7) (1945) 7–8 (in Russian).
[111] W. Karush, Convergence of a method of solving linear problems, Proc. Amer. Math. Soc. 3 (1952) 839–851.
[112] I.M. Khabaza, An iterative least-square method suitable for solving large sparse matrices, Comput. J. 6 (1963)

202–206.
[113] L.Yu. Kolotilina, A.Yu. Yeremin, On a family of two-level preconditionings of the incomplete block factorization

type, Soviet J. Numer. Anal. Math. Modelling 1 (1986) 293–320.
[114] L.Yu. Kolotilina, A.Yu. Yeremin, Factorized sparse approximate inverse preconditionings I, Theory, SIAM J. Matrix

Anal. Appl. 14 (1993) 45–58.

30 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

[115] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear di�erential and integral
operators, J. Res. Nat. Bur. Standards 45 (1950) 255–282.

[116] C. Lanczos, Chebyshev polynomials in the solution of large-scale linear systems, Toronto Symposium on Computing
Techniques (1952) 124–133.

[117] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards 49 (1952)
33–53.

[118] H. Liebmann, Die angen�aherte harmonischer Funktionen und konformer Abbildungen (nach Ideen von Boltzmann
und Jacobi), S. B. Math. Nat. Kl. Bayerischen Akad. Wiss. M�unchen (1918) 385–416.

[119] D.G. Luenberger, Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1979) 1263–
1267.

[120] M.M. Magolu, Modi�ed block-approximate factorization strategies, Numer. Math. 61 (1992) 91–110.
[121] M.M. Magolu, Ordering strategies for modi�ed block incomplete factorizations, SIAM J. Sci. Comput. 16 (1995)

378–399.
[122] T.A. Manteu�el, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math. 28 (1977) 307–327.
[123] T.A. Manteu�el, Adaptive procedure for estimation of parameter for the nonsymmetric Tchebychev iteration, Numer.

Math. 28 (1978) 187–208.
[124] S.F. Mc Cormick (Ed.), Multigrid Methods, SIAM, Philadelphia, PA, 1987.
[125] J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coe�cient matrix

is a symmetric M-matrix, Math. Comp. 31 (137) (1977) 148–162.
[126] J.A. Meijerink, H.A. van der Vorst, Guidelines for the usage of incomplete decompositions in solving sets of linear

equations as they occur in practical problems, J. Comput. Phys. 44 (1981) 134–155.
[127] G. Meurant, Computer Solution of Large Linear Systems, North-Holland, Amsterdam, 1999.
[128] J.C. Miellou, Algorithmes de relaxation chaotiques �a retard, RAIRO R-1 (1975) 55–82.
[129] N.M. Nachtigal, S.C. Reddy, L.N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal.

Appl. 13 (1992) 778–795.
[130] P.A. Nekrasov, Determining unknowns using the least squares method when the number of unknowns is large,

Mat. Sb. 12 (1884) 189–204 (in Russian).
[131] Y. Notay, DRIC: a dynamic version of the RIC method, Numer. Linear Algebra Appl. 1 (1994) 511–532.
[132] T.A. Oliphant, An extrapolation process for solving linear systems, Quart. Appl. Math. 20 (1962) 257–267.
[133] C.W. Oosterlee, T. Washio, An evaluation of parallel multigrid as a solver and a preconditioner for singularly

perturbed problems, SIAM J. Sci. Statist. Comput. 19 (1991) 87–110.
[134] O. Osterby, Z. Zlatev, Direct Methods for Sparse Matrices, Springer, New York, 1983.
[135] A.M. Ostrowski, Uber die Determinanten mit �uberwiegender Hauptdiagonale, Comment. Math. Helv. 10 (1937)

69–96.
[136] A.M. Ostrowski, On the linear iteration procedures for symmetirc matrices, Rend. Mat. Appl. 14 (1954) 140–163.
[137] C.C. Paige, M.A. Saunders, Solution of sparse inde�nite systems of linear equations, SIAM J. Numer. Anal. 12

(1975) 617–629.
[138] C.C. Paige, M.A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans.

Math. Software 8 (1982) 43–71.
[139] B.N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl. 13 (1992)

567–593.
[140] B.N. Parlett, D.R. Taylor, Z.S. Liu, A look-ahead Lanczos algorithm for nonsymmetric matrices, Math. Comp. 44

(1985) 105–124.
[141] D. Peaceman, H. Rachford, The numerical solution of elliptic and parabolic di�erential equations, J. SIAM 3 (1955)

28–41.
[142] C. Pommerell, Solution of large unsymmetric systems of linear equations, Ph.D. Thesis, Swiss Federal Institute of

Technology, Z�urich, 1992.
[143] G. Radicati di Brozolo, Y. Robert, Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric

systems on a vector multiprocessor, Parallel Comput. 11 (1989) 223–239.
[144] E. Reich, On the convergence of the classical iterative method of solving linear simultaneous equations, Ann. Math.

Statist. 20 (1949) 448–451.

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 31

[145] J.K. Reid, On the method of conjugate gradients for the solution of large sparse systems of linear equations, in:
J.K. Reid (Ed.), Large Sparse Sets of Linear Equations, Academic Press, New York, 1971, pp. 231–254.

[146] L.F. Richardson, The approximate arithmetical solution by �nite di�erences of physical problems involving
di�erential equations with an application to the stresses to a masonry dam, Philos. Trans. Roy. Soc. London
Ser. A 210 (1910) 307–357.

[147] F. Robert, Contraction en norme vectorielle: convergence d’it�erations chaotiques, Linear Algebra Appl. 13 (1976)
19–35.

[148] F. Robert, M. Charnay, F. Musy, Iterations chaotiques s�erie–parall�ele pour les �equations non lin�eaires de point �xe,
Apl. Math. 20 (1975) 1–38.

[149] A. Ruge, K. St�uben, Algebraic multigrid, in: S. McCormick (Ed.), Multigrid Methods, Frontiers in Applied
Mathematics, Vol. 3, SIAM, Philadelphia, PA, 1987 (Chapter 4).

[150] H. Rutishauser, Theory of gradient methods, Re�ned Iterative Methods for Computation of the Solution and the
Eigenvalues of Self-Adjoint Boundary Value Problems, Institute of Applied Mathematics, Zurich, Birkh�auser, Basel,
1959, pp. 24–49.

[151] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. Sci. Statist.
Comput. 6 (1985) 865–881.

[152] Y. Saad, Least squares polynomials in the complex plane and their use for solving sparse nonsymmetric linear
systems, SIAM J. Numer. Anal. 24 (1987) 155–169.

[153] Y. Saad, Preconditioning techniques for inde�nite and nonsymmetric linear systems, J. Comput. Appl. Math. 24
(1988) 89–105.

[154] Y. Saad, Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput. 10 (1989) 1200–1232.
[155] Y. Saad, A exible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput. 14 (1993) 461–469.
[156] Y. Saad, Highly parallel preconditioners for general sparse matrices, in: G. Golub, M. Luskin, A. Greenbaum (Eds.),

Recent Advances in Iterative Methods, IMA Volumes in Mathematics and Its Applications, Vol. 60, Springer, New
York, 1994, pp. 165–199.

[157] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[158] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving a nonsymmetric linear

systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
[159] J. Saltz, R. Mirchandaney, K. Crowley, Run-time paralellization and scheduling of loops, IEEE Trans. Comput. 40

(1991) 603–612.
[160] P.E. Saylor, D.C. Smolarski, Computing the roots of complex orthogonal kernel polynomials, SIAM J. Sci. Statist.

Comput. 9 (1988) 1–13.
[161] J.W. Sheldon, On the numerical solution of elliptic di�erence equations, MTAC 9 (1955) 101–112.
[162] G.H. Shortley, Use of Tschebysche�-polynomial operators in the solution of boundary value problems, J. Appl.

Phys. 24 (1953) 392–396.
[163] H.D. Simon, Incomplete LU preconditioners for conjugate gradient type iterative methods, in: Proceedings of the

SPE 1985 Reservoir Simulation Symposium, Dallas, TX, Society of Petroleum Engineers of AIME, Paper No
13533, 1988, pp. 302–306.

[164] H.D. Simon, Direct sparse matrix methods, in: J.C. Almond, D.M. Young (Eds.), Modern Numerical Algorithms
for Supercomputers, Center for High Performance Computing, The University of Texas, Austin, 1989, pp. 325–344.

[165] G.L.G. Sleijpen, D.R. Fokkema, BICGSTAB(‘) for linear equations involving unsymmetric matrices with complex
spectrum, ETNA 1 (1993) 11–32.

[166] P. Sonnoveld, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10
(1989) 36–52.

[167] R.V. Southwell, Stress calculation in frameworks by the method of systematic relaxation of constraints, Proc. Roy.
Soc. London Ser. A 151 (1935) 56–95.

[168] W. Spakman, G. Nolet, Imaging algorithms, accuracy and resolution in delay time tomography, in: N.J. Vlaar, N.
Nolet, M. Wortel, S. Cloetingh (Eds.), Mathematical Geophysics: A Survey of Recent Developments in Seismology
and Geodynamics, Reidel, Dordrecht, 1987, pp. 155–188.

[169] P. Stein, R.L. Rosenberg, On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23
(1948) 111–118.

32 Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33

[170] E.L. Stiefel, Kernel polynomials in linear algebra and their applications, U.S. Nat. Bur. Standards Appl. Math. Ser.
49 (1958) 1–24.

[171] H.L. Stone, Iterative solution of implicit approximations of multidimensional partial di�erential equations, SIAM J.
Numer. Anal. 5 (1968) 530–558.

[172] Z. Strako�s, On the real convergence rate of the conjugate gradient method, Linear Algebra Appl. 154=156 (1991)
535–549.

[173] K.H. Tan, Local coupling in domain decomposition, Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands,
1995.

[174] K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math.
17 (1971) 203–214.

[175] W.P. Tang, Generalized Schwarz splitting, SIAM J. Sci. Statist. Comput. 13 (1992) 573–595.
[176] R.R. Underwood, An approximate factorization procedure based on the block Cholesky factorization and its use

with the conjugate gradient method, Technical Report Tech Report, General Electric, San Jose, CA, 1976.
[177] A. van der Ploeg, Preconditioning for sparse matrices with applications, Ph.D. Thesis, Department of Mathematics,

University of Groningen, 1995.
[178] A. van der Ploeg, E.F.F. Botta, F.W. Wubs, Nested grids ILU-decomposition (NGILU), J. Comput. Appl. Math.

66 (1996) 515–526.
[179] A. van der Sluis, H.A. van der Vorst, The rate of convergence of conjugate gradients, Numer. Math. 48 (1986)

543–560.
[180] V.V. Voevodin, The problem of a non-selfadjoint generalization of the conjugate gradient method has been closed,

USSR Comput. Math. Math. Phys. 23 (1983) 143–144.
[181] H.A. van der Vorst, Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising

from PDE-problems, J. Comput. Phys. 44 (1981) 1–19.
[182] H.A. van der Vorst, A vectorizable variant of some ICCG methods, SIAM J. Statist. Sci. Comput. 3 (1982)

350–356.
[183] H.A. van der Vorst, Large tridiagonal and block tridiagonal linear systems on vector and parallel computers, Parallel

Comput. 5 (1987) 45–54.
[184] H.A. van der Vorst, High performance preconditioning, SIAM J. Sci. Statist. Comput. 10 (1989) 1174–1185.
[185] H.A. van der Vorst, ICCG and related method for 3-D problems on vector computers, in: D. Truhlar (Ed.),

Workshop on Practical Iterative Methods for Large Scale Computations, Minneaopolis, MN, October 23–25, 1988,
Comput. Phys. Comm. 53 (1989).

[186] H.A. van der Vorst, Bi-CDSTAB: a fast and smoothly converging variant of Bi-CG for the solution of
non-symmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

[187] H.A. van der Vorst, C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra Appl. 1
(1994) 369–386.

[188] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.
[189] R.S. Varga, Factorization and normalized iterative methods, in: R.E. Langer (Ed.), Boundary Problems in Di�erential

Equations, University of Wisconsin Press, Madison, 1960, pp. 121–142.
[190] P.K.W. Vinsome, ORTHOMIN: an iterative method solving sparse sets of simultaneous linear equations, Proceedings

of the Fourth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, 1976, pp. 149–159.
[191] C. Vuik, H.A. van der Vorst, A comparison of some GMRES-like methods, Linear Algebra Appl. 160 (1992)

131–162.
[192] E.L. Wachspress, CURE, a generalized two-space-dimension multigroup coding for the IBM-704, Technical Report

KAPL-1724, Knolls Atomic Power Laboratory, Schenectady, New York, 1957.
[193] E.L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Equations of Reactor

Physics, Prentice-Hall, Englewood Cli�s, NJ, 1966.
[194] T. Washio, K. Hayami, Parallel block preconditioning based on SSOR and MILU, Numer. Linear Algebra Appl. 1

(1994) 533–553.
[195] J.W. Watts III, A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation

pressure equation, Soc. Petroleum Eng. J. 21 (1981) 345–353.
[196] R. Weiss, Error-minimixing Krylov subspace methods, SIAM J. Sci. Comput. 15 (1994) 511–527.

Y. Saad, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 1–33 33

[197] R. Weiss, A theoretical overview of Krylov subspace methods, in: W. Sch�onauer, R. Weiss (Eds.), Special Issue
on Iterative Methods for Linear Systems, Applied Numerical Methods, 1995, pp. 33–56.

[198] R. Weiss, Parameter-Free Iterative Linear Solvers, Akademie, Berlin, 1996.
[199] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1992.
[200] O. Widlund, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J. Numer. Anal.

15 (1978) 801–812.
[201] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[202] J.H. Wilkinson, C. Reinsch, Handbook of Automatic Computation, Linear Algebra, Vol. II, Springer, New York,

1971.
[203] D.M. Young, Iterative methods for solving partial di�erential equations of elliptic type, Ph.D. Thesis, Harvard

University, Cambridge, MA, USA, 1950.
[204] D.M. Young, On Richardson’s method for solving linear systems with positive de�nite matrices, J. Math. Phys. 32

(1954) 243–255.
[205] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
[206] D.P. Young, R.G. Melvin, F.T. Johnson, J.E. Bussoletti, L.B. Wigton, S.S. Samant, Application of sparse matrix

solvers as e�ective preconditioners, SIAM J. Sci. Statist. Comput. 10 (1989) 1186–1199.
[207] S.-L. Zhang, GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems,

SIAM J. Sci. Comput. 18 (1997) 537–551.
[208] Z. Zlatev, Use of iterative re�nement in the solution of sparse linear systems, SIAM J. Numer. Anal. 19 (1982)

381–399.

Journal of Computational and Applied Mathematics 123 (2000) 35–65
www.elsevier.nl/locate/cam

Eigenvalue computation in the 20th century
Gene H. Goluba ; 1, Henk A. van der Vorstb; ∗

aSCCM, Stanford University, Stanford, USA
bDepartment of Mathematics, Utrecht University, P.O. Box 80.010, 3508 TA, Utrecht, The Netherlands

Received 5 March 2000

Abstract

This paper sketches the main research developments in the area of computational methods for eigenvalue problems
during the 20th century. The earliest of such methods dates back to work of Jacobi in the middle of the 19th century.
Since computing eigenvalues and vectors is essentially more complicated than solving linear systems, it is not surprising
that highly signi�cant developments in this area started with the introduction of electronic computers around 1950. In
the early decades of this century, however, important theoretical developments had been made from which computational
techniques could grow. Research in this area of numerical linear algebra is very active, since there is a heavy demand for
solving complicated problems associated with stability and perturbation analysis for practical applications. For standard
problems, powerful tools are available, but there still remain many open problems. It is the intention of this contribution
to sketch the main developments of this century, especially as they relate to one another, and to give an impression of
the state of the art at the turn of our century. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F15; 65N25

Keywords: QR; QZ; Lanczos’ method; Arnoldi’s method; Jacobi–Davidson; Power iteration; RKS; Jacobi’s method;
SVD; Perturbation theory

1. Sources

Numerical linear algebra is a very active �eld of research. Many problems are challenging of
themselves, and in addition, much of scienti�c computing depends critically in one way or another
on numerical linear algebra algorithms. Not only do the more classical scienti�c computational
models for physical or engineering problems depend on linear algebra kernels, but many modern
applications, such as information retrieval and image restoration, pro�t from numerical linear algebra

∗ Corresponding author.
E-mail addresses: golub@sccm.stanford.edu (G.H. Golub), vorst@math.uu.nl (H.A. van der Vorst).
1 The work of this author was completed under a grant from the DOE: DE-FG03-97ER35330.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00413-1

36 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

results. These factors have motivated numerical linear algebra research throughout the entire 20th
century.
The �eld has blossomed, especially since the introduction of the modern computer, roughly from

the early 1950s. This is evident from the large number of scienti�c journals in which articles
in this area appear: SIAM J. on Matrix Analysis and Applications (SIMAX), Linear Algebra
and its Applications (LAA), Numerical Linear Algebra with Applications (NLAA), are completely
devoted to this specialty. Articles on numerical linear algebra, theoretical as well as applied, regularly
appear in journals such as BIT, SIAM J. Numerical Analysis, SIAM J. on Scienti�c Computing,
J. on Computational and Applied Mathematics, J. Applied Numerical Mathematics, Numerische
Mathematik, Numerical Algorithms, Mathematics of Computation, Parallel Computing, ACM
Transactions on Mathematical Software, Computing, J. Inst. Math. Applic., SIAM Review, IMA
J. Num. Anal., and several others in more application oriented directions, such as J. Computational
Physics and engineering journals. And from, for instance, the bibliography in Golub and Van Loan’s
book [51], one can see how many papers are referenced from these and other sources. A quick glance
through the contents of the average 60 papers per year in SIMAX shows that roughly 40% of the
papers are associated with eigenvalue problem research, and it is likely that this holds more or less
for the many papers per year that focus on numerical linear algebra.
This makes any attempt to write a complete overview on the research on computational aspects

of the eigenvalue problem a hopeless task. It also serves as an excuse for the incompleteness in the
current overview. We have tried to highlight what seemed most important from our point of view.
We have included references to main sources, and we have made a personally colored selection of
references to more specialized details. Instead of trying to give an overview of all sorts of di�erent
approaches that have been followed to solve aspects of eigenproblems, we will try to emphasize the
history of those methods that, in our opinion, still play a role. Our aim is to consider the algorithmic
developments from a historical point of view and to indicate how the recent powerful techniques
are the result of many smaller steps. This will also help to show how many of the algorithms are
interrelated; we hope not to get lost in sidesteps. The reader who is interested in methods that have
played a role but that are at present no longer considered to be on the main track, is referred to
Householder’s and Wilkinson’s books [64,154]. In addition, Parlett [100] gives interesting historical
information on older methods that still have some signi�cance from a theoretical point of view.
In order to be active in this area of research, or to be informed about special aspects, then one

might be interested in our main sources:

• Wilkinson: The Algebraic Eigenvalue Problem [154].
• Householder: The Theory of Matrices in Numerical Analysis [64].
• Wilkinson and Reinsch: The Handbook [158].
• Parlett: The Symmetric Eigenvalue Problem [100].
• Stewart and Sun: Matrix Perturbation Theory [129].
• Watkins: Fundamentals of Matrix Computations [150].
• Golub and Van Loan: Matrix Computations [51].
• Chatelin: Spectral Approximation of Linear Operators [18].
• Saad: Numerical Methods for Large Eigenvalue Problems [116].
• Demmel: Applied Numerical Linear Algebra [28].
• Trefethen and Bau: Numerical Linear Algebra [137].

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 37

• Arpack Guide (Lehoucq, Sorensen and Yang) [81].
• Dongarra et al.: Numerical Linear Algebra for High Performance Computers [31].
• Bai’s paper in Numerical Lin. Alg. with Appl. [6].
• Watkin’s paper in SIAM Review [151].
• Dongarra and Walker on Software [33].
• Wilkinson: State of the Art overview [157].
• van der Vorst and Golub: State of the Art paper [50].

By regularly examining the dedicated numerical linear algebra journals, one should be able to trace
most of the relevant and interesting papers for further investigations and research.
It should be noted that we have concentrated on algebraic eigenvalue problems in this paper. For

eigenvalue problems related to, for instance, PDEs, one may use methods that exploit the nature
of the PDE or the expected behaviour of the solution. We have not considered such specialized
techniques (of which multigrid is a good example).

2. Introduction

The eigenvalue problem for square matrices A, that is the determination of nontrivial solutions of
Ax = �x, is a central topic in numerical linear algebra. It is inherently nonlinear and this leads to
many computational problems. Computation of the eigenvalues � via the explicit construction of the
characteristic equation

det(A− �I) = 0
is, except for very special cases, not an option since the coe�cients of the characteristic equa-
tion cannot be computed from determinant evaluations in a numerically stable way. And even if
the characteristic equation could be determined accurately, then the computation of its roots, in �nite
precision, may be highly unstable since small perturbations in the coe�cients may lead to large
perturbations of the roots. The numerical computation of the associated eigenvectors and general-
ized eigenvectors is even more delicate, in particular when eigenvectors of A make small angles
with each other. In the limiting case, when the matrix is defective, A can be reduced to the Jordan
canonical form, but arbitrary small perturbations in A may yield a nondefective matrix. This leads to
many challenging numerical questions, which give rise to the central problem: how can we compute
eigenvalues and eigenvectors in an e�cient manner and how accurate are they?
In fact, this was already recognized by Jacobi, who, in 1846, computed the eigenvalues of sym-

metric matrices by rotating the matrix to a strongly diagonally dominant one. We will return to this
later, since Jacobi’s techniques are still relevant and have led to popular and powerful algorithms.
Another longstanding method that is of great signi�cance and serves as the basis for many algo-

rithms is the Power iteration. The method is based on the idea that if a given vector is repeatedly
applied to a matrix, and is properly normalized, then ultimately, it will lie in the direction of the
eigenvector associated with the eigenvalues which are largest in absolute value. The rate of con-
vergence for the Power iteration depends on the ratio of the second largest eigenvalue (in absolute
value) to the largest eigenvalue (in absolute value) and for many applications this leads to unac-
ceptably slow convergence. The method can be problematic if one wants to compute a number of

38 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

extremal eigenvalues. The Power iteration is still in use, but most frequently as (implicit) part of
more e�cient techniques, e.g., Krylov methods, inverse iteration, QR-method.
What becomes clear is that all these methods are of an iterative nature, and this is necessarily

the case, since if there were a method of computing the eigenvalues of an nth-order matrix in a
�nite number of computations, depending only on n, then this would be in contradiction with the
fundamental theorem of Abel–Ru�ni (and also a well-known result in Galois theory) that no such
algorithm exists for the computation of the roots of a general polynomial of degree greater than
4. Hence, an algorithm for a matrix with a general structure (that is, not a diagonal matrix or a
triangular matrix or alike) is necessarily iterative and the problem is to identify iterative algorithms
which have a fast rate of convergence and lead to accurate results.
In solving an eigenvalue problem there are a number of properties that need be considered. These

greatly a�ect the choice of algorithm. We list below a number of questions that an investigator needs
to consider in solving a particular problem.

• Is the matrix real or complex?
• What special properties does the matrix have?
◦ symmetric,
◦ Hermitian,
◦ skew symmetric,
◦ unitary.

• Structure?
◦ band,
◦ sparse,
◦ structured sparseness,
◦ Toeplitz.

• Eigenvalues required?
◦ largest,
◦ smallest in magnitude,
◦ real part of eigenvalues negative,
◦ sums of intermediate eigenvalues.
As well as the standard eigenproblem, there are a variety of more complicated eigenproblems,

for instance Ax = �Bx, and more generalized eigenproblems like Ax+ �Bx+ �2Cx=0, higher-order
polynomial problems, and nonlinear eigenproblems. All these problems are considerably more com-
plicated than the standard eigenproblem, depending on the operators involved. However, as the
standard eigenproblem has become better understood, in a numerical sense, progress has been made
in the other problems and we will consider developments in solving these problems.

3. Canonical forms

The standard approach for the numerical solution of the eigenproblem is to reduce the operators
involved to some simpler form, that yields the eigenvalues and eigenvectors directly, for instance,

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 39

diagonal form. The idea is that the transformation be made with orthogonal operators as often as
possible, in order to reduce the e�ects of perturbations.
The easiest situation is the symmetric case: for a real symmetric matrix, there exists an orthogonal

matrix Q, so that QTAQ = D, where D is a diagonal matrix. The diagonal elements of D are the
eigenvalues of A, the columns of Q are the corresponding eigenvectors of A.
Unsymmetric matrices do not in general have an orthonormal set of eigenvectors, and may not

have a complete set of eigenvectors, but they can be transformed unitarily to Schur form:

Q∗AQ = R;

in which R is upper triangular. In fact, the symmetric case is a special case of this Schur decom-
position, since a symmetric triangular matrix is clearly diagonal. Apart from the ordering of the
eigenvalues along the diagonal of R and the sign of each column of Q, the matrix Q is unique.
Van Dooren [146] has described an algorithm for the orthogonal transformation of Q, so that the
eigenvalues appear in prescribed order along the diagonal of R. If the eigenvalues are distinct then
there exists a nonsingular matrix X (in general not orthogonal), that transforms A to diagonal form

X−1AX = D:

An unsymmetric matrix can be transformed to Jordan form by a nonsingular matrix X . This
Jordan matrix may have upper bidiagonal blocks along the diagonal. Each of these blocks has
identical eigenvalues and the upper bidiagonal elements are equal, and most often set to 1. The
numerical computation of the Jordan form is highly unstable, since a small perturbation su�ces
to obtain a matrix with di�erent eigenvalues (and possibly a complete eigenvector system). Small
angles between (some of) the eigenvectors reveal that A is close to a matrix that is similar to a
nondiagonal Jordan form. For a discussion on how to compute elementary Jordan blocks (with the
help of the singular value decomposition), see the 1976 paper by Golub and Wilkinson [52].
Just as the Jordan canonical form describes the eigenstructure of a matrix, the Kronecker form

does this for matrix pencil A − �B, even for rectangular A and B. For details on this we refer
to papers by Wilkinson [155,156,143], and K�agstr�om [66]. The latter has also developed software
for the computation of the Kronecker structure [67]. Wilkinson, in his discussion on the progress
made in the period 1976–1986 in eigenvalue computations [157], noted that the Jordan canonical
and Kronecker canonical forms were largely regarded as irrelevant by numerical analysts because
of their ill-posedness. He even stated: “Many felt that I should have ignored the Jordan canonical
form in the Algebraic Eigenvalue Problem [154] and I had misgivings about including a discussion
of it”. Since the 1970s, this has changed, and contributions have been made by many, including
Demmel, Beelen, Van Dooren, Chaitin-Chatelin, Edelman, K�agstr�om, Nichols, Kautsky, Golub, and
Wilkinson. Although serious attempts have been undertaken for the computation of the Kronecker
canonical form, by for instance K�agstr�om and Van Dooren, this still needs further research. Also the
computation of invariant subspaces of highly nonnormal matrices is still in its infancy, notwithstand-
ing useful contributions by, for instance, Chaitin-Chatelin et al. [17,12] and Lee [80]. For recent
references, see [4]. Van Dooren described, in papers published in 1981, how the Kronecker form
can be used in system control problems (input–output systems) [145,144].
Related to eigendecompositions is the singular value decomposition. Let A be a real m×n matrix,

then there exists an orthogonal m× m matrix U and an orthogonal n× n matrix V , such that
U TAV = diag(�1; : : : ; �p);

40 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

with p = min{m; n}, and �1¿�2¿ · · ·¿�p¿0. The values �i are the singular values of A, the
columns vi of V are the right singular vectors and the columns ui of U are the left singular vectors.
The number of nonzero singular values is equal to the rank of the matrix A. The singular value
decomposition (SVD) plays an important role in numerical linear algebra, for instance in the solution
of underdetermined or overdetermined linear systems.

4. Perturbation theorems

Perturbation theorems play a very essential role in computational processes for eigenproblems. As
we have remarked, eigensolvers are essentially iterative processes and many of them rest on the
principle of reducing a matrix to a special=simpler form, either diagonal or upper triangular. One has
then to decide when a matrix is su�ciently close to the appropriate ultimate form. It is important to
know what the approximation errors imply about the desired eigen information. A modern treatment
of perturbation theory for a variety of eigenproblems is given in the book by Stewart and Sun [129].
We will restrict ourselves here to what we regard as some of the most relevant results in this area.
Many theoretical results rest on the famous Gershgorin Disc Theorem, which states that the eigen-

values of a matrix A= (aij) are located in the union of circles with centre aii and radius
∑

j 6=i |aij|.
This theorem �rst appeared in a classic paper by Gerschgorin in 1931 [44]. A very useful re�nement
shows that if a group of s discs Di is isolated from the others, then this group contains precisely
s eigenvalues. In particular, if one disc is isolated then this disc contains one eigenvalue. This
particular case is of great interest, since it can be used for stopping criteria in actual computations.
Wilkinson [154] discussed the application of Gerschgorin’s theorem to various situations. He men-

tioned the discussion of useful extensions by Taussky in her 1949 paper [131]: Varga acknowledged
Taussky’s paper in his work on solving systems of linear equations by iterative methods (cf. [148]).
An important extension, using block matrices, of the Gerschgorin Theorem was given by Feingold
and Varga [38].
The eigenvalues depend continuously on the elements of A and if the ith eigenvalue �i is distinct,

then it is even di�erentiable. In this case one can carry through a �rst-order perturbation analysis
(cf. [129, p. 185]). This leads to the observation that if a matrix A is perturbed by �A, then the
perturbation to �i is in �rst order of terms of �A given by

��i =
1
y∗
i xi
y∗
i �Axi;

where xi, and yi are the normalized right and left eigenvectors, respectively, corresponding to �i, and
y∗
i denotes the complex conjugate of yi. The factor 1=y

∗
i xi is referred to as the condition number

of the ith eigenvalue. The Bauer–Fike result (1960) [9], which is actually one of the more famous
re�nements of Gershgorin’s theorem, makes this more precise: the eigenvalues �̃j of A + �A lie in
discs Bi with centre �i, and radius n(‖�A‖2=|y∗

i xi|) (for normalized xi and yi).
The Courant–Fischer minimax theorem is the basis of many useful results. For a symmetric matrix

A with ordered eigenvalues �n6 · · ·6�26�1 it states that the eigenvalues are the stationary values
of the Rayleigh quotients:

�k = max
dim(S) = k

min
0 6= y∈S

y∗Ay
y∗y

;

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 41

for k = 1; 2; : : : ; n. Some important consequences are the following.
For symmetric matrices, Weyl in 1912 proved an important property for symmetric perturbations

�A:

|�̃i − �i|6‖�A‖2:
In fact, Weyl gave even more detailed results in terms of the eigenvalues of A and of �A: let the
eigenvalues of �A be denoted by �n6 · · ·6�26�1, then the eigenvalues �̃i of A+ E satisfy

�k + �n6�̃k6�k + �1:

These inclusion formulas were later re�ned to, in Parlett’s terminology, a blizzard of results, in-
dependently obtained by Kahan (1957) 2 and Weinberger (1974) [153]. See Parlett’s book [100,
Chapter 10.6] for an expos�e of these results. It is interesting to note that by 1990 the theory had
evolved to such an extent that Weyl’s result and the Kato–Temple results could be left as exercises
in Stewart and Sun’s book [129, p. 210–211]. This illustrates a rich and powerful framework.
Another important property that plays a big role in iterative (projection type) algorithms, is the

interlace property. Let Ar denote the leading r × r minor of A, with eigenvalues �(r)j , then

�(r+1)r+1 6�
(r)
r 6�

(r+1)
r 6 · · ·6�(r+1)2 6�(r)1 6�

(r+1)
1 :

An important result, that underlies the powerful divide and conquer method, comes from rank-one
perturbations. If B = A+ �ccT, with ‖c‖2 = 1, and real �¿0, then the ith eigenvalue of B is in the
interval [�i, �i−1], for �60 it is in [�i+1; �i]. In either case, there exist nonnegative �1; : : : ; �n with∑

i �i = 1, such that �i(B) = �i + �i�.
Further details and results can be found in most books on the (numerical) eigenproblem; in

particular Wilkinson’s book [154] is a great source. A good overview of these results and similar
results for invariant subspaces is given in [51]. From a result formulated as the Kato–Temple theorem,
one can obtain sharp bounds for the Rayleigh quotients for symmetric matrices. This rests on work
of Temple (1933) [132] and Kato (1949) [70]; more extended work in this direction has been done
by Davis and Kahan (1970) [27] (see also [18, p. 46], [28, Chapter 5.2]). In these results the gap
for the ith eigenvalue plays an essential role: gap(i; A) ≡ minj 6=i|�j − �i|. A small gap indicates a
sensitive eigenvector. In particular, let x denote a normalized vector with Rayleigh quotient �=xTAx,
and residual r=Ax−�x. Then there is a (normalized) eigenvector qi, corresponding to �i, for which

|�i − �|6 ‖r‖22
gap(i; A)

; sin(�)6
‖r‖2

gap(i; A)
;

where � denotes the angle between x and qi. These results show the superior quality of a Rayleigh
quotient from a given subspace. It is exploited in modern iterative methods, such as the Lanczos
algorithm, but it is also essential in the QR algorithm. Related to the perturbation analysis for
Rayleigh quotients is work of Kaniel (1966) [69] for errors in the Ritz approximations computed in
the Lanczos process. For a comprehensive discussion of this, see [100, Chapter 12].

2 According to Parlett [100, p. 203], who also mentions unpublished (?) results of Weinberger (1959).

42 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

5. Jacobi’s method

For our discussion of the Jacobi method, we have used the following sources: [154, Chapter 5],
[100, Chapter 9], [51, Chapter 8.4]. The Jacobi method which was originally proposed in 1846 [65],
reduces a real symmetric matrix to diagonal form by a sequence of plane rotations. Jacobi, however,
did not use the method to full convergence, as was done in the 20th century, but combined it with an
iterative process (Gauss–Jacobi iterations) for the missing component of the desired eigenvector (for
which he took a unit vector as an initial guess). Actually, Jacobi’s technique may be viewed as a
form of preconditioning for the Gauss–Jacobi iteration that he also used to solve linear least-squares
systems. This has escaped the attention of most researchers that were active with Jacobi’s method;
the exception seems to be Bodewig [2, pp. 280–287]. The preconditioning part of the method, as an
iterative technique to diagonalize a matrix, was reinvented in 1949 by Goldstine et al. and published
in a manuscript. After Ostrowski had pointed out that this was actually a rediscovery of Jacobi’s
method, 3 the adapted manuscript was published only in 1959 [46]. 4 According to Wilkinson [154,
p. 343] Jacobi’s method was already being used independently on desk computers at the National
Physical Laboratory in 1947. From 1950 on, the method got much attention. In the classical process,
the maximal o�-diagonal element is annihilated, and this guarantees convergence. Since it is a
time-consuming process to determine the maximal element after each rotation, cyclic procedures
were suggested, (cf. [54]). Later, threshold strategies were developed in order to avoid wasting time
in trying to annihilate tiny elements [105]. Quadratic convergence for the cyclic Jacobi algorithm
was proven, under various assumptions, by Henrici (1958) [59], Sch�onhage (1961) [119], Wilkinson
(1962) [154], and van Kempen (1966) [147]. This rate of convergence sets in after a number of
sweeps (that is (n − 1)n=2 elementary rotations), but there is no rigorous bound on the number of
sweeps required to achieve a speci�ed accuracy. Brent and Luk [14] argued that this number is
proportional to log(n), which is in line with Parlett’s remark [100, p. 181] that after three or four
sweeps through all the o�-diagonal elements convergence is usually very rapid.
The success of the Jacobi method for diagonalizing a symmetric matrix by orthogonal similarity

transformations inspired many investigators to �nd a similar method for nonsymmetric matrices.
It was quickly realized that the Schur form was the appropriate decomposition. John Greenstadt,
in 1955 [53], was one of the earliest investigators to develop such a method (indeed, Greenstadt
made von Neumann aware of this canonical form). Unfortunately, these earliest attempts were not
successful. The QR method, that gained more popularity somewhat later, can be viewed, however, as
a Jacobi like method, since it can produce the Schur form via a sequence of similarity transformations
composed of rotations.
Rutishauser made an Algol60 implementation of Jacobi’s process, as a contribution to the Wilkin-

son Reinsch collection [158]. In the 1960s, the popularity of the method declined, because of the
growing popularity �rst of the Givens method and slightly later, the Householder method: these latter
two methods �rst reduced the matrix to tridiagonal form and then used an e�cient procedure for
computing the eigenvalues of the tridiagonal matrix. Interest in the Jacobi returned with the advent

3 Michele Benzi brought to our attention that this story is narrated on p. 294 in Goldstine’s book The Computer from
Pascal to von Neumann, Princeton University Press, 1972; it is also nicely covered in the Master Thesis of Anjet den
Boer [30] on the history of Jacobi’s method.

4 Parlett [100, p. 184] dates the reinvention in 1946, by Bargmann et al. [7], but this is presumably a misprint.

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 43

of parallel computers, starting with a paper of Sameh (1971) [118], and followed by others in the
1980s. Variants of Jacobi’s method were proposed; we mention the extensions for normal matrices,
by Paardekooper in 1971 [96], and to nonnormal matrices by Eberlein, in 1970 [36]. The latter pro-
cess was also part of the Wilkinson and Reinsch collection (the Algol60 procedure eigen). In order
to improve data locality for distributed memory computers, block Jacobi methods were suggested,
see Bischof [10] for a discussion on the inuence of the solution of the subproblems on the overall
process.
Another interesting feature of the Jacobi method is its superior behaviour with respect to accuracy.

Wilkinson analysed this and showed that the relative error in the eigenvalue approximations is
eventually reduced to the order of the condition number of A times machine precision. This was
perfected in 1992, by Demmel and Veseli�c [29], who showed that for symmetric positive-de�nite
matrices, the condition number of A could be replaced by that of the matrix symmetrically scaled
by the diagonal. If one is satis�ed with less accuracy, then for large-scale computations, Jacobi’s
method is no longer regarded as competitive, not even for modern parallel computers.

6. Power method

For our discussion of the Power method, we have borrowed material from Householder’s book
[64]. The Power method, for general square matrices, is the simplest of all the methods for solving for
eigenvalues and eigenvectors. The basic idea is to multiply the matrix A repeatedly by a well-chosen
starting vector, so that the component of that vector in the direction of the eigenvector with largest
eigenvalue in absolute value is magni�ed relative to the other components. Householder called this
Simple Iteration, and attributed the �rst treatment of it to M�untz (1913). Bodewig [2, p. 250]
attributes the power method to von Mises [149], and acknowledges M�untz for computing approximate
eigenvalues from quotients of minors of the explicitly computed matrix Ak , for increasing values
of k. For a careful analytic treatment of the Power method, Householder acknowledged work by
Ostrowski and Werner Gautschi; the reader can �nd a fairly complete treatment in Wilkinson’s book
[154] together with the proper references. The speed of convergence of the Power iteration depends
on the ratio of the second largest eigenvalue (in absolute value) to the largest eigenvalue (in absolute
value). In many applications this ratio can be close to 1 – this has motivated research to improve the
e�ciency of the Power method. It is interesting that the most e�ective variant is the inverse Power
method, in which one works with the matrix (A − �I)−1, and this variant was proposed as late as
1944 by Wielandt (Wielandt’s fractional iteration). Wielandt also proposed continuing the process
after the largest eigenvalue has converged, by working with the deated matrix A− �vv∗, for which
�; v is the computed eigenpair (with ‖v‖2 = 1), associated with the largest eigenvalue in magnitude.
(The deation procedure outlined here is for symmetric matrices. For unsymmetric matrices it is
necessary to work with at least two vectors; the choice of one of the vectors may not be unique.)
This is called implicit deation; another possibility is to keep the iteration vectors orthogonal to the
computed eigenvector(s): explicit deation. A compact description and analysis of these deation
techniques was given by Parlett [100]. The Power method and the Inverse Power method, in their
pure form are no longer competitive methods even for the computation of a few eigenpairs, but
they are still of interest since they are explicitly or implicitly part of most modern methods such as
the QR method, and the methods of Lanczos and Arnoldi. These methods evolved in some way or

44 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

another from the Power method and some of the techniques that were suggested as improvements
to the Power method are still in use as acceleration techniques for modern iterative methods. One
of these ideas is to work with polynomials of A, with the purpose of damping unwanted parts of
the spectrum.
Another possibility is working with properly updated shifts � in the inverse process and, in

particular, if one takes the Rayleigh quotient with the most recent vector as a shift, then one obtains
the Rayleigh quotient iteration. According to Parlett [100, p. 71], Lord Rayleigh used in the 1870s
a less powerful technique: he did a single shift-and-invert step with a Rayleigh quotient for an
eigenvector approximation, but with a unit vector as the right-hand side. (This saves the refactoring
of the matrix (A − �I) at each iteration.) The modern RQI, in which one takes the most current
eigenvector approximation as the right-hand side, leads to very fast convergence. Ostrowski, in a
series of six papers [95], studied the convergence properties for variance of RQI for the symmetric
and unsymmetric case. He was able to establish cubic convergence in both cases under various
circumstances (in the unsymmetric case for a properly generalized Rayleigh quotient). These results
are essential for the understanding of modern iterative techniques that are based on (approximate)
shift-and-invert strategies (for example, the Jacobi–Davidson method, see below).
A step forward was to work with a set of independent vectors in order to �nd a number of

eigenvectors, instead of the deation procedure suggested by Wielandt. A problem with the Power
method is the determination of eigenvalues that have equal modulus, for instance, �nding a conjugate
pair of eigenvalues of a real unsymmetric matrix. It is therefore quite natural to work with a couple of
independent vectors: this was �rst suggested in 1937 by Horst [62]. The next step that seems logical,
in hindsight, is to force the vectors to be independent. This was initially done (cheaply) by Gaussian
transformations by Bauer [8] in 1957, and led to Treppeniteration. If the set of vectors is denoted
as a matrix Ls (an n by s unit lower-triangular matrix), then one forms ALs and factors the resulting
matrix, by Gaussian transformations, as Ls+1Rs+1. If the eigenvalues are distinct, then the s× s upper
triangular matrix Rs+1 converges, for increasing s, to a matrix whose eigenvalues are those of the
dominant subspace on its diagonal. Rutishauser [111] made the important observation that if we
factor A as A = LR (again L unit lower triangular), then the similar matrix L−1AL = L−1LRL = RL.
He proposed decomposing RL again, and repeating this process in an iterative fashion. This R
also converges to an upper triangular matrix, and L is a unit matrix. This is the LR method of
Rutishauser. The correspondence between Treppeniteration and LR is that if we start Treppeniteration
with a unit full matrix, then in exact arithmetic we obtain the same matrices R in the process. For an
e�cient implementation, the matrix A is �rst reduced to an upper Hessenberg matrix. The LR method
maintains this form throughout the process, and this makes LR computationally very attractive.
Rutishauser’s observation that permuting the factors of the matrix is equivalent to performing a
similarity transformation was a key step. Wilkinson [154, p. 485] commented: “In my opinion its
development (i.e. of LR) is the most signi�cant advance which has been made in connection with
the eigenvalue problem since the advent of automatic computers”. However, Bauer’s technique
could be applied to a smaller set of starting vectors and it does not modify the matrix A. For this
reason, in the words of Householder [64, p. 195], it is self-correcting. This seems to imply that
Treppeniteration leads to more accurate results.
Since orthogonal reduction techniques often evidence superior stability properties, it became ap-

parent that the LR factorization should be replaced by a QR factorization. This leads to one of
the most popular and powerful methods of our time for eigenvalue problems: the QR method for

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 45

computing all of the eigenvalues and associated eigenvectors of a dense symmetric matrix. (In fact,
the QR method has essential enhancements that make the method really powerful; we will discuss
this in another section.)
With the number of vectors less than n, this Power method in combination with QR orthogonal-

ization is known as the Simultaneous Iteration method; Rutishauser studied this method in 1969
[112], see also [113]. Its convergence behaviour for general unsymmetric matrices was studied by
Stewart [126] in 1976. Stewart also developed a subroutine, based on simultaneous iteration, for the
computation of a dominant invariant subspace. This routine, SRRIT [127], was further improved in
1992, and made available for general use through Netlib [5].
The collection of vectors generated by the Power method de�ne Krylov subspaces of increasing

dimension. This motivated Krylov to try to determine the characteristic polynomial of a matrix by
inspecting the dependence of a full set of these vectors. This procedure may fail because the system
of equations is highly ill-conditioned but this can be repaired by orthogonalizing each new vector to
the previous vectors and applying A onto the last constructed vector. This iteration process is known
as the Lanczos method for symmetric matrices, and Arnoldi’s method for unsymmetric matrices. We
will discuss these Krylov methods below.
Our presentation might suggest that the Krylov methods have overshadowed the Simultaneous

Iteration method, and for most situations this is indeed the case. Parlett, however, [100, p. 289]
described situations where Simultaneous Iteration is still competitive. For instance, if we can store
only a limited number of n-vectors in fast memory, or if the relative gap between the desired
eigenvalues and the others is great, then Simultaneous Iteration is very useful.

7. Reduction algorithms

Early computational techniques, other than Jacobi’s famous but slowly converging diagonalization
method, and the unsatisfactory Power method with its many restrictions, attempted to exploit the
fact that every matrix satis�es its characteristic equation. To this end, Krylov suggested in 1931
[73], using the vectors x; Ax; A2x; : : : ; generated by the Power method, to determine the coe�cients
of the characteristic equation. This was not successful, because, as we have learned from Wilkin-
son’s analysis [154] the roots of a polynomial may vary widely with only tiny perturbations to the
coe�cients of the polynomial. Even rounding the exact coe�cients in oating point arithmetic may
destroy much accuracy in many of the roots. Although Krylov’s method failed, his name is still
attached to the subspace generated by the Power method.
There is yet another reason for the failure of Krylov’s method in �nite precision arithmetic:

the vectors generated by the Power method tend to converge in the direction of the eigenvectors
associated with the dominating eigenvalues. Hence, the computed vectors for the subspace necessarily
yield a very ill-conditioned basis. Checking mutual dependence of this basis, as is required in order
to construct the characteristic polynomial, is an almost impossible task.
An early attempt to reduce the matrix A to a form that lends itself better for solving the char-

acteristic equation was suggested by Hessenberg [60]. He suggested to compute a modi�ed Krylov
basis by making a set of basis vectors for the Krylov subspace, orthogonal to a given test-set, for
instance the canonical basis vectors. This led to a reduction of A to upper Hessenberg form. This
technique is very close to the techniques by Lanczos and Arnoldi.

46 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

In 1950, Lanczos [78] suggested building a basis for the Krylov subspace in a more stable way
by orthogonalizing the vectors as they are constructed. The idea was to immediately orthogonalize
the new vector for the Krylov subspace with respect to the already existing orthonormal basis. The
di�erence with Hessenberg’s approach is that Lanczos (and slightly later also Arnoldi) took the
Krylov vectors themselves for the test-set.
The new vector for expansion is created by applying A to the latest orthogonal basis vector. For

symmetric matrices A, this leads to a three-term recurrence relation between the basis vectors vj and
in exact arithmetic this can be formulated as

AVj = VjTj + jvj+1eTj+1:

Obviously, this recursion must terminate for some j6n, in which case Vj forms the basis for an
invariant subspace of A, and the eigenvalues of the tridiagonal matrix Tj are the eigenvalues of A
with respect to this invariant subspace. This algorithm is equivalent to the well-known algorithm of
the Dutch mathematician Stieltjes for generating orthogonal polynomials by a three-term recurrence
relationship. Lanczos also proposed a reduction process for unsymmetric matrices A, the so-called
two-sided Lanczos process. In this process two sets of basis vectors are constructed, one for the
Krylov subspace with A and one for a Krylov subspace with AT. By requiring biorthogonality of the
two sets, the two bases can be used for reduction of A to tridiagonal form. This form has su�ered
from many drawbacks. Not only are the reduction matrices nonorthogonal, a suspect property, but
the algorithm also su�ers from various break-down conditions. (The basic problem lies in the fact
that the measure generated by the initial vectors is not nonnegative). The symmetric variant did
not become popular in the 1950s, since it was soon recognized that rounding errors could spoil
the process dramatically. Wilkinson [154] showed that the Lanczos algorithm is highly (forward)
unstable and there seemed to be no way of stabilizing the process other than re-orthogonalizing the
generated vectors. He showed this process is comparable to the methods of Householder or Givens
(proposed in the late �fties), but the latter are more economical. He then concluded: “it is di�cult
to think of any reason why we should use Lanczos’ method in preference to Householder’s”. This
illustrates that the Lanczos method was commonly viewed as a direct reduction method at that time,
and from that point of view Wilkinson’s remarks were quite correct.
At about the same time as Lanczos, Arnoldi (1951) [1] gave a reduction algorithm for unsymmet-

ric matrices. This was basically the same algorithm as Lanczos’ algorithm for symmetric matrices,
with the di�erence that each new basis vector had to be orthogonalized with respect to all previous
basis vectors. In this way A is reduced by an orthogonal similarity transformation to upper Hessen-
berg form. Arnoldi’s method su�ers far less from numerical instability, depending on how well the
orthogonalization process is carried out. But the method is more expensive than the Householder
reduction, making it less attractive, as a direct method, for large (dense) matrices.
A very important notion was the recognition that matrices could be reduced, by orthogonal trans-

formations, in a �nite number of steps, to some special reduced form that lends itself more ef-
�ciently to further computations. In particular, a symmetric matrix can be reduced to tridiagonal
form by Jacobi-rotations, provided that these rotations are restricted to annihilate entries of A out-
side its tridiagonal part. This was suggested by Givens in 1954 [45], and in this connection the
Jacobi-rotations are also called Givens rotations. A few years later, Householder, in 1958 [63], dis-
covered that complete columns of A could be reduced to zero, outside the tridiagonal part, by the
more e�cient Householder reections. These are well-chosen orthogonal rank-one updates of the

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 47

form (
I − 2

vTv
vvT
)
;

these are discussed in [139]. The Householder method has become the method of choice for the
reduction of matrices to tridiagonal form on serial computers. Thus for eigenproblems, a symmetric
matrix can be reduced by orthogonal similarity transformations to tridiagonal form and unsymmetric
matrices can be transformed to upper Hessenberg form.
By 1960, the eigenvalue problem for a symmetric tridiagonal matrix was solved by using the Sturm

sequence property for successive subdeterminants. 5 The corresponding eigenvectors were solved
by inverse iteration. The whole process is described in Givens’ papers. A complete and thorough
analysis for the Givens and Householder reductions and for the use of the Sturm sequences, is given
in Wilkinson’s book, which was the numerical linear algebra bible (Old Testament) for a long time.
As we have already shown in the section on the Power method, the QR method is, for determining

the complete set of eigenvalues and eigenvectors, a superior technique. At the time that Wilkinson’s
book appeared, the blossoming of the QR method had just begun. Wilkinson devoted much attention
to this method, but not as the method of choice for symmetric problems. We quote from Parlett [100,
p. 172]: “Yet it was not invented until 1958–1959 and was not appreciated until the mid-1960s. The
key idea came from Rutishauser with his construction of a related algorithm called LR in 1958”.
Whereas Wilkinson’s book was the reference for eigenvalue problems in the period 1960–1980,
after 1980, Parlett’s book The Symmetric Eigenvalue Problem became the main source, at least for
symmetric problems. Comparison of the two books clearly shows the progress made in this �eld.
The use of the QR (a mathematical equivalent is the QL algorithm) algorithm began with the work

of Francis, [40] who recognized in 1961–1962 that a QR iteration maps a Hessenberg matrix to a
Hessenberg matrix again, and this makes the process economical and also adds to stability since the
zero elements need not be computed. Furthermore, Francis cleverly implicitly used origin shifts, and
these can be carried out very economically for Hessenberg matrices. Kublanovskaja, in 1961 [74],
also independently discovered the same process, but did not employ the invariance of the Hessenberg
form. She deeply understood the mathematical aspects of the algorithm but was less concerned with
the important computational details. The inclusion of Wilkinson shifts eventually makes the process
very e�cient, and for these shifts it can be proved that, for symmetric matrices, the process does
not fail. The order of convergence for symmetric matrices is cubic (see, for instance, [61]), while
for unsymmetric matrices it is quadratic [51,28]. These results rest on work of Ostrowski carried
out in connection with the shift-and-inverse Power method (the RQI method, see that section). For
a treatment of modern implementations of the QR method see [51, Chapter 7] or Demmel’s book
[28, Section 4:4:5]. These implementations incorporate techniques developed in the 1990s, such
as (multiple) implicit shifts. This implicit shift technique leads to a rank-one perturbation of the
Hessenberg structure, and this perturbation can be removed in its turn by a technique that is known
as chasing the bulge: the perturbation (bulge) is chased down (and out of) the Hessenberg matrix
with (double) Givens transformations. These chasing techniques were analysed in 1991 by Watkins
and Elsner [152]. An important and complete overview of the practical QR algorithm can be found
in [151].

5 This shows that working with the characteristic equation, if not explicitly constructed, is not a bad idea in some
situations.

48 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

With respect to the relation between the QR and the Lanczos algorithms, we note the following.
Lanczos’ method focusses on one particular starting vector; QR starts with a full orthogonal basis
and keeps it orthogonal through the Power iterations; the inclusion of shifts does not destroy the
structure of the Hessenberg matrix. With Lanczos’ method, a shift only makes sense in damping
unwanted parts of the spectrum, but one cannot vary the shift during the process.
By 1970 the standard numerical eigenproblem, for dense matrices of not too large order, could

be regarded as essentially solved and research shifted to larger problems and other eigenproblems.
The next important problem to consider was the generalized eigenproblem Ax−�Bx=0. An obvious
approach is to transform this to a standard eigenproblem by inverting either A or B, or to work
with more complicated transformations, such as the Cayley Transform: (A− �B)−1(A− �B). These
approaches share the disadvantage that matrices A and B are not treated in the same way, which
is most obvious from the simple transformation B−1A. This leads to problems if B is singular or
ill-conditioned, but as Stewart (1980) has pointed out, this does not necessarily mean that the given
eigenproblem is ill-conditioned because if A is well-conditioned then the pencil B − �A may be
well behaved (small perturbations in A and B lead to small perturbations in �. In Stewart’s analysis
the matrices are treated symmetrically; in particular he suggests considering the pencil �A− �B, and
regarding multiples of (�; �), for which the determinant |�A−�B| vanishes, as generalized eigenpairs;
see [129, Chapter VI] for more details. This approach, of course, requires a di�erent reduction and
this is accomplished by the Generalized Schur Decomposition, proposed by Moler and Stewart in
1973. This says that for arbitrary square A and B there exist unitary Q and Z such that Q∗AZ = T
and Q∗BZ = S are upper triangular. For real matrices, the arithmetic can be kept real, but then the
reduced matrices are quasi-triangular (that is 2 × 2 nonzero blocks along the diagonal may occur).
Moler and Stewart [91] also proposed a stable algorithm to accomplish the reduction to (quasi)
triangular form and this is known as the QZ algorithm. Major modern software packages include
software for the QZ algorithm. For perturbation analysis, we refer to Stewart and Sun [129].
After the 1970s, the eigenproblem for dense matrices of moderate order seemed to be solved and

further improvements were not expected, especially for symmetric dense matrices. However, with
the ever increasing demand for higher e�ciency and=or better accuracy, things changed from time
to time. In 1981, Cuppen [25] proposed a divide and conquer algorithm for the solution of the
eigenproblem for symmetric tridiagonal matrices. The idea was to split the tridiagonal matrix in two
blocks, each of half the original size, plus a rank-one update. Cuppen showed how the eigenproblems
for each of the blocks could be combined for the original full problem by exploiting the rank-one
update property, which led to the solution of a secular equation. Initially, this approach was not seen
as a competitive algorithm by itself for general matrices of modest dimensions, although Cuppen
recognized that his algorithm was asymptotically (much) faster than QR. Further investigations by
others were made on account of promising parallel properties. A major problem was that the original
algorithm su�ered from instabilities, especially for the eigenvectors belonging to close eigenvalues.
Some scaling problems were recti�ed by Dongarra and Sorensen in 1987 [32], but the “right”
implementation, according to Demmel [28, Section 5:3:3] was not discovered until 1992 and published
in 1995, by Gu and Eisenstat [55]. Meanwhile, software for this algorithm found its way into
LAPACK and ScaLAPACK. As stated by Demmel again, the divide and conquer approach is now
the fastest algorithm for computing all eigenvalues and eigenvectors of a symmetric matrix of order
larger than 25; this also holds true for nonparallel computers. If the subblocks are of order greater
than 25, then they are further reduced; else, the QR algorithm is used for computing the eigenvalues

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 49

and eigenvectors of the subblock. For a full treatment of the modern variant of the divide and
conquer method, we refer to Demmel’s book [28]. A recent discussion on parallel implementation
aspects of this method can be found in [134].
There are still niches for other methods for dense symmetric matrices. Wilkinson advocated the

bisection method for tridiagonal matrices if only a small subset of the eigenvalues is wanted. Inverse
iteration may then be used to determine the corresponding eigenvectors. For the bisection method,
based on the Sturm sequence property, the reader may �nd classical material in [154], a modern
treatment of the inverse iteration (considered suspect by many because of the ill-conditioning of the
shifted matrix) can be found in [100].

8. Iterative methods

Soon after its introduction in 1952, it was recognized that the Lanczos method was not a panacea
for eigenproblems. The method showed strange behaviour, because of rounding errors, and in an
inuential paper by Engeli et al. in 1959 [37], it was shown by careful experiments that the theoretical
�nite termination within n steps, had no practical meaning. For a discretized biharmonic problem of
order 64, they observed that hundreds of steps where necessary in order to obtain the 64 eigenvalues
(together with extraneous other values). Wilkinson also analyzed the method and showed that it
was forward unstable, which seemed to mark more or less the end of the Lanczos method. It was
Paige, who showed in 1971 [97] that the Lanczos method could be used in a truly iterative way
in order to obtain correct eigenvalue information. The crux of his analysis is that the observed
loss of orthogonality in the Lanczos process, the source of all problems in the method, marked the
convergence of an eigenpair; and most remarkably, it did not prevent convergence of other eigenpairs.
This loss of orthogonality, by the re-introduction of components of the converged eigenvector to
the process, led to duplication of the converged eigenpair in the reduced tridiagonal matrix. The
main e�ect on the convergence of the left eigenpairs seemed to be some delay in the process in
exact computation. Paige’s analysis spurred much activity in this �eld and eventually the Lanczos
method became a powerful tool and the method of choice for large sparse symmetric matrices,
from 1980 on.
We mention the following major steps that led to improvements in the method, and to a bet-

ter understanding. Parlett and Scott [103] proposed removing the delaying e�ects on convergence
by a selective orthogonalization process for the Lanczos vectors. Also, the determination of con-
verged eigenvalues became easier to identify by e�ciently computing upper bounds for the residual
of an eigenpair. Kaniel (1966) [69] derived upper bounds for the error in an eigenvalue approxi-
mation (the so-called Ritz values, the eigenvalues of the reduced tridiagonal matrix). These upper
bounds have no direct practical implication, since they are in terms of unknown quantities asso-
ciated with the matrix, such as gaps between eigenvalues relative to the span of the eigenvalues.
However, these upper bounds are, in a general sense, rather sharp and can be used for the study of
the convergence behaviour of the Ritz values. Later, Saad (1980) [114] re�ned these upper bounds.
The convergence behaviour of Ritz values can be quite irregular; a temporary (almost) stagnation of
the process can take place (also called misconvergence). Many of these e�ects were studied carefully,
and explained, in a paper by Van der Sluis and Van der Vorst [142], through a rather complicated
model for the Ritz values. This model, however, seemed to be necessary in order to show all the

50 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

intricate dependencies in the apparently simple Lanczos process. In their paper, it is also shown that
the convergence behaviour of the Ritz values is superlinear. No matter how irregular the rate of
convergence may seem, on average it becomes faster as the iteration proceeds. Parlett also studied
the so-called (occasional) misconvergence of the Ritz values [101]. His model is simpler, but does
not explain all e�ects, such as the possible length of the stagnation phase. An algorithm ready for
implementation was published by Parlett and Reid [102]; this algorithm computes upper bounds for
the errors in the Ritz values, and exploits the fact that we have to compute these for successive
tridiagonal matrices. We are not aware of a publicly available implementation, although we know
that the process has been implemented for local use.
Note that, strictly mathematically speaking, the Lanczos process is �nite and thus it is not correct to

use a notion such as “convergence” or even “superlinear convergence”. However, in �nite precision
and for large values of the order of the matrix, the Ritz values will become close to an eigenvalue
and for practical purposes the method behaves like a truly convergent process.
In our discussion of the Power method, we showed how the use of a set of starting vectors arose

quite naturally. This is also possible for the Lanczos (and Arnoldi) method, and this approach leads
to block and banded Lanczos (and Arnoldi) methods [47,141,108].
For unsymmetric matrices it took longer for similar methods to gain popularity. An inuential

paper, that helped to promote Arnoldi’s method as a useful tool, was published by Saad [115]. The
Arnoldi method, for orthogonal reduction to upper Hessenberg form, was not only too expensive
if one wanted to know only a few eigenpairs, it also su�ered from poor convergence for speci�c
eigenvalue distributions. Well-known is the Saad–Schultz example [117], which is a permuted identity
matrix. The method leads to trivial approximations after the �rst n − 1 steps, and after n steps all
eigenpairs suddenly appear. This however, is at a much higher cost than for Householder’s reduction.
For this reason, the unsymmetric Lanczos process, also referred to as the two-sided Lanczos method,
received some attention. Initially, the method was notorious for its break-down possibilities, its
behaviour in �nite precision arithmetic, and the fact that the reduction operators to tridiagonal form
are nonorthogonal. Cullum and Willoughby, in 1986 [24], presented a code based on the two-sided
Lanczos method, in which they solved a number of practical problems; this included a clever trick
for identifying the spurious eigenvalues due to rounding errors. The code gained some popularity, for
instance for plasma-physics eigenvalue computations [21]. Parlett and co-workers [104] introduced
the concept of “look-ahead”, mainly in order to improve the numerical stability of the process. The
look-ahead strategy, introduced in order to prevent breakdown, was further perfected by Freund
and Nachtigal, in 1996 [41]. They published a code based on quasi-minimization of residuals, and
included look-ahead strategies, in which most of the original Lanczos problems were repaired (but
the non-orthogonal reductions were still there). Gutknecht [57] published a thorough theoretical
overview of the two-sided Lanczos algorithm and exploited its relation to Pad�e approximations. This
gave a better understanding of look-ahead strategies and the convergence behaviour of the method
(in the context of solving linear systems). Block variants of the two-sided Lanczos process were
discussed in Day’s Ph.D. thesis in 1993; for a further description of the algorithms see [3].
Almost simultaneously, there were e�orts to make the Arnoldi method more practical. We men-

tion �rstly polynomial preconditioning, discussed extensively in Saad’s book [116], which damps
unwanted parts of the spectrum, and secondly, sophisticated restarting strategies. The method be-
comes e�ective for matrices for which shift-and-invert operations can be applied for given vectors.
But the many (increasingly expensive) iterations for relevant problems were a bottleneck. A real

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 51

breakthrough for the Arnoldi method was realized by Sorensen [125], in 1991, with the so-called
Implicit Restart Technique. This is a clever technique by which unwanted information can be �l-
tered away from the process. This leads to a reduced subspace with a basis, for which the matrix
still has a Hessenberg form, so that Arnoldi’s process can be continued with a subspace (rather than
with a single vector as with the more classical restart techniques).
The Arnoldi iteration procedure is often carried out with the shift-and-invert approach. For in-

stance, when solving the generalized eigenproblem Ax = �Bx, the method is applied to the operator
(A − �B)−1B. One step further is the Cayley transform (A − �B)−1(A − �B), which can be used
for emphasizing eigenvalues (near �) and for damping of eigenvalues (near �). Both techniques
require expensive operations with an inverted operator, but the advantage is much faster conver-
gence. Meerbergen and Roose [89] considered the use of inexact Cayley transforms, realized by a
few steps of an iterative method, for Arnoldi’s method. This technique bears a close relation to
polynomial preconditioning. Ruhe [110] considered a more general shift-and-invert transform, and
so-called Rational Krylov Subspace (RKS) Method:

(�jA− jB)−1(�jA− �jB);
in which the coe�cients may be di�erent for each iteration step j. It has been shown that by
generating a subspace with this operator, the given problem can be reduced to a small projected
generalized system

(�Kj; j − �Lj; j)s= 0;
where Kj;j and Lj; j are upper Hessenberg matrices of dimension j. This small system may be solved
by the QZ algorithm in order to obtain approximate values for an eigenpair. The parameters in RKS
can be chosen to obtain faster convergence to interior eigenvalues. For a comparison of RKS and
Arnoldi, see [110,109].
In 1975, Davidson, a chemist, suggested an iterative method that had the idea of projection on

a subspace in common with the Arnoldi method, but with the subspace chosen di�erently. Moti-
vated by the observation that the matrices in his relevant applications were (strongly) diagonally
dominant, Davidson computed the Ritz pairs (the eigenpairs of the projected matrix), computed the
residual r = (A − �I)z for a pair of interest (�; z), and proposed expanding the subspace with the
vector (DA−�I)−1r (after proper orthogonalization with respect to the current subspace). The matrix
DA denotes the diagonal of the matrix A. For diagonally dominant matrices this approximates, in
some sense, inverse iteration with Rayleigh quotient shifts. The Davidson method [26] became quite
popular for certain applications. Although other approximations were suggested (see, e.g., [93]),
its convergence behaviour for nondiagonal dominant matrices, or for poor initial starting vectors,
was far from guaranteed. It was also puzzling that the “optimal” expansion (A − �I)−1r, optimal
from the inverse iteration point of view, led to the vector z, so that the method stagnated. As a
consequence, Davidson’s method was not able to �nd the eigenvalues of a diagonal matrix, a very
unsatisfactory situation. The method was not very well understood by numerical analysts and as a
consequence we �nd very little reference to it in the numerical analysis literature. Only after 1990,
is there some serious analysis [20], almost simultaneously with a successful improvement of the
method.
In 1996, Sleijpen and van der Vorst [121] suggested restricting the expansion of the current

subspace to vectors from the space orthogonal to z, which restored a largely forgotten technique

52 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

used by Jacobi (in 1846). Jacobi took an appropriate unit vector for z, and attempted to �nd the
missing component to make it an eigenvector from the space spanned by the remaining n− 1 unit
vectors. He did this by solving a correction equation for the matrix shifted by � and then restricted the
correction to the subspace orthogonal to the chosen unit vector. This correction equation was solved
by Gauss–Jacobi iterations and after each two iterations, Jacobi updated the value for �. Sleijpen and
van der Vorst suggested updating z as well and using the update vector for a subspace. This new
Jacobi–Davidson method combined Davidson’s idea of taking a di�erent subspace with Jacobi’s idea
of restricting the search of an update to z⊥. We refer to Sleijpen and van der Vorst [121] for details.
A variant of the technique, in which the correction is approximately solved with one single invert step
with a preconditioner, was suggested by Olsen et al. in 1990 [94]. An exact solution of the correction
equation, or an approximate solution of high accuracy, leads to cubic convergence for a properly
selected sequence of �’s if A is symmetric, and to quadratic convergence in the unsymmetric case.
In the following years, it became clear how to e�ciently implement the method with preconditioning
[122] and how it could be applied to various other eigenproblems, amongst which are generalized
eigenprobelms [39] and quadratic eigenproblems [123]. Thus, the transformation of these generalized
eigenproblems to standard forms can be avoided. The Jacobi–Davidson method is attractive for large
sparse eigenproblems for which shift-and-invert operations are too expensive, and for more unusual
eigenproblems. The problem of identifying e�ective preconditioners for the correction matrix for
larger classes of matrices is still largely open.
It is well-known that subspace methods lead to eigenvalue approximations that tend to converge

towards exterior eigenvalues and that approximations for interior eigenvalues are di�cult to obtain.
In principle, it is easy to obtain these by working with A−1, but this may be expensive. It is also
possible to obtain eigenvalue approximations that converge (slowly) to the eigenvalues of A closest
to the origin, from the subspaces generated by A. We explain this for the Arnoldi process. The
Arnoldi process leads to

AVm = Vm+1Hm+1;m;

where Hm+1;m is an upper Hessenberg matrix with m+ 1 rows and m columns. This means that we
have a basis for the space with basis vectors Avj and, using the above relation, this basis can be
easily transformed into an orthogonal basis. This orthogonal basis can be used for the projection of
A−1, and multiplication by the inverse can be avoided, since all basis vectors have a factor A in
common. The exterior eigenvalues of the projected A−1, that is the inverses of interior eigenvalues
of A, converge (slowly) to the exterior eigenvalues of A−1. This way of approximating interior
eigenvalues has received some attention in the 1990s. In [98], these eigenvalue approximations,
in connection with the related Lanczos process, were called Harmonic Ritz values, and some nice
relations for Harmonic Ritz values for symmetric inde�nite matrices are given in that paper. Harmonic
Ritz values had already been studied from a di�erent viewpoint by other authors. Freund [42] studied
them as the zeros of the GMRES and MINRES iteration polynomials. Morgan [92] had observed
that the Harmonic Ritz values and vectors are very suitable for restarting purposes if one wants to
compute interior eigenvalues with subspaces of restricted dimension. In [121,120], the Harmonic Ritz
values are considered in connection with the Jacobi–Davidson process for the selection of proper
shifts.

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 53

9. Related topics

9.1. The singular value decomposition

The singular value decomposition plays an essential role in many situations in which we want to
decide between relevant and less relevant information. In addition to traditional applications such
as regularization of linear least-squares problems, and the determination of the numerical rank of a
matrix, there are applications to the reduction of information for images and information retrieval
from large data bases. A headline contribution to the SIAM News by Berry and Dongarra, summer
1999, showed that the SVD can even help to reduce work in the organization of a conference.
Interesting and unusual applications are also shown in a paper by Moler and Morrison [90]. A
modern treatment of the numerical aspects of the SVD can be found in Golub and Van Loan’s
textbook [51] and we have taken most of our information from that source. Demmel [28] gives a
good treatment of the important implementational aspects of the SVD.
Since the square of the singular values and the right singular vectors are the eigenpairs for the

matrix ATA (for the left singular vectors this holds with AAT), it is not surprising that the numerical
treatment of the SVD has many relationships to algorithms for symmetric eigenproblems. This is
most visible in Demmel’s book, where the discussion on modern SVD algorithms almost parallels
the symmetric eigenvalue problem discussion [28, p. 211 and 241]. We note here that working
directly with either ATA or AAT is not satisfactory for stability and complexity reasons, and this
makes separate treatment of the numerical SVD necessary.
The origins of the singular value decomposition go back to the late 19th century, with work of

Beltrami in 1873. Stewart [128] gave a historic overview of the SVD. The important numerical
developments on the SVD started with work of Golub and Kahan in 1965 [49]. This led �rst to
a contribution to the famous ACM-collection as Algorithm 358 [15] and later to the basis of the
EISPACK and LAPACK routines in the Wilkinson–Reinsch collection [158, pp. 1334–1351]. The
key trick in the numerical computation of the SVD is, instead of tridiagonalizing ATA, to bidiagonal-
ize the matrix A. Then, with the bidiagonal reduced forms obtained by orthogonal transformations,
one can make variants of QR, divide and conquer, and bisection techniques. The choice between
these techniques can be made as above for the symmetric eigenproblem. In particular, for matrices
of order larger than 25, the divide and conquer approach is currently regarded as the fastest option
[28, p. 241].

9.2. Nonlinear eigenproblems and related problems

Standard and generalized eigenproblems arise, for instance, in the study of conservative mechan-
ical systems, governed by Lagrange’s equations of small free motion. According to Rogers [106],
Rayleigh (in 1873) could not apply his technique for nonconservative systems (systems with a
damping term). The well-known technique for the numerical solution of the resulting quadratic
eigenproblem is to rewrite it as a generalized eigenproblem [43,77]. That is

�2Mx + �Cx + Kx = 0

is equivalent to

Az = �Bz

54 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

with

A=
[
0 I
−K −C

]
; B=

[
I 0
0 M

]
; z =

[
x
�x

]
:

Of course, algorithms and theory for the generalized eigenproblem can be used directly, but the
unsatisfactory aspect of this is that we have to double the dimension of our spaces. Also, if the
generalized eigenproblem is solved approximately by some iteration technique, then it is not straight
forward to reduce the information from the double-dimensioned space to the original space. Du�n
[34] seemed to be the �rst to generalize the Rayleigh–Ritz principle for the quadratic eigenproblem
for symmetric K; C, and M , and A positive de�nite. Since then, the quadratic eigenproblem, and
higher-order polynomial problems, have received attention in the numerical literature. Rogers [106],
in 1964, considered a more general quadratic eigenproblem and used minimax principles for the
investigation of such problems. In the late 1960s and early 1970s algorithms that avoid the lin-
earization step appeared. We mention the work of Lancaster [77], Kublanovskaja [75,76], and Ruhe
[107]. The suggested algorithms are mostly variants of Newton’s method. More recently, in 1995,
Guo et al. [56] described several iterative methods, that can be regarded as a �xed point iteration
combined with the Lanczos method and a (simpli�ed) Newton iteration. A backward error analysis
for more general polynomial eigenproblems was given by Tisseur (1998 [133]), and a perturbation
analysis for quadratic problems was published by Sun in 1999 [130]. In a paper that appeared in
1996, Sleijpen et al. [120] showed that the Jacobi–Davidson method could be applied in order to
reduce a given polynomial problem in an n-dimensional space to a similar problem in a much lower
m-dimensional space. The problem in the lower dimensional space can then be attacked by any of
the previously mentioned approaches. For a quadratic equation from an accoustic problem, it was
shown how this approach led successfully and e�ciently to the desired eigenpair, for matrices of
the order of about 240,000 [123]. For higher polynomial eigenproblems there has not been much
experience to date. Bai [6] mentioned the need for algorithms for �fth-order polynomial eigenprob-
lems in a review paper that appeared in 1995. Quite recently, in 1998, Heeg [58] showed how the
Jacobi–Davidson approach could be successfully applied to fourth-order polynomial eigenproblems
with complex matrices in the study of instabilities of attachment-line ows for airfoils.
Other than these polynomial eigenproblems, there is a wide variety of problems that are associated

with the determination of invariant subspaces. Since the standard and generalized eigenproblems
became more familiar and more or less routinely solvable, the more di�cult problems received
more attention. Among these problems we mention the following; the Procrustes problem: minimize
‖AY − YB‖F for given A and B over the manifold Y ∗Y = I ; the determination of a nearest Jordan
structure, and the problem of determining a simultaneous Schur decomposition for a set of perturbed
matrices (under the assumption that the unperturbed matrices have a simultaneous Schur form). A
nice overview of such problems, as well as software for the numerical solution is described by
Edelman and Lippert [83].

9.3. Pseudospectra

Eigenvalues are often used as a source of information on stability or convergence, and the question
arises as to the validity of the information gained from these values. For example, during the 1990s
it was realized (see, e.g., [138]) that eigenvalues alone do not govern the instability and transition to

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 55

turbulence of high Reynolds number uid ows as had previously been thought. Many authors have
studied the problem of sensitivity of the eigenvalues with respect to perturbations, see for instance
[154,129,19]. These studies are usually related to perturbations caused by rounding errors, and not
so much by the relevance of the eigenvalues due to the particular representation of a given problem,
for instance the choice of basis.
Around 1987, Trefethen [140] began to emphasize this aspect of eigencomputations. He propagated

the idea of inspecting the pseudospectra of a matrix as a relatively simple means for determining
the signi�cance of a particular part of the spectrum, without getting involved in complicated matters
such as angles between eigenvectors or eigenspaces. 6 The de�nition of the pseudospectrum ��(A)
for a matrix A is directly related to perturbations:

��(A) ≡ {z ∈ C: z ∈ �(A+ E) for some E with ‖E‖6�}:
The pseudospectra are usually shown graphically as a set of level curves for various values of
�. The level curves, or contour integrals, are more apparent from the original de�nition of the
�-pseudospectrum, in terms of the norm of the resolvent (zI − A)−1:

��(A) ≡ {z ∈ C: ‖(zI − A)−1‖¿�−1}
with the convention ‖(zI − A)−1‖=∞ for z ∈ �(A).
For symmetric matrices, the pseudospectra of A is a collection of discs around the eigenvalues of

A (note that the perturbation E need not be symmetric). For unsymmetric matrices the pseudospectra
can be any collection of curves around the set of eigenvalues of A. These level curves may give
information that is hidden by the information provided by the eigenvalues themselves. For instance,
when studying stability of integration methods for systems of ODEs, or in bifurcation problems,
the eigenvalues may be in a proper region, for instance, in the left-half plane, while the level
curves, even for small values of �, may intersect with the right-half plane. This suggests that it
may be necessary to ask further questions about the problem. On the other hand, the pseudospectra
may not tell the full story. For instance, the sensitivity problems may be due to a single pair of
ill-conditioned eigenvectors for which the more global level curves are too pessimistic. It may be the
case that it is not realistic to assume equal perturbations for all matrix entries, but nevertheless the
pseudospectra focus attention on critical places in the spectrum. A nice introduction to the relevance
of pseudospectra is given in [135], where the pseudospectra are actually computed and discussed for
a number of matrices.
Due to the nature of computing pseudospectra, this useful tool is often restricted to matrices of

relatively moderate size and one has to be careful in generalizing the insights gained from smaller
problems to larger problems which are similar. More recently, tools have become available for
computing the pseudospectrum of large sparse matrices. Carpraux et al. [16] proposed an algorithm
for computing the smallest singular value of zI − A, that is based on Davidson’s method using ILU
preconditioning. Lui [84] (see also [13]) suggested using the Lanczos method in combination with
continuation techniques. This is a plausible approach, since we need to do the computation for many
values of z, well-distributed over the region of interest, in order to obtain a complete picture of
the pseudospectra. We know that currently such tools are being used for the analysis of instability
problems of large sets of ODEs, related to climate modelling, but results have not yet been published.

6 The notion had been de�ned by others earlier, the earliest of them, according to Trefethen, being Landau [79].

56 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

Valuable information on pseudospectra can also be derived from the Arnoldi iteration obtained, for
instance, with ARPACK [81]. For an up-to-date overview on pseudospectra results, see Trefethen’s
1999 paper [136].

9.4. Homotopy methods

The subspace methods that we have discussed above are often applied in combination with shift-
and-invert operations. This means that if one wants to compute eigenvalues close to a value �,
then the methods are applied to (A− �I)−1. As we have seen, the Jacobi–Davidson method can be
interpreted as an inexact shift-and-invert method, since the invert step is usually approximated by a
few steps of some convenient preconditioned inner iteration method.
Another method related to these inexact shift-and-invert approaches is the homotopy approach

which has received some attention in the 1990s. The idea is to compute some of the eigenvalues
of a perturbed matrix A + E, when the eigenvalues of A are known, or can be relatively easily
computed. In order to this we use the homotopy H (t) = A + tE; 06t61. If eigenpairs of H (t0)
are known, then they are used as approximations for those of H (t0 + �t). These approximations
are improved by a convenient subspace iteration (cf. [85]). Rayleigh quotient iterations are used for
symmetric A and E (see references in [85] for earlier work on homotopy for eigenproblems). For
the Rayleigh quotient iteration one needs to solve systems like (H (t0 +�t)− �I)y= x, where (�; x)
represents the current approximation for an eigenpair of H (t0 + �t). In the context of large sparse
matrices, it may be undesirable to do this with a direct solver, and in [85] the system is solved with
SYMMLQ [99]. Of course, one could restrict oneself to only a few steps with SYMMLQ, and then
try to accelerate the inexact Rayleigh quotient steps, as is done in the Jacobi–Davidson method. This
indicates relations between these di�erent approaches, but as far as we know, these relations have not
yet been explored. In [85], it is observed that SYMMLQ may have di�culty in converging for the
nearly singular system (H (t0+�t)−�I)y=x, and it is suggested that the situation would be improved
by applying the Rayleigh quotient iteration to the approximately deated matrix H (t0 + �t) + xxT.
(The term approximately deated is used to indicate that x is only an approximation to the desired
eigenvector.) Note that similar deation procedures are incorporated in the Jacobi–Davidson process.
The whole procedure is repeated for successive increments �t, until the �nal value t=1 is reached.
In [85] an elegant approach is followed for the selection of the step size �t.
The homotopy approach lends itself quite naturally to situations where the matrix A varies in time,

or where it varies as a linearization of a nonlinear operator, as in bifurcation problems. Another
example of an interesting problem is the Schr�odinger eigenvalue problem [85]

−�u+ fu= �u
in the unit square in two dimensions with homogeneous Dirichlet boundary conditions. With the
usual �nite di�erence approximations on a uniform grid, this leads to the discrete Laplacian for
−�u, for which we know the eigensystem.
In [159], the homotopy approach is used for symmetric generalized eigenproblems, very much

along the lines sketched above. The application to real unsymmetric eigenproblems is considered in [86].
In [82], the homotopy approach is suggested as a means of realizing a divide and conquer method

for unsymmetric eigenproblems, as an alternative for the solution of the secular equation for sym-
metric problems (which cannot be used for unsymmetric problems).

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 57

9.5. Miscellaneous

Subspace methods such as Simultaneous Iteration, RQI, Lanczos, Arnoldi, and Davidson for large
sparse systems are in general more powerful in combination with shift-and-invert techniques. This
requires the solution of large sparse linear systems, since these methods only need operations with, for
instance, (A−�I) in order to compute matrix vector products (A−�I)−1v. This has led to the question
of how accurately these operations have to be carried out in order to maintain a reasonable rate of
convergence. For instance, for the Power method, this approximation technique, or preconditioning,
can be described as follows for the standard eigenproblem Ax=�x. For each iteration one computes,
for the current iteration vector x(i) the Rayleigh quotient �(i) =x(i)∗Ax(i)=x(i)∗x(i). Instead of computing
x(i+1) with Ax(i), the defect r = Ax(i) − �(i)x(i) is computed and this defect is multiplied by the
preconditioner K . The new vector x(i+1) is then computed as a normalized linear combination of xi

and Kr. Note the resemblance to Davidson’s approach.
The convergence of this basic algorithm, including its use for the generalized eigenproblem, has

been studied quite extensively in the Russian literature, starting in about 1980 in the work of
D’yakonov [35] and others. Knyazev [72] gave an excellent overview of the work in the Russian
literature on preconditioned eigensolvers. The study of these preconditioned iteration techniques is
relevant also to the understanding of inexact, or preconditioned, forms of shift-and-invert Lanczos
(proposed by Morgan and Scott [93]), inexact Arnoldi (work by Meerbergen [87]) and Davidson vari-
ants, including the Jacobi–Davidson method. A presentation of various iteration techniques including
preconditioning was given by Knyazev in [71]. Smit [124, Chapter 4] studied the e�ect of approxi-
mate inverses on the convergence of the RQI method. For a discussion on inexact Krylov methods,
see Meerbergen and Morgan [88]. Preconditioning in relation to the Jacobi–Davidson method is dis-
cussed in [122]. Note that in all these algorithms, the preconditioner is used for the computation of
a promising new direction vector; the given eigenproblem is untouched. This is di�erent from the
situation with linear solution methods, where preconditioning is used to transform the given system
to one that can be handled more e�ciently.

10. Software

The history of reliable high-quality software for numerical linear algebra started with the book
edited by Wilkinson and Reinsch, the Handbook for Automatic Computation, Vol. 2, Linear Al-
gebra, published in 1971. This book contained a number of articles that had appeared previously
in Numerische Mathematik, which described state-of-the-art algorithms for the solution of linear
systems and eigenproblems. All these articles contained implementations in Algol60. Most of these
algorithms are still alive albeit in other languages. Algol60 was a computer language that gained
some popularity in academia, mostly in Europe, but it was not as fast as Fortran on most machines
and it did not gain a foothold in the slowly emerging large industrial codes (the majority of which
were written in Fortran or even in assembler language). For this reason, groups in the USA started
the development of two inuential software packages LINPACK and EISPACK in the early 1970s.
These packages started as transcriptions of the major part of the Wilkinson and Reinsch collection:
LINPACK covered the numerical solution of linear systems; EISPACK concentrated on eigenvalue
problems. The most prominent omissions from these packages were iterative solution methods: the

58 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

conjugate gradient method was not included in LINPACK and the Jacobi method was not included
in EISPACK. At that time the Lanczos and Arnoldi methods were not even considered as candidates,
because they were viewed either as direct methods, and in that sense not competitive with the then
available methods, or as iterative methods that could not be safely automated [68]. The Lanczos
method was only considered, in that time, as a safe iterative method provided one did complete
re-orthogonalization (cf. [48]).
The “Wilkinson and Reinsch” procedures can also be viewed as prototypes for eigenvalue routines

in the bigger software packages NAG and IMSL, and in the widely available software package
MATLAB. EISPACK was replaced in 1995 by LAPACK, in the words of Golub and Van Loan
(1996): “LAPACK stands on the shoulders of two other packages (viz: LINPACK and EISPACK)
that are milestones in the history of software development”. A more recent development along these
lines in ScaLAPACK [11] which aims to provide close to optimal software for modern parallel
computers.
We have already mentioned MATLAB in passing; the impact of this computing environment in

the scienti�c computing world has been tremendous. MATLAB provides state-of-the-art software for
all sorts of numerical linear algebra computations and has become the de facto standard for coding
and testing in the 1990s. Its impact on the development of this �eld can hardly be overestimated.
As already indicated, in 1970 there were few robust and well-understood iterative methods avail-

able, and mainly for that reason, these methods were not included in the packages constructed
then. They are still not available in their successors, with the exception of MATLAB (since 1998,
MATLAB has had iterative methods for eigenproblems available). It was soon clear that the pow-
erful “direct” methods, based on reduction to some special form, had their limitations for the large
sparse matrices that occur in the modelling of realistic stability problems, and there was a heavy
demand for methods that could, at least partially, handle big problems. Cullum and Willoughby �lled
this gap, in 1985, with their software based on the two-sided Lanczos procedure [22–24]. Of course,
they realized the intricacies of the Lanczos method, and they advocated the use of iterated Rayleigh
quotient steps for improvement of the information of the Lanczos output. They also provided soft-
ware for this updating step (their software was available some years before 1985, but its publication
in book form took place in that year).
Freund and Nachtigal proposed in 1992, a variant of the two-sided Lanczos process that improved

convergence properties using a quasi minimization step; they also included sophisticated look-ahead
facilities. The QMR method could also be used for eigenvalue computations, and they provided
software through Netlib for this purpose, see QMRPACK [41]. Algorithms and software for adaptive
block-variants of the two-sided Lanczos algorithm (ABLE) have been described by Bai et al. [3].
Because of the improvements made to the Arnoldi method, in particular the implicit restart tech-

nique, it became feasible to exploit the attractive orthogonal reduction properties in an e�cient
manner. This was realized in the ARPACK software, for which the User’s guide was published, by
Lehoucq et al. in 1998 [81]. The package was in existence and available to users a few years earlier.
At present, ARPACK seems to be the default choice for large sparse eigenproblems, provided that
either it is possible to implement shift-and-invert operations e�ciently, or that unwanted parts of
the spectrum can be damped by a �xed (polynomial) preconditioner. The parallel implementation
of ARPACK is referred to as P ARPACK, it is portable across a wide range of distributed memory
platforms. The parallelism is mainly in the matrix vector products and the user has full control over
this trough the reverse communication principle. For more details, see [81,31].

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 59

K�agstr�om et al. have provided software for the generalized upper staircase Schur form. The soft-
ware, called GUPTRI, can be used for the analysis of singular pencils A−�B. This reduction admits
more general cases than the QZ decomposition, for instance A and B may be singular. This software
has been described in [4]. See also this reference for pointers to recent work by K�agstr�om.
For a thorough overview of modern algorithms, software and pointers to sources for further in-

formation see [4].

11. Epilogue

For symmetric matrices, the eigenproblem is relatively simple, due to the existence of a complete
orthogonal eigensystem, and the fact that all eigenvalues are real. These properties are exploited in
the most e�cient numerical methods, and the symmetric eigenproblem may be considered as solved:
for small matrices n625 we have the QR method, one of the most elegant numerical techniques
produced in the �eld of numerical analysis; for larger matrices (but smaller than a few thousand),
we have a combination of divide and conquer with QR techniques. For the largest matrices, there is
the Lanczos method, which in its pure form is strikingly simple but which conceals so many nice
and attractive properties. All methods have a relatively long history. The theoretical aspects of the
computations (convergence and perturbation theory) are relatively well understood.
For unsymmetric matrices the picture is less rosy. Unfortunately, it is not always possible to

diagonalize an unsymmetric matrix, and even if it is known that all eigenvalues are distinct, then it
may be numerically undesirable to do this. The most stable methods seem to be based on the Schur
factorization, that is for each n× n matrix A, there exists an orthogonal Q, so that

Q∗AQ = R;

in which R is upper triangular. Apart from permutations and signs, the matrix Q is unique. The Schur
factorization reveals much of the eigenstructure of A: its diagonal elements are the eigenvalues of
A and the o�-diagonal elements of R indicate how small the angles between eigenvectors may be.
For matrices not too large, QR is the method of choice, but for larger matrices the picture is less
clear. Modern variants of the Arnoldi method seem to be the �rst choice at the moment, and, if
approximations are available, the Jacobi–Davidson method may be attractive. There is still a lot to
investigate: if the matrix is nonnormal, that is, if the eigenvectors do not form a unitary set, then
what kind of meaningful information can we extract from a given matrix (invariant subspaces, angles
between subspaces, distance to Jordan canonical form), and how can we compute this as accurately
as possible? Much has been done, but even more remains to be done.
There are even more open problems as eigenproblems become more complicated: generalized

eigenproblems, polynomial eigenproblems, nonlinear eigenproblems, etc.
Looking back over the past century, we see that the solution of the eigenproblem has given up

some of its mysteries through the work of many devoted and highly talented researchers. Novices
in the �eld should be aware that the modern algorithms, even the apparently simple ones, are the
result of many independent “small” steps. The fact that many of these steps can now be regarded
as “small” illustrates how theory has kept up the pace with computational practice, so that new
developments can �nd their place in an expanding but still elegant framework. Astonishingly much
has been achieved, both computationally and theoretically, in a concerted e�ort, but much more

60 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

remains to be unravelled. It is our �rm belief that eigenproblem research will remain a lively and
useful area of research for a long time to come. We hope that this overview will help to motivate
young researchers to make their contributions to solving pieces of the gigantic puzzles that remain.

Acknowledgements

We wish to thank our colleagues Michele Benzi, Jan Brandts, Mark Embree, Karl Meerbergen,
Gerard Sleijpen, Nick Trefethen, and David Watkins, for their suggestions for improvements and
corrections.

References

[1] W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenproblem, Quart. Appl. Math.
9 (1951) 17–29.

[2] Z. Bai, D. Day, Q. Ye, ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems, Technical
Report Research Report 95-04, University of Kentucky, Lexington, KY, 1995.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue
Problems: a Practical Guide, SIAM, Philadelphia, PA, 1999.

[4] Z. Bai, G.W. Stewart, SRRIT — A FORTRAN subroutine to calculate the dominant invariant subspace of a
nonsymmetric matrix, Technical Report 2908, Department of Computer Science, University of Maryland, 1992.

[5] Z. Bai, Progress in the numerical solution of the nonsymmetric eigenvalue problem, Numer. Linear Algebra Appl.
2 (1995) 219–234.

[6] V. Bargmann, C. Montgomery, J. von Neumann, Solution of linear systems of high order, Technical Report,
Princeton, Institute for Advanced Study, 1946.

[7] F.L. Bauer, Das Verfahren der Treppeniteration und verwandte Verfahren zur L�osung algebraischers
Eigenwertprobleme, Z. Angew. Math. Phys. 8 (1957) 214–235.

[8] F.L. Bauer, C.T. Fike, Norms and exclusion theorems, Numer. Math. 2 (1960) 137–141.
[9] C.H. Bischof, The two-sided block Jacobi method on hypercube architectures, in: M.T. Heath (Ed.), Hypercube

Multiprocessors, SIAM, Philadelphia, PA, 1987.
[10] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,

A. Petitet, K. Stanley, D. Walker, R. Whaley, ScaLAPACK User’s Guide, SIAM, Philadelphia, PA, 1997.
[11] E. Bodewig, Matrix Calculus, North-Holland, Amsterdam, 1956.
[12] T. Braconnier, F. Chatelin, V. Frayss�e, The inuence of large nonnormality on the quality of convergence of

iterative methods in linear algebra, Technical Report TR-PA-94/07, CERFACS, Toulouse, 1994.
[13] T. Braconnier, N.J. Higham, Computing the �eld of values and pseudospectra using the Lanczos method with

continuation, BIT 36 (1996) 422–440.
[14] R.P. Brent, F.T. Luk, The solution of singular value and symmetric eigenvalue problems on multiprocessor arrays,

SIAM J. Sci. Statist. Comput. 6 (1985) 69–84.
[15] P.A. Businger, G.H. Golub, Algorithm 358: Singular value decomposition of a complex matrix, Comm. Assoc.

Comp. Mach. 12 (1969) 564–565.
[16] J.F. Carpraux, J. Erhel, M. Sadkane, Spectral portrait for non-Hermitian large sparse matrices, Computing

53 (1994) 301–310.
[17] F. Chaitin-Chatelin, Is nonnormality a serious di�culty? Technical Report TR-PA-94=18, CERFACS, Toulouse,

1994.
[18] F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, New York, 1983.
[19] F. Chatelin, Eigenvalues of Matrices, Wiley, Chichester, 1993; Masson, Paris, 1988.
[20] M. Crouzeix, B. Philippe, M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15 (1994) 62–76.
[21] J. Cullum, W. Kerner, R. Willoughby, A generalized nonsymmetric Lanczos procedure, Comput. Phys. Comm.

53 (1989) 19–48.

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 61

[22] J. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I, Birkha�user,
Boston, MA, 1985.

[23] J. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. II,
Birkha�user, Boston, MA, 1985.

[24] J. Cullum, R.A. Willoughby, A practical procedure for computing eigenvalues of large sparse nonsymmetric
matrices, in: J. Cullum, R.A. Willoughby (Eds.), Large Scale Eigenvalue Problems, Amsterdam, North-Holland,
1986, pp. 193–240.

[25] J.J.M. Cuppen, A divide and conquer method for the symmetric eigenproblem, Numer. Math. 36 (1981) 177–195.
[26] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large

real symmetric matrices, J. Comput. Phys. 17 (1975) 87–94.
[27] C. Davis, W. Kahan, The rotation of eigenvectors by a perturbation-iii, Soc. Ind. Appl. Math. J. Num. Anal.

7 (1970) 1–46.
[28] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[29] J.W. Demmel, K. Veseli�c, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13 (1992)

1204–1246.
[30] A. den Boer, De Jacobi-methode van 1845 tot 1990, Master Thesis, Department of Mathematics, Utrecht University,

1991.
[31] J.J. Dongarra, I.S. Du�, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for High-Performance

Computers, SIAM, Philadelphia, PA, 1998.
[32] J.J. Dongarra, D.C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue problem, SIAM J. Sci. Statist.

Comput. 8 (1987) 139–154.
[33] J.J. Dongarra, D.W. Walker, Software libraries for linear algebra computations on high performance computers,

SIAM Rev. 37 (1995) 151–180.
[34] R.J. Du�n, A minimax theory for overdamped networks, J. Rational Mech. Anal. 4 (1955) 221–233.
[35] E.G. D’yakonov, Iterative methods in eigenvalue problems, Math. Notes 34 (1983) 945–953.
[36] P.J. Eberlein, Solution to the complex eigenproblem by a norm-reducing Jacobi-type method, Numer. Math.

14 (1970) 232–245.
[37] M. Engeli, T. Ginsburg, H. Rutishauser, E. Stiefel, Re�ned Iterative Methods for Computation of the Solution and

the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkh�auser, Basel=Stuttgart, 1959.
[38] D.G. Feingold, R.S. Varga, Block diagonally dominant matrices in generalizations of the Gerschgorin circle theorem,

Paci�c J. Math. 12 (1962) 1241–1250.
[39] D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, Jacobi–Davidson style QR and QZ algorithms for the reduction

of matrix pencils, SIAM J. Sci. Comput. 20 (1996) 94–125.
[40] J.G.F. Francis, The QR transformation: a unitary analogue to the LR transformation, Parts I and II Comput. J.

4 1961 265–272, 332–345.
[41] R.W. Freund, N.M. Nachtigal, QMRPACK: a package of QMR algorithms, ACM Trans. Math. Software 22 (1996)

46–77.
[42] R.W. Freund, Quasi-kernel polynomials and their use in non-Hermitian matrix iterations, J. Comput. Appl. Math.

43 (1992) 135–158.
[43] F. Gantmacher, The Theory of Matrices, Vols. I and II, Chelsea, New York, 1959.
[44] S. Gerschgorin, �Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat. 6 (1931)

749–754.
[45] W. Givens, Numerical computation of the characteristic values of a real symmetric matrix, Oak Ridge National

Lab., ORNL-1574, 1954.
[46] H.H. Goldstine, F.J. Murray, J. von Neumann, The Jacobi method for real symmetric matrices, J. Assoc. Comput.

Mach. 6 (1959) 176–195.
[47] G.H. Golub, Some uses of the Lanczos algorithm in numerical linear algebra, in: J.J.H. Miller (Ed.), Topics in

Numerical Analysis, Academic Press, New York, 1973, pp. 173–184.
[48] G.H. Golub, Sparse matrix computations: Eigenvalues and linear equations, Seminaries Iria, Inst. Rech.

D’Informatique et d’Automatique, Rocquencourt, 1975, pp. 117–140.
[49] G.H. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal.

2 (1965) 205–224.

62 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

[50] G.H. Golub, H.A. van der Vorst, 150 Years old and still alive: Eigenproblems, in: I.S. Du�, G.A. Watson (Eds.),
The State of the Art in Numerical Analysis, Clarendon Press, Oxford, 1997, pp. 93–119.

[51] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.
[52] G.H. Golub, J.H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM

Rev. 18 (1976) 578–619.
[53] J. Greenstadt, A method for �nding roots of arbitrary matrices, Math. Tables Aids Comput. 9 (1955) 47–52.
[54] R.T. Gregory, Computing eigenvalues and eigenvectors of a symmetric matrix on the ILLIAC, Math. Tables Aids

Comput. 7 (1953) 215–220.
[55] M. Gu, S.C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J. Matrix

Anal. Appl. 16 (1995) 172–191.
[56] J.-S. Guo, W.-W. Lin, C.-S. Wang, Numerical solutions for large sparse eigenvalue problems, Linear Algebra Appl.

225 (1995) 57–89.
[57] M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM

J. Matrix Anal. Appl. 13 (1992) 594–639.
[58] R. Heeg, Stability and transition of attachment-line ow, Ph.D. Thesis, Universiteit Twente, Enschede, The

Netherlands, 1998.
[59] P. Henrici, On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing the eigenvalues

of Hermitian matrices, SIAM J. Appl. Math. 6 (1958) 144–162.
[60] K. Hessenberg, Au�osung linearer Eigenwertaufgaben met Hilfe der Hamilton-Cayleyschen Gleichung, Ph.D. Thesis,

Technische Hochschule, Darmstadt, 1940.
[61] W. Ho�mann, B.N. Parlett, A new proof of global convergence for the tridiagonal QL algorithm, SIAM J. Numer.

Anal. 15 (1978) 929–937.
[62] P. Horst, A method of factor analysis by means of which all coordinates of the factor matrix are given

simultaneously, Psychometrika 2 (1937) 225–236.
[63] A.S. Householder, Unitary triangularization of a nonsymmetric matrix, J. ACM 5 (1958) 339–342.
[64] A.S. Householder, The Theory of Matrices in Numerical Analysis, Dover, New York, 1964.
[65] C.G.J. Jacobi, �Uber ein leichtes Verfahren, die in der Theorie der S�acularst�orungen vorkommenden Gleichungen

numerisch aufzul�osen, J. Reine Angew. Math. 30 (1846) 51–94.
[66] B. K�agstr�om, The generalized singular value decomposition and the general A − �B problem, BIT 24 (1985)

568–583.
[67] B. K�agstr�om, RGSVD: an algorithm for computing the Kronecker structure and reducing subspaces of singular

A− �B pencils, SIAM J. Sci. Statist. Comput. 7 (1986) 185–211.
[68] W. Kahan, B.N. Parlett, How far should you go with the Lanczos process, in: J.R. Bunch, D.J. Rose (Eds.), Sparse

Matrix Computations, Academic Press, New York, 1976.
[69] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comput. 20 (1966) 369–378.
[70] T. Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan 4 (1949) 334–339.
[71] A.V. Knyazev, Preconditioned eigensolvers — an oxymoron?, Electron. Trans. Numer. Anal. 7 (1998) 104–123.
[72] A. Knyazev, Preconditioned eigensolvers, in: Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.),

Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, SIAM, Philadelphia, PA, 2000,
in press.

[73] A.N. Krylov, O cislennom resenii uravnenija, kotorym v techniceskih voprasah opredeljajutsja castoty malyh
kolebanii material’nyh sistem, Izv. Akad. Nauk SSSR. Ser. Fiz.-Mat. 4 (1931) 491–539.

[74] V.N. Kublanovskaja, On some algorithms for the solution of the complete eigenvalue problem, Zh. Vych. Mat.
1 (1961) 555–570.

[75] V.N. Kublanovskaja, On an application of Newton’s method to the determination of eigenvalues of �-matrices,
Soviet Math. Dokl. 10 (1969) 1240–1241.

[76] V.N. Kublanovskaja, On an approach to the solution of the generalized latent value problem for �-matrices, SIAM
J. Numer. Anal. 7 (1970) 532–537.

[77] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1969.
[78] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear di�erential and integral

operators, J. Res. Natl. Bur. Stand 45 (1950) 225–280.

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 63

[79] H.J. Landau, On Szeg�o’s eigenvalue distribution theory and non-Hermitian kernels, J. Anal. Math. 28 (1975)
335–357.

[80] S.L. Lee, A practical upper bound for departure from normality, SIAM J. Matrix Anal. Appl. 16 (1995) 462–468.
[81] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK User’s Guide — Solution of Large-Scale Eigenvalue Problems

with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, PA, 1998.
[82] T.-Y. Li, Z. Zeng, Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems, Math. Comput.

59 (1992) 483–502.
[83] R. Lippert, A. Edelman, Nonlinear eigenvalue problems with orthogonality constraints, in: Z. Bai, J. Demmel,

J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems:
a Practical Guide, SIAM, Philadelphia, PA, 2000, in press.

[84] S.H. Lui, Computation of pseudospectra by continuation, SIAM J. Sci. Comput. 18 (1997) 565–573.
[85] S.H. Lui, G.H. Golub, Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial

di�erential operators, Numer. Algorithms 10 (1995) 363–378.
[86] S.H. Lui, H.B. Keller, W.C. Kwok, Homotopy method for the large sparse real nonsymmetric eigenvalue problem,

SIAM J. Matrix Anal. Appl. 18 (1997) 312–333.
[87] K. Meerbergen, Robust methods for the calculation of rightmost eigenvalues of nonsymmetric eigenvalue problems,

Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1996.
[88] K. Meerbergen, R. Morgan, Inexact methods, in: Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.),

Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, SIAM, Philadelphia, PA, 1999.
[89] K. Meerbergen, D. Roose, The restarted Arnoldi method applied to iterative linear system solvers for the computation

of rightmost eigenvalues, SIAM J. Matrix Anal. Appl. 18 (1997) 1–20.
[90] C.B. Moler, D. Morrison, Singular value analysis of cryptograms, Amer. Math. Monthly 90 (1983) 78–87.
[91] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10

(1973) 241–256.
[92] R.B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl. 154–156 (1991) 289–309.
[93] R.B. Morgan, D.S. Scott, Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric

matrices, SIAM J. Sci. Statist. Comput. 7 (3) (1986) 817–825.
[94] J. Olsen, P. JHrgensen, J. Simons, Passing the one-billion limit in full con�guration-interaction (FCI) calculations,

Chem. Phys. Lett. 169 (1990) 463–472.
[95] A.M. Ostrowski, On the convergence of the Rayleigh quotient iteration for the computation of characteristic roots

and vectors I–VI, Arch. Rational. Mesh. Anal. I 1:233–241, II 2:423–428, III 3:325–340, IV 3:341–347, V 3:472–
481, VI 4:153–165, 1958–1959.

[96] M.H.C. Paardekooper, An eigenvalue algorithm for skew symmetric matrices, Numer. Math. 17 (1971) 189–202.
[97] C.C. Paige, The computation of eigenvalues and eigenvectors of very large matrices, Ph.D. Thesis, University of

London, 1971.
[98] C.C. Paige, B.N. Parlett, H.A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces,

Numer. Linear Algebra Appl. 2 (2) (1995) 115–134.
[99] C.C. Paige, M.A. Saunders, Solution of sparse inde�nite systems of linear equations, SIAM J. Numer. Anal.

12 (1975) 617–629.
[100] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cli�s, NJ, 1980.
[101] B.N. Parlett, Misconvergence in the Lanczos algorithm, in: M.G. Cox, S. Hammarling (Eds.), Reliable Numerical

Computation, Clarendon Press, Oxford, UK, 1990, pp. 7–24 (Chapter 1).
[102] B.N. Parlett, J.K. Reid, Tracking the progress of the Lanczos algorithm for large symmetric eigenproblems, IMA

J. Numer. Anal. 1 (1981) 135–155.
[103] B.N. Parlett, D.S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comput. 33 (1979) 217–238.
[104] B.N. Parlett, D.R. Taylor, Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comput.

44 (1985) 105–124.
[105] D.A. Pope, C. Tompkins, Maximizing functions of rotations: experiments concerning speed of diagonalization of

symmetric matrices using Jacobi’s method, J. ACM 4 (1957) 459–466.
[106] E.H. Rogers, A minimax theory for overdamped systems, Arch. Rational Mech. Anal. 19 (1964) 89–96.
[107] A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal. 10 (1973) 674–689.

64 G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65

[108] A. Ruhe, Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse
symmetric matrices, Math. Comput. 33 (1979) 680–687.

[109] A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems. iii. complex shifts for real matrices,
BIT 34 (1994) 165–176.

[110] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems. ii. Matrix pairs, Linear Algebra Appl.
197=198 (1994) 283–295.

[111] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, Nat. Bur. Standards Appl. Math. Ser.
49 (1958) 47–81.

[112] H. Rutishauser, Computational aspects of F.L. Bauer’s simultaneous iteration method, Numer. Math. 13 (1969)
4–13.

[113] H. Rutishauser, Simultaneous iteration method for symmetric matrices, in: J.H. Wilkinson, C. Reinsch (Eds.),
Handbook for Automatic Computation, Vol. 2, Linear Algebra, Springer Verlag, Heidelberg, 1971, pp. 284–302.

[114] Y. Saad, On the rates of convergence of the Lanczos and the block Lanczos methods, SIAM J. Numer. Anal.
17 (1980) 687–706.

[115] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear
Algebra Appl. 34 (1980) 269–295.

[116] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, UK, 1992.
[117] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
[118] A. Sameh, On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Comput. 25 (1971) 579–590.
[119] A. Sch�onhage, Zur Konvergenz des Jacobi-Verfahrens, Numer. Math. 3 (1961) 374–380.
[120] G.L.G. Sleijpen, J.G.L. Booten, D.R. Fokkema, H.A. van der Vorst, Jacobi–Davidson type methods for generalized

eigenproblems and polynomial eigenproblems, BIT 36 (1996) 595–633.
[121] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM

J. Matrix Anal. Appl. 17 (1996) 401–425.
[122] G.L.G. Sleijpen, H.A. van der Vorst, E. Meijerink, E�cient expansion of subspaces in the Jacobi–Davidson method

for standard and generalized eigenproblems, Electron. Trans. Numer. Anal. 7 (1998) 75–89.
[123] G.L.G. Sleijpen, H.A. van der Vorst, M.B. van Gijzen, Quadratic eigenproblems are no problem, SIAM News

29 (1996) 8–9.
[124] P. Smit, Numerical analysis of eigenvalue algorithms based on subspace iterations, Ph.D. Thesis, Tilburg University,

The Netherlands, 1997.
[125] D.C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl.

13 (1) (1992) 357–385.
[126] G.W. Stewart, Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices, Numer. Math.

25 (1976) 123–136.
[127] G.W. Stewart, SRRIT: a Fortran subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix,

Technical Report TR 154, Department of Computer Science, University of Maryland, 1978.
[128] G.W. Stewart, On the early history of the singular value decomposition, SIAM Rev. 35 (1993) 551–566.
[129] G.W. Stewart, Ji-Guang Sun, Matrix Perturbation Theory, Academic Press, San Diego, CA, 1990.
[130] J.G. Sun, Perturbation analysis of quadratic eigenvalue problems, Report UNINF 99.01, Dept. Comp. Science, Ume�a

University, Sweden, 1999.
[131] O. Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56 (1949) 672–676.
[132] G. Temple, The accuracy of Rayleigh’s method of calculating the natural frequencies of vibrating systems, Proc.

Roy. Soc. A 211 (1952) 204–224.
[133] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Technical Report NA-332, University

of Manchester, Manchester, UK, 1998.
[134] F. Tisseur, J. Dongarra, A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed

memory architectures, SIAM J. Sci. Comput. 20 (1999) 2223–2236.
[135] L.N. Trefethen, Pseudospectra of matrices, in: D.F. Gri�ths, G.A. Watson (Eds.), Numerical Analysis 1991,

Longman, 1992, pp. 234–266.
[136] L.N. Trefethen, Computation of pseudospectra, Acta Numer. 8 (1999) 247–295.
[137] L.N. Trefethen, D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 65

[138] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Hydrodynamic stability without eigenvalues, Science
261 (1993) 578–584.

[139] L.N. Trefethen, M.R. Trummer, An instability phenomenon in spectral methods, SIAM J. Numer. Anal. 24 (1987)
1008–1023.

[140] H.W. Turnbull, A.C. Aitken, Introduction to the Theory of Canonical Matrices, Dover Publications, New York,
1961.

[141] R.R. Underwood, An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems,
Technical Report STAN-CS-75-495, Department of Computer Science, Stanford University, Stanford, CA, 1975.

[142] A. van der Sluis, H.A. van der Vorst, The convergence behavior of Ritz values in the presence of close eigenvalues,
Linear Algebra Appl. 88=89 (1987) 651–694.

[143] P. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl.
27 (1979) 103–140.

[144] P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat. Control AC
26 (1981) 111–128.

[145] P. Van Dooren, A generalized eigenvalue approach of solving Ricatti equations, SIAM J. Sci. Statist. Comput.
2 (1981) 121–135.

[146] P. Van Dooren, Algorithm 590, DUSBSP AND EXCHQZZ: FORTRAN subroutines for computing deating
subspaces with speci�ed spectrum, ACM Trans. Math. Software 8 (1982) 376–382.

[147] H.P.M. van Kempen, On quadratic convergence of the special cyclic Jacobi method, Numer. Math. 9 (1966) 19–22.
[148] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.
[149] R. von Mises, H. Pollaczek-Geiringer, Praktische Verfahren der Gleichungsau�osung, Z. Angew. Math. Mech.

9 (1929) 58–77, 152–164.
[150] D.S. Watkins, Fundamentals of Matrix Computations, Wiley, New York, 1991.
[151] D.S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev. 35 (1993) 430–471.
[152] D.S. Watkins, L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix Anal. Appl. 12 (1991)

374–384.
[153] H.F. Weinberger, Variational Methods for Eigenvalue Approximation, SIAM, Philadelphia, 1974.
[154] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[155] J.H. Wilkinson, Linear di�erential equations and Kronecker’s canonical form, in: C. de Boor, G.H. Golub (Eds.),

Recent advances in Numerical Analysis, Academic Press, New York, 1978, pp. 231–265.
[156] J.H. Wilkinson, Kronecker’s canonical form and the QZ algorithm, Linear Algebra Appl. 28 (1979) 285–303.
[157] J.H. Wilkinson, Eigenvalue problems, in: A. Iserles, M.J.D. Powell (Eds.), The State of the Art in Numerical

Analysis, Clarendon Press, Oxford, 1987, pp. 1–39.
[158] J.H. Wilkinson, C. Reinsch (Eds.), Handbook for Automatic Computation, Vol. 2, Linear Algebra, Springer,

Heidelberg, 1971.
[159] T. Zhang, K.H. Law, G.H. Golub, On the homotopy method for perturbed symmetric generalized eigenvalue

problems, SIAM J. Numer. Anal. 35 (1) (1998) 300–319.

Journal of Computational and Applied Mathematics 123 (2000) 67–83
www.elsevier.nl/locate/cam

QR-like algorithms for eigenvalue problems
David S. Watkins

Department of Mathematics, Washington State University, Pullman, WA 99164-3113, USA

Received 18 May 1999; received in revised form 12 November 1999

Abstract

In the year 2000 the dominant method for solving matrix eigenvalue problems is still the QR algorithm. This paper
discusses the family of GR algorithms, with emphasis on the QR algorithm. Included are historical remarks, an outline
of what GR algorithms are and why they work, and descriptions of the latest, highly parallelizable, versions of the QR
algorithm. Now that we know how to parallelize it, the QR algorithm seems likely to retain its dominance for many years
to come. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F15

Keywords: Eigenvalue; QR algorithm; GR algorithm

1. Introduction

G̃ Since the early 1960s the standard algorithms for calculating the eigenvalues and (optionally)
eigenvectors of “small” matrices have been the QR algorithm [28] and its variants. This is still the
case in the year 2000 and is likely to remain so for many years to come. For us a small matrix is
one that can be stored in the conventional way in a computer’s main memory and whose complete
eigenstructure can be calculated in a matter of minutes without exploiting whatever sparsity the matrix
may have had. If a matrix is small, we may operate on its entries. In particular, we are willing to
perform similarity transformations, which will normally obliterate any sparseness the matrix had to
begin with. 1

If a matrix is not small, we call it large. The boundary between small and large matrices is
admittedly vague, but there is no question that it has been moving steadily upward since the dawn
of the computer era. In the year 2000 the boundary is around n= 1000, or perhaps a bit higher.

E-mail address: watkins@wsu.edu (D.S. Watkins).
1 However, we are not averse to seeking to preserve and exploit certain other structures (e.g. symmetry) by choosing

our transforming matrices appropriately.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00402-7

68 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

Eigenvalue problems come in numerous guises. Whatever the form of the problem, the QR algo-
rithm is likely to be useful. For example, for generalized eigenvalue problems Ax=�Bx, the method
of choice is a variant of the QR algorithm called QZ . Another variant of QR is used to calculate
singular value decompositions (SVD) of matrices. The QR algorithm is also important for solving
large eigenvalue problems. Most algorithms for computing eigenvalues of large matrices repeatedly
generate small auxiliary matrices whose eigensystems need to be computed as a subtask. The most
popular algorithms for this subtask are the QR algorithm and its variants.

1.1. QR past and present

In this paper we discuss the family of GR algorithms, which includes the QR algorithm. The
subject was born in the early 1950s with Rutishauser’s quotient-di�erence algorithm [43,44] which
he formulated as a method for calculating the poles of a meromorphic function. He then reformulated
it in terms of matrix operations and generalized it to the LR algorithm [45]. 2 The QR algorithm
was published by Kublanovskaya [37] and Francis [28] in 1961. The Francis paper is particularly
noteworthy for the re�nements it includes. The double-shift implicit QR algorithm laid out there is
only a few details removed from codes that are in widespread use today.
And what codes are in use today? By far the most popular tool for matrix computations is Matlab.

If you use Matlab to compute your eigenvalues, you will use one of its four QR-based computational
kernels. Each of these is just a few re�nements removed from codes in the public-domain software
packages EISPACK [46] and LINPACK [20]. In particular, the algorithm for computing eigenvalues
of real, nonsymmetric matrices is just the Francis double-shift QR algorithm with some modi�cations
in the shift strategy.
A newer public-domain collection is LAPACK [25], which was designed to perform well on

vector computers, high-performance work stations, and shared-memory parallel computers. It also
has a double-shift implicit QR code, which is used on matrices (or portions of matrices) under
50× 50. For larger matrices a multishift QR code is used.
For many years the QR algorithm resisted e�orts to parallelize it. The prospects for a massively

parallel QR algorithm for distributed memory parallel computers were considered dim. The pes-
simism was partly dispelled by van de Geijn and Hudson [48], who demonstrated the �rst successful
highly parallel QR code. However, their code relies on an unorthodox distribution of the matrix
over the processors, which makes it hard to use in conjunction with other codes. Subsequently,
Henry [33] wrote a successful parallel QR code that uses a standard data distribution. This is an
implicit double-shift code that performs the iterations in pipeline fashion. This code is available
in ScaLAPACK [26], a collection of matrix computation programs for distributed-memory parallel
computers.
On the theoretical side, the �rst proof of convergence of the LR algorithm (without pivoting or

shifts of origin) was provided by Rutishauser [45]. His proof was heavily laden with determinants,
in the style of the time. Wilkinson [61] proved convergence of the unshifted QR algorithm using
matrices, not determinants. Wilkinson [62,40] also proved global convergence of a shifted QR al-
gorithm on symmetric, tridiagonal matrices. Della Dora [18] introduced a family of GR algorithms

2 Amazingly the quotient-di�erence algorithm has had a recent revival. Fernando and Parlett [27,41] introduced new
versions for �nding singular values of bidiagonal matrices and eigenvalues of symmetric, tridiagonal matrices.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 69

and proved a general convergence theorem (unshifted case). In [59] a more general family of GR
algorithms was introduced, and general convergence theorems for shifted GR algorithms were proved.

1.2. Contents

This paper provides an overview of the family of GR algorithms, with emphasis on the QR
case. The properties of the various QR implementations are discussed. We begin by introducing
the family of GR algorithms in Section 2. These are iterative methods that move a matrix toward
upper-triangular form via similarity transformations. We discuss the convergence of GR algorithms
briey. In Section 3 we show how to implement GR algorithms economically as bulge-chasing
procedures on Hessenberg matrices. In Sections 4 and 5 we discuss multishift and pipelined QR
algorithms, respectively.
Section 6 discusses the generalized eigenvalue problem Av = �Bv and GZ algorithms, which

are generalizations of GR algorithms. Particularly important among the GZ algorithms are the QZ
algorithms. These are normally implemented implicitly, as bulge chasing algorithms. However, in
Section 7, we discuss a completely di�erent class of explicit QZ algorithms. These attempt to divide
and conquer the problem by splitting it apart on each iteration. They are highly parallelizable and
may play a signi�cant role in parallel eigensystem computations in the future.

2. GR algorithms

Let A be an n × n real or complex matrix whose eigenvalues we seek. GR algorithms [59] are
iterative methods that begin with a matrix A0 similar to A (e.g. A0 = A) and produce a sequence
(Am) of similar matrices. All GR algorithms have the following form. Given the iterate Am, the next
iterate Am+1 is produced as follows. First a spectral transformation function fm is somehow chosen.
At this point the only requirement on fm is that the matrix fm(Am) be well de�ned. Thus fm could
be a polynomial, rational function, exponential function, or whatever. The next step is to decompose
fm(Am) into a product

fm(Am) = Gm+1Rm+1; (2.1)

where Gm+1 is nonsingular and Rm+1 is upper triangular. There are number of ways to do this; the
symbol G stands for general or generic. The �nal step of the iteration is to use Gm+1 in a similarity
transformation to produce the next iterate:

Am+1 = G−1
m+1AmGm+1: (2.2)

If the f’s and G’s are chosen well (and perhaps even if they are not), the sequence of similar
matrices, all of which have the same eigenvalues, will converge rapidly to a block upper triangular
form [

A11 A12
0 A22

]
;

thereby splitting the problem into two smaller eigenvalue problems with matrices A11 and A22. After
O(n) such splittings, the eigenvalue problem has been solved.

70 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

Some variants are the RG algorithms, in which the order of factors in (2.1) is reversed, and
the GL and LG algorithms, in which lower triangular matrices are used. All of these families have
isomorphic convergence theories. In practice, some of these variants do come in handy here and
there, but we will focus for the most part on the GR case.
A particular GR algorithm is determined by how the spectral transformation functions fm are

chosen and how the transforming matrices Gm+1 are speci�ed. Let us �rst discuss choices of G.
If each Gm+1 is required to be unitary, then the symbol Q is used instead of G, the decomposition

becomes fm(Am) = Qm+1Rm+1, and the algorithm is called a QR algorithm. The requirement that
Qm+1 be unitary implies that the factors in the decomposition are nearly uniquely determined. This
is the most popular choice of G. Expositions on the QR algorithm can be found in numerous books
[30,52,61].
If each Gm+1 is required to be unit lower triangular, that is, lower triangular with ones on the

main diagonal, then the symbol L is used, the decomposition becomes fm(Am) = Lm+1Rm+1, and the
algorithm is called an LR algorithm. The LR decomposition is unique if it exists, but not every
matrix has an LR decomposition. This means that the choice of fm must be restricted in such a
way that fm(Am) has an LR decomposition. The algorithm is unstable; di�culties arise when fm are
chosen so that fm(Am) is close to a matrix that has no LR decomposition. Stability can be improved
markedly by the introduction of pivoting (row and column interchanges). Wilkinson’s book [61]
discusses LR algorithms in detail.
Other examples are the HR [9,10] SR [12,13], and BR [29] algorithms. The H stands for hyperbolic,

the S for symplectic, and the B for balancing, band-reducing, bulge-chasing algorithm.
Now let us consider some ways of choosing the functions fm. We call them spectral transformation

functions because it is their job to transform the spectrum of the matrix in order to accelerate
convergence. We also refer to fm as the function that drives the mth iteration. The simplest spectral
transformation functions are polynomials, and the simplest useful polynomials have degree one. If
we take f(z) = z − �, then we have f(A) = A− �I . Such a choice gives us a simple or single GR
step with shift �. The quadratic choice f(z) = (z − �)(z − �) gives a double GR step with shifts
� and �. A double step is worth two single steps. The standard QR codes for real matrices (dating
back to Francis [28]) take double steps with either real � and � or complex � = ��. This keeps the
computations real. The multishift QR algorithm [2] takes f(z) = (z− �1)(z− �2) · · · (z− �p), where
p can be as big as one pleases in principle. In practice, roundo� errors cause problems if p is taken
much bigger than six.
A more exotic choice would be a rational function such as

f(z) =
(z − �)(z − ��)
(z + �)(z + ��)

:

This is the sort of f that is used to drive the Hamiltonian QR algorithm of Byers [15,16]. The more
general use of rational spectral transformation functions is discussed in [57].
An even more exotic choice would be a characteristic function for the unit disk:

f(z) =

{
1 if |z|¡ 1;

0 if |z|¿ 1:
(2.3)

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 71

This is a simple function to describe, but how does one calculate f(A)? For now we just remark
that there are good rational approximations. For example, if k is a large integer, the rational function

f(z) =
1

zk + 1

approximates the characteristic function quite well away from the circle |z|= 1.

2.1. Factors that a�ect the convergence rate

The convergence theory of GR algorithms was discussed by Watkins and Elsner [59] and sum-
marized in [55]. There are two factors a�ecting the convergence of the algorithm: the choice of
fm and the choice of Gm. Let Ĝm = G1G2 · · ·Gm, the product of the transforming matrices for the
�rst m steps. If the condition numbers �(Ĝm) grow with m, convergence can be degraded or pre-
vented. On the other hand, it is the role of the fm to promote or accelerate convergence. For starters
let us suppose that the same f is used on every iteration. If �1; �2; : : : ; �n are the eigenvalues of
A, then f(�1); f(�2); : : : ; f(�n) are the eigenvalues of f(A). Suppose they are numbered so that
|f(�1)|¿|f(�2)|¿ · · ·¿|f(�n)|. Then the ratios

�k = |f(�k+1)=f(�k)|; k = 1; : : : ; n− 1
are what determine the asymptotic convergence rate. These ratios all satisfy 06�k61. The closer
to zero they are, the better. The underlying mechanism is subspace iteration [14,34,42,51,59].
Let us consider the e�ect of the kth ratio �k . Suppose �k ¡ 1, and let �̂k be any number satisfying

�k ¡ �̂k ¡ 1. Partition the iterates Am into blocks

Am =

[
A(m)11 A(m)12
A(m)21 A(m)22

]
;

where A(m)11 is k × k. Then, under mild assumptions, there exists a constant C such that

‖A(m)21 ‖6C�(Ĝm)�̂mk for all m:

Thus Am approaches block upper triangular form if �(Ĝm)�̂
m
k → 0.

If there is a bound K such that �(Ĝm)6K for all m, then convergence is linear with ratio
�k = |f(�k+1)=f(�k)|. Even if �(Ĝm) is unbounded, there still can be convergence if the growth is
not too fast.
So far we have assumed that f is held �xed. Varying f makes the convergence analysis harder,

but (with rare exceptions) it pays o� in accelerated convergence. Successful shift strategies are (with
rare exceptions) able to choose fm so that fm(A)→ f(A), where f is a function such that �k=0 for
some k. This yields superlinear convergence. A simple shift strategy that normally yields quadratic
convergence is discussed below.
Let us reconsider choices of G in light of the convergence theory. Clearly, the objective is to

make the transforming matrices as well conditioned as possible. This is true also from the point of
view of stability, since the condition numbers �(Ĝm) govern the stability of the algorithm as well.
From this viewpoint the QR algorithms are obviously best, as they guarantee �2(Q̂m) = 1 for all m.
No such guarantees exist for any of the other GR algorithms, which explains why the QR algorithms
are by far the most popular. In certain special circumstances (e.g. Hamiltonian problems) there exist

72 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

(non-QR) GR algorithms that are very fast (O(n) work per iteration instead of O(n2)) because they
are able to exploit the structure. In those circumstances one may be willing to trade the stability
guarantee for speed. But then one must always be alert to the danger of instability. In this paper we
will focus mainly on QR algorithms.
We now reconsider choices of f in light of the convergence theory. The simplest and most

common choice is the polynomial

f(z) = (z − �1)(z − �2) · · · (z − �p):
The best we can do is to take the shifts �1; : : : ; �p to be eigenvalues of A. Then f(A) has p zero
eigenvalues, so

f(�n−p+1)
f(�n−p)

= 0: (2.4)

Such a good ratio implies very rapid convergence. Indeed, after just one iteration we get

A1 =

[
A(1)11 A(1)12
0 A(1)22

]
; (2.5)

where A(1)22 is p× p and has �1; : : : ; �p as its eigenvalues. 3
The catch is that we do not normally have the eigenvalues available to use as shifts. However,

after a few iterations we might well have some good approximations, and we can use these as shifts.
If all p shifts are excellent approximations to eigenvalues, then the ratio in (2.4) will be close to
zero, and convergence to a form like (2.5) will be achieved in a few iterations. Subsequent iterations
can be applied to the submatrix A11 with a new set of shifts.
Normally new shifts are chosen on each iteration. The most common strategy is to take the shifts

(on the mth iteration) to be the eigenvalues of the lower right-hand p× p submatrix A(m)22 . In other
words, fm is taken to be the characteristic polynomial of A

(m)
22 . Global convergence is not guaranteed,

but the local convergence rate is normally quadratic and can even be cubic if the matrices satisfy
certain symmetry properties [59].
A few words about global convergence are in order. The unitary circulant shift matrix Cn exem-

pli�ed by the 4× 4 case

C4 =

1

1

1

1

is invariant under QR iterations with zero shifts, as is any unitary matrix. The shift strategy described
in the previous paragraph gives zero shifts, as long as p¡n. Thus the algorithm fails to converge
when applied to Cn. Even worse things can happen; in some cases the shifts can wander chaotically
[5]. The standard cure for these problems is to use exceptional shifts (for example, random shifts)

3 This result ignores the e�ect of roundo� errors. In practice, the (2; 1) block of (2.5) will not be exactly zero, and
usually it will not be small enough to allow a safe deation of the problem.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 73

if many iterations have passed with no progress. The point of this strategy is to knock the matrix
away from any dangerous areas. It is not foolproof [17], but it has worked well over the years.
Nevertheless, a shift strategy that is provably globally convergent (and converges quadratically on
almost all matrices) would be welcome.
The only class of matrices for which global convergence has been proved is that of Hermitian

tridiagonal matrices, provided that the Wilkinson shift strategy is used [40]. The Wilkinson strategy
takes p = 1; the lone shift is the eigenvalue of the 2 × 2 lower right-hand submatrix that is closer
to ann.

3. Implicit implementations of GR algorithms

For most of the choices of f that we have considered, the cost of calculating f(A) is high. For
this and other reasons, most implementations of GR algorithms �nd a way to perform the iterations
without calculating f(A) explicitly. Usually, the �rst column of f(A) is all that is needed. This
section shows how to do it when f is a polynomial.
If we wish to use an implicit GR algorithm, we must �rst transform the matrix to a condensed

form. The best known such form is upper Hessenberg, but there are others. For example, any
Hermitian matrix can be put into tridiagonal form, and so can almost any other square matrix [61],
although the stability of the transformation comes into question for non-Hermitian matrices. For
unitary matrices there are several condensed forms, including the Schur parameter pencil [1,11,53]
and the double staircase form [7,53]. For Hamiltonian matrices there are both Hessenberg-like and
tridiagonal-like forms [12,39]. Implicit GR algorithms can be built on all of these forms, but for
simplicity we will restrict our attention to upper Hessenberg form.

A matrix A is in upper Hessenberg form if aij=0 whenever i¿ j+1. Every matrix can be transformed
stably to upper Hessenberg form by a unitary similarity transformation [30,52,61]. There are also
various useful nonunitary reductions to Hessenberg form, and these will play a role in what follows.
The general plan of all of these reduction algorithms is that they �rst introduce zeros in the �rst
column, then the second column, then the third column, and so on.
An upper Hessenberg matrix A is in proper upper Hessenberg form if aj+1; j 6= 0 for j=1; : : : ; n−1.

If a matrix is not in proper upper Hessenberg form, we can divide its eigenvalue problem into
independent subproblems for which the matrices are proper upper Hessenberg.

74 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

Suppose A is a proper upper Hessenberg matrix, and we wish to perform an iteration of a multishift
GR algorithm:

f(A) = GR; (3.1)

Â= G−1AG; (3.2)

where f is a polynomial of degree p: f(A) = (A − �1I) · · · (A − �pI). Since we are considering
only a single iteration, we have dropped the subscripts to simplify the notation. There is no need to
calculate f(A); it su�ces to compute the �rst column, which is

x = (A− �1I) · · · (A− �pI)e1:
Since A is upper Hessenberg, only the �rst p+ 1 entries of x are nonzero, and x can be computed
in O(p3) ops. This is negligible if p�n.
The implicit GR iteration is set in motion by building a nonsingular matrix G̃ that has its �rst

column proportional to x and looks like an identity matrix except for the (p+1)×(p+1) submatrix
in the upper left-hand corner. There are many ways to do this; for example, G̃ can be a Householder
reector. G̃ is then used to perform a similarity transformation A→ G̃

−1
AG̃, which disturbs the upper

Hessenberg form; the transformed matrix has a bulge, the size of which is proportional to p, the
degree of the iteration.

The rest of the iteration consists of returning the matrix to upper Hessenberg form by any one of
the standard reduction algorithms. As the columns are cleared out one by one, new nonzero entries
are added to the bottom of the bulge, so the bulge is e�ectively chased from one end of the matrix
to the other.

Hence, these algorithms are called bulge-chasing algorithms. Once the bulge has been chased o� of
the bottom of the matrix, the iteration is complete.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 75

Let G denote the product of all of the transforming matrices applied during the iteration, so that
the entire similarity transformation is Â = G−1AG. Watkins and Elsner [58] showed that no matter
what kind of transforming matrices are used, G satis�es p(A) = GR for some upper-triangular R.
Thus the procedure just outlined e�ects a GR iteration (3.1), (3.2) implicitly. It follows that the GR
convergence theory [59] is applicable to all algorithms of this type.
Let us consider some of the possibilities. If G̃ and all of the bulge-chasing transformations are

unitary, then G is unitary, so a QR iteration is performed. This is by far the most popular choice. If,
on the other hand, all of the transformations are elementary lower triangular (Gaussian elimination)
transformations (without pivoting), then G is unit lower triangular, and an LR iteration is performed.
For stability one can perform a row interchange to maximize the pivot before each elimination. This
is how one implements the LR algorithm with pivoting. Unless the matrix has some special structure
that one wishes to preserve (e.g. symmetric, Hamiltonian), there is no reason to insist that all of the
transforming matrices be of the same type. Haag and Watkins [31] have developed bulge-chasing
algorithms that mix unitary and Gaussian elimination transformations.

4. Performance of multishift QR algorithms

We now con�ne our attention to the QR algorithm, although this restriction is by no means
necessary. In principle we can perform multishift QR steps of any degree p. What is a good choice
of p in practice? Historically, the �rst choice was p= 1, and this is still popular. The most widely
used QR codes for real symmetric matrices and for complex non-Hermitian matrices make this
choice. Another early choice that is still popular is p=2, which allows the use of complex shifts on
real matrices without going outside the real number �eld. That was Francis’s reason for inventing
the double-shift algorithm. Descendents of Francis’s code are still in widespread use in Matlab,
EISPACK, LAPACK, and elsewhere, as we have already mentioned. For many years 1 and 2 were
the only choices of p that were used. The structure of certain types of matrices [16] causes their
eigenvalues to come in sets of four (e.g. �, ��, −�, − ��). For these matrices the choice p = 4 is
obviously in order. The use of large values of p was �rst advocated by Bai and Demmel [2]. This
seemed like an excellent idea. If one gets, say, thirty shifts from the lower right hand 30 × 30
submatrix and uses them for a QR step of degree p = 30, then one has to chase a 30 × 30 bulge.
This is like doing 30 steps at a time, and it entails a lot of arithmetic. Since the computations
are quite regular, they can be implemented in level-2 (or possibly level-3) BLAS [21,22] thereby
enhancing performance on modern vector, cache-based, or parallel computers.
Unfortunately, the multishift QR algorithm does not perform well if the degree p is taken too

large. This empirical fact is at odds with the convergence theory and came as a complete surprise.
Some experiments of Dubrulle [24] showed that the problem lies with roundo� errors. If p shifts
are chosen, they can be used to perform either one QR iteration of degree p (chasing one big bulge)
or p=2 iterations of degree two (chasing p=2 small bulges). In principle, the two procedures should
yield the same result. Dubrulle showed that in practice they do not: The code that chases many small
bulges converges rapidly as expected, while the one that chases fewer large bulges goes nowhere.
The di�erence is entirely due to roundo� errors.
We were able to shed some light on the problem by identifying the mechanism by which infor-

mation about the shifts is transmitted through the matrix during a bulge chase [56]. The shifts are

76 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

Fig. 1. Pipelined QR steps.

used only at the very beginning of the iteration, in the computation of the vector x that is used to
build the transforming matrix that creates the bulge. The rest of the algorithm consists of chasing
the bulge; no further reference to the shifts is made. Yet good shifts are crucial to the rapid conver-
gence of the algorithm. In the case of multishift QR, convergence consists of repeated deation of
(relatively) small blocks o� of the bottom of the matrix. The good shifts are supposed to accelerate
these deations. Thus the information about the shifts must somehow be transmitted from the top
to the bottom of the matrix during the bulge chase, but how? In [56] we demonstrated that the
shifts are transmitted as eigenvalues of a certain matrix pencil associated with the bulge. When p
is large, the eigenvalues of this bulge pencil tend to be ill conditioned, so the shift information is
not represented accurately. The shifts are blurred, so to speak. The larger p is, the worse is the
blurring. When p=30, it is so bad that the shifts are completely lost. The algorithm functions as if
random shifts had been applied. From this perspective it is no longer a surprise that multshift QR
performs poorly when p= 30.
The multishift idea has not been abandoned. The main workhorse in LAPACK [25] for solving

nonsymmetric eigenvalue problems is a multishift QR code. In principle this code can be operated
at any value of p, but p = 6 has been chosen for general use. At this value the shift blurring is
slight enough that it does not seriously degrade convergence, and a net performance gain is realized
through the use of Level 2 BLAS.

5. Pipelined QR algorithm

Through Dubrulle’s experiments it became clear that one can perform a QR iteration of degree
30, say, by chasing 15 bulges of degree 2. This works well because the shifts are not blurred at
all when p= 2. Once we have set one bulge in motion, we can start the next bulge as soon as we
please; there is no need to wait for completion of the �rst bulge chase. Once we have set the second
bulge in motion, we can start the third, and so on. In this way we can chase all 15 (or however
many) bulges simultaneously in pipeline fashion.
Imagine a matrix that is really large and is divided up over many processors of a distributed

memory parallel computer. If the bulges are spread evenly, as shown in Fig. 1, a good many
processors can be kept busy simultaneously.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 77

The idea of pipelining QR steps is not new. For example, it has been considered by Heller and
Ipsen [32], Stewart [47], van de Geijn [49,50], and Kaufman [36], but the idea did not catch on
right away because nobody thought of changing the shift strategy. For bulges of degree two, the
standard strategy is to take as shifts the two eigenvalues of the lower right-hand 2 × 2 submatrix.
The entries of this submatrix are among the last to be computed in a QR step, for the bulge is
chased from top to bottom. If one wishes to start a new step before the bulge for the current step
has reached the bottom of the matrix, one is forced to use old shifts because the new ones are not
available yet. If one wants to keep a steady stream of, say, 15 bulges running in the pipeline, one
is obliged to use shifts that are 15 iterations out of date, so to speak. The use of such “stale” shifts
degrades the convergence rate signi�cantly.
But now we are advocating a di�erent strategy [54]: Choose some even number p (e.g. 30) and

get p shifts by computing the eigenvalues of the lower right-hand p × p matrix. Now we have
enough shifts to chase p=2 bulges in pipeline fashion without resorting to out-of-date shifts. This
strategy works well. It is used in ScaLAPACK’s parallel QR code [33] for nonsymmetric eigenvalue
problems.
Numerous improvements are possible. For example, the arithmetic could be performed more e�-

ciently if the bulges were chased in (slightly blurred) packets of six instead of two. Another pos-
sibility is to chase tight clusters of small bulges, as in recent work of Braman, Byers, and Mathias
[8]. As a cluster of bulges is chased through a segment of the matrix, the many small transforming
matrices generated from the bulge chases can be accumulated in a larger orthogonal matrix, which
can then be applied using level 3 BLAS [21]. A price is paid for this: the total number of ops
per iteration is roughly doubled. The payo�s are that operations implemented in level 3 BLAS are
easily parallelized and allow modern cache-based processors to operate at near top speed. Another
innovation of [8] is the introduction of a more aggressive deation strategy (and accompanying shift
strategy) that allows the algorithm to terminate in fewer iterations. These innovations appear to have
a good chance for widespread acceptance in time.

6. Generalized eigenvalue problem

Matrix eigenvalue problems frequently present themselves as generalized eigenvalue problems
involving a matrix pair (A; B), which is also commonly presented as a matrix pencil A − �B. A
nonzero vector v is an eigenvector of the matrix pencil with associated eigenvalue � if

Av= �Bv:

v is an eigenvector with eigenvalue ∞ if Bv = 0. The generalized eigenvalue problem reduces to
the standard eigenvalue problem in the case B= I . In analogy with the standard eigenvalue problem
we easily see that � is a �nite eigenvalue of the pencil if and only if det(A− �B) = 0. In contrast
with the standard eigenvalue problem, the characteristic polynomial det(A − �B) can have degree
less than n. This happens whenever B is a singular matrix. A pencil is singular if its characteristic
polynomial is identically zero. In this case every � is an eigenvalue. A pencil that is not singular is
called regular.
The QZ algorithm of Moler and Stewart [38] is a generalization of the QR algorithm that can be

used to solve generalized eigenvalue problems for regular pencils. This is just one of a whole family

78 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

of GZ algorithms [60]. A good implementation of a GZ algorithm will perform well, regardless of
whether the B matrix is singular or not. However, it is much easier to explain how GZ algorithms
work when B is nonsingular, so we shall make that assumption. One iteration of a GZ algorithm
transforms a pencil A−�B to a strictly equivalent pencil Â−�B̂ as follows: a spectral transformation
function f is chosen, then GR decompositions of f(AB−1) and f(B−1A) are computed:

f(AB−1) = GR; f(B−1A) = ZS: (6.1)

G and Z are nonsingular, and R and S are upper triangular. The nonsingular matrices G and Z are
used to e�ect the equivalence transformation:

Â= G−1AZ; B̂= G−1BZ: (6.2)

If B = I , then we may take G = Z in (6.1), in which case the GZ iteration reduces to a GR
iteration.
Recombining Eq. (6.2) we see immediately that

ÂB̂
−1
= G−1 (AB−1)G; and B̂

−1
Â= Z−1 (B−1A

)
Z: (6.3)

Eqs. (6.1) and (6.3) together show that an iteration of the GZ algorithm e�ects GR iterations on
AB−1 and B−1A simultaneously. It follows then from the GR convergence theory that if we iterate this
process with good choices of spectral transformation functions, both AB−1 and B−1A will normally
converge rapidly to block upper triangular form. It is shown in [60] that the A and B matrices
converge individually (at the same rate as AB−1 and B−1A) to block triangular form[

A11 A12
0 A22

]
− �

[
B11 B12
0 B22

]
;

thus breaking the problem into two smaller problems involving the pencils A11−�B11 and A22−�B22.
These iterations are expensive unless can �nd an economical way to perform the equivalence

transformation (6.2) without explicitly calculating B−1 (which may not exist), much less f(AB−1)
or f(B−1A). This is done by performing an initial transformation to a condensed form, usually
Hessenberg-triangular form. By this we mean that A is made upper Hessenberg and B upper trian-
gular. (Thus AB−1 and B−1A are both upper Hessenberg.) Then the GZ step is e�ected by a process
that chases bulges through A and B. The bulges are �rst formed by a transformation G1 whose
�rst column is proportional to the �rst column of f(AB−1). This can be computed cheaply if f is
a polynomial of degree p�n, since AB−1 is upper Hessenberg. It can be done without explicitly
assembling B−1, and it has a reasonable interpretation even if B−1 does not exist. Once the bulges
have been formed, the rest of the iteration consists of a sequence of transformations that return the
pencil to Hessenberg-triangular form by a process that chases the bulges from top to bottom of the
matrices. It is similar to the GR bulge-chasing process, but there are extra details. See [30,60], or
the original Moler–Stewart paper [38].
The type of GZ iteration that the bulge chase e�ects depends on what kinds of transformations are

used to do the chasing. For example, if all transformations are unitary, a QZ step results. If Gaussian
elimination transformations (with pivoting) are used, an iteration of the LZ algorithm [35] results.
Other examples are the SZ algorithm for symplectic buttery pencils [6], and the HZ algorithm for
pencils of the form T − �D, where T is symmetric and D is diagonal with ±1 entries on the main
diagonal. This is a reformulation of the HR algorithm for matrices of the form DT (=D−1T).

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 79

Surely the most heavily used GZ code is the one in Matlab. This is a single-shift (p=1) implicit
QZ algorithm that uses complex arithmetic. The original QZ algorithm of Moler and Stewart [38]
used p = 2 for real matrices, following Francis. The QZ codes in LAPACK use either p = 1 or
p= 2, depending on whether the shifts are real or complex.
As far as we know, no parallel QZ code has been written so far. The various approaches that

have been tried for QR can also be applied to QZ . For example, one can take p¿ 2 and chase
larger bulges [60], but this is more di�cult to implement than in the QR case. Shift blurring is also
a problem if p is too large. The idea of chasing many small bulges in pipeline fashion should work
as well for QZ as it does for QR.
Once the QZ algorithm is �nished, the pencil will have been reduced to upper triangular form or

nearly triangular form. For simplicity let us suppose the form is triangular. Then the eigenvalues are
the quotients of the main diagonal entries: �i = aii=bii. If aii 6= 0 and bii =0 for some i, this signi�es
an in�nite eigenvalue. If aii = 0 and bii = 0 for some i, the pencil is singular. In that case the other
ajj=bjj signify nothing, as they can take on any values whatsoever [63]. Singular pencils have �ne
structure that can be determined by the staircase algorithm of Van Dooren [23]. See also the code
GUPTRI of Demmel and K�agstr�om [19].

7. Divide-and-conquer algorithms

To round out the paper we consider a completely di�erent class of algorithm that has been under
development in recent years [3,4]. They are not usually viewed as GZ algorithms, but that is what
they are. They are explicit GZ algorithms; that is, they actual compute f(AB−1) and f(B−1A) and
their GR decompositions explicitly. They require more computation than a conventional implicit GZ
algorithm does, but the computations are of types that can be implemented using level 3 BLAS. They
also have a divide-and-conquer aspect. Thus, algorithms of this type have a chance of becoming the
algorithms of choice for parallel solution of extremely large, dense eigenvalue problems.
Let D be a subset of the complex plane (e.g. a disk) that contains some, say k, of the eigenvalues

of the pencil A−�B. Ideally k ≈ n=2. Let f=�D, the characteristic function of D. Thus f(z) is 1 if
z ∈ D and 0 otherwise. If we then perform a GZ iteration (6.1, 6.2) driven by this f, the resulting
pencil normally has the form

Â− �B̂=
[
A11 A12
0 A22

]
− �

[
B11 B12
0 B22

]
; (7.1)

where A11 − �B11 is k × k and carries the eigenvalues that lie within D. Thus in one (expensive)
iteration we divide the problem into two subproblems, which are of about equal size if k ≈ n=2. A
few such divisions su�ce to conquer the problem.
It is easy to see why the split occurs. Let Sd and Sr be the invariant subspaces of B−1A and

AB−1, respectively, associated with the eigenvalues that lie in D. Then (Sd;Sr) is a deating pair for
the pencil, i.e., ASd⊆Sr and BSd⊆Sr. Since f is the characteristic function of D, f(B−1A) and
f(AB−1) are spectral projectors onto Sd and Sr , respectively. When a decomposition f(AB−1)=GR

80 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

is performed, the upper-triangular matrix R normally has the form

R=

[
R11 R12
0 0

]
;

where R11 is k × k and nonsingular, because f(AB−1) has rank k. We can be sure of obtaining in
this form if we introduce column pivoting in the GR decomposition: f(AB−1) =GR�, where R has
the desired form and � is a permutation matrix. This guarantees that the �rst k columns of G form
a basis for Sr , the range of f(AB−1). If we likewise introduce pivoting into the decomposition of
f(B−1A), we can guarantee that the �rst k columns of Z are a basis of Sd. Thus, if we replace
(6.1) by

f(AB−1) = GR�; f(B−1A) = ZSP; (7.2)

where � and P are suitable permutation matrices, then the transformation (6.2) will result in the
form (7.1), because Sd and Sr are deating subspaces.
This type of GZ algorithm yields a deation on each iteration. In order to implement it, we need

to be able to calculate f(AB−1) and f(B−1A) for various types of regions D. Various iterative
methods have been put forward. The main method discussed in [3] can be applied to an arbitrary
disk D. The size and location of the disk are determined by a preliminary transformation. Therefore
we can take D to be the unit disk without loss of generality. The iterative method described in [3]
has the e�ect that if one stops after j iterations, one uses instead of f the rational approximation

fj(z) =
1

1 + z2 j
:

Even for modest values of j this approximation is excellent, except very near the unit circle.
The matrices fj(AB−1) and fj(B−1A) are computed without ever forming B−1; the algorithm

operates directly on A and B. The major operations in the iteration are QR decompositions and
matrix–matrix multiplications, which can be done in level 3 BLAS. In the decomposition (7.2) the
matrices G and Z are taken to be unitary for stability, so this is actually a QZ algorithm. The
algorithm works even if B is singular. See [3] for many more details.
Since the iterations that compute fj(AB−1) and fj(B−1A) are expensive, one prefers not to perform

too many of them. Di�culties arise when there is an eigenvalue on or very near the circle that divides
D from its complement. The iterations may fail to converge or converge too slowly. The remedy is
to move the disk and restart the iterations. Once the projectors and their QR decompositions have
been computed, the transformation (6.2) does not deliver exactly the form (7.1). The (2; 1) block
will not quite be zero in practice, because of roundo� errors and because the projectors have been
calculated only approximately. If ‖A21‖ or ‖B21‖ is too big, the iteration must be rejected. Again
the remedy is to move the disk and try again. Because the iterations are so expensive, one cannot
a�ord to waste too many of them.
An experimental divide-and-conquer code (that uses a di�erent iteration from the one discussed

here) is available as a prototype code from ScaLAPACK.

References

[1] G.S. Ammar, W.B. Gragg, L. Reichel, On the eigenproblem for orthogonal matrices, in: Proceedings 25th IEEE
Conference on Decision and Control, Athens, New York, 1986, pp. 1063–1066.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 81

[2] Z. Bai, J. Demmel, On a block implementation of the Hessenberg multishift QR iteration, Int. J. High Speed Comput.
1 (1989) 97–112.

[3] Z. Bai, J. Demmel, M. Gu, Inverse free parallel spectral divide and conquer algorithms for nonsymmetric
eigenproblems, Numer. Math. 76 (1997) 279–308.

[4] Z. Bai et al., The spectral decomposition of nonsymmetric matrices on distributed memory parallel computers,
Technical Report CS-95-273, University of Tennessee, 1995.

[5] S. Batterson, J. Smillie, Rayleigh quotient iteration for nonsymmetric matrices, Math. Comp. 55 (1990) 169–
178.

[6] P. Benner, H. Fassbender, D.S. Watkins, Two connections between the SR and HR eigenvalue algorithms, Linear
Algebra Appl. 272 (1998) 17–32.

[7] B. Bohnhorst, Ein Lanczos-�ahnliches Verfahren zur L�osung des unit�aren Eigenwertproblems, Ph.D. Thesis, University
of Bielefeld, 1993.

[8] K. Braman, R. Byers, R. Mathias, The multi-shift QR algorithm: aggressive deation, maintaining well focused
shifts, and level 3 performance. Manuscript, 1999.

[9] M.A. Brebner, J. Grad, Eigenvalues of Ax = �Bx for real symmetric matrices A and B computed by reduction to
pseudosymmetric form and the HR process, Linear Algebra Appl. 43 (1982) 99–118.

[10] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a matrix, Linear Algebra
Appl. 35 (1981) 155–173.

[11] A. Bunse-Gerstner, L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra
Appl. 154–156 (1991) 741–778.

[12] A. Bunse Gerstner, V. Mehrmann, A symplectic QR-like algorithm for the solution of the real algebraic Riccati
equation, IEEE Trans. Auto. Control AC-31 (1986) 1104–1113.

[13] A. Bunse-Gerstner, V. Mehrmann, D.S. Watkins, An SR algorithm for Hamiltonian matrices based on Gaussian
elimination, Methods Oper. Res. 58 (1989) 339–358.

[14] H.J. Buurema, A geometric proof of convergence for the QR method, Ph.D. Thesis, University of Groningen,
Netherlands, 1970.

[15] R. Byers, Hamiltonian and symplectic algorithms for the algebraic Riccati equation, Ph.D. Thesis, Cornell University,
1983.

[16] R. Byers, A Hamiltonian QR algorithm, SIAM J. Sci. Stat. Comput. 7 (1986) 212–229.
[17] D. Day, How the QR algorithm fails to converge and how to �x it. Mathematics of Numerical Analysis: Real

Number Algorithms, August 1995.
[18] J. Della-Dora, Numerical linear algorithms and group theory, Linear Algebra Appl. 10 (1975) 267–283.
[19] J. Demmel, B. K�agstr�om, GUPTRI. NETLIB, 1991. http://www.netlib.org/.
[20] J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, 1979.
[21] J.J. Dongarra, J. Du Croz, I. Du�, S. Hammarling, A set of level 3 basic linear algebra subprograms, ACM Trans.

Math. Software 16 (1990) 1–17.
[22] J.J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, An extended set of Fortran basic linear algebra subprograms,

ACM Trans. Math. Software 14 (1988) 1–17.
[23] P. van Dooren, The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl. 27 (1979)

103–140.
[24] A.A. Dubrulle, The multishift QR algorithm — is it worth the trouble?, Technical Report G320-3558x, IBM Corp.,

Palo Alto, 1991.
[25] E. Anderson et al., LAPACK Users’ Guide, SIAM, Philadelphia, 2nd Edition, 1995. http://www.netlib.org/

lapack/lug/lapack lug.html.
[26] L.S. Blackford et al., ScaLAPACK Users’ Guide, SIAM, Philadelphia, 1997. http://www.netlib.org/scalapack/

slug/scalapack slug.html.
[27] K.V. Fernando, B.N. Parlett, Accurate singular values and di�erential qd algorithms, Numer. Math. 67 (1994)

191–229.
[28] J.G.F. Francis, The QR transformation, Parts I and II, Computer J. 4 1961 265–272, 332–345.
[29] G.A. Geist, G.W. Howell, D.S. Watkins, The BR eigenvalue algorithm, SIAM J. Matrix Anal. Appl. 20 (1999)

1083–1098.

82 D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83

[30] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 3rd Edition, 1996.
[31] J.B. Haag, D.S. Watkins, QR-like algorithms for the nonsymmetric eigenvalue problem, ACM Trans. Math. Software

19 (1993) 407–418.
[32] D.E. Heller, I.C.F. Ipsen, Systolic networks for orthogonal decompositions, SIAM J. Sci. Stat. Comput. 4 (1983)

261–269.
[33] G. Henry, D. Watkins, J. Dongarra, A parallel implementation of the nonsymmetric QR algorithm for distributed

memory architectures, Technical Report LAPACK Working Note 121, University of Tennessee, 1997.
[34] A.S. Householder, The Theory of Matrices in Numerical Analysis, Dover Books, 1964.
[35] L.C. Kaufman, The LZ algorithm to solve the generalized eigenvalue problems, SIAM J. Numer. Anal. 11 (1974)

997–1024.
[36] L.C. Kaufman, A parallel QR algorithm for the symmetric tridiagonal eigenvalue problem, J. Parallel and Distributed

Computing 23 (1994) 429–434.
[37] V.N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue problem, USSR Comput.

Math. Math. Phys. 3 (1961) 637–657.
[38] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10

(1973) 241–256.
[39] C. Paige, C. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl. 41 (1981)

11–32.
[40] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cli�s, New Jersey, 1980. Reprinted by

SIAM, 1997.
[41] B.N. Parlett, The new qd algorithms, Acta Numerica (1995) 459–491.
[42] B.N. Parlett, W.G. Poole, A geometric theory for the QR; LU; and power iterations, SIAM J. Numer. Anal. 10 (1973)

389–412.
[43] H. Rutishauser, Der Quotienten-Di�erenzen-Algorithmus, Z. Angew. Math. Physik 5 (1954) 233–251.
[44] H. Rutishauser, Der Quotienten-Di�erenzen-Algorithmus, Mitt. Inst. Angew. Math. ETH, Vol. 7, Birkh�auser,

Birkh�auser, Basel, 1957.
[45] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, Nat. Bur. Standards Appl. Math. Series

49 (1958) 47–81.
[46] B.T. Smith et al., Matrix Eigensystem Routines – EISPACK Guide, Springer, Berlin, 2nd Edition, 1976.
[47] G.W. Stewart, A parallel implementation of the QR algorithm, Parallel Comput. 5 (1987) 187–196.
[48] R. van de Geijn, D.G. Hudson, An e�cient parallel implementation of the nonsymmetric QR algorithm, in:

Proceedings of the Fourth Conference on Hypercube Concurrent Computers and Applications, 1989.
[49] R.A. van de Geijn, Implementing the QR algorithm on an array of processors, Ph.D. Thesis, University of Maryland,

1987. Department of Computer Science TR-1897.
[50] R.A. van de Geijn, Deferred shifting schemes for parallel QR methods, SIAM J. Matrix Anal. Appl. 14 (1993)

180–194.
[51] D.S. Watkins, Understanding the QR algorithm, SIAM Rev. 24 (1982) 427–440.
[52] D.S. Watkins, Fundamentals of Matrix Computations, Wiley, New York, 1991.
[53] D.S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev. 35 (1993) 430–471.
[54] D.S. Watkins, Shifting strategies for the parallel QR algorithm, SIAM J. Sci. Comput. 15 (1994) 953–958.
[55] D.S. Watkins, QR-like algorithms — an overview of convergence theory and practice, in: J. Renegar, M. Shub,

S. Smale (Eds.), The Mathematics of Numerical Analysis, Lectures in Applied Mathematics, Vol. 22, American
Mathematical Society, Providence, RI, 1996.

[56] D.S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear Algebra Appl. 241–243
(1996) 877–896.

[57] D.S. Watkins, Bulge exchanges in algorithms of QR type, SIAM J. Matrix Anal. Appl. 19 (1998) 1074–1096.
[58] D.S. Watkins, L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix Anal. Appl. 12 (1991)

374–384.
[59] D.S. Watkins, L. Elsner, Convergence of algorithms of decomposition type for the eigenvalue problem, Linear

Algebra Appl. 143 (1991) 19–47.
[60] D.S. Watkins, L. Elsner, Theory of decomposition and bulge-chasing algorithms for the generalized eigenvalue

problem, SIAM J. Matrix Anal. Appl. 15 (1994) 943–967.

D.S. Watkins / Journal of Computational and Applied Mathematics 123 (2000) 67–83 83

[61] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford University, 1965.
[62] J.H. Wilkinson, Global convergence of tridiagonal QR algorithm with origin shifts, Linear Algebra Appl. 1 (1968)

409–420.
[63] J.H. Wilkinson, Kronecker’s canonical form and the QZ algorithm, Linear Algebra Appl. 28 (1979) 285–303.

Journal of Computational and Applied Mathematics 123 (2000) 85–100
www.elsevier.nl/locate/cam

The ubiquitous Kronecker product
Charles F. Van Loan 1

Department of Computer Science, Cornell University, Ithaca, New York 14853, USA

Received 26 October 1999

Abstract

The Kronecker product has a rich and very pleasing algebra that supports a wide range of fast, elegant, and practical
algorithms. Several trends in scienti�c computing suggest that this important matrix operation will have an increasingly
greater role to play in the future. First, the application areas where Kronecker products abound are all thriving. These
include signal processing, image processing, semide�nite programming, and quantum computing. Second, sparse factor-
izations and Kronecker products are proving to be a very e�ective way to look at fast linear transforms. Researchers have
taken the Kronecker methodology as developed for the fast Fourier transform and used it to build exciting alternatives.
Third, as computers get more powerful, researchers are more willing to entertain problems of high dimension and this
leads to Kronecker products whenever low-dimension techniques are “tensored” together. c© 2000 Elsevier Science B.V.
All rights reserved.

1. Basic properties

If B ∈ Rm1×n1 and C ∈ Rm2×n2 , then their Kronecker product B ⊗ C is an m1 × n1 block matrix
whose (i; j) block is the m2 × n2 matrix bijC. Thus,

[
b11 b12
b21 b22

]
⊗

 c11 c12 c13
c21 c22 c23
c31 c32 c33

=

b11c11 b11c12 b11c13 b12c11 b12c12 b12c13
b11c21 b11c22 b11c23 b12c21 b12c22 b12c23
b11c31 b11c32 b11c33 b12c31 b12c32 b12c33
b21c11 b21c12 b21c13 b22c11 b22c12 b22c13
b21c21 b21c22 b21c23 b22c21 b22c22 b22c23
b21c31 b21c32 b21c33 b22c31 b22c32 b22c33

:

The basic properties of the Kronecker product are quite predictable:

(B⊗ C)T = BT ⊗ CT;

(B⊗ C)−1 = B−1 ⊗ C−1;

1 Supported in part by the NSF contract CCR-9901988.
E-mail address: cv@cs.cornell.edu (C.F. Van Loan).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00393-9

86 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

(B⊗ C)(D ⊗ F) = BD ⊗ CF;

B⊗ (C ⊗ D) = (B⊗ C)⊗ D:

Of course, the indicated products and inverses must exist for the second and third identities to hold.
The entries of B⊗C and C⊗B consist of all possible products of a B-matrix entry with a C-matrix

entry and this raises the possibility that these two Kronecker products are related by a permutation.
The permutation involved is in fact the perfect shu�e. If p and q are positive integers and r =pq,
then the (p; q) perfect shu�e is the r × r matrix

Sp;q =

Ir(1 : q : r; :)
Ir(2 : q : r; :)

...
Ir(q : q : r; :)

 (1)

where Ir is the r × r identity. (The well-known “colon notation” used in MATLAB to designate
submatrices is being used here.) In e�ect, the matrix–vector product Sp;qx takes the “card deck” x,
splits it into p piles of length-q each, and then takes one card from each pile in turn until the deck
is reassembled. It can be shown that if B ∈ Rm1×n1 and C ∈ Rm2×n2 , then

C ⊗ B= Sm1 ; m2 (B⊗ C)STn1 ; n2 :

Henderson and Searle [36] survey the numerous connections between the Kronecker product and the
perfect shu�e. Additional observations about the Kronecker product may be found in [30,14,37,63].
Henderson et al. [35] look at the operation from the historical point of view.
Particularly important in computational work are the issues that surround the exploitation of struc-

ture and the application of matrix factorizations. By and large, a Kronecker product inherits structure
from its factors. For example,

if B and C are

nonsingular
lower(upper) triangular
banded
symmetric
positive de�nite
stochastic
Toeplitz
permutations
orthogonal

; then B⊗ C is

nonsingular
lower(upper) triangular
block banded
symmetric
positive de�nite
stochastic
block Toeplitz
a permutation
orthogonal

:

With respect to factorizations, the LU-with-partial-pivoting, Cholesky, and QR factorizations of B⊗C
merely require the corresponding factorizations of B and C:

B⊗ C = (PTB LBUA)⊗ (PTCLCUC) = (PB ⊗ PC)T(LB ⊗ LC)(UB ⊗ UC);

B⊗ C = (GBGT
B)⊗ (GCGT

C) = (GB ⊗ GC)(GB ⊗ GC)T;

B⊗ C = (QBRB)⊗ (QCRC) = (QB ⊗ QC)(RB ⊗ RC):

The same is true for the singular value and Schur decompositions if we disregard ordering issues.
In contrast, the CS and QR-with-column pivoting factorizations of B ⊗ C do not have simple

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 87

relationships to the corresponding factorizations of B and C. (The matrix factorizations and decom-
positions mentioned in this paper are all described in [29]).
In Kronecker product work, matrices are sometimes regarded as vectors and vectors are sometimes

“made into” into matrices. To be precise about these reshapings we use the vec operation. If X ∈
Rm×n, then vec(X) is an nm × 1 vector obtained by “stacking” X ’s columns. If C, X , and B are
matrices and the product CXBT is de�ned, then it is not hard to establish the following equivalence:

Y = CXBT ≡ y = (B⊗ C)x (2)

where x=vec(X) and y=vec(Y). Henderson and Searle [36] thoroughly discuss the vec=Kronecker
product connection.
A consequence of the above properties is that linear systems of the form (B ⊗ C)x = f can

be solved fast. For example, if B; C ∈ Rm×m, then x can be obtained in O(m3) ops via the LU
factorizations of B and C. Without the exploitation of structure, an m2×m2 system would normally
require O(m6) ops to solve.
As with any important mathematical operation, the Kronecker product has been specialized and

modi�ed to address new and interesting applications. Rauhala [58] presents a theory of “array alge-
bra” that applies to certain photogrammetric problems. See also [62]. Regalia and Mitra [60] have
used the Kronecker product and various generalizations of it to describe a range of fast unitary
transforms. A sample generalization that �gures in their presentation is

{A1; : : : ; Am}“⊗ ” B=

A1 ⊗ B(1; :)
A2 ⊗ B(2; :)

...
Am ⊗ B(m; :)

where A1; : : : ; Am are given matrices of the same size and B has m rows.
Another generalization, the strong Kronecker product, is developed in [61] and supports the

analysis of certain orthogonal matrix multiplication problems. The strong Kronecker product of an
m×p block matrix B=(Bij) and a p× n block matrix C=(Cij) is an m× n block matrix A=(Aij)
where Aij = Bi1 ⊗ C1j + · · ·+ Bip ⊗ Cpj:
Kronecker product problems arise in photogrammetry [59], image processing [34], computer vision

[47], and system theory [6]. They surface in the analysis of generalized spectra [2], stochastic
models [57], and operator theory [64]. They have even found their way into the analysis of chess
endgames [65].
To make sense of the “spread” of the Kronecker product, we have organized this paper around a

few important families of applications. These include the linear matrix equation problem, fast linear
transforms, various optimization problems, and the idea of preconditioning with Kronecker products.

2. Matrix equations

To researchers in numerical linear algebra, the most familiar problem where Kronecker products
arise is the Sylvester matrix equation problem. Here we are given F ∈Rm×m, G ∈Rn×n, and C ∈ Rm×n

and seek X ∈ Rm×n so that FX + XGT = C. Linear systems of this variety play a central role in

88 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

control theory [13], Poisson equation solving [18], and invariant subspace computation [29]. In light
of Eq. (2), the act of �nding X is equivalent to solving the mn× mn linear system

(In ⊗ F + G ⊗ Im) vec(X) = vec(C):

The Lyapunov problem results if F = G, a very important special case.
One family of e�ective methods for these problems involve reducing F and G to Hessenberg or

triangular form via orthogonal similarity transformations [5,27].
The more general matrix equation F1XGT

1 +F2XGT
2 =C can be handled using the generalized Schur

decomposition as discussed by Gardiner et al. [24]. However, these factorization approaches break
down for the general Sylvester matrix equation problem [49,74].

F1XGT
1 + · · ·+ FpXGT

p = C ≡ (G1 ⊗ F1 + · · ·+ Gp ⊗ Fp)vec(X) = vec(C): (3)

Related to this are linear systems where the matrix of coe�cients has blocks that are themselves
Kronecker products, e.g.,

F11 ⊗ G11 · · · F1p ⊗ G1p

...
. . .

...
Fp1 ⊗ Gp1 · · · Fpp ⊗ Gpp

x1
...
xp

=

c1
...
cp

 : (4)

(Clearly the dimensions of the matrices Fij and Gij have to “make sense” when compared to the
dimensions of the vectors xi and ci.) This is equivalent to a system of generalized Sylvester equations:

p∑
j=1

FijXjGT
ij = Ci; i = 1 : p

where vec(Xi) = xi and vec(Ci) = ci for i = 1 : p. We can solve a linear system Ax = b fast if A is
a Kronecker product. But fast solutions seem problematical for (4).
A problem of this variety arises in conjunction with the generalized eigenproblem M − �N where

important subspace calculations require the solution of a system of the form[
In ⊗ A −BT ⊗ Im
In ⊗ D −ET ⊗ Im

] [
vec(R)
vec(L)

]
=
[
vec(C)
vec(F)

]
:

Here the matrices A;D ∈ Rm×m, B; E ∈ Rn×n, and C; F ∈ Rm×n are given and the matrices L; R ∈ Rm×n

are sought [42].
Another area where block systems arise with Kronecker product blocks is semide�nite program-

ming. There has been an explosion of interest in this area during the last few years due largely to
the applicability of interior point methods; see [69,71]. An important feature of these methods is that
they frequently require the solution of linear systems that involve the symmetric Kronecker product
. For symmetric X ∈ Rn×n and arbitrary B; C ∈ Rn×n this operation is de�ned by

(B C)svec(X) = svec
(
1
2
(CXBT + BXCT)

)

where the “svec” operation is a normalized stacking of X ’s subdiagonal columns, e.g.,

X =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

⇒ svec(X) = [x11;

√
2x21;

√
2x31; x22;

√
2x32 x33]

T;

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 89

See the work of Alizadeh et al. Among other things they discuss the e�cient solution of systems
of the form

 0 AT I
A 0 0

Z I 0 X I

�x
�y
�z

=

 rd
rp
rc

 :

3. Least squares

Least squares problems of the form

min||(B⊗ C)x − b||
can be e�ciently solved by computing the QR factorizations (or SVDs) of B and C; [21,22]. Barrlund
[4] shows how to minimize ||(A1⊗A2)x−f|| subject to the constraint that (B1⊗B2)x=g, a problem
that comes up in surface �tting with certain kinds of splines.
Coleman et al. [11] describe an interesting least-squares problem that arises in segmentation anal-

ysis. It is the minimization of∣∣∣∣∣∣
∣∣∣∣∣∣W

 In ⊗ Dm

Dn ⊗ Im
�I

 x −

 b1
b2
0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(5)

where W is diagonal, and the D matrices are upper bidiagonal. The scaling matrix W and the �I
block seem to rule out obvious fast factorization approaches.
On the other hand, LS problems of the form

min
∣∣∣∣
∣∣∣∣
[
B1 ⊗ C1
B2 ⊗ C2

]
x − b

∣∣∣∣
∣∣∣∣
2

(6)

can be solved fast by computing the generalized singular value decomposition of the pairs (B1; B2)
and (C1; C2):

B1 = U1BD1BX T
B B2 = U2BD2BX T

B ;
C1 = U1CD1CX T

C C2 = U2CD2CX T
C :

Here, the U ’s are orthogonal, the D’s are diagonal, and the X ’s are nonsingular. With these decom-
positions the matrices in (6) can be transformed to diagonal form since[

B1 ⊗ C1
B2 ⊗ C2

]
=
[
U1B ⊗ U2B 0

0 U1C ⊗ U2C

] [
D1B ⊗ D2B

D1C ⊗ D2C

]
X T

B ⊗ X T
C :

The solution of the converted problem is straightforward and the overall cost of the procedure is
essentially the cost of the two generalized SVDs.
The total least squares (TLS) problem is another example of just how little it takes to stie the

easy exploitation Kronecker products in a matrix computation. A TLS solution to (B ⊗ C)x ≈ b
requires the computation of the smallest singular value and the associated left and right singular
vectors of the augmented matrix

M = [B⊗ C | b]:

90 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

If B ∈ Rm1×n1 and C ∈ Rm2×n2 , then the SVD of B ⊗ C costs O(m1n21 + m2n22) while the SVD of
M appears to require O((m1m2)(n1n2)2). However, in this case the special structure of M permits
the fast calculation of the required minimum singular triple via the coupling of condition estimation
ideas with the QR factorization of B⊗ C.

4. Tensoring low-dimension ideas

Tensor product “ideas” in approximation and interpolation also lead to Kronecker product prob-
lems. In these multidimensional situations the “overall” method involves repetition of the same
1-dimensional idea in each coordinate direction. For example, if 1-dimensional quadrature rules of
the form

∫
f(x) dx ≈ ∑

wif(xi) ≡ wTf(x) are applied in the x; y, and z directions to the triple
integral

I =
∫ b1

a1

∫ b2

a2

∫ b3

a3
g(x; y; z) dx dy dz;

then we obtain

I ≈
nx∑
i=1

ny∑
j=1

nz∑
k=1

w(x)i w(y)j w(z)k g(xi; yj; zk) = (w(x) ⊗ w(y) ⊗ w(z))Tg(x ⊗ y ⊗ z)

where x ∈ Rnx ; y ∈ Rny , and z ∈ Rnz are vectors of abscissa values and g(x ⊗ y ⊗ z) designates the
vector of values obtained by evaluating g at each component of x⊗ y⊗ z. For further details about
this kind of multidimensional problem [15,16]. The computationally oriented papers by Pereyra and
Scherer [55] and de Boor [17] are motivated by these tensor product applications and are among
the earliest references that discuss how to organize a Kronecker product calculation.
The ability to solve problems with increasingly high dimension because of very powerful computers

partially explains the heightened pro�le of the Kronecker product in scienti�c computing. Interest in
higher-order statistics is a good example. Roughly speaking, second-order statistics revolve around
the expected value of xxT where x is a random vector. In higher-order statistics the calculations
involve the “cumulants” x ⊗ x ⊗ · · · ⊗ x. (Note that vec(xxT) = x ⊗ x.) [67,1]. Related Kronecker
product computations arise in Volterra �ltering as presented in [54,53]. A collection of very high
dimensional Kronecker product problems that arise in statistical mechanics and quantum mechanics
is discussed [63].

5. Fast transforms

Kronecker products and various generalizations are what “drive” many fast transform algorithms.
Consider the fast Fourier transform (FFT) with n= 2t . If Pn is the bit reversal permutation

Pn = S2; n=2(I2 ⊗ S2; n=4) · · · (In=4 ⊗ S2;2)

and !n = exp(−2�i=n), then the discrete Fourier transform (DFT) matrix Fn = (!pq
n) ∈ Cn×n can be

factored as Fn = At · · ·A1Pn where

Aq = Ir ⊗
[
IL=2
L=2

IL=2 −
L=2

]
;

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 91

with L = 2q; r = n=L;
L=2 = diag(1; !L; : : : ; !
L=2−1
L), and !L = exp(−2�i=L). Based on this “sparse”

factorization of the DFT matrix we obtain the Cooley–Tukey FFT framework for computing the
DFT y = Fnx = At · · ·A1Pnx:

x ← Pnx
for k = 1 : t

x ← Aqx
end
y ← x

Tolimieri et al. [70] and Van Loan [72] have shown how the organization of the FFT is clari�ed
through the “language” of Kronecker products. Di�erent FFT algorithms correspond to di�erent
factorizations of Fn. The value of this point of view is that it uni�es the literature and exposes
simple connections between seemingly disparate algorithms. For example, the Gentleman–Sande FFT
framework results by taking transposes in Fn=At · · ·A1Pn and noting that Fn and Pn are symmetric:

for k = 1 : t
x ← ATq x

end
y ← Pnx

The evolution of FFT ideas and algorithms would have proceeded much more rapidly and with
greater clarity from the famous 1965 Cooley–Tukey paper onwards had the Kronecker notation been
more actively employed.
Huang et al. [39] have developed a parallel programming methodology that revolves around

the Kronecker product. Related papers include Johnson et al. [41], and Granata et al. [31,32].
Pitsianis [56] built a “Kronecker compiler” that permits the user to specify algorithms in a
Kronecker product language. The compiler is based on a set of term rewriting rules that trans-
late high-level, Kronecker-based matrix descriptions of an algorithm into any imperative language
such as C, MATLAB or Fortran. The e�ciency of the automatically generated code is shown to be
excellent.
The Kronecker product methodology extends beyond the FFT and the related sine=cosine trans-

forms. Indeed, Regalia and Mitra [60] have used the Kronecker product and various generalizations
of it to describe a range of fast unitary transforms; See also [40] for Kronecker presentations of the
Walsh–Hadamard, slant, and Hartley transforms. Strohmer [66] uses a Kronecker product framework
to develop factorizations for the Gabor frame operator while Fijany and Williams [23] do the same
thing with quantum wavelet transforms. Kumar et al. [48] use Kronecker product ideas to develop
a memory-e�cient implementation of the Strassen matrix multiply.
Kronecker products and sparse factorizations are as central to fast wavelet transforms as they are

to the FFT. Consider the Haar wavelet transform y =Wnx where n = 2t . The transform matrix Wn

is de�ned by

Wn =
[
Wm ⊗

(
1
1

) ∣∣∣∣ Im ⊗
(
1
−1

)]
n= 2m

92 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

with W1 = [1]. It can be shown that

Wn = S2;m(W2 ⊗ Im)
[
Wm 0
0 Im

]
n= 2m

and from this “splitting” it is possible to show that Wn = Ht · · ·H1 where

Hq =
[
S2; L∗ 0
0 In−L

] [
W2 ⊗ IL∗ 0

0 In−L

]
L= 2q; L∗ = L=2:

The fast Haar transform then proceeds as a sequence of matrix–vector products, i.e., x ← H1x; x ←
H2x; : : : ; x ← Htx.
More complicated wavelets require more sophisticated Kronecker manipulations in order to derive

the underlying sparse factorization. For example, the n = 4 transform matrix for the Daubechies
wavelet is given by

D4 =

c0 c1 c2 c3
c3 −c2 c1 −c0
c2 c3 c0 c1
c1 −c0 c3 −c2

 where

c0
c1
c2
c3

= 1

4
√
2

1 +
√
3

3 +
√
3

3−
√
3

1−
√
3

 :

It is easy to verify that D4 is orthogonal. The n= 8 version is given as follows:

D8 =

c0 c1 c2 c3 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0
0 0 c0 c1 c2 c3 0 0
0 0 c3 −c2 c1 −c0 0 0
0 0 0 0 c0 c1 c2 c3
0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 c0 c1
c1 −c0 0 0 0 0 c3 −c2

which clearly has a replicated block structure. It is possible to describe this structure quite elegantly
with a generalized Kronecker product. It is then a straightforward exercise to obtain a splitting that
relates D8 to D4 and more generally, Dn to Dn=2. From the splitting one can then derive the sparse
factorization associated with the underlying fast transform [23].
It is almost always the case that behind every fast linear transform is a sparse, Kronecker-based,

factorization of the transform matrix. Notable exceptions are the recent and very interesting fast
algorithms whose complexity has the form cn or cn log n where c is a constant that depends on the
precision required. Examples include the fast Gauss transform of Greengard and Strain [33] and the
non-uniformly spaced FFT of Dutt and Rokhlin [19]. It is interesting to conjecture whether these
algorithms can be described in terms of some approximate sparse, Kronecker-based factorization of
the underlying transform matrix.
Fast transforms often require various matrix transpositions of the data and these operations also

submit to Kronecker product descriptions. For example, it follows from (1) that if A ∈ Rm×n and
B= AT, then vec(B) = Sn;m · vec(A). It turns out that di�erent “multi-pass” transposition algorithms
correspond to di�erent factorizations of the underlying perfect shu�e. If

Sn;m = �t · · ·�1 (7)

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 93

then B= AT can be computed with t passes through the data as follows:

a= vec(A)
for k = 1 : t

a← �ka
end
De�ne B ∈ Rn×m by vec(B) = a.

The idea is to choose a factorization (7) so that the data motion behind the operation kth pass, i.e.,
a← �ka, is in harmony with the architecture of the underlying memory hierarchy.
To illustrate this factorization idea, it can be shown that if m= pn, then Sn;m = �2�1 where

�1 = Sn;p ⊗ In;

�2 = Ip ⊗ Sn;n:

The �rst pass b(1) =�1vec(A) corresponds to a block transposition while b(2) =�2b(1) carries out the
transposition of the blocks. For example, if p= 4 and

A=

A1

A2

A3

A4

 ; Ai ∈ Rn×n

then the �1 update leaves us with

B(1) = [A1 A2 A3 A4]:

During the �2 update the individual blocks are transposed yielding

B= B(2) = [AT1 AT2 AT3 AT4]:

See [72] for more details about factorizations and matrix transposition.

6. The nearest Kronecker product problem

Suppose A∈Rm×n is given with m=m1m2 and n=n1n2. For these integer factorizations the nearest
Kronecker product (NKP) problem involves minimizing

�(B; C) = ||A− B⊗ C||F (8)

where B ∈ Rm1×n1 and C ∈Rm2×n2 . Van Loan and Pitsianis [73] show how to solve the NKP problem
using the singular value decomposition of a permuted version of A. This result is central to much
of the research proposal and so we use a small example to communicate the main idea. Suppose
m1 = 3 and n1 = m2 = n2 = 2. By carefully thinking about the sum of squares that de�ne � we see

94 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

that

�(B; C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
a51 a52 a53 a54
a61 a62 a63 a64

−

 b11 b12
b21 b22
b31 b32

⊗ [c11 c12

c21 c22

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a21 a12 a22
a31 a41 a32 a42
a51 a61 a52 a62
a13 a23 a14 a24
a33 a43 a34 a44
a53 a63 a54 a64

−

b11

b21

b31

b12

b22

b32

[c11 c21 c12 c22]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
F

:

Denote the preceeding 6× 4 matrix by R(A) and observe that

R(A) =

vec(A11)T

vec(A21)T

vec(A31)T

vec(A12)T

vec(A22)T

vec(A32)T

:

It follows that

�(B; C) = ||R(A)− vec(B)vec(C)T||F
and so the act of minimizing � is equivalent to �nding a nearest rank-1 matrix to R(A). The nearest
rank-1 matrix problem has a well-known SVD solution [29]. In particular, if

U TR(A)V = � (9)

is the SVD of R(A), then optimum B and C are de�ned by

vec(Bopt) =
√
�1U (:; 1) vec(Copt) =

√
�1V (:; 1):

The scalings are arbitrary. Indeed, if Bopt and Copt solve the NKP problem and � 6= 0, then � · Bopt
and (1=�) · Copt are also optimal.
In general, if A= (Aij) is an m1 × n1 block matrix with m2 × n2 blocks, then

Ã=R(A) ∈ Rm1n1×m2n2 ⇒ Ã(i + (j − 1)m1; :) = vec(Aij)T; i = 1 : m1; j = 1 : n1:

If R(A)) has rank r̃ and SVD (9), then

A=
r̃∑

k=1

�kUk ⊗ Vk

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 95

where vec(Uk) = U (:; k) and vec(Vk) = V (:; k) for k = 1 : r̃. We refer to this as the Kronecker
Product SVD (KPSVD) of A associated with the integer factorizations m=m1m2 and n=n1n2. Note
that for these integers,

Ar =
r∑

k=1

�kUk ⊗ Vk r6r̃ (10)

is the closest matrix to A (in the Frobenius norm) that is the sum of r Kronecker products.
If A is large and sparse and r is small, then the Lanzcos SVD iteration of Golub, Luk, and Overton

[26] can e�ectively be used to compute the singular vectors of R(A) from which we can build the
optimal Kronecker product factors. An implementation is available in [12] and some preliminary
experience with the method is discussed in [73,56].
Certain situations permit one to “cut corners” in the above SVD computation when solving the

NKP problem:
• If A is the sum of p Kronecker products as in the generalized Sylvester equation problem (3),
then rank(R(A))6p.

• If A is an n1× n1 block Toeplitz matrix with n2× n2 Toeplitz blocks, then it is not hard to show
that the rank of R(A) is less than min{2n1 + 1; 2n2 + 1} [51].

In each of these situations the matrix R(A) is rank de�cient.

7. Other NKP problems

For A ∈ Rn×n with n= n1n2 we refer to the problem of minimizing

 (B; C) = ||A(B⊗ C)− In||F B ∈ Rn1×n1 ; C ∈ Rn2×n2 (11)

as the inverse nearest Kronecker product problem. This problem does not have an explicit SVD
solution and so we must approach it as a structured nonlinear least squares problem. It can be shown
that

vec(A(B⊗ C)) = (In ⊗ A)vec(B⊗ C) = (In ⊗ A)P (vec(B)⊗ vec(C))
where P is the n2 × n2 permutation matrix de�ned by

P = In1 ⊗ Sn1 ;n2 ⊗ In2
Thus, minimizing is equivalent to minimizing the 2-norm of

F(B; C) = (In ⊗ A)P (vec(B)⊗ vec(C))− vec(In):
The Jacobian of this function is (In⊗A)P[(In⊗vec(C)) vec(B)⊗In)]. Having exposed these structures
we see that there are several ways to approach the inverse NKP problem. Since it is a separable
least-squares problem, the variable projection methods discussed in [28,46] or the ideas in [3] are
applicable.
The NKP problem has a multiple factor analog in which we try to approximate A ∈ Rm×n with

a matrix of the form C1 ⊗ · · · ⊗ Cp. In particular, if m= m1 · · ·mp and n= n1 · · · np, then we seek
Ci ∈ Rmi×ni ; i=1 : p so that �(C1; : : : ; Cp)= ||A−C1⊗ · · · ⊗Cp||F is minimized. Closed-form SVD
solutions do not appear to be possible if p¿ 2. The inverse NKP problem also has a multiple factor
generalization.

96 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

If A is structured, then it is sometimes the case that the B and C matrices that solve the NKP
problem are similarly structured. For example, if A is symmetric and positive de�nite, then the same
can be said of Bopt and Copt (if properly normalized). Likewise, if A is nonnegative, then the optimal
B and C can be chosen to be nonnegative. These and other structured NKP problems are discussed
in [73,56], but a number of interesting open questions remain.
Suppose A ∈ Rn×n and that n= m2. A trace minimization problem that we are aware of requires

the minimization of ||A− �B⊗B||F where B ∈ Rm×m and �=±1. This leads to a nearest symmetric
rank-1 problem of the form

min
�;b
||R(A)− �bbT||F :

A related problem arises in neural networks [38]. Given A ∈ Rn×n with n = m2, �nd B ∈ Rm×m so
that ||A− B⊗ BT||F is minimized. This leads to the minimization of

||R(A)− vec(B)vec(BT)T||F = ||R(A)Sm;m − vec(B)vec(B)T||F :
The linearly constrained NKP problem

min
FT vec(B)=r
GT vec(C)=t

||A− B⊗ C||F

leads to a linearly constrained nearest rank-1 problem

min
FTb=r
GTc=t

||Ã− bcT||F

where Ã=R(A); b= vec(B) and c= vec(C). We suppress the dimensions of the matrices involved
and just assume that the linear constraint equations are underdetermined. Following Golub [25] we
compute the QR factorizations

F = QF

[
RF

0

]
G = QG

[
RG

0

]
for then the problem transforms to

min
b2 ;c2

∣∣∣∣∣
∣∣∣∣∣
[
Ã11 − b1cT1 Ã12 − b1cT2
Ã21 − b2cT1 Ã22 − b2cT2

]∣∣∣∣∣
∣∣∣∣∣
F

where

QT
Fb=

[
b1
b2

]
; QT

Gc =
[
c1
c2

]
; QT

FÃQG =

[
Ã11 Ã12
Ã21 Ã22

]

and RTFb1 = r and RTGc1 = t. Thus, we are led to the minimization of the function

�(b2; c2) = ||Ã22 − b2cT2 ||2F + ||Ã12 − b1cT2 ||2F + ||Ã21 − b2cT1 ||2F :
If r and t are zero, then b1 and c1 are zero and we are left with a reduced version of the nearest rank-1
matrix problem. This homogeneous situation arises when we wish to impose sparsity constraints on
the B and C matrices or when we require the optimizing B and=or C to have circulant, Toeplitz,
Hankel, or some other structure of that type. In the nonhomogeneous case we are again confronted
with a bilinear least-square problem. (The inhomogeneous problem would arise, for example, if we
required the B and C matrices to have columns that sum to one.)

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 97

8. Preconditioners

In recent years the “culture” of fast transforms and Kronecker products has found its way into
the linear system solving area through the design of e�ective preconditioners. Chan [8] proposed
solving large Toeplitz systems Tx= b using a circulant preconditioner C that minimizes ||C − T ||F .
The product of a circulant matrix and a vector can be carried out in O(n log n) ops using the FFT;
See also [9] and [10].
Similar in spirit is the design of Kronecker product preconditioners. The idea is to approximate

the matrix of coe�cients A with a Kronecker product B⊗ C and to use B⊗ C as a preconditioner
noting that linear systems of the form (B⊗C)z=r can be solved fast. One method for generating the
Kronecker factors B and C is to minimize ||A− B⊗ C||F . Other approaches tailored to applications
in image restoration have been o�ered by Nagy [51], Kamm and Nagy [43–45] and Thirumalai [68];
See also [20,52,7].
The success of many numerical methods hinge on e�cient linear equation solving and this in turn

often requires �nding the “right” preconditioner for the coe�cient matrix A. To be e�ective, the
preconditioner M must “capture the essence” of A and have the property that systems of the form
Mz = r are easily solved.
The idea of setting M to be the nearest Kronecker product to A is studied in [73]. When applied

to a model problem (Poisson’s equation on a rectangle) the results compared favorably with the
best alternatives, e.g., the incomplete Cholesky preconditioner. This work can be extended by (a)
looking at 3D problems where the resulting linear system is the sum of three Kronecker products
and (b) considering non-uniform mesh settings where the linear system is the sum of a few “near”
Kronecker products.

9. Conclusion

Our goal in this paper is to point to the widening use of the Kronecker product in numerical linear
algebra. Research in this area will heighten the pro�le of the Kronecker product throughout the �eld
of matrix computations and will make it easier for researchers to spot Kronecker “opportunities”
in their work. This phenomena is not without precedent. The development of e�ective algorithms
for the QR and SVD factorizations turned many “ATA” problems into least-square=singular-value
calculations. Likewise, with the development of the QZ algorithm [50] engineers with “standard”
eigenproblems of the form B−1Ax=�x came to approach them as a generalized eigenproblems of the
form Ax = �Bx. The point we are making is that if an infrastructure of e�ective Kronecker-product
algorithms is built, then Kronecker product problems will “come out of the woodwork.”

References

[1] T.F. Andre, R.D. Nowak, B.D. Van Veen, Low rank estimation of higher order statistics, IEEE Trans. Signal Process.
45 (1997) 673–685.

[2] H.C. Andrews, J. Kane, Kronecker matrices, computer implementation, and generalized spectra, J. Assoc. Comput.
Mach. 17 (1970) 260–268.

[3] R.H. Barham, W. Drane, An algorithm for least squares estimation of nonlinear parameters when some of the
parameters are linear, Technometrics 14 (1972) 757–766.

98 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

[4] A. Barrlund, E�cient solution of constrained least squares problems with Kronecker product structure, SIAM J.
Matrix Anal. Appl. 19 (1998) 154–160.

[5] R.H. Bartels, G.W. Stewart, Solution of the equation AX + XB = C, Comm. ACM 15 (1972) 820–826.
[6] J.W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits Systems 25 (1978)

772–781.
[7] D. Calvetti, L. Reichel, Application of ADI iterative methods to the image restoration of noisy images, SIAM J.

Matrix Anal. Appl. 17 (1996) 165–174.
[8] T.F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput. 9 (1988) 766–771.
[9] T.F. Chan, J.A. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algorithms 6 (1993) 89–101.
[10] R. Chan, X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. 13 (1992)

1218–1235.
[11] T.F. Coleman, Y. Li, A. Mariano, Separation of pulmonary nodule images using total variation minimization,

Technical Report, Cornell Theory Center, Ithaca, New York, 1998.
[12] J. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Sparse Symmetric Eigenvalue Computations, Vol. I

(Theory), II (Programs), Birkhauser, Boston, 1985.
[13] K. Datta, The matrix equation XA− BX = R and its applications, Linear Algebra Appl. 109 (1988) 91–105.
[14] M. Davio, Kronecker products and shu�e algebra, IEEE Trans. Comput. c-30 (1981) 116–125.
[15] P. Davis, P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, MA, 1967.
[16] C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.
[17] C. de Boor, E�cient computer manipulation of tensor products, ACM Trans. Math. Software 5 (1979) 173–182.
[18] F.W. Dorr, The direct solution of the discrete poisson equation on a rectangle, SIAM Rev. 12 (1970) 248–263.
[19] A. Dutt, V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (1993) 1368–1398.
[20] L. Eldin, I. Skoglund, Algorithms for the regularization of Ill-conditioned least squares problems with tensor product

structure and applications to space-variant image restoration, Technical Report LiTH-Mat-R-82-48, Department of
Mathematics, Linkoping University, Sweden, 1982.

[21] D.W. Fausett, C.T. Fulton, Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. 15
(1994) 219–227.

[22] D.W. Fausett, C.T. Fulton, H. Hashish, Improved parallel QR method for large least squares problems involving
Kronecker products, J. Comput. Appl. Math. (1997).

[23] A. Fijany, C.P. Williams, Quantum wavelet transforms: fast algorithms and complete circuits, Technical Report
9809004, Los Alamos National Laboratory, Los Alamos, New Mexico, 1998.

[24] J. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, C.B. Moler, Algorithm 705: a FORTRAN-77 software package for
solving the Sylvester matrix equation AXBT + CXDT = E, ACM Trans. Math. Software 18 (1992) 232–238.

[25] G.H. Golub, Some modi�ed eigenvalue problems, SIAM Rev. 15 (1973) 318–344.
[26] G.H. Golub, F. Luk, M. Overton, A block Lanzcos method for computing the singular values and corresponding

singular vectors of a matrix, ACM Trans. Math. Software 7 (1981) 149–169.
[27] G.H. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the matrix problem AX +XB=C, IEEE Trans.

Automat. Control AC-24 (1979) 909–913.
[28] G.H. Golub, V. Pereya, The di�erentiation of pseudoinverses and nonlinear least squares problems whose variables

separate, SIAM J. Numer. Anal. 10 (1973) 413–432.
[29] G.H. Golub, C. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, MD, 1996.
[30] A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Chichester, England, 1981.
[31] J. Granata, M. Conner, R. Tolimieri, Recursive fast algorithms and the role of the tensor product, IEEE Trans. Signal

Process. 40 (1992) 2921–2930.
[32] J. Granata, M. Conner, R. Tolimieri, The tensor product: a mathematical programming language for FFTs and other

fast DSP operations, IEEE SP Mag. (January 1992) 40–48.
[33] L. Greengard, J. Strain, The fast Gauss transform, SIAM J. Sci. Statist. Comput. 12 (1991) 79–94.
[34] S.R Heap, D.J. Lindler, Block iterative restoration of astronomical images with the massively parallel processor

Proceedings of the First Aerospace Symposium on Massively Parallel Scienti�c Computation, 1986, pp. 99–109.
[35] H.V. Henderson, F. Pukelsheim, S.R. Searle, On the history of the Kronecker product, Linear Multilinear Algebra

14 (1983) 113–120.

C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 99

[36] H.V. Henderson, S.R. Searle, The vec-permutation matrix, the vec operator and Kronecker products: a review, Linear
Multilinear Algebra 9 (1981) 271–288.

[37] R.A. Horn, C.A. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[38] R.M. Hristev, private communication, 1998.
[39] C-H. Huang, J.R. Johnson, R.W. Johnson, Multilinear algebra and parallel programming, J. Supercomput. 5 (1991)

189–217.
[40] A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cli�s, NJ, 1989.
[41] J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri, A methodology for designing, modifying, and implementing

fourier transform algorithms on various architectures, Circuits Systems Signal Process. 9 (1990) 449–500.
[42] B. Kagstrom, Perturbation analysis of the generalized Sylvester equation (AR − LB; DR − LE) = (C; F), SIAM J.

Matrix Anal. Appl. 15 (1994) 1045–1060.
[43] J. Kamm, J.G. Nagy, Kronecker product and SVD approximations in image restoration, Linear Algebra Appli.

(1998a), to appear.
[44] J. Kamm, J.G. Nagy, Kronecker product and SVD approximations for separable spatially variant blurs, SMU

Mathematics Technical Report 98-04, Dallas, TX, 1998b.
[45] J. Kamm, J.G. Nagy, Optimal kronecker product approximation of block Toeplitz matrices, SMU Mathematics

Technical Report 98-05, Dallas, TX, 1998c.
[46] L. Kaufman, A variable projection method for solving separable nonlinear least squares problems, BIT 15 (1975)

49–57.
[47] B. Klaus, P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1990.
[48] B. Kumar, C.H. Huang, J. Johnson, R.W. Johnson, P. Sadayappan, A tensor product formulation of Strassen’s

matrix multiplication algorithm with memory reduction, Seventh International Parallel Processing Symposium, 1993,
pp. 582–588.

[49] P. Lancaster, Explicit solution of linear matrix equations, SIAM Rev. 12 (1970) 544–566.
[50] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10

(1973) 241–256.
[51] J.G. Nagy, Decomposition of block Toeplitz matrices into a sum of Kronecker products with applications in image

processing, SMU Mathematics Technical Report 96-01, Dallas, TX, 1996.
[52] J.G. Nagy, D.P. O’Leary, Restoring images degraded by spatially-variant blur, SIAM J. Sci. Comput. 19 (1998)

1063–1082.
[53] R.D. Nowak, Penalized least squares estimation of higher order statistics, IEEE Trans. Signal Process. 46 (1998)

419–428.
[54] R.D. Nowak, B. Van Veen, Tensor product basis approximations for Volterra �lters, IEEE Trans Signal Process. 44

(1996) 36–50.
[55] V. Pereyra, G. Scherer, E�cient computer manipulation of tensor products with applications to multidimensional

approximation, Math. Comp. 27 (1973) 595–604.
[56] N.P. Pitsianis, The Kronecker product in approximation, fast transform generation, Ph.D. Thesis, Department of

Computer Science, Cornell University, 1997.
[57] J.H. Pollard, On the use of the direct matrix product in analyzing certain stochastic population models, Biometrika

53 (1966) 397–415.
[58] U.A. Rauhala, Introduction to array algebra, Photogrammetric Eng. Remote Sensing 46 (2) (1980) 177–182.
[59] U.A. Rauhala, D. Davis, K. Baker, Automated DTM validation and progressive sampling algorithm of �nite element

array relaxation, Photogrammetric Eng. Remote Sensing 55 (1989) 449–465.
[60] P.A. Regalia, S. Mitra, Kronecker products, unitary matrices, and signal processing applications, SIAM Rev. 31

(1989) 586–613.
[61] J. Seberry, X-M. Zhang, Some orthogonal matrices constructed by strong Kronecker product multiplication, Austral.

J. Combin. 7 (1993) 213–224.
[62] R.A. Snay, Applicability of array algebra, Rev. Geophys. Space Phys. 16 (1978) 459–464.
[63] W-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs, World Scienti�c

Publishing, Singapore, 1997.
[64] F. Stenger, Kronecker product extensions of linear operators, SIAM J. Numer. Anal. 5 (1968) 422–435.
[65] L. Stiller, Multilinear algebra and chess endgames, in: Computational Games, Vol. 29, MSRI Publications.

100 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

[66] T. Strohmer, Numerical algorithms for discrete gabor expansions, in: H.G. Feichtinger, T. Strohmer (Eds.), Gabor
Analysis and Algorithms, Birkhauser, Basel, 1998, pp. 267–294.

[67] A. Swami, J. Mendel, Time and lag recursive computation of cumulants from a state-space model, IEEE Trans.
Automat. Control 35 (1990) 4–17.

[68] S. Thirumalai, High performance algorithms to solve Toeplitz and block Toeplitz matrices, Ph.D. Thesis, University
of Illinois, Urbana, IL, 1996.

[69] M.J. Todd, On search directions in interior point methods for semide�nite programming, Optim. Methods Software,
(1998), to appear.

[70] R. Tolimieri, M. An, C. Lu, Algorithms for Discrete Fourier Transform and Convolution, Springer, New York, 1989.
[71] L. Vandenberghe, S. Boyd, Semide�nite Programming, SIAM Rev. 38 (1996) 27–48.
[72] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM Publications, Philadelphia, PA,

1992.
[73] C. Van Loan, N.P. Pitsianis, Approximation with Kronecker products, in: M.S. Moonen, G.H. Golub (Eds.), Linear

Algebra for Large Scale and Real Time Applications, Kluwer Publications, Dordrecht, 1992, pp. 293–314.
[74] W.J. Vetter, Vector structures, solutions of linear matrix equations, Linear Algebra Appl. 10 (1975) 181–188.

Journal of Computational and Applied Mathematics 123 (2000) 101–115
www.elsevier.nl/locate/cam

Preconditioning eigenvalues and some comparison of solvers
Ronald B. Morgan

Mathematics Department, Baylor University, Waco, TX 76798-7328, USA

Received 30 June 1999; received in revised form 17 December 1999

Abstract

Preconditioning techniques are discussed for symmetric eigenvalue problems. The methods Davidson, Jacobi–Davidson,
Rayleigh quotient iteration, and preconditioned Lanczos are considered. Some relationships are given between these di�erent
approaches, and some experimental comparisons are done. Jacobi–Davidson appears to be e�cient in both expense and
storage. A hybrid method may be helpful for the case of a poor initial vector. c© 2000 Elsevier Science B.V. All rights
reserved.

MSC: 65F15; 15A18

Keywords: Eigenvalues; Preconditioning; Davidson’s method; Jacobi–Davidson

1. Introduction

Finding eigenvalues is an important task in scienti�c computation. There are many applications in
physics, chemistry, and engineering. These include computing energy levels of atoms, �nding vibra-
tional states of molecules, and determining how buildings will vibrate during earthquakes. Frequently
scientists wish to know some eigenvalues of very large matrices. For such problems, Krylov subspace
methods are well known. The Lanczos algorithm [9,22] is a Krylov subspace method for symmetric
problems. For nonsymmetric matrices, the methods are Arnoldi [1,26,35] and nonsymmetric Lanczos
[9,26].
For large systems of linear equations, preconditioning is an important technique for improving

the spectrum. While it is not as straightforward, preconditioning can also be used for eigenvalue
problems. Methods that use preconditioning are no longer strictly Krylov methods, although they are
generally still related. In cases where an e�ective, inexpensive preconditioner is available, precondi-
tioning can signi�cantly improve the convergence and provide a better method.

E-mail address: ronald morgan@baylor.edu (R.B. Morgan).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00395-2

102 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

Preconditioning of eigenvalue problems is only partly developed. However, work has been done
for some time in Russia; see [8] for a summary and references. Also, Ruhe [23–25] used SOR and
the conjugate gradient method to �nd eigenvalues in the 1970s. Around the same time, quantum
chemists, including Davidson [4], developed correction methods for their large symmetric matrices.
In 1986, in [19], Davidson’s method was viewed as a diagonal preconditioning method, and it was
generalized for arbitrary preconditioners. For more on Davidson’s method, see [18,16,3,37,38]. The
Jacobi–Davidson method [31] was developed in 1996. The inexact rational Krylov method [10] and
truncated RQ [36] are recent approaches that are related to Jacobi–Davidson.
This paper discusses preconditioning methods and does some fairly simple comparisons. The

focus is on the methods more than on the preconditioners (not much has been done on e�ectiveness
of various preconditioners for eigenvalue problems, but see [33,21,32]). We consider only a few
methods and only the symmetric case. The methods are the generalized Davidson (GD) method
[19], preconditioned Lanczos (PL) [20], the Rayleigh quotient iteration (RQI) with preconditioned
conjugate gradient solution of the linear equations [11,39], and Jacobi–Davidson (JD) [31] with also
the preconditioned conjugate gradient method. New implementations of PL and RQI are also given:
vectors in the outer loops are saved and the Rayleigh–Ritz procedure [22] is applied.
One motivation for this paper is to see how the recent JD method compares with the others.

Also, we wanted to see if the robustness of PL could be improved with the addition of the outer
Rayleigh–Ritz; if it could compete better with GD, in terms of total number of iterations. And
�nally, the more robust implementation of RQI is given to make the comparisons with it more fair.
It is desired that the discussion and the comparisons in this paper provide some insights into these
methods. However, further comparisons of preconditioning methods are de�nitely needed.
Section 2 describes the methods that will be considered and gives the new modi�cations. Section

3 has discussion, and Section 4 has experiments.

2. Description of methods

We consider the eigenvalue problem Az = �z, where A is a symmetric matrix. However, the
algorithms listed below all have nonsymmetric versions. Instead of PL, preconditioned Arnoldi [13]
can be used. JD and RQI just need a nonsymmetric iterative linear equations solver [27,28,7,40,2]
in the inner loop.
The GD method generates a subspace with the preconditioned operator M−1(A − �I); where

� is an approximate eigenvalue and M is an approximation to A − �I . It uses the Rayleigh–
Ritz procedure to extract approximate eigenvectors from the subspace. We quickly describe the
Rayleigh–Ritz procedure [22,26]. Let V be an orthonormal matrix with columns spanning the de-
sired subspace. The Rayleigh–Ritz procedure �nds eigenpairs (�; s) of the small matrix V TAV . The
�’s are approximate eigenvalues, called Ritz values. The approximate eigenvectors or Ritz vectors
are y = Vs.

Algorithm 1. Generalized Davidson’s method
• Begin with k orthonormal starting vectors v1; v2; : : : ; vk .
• For j = k; k + 1; : : : do

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 103

1. Apply the Rayleigh–Ritz procedure to the subspace Span{v1; v2; : : : ; vj}. Let the best ap-
proximation to the eigenpair of interest be (�; y), with y normalized. Choose a precondi-
tioner M which may either be �xed or may depend on �.

2. Find the residual vector for y, r=(A−�I)y. If ||r||6TOL, accept that eigenpair, otherwise
continue.

3. Compute wj =M−1r. Orthonormalize wj against v1; : : : ; vj to form vj+1.

In Davidson’s original method, M =D− �I , where D is the diagonal matrix with the same main
diagonal as A.
When j becomes too large, the Rayleigh–Ritz expense can be prohibitive. Then Davidson’s method

needs to be restarted. For instance, in step 1 we can add: If j= j max, pick the k best approximate
eigenvectors, orthonormalize them to give v1; : : : ; vk , and let j = k.
The PL method takes GD’s operator M−1(A − �I), but requires M to be a positive de�nite

preconditioner. Then M−1(A− �I) can be symmetrized and the Lanczos algorithm applied. There is
an outer loop that updates the approximate eigenpair.

Algorithm 2. Preconditioned Lanczos
• Choose a starting vector y0. Let �0 = yT0Ay0=yT0y0.
• For j = 0; 1; 2; : : : do
1. Choose a SPD preconditioner Mj for A− �jI , and factor as Mj = LjLTj .
2. Apply the Lanczos method to Wj = L−1j (A − �jI)L−Tj with initial vector Ljyj and with
stopping criterion rn¡ − �j, where �j is the smallest Ritz value of Wj and rn is the
associated residual norm. When the Lanczos loop has ended, let wj be the normalized
Ritz vector that corresponds to �j.

3. Compute yj+1=L−Twj, which is an approximate eigenvector of A, and its Rayleigh quotient
�j+1 = �j + �j=yTj+1yj+1.

4. Find the residual vector for yj+1, r = (A − �j+1I)yj+1=||yj+1||. If ||r||6TOL, accept that
eigenpair, otherwise continue.

When several eigenvalues are being sought, an approximation to the next one is calculated by
�nding the Ritz vector corresponding to the second Ritz value of Wj, and then multiplying it by
L−T (this will be the new y0 vector after the current eigenpair is accepted). This is done when
||r|| is �rst less than TOL2=3. While computing the second and subsequent eigenvalues, the ones
already determined are shifted out of the way. For the lth eigenvalue, replace A−�jI in step 2 with
A− �jI + z1zT1 + · · ·+ zl−1zTl−1, for a value such that �1 + is moved beyond the eigenvalues of
interest.
Some expense can be saved by not checking the convergence of the inner Lanczos loop at every

step. Also, a test can be used to terminate the Lanczos loop early when convergence is near [20].
When the Mj inner product is used in the Lanczos loop, there is no need to factor Mj [12]. The
Krylov basis is then Mj orthogonal. This is similar to how the preconditioned conjugate gradient
method is implemented.
As was suggested in the conclusion of [20], we now modify PL in order to make it more robust.

The outer loop now applies a small Rayleigh–Ritz procedure to the last few approximate eigenvectors
that have been developed.

104 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

Algorithm 3. Preconditioned Lanczos with an outside Rayleigh–Ritz projection
• Same as Preconditioned Lanczos except for:
3. Compute x=L−Twj and put it in a set of x vectors. If a new y0 vector is computed (see the
discussion in the paragraph after the PL algorithm); immediately add it also to the set of
x vectors. Apply the Rayleigh–Ritz procedure with matrix A to the subspace spanned by
the x vectors. Let (�j+1; yj+1) be the smallest Ritz pair from this outside Rayleigh–Ritz.

4. Find the residual vector for yj+1, r = (A − �j+1I)yj+1=||yj+1||. If ||r||6TOL, accept that
eigenpair and let the new y0 be the second approximate eigenvector from the Rayleigh–
Ritz procedure in 3; otherwise continue.

We abbreviate this method as PL–RR.
Similar to the discussion after the GD algorithm, once the subspace of x′s becomes too large, it

can be restarted, retaining the best approximate eigenvectors. The same is true for the Rayleigh–Ritz
procedures in the RQI and JD algorithms that are given next. We modify the simple RQI algorithm
by adding the outside Rayleigh–Ritz.

Algorithm 4. Rayleigh quotient iteration
• Same as Generalized Davidson except for:
3. Solve (A − �I)wj = y, using a stable conjugate gradient method such as SYMMLQ,
preconditioned by a SPD matrix M .

For the stopping test in SYMMLQ, we use improvement in residual norm of min{0:01; ||r||2}. For
JD, a di�erent system of linear equations is solved.

Algorithm 5. Jacobi–Davidson
• Same as Generalized Davidson except for:
3. Solve (I−yyT)(A−�I)(I−yyT)wj= r, using a preconditioned conjugate gradient method.
In the preconditioning step, CG uses the inverse of (I − yyT)M (I − yyT).

See [31,33,29] for JD implementation details, including how to avoid most applications of
(I − yyT). We use regular preconditioned CG instead of SYMMLQ, because it is stable in our
tests. The CG loop uses stopping test of relative residual norm less than 2−j [29]. As in PL, a
test is used to terminate the inner loop early when convergence is near. Speci�cally, the 2−j test is
replaced by min(0:5; 0:5× 10log10(TOL)−log10(||r||)) if this quantity is larger than 2−j.
For computing the second and subsequent eigenvalues, the previous ones can be deated by using

(I −yyT)(I −QQT)(A− �I)(I −QQT)(I −yyT), where Q is the orthonormal matrix whose columns
are the converged eigenvectors, in place of (I − yyT)(A− �I)(I − yyT) [29]. This is used in some
of our experiments.

3. Discussion of methods

3.1. The operator M−1(A− �I)

All of the preconditioning methods discussed here use essentially the same operator in their inner
loop. This operator is M−1(A− �I); with � an approximate eigenvalue. GD has this operator with �

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 105

Fig. 1. Spectrum without preconditioning from Example 3.1.

changing every iteration. With PL, the symmetric version of this operator is used during the Lanczos
run, and � is �xed for each run. RQI has the matrix M−1(A−�I) in its inner loop of preconditioned
conjugate gradients. The same is true for JD, except that the current approximate eigenvector is
deated out of this operator.
Since these methods are all similar in their core operators, we might expect that they would give

similar results. This is not necessarily the case. However, it is safe to say that they all share the
same limitation. They can only be as e�ective as the preconditioned operator M−1(A − �I) allows
them to be. For the preconditioning to be worthwhile, the spectrum of this operator needs to be a
signi�cant improvement over that of the original operator A. Let (�; z) be the desired eigenpair. If �
is approximately equal to �, the important operator is M−1(A− �I). This operator has eigenvalue 0
with eigenvector z. So it has the correct eigenvector, and a major question is whether the eigenvalue
0 is better separated from the rest of the spectrum than � was in the spectrum of A.
We give a couple of examples of how the spectrum of A can be changed by the preconditioning.

The matrices are nonsymmetric, even though the focus of this paper is on symmetric problems. This
makes the examples more general, and also the spectral plots are more interesting with complex
eigenvalues. The �rst example shows that eigenvalue preconditioning can be e�ective. Then a case
is given where preconditioning does not work well.

Example 3.1. The �rst matrix has diagonal elements 1; 2; 3; : : : ; 100; and all other entries distributed
normally with mean 0 and standard deviation 1. The smallest eigenvalue of A is 0.2787. We look at
the spectrum of A and the spectrum of N =(D−�I)−1(A−�I), where D is the diagonal matrix with
the main diagonal of A. Also �= 0:28, which is accurate to two decimal places. See Figs. 1 and 2
for the plots. It is clear that the preconditioned spectrum of N is an improvement over that of A. The

106 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

Fig. 2. Spectrum with preconditioning from Example 3.1.

desired eigenvalue of N has much better separation relative to the entire spectrum. We give the ratio
of the distance to the closest eigenvalue with the distance to the farthest eigenvalue. A smaller ratio
can mean the eigenvalue is more di�cult to �nd, although there other factors such as the positioning
of the eigenvalues and the degree of nonnormality. The ratio is 0.04 for the smallest eigenvalue of
A compared to 0.28 for the eigenvalue of N near zero. This is a signi�cant improvement.

Example 3.2. The second matrix is the same as the �rst except the diagonal elements are also
random. Unlike in Example 3.1, the diagonal of the matrix is not a good approximation to the entire
matrix. So we use a larger portion of the matrix as preconditioner. We let P be a band matrix with
49 diagonals of A, so pij = aij if |i − j|¡ 25 and otherwise pij = 0. In Figs. 3 and 4, we give the
spectrums of A and of N =(P−�I)−1(A−�I). Here �=−11:16 is an approximation to the leftmost
eigenvalue of A;−11:1633. There is very little improvement in the relative separation. For both A
and N , the ratio of distances to closest and farthest eigenvalues is about 0.16. It is interesting that
in this example, the inaccuracy of � is magni�ed and N ’s smallest eigenvalue is not very near to
zero. We can get some improvement by using a preconditioner with 99 diagonals of A. The ratio
of distances to closest and farthest eigenvalues becomes 0.27, but this is with 75% of the entries of
the matrix used in the preconditioner.
The results in Example 3.2 are not really surprising. It is already known for linear equations that

preconditioning a random matrix is di�cult. Some structure is needed for e�ective precondition-
ing. It is interesting that some theoretical results can be established for preconditioning eigenvalues,
just as they can for linear equations. See [17,12] for results about convergence with modi�ed in-
complete factorization versus incomplete factorization for matrices from Poisson’s equation, and for

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 107

Fig. 3. Random matrix from Example 3.2, no preconditioning.

Fig. 4. Random matrix, 49 diagonals preconditioning.

108 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

supporting experiments that show the advantage of modi�ed incomplete factorization as the problem
size increases.
Next, the di�erences between the methods are discussed. First, we compare GD with the other

approaches, then discuss JD, compare RQI and JD, and �nally give relationships and comparisons
for JD and PL.

3.2. The GD method

GD changes its approximate eigenvalue at every iteration. This is an advantage in that it always
uses the best information available. Based on this, it seems that GD will converge in less iterations.
Another advantage for GD is that an SPD preconditioner is not required. However, it has the
disadvantage of requiring more overhead expenses. Unlike the other methods, it cannot use an
e�cient Lanczos or CG algorithm. So it may require more CPU time. Restarting reduces the overhead
expense but can also slow convergence. For di�cult problems that need large subspaces, restarted
GD can even end up needing more iterations than other methods. In cases where it is expensive to
apply the matrix–vector product and the preconditioner, GD’s overhead is not so important, and it
may be the best method.

3.3. Jacobi–Davidson

The ideal JD operator in the outer loop is ((I−yyT)(A−�I)(I−yyT))−1(I−yyT)(A−�I)(I−yyT).
We discuss what the deation of y accomplishes. Without deation, this ideal operator become the
identity matrix and is useless. Normally, an approximation to the inverse is used, so the deation
may not be needed. However, it is reassuring to know that the method does not break down if
an approximate inverse is too good. And there is a case where we can expect to have a good
approximation. That is when the application of (A−�I)−1 is accomplished by solving linear equations
with an iterative method. Of course, this is the approach of JD.

3.4. RQI and JD

The versions of RQI and JD that we used here are similar in that they both have a variant of
the preconditioned conjugate gradient method in their inner iteration. However, JD has an advantage
which we discuss quickly here. For more, see [10], where the shift-and-invert transform is compared
to the Cayley transform. Let (�; z) be the desired eigenpair, and suppose that � is converging to �.
Assume that (A−�I)−1 is being approximated. Then this approximation does not necessarily have an
eigenvector converging to z, unless the accuracy increases as � becomes more accurate. This greater
accuracy corresponds to solving the linear equations in RQI to an increasing degree of accuracy (it
may theoretically be possible to have an eigenvector converging to z without increasing the accuracy,
with a di�erent choice of starting vectors for the linear solver). Meanwhile, the approximation to
((I−yyT)(A−�I)(I−yyT))−1(I−yyT)(A−�I)(I−yyT) in JD does have an eigenvector that converges
to z. This happens even if the accuracy of the approximation to ((I − yyT)(A − �I)(I − yyT))−1
does not improve. So in the JD method, the degree of accuracy needed in the solution of the linear
equations is not so crucial.

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 109

JD also has the small eigenvalue removed from the conjugate gradient loop. This may improve
convergence and stability compared to RQI.

3.5. PL and JD

We now consider PL and JD including how they relate to each other. The PL inner loop is
inaccurate because of the e�ect of the preconditioning (for � not yet equal to an eigenvalue,
M−1(A−�I) does not have the same eigenvector as A). This necessitates restarting the loop and the
restarting slows down the convergence. It does appear that the stopping test in the Lanczos loop is
e�ective and minimizes the loss. Even with the early termination of the inner loop, the convergence
is asymptotically quadratic with respect to the outer loop. The quadratic convergence indicates that
the inner loop iteration can run longer as the method proceeds. So the e�ciency compared to GD
increases as it goes along.
Now with JD, the inner loop solves linear equations instead of an eigenvalue problem. So some

e�ort potentially could be wasted if it goes into improving the linear equation solution in a way that
does not eventually bene�t the eigenvalue problem. And as with PL, some e�ciency may be lost
due to the restarts of the inner iteration. However, JD can give asymptotic cubic convergence with
proper residual tolerances [6]. So when it is near convergence, its inner loop can be solved longer
and still get a bene�t.
There actually is a close equivalence between the problems solved in the inner loops of PL

and JD. It is well known for an SPD matrix that these two tasks are approximately equivalent:
(1) solving linear equations with the conjugate gradient method, (2) using the Lanczos algorithm to
compute an eigenvalue added to the spectrum at zero (see, for example, [30]). They are equivalent
in the sense that the same polynomial will be e�ective for both problems. This polynomial needs to
be large at zero and small over the spectrum of A (the CG polynomial also needs to be normalized
to one at zero). The comparison between PL and JD is somewhat similar, but instead of computing
an eigenvalue added to the spectrum, an eigenvalue is removed from the linear equations spectrum.
We look at the asymptotic case with � equal to the eigenvalue �, with eigenvector z. For PL, we
need a polynomial large at the zero eigenvalue of M−1(A− �I) and small at the other eigenvalues.
For JD, the operator in the inner loop is ((I − zzT)M (I − zzT))−1(I − zzT)(A − �I)(I − zzT). This
operator has the same spectrum as in the PL inner loop. The linear equations problem has zero
removed from the spectrum, because of the deation in this operator and the fact that the right-hand
side for the linear equations is orthogonal to y (and asymptotically to z). So we need a polynomial
that is one at zero and small over the rest of the spectrum of the JD inner loop operator. This is
equivalent to the polynomial for PL. So asymptotically, the two methods solve problems of similar
di�culty in their inner loops.
It is argued in [20] that PL is likely to converge to the smallest eigenvalue, although initial

convergence can be very slow if there is neither a good starting vector nor an initial estimate for
the smallest eigenvalue. Meanwhile, JD can get hung up and converge to the wrong eigenvalue.
The inner loop of PL spreads out the spectrum of M−1(A − �I) and can compute a number of
approximate eigenvectors (although only one or two are desired and generally only one is an accurate
approximation to an eigenvector of A), while JD goes after just one vector in solving its linear
equations. This one vector actually may improve approximations to several eigenpairs. Nevertheless,
it seems that PL may have an advantage initially. See Example 4.3. On the other hand, in this

110 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

situation of a di�cult start, some other method might be considered initially. A hybrid approach
could begin with application of the Lanczos algorithm with either operator A or M−1.
A major advantage for JD is in storage. PL must save all of the Lanczos vectors generated in its

inner loop in order to form the Lanczos Ritz vector. But since JD has the conjugate gradient method
in its inner loop, the storage demands are minimal. And the number of vectors saved for the outer
Rayleigh–Ritz procedure can be kept small if necessary.

4. Experiments

In these tests, the number of matrix–vector products (mvps) is listed. An application of the
preconditioner accompanies each mvp. CPU time on a Vax is also given. However, the algorithms
are not necessarily implemented optimally, so limited attention should be paid to the timings. For
instance, the small eigenvalue problems in all methods are solved with Eispack routines [34]. So
the solution could perhaps be more e�cient, particularly for GD which solves similar problems at
every iteration. The Lanczos algorithm does not use partial reothogonalization. For the Rayleigh–Ritz
procedures in all methods, basis vectors are reorthogonalized when the vector’s norm drops by 90%
during the orthogonalization.
The GD method is restarted when subspaces reach dimension 20. JD has subspaces of maximum

size 10 in its outer loop. GD generally needs larger subspaces than JD, because it builds its subspace
with a weaker preconditioner than JD uses for its outer subspace. PL–RR restarts the outer Rayleigh–
Ritz after an eigenvector is computed. To reduce the expense, just two eigenpairs are computed in
the inner Lanczos loop of the PL methods. Also, the convergence in the inner loop is checked for
the �rst seven Lanczos steps and then only at multiples of �ve.

Example 4.1. For testing, we choose a matrix A of dimension 5000. It is tridiagonal with en-
tries 1; 2; 3; : : : ; 5000 on the main diagonal and with 0.5’s in all the superdiagonal and subdi-
agonal positions. The starting vector has elements chosen randomly from the interval (−1; 1).
Two preconditioners of di�erent accuracy are used. Both are �xed diagonal matrices. First M =
Diag(1:1; 1:2; 1:3; : : : ; 500:9; 501) is a good preconditioner, then M = Diag(1:002; 1:004; 1:006; : : : ;
10:998; 11) is a mediocre preconditioner. It is implicitly assumed in these preconditioners that we
have 0.0 as an estimate for the desired eigenvalues. So we are using M =D−0:0I instead of D−�I .
Both PL methods use =100 to shift already converged eigenvectors [20]. We let JD use the initial
estimate of 0.0 in place of � for the �rst few outer iterations, because the poor starting vector gives
a bad �. This is switched back once � improves (distance from 0.0 less than the eigenvalue residual
norm). For this example, deation of converged eigenvectors is not used in JD, because it does not
signi�cantly improve convergence.

The smallest eigenvalue and eigenvector are found �rst. Then the smallest �ve eigenvalues are
computed. Tables 1 and 2 give the results with the two preconditioners. We see that GD converges
in the fewest iterations, but costs more.
There appears to be some inherent loss in going from GD to the double iteration of PL, at least

for the good preconditioner case. PL–RR is not a big improvement upon PL. However, for the case
of �ve eigenvalues with the mediocre preconditioner, PL–RR does come close to GD in mvps.

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 111

Table 1
Test matrix, good preconditioner

1 eigenvalue 5 eigenvalues

mvps cpu time mvps cpu time

GD 26 1.2 87 4.9
PL 41 0.40 183 2.2
PL–RR 41 0.41 190 2.8
RQI 36 0.46 308 3.6
JD 38 0.47 150 2.6

Table 2
Test matrix, mediocre preconditioner

1 eigenvalue 5 eigenvalues

mvps cpu time mvps cpu time

GD 164 8.6 641 36.2
PL 207 2.1 812 9.6
PL–RR 213 1.8 698 8.0
RQI 237 2.1 1428 11.4
JD 230 1.6 869 8.2

RQI is the slowest method if several eigenvalues are computed. Performance of JD and PL is
fairly similar. However, as mentioned earlier, JD uses less storage than PL. When using the poorer
preconditioner, PL builds subspaces as large as 85 in the inner Lanczos loop. For tougher problems,
even larger subspaces would be needed.
To show that GD can be the best in terms of time, we do an experiment with a similar, but less

sparse matrix: 200 elements of value 0.1 are added to each row. We do not give a table, but do
compare GD with PL for the good preconditioner. GD takes less time to compute 5 eigenvalues,
13.4 versus 21.8 s.

Example 4.2. In this example we demonstrate that the implementation does matter for a precon-
ditioned method. Simply having the operator M−1(A − �I) does not guarantee e�ectiveness. RQI
had some di�culty in the previous example when computing several eigenvalues, but we seek
a more dramatic example. One of the simplest preconditioning methods for eigenproblems is to
compute M−1(A− �I)y as in Davidson’s method, but use it as a correction to y instead of applying
Rayleigh–Ritz (see [8] for some other simple preconditioning methods). So this simple iteration starts
with y and computes a new approximate eigenvector y −M−1(A − �I)y, where � is the Rayleigh
quotient of y. This new approximation then becomes y. This method is tested on the matrix from
Example 1 with the good preconditioner. The starting vector has �rst two components 100 and −50
and the rest random on (−1; 1). The true eigenvector is (0:91;−0:41; 0:095;−0:015; 0:002; : : :)T. The
method did not converge. This is not surprising, since divergence can be expected if any eigenvalues
of I −M−1(A− �1I) are greater than one in magnitude.

112 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

Table 3
Test matrix, good prec., di�erent starting vectors

(Random) (10, random) (100,−50, random)
mvps mvps mvps

PL–RR 250 149 76
JD – – 39

Next, we make the method a little more complicated. After M−1(A− �I)y is computed, a 2× 2
Rayleigh–Ritz procedure is applied to combine y and M−1(A−�I)y. So this is equivalent to GD with
maximum size subspace of two. This approach did give convergence, even with the random starting
vector from Example 4.1. With the good preconditioner, the �rst eigenvalue was computed with
85 mvps and 1.1 cpu s. This compares to 26 mvps and 1.2 s for GD with subspaces of dimension
20. With the mediocre preconditioner, there is a much bigger di�erence. The 2 × 2 method uses
3663 mvps and 44 s compared to 164 mvps and 8.6 s for GD (and only 1.6 s for JD). This is
similar to large Krylov subspaces being better than either power method or dimension two Krylov
subspaces. And large Krylov subspaces are especially important for tough problems.

Example 4.3. We compare PL–RR to JD with the assumption that there is neither an eigenvalue
estimate available nor an extremely accurate eigenvector approximation. Three starting vectors are
used. The �rst has all entries random on (−1; 1). The second has �rst component 10 and the others
random. The third has �rst entries 100 and −50, as mentioned in the previous example. Even though
this last vector is better, its Rayleigh quotient is 293.3, not near the desired eigenvalue. The PL inner
loop is limited to 20 steps, but a better stopping test is needed for the Lanczos loop in this situation
of a poor starting vector. JD does not use 0.0 in place of � initially, as in the earlier tests. The good
preconditioner from Example 4.1 is used, except it is shifted by �, and absolute values are taken of
negative elements. The results are given in Table 3. JD does not converge for the poorer vectors.
It gets hung up searching for wrong eigenvalues. The same thing can happen to GD and RQI. PL
separates out the eigenvectors in its inner loop and does not focus so much on the eigenvector
nearest the current � (see the discussion in Section 3.5).

Example 4.4. We next look at a situation where JD works better than PL. A bad preconditioner is
chosen. It actually has a detrimental e�ect. PL approximately computes an eigenvector of M−1(A−
�I). So if that eigenvector is distorted away from the eigenvector of A by the preconditioner, the
method may have trouble until � is very near �. For JD, poor preconditioning may slow the solution
of the linear equations, but does not change the vector that the method is trying to compute. To
elaborate on this, we note that if both PL and JD solve their inner loops to full accuracy, JD is not
a�ected by the distortion of the preconditioner. PL is a�ected.
We let the preconditioner be M = LLT, where L is lower bidiagonal with 0.95’s on the main

diagonal and 1’s on the subdiagonal. The matrix is the same as in the earlier examples, but because
of the bad preconditioning, we use n = 200 instead of 5000. All inner loops are limited to 200
iterations. The starting vector is all random. To �nd the smallest eigenvalue, JD uses 1164 matrix–
vector products. PL requires 3436. The bad preconditioning does have a stronger e�ect on PL.

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 113

Table 4
Sherman1 matrix, inc. fact. preconditioner

1 eigenvalue 5 eigenvalues

mvps cpu time mvps cpu time

GD 42 0.7 182 2.4
PL 66 0.4 467 1.5
PL–RR 66 0.4 365 1.5
RQI 99 0.5 616 2.1
JD 52 0.4 351 1.6

Table 5
Sherman1 matrix, diagonal preconditioner

1 eigenvalue 5 eigenvalues

mvps cpu time mvps cpu time

GD 528 5.3 2080 20.4
PL 473 1.2 2073 6.4
PL–RR 432 1.3 1537 4.7
RQI 614 1.7 3107 7.0
JD 522 1.4 1541 4.2

Example 4.5. Next, we run tests similar to those in Example 4.1, but with the matrix Sherman1 from
the Harwell–Boeing collection [5]. The matrix is dimension 1000. The smallest eight eigenvalues
are 0.00032, 0.00102, 0.00111, 0.00151, 0.00192, 0.00205, 0.00209 and 0.00210, and the largest
is 5.04. So some of the small eigenvalues are close together. A good preconditioner is incomplete
factorization [14] of A with no �ll-in, and a mediocre preconditioner is diagonal preconditioning.
Note that with incomplete factorization, only one factorization is done, and the matrix is not shifted
before the factoring. So the estimated value 0.0 is assumed to be known for the smallest eigenvalues.
JD again uses that estimate initially in place of �. Here JD does deate out converged eigenvectors.
The PL methods use = 0:01 to remove converged eigenvectors. The results are given in Tables
4 and 5. Note that PL–RR and JD use similar numbers of matrix–vector products. Both require
less iterations than GD for �nding �ve eigenvalues with diagonal preconditioning. PL–RR performs
signi�cantly better than PL, so the outside Rayleigh–Ritz seems worthwhile. The RQI algorithm
here works much better in this situation of close eigenvalues than the algorithm used in [20] (some
eigenvalues were skipped). The outside Rayleigh–Ritz loop makes a big di�erence.

5. Conclusion

We have discussed that preconditioning methods are generally related by their use of the same
operator, M−1(A− �I). So convergence rates are often similar, but the implementation can make a
di�erence.
We give some conclusions about the methods compared in this paper. GD is expensive compared

to the other methods when matrix–vector products are cheap. JD and RQI require the least memory.

114 R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115

PL–RR is likely to use the most memory. JD and PL–RR usually have similar performance for the
examples discussed here. However, PL–RR is more sensitive to a bad preconditioner than JD. And
JD is less robust than PL–RR when the starting vector is poor.
We cannot recommend just one method as being best. However, JD is reliable and e�cient if

the starting vector is good. And an initial subspace can be computed for JD with another method.
PL–RR is a possible initial method, but perhaps better would be a Lanczos method using operator
A or M−1, since PL is not immune to initial problems [15, pp. 99–101]. We also note that GD is
likely best if the matrix–vector product is quite expensive.
While this paper deals with the symmetric case, much of the discussion carries over for nonsym-

metric problems. It would be interesting to continue the comparisons for that case, and for interior
eigenvalue problems and generalized eigenvalue problems.

Acknowledgements

The author wishes to thank Henk van der Vorst for inviting this paper. Also thanks to Henk and
Zhaojun Bai for their work on the Eigenvalue Templates project which helped lead to this paper. The
anonymous referees understood the methods in this paper very well. They made many suggestions
for improving the paper.

References

[1] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl.
Math. 9 (1951) 17–29.

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der
Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 1994.

[3] M. Crouzeix, B. Philippe, M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15 (1994) 62–76.
[4] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large

real-symmetric matrices, J. Comput. Phys. 17 (1975) 87–94.
[5] I.S. Du�, R.G. Grimes, J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. Software 15 (1989) 1–14.
[6] S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput. 17

(1996) 16–32.
[7] R.W. Freund, N.M. Nachtigal, QMR: a Quasi-minimal residual method for non-Hermitian linear systems, Numer.

Math. 60 (1991) 315–339.
[8] A. Knyazev, Preconditioning eigensolvers, in: Templates for the Solution of Algebraic Eigenvalue Problems: A

Practical Guide, SIAM, 2000, to appear.
[9] C. Lanczos, An iterative method for the solution of the eigenvalue problem of linear di�erential and integral operators,

J. Res. Nat. Bur. Standards 45 (1950) 255–282.
[10] R.B. Lehoucq, K. Meerbergen, Using generalized Cayley transformations within an inexact rational Krylov sequence

method, SIAM J. Matrix Anal. Appl. 20 (1998) 131–148.
[11] J.G. Lewis, Algorithms for Sparse Matrix Eigenvalue Problems, Ph.D. Thesis, Stanford University, Stanford, CA,

1977.
[12] K. Meerbergen, R.B. Morgan, Inexact methods, in: Templates for the Solution of Algebraic Eigenvalue Problems:

A Practical Guide. SIAM, 2000, to appear.
[13] K. Meerbergen, D. Roose, The restarted Arnoldi method applied to iterative linear system solvers for the computation

of rightmost eigenvalues, SIAM J. Matrix Anal. Appl. 18 (1997) 1–20.

R.B. Morgan / Journal of Computational and Applied Mathematics 123 (2000) 101–115 115

[14] J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coe�cient matrix
is a symmetric M-matrix, Math. Comput. 31 (1977) 148–162.

[15] R.B. Morgan, Preconditioning Eigenvalue Problems, Ph.D. Thesis, University of Texas, Austin, TX, 1986.
[16] R.B. Morgan, Davidson’s method and preconditioning for generalized eigenvalue problems, J. Comput. Phys. 89

(1990) 241–245.
[17] R.B. Morgan, Theory for preconditioning eigenvalue problems, Proceedings of the Copper Mountain Conference on

Iterative Methods, 1990.
[18] R.B. Morgan, Generalizations of Davidson’s method for computing eigenvalues of large nonsymmetric matrices, J.

Comput. Phys. 101 (1992) 287–291.
[19] R.B. Morgan, D.S. Scott, Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric

matrices, SIAM J. Sci. Statist. Comput. 7 (1986) 817–825.
[20] R.B. Morgan, D.S. Scott, Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems, SIAM

J. Sci. Comput. 14 (1993) 585–593.
[21] R.B. Morgan, M. Zeng, Harmonic projection methods for large non-symmetric eigenvalue problems, Numer. Linear.

Algebra. Appl. 5 (1998) 33–55.
[22] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cli�s, NJ, 1980.
[23] A. Ruhe, SOR-methods for the eigenvalue problem with large sparse matrices, Math. Comput. 28 (1974) 695–710.
[24] A. Ruhe, Iterative eigenvalue algorithms based on convergent splittings, J. Comput. Phys. 19 (1975) 110–120.
[25] A. Ruhe, T. Wiberg, The method of conjugate gradients used in inverse iteration, BIT 12 (1972) 543–554.
[26] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York, NY, 1992.
[27] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, MA, 1996.
[28] Y. Saad, M.H. Schultz, GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
[29] G. Sleijpen, H. van der Vorst, Jacobi–Davidson methods, in: Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide, SIAM, 2000, to appear.
[30] G.L.G. Sleijpen, A. van der Sluis, Further results on the convergence behavior of conjugate-gradients and Ritz values,

Linear Algebra Appl. 246 (1996) 233–278.
[31] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM J.

Matrix Anal. Appl. 17 (1996) 401–425.
[32] G.L.G. Sleijpen, H.A. van der Vorst, Preconditioning for eigenvalue correction equations. Technical Report in

preparation, Utrecht University, Utrecht, The Netherlands, 1999.
[33] G.L.G. Sleijpen, H.A. van der Vorst, E. Meijerink, E�cient expansion of subspaces in the Jacobi–Davidson method

for standard and generalized eigenvalue problems, ETNA 7 (1998) 75–89.
[34] B.T. Smith, J.M. Boyle, Y. Ikebe, B.C. Klema, C.B. Moler, Matrix Eigensystems Routines: EISPACK Guide,

Springer, New York, NY, 1970.
[35] D.C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl.

13 (1992) 357–385.
[36] D.C. Sorensen, C. Yang, A truncated RQ iteration for large scale eigenvalue calculations, SIAM J. Matrix Anal.

Appl. 19 (1998) 1045–1073.
[37] A. Stathopoulos, Y. Saad, C. Fischer, Robust preconditioning of large, sparse, symmetric eigenvalue problems, J.

Comput. Appl. Math. 64 (1995) 197–215.
[38] A. Stathopoulos, Y. Saad, K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi

methods, SIAM J. Sci. Comput. 19 (1998) 227–245.
[39] D.B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM J. Numer. Anal. 6 (1988) 1369–

1375.
[40] H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric

linear systems, SIAM J. Sci. Statist. Comput. 12 (1992) 631–644.

Journal of Computational and Applied Mathematics 123 (2000) 117–130
www.elsevier.nl/locate/cam

For tridiagonals T replace T with LDLt

Beresford N. Parlett
Mathematics Department and Computer Science Division, EECS Department, University of California, Berkeley,

CA 94720, USA

Received 21 July 1999; received in revised form 10 November 1999

Abstract

The same number of parameters determine a tridiagonal matrix T and its triangular factors L, D and U . The mapping
T → LDU is not well de�ned for all tridiagonals but, in �nite precision arithmetic, L, D and U determine the entries of
T to more than working precision. For the solution of linear equations LDUx=b the advantages of factorization are clear.
Recent work has shown that LDU is also preferable for the eigenproblem, particularly in the symmetric case. This essay
describes two of the ideas needed to compute eigenvectors that are orthogonal without recourse to the Gram–Schmidt
procedure when some of the eigenvalues are tightly clustered. In the symmetric case we must replace T , or a translate of
T , by its triangular factors LDLt . c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction and representations

This essay needs justi�cation because it examines a problem that has been considered as solved
for several decades: the symmetric eigenproblem for dense matrices. Section 2 describes the methods
that have been used with satisfaction for a long time. However in 1995 there was a little trouble
in Paradise. A team of computational chemists at Paci�c Northwest Laboratories found that certain
problems of order 1000–2000 were taking much longer than expected using the best available
software. On investigation it turned out that in a three-stage process the middle part, which should
have been negligible, was consuming 80% of the time. Further probing showed that 95% of the
eigenvalues were judged by the program to be in a tight cluster (they all agreed to four or more
decimals) and so the Gram–Schmidt orthonormalizing process was invoked to make sure that the
computed eigenvectors were indeed orthonormal to working accuracy. Because the cluster was so
large what is normally an O(n2) process, for n × n matrices, turned into an O(n3) marathon, see
[11,8]. This incident provoked some interesting lines of thought. The conservative view would cite
the inherent limitations of working in �xed precision arithmetic and would argue that very di�cult

E-mail address: parlett@math.berkeley.edu (B.N. Parlett).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00394-0

118 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

calculations should take more e�ort. This conservative view could be ampli�ed and made quite
persuasive. One central fact is that when the matrix elements are known to working precision, say 8
or 16 decimal places, then the eigenvalues and eigenvectors inherit a level of uncertainty that sets a
limit on how accurately they can be computed. Indeed the closer some eigenvalues cluster together
the less well determined are their eigenvectors. In the limit, for a multiple eigenvalue, it is only
the eigenspace that is de�ned, there is no distinguished basis of eigenvectors. Consequently, extra
measures, such as the Gram–Schmidt process, must be invoked to ensure that the program returns
orthogonal eigenvectors for tight clusters of eigenvalues.
A di�erent reaction to the 1995 revelation is to wonder whether there is a way to wriggle out

of these di�cult situations and to attain the following ambitious goal: given a n× n real symmetric
tridiagonal matrix T compute its eigenvalues and then send each eigenvalue, with a copy of T , to
its own processor. Each processor computes its eigenvector, all at the same time, and the outputs
turn out to be orthogonal to working precision without the need to check. That would be nice!
When the eigenvalues are nearly uniformly spaced in the spectrum then current methods can

realize the goal. What might we do when several eigenvalues agree to 4 or 8 or 12 decimals?
There is a method, developed by Dhillon and me from 1996 to 1999, and software to implement it,

but several new ideas are needed to justify the whole procedure and only one or two themes will be
described in this essay. Section 4 shows the method in action on a 4× 4 example. Before launching
into more detail it is helpful to recall two key facts. First, eigenvectors are invariant under translation
(or shifting) T → T − �I . Second, there is no loss in assuming that the next-to-diagonal entries
(i; i+1) and (i+1; i) do not vanish, i=1; 2; : : : ; n−1. In that case the true eigenvalues are distinct and
the eigenvectors are well de�ned even though some eigenvalues may be equal to working precision.
This is a subtle property of the tridiagonal form. Thus, there is a basis of eigenvectors even when
some eigenvalues appear multiple to working precision. We can aim to compute extremely accurate
eigenvectors and then orthogonality would follow automatically since the ‘true’ eigenvectors have
this property.
We now describe the �rst of the new themes. The radical new goal is to compute an approximate

eigenvector x; ||x||= 1, for a given approximate eigenvalue �̂ with the relative residual property
||Tx− x�̂||=O(n�)|�̂|; not just O(n�||T ||); (1)

where � is the roundo� unit and we regard two normalized vectors u and C as orthogonal to working
precision if

|utC|=O(n�): (2)

We use big O notation to hide some modest constant between 1 and 100. Unfortunately (1) is not
achievable for the simple reason that � is not always de�ned to high relative accuracy by T . Here
� is the eigenvalue of T closest to �̂. This means that small relative uncertainty in T ’s entries may
cause large relative uncertainties in tiny eigenvalues. A simple but mild example of this phenomenon
is a Toeplitz matrix a+ b(N +N t) where N is the n× n Jordan block with eigenvalue 0. For n=4,

N =

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 :

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 119

When b=1, a=−2 we obtain the second di�erence matrix whose eigenvalues lie in (−4; 0). The one
closest 0 is −4 sin2 (�=4n) ≈ −(�=2n)2. Take n=103 and change a from −2 to −2(1−10−8) to �nd
that �min changes to �min(1− 4

510
−2+O(10−4)), a large relative change. The example is mild because

the eigenvalues are not severely clustered. More complicated examples show this phenomenon
of large relative changes in the smallest eigenvalues for small values of n, say n = 4, see [7] and
Section 4.
In order to achieve (1) it is not only necessary that each small eigenvalue, such as �, be determined

to high relative accuracy (by T) but we must �nd an algorithm that will approximate � by �̂ to high
relative accuracy. If, for example, |�| = 10n� then the residual norm in (1) must achieve the very
small value O(n2�2).
Although there are special classes of tridiagonals that do de�ne their small eigenvalues to high

relative accuracy, see [2], the property fails most of the time.
In conclusion (1) seems to be an unattainable goal. At this low point we must emphasize, briey,

why (1) is so desirable. There is a well-known error bound that is, in addition, a fairly realistic
estimate of the error (angle) between the x achieving (1) and the true eigenvector s for �, the
eigenvalue closest to �̂. This result is not restricted to tridiagonals, see [18] for a proof.

Theorem 1. Let T be real symmetric; T s = s�; where � is the eigenvalue closest to �̂. For any
x; ||x||= 1; and any �̂;

sin|“(x; s)|6 ||Tx− x�̂||
gap (�̂)

;

gap (�̂) = |� − �̂|; � is the eigenvalue (6= �) closest to �̂:

If (1) holds then the theorem assures us that

sin|“(x; s)|6O(n�)|�̂||� − �̂| ≈
O(n�)

relgap(�̂)
;

where

relgap (�) =
|�− �|
|�| :

If (1) holds then

|�̂− �|
|�̂| ≈ |�− �||�| :

For example, if ||T || = 1, � = 10−18 and � = 10−19 then relgap (�) = 0:9 and x is a very accurate
approximation to s. For more details see [16].
The message here is that if (1) can be achieved then very accurate eigenvectors can be produced for

all eigenvalues with large relative gaps. The next link in the chain of ideas is the simple observation
that relative gaps may be increased by a suitable shift of origin whereas absolute separation between
eigenvalues is invariant since |(�− �)− (� + �)|= |�− �|.

120 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

Now we return to (1). The big new idea is to get rid of T ! To convey the idea in a simple way
consider the case when T is positive de�nite and so T permits a Cholesky decomposition

T = LLt; (3)

where L is lower bidiagonal. In 1967 Kahan proved that all the eigenvalues of LLt are determined
to high relative accuracy by the entries of L, not those of T . Today there are easy proofs of this
result, see [9,10], and there is more than one way to compute the eigenvalues to this high accuracy.
Of itself this result does not guarantee (1) but it is an essential element. That is the �rst theme. A
method we shall not describe here, see [15], permits (1) to be achieved with LLT replacing T .
Now we turn to a di�erent theme. As suggested by the earlier remarks on relative gaps in the

spectrum it may be necessary to shift the origin and use triangular factorization

T − �I = LLt − �I = L(1)D+L(1)t ; (4)

where L(1) is a unit lower bidiagonal matrix containing the multipliers and D+ is a diagonal matrix
holding the ‘pivots’. There is no general statement on how well the entries of L(1) and D+ determine
the eigenvalues of L(1)D+L(1)

t
but the results in [17] show that for most values of � these factors

L(1) and D+ do give high relative accuracy for the small eigenvalues. There is nothing sacred in
factoring from top to bottom. We can use as well a factorization from bottom to top:

T − �I = LLt − �I = U (1)D−U (1)t ; (5)

where U (1) is a unit upper bidiagonal matrix and D− is diagonal. In fact, there is a whole family of
n twisted factorization of T − �I and they all use the same number of parameters, namely 2n − 1,
see [17].
The implication of the preceding remarks is that we can compute very accurate eigenvectors if

we can �nd representations, such as L(1)D+L(1)
t
, that de�ne their small eigenvalues to high relative

accuracy. Recall that each shift changes the eigenvalues. However, one new representation will not
(usually) su�ce. We will need several representations, such as in (4), for di�erent values of �. We
will compute a subset of eigenvectors for each representation. This raises a new di�culty. When we
change from one representation to another, say

◦
L

◦
D

◦
Lt =LDLt−�I , we wonder whether the inevitable

roundo� errors in computing
◦
L and

◦
D from L, D, and � will break the link between the eigenvectors

computed from L and D to those computed from
◦
L and

◦
D. Fortunately, the recently discovered

di�erential stationary qd algorithms, see [12], give a way to switch between representations and
preserve high relative accuracy. That is the second theme and extends to nonsymmetric tridiagonals
and is the topic of Section 3. Section 4 shows the new method in action on a di�cult 4×4 example
and Section 5 shows what extends to the nonsymmetric case and what still needs to be done.

2. The classical methods

As soon as digital computers became available to scientists around 1950 the search was begun for
eigenvalue algorithms that were robust when executed in �nite precision arithmetic. In 1954, very
early in the game, Wallace Givens came up with a method for a symmetric matrix A that has stood
with little change for over 40 years. The defects of using the characteristic polynomial were quickly
grasped. No one would like to meet a polynomial of degree 1000 on a dark night. It is extremely

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 121

volatile and prone to blow up under the slightest provocation. A promising alternative is to employ
explicit similarity transformations until A turns into � diagonal. In principle, an in�nite sequence of
similarities is needed to reach � and that brings on tricky questions of when to stop.
Givens proposed a compromise between the two approaches (explicit similarities and the charac-

teristic polynomial) given above. The method has three distinct stages.
Phase 1: Reduce A to tridiagonal T by a �nite sequence of plane rotations designed to eliminate

one nontridiagonal entry at a time and preserve all previously created zero entries. Thus,

T = G∗
s · · ·G∗

1AG1 · · ·Gs = F∗AF (6)

where

s=
(
n− 2
2

)

and G alters only two columns. The G’s are accumulated into F and this phase costs O(n3) opera-
tions.
Phase 2: Apply ‘bisection’ to any given interval to �nd all, or some eigenvalues of T to full

precision (relative to ||T ||) or less. The tool is Sylvester’s Inertia theorem applied to Gaussian
elimination without interchanges. Let T − �I = LDLt . Sylvester’s Inertia theorem says the number
of eigenvalues less than � equals the number of negative entries on D’s diagonal. Once an interval
contains a single eigenvalue bisection may be continued until a designated number of correct digits is
obtained. The cost of each factorization is 2n operations, and so the cost of computing k eigenvalues
is O(kn).
In his original technical report Givens did not invoke Sylvester’s Inertia theorem nor triangular

factorization. Instead he used a more complicated mechanism with a three-term recurrence and Sturm
sequences but the two approaches are equivalent in exact arithmetic but Givens had to worry about
over=underow.
In order to compute the eigenvector belonging to a computed eigenvalue �̂ Givens solved (T −

�̂I)x= en, where ej is the jth column of the identity matrix I . This was the least successful feature
of his method. Any �xed right-hand side will lead to trouble on some matrices. We now know that
it is important to choose the right-hand side carefully, see [15] for more details. Again the cost for
x is O(n) so Phase 2 is an O(kn) process for k eigenpairs. As indicated in Section 1 numerical
orthogonality depends on the separation of the eigenvalues and a Gram–Schmidt post-processing has
to be available.
Phase 3: Let T=S�S t . If the eigenvectors Z of A are wanted then S is mapped into Z via Z=FS.

This is an O(n3) process. F need not be found explicitly but can be represented by the sequence of
G’s given in (6). If only k eigenvectors are wanted the cost reduces to O(kn2).
Finally, Givens produced an error analysis in �xed-point arithmetic showing that the computed

eigenvalues were the exact eigenvalues of a matrix close to T or A. This was one of the earliest
instances of a ‘backward’ error analysis: the computed quantities solve exactly a nearby problem. It
is worth emphasizing that a backward error analysis is not possible for all algorithms.
There is little to add for the task of computing a subset of eigenpairs. There is an alternative to

Phase 2 when all eigenvalues are wanted. The QR algorithm, see [13,5], is applied to T yielding
�=R∗

p · · ·R∗
1TR1 · · ·Rp where each Ri is a plane rotation G and p is the number of iterations used in

the QR algorithm. Then S =R1 · · ·Rp and this accumulation of plane rotations produces an S that is

122 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

orthogonal to working accuracy however close the eigenvalues may be. The price for this desirable
property is an O(n3) algorithm for the spectral factorization of T . Since Phases 1 and 3 are O(n3)
what is wrong with having Phase 2 also O(n3)? Answer: the constant behind O is too big.

3. Changing representations

In this section we consider tridiagonals that are not necessarily symmetric. Instead of T−�I=LDLt
we will have T − �I = LU . We normalize our matrices in a way that would destroy symmetry. Any
tridiagonal with nonzero o�-diagonal entries is said to be unreduced. Any unreduced tridiagonal is
diagonally similar to one with all super-diagonal entries equal to 1; �T�−1 = J . We designate such
matrices by J and note that the number of free parameters in J is 2n − 1 for n × n cases. If J
permits triangular factorization, J = LU , then we write

L=bidiag
(
1 1 1 : 1 1
e1 e2 : : en−1

)
;

U =bidiag
(

1 1 : 1 1
q1 q2 : : qn−1 qn

)
:

An attractive feature of this notation is that UL is also a J -matrix and that feature is exploited later
in the section.
Section 1 emphasized the advantages of exploiting the shift invariance of eigenvectors. Suppose

that L and U determine well the eigenvalues of J . When we need a new representation, for J − �I
say, we must compute

◦
L and

◦
U satisfying

◦
L

◦
U =J − �I = LU − �I:

There are (at least) two ways to compute
◦
L and

◦
U from L, U , and �. The �rst is called the

stationary qd-algorithm stqds by Rutishauser, see [22].
The algorithm can be derived by equating entries on each side of

◦
L

◦
U =LU−�I in the appropriate

order.

stqds(�):
◦
q1 =q1 − �
for i = 1; n− 1 do

◦
ei=eiqi=

◦
qi

◦
qi+1 = ei + qi+1 − � − ◦

ei
end for

Unfortunately, when executed in �nite precision arithmetic, this algorithm is not accurate enough to
connect one representation to the other by making small relative changes to the parameters q and
e. There is more discussion of this point later in this section. Fortunately, there is an alternative
implementation. It is easy to miss and Rutishauser never published it and seems to have discovered
it only in the last two years of his life. The alternative was found independently of Rutishauser by
Fernando and Parlett as recently as 1991 and in another context, see [12]. It is called the di�erential

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 123

stationary qd algorithm and so the old name is pre�xed with a little d.

dstqds(�): s1 =−�
for i = 1; n− 1 do

◦
qi=si + qi
◦
ei=eiqi=

◦
qi

si+1 = siqi=
◦
qi−�

end for
◦
qn=sn + qn

The auxiliary variable is called si and the new value si+1 may be written over the old si. The essential
property of the new algorithm is that it enjoys mixed relative stability. What does this mean?
Let

◦
L and

◦
U now denote the bidiagonal matrices actually computed by dstqds(�) in the computer.

Then there exist special tiny end-�gure changes to the entries of L, U ,
◦
L,

◦
U giving new matrices

�L, �U , L̃, Ũ , respectively, such that

L̃Ũ = �L �U − �I

exactly. The necessary change in most of the entries is two units (bits) in the last place held (i.e.
in the last digit) and none exceeds four. Thus, the eigenvectors of L̃Ũ are identical to those of �L �U

and we only have to make sure that
◦
L,

◦
U determine the (small) eigenvalues of

◦
L

◦
U together with

the associated eigenvectors to high relative accuracy. In addition L, U must also determine those
same eigenvectors to high relative accuracy. Symmetry is not essential.
It should be mentioned that when the original matrix is symmetric then there is a minor variation

of dstqds that uses, not L and U but L and D where LDLt is the matrix in question. The same
stability results hold with minor variations in the details, see [7,16]. That relative stability property
of dstqds is the second ingredient in the method for computing accurate eigenvectors. It permits us
to relate the eigenvectors computed from di�erent representations to the eigenvectors of one single
matrix LLt or LDLt .
There is an essential component of the new method that has not been discussed so far. How

can one calculate the eigenvalues of LLt or LDLt to high relative accuracy? In the symmetric case
there is a variant of the well-known bisection algorithm, see [5], that may be used. This technique
is e�ective for re�ning eigenvalues already known to good accuracy but is slow as a general tool.
There is a much faster method, discovered in 1991=1992 by Fernando and Parlett, see [12], that
computes the eigenvalues of LLt using the ideas in this section.
If J = LU then the LR transform of J is Ĵ = UL. When shifts are incorporated we obtain

LR(�) : factor J − �I = LU;
form Ĵ = UL+ �I:

Thus Ĵ = L−1(J − �I)L+ �I = L−1JL.

124 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

The LR algorithm consists of iterating the LR transform with well chosen shifts. It was presented
by Rutishauser in 1957, see [21], along with a proof of its surprising convergence property. For
simplicity take all shifts to be zero. Then if J has eigenvalues with distinct absolute values and if
the factorization does not fail then, very slowly, the q-values tend to the eigenvalues in monotonic
decreasing order, i.e., qn tends to the eigenvalue closest to 0. The e-values tend to zero.
Rutishauser implemented the LR transform so that Ĵ overwrote J with no explicit reference to L

and U . Today the LR algorithm is remembered, if at all, as the algorithm that led to the celebrated
QR algorithm which is a little slower than LR but never breaks down and is backward stable.
With our preference for L, U over J we let Ĵ = L̂Û and want to compute L̂ and Û , without

reference to J from L̂Û = UL − �I . This may be accomplished by the qds algorithm that was
discovered by Rutishauser in 1953=54, see [20], some years before he saw that qds was equivalent
to LR in exact arithmetic.

qds(�): q̂1 = q1 + e1 − �
for i = 1; n− 1 do
ê i = ei ∗ qi+1=q̂i
q̂i+1 = qi+1 + ei+1 − �− ê i

end for

This is not the most accurate implementation. There is a di�erential form of qds(�) that was dis-
covered by Fernando and Parlett as late as 1991, see [12].

dqds(�): p1 = q1 − �
for i = 1; n− 1 do

q̂i = pi + ei
ê i = ei ∗ qi+1=q̂i
pi+1 = pi ∗ qi+1=q̂i − �

end for
q̂n = pn

An examination of both algorithms shows that the shift is not restored; Ĵ = L̂Û = UL − �I . Thus
all eigenvalues have been reduced by �. This feature has advantages although it is troublesome to
people familiar with the QR algorithm. It becomes necessary to keep a running sum � of all shifts
used in order to recover the original eigenvalues. In practice, with dqds, the program checks when
en−1 and qn are both negligible and then records � as an eigenvalue and reduces the order n by 1.
The advantage of dqds over qds is that it enjoys high mixed relative stability even in the presence

of element growth. Small end-�gure changes to the input L, U and to the output L̂, Û give an exact
transformation and this feature permits all the eigenvalues to be computed to high relative accuracy
in the positive case. When the original J comes from a positive de�nite symmetric matrix T , via
J =�T�−1, then all q’s and e’s will be positive. The shifts must be chosen carefully and details
can be found in [12,19]. The latest implementation is in LAPACK, see [1], and is almost as fast as
the root free QR method that computes eigenvalues with errors O(�||T ||), not O(�|�|).
Apart from its use in computing eigenvalues the dqds(�) transform plays a role in computing

‘twisted’ factorizations of tridiagonals that are needed in the course of computing eigenvectors. We
omit this material and refer the reader to [15,16].

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 125

4. A small example

The ideas sketched in Section 1 may be illustrated on a 4 × 4 matrix. This matrix is similar to
one used by Dhillon in his dissertation [7]. It is contrived to produce an intermediate representation
(LDLt) that looks bad because it su�ers severe element growth, ||L|| = 107||T ||. Nevertheless the
representation is good enough for its special purpose.
Let � denote the roundo� unit for Matlab (=2×10−16) and let �:=√�. The tridiagonal T is given

by

diagonal = (1 + �; 1− 2�; 1 + 3�; 1 + 2�);
o�-diagonal = (

√
2=2;
√
2=2; �):

The eigenvalues are, approximately,

−�; 1 + 4
3�; 1 + 8

3�; 2 + �;

O�-diag Diag Eigenvalues

7:071067811865476e− 01 1:000000014901161e + 00 2:000000000000001e + 00
7:071067811865476e− 01 9:999999701976776e− 01 1:000000040339034e + 00
1:490116119384766e− 08 1:000000044703484e + 00 1:000000019265610e + 00

0 1:000000029802322e + 00 −6:890205972143757e− 16

Matlab has no trouble computing an orthonormal set of eigenvectors because it uses the QR
algorithm. We ignore the extreme eigenvalues and focus on the pair close to 1 whose separation is
4
3�=O(

√
�).

First we performed standard inverse iteration using a good starting vector. Each computed vector
x has an excellent residual norm; ||Tx− x�||=O(�). The dot product between them is

O(
√
�) =

O(�)
gap

=
O(�)
4=3�

as expected by standard theory, see Section 1. This is not good enough.
Next, we pursued a simple variation of inverse iteration. Since our two eigenvalues agree to

eight decimals we may translate T to T − I and �nd that the shifted eigenvalues have no digits in
common. We try inverse iteration again, using T − I , and �nd an improvement. The dot product is
10−10 instead of 10−8. This is not good enough. The calculations are shown in Fig 1.
Before proceeding to the central idea of new representations we discuss the starting vector for

inverse iteration. The last entry in the two eigenvectors we seek is dominant and, in order to keep
the example simple, we choose a special multiple of e4:=(0; 0; 0; 1)t as the starting vector in all
cases.
This special multiple simpli�es the calculations. In each case we factor a nearly singular matrix

◦
L

◦
D

◦
Lt − �I = LDLt

and the approximate eigenvector x is computed from

LDLtx= e4�:

126 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

Fig. 1. Inverse iteration.

We chose � = D4;4. Since L is unit lower triangular Le4 = e4 and our choice of � yields Ltx = e4.
Backsolving yields

x=

−‘1‘2‘3
+‘2‘3
−‘3
1

 ;

where ‘i = L(i+1; i), i=1; 2; 3. Thus ||x||2¿ 1 and the accuracy of x is completely determined by
the accuracy of L. In exact arithmetic

||(◦L ◦
D

◦
Lt − �I)x||= ||LDLtx||= |D4;4|

and, when � is very accurate, then D4;4 can be O(�|�|). The roundo� errors in computing (‘2‘3)
and ‘1(‘2‘3) make negligible di�erence. We ignore them here and refer to [16] for the way those
roundo� errors may be dealt with in general.

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 127

In the �gures that follow we exhibit the nontrivial entries in L, D, and x for various cases.
First, we compared inverse iteration on T and T − I , see Fig. 1. The computed vectors are not

orthogonal to working accuracy.
Next, we abandon T and T − I and take as our representation L1D1Lt1 = T − I . This looks bad

because of element growth.

Lower part of L1 Diagonal of D1

4:745313281212578e + 07 1:490116119384766e− 08
−2:107342425544699e− 08 −3:355443200000004e + 07
2:500000000000001e− 01 5:960464477539061e− 08

0 2:607703208923340e− 08

||(T − I)− L1D1Lt1||= 0:
The computed product L1D1Lt1 turned out to equal T − I exactly.
We computed the eigenvalues � of L1D1Lt1 by bisection but never formed the product L1D1L

t
1.

For each sample � we computed L1D1Lt1− �I = LDLt using the di�erential form of the stationary qd
algorithm (Section 3) and counted the number of negative diagonal entries in D.
The eigenvalues �2, �3 di�er from the �2, �3 computed by Matlab from T − I in their last eight

digits. This is because L1D1Lt1 de�nes its two tiny eigenvalues to high relative accuracy despite
the element growth. The large eigenvalues are not so well represented. There is a precise ‘relative
condition number’, greater than or equal to one, that measures the relative change in an eigenvalue
due to tiny relative changes in the parameters in L1 and D1. The condition numbers of our two
eigenvalues �2 and �3 are less than 3 whereas the condition for the two extreme eigenvalues, near
−1 and +1, are about 108.
Fig. 2 shows the di�erence made by using �2 and �3 instead of �2 and �3 to obtain new factor-

izations. Notice how the last pivot changes from 10−16 to 10−23. The improved eigenvalues coupled
with the high accuracy of the di�erential stationary qd algorithm combine to correct the lower halves
of the entries of the L factors and so give fully accurate eigenvectors of L1D1Lt1. The computations
are shown in Fig. 2.
We must mention that in this example T − I also de�nes its two small eigenvalues to high

relative accuracy. If we discard Matlab’s eigenvalues �2 and �3 and use bisection we get �2 and
�3 instead. If we then use these eigenvalues in inverse iteration starting from e4 we get the same
excellent eigenvectors as in the new method. In this case the diagonal entries of T − I have the
same exponent as the two small eigenvalues and the subtraction in the shift is done exactly. The
point is that in general the standard representation does not de�ne the small eigenvalues to this high
relative accuracy. This example shows that element growth in the factorization does not stop the
small eigenvalues being well determined by the triangular factors.

5. Unsymmetric case

This case needs more attention. Real matrices may have complex eigenvalues and, of more concern,
some eigenvalues may be extremely sensitive to small changes in the matrix while others may be

128 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

Fig. 2. New method.

robust. Unsymmetric tridiagonal matrices arise as output from the (two-sided) Lanczos algorithm
applied to a large sparse general matrix. The lack of a good tridiagonal eigensolver to complete
the calculation has hindered the acceptance of the unsymmetric Lanczos algorithms for large sparse
problems.
It is not easy to �nd an algorithm that preserves both the eigenvalues and the tridiagonal form.

None of the current methods is, in addition, backward stable. A method is backward stable if the
computed eigenvalues are exact for some matrix close to the original one.
One of the earliest methods was the LR algorithm described Section 3. In 1978 came the HR

algorithm of Bunse–Gerstner, see [3,4]. In 1992 came XHR from Parlett and Liu, see [14]. In 1996
and 1998 came two related methods by Uhlig called DQR and IQR PWK, see [24,23]. All of these
methods work with a tridiagonal matrix.
The ideas described in Sections 1 and 3 suggest that the triangular factors might be a preferable

representation to their product even in the unsymmetric case. If this is so, at least in important
special cases, then we are fortunate that we have an algorithm at hand, namely dqds, that avoids
the loss of information inherent in explicitly forming the product of bidiagonals.

B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130 129

The nice high mixed relative stability property mentioned in Section 3 extends without change
to this case. Two practical lessons have been learned in working with the LR algorithm. First,
by doubling the storage (from 2n to 4n cells) a transformation may be computed and then either
accepted or rejected. Thus, unsatisfactory transformations merely waste a little time. They may be
discarded and a better shift invoked. Second, the standard simple shift strategies based on asymptotic
properties need to be supplemented with sophisticated choices in the early stages of the process.
The motivation for the method described in Sections 1 and 3 was to compute orthogonal eigen-

vectors. Of course, this is out of the question in the unsymmetric case because the eigenvectors
need not be orthogonal. Recall that in the symmetric case we achieved orthogonality indirectly by
attempting to compute accurate eigenvectors. This goal we can retain. The reason for hope is that the
high relative accuracy property of dstqds and dqds is independent of symmetry. When LU de�nes
its small eigenvalues to high relative accuracy then we should achieve (1), the small relative residual
property.
A prototype implementation of dqds algorithm for eigenvalues entirely in complex arithmetic has

been used with excellent results by David Day in building a nonsymmetric Lanczos algorithm for
large sparse matrices. See [6].
There is room for more investigation on this topic.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide, 2nd Edition, SIAM, Philadelphia, 1995, 324pp.

[2] J. Barlow, J.W. Demmel, Computing accurate eigensystems of scaled diagonally dominant matrices, SIAM J. Num.
Anal. 27 (1990) 762–791.

[3] A. Bunse-Gerstner, Berechnung der Eigenwerte einer Matrix mit dem HR-Verfahren (German and English summary),
Numerische Behandlung von Eigenwertaufgaben, Band 2 (Tagung, Tech. Univ. Clausthal, Clausthal, 1978), pp. 26
–39, Internat. Schriftenreihe Numer. Math., 43, Birkhauser, Basel-Boston, MA, 1979.

[4] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a matrix, Linear Algebra
Appl. 35 (1981) 155–173.

[5] J. Demmel, Applied Numerical Algebra, SIAM, Philadelphia, 1997.
[6] D. Day, An e�cient implementation of the nonsymmetric Lanczos algorithm, SIAM J. Matrix Anal. Appl. 18 (1997)

566–589.
[7] I.S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, Ph.D.

Thesis, Computer Science Division, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, California, May 1997. Also available as Computer Science Division Technical Report No.
UCB==CSD-97-971.

[8] I.S. Dhillon, G.I. Fann, B.N. Parlett, Application of a new algorithm for the symmetric eigenproblem to computational
chemistry, in: Proceedings of the Eigth SIAM Conference on Parallel Processing for Scienti�c Computing,
Minneapolis, MN, SIAM, Philadelphia, March 1997.

[9] S. Eisenstat, I.C.F. Ipsen, Relative perturbation bounds for eigenspaces and singular vector subspaces, in: J.G. Lewis
(Ed.), Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, SIAM, Philadelphia, 1994, pp. 62–65.

[10] S. Eisenstat, I.C.F. Ipsen, Relative perturbation techniques for singular value problems, SIAM J. Numer. Anal. 32
(1995) 1972–1988.

[11] G.I. Fann, R.J. Little�eld, Performance of a fully parallel dense real symmetric eigensolver in quantum chemistry
applications, Proceedings of High Performance Computing’95, Simulation MultiConference, The Society for
Computer Simulation, 1995.

[12] K.V. Fernando, B.N. Parlett, Accurate singular values and di�erential qd algorithms, Numer. Math. 67 (1994) 191–
229.

130 B.N. Parlett / Journal of Computational and Applied Mathematics 123 (2000) 117–130

[13] G.J.F. Francis, The QR Transformation, Parts I and II, Comput. J. 4 (1961-62), 265–271, 332–345.
[14] Z.S. Liu, On the extended HR algorithm, Ph. D. Thesis, Technical Report CPAM-564 (August 1992), Center for

Pure and Applied Math., Univ. of California, Berkeley.
[15] B.N. Parlett, I.S. Dhillon, Fernando’s solution to Wilkinson’s problem: an application of double factorization, Linear

Algebra Appl. 267 (1997) 247–279.
[16] I.S. Dhillon, B.N. Parlett, Orthogonal eigenvectors and relative gaps, submitted to SIAM J. Matrix Anal. Appl.
[17] B.N. Parlett, I.S. Dhillon, Relatively robust representations for symmetric tridiagonal matrices, Linear Algebra Appl.

309 (2000) 121–151.
[18] B.N. Parlett, The Symmetric Eigenvalue Problem, 2nd Edition, SIAM, Philadelphia, 1998, 398pp.
[19] B.N. Parlett, O.A. Marques, An implementation of the dqds algorithm (Positive case), Linear Algebra Appl. 309

(2000) 217–259.
[20] H. Rutishauser, Der quotienten-di�erenzen-algorithmus, Z. Angew. Math. Phys. 5 (1954) 233–251.
[21] H. Rutishauser, Solution of eigenvalue problems with the LR-transformation, Nat. Bur. Standards Appl. Math. Ser.

49 (1958) 47–81.
[22] H. Rutishauser, Lectures on Numerical Mathematics, Birkh�auser, Boston, 1990.
[23] F. Uhlig, A fast and simple method to compute the eigenvalues of general complex tridiagonal matrices, preprint,

Olga Tausssky-Todd Memorial Meeting, June 1996.
[24] F. Uhlig, The DQR algorithm, basic theory, convergence, and conditional stability, Numer. Math. 76 (1997) 515–553.

Journal of Computational and Applied Mathematics 123 (2000) 131–153
www.elsevier.nl/locate/cam

An overview of relative sin� theorems for invariant
subspaces of complex matrices(

Ilse C.F. Ipsen ∗

Center for Research In Scienti�c Computation, Department of Mathematics, North Carolina State University, P.O.
Box 8205, Raleigh, NC 27695-8205, USA

Received 28 May 1999; received in revised form 15 September 1999

Abstract

Relative perturbation bounds for invariant subspaces of complex matrices are reviewed, with emphasis on bounding the
sines of the largest principal angle between two subspaces, i.e. sin� theorems. The goal is to provide intuition, as well as
an idea for why the bounds hold and why they look the way they do. Relative bounds have the advantage of being better
at exploiting structure in a perturbation than absolute bounds. Therefore the reaction of subspaces to relative perturbations
can be di�erent than to absolute perturbations. In particular, there are certain classes of relative perturbations to which
subspaces of inde�nite Hermitian matrices can be more sensitive than subspaces of de�nite matrices. c© 2000 Elsevier
Science B.V. All rights reserved.

MSC: 15-02; 15A18; 15A42; 65F15; 65F35

Keywords: Invariant subspace; Eigenspace; Relative bound; Eigenvalues; Grading; Scaling

1. Introduction

The goal is to assess the quality of perturbed invariant subspaces of complex matrices. Of interest
is a new class of perturbation bounds, called relative perturbation bounds. Relative bounds are better
at exploiting structure in a perturbation than absolute bounds. In particular, relative bounds can
be sharper than traditional bounds when the perturbations arise from numerical errors of certain
computational methods. The following example illustrates what we mean by relative bounds.

(This research was supported in part by NSF grant DMS-9714811.
∗ Corresponding author.
E-mail address: ipsen@math.ncsu.edu (I.C.F. Ipsen); http://wwwy.ncsu.edu/ ˜ ipsen/info.html

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00404-0

132 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

Example 1.1 (Ipsen [18, Example 1]). Suppose

A ≡

 a b

c

 ;

is a complex diagonal matrix of order 3 with distinct eigenvalues a, b, and c; and

A+ E1 ≡

 a � �

b �
c

is a perturbed matrix with the same eigenvalues as A. We want to compare the eigenvectors of A
and A+ E1 associated with eigenvalue c. The matrix A has (0 0 1)T as an eigenvector 1 associated
with c, while A+ E1 has(

�
c − a

(
�

c − b + 1
)

�
c − b 1

)T
:

The di�erence between these two eigenvectors depends on �=(c − a) and �=(c − b). This suggests
that the angle between the two vectors can be bounded in terms of

‖E1‖=min{|c − a|; |c − b|}; (1.1)

as ‖E1‖= O(|�|).
Now consider the perturbed matrix

A+ E2 ≡

 a a� a�

b b�
c

 ;

with the same eigenvalues as A. Again, compare eigenvectors of A and A + E2 associated with
eigenvalue c. An eigenvector of A+ E2 associated with eigenvalue c is(

�a
c − a

(
�b
c − b + 1

)
�b
c − b 1

)
:

The di�erence between the eigenvectors of A and A+E2 depends on �a=(c−a) and �b=(c−b). This
suggests that their angle can be bounded in terms of

‖A−1E2‖=min
{ |c − a|
|a| ;

|c − b|
|b|

}
; (1.2)

as ‖A−1E2‖= O(|�|).
Bound (1.1) is a traditional, absolute bound and min{|c − a|; |c − b|} is an absolute eigenvalue

separation, while (1.2) is a relative bound and min{|c − a|=|a|; |c − b|=|b|} is a relative eigenvalue
separation.

The absolute bound contains ‖E‖ and an absolute separation, while the relative bound contains
‖A−1E‖ and a relative separation. This means, the absolute bound measures sensitivity with regard
to perturbations E, while the relative bound measures sensitivity with regard to perturbations A−1E.

1 The superscript T denotes the transpose.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 133

The sensitivity to absolute perturbations is determined by an absolute separation, while the sensitivity
to relative perturbations is determined by a relative separation.
There are other ways to construct relative bounds, by taking advantage of structure in the pertur-

bation. The estimates provided by absolute and relative bounds can be very di�erent. Which bound
to use depends on the particular matrix and perturbation. One does not know yet in general which
type of bound gives the best result for a given matrix and perturbation.
One advantage of relative perturbation bounds is that they can explain why some numerical

methods are much more accurate than the traditional, absolute bounds would predict. That is because
the errors caused by these methods can be expressed as small, relative perturbations. Speci�cally for
the computation of eigenvectors, numerical methods that deliver high relative accuracy include:

• Inverse iteration for real symmetric scaled diagonally dominant matrices [1, Section 11] and real
symmetric positive-de�nite matrices [8, Section 5].
• Two-sided Jacobi methods for real symmetric positive-de�nite matrices [8, Section 3].
• QR algorithms for real symmetric tridiagonal matrices with zero diagonal [6, Sections 5 and 6].
• Cholesky factorization followed by SVD of Cholesky factor for scaled diagonally dominant tridi-
agonals [1, Section 10] and for symmetric positive-de�nite matrices [7, Section 12]; [8, Section
4:3]; [23].

• Shifted Cholesky factorization followed by inverse iteration for real symmetric tridiagonal matrices
[9, Section 5]; [10]; [28, Section 1].

Relative bounds are better at exploiting structure in perturbations than absolute bounds. For in-
stance, from the point of view of absolute bounds there is no need to distinguish between de�nite
and inde�nite Hermitian matrices when it comes to sensitivity of invariant subspaces. However, from
the point of view of relative bounds subspaces of inde�nite Hermitian matrices can be more sensi-
tive to perturbations than those of de�nite matrices for certain classes of perturbations, see Sections
3.3–3.6.

1.1. Overview

This article is a successor to the survey on relative perturbation bounds for eigenvalues and singular
values [19] and a previous review [29]. Here we review relative perturbation bounds for invariant
subspaces. Due to space limitations the emphasis is on bounding the sines of the largest principal
angle between two subspaces, i.e. sin� theorems. Some information can get lost by focussing on an
angle. For instance, sin� theorems give no information about the accuracy of individual eigenvector
components. Such bounds on individual components are derived, for instance, in [1, Section 7]; [8,
Section 2]; [25, Section 3]; [23, Theorem 3.3]; [22, Theorem 4].
The goal is to provide intuition, as well as an idea for why the bounds hold and why they look

the way they do. We present and derive relative as well as absolute bounds to show that there is
nothing inherently special about relative bounds. Sometimes relative bounds are even implied by
absolute bounds, hence they are not necessarily stronger than absolute bounds.
Relative bounds have been derived in the context of two di�erent perturbation models:

• Additive perturbations (Section 3) represent the perturbed matrix as A + E. Bounds for the fol-
lowing matrix types are presented: general (Section 3.1), diagonalizable (Section 3.2), Hermitian

134 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

positive-de�nite (Section 3.3), graded Hermitian positive-de�nite (Section 3.4), Hermitian inde�-
nite (Section 3.5), and graded Hermitian inde�nite (Section 3.6).
• Multiplicative perturbations (Section 4) represent the perturbed matrix as D1AD2, where D1 and
D2 are nonsingular matrices. Bounds are presented for diagonalizable (Section 4.1) and Hermitian
matrices (Section 4.2).

1.2. Notation

Individual elements of a matrix A are denoted by aij. We use two norms: the two-norm

‖A‖2 = max
x 6=0
‖Ax‖2
‖x‖2 where ‖x‖2 ≡

√
x∗x

and the superscript ∗ denotes the conjugate transpose; and the Frobenius norm

‖A‖F =
√∑

i; j

|aij|2:

The norm ‖ · ‖ stands for both, Frobenius and two-norm. The identity matrix of order n is

I =

1

. . .
1

= (e1 : : : en)

with columns ei.
For a complex matrix Y , range(Y) denotes the column space, Y−1 is the inverse (if it exists)

and Y † the Moore–Penrose inverse. The two-norm condition number with respect to inversion is
�(Y) ≡ ‖Y‖2‖Y †‖2.

2. The problem

Let A be a complex square matrix. A subspace S is an invariant subspace of A if Ax ∈ S for
every x ∈ S [15, Section 1.1]; [34, Section I:3:4]. Applications involving invariant subspaces are
given in [15].
Let Ŝ be a perturbed subspace. The distance between the exact space S and the perturbed space

Ŝ can be expressed in terms of ‖PP̂‖, where P is the orthogonal projector onto S⊥, the orthogonal
complement of S, while P̂ is the orthogonal projector onto Ŝ [18, Section 2]. When S and Ŝ
have the same dimension, the singular values of PP̂ are the sines of the principal angles between
S and Ŝ [16, Section 12:4:3]; [34, Theorem I:5:5]. Therefore, we set

sin� ≡ PP̂:
We present absolute and relative bounds for ‖sin�‖, where ‖ ·‖ is the two-norm or the Frobenius

norm.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 135

3. Additive perturbations for invariant subspaces

The perturbed subspace S is interpreted as an exact subspace of a perturbed matrix A + E.
Relative and absolute bounds on ‖sin�‖ are presented for the following matrix types: general,
diagonalizable, Hermitian positive-de�nite, graded Hermitian positive-de�nite, Hermitian inde�nite
and graded Hermitian inde�nite.

3.1. General matrices

Absolute and relative bounds for invariant subspaces of complex square matrices are presented.
The bounds make no reference to subspace bases and provide a unifying framework for subsequent
bounds. They also illustrate that relative bounds exist under the most general of circumstances.
We start with the absolute bound. De�ne the absolute separation between A and A+E with regard

to the spaces S and Ŝ by

abssep ≡ abssep{A;A+E} ≡ min
‖Z‖=1; PZP̂=Z

‖PAZ − Z(A+ E)P̂‖;

where P is the orthogonal projector onto S⊥, and P̂ is the orthogonal projector onto Ŝ. The absolute
bound below holds for any square matrix.

Theorem 3.1 (Ipsen [18, Theorem 3:1]). If abssep¿ 0 then

‖sin�‖6‖E‖=abssep{A;A+E}:

Proof. From −E = A− (A+ E) follows
−PEP̂ = PAP̂ − P(A+ E)P̂:

Since S⊥ is an invariant subspace of A∗, the associated projector P satis�es PA= PAP. Similarly,
(A+ E)P̂ = P̂(A+ E)P̂. Hence

−PEP̂ = PA sin�− sin�(A+ E)P̂
and sin�= P sin�P̂ implies

‖E‖¿‖PEP̂‖¿abssep‖sin�‖:

Thus, the subspace S is insensitive to absolute perturbations E if the absolute separation is large.
Now we derive the corresponding relative bound. De�ne the relative separation between A and

A+ E with regard to the spaces S and Ŝ by

relsep ≡ relsep{A;A+E} ≡ min
‖Z‖=1; PZP̂=Z

‖PA−1(PAZ − Z(A+ E)P̂)‖;

where P is the orthogonal projector onto S⊥, and P̂ is the orthogonal projector onto Ŝ. The relative
bound below holds for any nonsingular matrix.

Theorem 3.2 (Ipsen [18, Theorem 3:2]). If A is nonsingular and relsep¿ 0 then

‖sin�‖6‖A−1E‖=relsep{A;A+E}:

136 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

Proof. From −A−1E = I − A−1(A+ E) follows

−PA−1EP̂ = PP̂ − PA−1(A+ E)P̂ = sin�− PA−1(A+ E)P̂:

Again, using the fact that PA= PAP and (A+ E)P̂ = P̂(A+ E)P̂ one obtains

−PA−1EP̂= sin�− PA−1 sin�(A+ E)P̂

=PA−1PA sin�− PA−1sin�(A+ E)P̂

=PA−1(PA sin�− sin�(A+ E)P̂)
and sin�= P sin�P̂ implies

‖A−1E‖¿‖PA−1EP̂‖¿relsep‖sin�‖:

Thus, the subspace S is insensitive to relative perturbations A−1E if the relative separation is
large. The derivation of the relative bound is very similar to the derivation of the absolute bound.
In this sense, there is nothing special about a relative bound.
When the perturbed subspace has dimension one, the absolute bound implies the relative bound.

Theorem 3.3 (Ipsen [18, Theorem 3:3]). If Ŝ has dimension one then Theorem 3:1 implies Theo-
rem 3:2.

Proof. Since Ŝ has dimension one, X̂ consists of only one column, and B̂ is a scalar. Hence one
can write (A+ E)x̂ = �̂x̂. Using P̂ = x̂x̂∗=x̂∗x̂ and PZP̂ = Z , Theorem 3.1 can be expressed as

‖sin�‖6‖E‖=abssep where abssep = min
‖Z‖=1

‖P(A− �̂I)Z‖

and Theorem 3.2 as

‖sin�‖6‖A−1E‖=relsep where relsep = min
‖Z‖=1

‖PA−1(A− �̂I)Z‖:

The idea is to write (A+ E)x̂= �̂x̂ as (Ã+ Ẽ)x̂= x̂, where Ã ≡ �̂A−1, and Ẽ ≡ −A−1E. Note that
Ã and Ã+ Ẽ are associated with the same projectors P and P̂, respectively, as A and A+ E.
Theorem 3.1 implies Theorem 3.2 because applying the absolute bound to (Ã+ Ẽ)x̂= 1 · x̂ yields

the relative bound. In particular, the norm in abssep is

‖P (Ã− 1 · I)Z‖= ‖P(�̂A−1 − I)Z‖= ‖PA−1(A− �̂I)Z‖;
which is equal to the norm in relsep.

Since the relative bound is derived by means of the absolute bound one cannot necessarily conclude
that relative perturbation bounds are stronger than absolute bounds. However, there are particular
matrices and classes of perturbations, where relative bounds can be much sharper than absolute
bounds.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 137

Example 3.1 (Ipsen [18; Example 2]). Let k ¿ 0 and

A=

 10

−k

2 · 10−k
10k

 :

Suppose S=range(1 0 0)T is approximated by the subspace associated with the smallest eigenvalue
�̂= 10−k of

A+ E =

 10−k

�10−k 2 · 10−k
�10k �10k 10k

 ;

where �¿ 0. In this case,

S⊥ = range

 0 0
1 0
0 1

 ; P =

 0 0 0
0 1 0
0 0 1

 :

The absolute bound contains

P(A− �̂I) =

 0 0 0
0 10−k 0
0 0 10k − 10−k

 :

Hence, in the two-norm abssep ≈ 10−k . Since ‖E‖2 ≈ �10k , the absolute bound is
‖sin�‖26‖E‖2=abssep ≈ �102k :

In contrast, the relative bound contains

PA−1(A− �̂I) =

 0 0 0
0 1

2 0
0 0 1− 10−2k

 :

Hence, in the two-norm relsep ≈ 1. Since ‖A−1E‖2 ≈ �, the relative bound is
‖sin�‖26‖A−1E‖2=relsep ≈ �:

In this case the relative bound is sharper by a factor of 102k than the absolute bound.

In general, it is not known, under which circumstances a relative bound is better than an absolute
bound, and which type of relative bound is the tightest for a given matrix and perturbation.
So far, we have considered bounds between two subspaces that make no reference to any basis.

From a computational point of view, however, this may not be useful. This is why from now on we
express subspace bounds in terms of speci�ed bases. Such bounds turn out to be weaker, as they
are derived by bounding from below abssep in Theorem 3.1 and relsep in Theorem 3.2.
Let Y and X̂ be respective bases for S⊥ and Ŝ, that is,

Y ∗A= �Y ∗ where S⊥ = range(Y)

and

(A+ E)X̂ = X̂�̂ where Ŝ= range(X̂)

138 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

for some matrices � and �̂. This means, the eigenvalues of �̂ are the eigenvalues associated with
the perturbed subspace Ŝ, while the eigenvalues of � are the eigenvalues associated with the exact
subspace in which we are not interested, because the associated left subspace is orthogonal to the
desired subspace S. However, the separation between the eigenvalues of � and �̂ determines the
quality of the perturbed subspace Ŝ. Denote by �(Y) ≡ ‖Y‖2‖Y †‖2 the two-norm condition number
with respect to inversion. The absolute bound in Theorem 3.1 can be weakened to [18, (4:2)]

‖sin�‖6�(Y)�(X̂)‖E‖=abssep(�;�̂); (3.1)

where

abssep(�;�̂) ≡ min
‖Z‖=1

‖�Z − Z�̂‖:

When A is nonsingular, the relative bound in Theorem 3.2 can be weakened to [18, (4:3)]

‖sin�‖6�(Y)�(X̂)‖A−1E‖=relsep(�;�̂); (3.2)

where

relsep(�;�̂) ≡ min
‖Z‖=1

‖�−1(�Z − Z�̂)‖:

Unfortunately, bounds (3.1) and (3.2) contain a quantity in which we are not really interested,
�(Y), the conditioning of a basis for S⊥. Usually, Y is not explicitly speci�ed, and we have some
freedom of choice here. There are two simple options. Either choose Y as a basis of Schur vectors
(then Y has orthonormal columns and �(Y) = 1), or choose Y as a basis of Jordan vectors (then
� is diagonal when A is diagonalizable). We make the later choice for diagonalizable matrices,
so that absolute and relative separations can be expressed in terms of eigenvalues. For normal and
Hermitian matrices, fortunately, the two choices coincide.

3.2. Diagonalizable matrices

Relative and absolute bounds for eigenspaces of diagonalizable matrices are expressed in terms of
eigenvalues and conditioning of eigenvector bases.
Let S and Ŝ be respective eigenspaces for diagonalizable matrices A and A + E, and let the

columns of Y and X̂ be respective bases for S⊥ and Ŝ. That is

S⊥ = range(Y); Ŝ= range(X̂)

and

Y ∗A= �Y ∗; (A+ E)X̂ = X̂�̂;

where � and �̂ are diagonal. We (ab)use the notation

min
�∈�; �̂∈�̂

|�− �̂| and min
�∈�; �̂∈�̂

|�− �̂|
|�|

to mean that the minima range over all diagonal elements � of � and all diagonal elements �̂ of �̂.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 139

Theorem 3.4. If A and A+ E are diagonalizable then

‖sin�‖F6�(Y)�(X̂) ‖E‖F
/
min

�∈�; �̂∈�̂
|�− �̂|:

If; in addition; A is nonsingular; then

‖sin�‖F6�(Y)�(X̂) ‖A−1E‖F
/
min

�∈�; �̂∈�̂

|�− �̂|
|�| :

Proof. The absolute bound follows from (3.1) and the fact that abssepF(�;�̂) = min
�∈�; �̂∈�̂

|�− �̂| [34,
p. 245, Problem 3]. Regarding the relative bound, the norm in relsep(�;�̂) can be bounded by

‖Z − �−1Z�̂‖2F =
∑
i; j

∣∣∣∣∣1− �̂j�i
∣∣∣∣∣
2

|zij|2¿min
i; j

∣∣∣∣∣1− �̂j�i
∣∣∣∣∣
2

‖Z‖2F:

Now use relsepF(�;�̂)¿min�∈�; �̂∈�̂
|�−�̂|
|�| in (3.2).

Thus, the eigenspace S is insensitive to absolute (relative) perturbations if the eigenvector bases
are well-conditioned and if the perturbed eigenvalues are well-separated in the absolute (relative)
sense from the undesired exact eigenvalues.
In the particular case when Ŝ has dimension 1, the absolute bound in Theorem 3.4 reduces to

[13, Theorem 3.1], see also Theorem 4.1.
Bounds similar to the Frobenius norm bounds in Theorem 3.4 can be derived for the two-norm.

This is done either by bounding the Frobenius norm in terms of the two-norm and inheriting a
factor of

√
n in the bound, where n is the order of A [18, Corollary 5:2], or by assuming that all

eigenvalues of one matrix (� or �̂) are smaller in magnitude than all eigenvalues of the other matrix
[18, Theorem 5:3].
When A and A + E are normal, the condition numbers for the eigenvector bases equal one, and

the Frobenius norm bounds in Theorem 3.4 simplify.

Corollary 3.5. If A and A+ E are normal then

‖sin�‖F6‖E‖F
/
min

�∈�; �̂∈�̂
|�− �̂|:

If; in addition; A is non-singular; then

‖sin�‖F6‖A−1E‖F
/
min

�∈�; �̂∈�̂

|�− �̂|
|�| :

Now the sensitivity of the subspace to absolute (relative) perturbations depends solely on the
absolute (relative) eigenvalue separation. The absolute bound represents one of Davis and Kahan’s
sin� Theorems [4, Section 6]; [5, Section 2].
In particular, the above bounds hold for Hermitian matrices. However, the relative perturbation

A−1E is, in general, not Hermitian. By expressing the relative perturbation di�erently, one can obtain
Hermitian perturbations. This is done in the following sections, where things become more complex

140 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

because we demand structure from relative perturbations. For instance, when relative perturbations
are restricted to be Hermitian, subspaces of inde�nite Hermitian matrices appear to be more sensitive
than those of de�nite matrices.

3.3. Hermitian positive-de�nite matrices

Relative bounds with Hermitian perturbations are derived for eigenspaces of Hermitian positive-
de�nite matrices. We start by discussing positive-de�nite matrices because it is easy to construct rel-
ative perturbations that are Hermitian. Construction of Hermitian relative perturbations for inde�nite
matrices is more intricate, but the derivations are often guided by those for de�nite matrices.
In contrast to the preceding results, one would like to express relative perturbations for

Hermitian matrices as A−1=2EA−1=2, where A1=2 is a square-root of A. The nice thing about Her-
mitian positive-de�nite matrices A is that one can choose A1=2 to be Hermitian. Hence A−1=2EA−1=2

remains Hermitian whenever E is Hermitian.
Let S and Ŝ be respective eigenspaces for Hermitian positive-de�nite matrices A and A+E, and

let the columns of Y and X̂ be respective orthonormal bases for S⊥ and Ŝ. That is

S⊥ = range(Y); Ŝ= range(X̂)

and

Y ∗A= �Y ∗; (A+ E)X̂ = X̂�̂;

where � and �̂ are diagonal with positive diagonal elements. Since Y and X̂ have orthonormal
columns, ‖sin�‖= ‖Y ∗X̂ ‖.
The derivation of the relative bound below was inspired by the proof of [26, Theorem 1].

Theorem 3.6 (Londr�e and Rhee [22, Theorem 1], Li [21, Theorem 3.3]). If A and A + E are
Hermitian positive-de�nite; and if �2 ≡ ‖A−1=2EA−1=2‖2¡ 1 then

‖sin�‖F6 �F√
1− �2

/
min

�∈�; �̂∈�̂

|�− �̂|√
��̂

;

where �F ≡ ‖A−1=2EA−1=2‖F.

Proof. Multiply (A+ E)X̂ = X̂�̂ on the left by Y ∗ and set S ≡ Y ∗X̂ ,

�S − S�̂=−Y ∗EX̂ =−�1=2 W �̂1=2;
where W ≡ −�−1=2 Y ∗EX̂ �̂

−1=2
. Element (i; j) of the equation is

sij =−Wij

/
�i − �̂j√
�i�̂j

;

where �i and �̂j are respective diagonal elements of � and �̂. Summing up all elements gives

‖sin�‖F = ‖S‖F6‖W‖F
/
min

�∈�; �̂∈�̂

|�− �̂|√
��̂

:

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 141

From

W = Y ∗A−1=2E(A+ E)−1=2X̂ = Y ∗ A−1=2EA−1=2A1=2(A+ E)−1=2X̂

follows

‖W‖F6�F‖A1=2(A+ E)−1=2‖2:
Positive-de�niteness is crucial for bounding ‖A1=2(A + E)−1=2‖2. Since A1=2 and (A + E)1=2 are

Hermitian,

‖A1=2(A+ E)−1=2‖22 = ‖A1=2(A+ E)−1A1=2‖2 = ‖(I + A−1=2EA1=2)−1‖2

6
1

1− �2 :

Thus, the eigenspace S is insensitive to relative perturbations A−1=2EA−1=2 if the relative separation
between perturbed eigenvalues and the undesirable exact eigenvalues is large. Since the relative
perturbation A−1=2EA−1=2 in Theorem 3.6 is di�erent from the preceding perturbation A−1E, so is
the relative eigenvalue separation. However, this is of little consequence: If one measure of relative
eigenvalue separation is small, so are all others [20, Section 2]; [25, Section 1]. The above bound
holds more generally for unitarily invariant norms [21, Theorem 3.4].
With regard to related developments, a bound on |A1=2(A + E)−1=2 − I‖2 is derived in [24]. Rel-

ative eigenvector bounds for the hyperbolic eigenvalue problem Ax = �Jx, where A is Hermitian
positive-de�nite and J is a diagonal matrix with diagonal entries of magnitude one are given in [31,
Section 3.2], with auxiliary results in [33].
A relative perturbation of the form A−1=2EA−1=2 not only has the advantage that it is Hermitian, it

is also invariant under grading, when both A and E are graded in the same way. This is discussed
in the next section.

3.4. Graded Hermitian positive-de�nite matrices

It is shown that the relative perturbations A−1=2EA−1=2 from the previous section are invariant under
grading. By ‘grading’ (or ‘scaling’) [1, Section 2]; [25, Section 1] we mean the following: There
exists a nonsingular matrix D such that A = D∗MD where M is in some sense ‘better-behaved’
than A.

Lemma 3.7 (Eisenstat and Ipsen [14, Corollary 3:4], Mathias [25, Lemma 2:2]). If A=D∗MD is pos-
itive de�nite and E = D∗FD then

‖A−1=2EA−1=2‖= ‖M−1=2FM−1=2‖:

Proof. We reproduce here the proof of [19, Corollary 2:13]. Because A is Hermitian positive-de�nite,
it has a Hermitian square-root A1=2. Hence A−1=2EA−1=2 is Hermitian, and the norm is an eigenvalue,

‖A−1=2EA−1=2‖= max
16j6n

|�j(A−1=2EA−1=2)|:

142 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

Now comes the trick. Since eigenvalues are preserved under similarity transformations, we can
reorder the matrices in a circular fashion until all grading matrices have cancelled each other out,

�j(A−1=2EA−1=2) = �j(A−1E) = �j(D−1 M−1F D) = �j(M−1F)

= �j(M−1=2FM−1=2):

At last recover the norm,

max
16j6n

|�j(M−1=2FM−1=2)|= ‖M−1=2FM−1=2‖:

Application of Lemma 3.7 to Theorem 3.6 demonstrates that the relative perturbations do not
depend on the grading matrix D.

Corollary 3.8 (Li [21, Theorem 3.3]). If A = D∗MD and A + E = D∗(M + F)D are Hermitian
positive-de�nite; where D is nonsingular; and if

�2 ≡ ‖M−1=2FM−1=2‖2¡ 1

then

‖sin�‖F6 �F√
1− �2

/
min

�∈�; �̂∈�̂

|�− �̂|√
��̂

;

where �F ≡ ‖M−1=2FM−1=2‖F.

Again, the above bound holds more generally for unitarily invariant norms [21, Theorem 3.4].
There are other relative bounds for Hermitian positive-de�nite matrices D∗MD that exploit grading

in the error D∗FD.

• Component-wise �rst-order bounds on the di�erence between perturbed and exact eigenvectors,
containing the perturbation ‖M−1=2FM−1=2‖2, a relative gap, as well as eigenvalues and diagonal
elements of M [25, Section 3].

• Component-wise exact bounds with the same features as above [22, Theorem 4].
• Norm-wise and component-wise �rst-order bounds on the di�erence between exact and perturbed
eigenvectors, containing eigenvalues of M and ‖F‖2 [8, Section 2]. Here D is diagonal so that
all diagonal elements of M are equal to one.

The next section shows how to deal with inde�nite matrices, �rst without and then with grading.

3.5. Hermitian inde�nite matrices

The bound for positive-de�nite Hermitian matrices in Section 3.3 is extended to inde�nite matrices,
however with a penalty. The penalty comes about, it appears, because the relative perturbation is
asked to be Hermitian.
To understand the penalty, it is necessary to introduce polar factors and J -unitary matrices. Let

A be Hermitian matrix with eigendecomposition A = V
V ∗ and denote by |
| the diagonal matrix
whose diagonal elements are the absolute values of the diagonal elements in
. The generalization of
this absolute value to non-diagonal matrices is the Hermitian positive-de�nite polar factor (or spectral

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 143

absolute value [37, Section 1]) of A, |A| ≡ V |
| V ∗. When A happens to be positive-de�nite then
|A|= A. Note that the polar factor |A| has the same eigenvectors as A.
The J in the J -unitary matrices comes from the inertia of A. Write an eigendecomposition of A

A= V
V ∗ = V |
|1=2J |
|1=2V ∗;

where J is a diagonal matrix with ±1 on the diagonal that reects the inertia of A. A matrix Z
with Z JZ∗ = J is called J -unitary. When A is de�nite then J = ±I is a multiple of the identity,
hence J -unitary matrices are just plain unitary. One needs J -unitary matrices to transform one
decomposition of an inde�nite matrix into another. For instance, suppose one has two decompositions
A= Z1 JZ∗

1 = Z2 JZ
∗
2 . Then there exists a J -unitary matrix Z that transforms Z1 into Z2. That is,

Z1 = Z2Z; Z JZ∗ = J:

One such matrix is simply Z = Z−1
2 Z1.

Now we are ready to extend Theorem 3.6.

Theorem 3.9 (Simpler Version of Theorem 2 in Truhar and Slapni�car, [36]). If A and A + E are
Hermitian with the same inertia; and if �2 ≡ ‖ |A|−1=2E|A|−1=2‖2¡ 1 then

‖sin�‖F6‖Z‖2 �F√
1− �2

/
min

�∈�; �̂∈�̂

|�− �̂|√
��̂

;

where �F ≡ ‖ |A|−1=2E|A|−1=2‖F and Z is J -unitary and de�ned in the proof below.

Proof. The proof is very similar to that of Theorem 3.6. Multiply (A + E)X̂ = X̂�̂ on the left by
Y ∗ and set S ≡ Y ∗X̂ ,

�S − S�̂=−Y ∗EX̂ =−|�|1=2W |�̂|1=2;
where W ≡ −|�|−1=2Y ∗EX̂ |�̂|−1=2. Element (i; j) of the equation is

sij =−Wij

/
�i − �̂j√
|�i�̂j|

;

where �i and �̂j are respective diagonal elements of � and �̂. Summing up all elements gives

‖sin�‖F = ‖S‖F6‖W‖F
/
min

�∈�; �̂∈�̂

|�− �̂|√
|��̂|

:

From

W = Y ∗|A|−1=2E|A+ E|−1=2X̂ = Y ∗|A|−1=2E|A|−1=2|A|1=2|A+ E|−1=2X̂
follows

‖W‖F6�F‖ |A|1=2|A+ E|−1=2‖2:
Bounding ‖ |A|1=2|A+E|−1=2‖2 requires more work than in the positive-de�nite case. The eigende-

compositions A= V
V ∗ and A+ E = V̂
̂V̂
∗
lead to two decompositions for A+ E,

A+ E = V̂ |
̂|1=2J |
̂|1=2V̂ ∗

144 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

and

A+ E=V |
|1=2J |
|1=2V ∗ + E

=V |
|1=2(J + |
|−1=2V ∗EV | |
|−1=2)|
|1=2V ∗

= (V |
|1=2Q|�|1=2)J (|�|1=2Q∗|
|1=2V ∗);

where

J + |
|−1=2 V ∗EV | |
|−1=2 = Q�Q∗

is an eigendecomposition with the same inertia as A + E since we got there via a congruence
transformation. To summarize the two expressions

A+ E = Z1JZ∗
1 = Z2JZ

∗
2 ;

where

Z1 ≡ V̂ |
̂|1=2; Z2 ≡ V |
|1=2Q|�|1=2:
As explained above there exists a J -unitary matrix Z such that Z2 = Z1Z . Use this in

‖ |A|1=2|A+ E|−1=2‖2 = ‖ |
|1=2V ∗V̂ |
̂|−1=2‖2 = ‖ |
|1=2V ∗V̂ Z−∗
1 ‖

to obtain

‖ |A|1=2|A+ E|−1=2‖2 = ‖ |�|−1=2Z∗‖26‖�−1‖1=2‖Z‖2
since � is a diagonal matrix. It remains to bound ‖�−1‖2,

‖�−1‖2 = ‖(J + |
|−1=2V ∗EV | |
|−1=2)−1‖

= ‖(I + J |
|−1=2 V ∗EV | |
|−1=2)−1‖6 1
1− �2 :

The bound in Theorem 3.9 looks similar to the bound in Theorem 3.6. But the square-roots in �2
and �F now contain polar factors, and the relative eigenvalue separation has absolute values under the
square-root. Moreover, there is an additional factor ‖Z‖, that’s the penalty. In the lucky case when
A happens to be positive-de�nite, Z is unitary and Theorem 3.9 reduces to Theorem 3.6. When A is
inde�nite, the eigenspace sensitivity can be magni�ed by the norm of the J -unitary matrix, which
in some sense reects the deviation of A from de�niteness.
At this point it is not known how large ‖Z‖ can be, under which circumstances it will be large or

small, and how much it really contributes to the sensitivity of a subspace. A quantity corresponding
to ‖Z‖ in [36] is bounded in terms of ‖A−1‖ and a graded polar factor of A. Preliminary experiments
in [36, Sections 4 and 5] suggest that ‖Z‖ does not grow unduly. At present, we do not yet have a
good understanding of why a subspace of an inde�nite Hermitian matrix should be more sensitive
to Hermitian relative perturbations than a subspace of a de�nite matrix.
Not all relative bounds for Hermitian matrices necessarily look like the one above. For instance,

there are relative bounds speci�cally geared towards real symmetric tridiagonal matrices. The cosine
between two Ritz vectors associated with an eigenvalue cluster of a real, symmetric tridiagonal matrix
can be expressed in terms of a relative gap [27, Section 5]. Perturbations of the LDLT decomposition

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 145

of a real, symmetric tridiagonal matrix lead to relative bounds on the tangent between eigenvectors,
and an eigenvector condition number that depends on all eigenvalues, not just a single eigenvalue
separation [28, Section 10].
Like a tridiagonal matrix, one can decompose any Hermitian matrix as A = G∗JG, where J is a

diagonal matrix with diagonal entries ±1. The norm-wise perturbation of a spectral projector induced
by perturbations of the factor G can be bounded in terms of a relative eigenvalue separation [35,
(12)]; [32, Theorem 1].

3.6. Graded inde�nite Hermitian matrices

The bound for graded positive-de�nite matrices from Section 3.4 is extended to graded inde�nite
matrices,
Fortunately, this requires only a slight modi�cation in the proof of Theorem 3.9.

Theorem 3.10 (Simpler Version of Theorem 2 in Truhar and Slapni�car [36]). If A=D∗MD and A+
E = D∗(M + F)D are Hermitian; where D is nonsingular; and if

�2 ≡ ‖ |M |−1=2F |M |−1=2| ‖2¡ 1

then

‖sin�‖F6‖Z‖ �F√
1− �2

/
min

�∈�; �̂∈�̂

|�− �̂|√
��̂

;

where �F ≡ ‖ |M |−1=2F |M |−1=2| ‖F; and Z is J -unitary.

Proof. As in the proof of Theorem 3.9 derive

‖sin�‖F = ‖S‖F6‖W‖F
/
min

�∈�; �̂∈�̂

|�− �̂|√
|��̂|

:

To bound ‖W‖F, represent A and A + E in terms of D and eigendecompositions of M and
M + F , respectively. The scaling matrices D then cancel out with the scaling matrices in the error
E = D∗FD.

A quantity corresponding to ‖Z‖ in [36] is bounded in terms of ‖A−1‖ and ‖D∗|M |D‖.
Other relative bounds for inde�nite Hermitian matrices that exploit grading include the following.

• Norm-wise and component-wise �rst-order bounds on the di�erence between exact and perturbed
eigenvectors of real, symmetric scaled diagonally dominant matrices [1, Section 7].
• Bounds on the norm-wise di�erence between corresponding eigenvectors of Hermitian matrices
A = D∗MD and D∗(M + F)D in terms of a relative gap, ‖F‖2 and an eigenvalue of a principal
submatrix of M [17, Theorem 7]. This is an improvement over the bounds for symmetric scaled
diagonally dominant matrices in [1, Section 7] and for positive-de�nite matrices in [8].

146 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

• Bounds on the cosines of angles between exact and perturbed eigenvectors of possibly singular
Hermitian matrices [2, Section 4]. They can be applied to analyze the accuracy of subspaces in
ULV down-dating [3].
• Bounds on the norm-wise perturbations in spectral projectors [29, Section 2], [35, (6), (7)], [37,
Theorem 2:48]; [30].

3.7. Remarks

The sensitivity of invariant subspaces to absolute perturbations E and to relative perturbations
A−1E is inuenced by the same factors: conditioning of subspace bases, and separation of matrices
associated with eigenvalues. When the matrices involved are Hermitian the sensitivity to absolute
perturbations E is ampli�ed by an absolute eigenvalue separation, and the sensitivity to relative
perturbations A−1E by a relative eigenvalue separation. None of these two perturbations seems to
care about whether the Hermitian matrices are de�nite or inde�nite.
This changes when one restricts relative perturbations to be Hermitian as well, i.e., of the form
|A|−1=2E|A|−1=2. Then subspaces of inde�nite matrices appear to be more sensitive to these per-
turbations than those of de�nite matrices. This phenomenon is not yet completely understood. In
particular, it is not clear how much the sensitivity can worsen for an inde�nite matrix, and in what
way the sensitivity depends on the inde�niteness of the matrix. In general, one does not completely
understand how exactly the �ne-structure of a matrix and a perturbation a�ect the sensitivity of
subspaces.
There is another observation that has not been fully exploited yet either. Invariant subspaces do

not change under shifts, i.e., A and the shifted matrix A − �I have the same invariant subspaces.
The condition numbers for the absolute perturbations are invariant under a shift, while those for
relative perturbations are not. The question is, are there optimal shifts for computing subspaces, and
what would ‘optimal’ mean in this context? In particular, one could shift a Hermitian matrix so
it becomes positive-de�nite. Then the subspaces of the shifted matrix would look less sensitive to
Hermitian relative perturbations. This approach is pursued to assess the sensivity of eigenvectors of
factored real symmetric tridiagonal matrices to relative perturbations in the factors in [9, Section 5],
[28, Section 10], and used to compute the eigenvectors in [10]. The approach based on shifting a
matrix before evaluating sensitivity and computing subspaces deserves more investigation for general,
Hermitian matrices.
Now we consider a di�erent type of perturbation.

4. Multiplicative perturbations

The perturbed subspace S is interpreted as an exact subspace of a perturbed matrix D1AD2, where
D1 and D2 are nonsingular. Relative and absolute bounds on ‖sin�‖ are presented for diagonalizable
and Hermitian matrices.
When D2 = D−1

1 , the perturbed matrix D1AD2 is just a similarity transformation of A, which
means that A and D1AD2 have the same eigenvalues. When D2 = D∗

1 then D1AD2 is a congruence
transformation of A, which means that A and D1AD2 have the same inertia when A is Hermitian.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 147

Since the nonsingularity of D1 and D2 forces A and D1AD2 to have the same rank, multiplicative
perturbations are more restrictive than additive perturbations.
Multiplicative perturbations can be used, for instance, to represent component-wise perturbations

of real bidiagonal matrices and of real symmetric tridiagonal matrices with zero diagonal [1, p. 770],
[12, Section 4], [19, Example 5:1]. This is exploited in [28, Section 4], where the relative sensitivity
of eigenvalues and eigenvectors of real symmetric tridiagonal matrices with regard to perturbations in
the factors of a LDLT factorization is analyzed. Since L is bidiagonal, a component-wise perturbation
of L can be represented as D1LD2.
In a di�erent application illustrated below, multiplicative perturbations represent deation in block

triangular matrices.

Example 4.1 (Eisenstat and Ipsen [12; Theorem 5:2]). The o�-diagonal block in the block triangu-
lar matrix

A=
(
A11 A12

A22

)

is to be eliminated, making the deated matrix(
A11

A22

)

block diagonal. When A11 is nonsingular one can factor(
A11

A22

)
=
(
A11 A12

A22

)(
I −A−1

11 A12
I

)
:

Therefore, the deated matrix represents a multiplicative perturbation D1AD2, where D1 = I and

D2 =
(
I −A−1

11 A12
I

)
:

Similarly, when A22 is nonsingular one can factor(
A11

A22

)
=
(
I −A12A−1

22

I

)(
A11 A12

A22:

)
:

In this case the deated matrix represents a multiplicative perturbation D1AD2, where D2 = I and

D2 =
(
I −A12A−1

22

I

)
:

4.1. Diagonalizable matrices

A bound is presented between a perturbed one-dimensional eigenspace and an eigenspace of a
diagonalizable matrix.
Suppose A is diagonalizable and Ŝ= range(x̂), where

D1AD2x̂ = �̂x̂; ‖x̂‖2 = 1

148 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

for some nonsingular D1 and D2, where D1AD2 is not necessarily diagonalizable. In this section we
explicitly choose S to be the eigenspace associated with all eigenvalues of A closest to �̂. The
remaining, further away eigenvalues form the diagonal elements of the diagonal matrix �, i.e.,

min
�∈�
|�− �̂|¿min

i
|�i(A)− �̂|:

Then S⊥ is the left invariant subspace of A associated with the eigenvalues in �. Let the columns
of Y be a basis for S⊥, so S⊥ = range(Y) and

Y ∗A= �Y ∗:

In the theorem below the residual of x̂ and �̂ is

r ≡ (A− �̂I)x̂:

Theorem 4.1 (Eisenstat and Ipsen [13, Theorem 4:3]). If A is diagonalizable then

‖sin�‖26�(Y)‖r‖2=min
�∈�
|�− �̂|:

If; in addition; D1 and D2 are nonsingular then

‖sin�‖26�(Y)min{�1; �2}=min
�∈�
|�− �̂|
|�̂| + ‖I − D2‖2;

where

�1 ≡ ‖D−1
1 − D2‖2; �2 ≡ ‖I − D−1

1 D
−1
2 ‖2:

Proof. To derive the absolute bound, multiply r = (A− �̂I)x̂ by Y ∗ and use Y ∗A= Y ∗�,

Y ∗x̂ = (�− �̂I)−1Y ∗r:

With P being the orthogonal projector onto S⊥ = range(Y) one gets

Px̂ = (Y †)∗Y ∗x̂ = (Y †)∗(�− �̂I)−1Y ∗r:

From ‖x̂‖2 = 1 follows
‖sin�‖2 = ‖Px̂‖26�(Y)‖(�− �̂I)−1‖2‖r‖2:

To derive the relative bound, we will use the absolute bound. Multiply (D1AD2)x̂ = �̂x̂ by D−1
1

and set z ≡ D2x̂=‖D2x̂‖,
Az = �̂D−1

1 D
−1
2 z:

The residual for �̂ and z is

f ≡ Az − �̂z = �̂(D−1
1 D

−1
2 − I)z = �̂(D−1

1 − D2)x̂=‖D2x̂‖2:
Hence

‖f‖26|�̂|�2; ‖f‖26|�̂|�1=‖D2x̂‖2:
The idea is to �rst apply the absolute bound to the residual f and then make an adjustment from z
to x̂. Since f contains �̂ as a factor we will end up with a relative bound.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 149

Applying the absolute bound to f gives

‖sin�‖26�(Y)‖f‖2=min
�∈�
|�− �̂|;

where � represents the angle between z and S. To make the adjustment from z to x̂ use the fact
that [13, Lemma 4:2]

‖sin�‖26‖sin�‖2 + ‖D2 − I‖2
and

‖sin�‖26‖D2x̂‖2‖sin�‖2 + ‖D2 − I‖2:
Now put the �rst bound for ‖f‖2 into the �rst bound for ‖sin�‖2 and the second bound for ‖f‖2
into the second bound for ‖sin�‖2.

The relative bound consists of two summands. The �rst summand represents the (absolute or
relative) deviation of D1 and D2 from a similarity transformation, ampli�ed by the eigenvector
conditioning �(Y) and by the relative eigenvalue separation; while the second summand represents
the (absolute and relative) deviation of the similarity transformation from the identity. The factor �1
is an absolute deviation from similarity, while �2 constitutes a relative deviation as

I − D−1
1 D

−1
2 = (D2 − D−1

1)D
−1
2

is a di�erence relative to D2. Thus, for an eigenspace to be insensitive to multiplicative perturbations,
the multiplicative perturbations must constitute a similarity transformation close to the identity.
Here again, as in Theorem 3.3, the relative bound is implied by the absolute bound. Also, when

Ŝ has dimension 1, the absolute bound in Theorem 4.1 implies the absolute bound in Theorem 3.4.

Example 4.2. Let us apply Theorem 4.1 to Example 4.1. Suppose x̂ is a unit-norm eigenvector
associated with an eigenvalue �̂ of the deated, block-diagonal matrix.
First consider the case when A11 is nonsingular. Then D1 = I and

�1 = �2 = ‖I − D2‖2 = ‖A−1
11 A12‖2:

Hence

‖sin�‖26‖A−1
11 A12‖2

(
1 + 1=min

�∈�
|�− �̂|
|�̂|

)
:

This means x̂ is close to an eigenvector of A if ‖A−1
11 A12‖2 is small compared to 1 and the relative

eigenvalue separation. Hence, the matrix can be safely deated without harming the eigenvector, if
the leading diagonal block is ‘large enough compared to’ the o�-diagonal block, and the meaning
of ‘large enough’ is determined by the eigenvalue separation.
In the second case when A22 is nonsingular, one has D2 = I . Hence ‖D2 − I‖2 = 0, �1 = �2 =
‖A12A−1

22 ‖2, and

‖sin�‖26‖A−1
11 A12‖2=min�∈�

|�− �̂|
|�̂| :

Now the matrix can be safely deated without harming the eigenvector, if the trailing diagonal block
is ‘large enough compared to’ the o�-diagonal block.

150 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

In some cases the �rst summand in the bound of Theorem 4.1 can be omitted.

Corollary 4.2 (Eisenstat and Ipsen [13, Corollary 4:4]). If D1 = D−1
2 or �̂= 0; then

‖sin�‖26‖I − D2‖2:

Proof. First suppose D1 = D−1
2 . Then D1AD2x̂ = �̂ x̂ implies AD2x̂ = �̂D2x̂, i.e., �̂ and D2x̂ are an

exact eigenpair of A. Since S is the eigenspace associated with all eigenvalues closest to �̂, we
must have D2x̂ ∈S. Hence PD2x̂ = 0, where P is the orthogonal projector onto S⊥, and

‖sin�‖2 = ‖Px̂‖2 = ‖P(D2x̂ − x̂)‖26‖I − D2‖2:
Now suppose �̂=0. Then D1AD2x̂=0 · x̂ implies D−1

2 AD2x̂=0 · x̂, since D1 and D2 are nonsingular.
Hence �̂ and x̂ are an exact eigenpair of a similarity transformation of A, and we are back to the
�rst case.

In the case of similarity transformations D1 = D−1
2 , the eigenspace angle is bounded by the rel-

ative deviation of D2 from identity, without any ampli�cation by �(Y) or by a relative gap. As a
consequence, eigenvectors of diagonalizable matrices are well-conditioned when the perturbation is
a similarity transformation. Similarly, in the case �̂=0 it follows that null vectors of diagonalizable
matrices are well-conditioned under multiplicative perturbations.
A di�erent approach is sketched in [21, Remark 3:3] for deriving eigenspace bounds of diagonal-

izable matrices when both eigenspaces have the same dimension ¿1.

4.2. Hermitian matrices

Two-norm and Frobenius norm bounds are presented for multiplicative perturbations that are
congruence transformations.
When applied to Hermitian matrices, Theorem 4.1 simpli�es. Remember that in this context the

perturbed eigenspace has dimension one, Ŝ= range(x̂), and

D∗ADx̂ = �x̂; ‖x̂‖2 = 1;
and S is the eigenspace of A associated with the eigenvalues of A closest to �̂.

Corollary 4.3 (Eisenstat and Ipsen [11, Theorem 2:1]). If A is Hermitian then

‖sin�‖26‖r‖2=min
�∈�
|�− �̂|:

If; in addition; D is nonsingular then

‖sin�‖26min{�1; �2}=min
�∈�
|�− �̂|
|�̂| + ‖I − D‖2;

where

�1 ≡ ‖D−∗ − D‖2; �2 ≡ ‖I − D−∗D−1‖2:

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 151

The relative bound consists of two summands. The �rst summand represents the (absolute or
relative) deviation of the equivalence transformation from a similarity, ampli�ed by the relative
eigenvalue separation; while the second summand represents the (absolute and relative) deviation of
the similarity transformation from the identity. Hence the eigenspace S is insensitive to perturba-
tions that are equivalence transformations if the equivalence transformation is close to a similarity
transformation that does not di�er much from the identity.
In the special case when S has dimension one, Corollary 4.3 is slightly stronger than [12, Theorem

2:2] and [11, Corollary 2:1].
Corollary 4.3 can be extended to bound angles between two eigenspaces of equal dimension k¿1,

however at the expense of an additional factor
√
k in the bound [11, Theorem 3.1]. The following

bounds for equally dimensioned subspaces do without this factor.
Let S be an invariant subspace of A, and Ŝ be an invariant subspace of D∗AD, where D is

nonsingular and Ŝ has the same dimension as S. Let the columns of X̂ be an orthonormal basis
for Ŝ and the columns of Y be an orthonormal basis for S⊥. Then

Y ∗A= �Y ∗; D∗ADX̂ = X̂�̂;

for some diagonal matrices � and �̂. Below are Frobenius norm bounds on the angle between two
equally dimensioned eigenspaces of a Hermitian matrix.

Theorem 4.4 (Li [21, Theorem 3:1]).2 If A is Hermitian and D is nonsingular then

‖sin�‖F6‖(D − D−∗)X̂ ‖F= min
�∈�; �̂∈�̂

|�− �̂|
|�| + ‖(I − D−∗)X̂ ‖F

and

‖sin�‖F6
√
‖(I − D)X̂ ‖2F + ‖(I − D−∗)X̂ ‖2F= min

�∈�; �̂∈�̂

|�− �̂|√
�2 + �̂

2
:

These bounds give the same qualitative information as Corollary 4.3: The eigenspace is insensitive
to perturbations that are congruence transformations if the congruence transformation is close to a
similarity transformation that does not di�er much from the identity. The �rst bound has the same
form as the relative bound in Corollary 4.3. In particular, when S and Ŝ have dimension one, the
�rst bound in Theorem 4.4 implies

‖sin�‖26‖(D − D−∗)‖2= min
�∈�; �̂∈�̂

|�− �̂|
|�| + ‖I − D−∗‖2;

which is almost identical to the relative bound in Corollary 4.3. Note that the relative eigenvalue
separation in the second bound is di�erent. More generally, Theorem 4.4 holds in any unitarily
invariant norm [21, Theorem 3.2].
Multiplicative eigenvector bounds for the hyperbolic eigenvalue problem Ax = �Jx, where A is

Hermitian positive-de�nite and J is a diagonal matrix with unit diagonal entries are given in [31,
Section 4].

2 Here we have exchanged the roles of A and D∗AD compared to Theorem 3.1 in [21].

152 I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153

References

[1] J. Barlow, J. Demmel, Computing accurate eigensystems of scaled diagonally dominant matrices, SIAM J. Numer.
Anal. 27 (1990) 762–791.

[2] J. Barlow, I. Slapni�car, Optimal perturbation bounds for the Hermitian eigenvalue problem, Technical Report 99-001,
Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, February
1999.

[3] J. Barlow, P. Yoon, H. Zha, An algorithm and a stability theory for downdating the ULV decomposition, BIT 36
(1996) 14–40.

[4] C. Davis, W. Kahan, Some new bounds on perturbation of subspaces, Bull. Amer. Math. Soc. 75 (1969) 863–868.
[5] C. Davis, W. Kahan, The rotation of eigenvectors by a perturbation, III, SIAM J. Numer. Anal. 7 (1970) 1–46.
[6] P. Deift, J. Demmel, L. Li, C. Tomei, The bidiagonal singular value decomposition and Hamiltonian mechanics,

SIAM J. Numer. Anal. 28 (1991) 1463–1516.
[7] J. Demmel, M. Gu, S. Eisenstat, I. Slapni�car, K. Veseli�c, Z. Drma�c, Computing the singular value decomposition

with high relative accuracy, Linear Algebra Appl. 299 (1999) 21–80.
[8] J. Demmel, K. Veseli�c, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13 (1992) 1204–

1245.
[9] I. Dhillon, A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue=Eigenvector Problem, Ph.D. thesis,

Computer Science, University of California, Berkeley, CA, May 1997.
[10] I. Dhillon, G. Fann, B. Parlett, in: M. Heath et al. (Eds.), Application of a new algorithm for the symmetric

eigenproblem to computational quantum chemistry, in: Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scienti�c Computing, SIAM, Philadelphia, 1997.

[11] S. Eisenstat, I. Ipsen, Relative perturbation bounds for eigenspaces and singular vector subspaces, in Applied Linear
Algebra, SIAM, Philadelphia, 1994, pp. 62–65.

[12] S. Eisenstat, I. Ipsen, Relative perturbation techniques for singular value problems, SIAM J. Numer. Anal. 32 (1995)
1972–1988.

[13] S. Eisenstat, I. Ipsen, Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices, BIT
38 (1998) 502–509.

[14] S. Eisenstat, I. Ipsen, Three absolute perturbation bounds for matrix eigenvalues imply relative bounds, SIAM J.
Matrix Anal. Appl. 20 (1998) 149–158.

[15] I. Gohberg, R. Lancaster, L. Rodman, Invariant Subspaces of Matrices with Applications, Wiley, New York, 1986.
[16] G. Golub, C. van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins University Press, Baltimore, 1996.
[17] M. Gu, S. Eisenstat, Relative perturbation theory for eigenproblems, Research Report YALEU=DCS=RR-934,

Department of Computer Science, Yale University, 1993.
[18] I. Ipsen, Absolute and relative perturbation bounds for invariant subspaces of matrices, Linear Algebra Appl. 309

(2000) 45–56.
[19] I. Ipsen, Relative perturbation results for matrix eigenvalues and singular values, in: Acta Numerica 1998, Vol. 7,

Cambridge University Press, Cambridge, 1998, pp. 151–201.
[20] R. Li, Relative perturbation theory: I. eigenvalue variations, SIAM J. Matrix Anal. Appl. 19 (1998) 956–982.
[21] R. Li, Relative perturbation theory: II. eigenspace and singular subspace variations, SIAM J. Matrix Anal. Appl. 20

(1999) 471–492.
[22] T. Londr�e, N. Rhee, A note on relative perturbation bounds, SIAM J. Matrix Anal. Appl. 21 (2000) 357–361.
[23] R. Mathias, Fast accurate eigenvalue methods for graded positive-de�nite matrices, Numer. Math. 74 (1996) 85–103.
[24] R. Mathias, A bound for matrix square root with application to eigenvector perturbation, SIAM J. Matrix Anal.

Appl. 18 (1997) 861–867.
[25] R. Mathias, Spectral perturbation bounds for positive de�nite matrices, SIAM J. Matrix Anal. Appl. 18 (1997)

959–980.
[26] R. Mathias, K. Veseli�c, A relative perturbation bound for positive de�nite matrices, Linear Algebra Appl. 270 (1998)

315–321.
[27] B. Parlett, Invariant subspaces for tightly clustered eigenvalues of tridiagonals, BIT 36 (1996) 542–562.
[28] B. Parlett, I. Dhillon, Relatively robust representations of symmetric tridiagonals, Department of Mathematics,

University of California, Berkeley, February 1999.

I.C.F. Ipsen / Journal of Computational and Applied Mathematics 123 (2000) 131–153 153

[29] I. Slapni�car, Accurate computation of singular values and eigenvalues of symmetric matrices, Math. Commun. 1
(1996) 153–167.

[30] I. Slapni�car, N. Truhar, Relative perturbation bound for invariant subspaces of graded inde�nite matrices, Technical
Report, University of Split and University of Osijek, Croatia, September 1998.

[31] I. Slapni�car, N. Truhar, Relative Perturbation theory for hyperbolic eigenvalue problem, tech. rep., University of
Split and University of Osijek, Croatia, September 1998.

[32] I. Slapni�car, K. Veseli�c, Perturbations of the eigenprojections of a factorised Hermitian matrix, Linear Algebra Appl.
218 (1995) 273–280.

[33] I. Slapni�car, K. Veseli�c, A bound for the condition of a hyperbolic eigenvector matrix, Linear Algebra Appl. 290
(1999) 247–255.

[34] G. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, San Diego, 1990.
[35] N. Truhar, I. Slapni�car, Relative perturbation of invariant subspaces, Math. Commun. 1 (1996) 169–174.
[36] N. Truhar, I. Slapni�car, Relative perturbation bound for invariant subspaces of graded inde�nite Hermitian matrices,

Linear Algebra Appl. 301 (1999) 171–185.
[37] K. Veseli�c, I. Slapni�car, Floating-point perturbations of Hermitian matrices, Linear Algebra Appl. 195 (1993)

81–116.

Journal of Computational and Applied Mathematics 123 (2000) 155–175
www.elsevier.nl/locate/cam

The trace minimization method for the symmetric generalized
eigenvalue problem(

Ahmed Sameh ∗, Zhanye Tong
Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA

Received 9 June 1999; received in revised form 3 February 2000

Abstract

In this paper, the trace minimization method for the generalized symmetric eigenvalue problems proposed by Sameh
and Wisniewski [35] is reviewed. Convergence of an inexact trace minimization algorithm is established and a variant of
the algorithm that uses expanding subspaces is introduced and compared with the block Jacobi–Davidson algorithm. c©
2000 Elsevier Science B.V. All rights reserved.

MSC: 65F15

Keywords: Trace minimization; Jacobi–Davidson scheme; Eigenvalue; Eigenvector

1. Introduction

The generalized eigenvalue problem

Ax = �Bx; (1.1)

where A and B are n × n real symmetric matrices with B being positive de�nite, arises in many
applications, most notably in structural mechanics [1,2] and plasma physics [17,19]. Usually, A
and B are large, sparse, and only a few of the eigenvalues and the associated eigenvectors are
desired. Because of the size of the problem, methods that rely only on operations like matrix–vector
multiplications, inner products, and vector updates, that utilize only high-speed memory are usually
considered.
Many methods fall into this category (see, for example [42,43]). The basic idea in all of these

methods is building a sequence of subspaces that, in the limit, contain the desired eigenvectors. Most

(This work was partially supported by NSF grant CCR-9619763.
∗ Corresponding author.
E-mail addresses: sameh@cs.purdue.edu (A. Sameh), tong@cs.purdue.edu (Z. Tong).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00391-5

156 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

of the early methods iterate on a single vector, i.e., using one-dimensional subspaces, to compute
one eigenpair at a time. If several eigenpairs are needed, a deation technique is frequently used.
Another alternative is to use block analogs of the single vector methods to obtain several eigenpairs
simultaneously. The well-known simultaneous iteration [31], or subspace iteration [28], is a block
analog of the power method. Simultaneous iteration is originally developed by Bauer [3] under the
name treppeniteration. It was extensively studied in the late 1960s and early 1970s [5,24,31,41,42].
Let A be symmetric positive de�nite and assume that the smallest p eigenpairs are the ones we

desire to obtain, where 16p�n. In simultaneous iteration, the sequence of subspaces of dimension
p is generated by the following recurrence:

Xk+1 = A−1BXk; k = 0; 1; : : : ; (1.2)

where X0 is an n × p matrix of full rank. The eigenvectors of interest are magni�ed at each iter-
ation step, and will eventually dominate Xk . The downside of simultaneous iteration is that linear
systems of the form Ax = b have to be solved repeatedly which is a signi�cant challenge for large
problems. Solving these linear systems inexactly often compromises global convergence. A variant
of simultaneous iteration, called the trace minimization method, was proposed in 1982 by Sameh
and Wisniewski [35] in an attempt to avoid this di�culty. Let Xk be the current approximation to
the eigenvectors corresponding to the p smallest eigenvalues where X Tk BXk = Ip. The idea of the
trace minimization scheme is to �nd a correction term �k that is B-orthogonal to Xk such that

tr(Xk − �k)TA(Xk − �k)¡ tr(X Tk AXk):

It follows that, for any B-orthonormal basis Xk+1 of the new subspace span{Xk − �k}, we have
tr(X Tk+1AXk+1)¡ tr(X Tk AXk);

i.e., span{Xk − �k} gives rise to a better approximation of the desired eigenspace than span{Xk}.
This trace reduction property can be maintained without solving any linear systems exactly.
Just as simultaneous iteration is accelerated by the use of Chebyshev polynomials, the trace min-

imization method is accelerated via shifting strategies. The introduction of shifts, however, may
compromise the robustness of the trace minimization scheme. Various techniques have been devel-
oped to prevent unstable convergence (see Section 3.2 for details). A simple way to get around
this di�culty is to utilize expanding subspaces. This, in turn, places the trace minimization method
into a class of methods that includes the Lanczos method [23], Davidson’s method [10], and the
Jacobi–Davidson method [12,37,38].
The Lanczos method has become increasingly popular since the ground-breaking analysis by Paige

[27], and many practical algorithms are known today [7,14,30,36] (see [8,15] for an overview). The
original Lanczos algorithm was developed for handling the standard eigenvalue problem only, i.e.,
B= I . Extensions to the generalized eigenvalue problem [11,21,16] require solving a linear system of
the form Bx=b at each iteration step, or factorizing matrices of the form A−�B during the iteration.
Davidson’s method can be regarded as a preconditioned Lanczos method. It was intended to be a
practical method for standard eigenvalue problems in quantum chemistry where the matrices involved
are diagonally dominant. In the past two decades, Davidson’s method has gone through a series of
signi�cant improvements [6,25,26,40,44]. A recent development is the Jacobi–Davidson method [38],
published in 1996, which is a variant of Davidson’s original scheme and the well-known Newton’s
method. The Jacobi–Davidson algorithm for the symmetric eigenvalue problem may be regarded as a

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 157

generalization of the trace minimization scheme that uses expanding subspaces. Both utilize an idea
that dates back to Jacobi [20]. As we will see in Section 5, the current Jacobi–Davidson scheme
can be further improved by the techniques developed in the trace minimization method.
In this paper, we give a detailed account of the trace minimization method including the derivation

of the scheme, its convergence theory, acceleration techniques, and some implementation details.
Some of this material is new. The outline of the paper is as follows. In Section 2, we “derive” the
trace minimization method and describe the basic algorithm. In Section 3, we prove convergence
of the basic algorithm under the assumption that the inner systems are solved inexactly. Shifting
techniques are introduced in Section 4, and a Davidson-type generalization is given in Section 5.
Throughout the paper, the eigenpairs of the eigenvalue problem (1.1) are denoted by (xi; �i),

16i6n. The eigenvalues are always arranged in ascending order. The following eigenvalue problem
of order 100:

A= diag(1× 0:1; 2× 0:2; 3× 0:3; : : : ; 100× 10:0);
B= diag(0:1; 0:2; 0:3; : : : ; 10:0);

(1.3)

will be used in Sections 2–5 to illustrate the techniques discussed in the paper. All numerical exper-
iments for this small eigenvalue problem are performed with MATLAB on a SUN SPARC 5. The
initial guesses are generated by the MATLAB function RAND, and the eigenpairs are accepted when
the 2-norm of the residual vectors are less than 10−10. Numerical experiments for large problems
are performed on SGI=Origin 2000. The results are presented in Section 5.3.

2. The trace minimization method

In this section, we derive the trace minimization method originally presented in [35]. We assume
that A is positive de�nite, otherwise problem (1.1) can be replaced by

(A− �B)x = (�− �)Bx
with �¡�1¡ 0, that ensures a positive de�nite (A− �B).
The trace minimization method is motivated by the following theorem.

Theorem 2.1 (Beckenbach and Bellman [4], Sameh and Wisniewski [35]). Let A and B be as given
in problem (1:1); and let X ∗ be the set of all n × p matrices X for which X TBX = Ip; 16p6n.
Then

min
X∈X ∗ tr(X

TAX) =
p∑
i=1

�i: (2.1)

where �16�26 · · ·6�n are the eigenvalues of problem (1:1). The equality holds if and only if the
columns of the matrix X; which achieves the minimum; span the eigenspace corresponding to the
smallest p eigenvalues.

If we denote by E=F the matrix EF−1 and X the set of all n×p matrices of full rank, then (2.1)
is equivalent to

min
X∈X

tr
(
X TAX
X TBX

)
=

p∑
i=1

�i:

158 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

X TAX=X TBX is called the generalized Rayleigh quotient. Most of the early methods that compute
a few of the smallest eigenvalues are devised explicitly or implicitly by reducing the generalized
Rayleigh quotient step by step. A simple example is the simultaneous iteration scheme for a positive
de�nite matrix A where the current approximation Xk is updated by (1.2). It can be shown by the
Courant–Fischer theorem [29, p. 206] and the Kantorovic inequality [22] that

�i

(
X Tk+1AXk+1
X Tk+1BXk+1

)
6�i

(
X Tk AXk
X Tk BXk

)
; 16i6p: (2.2)

The equality holds only when Xk is already an eigenspace of problem (1.1). Originally, the columns
of Xk+1 were taken as approximations to the desired eigenvectors. It was later found out that a
Rayleigh–Ritz process on the subspace span{Xk+1} yields more accurate approximations. A detailed
treatment of simultaneous iteration can be found in [29, Chapter 14]. The following is an outline of
the basic algorithm:

Algorithm 1. Simultaneous iteration.
Choose a block size s¿p and an n× s matrix V1 of full rank such that V T1 BV1 = Is.
For k = 1; 2; : : : until convergence, do
1. Compute Wk = AVk and the interaction matrix Hk = V Tk Wk .
2. Compute the eigenpairs (Yk;�k) of Hk . The eigenvalues are arranged in ascending order and
the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Xk = VkYk .
4. Compute the residuals Rk =WkYk − BXk�k .
5. Test for convergence.
6. Solve the linear system

AZk+1 = BXk; (2.3)

by an iterative method.
7. B-orthonormalize Zk+1 into Vk+1 by the Gram–Schmidt process with reorthogonalization [9].

End for

In [35], simultaneous iteration was derived in a way that the trace minimization property is
explicitly explored. At each iteration step, the previous approximation Xk , which satis�es X Tk BXk= Is
and X Tk AXk =�k , is corrected with �k that is obtained by

minimizing tr(Xk − �k)TA(Xk − �k);
subject to X Tk B�k = 0:

(2.4)

As a result, the matrix Zk+1 = Xk − �k always satis�es
tr(ZTk+1AZk+1)6tr(X

T
k AXk); (2.5)

and

ZTk+1BZk+1 = Is + �
T
k B�k; (2.6)

which guarantee that

tr(X Tk+1AXk+1)6tr(X
T
k AXk) (2.7)

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 159

for any B-orthonormal basis Xk+1 of the subspace span{Zk+1}. The equality in (2.7) holds only when
�k = 0; i.e., Xk spans an eigenspace of (1.1) (see Theorem 3.3 for details).
Using Lagrange multipliers, the solution of the minimization problem (2.4) can be obtained by

solving the saddle-point problem[
A BXk
X Tk B 0

] [
�k
Lk

]
=
[
AXk
0

]
; (2.8)

where 2Lk represents the Lagrange multipliers. In [35], (2.8) is further reduced to the following
positive-semide�nite system

(PAP)�k = PAXk; X Tk B�k = 0; (2.9)

where P is the projector P=I−BXk(X Tk B2Xk)−1X Tk B. This system is solved by the conjugate gradient
method (CG) in which zero is chosen as the initial iterate so that the linear constraint X Tk B�

(l)
k =0 is

automatically satis�ed for any intermediate �(l)k . This results in the following basic trace minimization
algorithm:

Algorithm 2. The basic trace minimization algorithm.
Choose a block size s¿p and an n× s matrix V1 of full rank such that V T1 BV1 = Is.
For k = 1; 2; : : : until convergence, do
1. Compute Wk = AVk and the interaction matrix Hk = V Tk Wk .
2. Compute the eigenpairs (Yk;�k) of Hk . The eigenvalues are arranged in ascending order and
the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Xk = VkYk .
4. Compute the residuals Rk = AXk − BXk�k =WkYk − BXk�k .
5. Test for convergence.
6. Solve the positive-semide�nite linear system (2.9) approximately via the CG scheme.
7. B-orthonormalize Xk−�k into Vk+1 by the Gram–Schmidt process with reorthogonalization [9].

End for

From now on, we will refer to the linear system (2.9) in step (6) as the inner system(s). It is
easy to see that the exact solution of the inner system is

�k = Xk − A−1BXk(X Tk BA
−1BXk)−1; (2.10)

thus the subspace spanned by Xk − �k is the same subspace spanned by A−1BXk . In other words,
if the inner system (2.9) is solved exactly at each iteration step, the trace minimization algorithm
above is mathematically equivalent to simultaneous iteration. As a consequence, global convergence
of the basic trace minimization algorithm follows exactly from that of simultaneous iteration.

Theorem 2.2 (Rutishauser [32], Parlett [29], Sameh and Wisniewski [35]). Let A and B be posi-
tive de�nite and let s¿p be the block size such that the eigenvalues of problem (1:1) satisfy
0¡�16�26 · · ·6�s ¡�s+16 · · ·6�n. Let also the initial iterate X0 be chosen such that it has
linearly independent columns and is not de�cient in any eigen-component associated with the p
smallest eigenvalues. Then the ith column of Xk; denoted by xk; i; converges to the eigenvector xi

160 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

corresponding to �i for i = 1; 2; : : : ; p with an asymptotic rate of convergence bounded by �i=�s+1.
More speci�cally; at each step; the error

�i = (xk; i − xi)TA(xk; i − xi) (2.11)

is reduced asymptotically be a factor of (�i=�s+1)2.

The only di�erence between the trace minimization algorithm and simultaneous iteration is in
step (6). If both (2.3) and (2.9) are solved via the CG scheme exactly, the performance of either
algorithm is comparable in terms of time consumed, as observed in practice. The additional cost in
performing the projection P at each CG step (once rather than twice) is not high because the block
size s is usually small, i.e., 16s�n. This additional cost is sometimes compensated for by the fact
that PAP, when it is restricted to subspace {v ∈ Rn |Pv = v}, is better conditioned than A as will
be seen in the following theorem.

Theorem 2.3. Let A and B be as given in Theorem 2:2 and P be as given in (2:9); and let
�i; �i; 16i6n be the eigenvalues of A and PAP arranged in ascending order; respectively. Then;
we have

0 = �1 = �2 = · · ·= �s ¡�16�s+16�s+26 · · ·6�n6�n:

Proof. The proof is a straightforward consequence of the Courant–Fischer theorem [29, p. 206], and
hence omitted.

3. Practical considerations

In computing practice, however, the inner systems (2.3) and (2.9) are always solved approximately,
particularly for large problems. There are two reasons for this: (i) the error (2.11) in the ith column
of Xk is reduced asymptotically by a factor of (�i=�s+1)2 at each iteration step. Thus we should
not expect high accuracy in the early Ritz vectors even if the inner systems are solved to machine
precision, and (ii) it is often too expensive to solve the inner systems to high-order accuracy by
an iterative method. Numerical experiments have shown that, for simultaneous iteration, the inner
system (2.3) has to be solved in a progressive way, i.e., the absolute stopping tolerance for the
inner systems must be decreasing such that it is smaller than the speci�ed error tolerance at the
end of the outer iteration. On the contrary, for the trace minimization algorithm, the convergence is
guaranteed if a constant relative residual tolerance is used for the inner system (2.9). Table 1 shows
the behavior of both algorithms for example (1.3), where × indicates stagnation.

3.1. A convergence result

In this section, we prove the convergence of the trace minimization algorithm under the assumption
that the inner systems in (2.9) are solved inexactly. We assume that, for each i; 16i6s, the ith
inner system in (2.9) is solved approximately by the CG scheme with zero as the initial iterate such
that the 2-norm of the residual is reduced by a factor ¡ 1. The computed correction matrix will be

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 161

Table 1
The basic trace minimization algorithm (Algorithm 2) versus simultaneous iteration. The inner
systems are solved by the CG scheme which is terminated such that the 2-norm of the residual
is reduced by a speci�ed factor. The number of outer iterations (#its) and the number of matrix
vector multiplications with A (A mults) are listed for di�erent residual reduction factors

Methods 10−4 10−2 0:5 Dynamic

#its A mults #its A mults #its A mults #its A mults

Simult × × × ×
Tracmn 59 6638 59 4263 77 4030 66 4479

denoted by �ck = {dck;1; dck;2; : : : ; dck; s} to distinguish it from the exact solution �k = {dk;1; dk;2; : : : ; dk; s}
of (2.9).
We begin the convergence proof with two lemmas. We �rst show that, at each iteration step, the

columns of Xk − �ck are linearly independent, and the sequence {Xk}∞0 in the trace minimization
algorithm is well-de�ned. In Lemma 3.2, we show that the computed correction matrix �ck satis�es

tr(Xk − �ck)TA(Xk − �ck)6tr(X Tk AXk):
This assures that, no matter how prematurely the CG process is terminated, the trace tr(X Tk AXk)
always forms a decreasing sequences bounded from below by

∑s
i=1 �i.

Lemma 3.1. For each k = 0; 1; 2; : : : ; Zk+1 = Xk − �ck is of full rank.

Proof. Since dck; i is an intermediate approximation obtained from the CG process, there exists a
polynomial p(t) such that

dck; i = p(PAP)(PAxk; i);

where xk; i is the ith column of Xk and P is the projector in (2.9). As a consequence, for each i; dck; i
is B-orthogonal to Xk , i.e., X Tk Bd

c
k; i = 0. Thus the matrix

ZTk+1BZk+1 = Is + �
cT
k B�

c
k

is nonsingular, and Zk+1 is of full rank.

Lemma 3.2. Suppose that the inner systems in (2:9) are solved by the CG scheme with zero as
the initial iterate. Then; for each i; (xk; i − d(l)k; i)TA(xk; i − d(l)k; i) decreases monotonically with respect
to step l of the CG scheme.

Proof. The exact solution of the inner system (2.9),

�k = Xk − A−1BXk(X Tk BA
−1BXk)−1

satis�es P�k =�k . For each i; 16i6s, the intermediate d
(l)
k; i in the CG process also satis�es Pd

(l)
k; i =

d(l)k; i . It follows that

(d(l)k; i − dk; i)TPAP(d(l)k; i − dk; i) = (d(l)k; i − dk; i)TA(d(l)k; i − dk; i)
= (xk; i − d(l)k; i)TA(xk; i − d(l)k; i)− [(X Tk BA−1BXk)−1]ii :

162 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

Since the CG process minimizes the PAP-norm of the error e(l)k; i = d
(l)
k; i − dk; i on the expanding

Krylov subspace [33, p. 130], we have (d(l)k; i − dk; i)TPAP(d(l)k; i − dk; i) decreases monotonically. So
does (xk; i − d(l)k; i)TA(xk; i − d(l)k; i).

Theorem 3.3. Let Xk; �ck ; and Zk+1 be as given for Lemma 3:1. Then we have limk→∞ �ck = 0.

Proof. First, by the de�nition of �ck , we have

ZTk+1BZk+1 = Is + �
cT
k B�

c
k , Is + Tk:

Consider the spectral decomposition of ZTk+1BZk+1

ZTk+1BZk+1 = Uk+1D
2
k+1U

T
k+1;

where Uk+1 is an s × s orthogonal matrix and D2k+1 = diag(�(k+1)1 ; �(k+1)2 ; : : : ; �(k+1)s). It is easy to see
that �(k+1)i = 1 + �i(Tk)¿1.
Second, by the de�nition of Xk+1, there exists an orthogonal matrix Vk+1 such that

Xk+1 = Zk+1 · Uk+1D−1
k+1Vk+1:

Denote by z(k+1)i the diagonal elements of the matrix U T
k+1Z

T
k+1AZk+1Uk+1. It follows that

tr(X Tk+1AXk+1) = tr(D
−1
k+1(U

T
k+1Z

T
k+1AZk+1Uk+1)D

−1
k+1);

=
z(k+1)1

�(k+1)1

+
z(k+1)2

�(k+1)2

+ · · ·+ z(k+1)s

�(k+1)s
;

6 z(k+1)1 + z(k+1)2 + · · · z(k+1)s ;

= tr(ZTk+1AZk+1);

6 tr(X Tk AXk);

which implies that

· · ·¿tr(X Tk AXk)¿tr(ZTk+1AZk+1)¿tr(X Tk+1AXk+1)¿ · · · :
Since the sequence is bounded from below by

∑s
i=1 �i, it converges to a positive number t¿

∑s
i=1 �i.

Moreover, the two sequences

z(k+1)1

�(k+1)1

+
z(k+1)2

�(k+1)2

+ · · ·+ z(k+1)s

�(k+1)s
; k = 1; 2; : : :

and

z(k+1)1 + z(k+1)2 + · · · z(k+1)s ; k = 1; 2; : : :

also converge to t. Therefore,(
z(k+1)1 �1(Tk)
1 + �1(Tk)

)
+

(
z(k+1)2 �2(Tk)
1 + �2(Tk)

)
+ · · ·+

(
z(k+1)s �s(Tk)
1 + �s(Tk)

)
→ 0:

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 163

Observing that for any i; 16i6s,

z(k+1)i ¿ �1(U T
k+1Z

T
k+1AZk+1Uk+1);

= �1(ZTk+1AZk+1);

= min
y 6=0

yTZTk+1AZk+1y
yTy

;

= min
y 6=0

(
yTZTk+1AZk+1y
yTZTk+1BZk+1y

)
·
(
yTZTk+1BZk+1y

yTy

)
;

¿min
y 6=0

yTZTk+1AZk+1y
yTZTk+1BZk+1y

;

¿ �1(A; B);

¿ 0;

we have

�1(Tk)→ 0; i = 1; 2; : : : ; s;

i.e., limk→∞ �ck = 0.

Theorem 3.4. If; for each i; 16i6s; the CG process for the ith inner system

(PAP)dk; i = PAxk; i; dTk; iBXk = 0;

in (2:9) is terminated such that the 2-norm of the residual is reduced by a factor ¡ 1; i.e.;

||PAxk; i − (PAP)dck; i||26||PAxk; i||2; (3.1)

then columns of Xk converge to s eigenvectors of problem (1:1).

Proof. Condition (3.1) implies that

||PAxk; i||2 − ||PAdck; i||26||PAxk; i||2;
and consequently

||PAxk; i||26 1
1− ||PAd

c
k; i||2:

It follows from Theorem 3.3 that limk→∞ PAXk = 0, i.e.,

lim
k→∞

(AXk − BXk[(X Tk B2Xk)−1X Tk BAXk]) = 0:
This shows that span{Xk} converges to an eigenspace of problem (1.1).

3.2. Randomization

Condition (3.1) in Theorem 3.4 is not essential because the constant can be arbitrarily close to
1. The only de�ciency in Theorem 3.4 is that it does not establish ordered convergence in the sense
that the ith column of Xk converges to the ith eigenvector of the problem. This is called unstable

164 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

convergence by Rutishauser. In computing practice, roundo� errors usually turn unstable convergence
into delayed stable convergence. In [32], Rutishauser introduced a randomization technique to prevent
unstable convergence in simultaneous iteration; it can be incorporated into the trace minimization
algorithm as well: After step (6) of Algorithm 2; we append a random vector to Xk and perform
the Ritz processes (1)–(2) on the augmented subspace of dimension s+ 1. The extra Ritz pair is
discarded after step (2).
Randomization slightly improves the convergence of the �rst s Ritz pairs [31]. Since it comes

with additional cost; it should be used only in the �rst few steps and when a Ritz pair is about to
converge.

3.3. Terminating the CG process

Theorem 3.4 gives a su�cient condition for the convergence of the trace minimization algorithm.
However, the asymptotic rate of convergence of the trace minimization algorithm will be a�ected
by the premature termination of the CG processes. Table 3:1 shows how di�erently the trace min-
imization algorithm behaves when the inner systems are solved inexactly. It is not clear how the
parameter should be chosen to avoid performing excessive CG iterations while maintaining the
asymptotic rate of convergence. In [35], the CG processes are terminated by a heuristic stopping
strategy.
Denote by d(l)k; i the approximate solution at the lth step of the CG process for the ith column of

Xk; and dk; i the exact solution. The heuristic stopping strategy in [35] can be outlined as follows:

1. From Theorem 2.2, it is reasonable to terminate the CG process for the ith column of �k when
the error

�(l)k; i = [(d
(l)
k; i − dk; i)TA(d(l)k; i − dk; i)]1=2;

is reduced by a factor of �i = �i=�s+1; called error reduction factor.
2. The quantity �(l)k; i can be estimated by

[(d(l)k; i − d(l+1)k; i)TA(d(l)k; i − d(l+1)k; i)]1=2;

which is readily available from the CG process.
3. The error reduction factor �i = �i=�s+1; 16i6s, can be estimated by �k; i = �k; i=�k; s+1. Since �k; s+1
is not available, �k−1; s is used instead and is �xed after a few steps because it will eventually
converge to �s rather than �s+1.

This strategy has worked well in practice. The last column of Table 1 shows the result obtained
with this stopping strategy.

4. Acceleration techniques

The algorithm discussed in Section 3 e�ectively reduces the work at each iteration step. It requires,
however, about the same number of outer iteration steps as the simultaneous iteration. For problems
in which the desired eigenvalues are poorly separated from the remaining part of the spectrum,
the algorithm converges too slowly. Like other inverse iteration schemes, the trace minimization

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 165

Table 2
The trace minimization algorithm with various shifting strategies

Safe shift Single shift Multiple shifts

#its A mults #its A mults #its A mults
46 4153 22 3619 18 3140

algorithm can be accelerated by shifting. Actually, the formulation of the trace minimization algorithm
makes it easier to incorporate shifts. For example, if eigenpairs (xi; �i); 16i6i0, have been accepted
and �i0¡�i0+1; �i0 can be used as a shift parameter for computing subsequent eigenpairs. Due to the
deation e�ect, the linear systems

[P(A− �i0B)P]dk; i = PAxk; i; X Tk Bdk; i = 0; i0 + 16i6s;

are consistent and can still be solved by the CG scheme. Moreover, the trace reduction property still
holds. The �rst column of Table 2 shows the result of the trace minimization scheme with such a
conservative shifting strategy, which we call safe shift. The performance is obviously improved over
that of the basic trace minimization algorithm shown in Table 1. In the following, we introduce two
more e�cient shifting techniques which improve further the performance of the trace minimization
algorithm.

4.1. Single shift

We know from Section 2 that global convergence of the trace minimization algorithm follows
from the monotonic reduction of the trace, which in turn depends on the positive de�niteness of
A. A simple and robust shifting strategy would be �nding a scalar � close to �1 from below and
replace A with A − �B in step (6) of the algorithm. After the �rst eigenvector is converged, �nd
another � close to �2 from below and continue until all the desired eigenvectors are obtained. If
both A and B are explicitly available, it is not hard to �nd a � satisfying �6�1. Gerschgorin disks
[13], for example, provide reliable bounds on the spectrum of (1.1). These bounds, however, are
usually too loose to be useful.
In the trace minimization algorithm, the subspace spanned by Xk converges to the invariant sub-

space Vs corresponding to the s smallest eigenvalues. If the subspace spanned by Xk is close enough
to Vs, a reasonable bound for the smallest eigenvalue can be obtained. More speci�cally, let Q be a
B-orthonormal matrix obtained by appending n− s columns to Xk , i.e., Q= (Xk; Yk) and QTBQ= In.
Then problem (1.1) is reduced to the standard eigenvalue problem

(QTAQ)u= �u: (4.1)

Since

QTAQ =
[
�k X Tk AYk

Y Tk AXk Y
T
k AYk

]
=
[
�k CTk
Ck Y Tk AYk

]
; (4.2)

166 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

by the Courant–Fischer theorem, we have

�1¿ �min

[
�k 0
0 Y Tk AYk

]
+ �min

[
0 CTk
Ck 0

]

¿min{�1; �1(Y Tk AYk)} − ||Ck ||2:
Similar to [29, p. 241], it is easy to derive ||Ck ||2 = ||Rk ||B−1 , in which Rk = AXk − BXk�k is the
residual matrix. If

�k;16�1(Y Tk AYk); (4.3)

we get

�1¿�k;1 − ||Rk ||B−1 : (4.4)

In particular, if (4.3) holds for the orthonormal complement of xk;1; we have

�1¿�k;1 − ||rk;1||B−1 : (4.5)

This heuristic bound for the smallest eigenvalue suggests the following shifting strategy (we denote
−∞ by �0):
If the �rst i0; i0¿0, eigenvalues have converged, use � =max{�i0 ; �k; i0+1 − ||rk; i0+1||B−1} as the
shift parameter. If �k; i0+1 lies in a cluster, replace rk; i0+1 by the residual matrix corresponding to
the cluster containing �k; i0+1.

4.2. Multiple dynamic shifts

In [35], the trace minimization algorithm is accelerated with a more aggressive shifting strategy.
At the beginning of the algorithm, a single shift is used for all the columns of Xk . As the algorithm
proceeds, multiple shifts are introduced dynamically and the CG process is modi�ed to handle
possible breakdown. This shifting strategy is motivated by the following theorem.

Theorem 4.1 (Parlett [29, p. 357]). For an arbitrary nonzero vector u and scalar �; there is an
eigenvalue � of (1:1) such that

|�− �|6||(A− �B)u||B−1=||Bu||B−1 :

We know from the Courant–Fischer theorem that the targeted eigenvalue �i is always below the
Ritz value �k; i. Further, from Theorem 4.1, if �k; i is already very close to the targeted eigenvalue �i,
then �i must lie in the interval [�k; i − ||rk; i||B−1 ; �k; i]. This observation leads to the following shifting
strategy for the trace minimization algorithm. At step k of the outer iteration, the shift parameters
�k; i; 16i6s, are determined by the following rules (Here, �0 =−∞ and the subscript k is dropped
for the sake of simplicity):

1. If the �rst i0; i0¿0; eigenvalues have converged, choose

�k; i0+1 =
{
�i0+1 if �i0+1 + ||ri0+1||B−16�i0+2 − ||ri0+2||B−1 ;
max{�i0+1 − ||ri0+1||B−1 ; �i0} otherwise:

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 167

2. For any other column j; i0 + 1¡j6p, choose the largest �l such that

�l ¡�j − ||rj||B−1

as the shift parameter �j. If no such �l exists, use �i0+1 instead.
3. Choose �i = �i if �i−1 has been used as the shift parameter for column i − 1 and

�i ¡�i+1 − ||ri+1||B−1 :

4. Use �i0+1 as the shift parameters for other columns if any.

This heuristic shifting strategy turns out to be quite e�cient and robust in practice. Table 2
shows the results for the shifting strategies discussed in this section. Since A is positive de�nite,
zero is a good shift parameter. In our experiments, however, we did not take advantage of this
fact and selected the shift parameters according to the strategies described above with B−1-norms
replaced by 2-norms. We see that both the number of outer iteration steps and the number of matrix
vector multiplications with A are reduced considerably by the multiple dynamic shifting strategy.
The number of matrix vector multiplications with B is not shown in the table because it is almost
identical to that with A.

4.3. Solving the inner systems

With multiple shifts, the inner systems in (2.9) become

[P(A− �k; iB)P]dk; i = PAxk; i; X Tk Bdk; i = 0; 16i6s (4.6)

with P= I−BXk(X Tk B2Xk)−1X Tk B. Clearly, the linear systems can be inde�nite, and the CG processes
for such systems are numerically unstable and may break down. A simple way to get around this
problem is terminating the CG process when a near breakdown is detected. In [35], the CG process
is also terminated when the error (xk; i − d(l)k; i)TA(x(l)k; i − d(l)k; i); increases by a small factor. This helps
maintain global convergence which is not guaranteed in the presence of shifting.
Due to the deation e�ect, the inner systems in (4.6) are usually not ill-conditioned when restricted

to the subspace {v ∈ Rn |Pv=v} unless some of the gap ratios (�s+1−�i)=(�n−�i), 16i6p, are small.
In this case, the inner systems have to be preconditioned. Suppose Â=CCT is a symmetric positive
de�nite preconditioner of A− �k; iB (for example, an approximate incomplete Cholesky factorization
of A− �k; iB). The ith inde�nite system in (4.6) can be written as

[P̃(P̃ − �k; iB̃)P̃]d̃k; i = P̃P̃x̃k; i; X̃
T
k B̃d̃k; i = 0; (4.7)

with

Ã= C−1AC−T; B̃= C−1BC−T; d̃k; i = CTdk; i; X̃ k = CTXk; x̃k; i = CTxk; i;

and

P̃ = I − B̃X̃ k(X̃ Tk B̃
2
X̃ k)−1X̃

T
k B̃:

Since it is usually di�cult to construct a symmetric positive-de�nite preconditioner for a symmetric
inde�nite matrix, we suggest that a �xed preconditioner be used for all the matrices A− �k; iB.

168 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

In the presence of shifting, the asymptotic error reduction factor for the ith Ritz vector becomes
(�i − �k; i)=(�s+1 − �k; i). As a consequence, the CG process is now terminated when the error

�(l)k; i = [(d
(l)
k; i − dk; i)T(A− �k; iB)(d(l)k; i − dk; i)]1=2

is reduced by a factor of

�i =
{
(�k; i − �k; i)=(�k; s+1 − �k; i); �k; i 6= �k; i;
(�k−1; i − �k; i)=(�k; s+1 − �k; i); �k; i = �k; i (4.8)

and �k; s+1 is estimated as in Section 3.3. In practice, we have terminated the CG process when the
2-norm of the residual is reduced by a factor of �i.

5. A Davidson-type generalization

The shifting strategies described in Section 4 improve the performance of the trace minimization
algorithm considerably. Although the randomization technique, the shifting strategy, and the roundo�
error actually make the algorithm surprisingly robust for a variety of problems, further measures to
guard against unstable convergence are necessary for problems in which the desired eigenvalues
are clustered. A natural way to maintain stable convergence is by using expanding subspaces, with
which the trace reduction property is automatically maintained.
The best-known method that utilizes expanding subspaces is that of Lanczos. It uses the Krylov

subspaces to compute an approximation of the desired eigenpairs, usually the largest. This idea
was adopted by Davidson, in combination with the simultaneous coordinate relaxation method, to
obtain what he called the “compromise method” [10], known as Davidson’s method today. In this
section, we generalize the trace minimization algorithm described in the previous sections by casting
it into the framework of the Davidson method. We start by the Jacobi–Davidson method, explore
its connection to the trace minimization method, and develop a Davidson-type trace minimization
algorithm.

5.1. The Jacobi–Davidson method

As was mentioned in Section 1, the Jacobi–Davidson scheme is a modi�cation of the Davidson
method. It uses the same ideas presented in the trace minimization method to compute a correction
term to a previous computed Ritz pair, but with a di�erent objective. In the Jacobi–Davidson method,
for a given Ritz pair (xi; �i) with xTi Bxi = 1, a correction vector di is sought such that

A(xi + di) = �iB(xi + di); xTi Bdi = 0; (5.1)

where �i is the eigenvalue targeted by �i. Since the targeted eigenvalue �i is not available during
the iteration, it is replaced by an approximation �i. Ignoring high-order terms in (5.1), we get[

A− �iB Bxi
xTi B 0

] [
di
li

]
=
[−ri
0

]
; (5.2)

where ri=Axi− �iBxi is the residual vector associated with the Ritz pair (xi; �i). Note that replacing
ri with Axi does not a�ect di. In [37,38], the Ritz value �i is used in place of �i at each step. A
block Jacobi–Davidson algorithm, described in [37], is outlined as follows:

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 169

Algorithm 3. The block Jacobi–Davidson algorithm.
Choose a block size s¿p and an n× s matrix V1 such that V T1 BV1 = Is.
For k = 1; 2; : : : until convergence, do
1. Compute Wk = AVk and the interaction matrix Hk = V Tk Wk .
2. Compute the s smallest eigenpairs (Yk;�k) of Hk . The eigenvalues are arranged in ascending
order and the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Xk = VkYk .
4. Compute the residuals Rk =WkYk − BXk�k .
5. Test for convergence.
6. for 16i6s, solve the inde�nite system[

A− �iB Bxk; i
xTk; iB 0

] [
dk; i
lk; i

]
=
[
rk; i
0

]
; (5.3)

or preferably its projected form

[Pi(A− �k; iB)Pi]dk; i = Pirk; i; xTk; iBdk; i = 0; (5.4)

approximately, where Pi= I−Bxk; i(xTk; iB2xk; i)−1xTk; iB is an orthogonal projector, and rk; i=Axk; i−
�k; iBxk; i is the residual corresponding to the Ritz pair (xk; i; �k; i).

7. If dim(Vk)6m− s, then
Vk+1 =ModGSB(Vk; �k);

else

Vk+1 =ModGSB(Xk; �k):

Here, ModGSB stands for the Gram–Schmidt process with reorthogonalization [9] with respect
to B-inner products, i.e. (x; y) = xTBy.

End for

This algorithm can be regarded as a trace minimization algorithm with expanding subspaces. The
performance of the block Jacobi–Davidson algorithm depends on how good the initial guess is and
how e�ciently and accurately the inner system (5.3) is solved.
If the right-hand side of (5.3) is taken as the approximate solution to the inner system (5.3),

the algorithm is reduced to the Lanczos method. If the inner system (5.3) is solved to high-order
accuracy, it is reduced to simultaneous Rayleigh quotient iteration (RQI, see [28]) with expanding
subspaces, which converges cubically. If the inner system (5.3) is solved crudely, the performance
of the algorithm is in-between. Cubic convergence has been observed for some test problems [38].
In practice, however, the stage of cubic convergence is often reached after many iterations. Fig. 1
shows the convergence history of the block Jacobi–Davidson algorithm for the sample problem (1.3),
where four eigenpairs are computed with m=20 and only the errors in the �rst Ritz value are plotted.
The algorithm always “stagnates” at the beginning and increasing the number of iteration steps for
the inner systems makes little di�erence or, in some cases, even derails convergence to the desired
eigenpairs. This can be explained by the following. On the one hand, the Ritz shifting strategy in
the block Jacobi–Davidson algorithm forces the algorithm to converge to eigenvalues closest to the
Ritz values that are often far away from the desired eigenvalues at the beginning of the iteration. On

170 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

Fig. 1. The block Jacobi–Davidson algorithm.

the other hand, since the subspace is expanding, the Ritz values are decreasing and the algorithm is
forced to converge to the smallest eigenpairs.
Another problem with the block Jacobi–Davidson algorithm is ill-conditioning. At the end of

the Jacobi–Davidson iteration, when a Ritz value approaches a multiple eigenvalue or a cluster
of eigenvalues, the inner system (5.4) becomes poorly conditioned. This makes it di�cult for an
iterative solver to compute even a crude approximation to the solution of the inner system.
All these problems can be partially solved by the techniques developed in the trace minimization

method, i.e., the multiple dynamic shifting strategy, the implicit deation technique (dk; i is required
to be B-orthogonal to all the Ritz vectors obtained in the previous iteration step), and the dynamic
stopping strategy. We call the modi�ed algorithm the Davidson-type trace minimization algorithm
[34].

5.2. The Davidson-type trace minimization algorithm

Let s¿p be the block size, m¿s be a given integer that limits the dimension of the subspaces.
The Davidson-type trace minimization algorithm is as follows.

Algorithm 4. The Davidson-type trace minimization algorithm.
Choose a block size s¿p and an n× s matrix V1 such that V T1 BV1 = Is.
For k = 1; 2; : : : until convergence, do
1. Compute Wk = AVk and the interaction matrix Hk = V Tk Wk .
2. Compute the s smallest eigenpairs (Yk;�k) of Hk . The eigenvalues are arranged in ascending
order and the eigenvectors are chosen to be orthogonal.

3. Compute the corresponding Ritz vectors Xk = VkYk .
4. Compute the residuals Rk =WkYk − BXk�k .
5. Test for convergence.

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 171

Fig. 2. The Davidson-type trace minimization algorithm.

6. For 16i6s, solve the inde�nite system

[P(A− �k; iB)P]dk; i = Prk; i; X Tk Bdk; i = 0; (5.5)

to a certain accuracy determined by the stopping criterion described in Section 4.3. The shift
parameters �k; i; 16i6s, are determined according to the dynamic shifting strategy described
in Section 4.2.

7. If dim(Vk)6m− s; then
Vk+1 =ModGSB(Vk; �k)

else

Vk+1 =ModGSB(Xk; �k):

End for

The orthogonality requirement d(k)i ⊥B Xk is essential in the original trace minimization algorithm
for maintaining the trace reduction property (2.7). In the current algorithm, it appears primarily as an
implicit deation technique. A more e�cient approach is to require d(k)i to be B-orthogonal only to
“good” Ritz vectors. Fig. 2 displays the convergence history of the Davidson-type trace minimization
algorithm for the sample problem (1.3) where d(k)i is only required to be B-orthogonal to xk; i. The
number of outer iterations is decreased compared to the trace minimization algorithm in Section
4, and compared to the block Jacobi–Davidson algorithm: 15 iterations vs. 18 and 22 iterations,
respectively. Moreover, in the block Jacobi–Davidson algorithm, the number of outer iterations cannot
be reduced further when the number of iterations for the inner systems reaches 30. On the contrary,
in the Davidson-type trace minimization algorithm, the number of outer iterations decreases steadily
even when the number of iterations for the inner systems reaches 50. Note that reducing the number
of outer iterations is important in a parallel or distributed computing environment.

172 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

Table 3
Numerical results for the test problem in [6] with 4 processors

Inner iterations Block Jacobi–Davidson Davidson-type Tracemin

#its A mults Time #its A mults Time

10 208 9368 28.5 216 9728 29.8
20 103 8760 19.2 76 6468 14.8
40 69 11392 19.0 34 5616 9.3
60 54 13236 21.0 27 6564 10.1
80 48 15608 22.0 24 7808 11.3
100 57 23065 31.3 20 8108 11.6
DS(MAX=120) 33 9653 17.0 23 7364 11.2

5.3. Numerical results

The block Jacobi–Davidson algorithm and the Davidson-type trace minimization algorithm have
been coded in C with MPI [18] and PETSc [39]. Numerical experiments have been done on a variety
of problems. In this section, we present some of the numerical results obtained on the SGI=Origin
2000.
We �rst show the results for an example used in [6]. This is a standard eigenvalue problem. The

matrix A is de�ned by

aij =

i if i = j;
0:5 if j = i + 1 or j = i − 1;
0:5 if (i; j) ∈ {(1; n); (n; 1)};
0 otherwise:

The size of the problem is n=10; 000. We compute the four smallest eigenpairs with block size s=4
and maximum subspace size m=20. For both algorithms, the inner systems are solved approximately
by the CG scheme. The eigenpairs are accepted when the relative residuals are less than 10−10.
In Table 3, we list the number of outer iterations, the number of matrix vector multiplications with

A; and the execution time (in seconds) as functions of the number of inner iteration steps. We see
that the performance of both algorithms are very close if the inner systems are solved crudely. The
di�erence becomes clear when we increase the number of inner iteration steps. The dynamic shifting
strategy accelerates the algorithm signi�cantly. When the number of inner iteration steps reaches 40,
the number of outer iterations is almost half that of the Ritz shifting strategy. When the number of
inner iteration steps reaches 80, the number of outer iterations starts increasing for the block Jacobi–
Davidson algorithm, but continues to decrease for the Davidson-type trace minimization algorithm.
There are plenty of examples for which the block Jacobi–Davidson algorithm actually converges to
wrong eigenpairs when the inner systems are solved to high accuracy. The last row of the table
shows the result with the dynamic stopping strategy, where the maximum number of inner iteration
steps is set to 120. We see that the dynamic shifting strategy improves the performance of the
block Jacobi–Davidson algorithm dramatically. In our experiments, the starting subspaces for both
algorithms are identical and were chosen randomly. The results clearly show that the success of the
block Jacobi–Davidson algorithm depends on good starting spaces.

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 173

Table 4
Numerical results for problems from the Harwell–Boeing collection with four processors

Problem Maximum Block Jacobi–Davidson Davidson-type Tracemin

inner iterations #its A mults Time #its A mults Time

BCSST08 40 34 3954 4.7 10 759 0.8
BCSST09 40 15 1951 2.2 15 1947 2.2
BCSST11 100 90 30990 40.5 54 20166 22.4
BCSST21 100 40 10712 35.1 39 11220 36.2
BCSST26 100 60 21915 32.2 39 14102 19.6

In Table 4, we show the results obtained for a few generalized eigenvalue problems in the Harwell–
Boeing collection. These problems are di�cult because the gap ratios for the smallest eigenvalues are
extremely small due to the huge span of the spectra. Without preconditioning, none of these problems
can be solved with a reasonable cost. In our experiments, we use the incomplete Cholesky factor-
ization (IC(0)) of A as the preconditioner for all the matrices of the form A–�B. The Davidson-type
trace minimization algorithm works better than the block Jacobi–Davidson algorithm for three of the
�ve problems. For the other two, the performance for both algorithms is similar. Both the shifting
strategy and the stopping strategy do not work very well for these two problems because the 2-norms
of the residuals are too large to be useful in selecting the shifting parameters.
In all the experiments, for both algorithms, the inner systems are solved by the CG scheme that is

terminated when either the speci�ed condition is met or an abnormal case is detected. It is surprising
that the CG scheme works well considering that the inner systems for both algorithms are inde�nite.
The performance with other solvers for the inner systems are similar to that with the CG scheme.
For the �rst problem in Table 4, however, if the inner systems are solved by GMRES(20) with
IC(0) pre-conditioning, the block Jacobi–Davidson algorithm returns

84:78615951; 84:78643355; 84:78643355; 85:53681115

while the smallest four eigenvalues are

6:90070261; 18:14202961; 18:14236644; 18:14236645;

which were correctly returned by the Davidson-type trace minimization algorithm using the same
inner system solver. This indicates that the Davidson-type trace minimization algorithm is also more
robust than the block Jacobi–Davidson algorithm for some problems.

6. Conclusions

In this paper, we presented a comprehensive overview of the trace minimization scheme, its
variants, and comparisons with the block Jacobi–Davidson scheme. We demonstrated that, compared
to a variant of the trace minimization scheme, the block Jacobi–Davidson algorithm depends more
on a good initial subspace due to its choice of the Ritz values as the shift parameters. We showed
that the Davidson-type trace minimization scheme can alleviate this dependence by adopting the
dynamic shifting strategy and the stopping criterion developed for the original trace minimization
algorithm. This variant of the trace minimization algorithm is not only more e�cient but also more

174 A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175

robust than the block Jacobi–Davidson algorithm for symmetric generalized eigenvalue problems.
Further research is needed, however, on how one can optimally precondition the inde�nite systems
that arise in both the Davidson-type trace minimization algorithm and the block Jacobi–Davidson
algorithm. Our experience indicates that obtaining a positive-de�nite pre-conditioner for A− �B, via
an approximate Cholesky factorization that involves boosting of the diagonal elements, is a viable
approach.

References

[1] K.J. Bathe, E.L. Wilson, Large eigenvalue problems in dynamic analysis, ASCE, J. Eng. Mech. Div. 98 (1972)
1471–1485.

[2] K.J. Bathe, E.L. Wilson, Solution methods for eigenvalue problems in structural mechanics, Internat. J. Numer.
Methods Engrg 6 (1973) 213–226.

[3] F.L. Bauer, Das Verfahren der Treppeniteration und Verwandte Verfahren zur L�osung Algebraischer
Eigenwertprobleme, Z. Angew. Math. Phys. 8 (1957) 214–235.

[4] E.F. Beckenbach, R. Bellman, Inequalities, Springer, New York, 1965.
[5] M. Clint, A. Jennings, The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous

iteration, Comput. J. 13 (1970) 76–80.
[6] M. Crouzeix, B. Philippe, M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15 (1994) 62–76.
[7] J. Cullum, R.A. Willoughby, Lanczos and the computation in speci�ed intervals of the spectrum of large, sparse

real symmetric matrices, in: I.S. Du�, G.W. Stewart (Eds.), Sparse Matrix Proceedings 1978, SIAM Publications,
Philadelphia, PA, 1979.

[8] J. Cullum, R.A. Willoughby, Computing eigenvalues of very large symmetric matrices — an implementation of a
Lanczos algorithm with no reorthogonalization, J. Comput. Phys. 44 (1984) 329–358.

[9] J. Daniel, W.B. Gragg, L. Kaufman, G.W. Stewart, Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization, Math. Comp. 33 (1976) 772–795.

[10] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large
real-symmetric matrices, J. Comput. Phys. 17 (1975) 817–825.

[11] T. Ericsson, A. Ruhe, The spectral transformation Lanczos method for the solution of large sparse generalized
symmetric eigenvalue problems, Math. Comp. 35 (1980) 1251–1268.

[12] D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, Jacobi–Davidson style QR and QZ algorithms for the reduction
of matrix pencils, SIAM J. Sci. Comput. 20 (1999) 94–125.

[13] A. Gerschgorin, �Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6 (1931)
749–754.

[14] G.H. Golub, R. Underwood, The block Lanczos method for computing eigenvalues, in: J.R. Rice (Ed.), Mathematical
Software III, Academic Press, New York, 1977, pp. 361–377.

[15] G.H. Golub, C.F. van Loan, Matrix Computation, 3rd Edition, Johns Hopkins University Press, Baltimore, MD,
1993.

[16] R.G. Grimes, J.G. Lewis, H.D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric generalized
eigenproblems, SIAM J. Matrix Anal. Appl. 15 (1994) 228–272.

[17] R.C. Grimm, J.M. Greene, J.L. Johnson, Computation of the magnetohydrodynamic spectrum in axisymmetric toroidal
con�nement systems, in: Methods of Computational Physics 16, Academic Press, New York, 1976.

[18] W.D. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface,
MIT Press, Boston, MA, 1994.

[19] R. Gruber, Finite hybrid elements to compute the ideal magnetohydrodynamic spectrum of an axisymmetric plasma,
J. Comput. Phys. 26 (1978) 379–389.

[20] C.G.J. Jacobi, �Uber ein leichtes Verfahren die in der Theorie der S�acul�arst�orungen vorkommenden Gleichungen
numerisch aufzul�osen, J. Reine Angew. Math 30 (1846) 51–94.

[21] T.Z. Kalamboukis, A Lanczos-type algorithm for the generalized eigenvalue problem Ax = �Bx, J. Comput. Phys.
53 (1984) 82–89.

A. Sameh, Z. Tong / Journal of Computational and Applied Mathematics 123 (2000) 155–175 175

[22] L.V. Kantorovi�c, Funkcional’nyi analiz i prikladnaja mathematika, Uspekhi Mat. Nauk 3 (1948) 9–185.
[23] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear di�erential and integral operators,

J. Res. Nat. Bur. Stand. Sect. B 45 (1950) 225–280.
[24] A.A. Levin, On a method for the solution of a partial eigenvalue problem, USSR J. Comput. Math. Math. Phys. 5

(1965) 206–212.
[25] B. Liu, The simultaneous expansion for the solution of several of the lowest eigenvalues and corresponding

eigenvectors of large real-symmetric matrices, in: C. Moler, I. Shavitt (Eds.), Numerical Algorithms in Chemistry:
Algebraic Method, Lawrence Berkeley Laboratory, University of California, California, 1978, pp. 49–53.

[26] R.B. Morgan, D.S. Scott, Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric
matrices, SIAM J. Sci. Statist. Comput. 7 (1986) 817–825.

[27] C.C. Paige, The computation of eigenvalues of very large sparse matrices, Ph. D. Thesis, University of London,
1971.

[28] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cli�s, NJ, 1980.
[29] B.N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
[30] B.N. Parlett, D.S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comp. 33 (1979) 217–238.
[31] H. Rutishauser, Computational aspects of F.L. Bauer’s simultaneous iteration method, Numer. Math. 13 (1969) 4–13.
[32] H. Rutishauser, Simultaneous iteration method for symmetric matrices, Numer. Math. 13 (1970) 205–223.
[33] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York, 1992.
[34] A. Sameh, Z. Tong, Trace minimization and Jacobi–Davidson-type algorithms for large symmetric eigenvalue

problems, Tech. Rep. CS-98, Purdue University, West Lafayette, Indiana, 1998.
[35] A. Sameh, J.A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM J. Numer.

Anal. 19 (1982) 1243–1259.
[36] H.D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp. 42 (1984) 115–142.
[37] G.L.G. Sleijpen, A.G.L. Booten, D.R. Fokkema, H.A. van der Vorst, Jacobi–Davidson type methods for generalized

eigenproblems and polynomial eigenproblems, BIT 36 (1996) 595–633.
[38] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM J.

Matrix Anal. Appl. 17 (1996) 401–425.
[39] B.F. Smith, W.D. Gropp, L.C. McInnes, S. Balay, Petsc 2.0 users manual, Tech. Rep. ANL-95=11, Argonne National

Laboratory, Chicago, IL, 1995.
[40] A. Stathopoulos, Y. Saad, C.F. Fischer, Robust preconditioning of large, sparse, symmetric eigenvalue problems, J.

Comput. Appl. Math. (1995) 197–215.
[41] G.W. Stewart, Accelerating the orthogonal iteration for the eigenvalues of a hermitian matrix, Numer. Math. 13

(1969) 362–376.
[42] G.W. Stewart, A bibliographical tour of the large, sparse generalized eigenvalue problems, in: J.R. Banch, D.J. Rose

(Eds.), Sparse Matrix Computations, Academic Press, New York, 1976, pp. 113–130.
[43] H.A. van der Vorst, G.H. Golub, 150 years old and still alive: Eigenproblems, in: I.S. Du�, G.A. Watson (Eds.),

The State of the Art in Numerical Analysis, Clarendon Press, Oxford, 1997, pp. 93–119.
[44] K. Wu, Preconditioning techniques for large eigenvalue problems, Ph. D. Thesis, University of Minnesota,

Minneapolis, MN, 1997.

Journal of Computational and Applied Mathematics 123 (2000) 177–199
www.elsevier.nl/locate/cam

Successive overrelaxation (SOR) and related methods(

A. Hadjidimos ∗
Department of Mathematics, University of Crete, GR-714 09 Heraklion, Greece

Received 18 May 1999; received in revised form 19 September 1999

Abstract

Covering the last half of the 20th century, we present some of the basic and well-known results for the SOR theory
and related methods as well as some that are not as well known. Most of the earlier results can be found in the excellent
books by Varga (Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962) Young (Iterative Solution of Large
Linear systems, Academic Press, New York, 1971) and Berman and Plemmons (Nonnegative Matrices in the Mathematical
Sciences, SIAM, Philadelphia, PA, 1994) while some of the most recent ones are given in the bibliography of this paper.
In this survey, both the point and the block SOR methods are considered for the solution of a linear system of the form
Ax = b, where A ∈ Cn;n and b ∈ Cn \ {0}: Some general results concerning the SOR and related methods are given and
also some more speci�c ones in cases where A happens to possess some further property, e.g., positive de�niteness, L-,
M -, H -matrix property, p-cyclic consistently ordered property etc. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F10; CR Category: 5.14

Keywords: Iterative methods; Jacobi method; Gauss–Seidel method; SOR methods

1. Introduction and Preliminaries

For the numerical solution of a large nonsingular linear system

Ax = b; A ∈ Cn;n; b ∈ Cn \ {0}; (1.1)

we consider iterative methods based on a splitting of the matrix A (see, e.g. [83,93] or [3]). Namely,
we write

A=M − N (1.2)

(This work is dedicated to Professors David M. Young and Richard S. Varga on their 75th and 70th birthday,
respectively.

∗ Tel.: 30-81-393865; fax: 30-81-393881.
E-mail address: hadjidim@math.uch.gr (A. Hadjidimos).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00403-9

178 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

where M; the preconditioner, or preconditioning matrix, is taken to be invertible and cheap to invert,
meaning that a linear system with matrix coe�cient M is much more economical to solve than
(1.1). Based on (1.2), (1.1) can be written in the �xed-point form

x = Tx + c; T :=M−1N; c :=M−1b; (1.3)

which yields the following iterative scheme for the solution of (1.1):

x(m+1) = Tx(m) + c; m= 0; 1; 2; : : : ; and x(0) ∈ Cn arbitrary: (1.4)

A su�cient and necessary condition for (1.4) to converge, to the solution of (1.1), is �(T)¡ 1;
where �(:) denotes spectral radius, while a su�cient condition for convergence is ‖T‖¡ 1, where
‖:‖ denotes matrix norm induced by a vector norm (see, e.g. [83,93,3]).
To derive the classical iterative methods one writes A= D− L− U , with D= diag(A); assuming

det(D) 6= 0, and L strictly lower and U strictly upper triangular matrices, respectively. Thus, the
Jacobi iterative method (M ≡ D) is de�ned by

x(m+1) = D−1(L+ U)x(m) + D−1b; (1.5)

the Gauss–Seidel iterative method (M ≡ D − L) by
x(m+1) = (D − L)−1Ux(m) + (D − L)−1b (1.6)

and the Successive Overrelaxation (SOR) iterative method (M ≡ (1=!)(D − !L)) by
x(m+1) =L!x(m) + c!; L! := (D − !L)−1[(1− !)D + !U]; c! :=!(D − !L)−1b: (1.7)

In (1.7), ! ∈ C \ {0} is the relaxation factor (or overrelaxation parameter). For ! = 1 the SOR
becomes the Gauss–Seidel method.
The above three methods are called point methods to distinguish them from the block methods.

For the latter, consider a partitioning of A in the following block form:

A=

A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App

 ; (1.8)

where Aii ∈Cni ; ni ; i = 1(1)p; and ∑p
i=1 ni = n: If we de�ne D = diag(A11; A22; : : : ; App); assuming

det(Aii) 6= 0; i = 1(1)p; set A = D − L − U with L and U being strictly lower and strictly upper
triangular matrices, respectively, then the block Jacobi, the block Gauss–Seidel and the block SOR
methods associated with the partitioning (1.8) of A are the iterative methods de�ned by precisely
the same iterative schemes as their point counterparts in (1.5)–(1.7), respectively.

2. Successive overrelaxation (SOR) method

The SOR method seems to have appeared in the 1930s and is mentioned in [79]. However,
formally its theory was established almost simultaneously by Frankel [16] and Young [90].
In the development of the SOR theory one seeks values of ! ∈ C\{0} for which the SOR method

converges, the set of which de�nes the region of convergence, and, if possible, the best value of

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 179

!, !b, for which the convergence is asymptotically optimal, namely �(L!b) = min!∈C\{0}�(L!):
To �nd regions of convergence is a problem generally much easier than to determine !b. In either
case, however, one assumes that some information regarding the spectrum of the associated Jacobi
iteration matrix J; �(J); is available. This information comes mostly from the properties of the
matrix A (and the partitioning considered).
The only property of the SOR method that does not depend on properties of A; except for those

needed to de�ne the method, is the one below due to Kahan [46].

Theorem 2.1 (Kahan). A necessary condition for the SOR method to converge is |!−1|¡ 1: (For
! ∈ R this condition becomes ! ∈ (0; 2):)
Note: From now on it will be assumed that ! ∈ R unless otherwise speci�ed.

2.1. Hermitian matrices

De�nition 2.2. A matrix A∈Cn;n is said to be Hermitian if and only if (i�) AH = A; where the
superscript H denotes complex conjugate transpose. (A real Hermitian matrix is a real symmetric
matrix and there holds AT = A; where T denotes transpose.)

De�nition 2.3. An Hermitian matrix A∈Cn;n is said to be positive de�nite i� xHAx¿ 0; ∀x ∈
Cn \ {0}: (For A real symmetric, the condition becomes xTAx¿ 0; ∀x ∈ Rn \ {0}:)
A well-known result due to Ostrowski, who extended a previous one for the Gauss–Seidel method

due to Reich, is given in [83]. Varga [84] gave a di�erent proof and found the best value of !; !b:

Theorem 2.4 (Reich–Ostrowski–Varga). Let A=D−E−EH ∈ Cn;n be Hermitian; D be Hermitian
and positive de�nite; and det(D−!E) 6= 0; ∀! ∈ (0; 2): Then; �(L!)¡ 1 i� A is positive de�nite
and ! ∈ (0; 2): (Note: Notice that except for the restrictions in the statement the matrices D; E ∈
Cn;n must satisfy; they can be any matrices!)

Note: It is worth mentioning that there is a form of the theorem due to Kuznetsov [53] that
applies also in singular cases.

2.2. L-, M - and H -matrices

Notation. Let A; B∈Rn;n. If aij¿bij (aij ¿bij); i; j = 1(1)n; we write A¿B (A¿B): The same no-
tation applies to vectors x; y ∈ Rn:

De�nition 2.5. If A∈Rn;n satis�es A¿0 (¿ 0) then it is said to be nonnegative (positive). The
same terminology applies to vectors x∈Rn:
Notation. Let A ∈ Cn;n: Then |A| denotes the matrix whose elements are the moduli of the elements
of A. The same notation applies to vectors x ∈ Cn:
From the Perron–Frobenius theory for nonnegative matrices (see [83,93] or [3]) the following

statement holds.

180 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

Theorem 2.6. Let A ∈ Cn;n and B ∈ Rn;n satisfy 06|A|6B; then 06�(A)6�(|A|)6�(B):

De�nition 2.7. A matrix A ∈ Rn;n is said to be an L-matrix i� aii ¿ 0; i = 1(1)n; and aij60; i 6=
j = 1(1)n:

De�nition 2.8. A matrix A ∈ Rn;n is said to be an M -matrix i� aij60; i 6= j=1(1)n; A is nonsingular
and A−1¿0:

Remark. It is pointed out that in [3] 50 equivalent conditions for a matrix A ∈ Rn;n; with aij60; i 6=
j = 1(1)n; to be an M -matrix are given!

De�nition 2.9. A matrix A ∈ Cn;n is said to be an H -matrix i� its companion matrix, that is the
matrix M(A) with elements mii = |aii|; i = 1(1)n; and mij =−|aij|; i 6= j = 1(1)n; is an M -matrix.

De�nition 2.10. A splitting (1.2) of a nonsingular matrix A ∈ Rn;n is said to be regular if M−1¿0
and N¿0. (Varga proved among others that the iterative scheme (1.4) based on a regular splitting
is convergent; he also made comparisons of the spectral radii corresponding to two di�erent regular
splittings of the same matrix A (see [83]).)

De�nition 2.11. A splitting (1.2) of a nonsingular matrix A ∈ Rn;n is said to be weak regular if
M−1¿0 and M−1N¿0: (As Neumann and Plemmons proved, see, e.g. [3], this de�nition leads to
some results very similar to those of the regular splittings.)

A theorem connecting spectral radii of the Jacobi and the Gauss–Seidel iteration matrices associated
with an L-matrix A was given originally by Stein and Rosenberg. In Young [93] a form of it that
includes the spectral radius of the SOR iteration matrix is given below. Its proof is mainly based
on the Perron–Frobenius theory.

Theorem 2.12. If A ∈ Rn;n is an L-matrix and ! ∈ (0; 1]; then:
(a) �(J)¡ 1 i� �(L!)¡ 1:
(b) �(J)¡ 1 i� A is an M -matrix; if �(J)¡ 1 then �(L!)61− !+ !�(J):
(c) If �(J)¿1 then �(L!)¿1− !+ !�(J)¿1:

Notes: (i) The original form of Stein–Rosenberg theorem restricts to !=1 and gives four mutually
exclusive relations:

(a) 0 = �(J) = �(L1); (b) 0¡�(L1)¡�(J)¡ 1;

(c) 1 = �(J) = �(L1); (d) 1¡�(J)¡�(L1):
(2.1)

(ii) Buoni and Varga [5,6] and also Buoni et al. [4] generalized the original Stein–Rosenberg
theorem in another direction than that of Theorem 2.12 by assuming that A ∈ Cn;n, D, L and U are
any matrices with D−1L and D−1U strictly lower and strictly upper triangular matrices, respectively,
and Rn;n 3 J = D−1(L+ U)¿0:

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 181

In [93] a theorem that gives an interval of ! for which the SOR method converges for M -matrices
A is based on the previous statement and on the theory of regular splittings is stated.

Theorem 2.13. If A ∈ Rn;n is an M -matrix and if ! ∈ (0; 2=(1 + �(J))) then �(L!)¡ 1:

The following is a statement extending the previous one to H -matrices.

Theorem 2.14. If A ∈ Cn;n is an H -matrix and if ! ∈ (0; 2=(1 + �(|J |))) then �(L!)¡ 1:

2.3. 2- and p-cyclic consistently ordered matrices

There is a class of matrices for which the investigation for the optimal value of ! leads to the
most beautiful theory that has been developed for the last 50 years and which is still going on. It
is associated with the class of p-cyclic consistently ordered matrices. Such matrices naturally arise,
e.g., for p= 2 in the discretization of second-order elliptic or parabolic PDEs by �nite di�erences,
�nite element or collocation methods, for p = 3 in the case of large-scale least-squares problems,
and for any p¿2 in the case of Markov chain analysis.

De�nition 2.15. A matrix A ∈ Cn;n possesses Young’s “property A” if there exists a permutation
matrix P such that

PAPT =
[
D1 B
C D2

]
; (2.2)

where D1; D2 are nonsingular diagonal matrices not necessarily of the same order.

A special case of Young’s “property A” is what Varga calls two-cyclic consistently ordered
property [83].

De�nition 2.16. A matrix A ∈ Cn;n is said to be two-cyclic consistently ordered if �(D−1(�L +
(1=a)U)) is independent of � ∈ C \ {0}:

Among others, matrices that possess both Young’s “property A” and Varga’s “two-cyclic con-
sistently ordered property” are the tridiagonal matrices, with nonzero diagonal elements, and the
matrices that have already form (2.2).
For two-cyclic consistently ordered matrices A, Young discovered [90,91] that the eigenvalues

� and � of the Jacobi and the SOR iteration matrices, respectively, associated with A satisfy the
functional relationship

(�+ !− 1)2 = !2�2�: (2.3)

He also found that if J = D−1(L + U), the eigenvalues of J 2 are nonnegative and �(J)¡ 1; then
there exists an optimal value of !, !b, such that

!b =
2

1 + (1− �2(J))1=2 ; �(L!b) = !b − 1 (¡�(L!) for all ! 6= !b): (2.4)

(Note: For more details see [93].)

182 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

Varga generalized the concept of two-cyclic consistently ordered matrices to what he called (block)
p-cyclic consistently ordered.

De�nition 2.17. A matrix A ∈ Cn;n in the block form (1.8) is said to be (block) p-cyclic consistently
ordered if �(D−1(�L+ (1=�p−1)U)) is independent of � ∈ C \ {0}:
The best representative of such a block partitioned matrix will be the following:

A=

A11 0 0 · · · A1p
A21 A22 0 · · · 0
0 A32 A33 · · · 0
...

...
.

...
0 0 · · · Ap;p−1 App

 : (2.5)

Remark. The spectrum �(J); of the eigenvalues of the (block) Jacobi iteration matrix associated
with a p-cyclic consistently ordered matrix A (2.5), which Varga calls weakly cyclic of index p [83],
presents a p-cyclic symmetry about the origin. That is, with each eigenvalue � ∈ �(J) \ {0} there
are another p− 1 eigenvalues of J; of the same multiplicity as that of �; given by the expressions
� exp(i(2�k)=p); k = 1(1)p− 1:

Notation. From now on the Jacobi iteration matrix associated with a block p-cyclic consistently
ordered matrix will be denoted by Jp:

For such matrices Varga [82] extended Young’s results (2.3)–(2.4) to any p¿3; namely

(�+ !− 1)p = !p�p�p−1: (2.6)

He also proved that if the pth powers of the eigenvalues � ∈ �(Jp) are real nonnegative and
�(Jp)¡ 1; then there exists an optimal value of !, !b; which is the unique positive real root in
(1; p=(p− 1)) of the equation

(
�(Jp)!b

)p = pp

(p− 1)p−1 (!b − 1); (2.7)

which is such that

�(L!b) = (p− 1)(!b − 1) (¡�(L!) for all ! 6= !b): (2.8)

Similar optimal results for �(Jpp) nonpositive have been obtained for p = 2 by Kredell [52] and
Niethammer [66], for p= 3 by Niethammer et al. [67] and for any p¿3 by Wild and Niethammer
[88] and also by Galanis et al. [18].
In the analyses given in [83,93,52,66,67,88], the regions of convergence, in all the previous cases

where optimal !’s were obtained, are also determined. In the following statement [3] the optimal
values and the regions of convergence are given.

Theorem 2.18. Let the matrix A ∈ Cn;n be p-cyclic consistently ordered and suppose that all the
eigenvalues of Jpp are nonnegative (nonpositive). Let s= 1 (−1) if the signs of the eigenvalues of

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 183

Jpp are nonnegative (nonpositive). If

�(Jp)¡
p− 1− s
p− 2 ; (2.9)

then the regions of convergence of the SOR method (�(L!)¡ 1) are

For s= 1; ! ∈
(
0;

p
p− 1

)
and for s=−1; ! ∈

(
p− 2
p− 1 ;

2
1 + �(Jp)

)
: (2.10)

The optimal relaxation factor !b is the unique real positive root !b ∈ ((2p−3+s)=(2(p−1)); (2p−
1 + s)=(2(p− 1))) of the equation

(�(Jp)!b)p = spp(p− 1)1−p(!b − 1) (2.11)

and the optimal SOR spectral radius is given by

�(L!b) = s(p− 1)(!b − 1) (¡�(L!) for all ! 6= !b): (2.12)

Note: For p= 2; (p− 2)=(p− 2) and p=(p− 2) should be interpreted as 1 and ∞, respectively.
In passing we mention that the only case in which a complex optimal !b has been determined

[52] is the case of a two-cyclic consistently ordered matrix with �(J2) on a straight line segment,
namely �(J2)⊂ [−�(J2)exp(i�); �(J2)exp(i�)]; with any �(J2) and any � ∈ (0; �): The corresponding
optimal values are given by

!b =
2

1 + (1− �2(J2)exp(2i�))1=2 ; �(L!b) = |!b − 1| (¡�(L!) for all ! 6= !b); (2.13)

where of the two square roots the one with the nonnegative real part is taken. It is noted that for
�=0 and �(J2)¡ 1; and also for �=�=2 and any �(J2), the optimal formulas by Young [90,91,93],
and by Kredell [52] and Niethammer [66], respectively, are recovered.
As Varga �rst noticed [82], the transformation (2.6) that maps � to �1=p is a conformal mapping

transformation. The study of this transformation, to �nd regions of convergence for ! and its optimal
value, !b, involves ellipses for p = 2 and p-cyclic hypocycloids (cusped, shortened and stretched)
for p¿3: The latter curves for p= 5 are depicted in Fig. 1. (In [88] not only !b and �(L!b) are
determined but also an excellent analysis with hypocycloids is done which allows the authors to
obtain regions of convergence for !.)
So, for matrices A ∈ Cn;n p-cyclic consistently ordered, because of ! ∈ R, the p-cyclic symmetry

of the spectrum �(Jp) and of the p-cyclic hypocycloids about the origin and the symmetry of the
latter with respect to (wrt) the real axis, the optimal problems that have been considered so far can
be called one-point problems. This is justi�ed from the fact that the coordinates of only one critical
point su�ce to determine the optimal parameters. E.g., for any p¿2 and 06�p¡ 1, the point
(�(Jp); 0) is the only information needed, for p = 2 and �260 we only need the point (0; i�(J2))
while for p¿3 and −(p=(p − 2))p¡�p60, only the point (�(Jp) cos(�=2p); i�(Jp) sin(�=2p))
su�ces.
One may notice that in the case of the one-point problem because we are dealing with complex

matrices A; in general, one has to consider not only the spectrum �(Jp) but also its symmetric wrt
the real axis. E.g., for p= 2, if there is a rectangle symmetric wrt both axes that contains �(J2) in
the closure of its interior and which lies within the in�nite unit strip S := {z ∈ C | |Re z|¡ 1}; then

184 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

Fig. 1. Hypocycloids of all kinds and types for p= 5.

the only information needed to �nd !b and �(L!b) is the pair of coordinates of its vertex in the
�rst quadrant ((2p)− ant with p=2). This problem was solved by Kjellberg [50] and Russell [73]
and the optimal values are given by the elements of the unique best ellipse that passes through the
vertex in question (see also [93]).
The most general one-point problem has been solved recently in [19] where, among others, use of

most of the previous results and also of those in [69] was made. In [19] it is assumed that A ∈ Cn;n
is p-cyclic consistently ordered and there exists one element of �(Jp) or of its mirror image �′(Jp)
wrt the real axis in the �rst (2p) – ant with polar coordinates (r; �) such that the cusped hypocycloid
of type II that passes through (r; �) crosses the real axis at a point with abscissa strictly less that 1
and on the other hand, the hypocycloid just mentioned and the cusped hypocycloid of type I through
(r; �) contain both �(Jp) and �′(Jp) in the closure of the intersection of their interiors. In such a
case !b and �(L!b) can be found through analytical expressions in terms of the semiaxes of the
unique best shortened hypocycloid that passes through (r; �). It is worth pointing out that all the
previous cases mentioned so far are particular subcases of the one just described.
The case of the two-point problem in its simplest form is when p= 2 and its spectrum �(J2) is

real and such that −a26�26b2 with a; b¿ 0 and b¡ 1: This problem was solved by Wrigley [89]
(see also [93]) and the optimal parameters are given by

!b =
2

1 + (1− b2 + a2)1=2 ; �(L!b) =
(

b+ a
1 + (1− b2 + a2)1=2

)2
(¡�(L!) for all ! 6= !b):

(2.14)

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 185

(Note: The solution just given solves a more general problem, namely the one where �(J2) lies in
the closed interior of the ellipse with semiaxes b and a. We note that the cases of nonnegative and
nonpositive �2 presented previously are particular subcases of the present one.)
The solution to the two-point problem for any p¿3; provided that −ap6�p6bp, with a; b¿ 0

and a¡p=(p − 2); b¡ 1; was given by Eiermann et al. [11] by means of the unique p-cyclic
shortened hypocycloid through both points (b; 0) and (a cos(�=2p); ia sin(�=2p)) i� (p−2)=p¡a=b
¡p=(p− 2) which becomes a cusped I through (b; 0) i� a=b6(p− 2)=p and a cusped II through
(a cos(�=2p); ia sin(�=2p)) i� p=(p− 2)6a=b: More speci�cally:

Theorem 2.19. Under the notation and the assumptions so far; for (p− 2)=p¡a=b¡p=(p− 2),
!b is given as the unique positive real root in ((p− 2)=(p− 1); p=(p− 1)) of the equation(

b+ a
2
!b

)p
=
b+ a
b− a(!b − 1); (2.15)

which is such that

�(L!b) =
b+ a
b− a(!b − 1) (¡�(L!) for all ! 6= !b): (2.16)

(Note: When a=b6(p − 2)=p and a=b¿p=(p − 2) the above equations and expressions reduce to
the ones of the one-point problem for the nonnegative and nonpositive case, respectively.)
For p = 2 and for a two-point problem where the vertices of two rectangles, both lying in the

open in�nite unit strip S and are symmetric wrt both axes, in the �rst quadrant are given and the
closure of the intersection of their interiors contains �(J2), the solution was given by Young and
Eidson [94] (see also [93]) by a simple algorithm that uses the two best ellipses through each of
the vertices and also the ellipse through the two points. An ingenious extension of this algorithm
[94] gives the solution to the corresponding many-point problem.
The analogs to the two- and many-point problems for any p¿3 has been solved very recently

by Galanis et al. [20]. The solutions are given by means of algorithms analogous to the ones by
Young and Eidson where instead of ellipses shortened hypocycloids are used.

2.3.1. Generalized (q; p− q)-cyclic consistently ordered matrices
The block form of these matrices is the following:

A=

A11 0 · · · 0 A1;p−q+1 0 · · · 0
0 A22 · · · 0 0 A2;p−q+2 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · Aqp

Aq+1;1 0 · · · 0 0 0 0 0
...

...
...

...
...

...
0 0 · · · Ap;p−q 0 0 · · · App

; (2.17)

where the diagonal blocks satisfy the same restrictions as in (1.8) and p and q are relatively prime.
Obviously, for q = 1 the generalized (1; p − 1)-cyclic consistently ordered matrices reduce to the
block p-cyclic consistently ordered ones of the previous section.

186 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

This time the functional relationship that connects the spectra of the block Jacobi iteration matrix
Jq;p−q and of the block SOR matrix associated with A in (2.17) is

(�+ !− 1)p = !p�p�p−q: (2.18)

(2.18) is attributed to Verner and Bernal [87]. However, it seems that Varga implies the correspond-
ing class of matrices and in some cases the optimal parameters of the associated SOR method (see
[83, pp. 108–109, Exs 1,2]). For the basic theory concerning matrices of the present class as well
as of their point counterparts the reader is referred to Young [93].

Remarks. (i) In Young [93], a more general than (2.17) form of matrices, called generalized
(q; p − q)-consistently ordered (GCO(q; p − q)), are analyzed and studied extensively. (ii) Varga
brought to the attention of the present author [85] that it appears that GCO(q; p − q) matrices are,
from a graph-theoretic point of view, essentially reorderings of the (block) p-cyclic consistently
ordered matrices. This new result seems to make the theory of GCO(q; p − q) matrices redundant!
(iii) Two more points: (a) Optimal SOR results to cover all possible cases for the two classes of
matrices (p-cyclic consistently ordered and GCO(q; p− q) ones) have not been found, and (b) As
was shown in [36] there are cases where for certain values of ! ∈ (0; 2), the SOR method applied
to a GCO(q; p − q) matrix A converges while when it is applied to the corresponding reordered
p-cyclic consistently ordered matrix diverges. (iv) In view of the two points in (iii) in the following
we shall keep on considering the GCO(q; p− q) matrices mostly in the form (2.17).

For the optimal parameters little has been done because it seems that the corresponding problems
are not only di�cult to attack but also there are no obvious practical applications associated with
them. The only optimal results known to us are those by Nichols and Fox [64] who found that for
�(Jpq;p−q) nonnegative and �(Jq;p−q)¡ 1, it is !b = 1 and �(L!b) = �

p=q(Jq;p−q) and also the one
by Galanis et al. [21] who treated the nonpositive case for q=p− 1 and p=3 and 4 and obtained
analytical expressions for !b and �(L!b).

2.3.2. Regions of convergence
Besides optimal results in the case of p-cyclic and GCO(q; p − q) matrices researchers in the

area are also interested in the regions of convergence of the SOR method in the (�(Jp); !)-plane
especially in case the spectrum �(Jpp) is nonnegative or nonpositive. The 2-cyclic consistently ordered
cases are trivial but the cases of p-cyclic consistently ordered matrices for any p¿3 are not. For
p=3, Niethammer et al. [67] determined the exact regions in the nonnegative and nonpositive cases.
For any p¿3 the solution was given in [28] where use of the famous Schur–Cohn algorithm was
made (see [45]). The only other case where the Schur–Cohn algorithm was successfully applied was
in the case of nonnegative and nonpositive spectra �(Jpp) for p¿3 in the case of the GCO(p−1; 1)
matrices (see [36]). By using asteroidal hypocycloids, regions of convergence for the SOR are
found in [34] for GCO(q; p − q) matrices when �(Jpp) is nonnegative or nonpositive. Finally, as
in the previous case, but dropping the assumption on nonnegativeness and nonpositiveness, using
the Rouch�e’s Theorem [80], as in [29], one can �nd that su�cient conditions for the SOR method
to converge for all p¿3 are �(Jq;p−q)¡ 1 and 0¡!¡ 2=(1 + �(Jq;p−q)), that is the same basic
conditions as in Theorem 2:13.

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 187

2.3.3. Singular linear systems and p-cyclic SOR
For singular linear systems the associated Jacobi iteration matrix has in its spectrum the eigenvalue

1. The very �rst theoretical results in this case for the SOR method were given by Buoni, Neumann
and Varga [4]. If, however, the matrix coe�cient A happens to be p-cyclic consistently ordered and
in the Jordan form of the Jacobi iteration matrix the eigenvalue 1 is associated with 1 × 1 blocks
only then the theory regarding convergence and optimal results seems to be precisely that of the
nonsingular case where simply the eigenvalue 1 is discarded (see, e.g., [26,51,38]). Since this case
is of much practical importance in the Markov Chain Analysis the reader is speci�cally referred to
[51] for details on this and also on the concept of what is called Extended SOR.

2.3.4. Block p-cyclic repartitioning
In a case arising in the solution of large linear systems for least-squares problems Markham,

Neumann and Plemmons [60] observed that if a block 3-cyclic consistently ordered matrix as in
(2.5), with �(J 33) nonpositive and �(J3)¡ 3, was repartitioned and considered as a block 2-cyclic
consistently ordered matrix as

A=

A11 0 A13
A21 A22 0
0 A23 A33

 ; (2.19)

then the SOR method associated with the latter had much better convergence properties than the
SOR associated with the former and also it was convergent for any �(J3). This was mainly based
on the observation that �(J 22) \ {0} ≡ �(J 33) \ {0}:
The previous work was the starting point for an investigation that followed. So, Pierce, Had-

jidimos and Plemmons [72] proved that for block p-cyclic consistently ordered matrices when the
spectrum �(Jpp) was either nonnegative, with �(Jp)¡ 1, or nonpositive, with any �(Jp); the 2-cyclic
repartitioning was not only always the best among all possible repartitionings but was also giving
convergent SOR methods in the nonpositive case even when the corresponding to the original par-
titioning SOR method failed to converge!
Later Eiermann et al. [11], using theoretical and numerical examples, showed that the result

obtained in [72] was not always true for real spectra �(Jpp):
Finally, Galanis and Hadjidimos [17] considered the general case of the real spectra �(Jpp) and

all q-cyclic repartitionings for 26q6p of the original block p-cyclic matrix A and found the best
q-cyclic repartitioning out of all possible repartitionings.

3. Modi�ed SOR method

The idea of Modi�ed SOR (or MSOR) method is to associate a di�erent ! with each (block) row
of the original linear system. The idea goes back to Russell [73] but it was mainly McDowell [61]
and Taylor [81], who analyzed its convergence properties (see also [49]). It is best applied when
the matrix A is 2-cyclic consistently ordered of the form (2.2). In such a case the MSOR method
will be de�ned by the following iterative scheme:

x(m+1) =L!1 ;!2x
(m) + c!1 ;!2 ; (3.1)

188 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

where

L!1 ;!2 := (D − !2L)−1[diag((1− !1)D1; (1− !2)D2) + !1U];
c!1 ;!2 := (D − !2L)−1diag(!1In1 ; !2In2)b

(3.2)

with In1 ; In2 the unit matrices of the orders of D1; D2; respectively.
In such a case the basic relationship that connects the eigenvalues � and � of the spectra �(J2)

and �(L!1 ;!2) is

(�+ !1 − 1)(�+ !2 − 1) = !1!2�2�; (3.3)

which reduces to the classical one by Young for the SOR method for !1 = !2: Optimal results for
spectra �(J2) of various con�gurations have been successfully obtained in some cases. For example:
(i) For �(J2) lying on a cross-shaped region optimal results can be found in [43] from which
several other ones previously obtained by Taylor and other researchers can be easily recovered. (ii)
For spectra �(J2) lying on the unit circle and at the origin, except at the points (±1; 0), which
is the case of the Jacobi iteration matrices arising in the discretization of second order elliptic
boundary value problems by the �nite-element collocation method with Hermite elements [40] and
(iii) For �(J2) lying in a “bow-tie” region which is the case arising in the discretization of the
convection-di�usion equation by �nite di�erences [2]. It is proved that the optimal MSOR method
converges much faster than the optimal SOR and it also converges even in cases where the optimal
SOR diverges. (For more details see [7,13] and especially Section 6 of [2].)
For extensions of the theory to GCO(q; p− q)-matrices the reader is referred to [43].
A problem which seemed to have been dealt with by Young and his colleagues (see [93]) in the

1960s, (see also [47]), was recast rather recently by Golub and de Pillis [22] in a more general
form. More speci�cally, because the spectral radius is only an asymptotic rate of convergence of a
linear iterative method the question raised was to determine, for each k¿1, a relaxation parameter
! ∈ (0; 2) and a pair of relaxation parameters !1; !2 which minimize the Euclidean norm of the kth
power of the SOR and MSOR iteration matrices associated with a real symmetric positive-de�nite
matrix with property A. In [31] these problems were solved completely for k = 1. Here are the
corresponding results:

Theorem 3.1. Let A ∈ Rn;n be a symmetric positive-de�nite matrix having property A and the
block form

A=
[
In1 −M
−MT In2

]
=: I − J2; n1 + n2 = n: (3.4)

Then for any �xed t :=�2(J2) ∈ [0; 1) the value of !, call it !̂, which yields the minimum in
min!∈(0;2)‖L!‖2 is the unique real positive root in (0; 1) of the quartic equation

(t2 + t3)!4 + (1− 4t2)!3 + (−5 + 4t + 4t2)!2 + (8− 8t)!+ (−4 + 4t) = 0: (3.5)

In fact !̂ ∈ (0; !∗), where !∗ is the unique real positive root in (0; 1) of the cubic

(t + t2)!3 − 3t!2 + (1 + 2t)!− 1 = 0: (3.6)

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 189

Theorem 3.2. Under the assumptions and notation of the previous theorem and for any �xed
t ∈ [0; 1) the pair (!1; !2); call it (!̂1; !̂2); which yields the minimum in �̂ :=min!1 ;!2∈(0;2)‖L!1 ;!2‖2
is as follows: For t ∈ [0; 13]

(!̂1; !̂2) =
(

1
1 + t

;
1

1− t
)
when �̂=

(
t

1 + t

)1=2
(3.7)

while for t ∈ [13 ; 1)

(!̂1; !̂2) =
(

4
5 + t

;
4

3− t
)
when �̂=

1 + t
3− t : (3.8)

Remark. (i) It is worth pointing out that in [93] the values of !̂ and the corresponding ones for
‖L!̂‖2 are given for t1=2 = �(J2) = 0(0:1)1: (ii) Part of Theorem 3.2 is also given in [93] where its
proof at some points is based on strong numerical evidence.

We conclude this section by giving the functional eigenvalue relationship connecting the spectra of
the Jacobi iteration matrix of a GCO(q; p−q) matrix A of the class (2.17) and of the corresponding
MSOR operator when each block is associated with a di�erent relaxation factor !j; j= 1(1)p: The
formula below is an extension of the one given by Taylor [81]

p∏
j=1

(�+ !j − 1) =
p∏
j=1

!j�p�p−q: (3.9)

4. Symmetric SOR method

Each iteration step of the Symmetric SOR (SSOR) method consists of two semi-iterations the �rst
of which is a usual (forward) SOR iteration followed by a backward SOR iteration, namely an SOR
where the roles of L and U have been interchanged. More speci�cally

x(m+(1=2)) = (D − !L)−1[(1− !)D + !U]x(m) + !(D − !L)−1b;
x(m+1) = (D − !U)−1[(1− !)D + !L]x(m+(1=2)) + !(D − !U)−1b:

(4.1)

An elimination of x(m+(1=2)) from the above equations yields

x(m+1) =S!x(m) + c!; k = 0; 1; 2; : : : ; x(0) ∈ Cn arbitrary (4.2)

with

S! := (D − !U)−1[(1− !)D + !L](D − !L)−1[(1− !)D + !U];
c! :=!(2− !)(D − !U)−1D(D − !L)−1b:

(4.3)

The SSOR method was introduced by Sheldon and constitutes a generalization of the method
introduced previously by Aitken for != 1 (see [93]).

190 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

Statements analogous to Kahan’s theorem and also to Reich–Ostrowski–Varga’s theorem of the
SOR method can be proved. Speci�cally we have:

Theorem 4.1. A necessary condition for the SSOR method de�ned in (4:2)–(4:3) to converge is
|!− 1|¡ 1. For ! ∈ R the condition becomes ! ∈ (0; 2):

Theorem 4.2. Let A ∈ Cn;n be Hermitian with positive diagonal elements. Then for any ! ∈ (0; 2)
the SSOR iteration matrix S! has real nonnegative eigenvalues. In addition; if A is positive
de�nite then the SSOR method converges. Conversely; if the SSOR method converges and ! ∈ R
then ! ∈ (0; 2) and A is positive de�nite.

Note: Compared to SOR, SSOR requires more work per iteration and in general converges slower.
Due to its symmetry, however, it can be combined with the semi-iterative method to produce other
methods with nice convergence properties (see, e.g. [93]).
For 2-cyclic consistently ordered matrices the �rst functional relationship between the eigenvalues

� and � of the associated Jacobi and SSOR iteration matrices was given by D’Sylva and Miles [10]
and Lynn [55] and is the following:

(�− (!− 1)2)2 = !2(2− !)2�2�: (4.4)

It can be found that for A as in (2.2) the optimal !; !b = 1: Then �(S1) = �(L1) = �2(J2):
In case A is block two-cyclic consistently ordered and �(J2) lies in the open in�nite unit strip

S one can develop a Young-Eidson’s-type algorithm for the determination of the optimal parameter
!b and subsequently of �(L!b) (see [32]).
The functional eigenvalue relationship in the case of block p-cyclic consistently ordered matrices

was discovered by Varga, Niethammer and Cai [86], who obtained the relationship

(�− (!− 1)2)p = !p(2− !)2�p�(�− (!− 1))p−2: (4.5)

The relationship above was then extended by Chong and Cai [8] to cover the class of GCO(q; p−q)
matrices in (2.17) to

(�− (!− 1)2)p = !p(2− !)2q�p�q(�− (!− 1))p−2q: (4.6)

Optimal values of the SSOR method for spectra �(Jpp) nonnegative or nonpositive for any p¿3
cannot be found anywhere in the literature except in a very recent article [37], where a number
of cases are covered analytically and experimentally and a number of conjectures based on strong
numerical evidence are made.
As for the SOR method also for the SSOR method researchers have tried to �nd regions of

convergence for various classes of matrices. Thus Neumaier and Varga [63] determined for the class
of H -matrices the region in the (�(|D−1(L+U)|); !)-plane for which the SSOR method converges.
Motivated by their work, Hadjidimos and Neumann [29], using Rouch�e’s theorem, studied and
determined the region of convergence of the SSOR method in the (�(Jp); !)-plane for each value
of p¿3 for the class of the p-cyclic consistently ordered matrices. It is noted that the intersection
of all the domains obtained for all p¿3 is the same domain as the one obtained by Neumaier
and Varga for the whole class of the H -matrices with the only di�erence being that in the latter
case the domain is obtained in the (�(|D−1(L+U)|); !)-plane. An extension of the work in [29] is

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 191

given in [30], where GCO(q; p− q) matrices for each possible value of l= q=p¡ 1
2 and each p¿3

are considered. Finally, in [35] the domains of convergence of the SSOR method for the class of
p-cyclic consistently ordered matrices for each p¿3 in the (�(Jp); !)-plane is determined in the
two cases of the nonnegative and nonpositive spectra �(Jpp):

4.1. Unsymmetric SOR method

The unsymmetric SOR (USSOR) method di�ers from the SSOR method in the second (backward)
SOR part of each iteration where a di�erent relaxation factor is used (see [10,55,93]). It consists of
the following two half steps:

x(m+(1=2)) = (D − !1L)−1[(1− !1)D + !1U]x(m) + !1(D − !1L)−1b;
x(m+1) = (D − !2U)−1[(1− !2)D + !2L]x(m+(1=2)) + !2(D − !2U)−1b:

(4.7)

On elimination of x(m+(1=2)) it is produced

x(m+1) =S!1 ;!2x
(m) + c!1 ;!2 ; k = 0; 1; 2; : : : ; x(0) ∈ Cn arbitrary (4.8)

with
S!1 ;!2 := (D − !2U)−1[(1− !2)D + !2L](D − !1L)−1[(1− !1)D + !1U];
c!1 ;!2 := (!1 + !2 − !1!2)(D − !2U)−1D(D − !1L)−1b:

(4.9)

Theory analogous to that of the SSOR method can be developed and the interested reader is
referred to [92,93].
The only point we would like to make is that for p-cyclic consistently ordered and for GCO(q; p−

q) matrices A there are functional eigenvalue relationships connecting the eigenvalue spectra of the
Jacobi and of the USSOR iteration matrices. They were discovered by Saridakis [75] and the most
general one below by Li and Varga [54]

(�− (1− !1)(1− !2))p (4.10)

=(!1 + !2 − !1!2)2q�p�q(�!1 + !2 − !1!2)|�L|−q(�!2 + !1 − !1!2)|�U |−q;
where |�L| and |�U | are the cardinalities of the sets �L and �U , which are the two disjoint subsets of
P ≡ {1; 2; : : : ; p} associated with the cyclic permutation � = (�1; �2; : : : ; �p) as these are de�ned in
[54].

5. Accelerated overrelaxation (AOR) method

A technique that sometimes “accelerates” the convergence of a convergent iterative scheme or
makes it converge if it diverges is the introduction of an “acceleration” or “relaxation” parameter
! ∈ C \ {0} as follows. Based on (1.2) we consider as a new preconditioner the matrix M! = 1

!M .
It is then readily seen that the new iterative scheme is given by

x(m+1) = T!x(m) + c!; T! := (1− !)I + !T; c! :=!c: (5.1)

The parameter ! is called the extrapolation parameter and the corresponding scheme is the extrap-
olated of the original one. The most general algorithm to determine the best extrapolation parameter

192 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

! ∈ C \ {0} under some basic assumptions regarding some information on the spectrum �(T) of
T can be found in [25] (see also the references cited therein and also [71] which treats a similar
case).
Exploiting the idea of extrapolation a two-parameter SOR-type iterative method was introduced

in [24]. It was called Accelerated overrelaxation (AOR) method and can be de�ned as follows:

x(m+1) =Lr;!x(m) + cr;!; m= 0; 1; 2; : : : ; x(0) ∈ Cn arbitrary; (5.2)

where

Lr;! := (D − rL)−1[(1− !)D + (!− r)L+ !U]; cr;! :=!(D − rL)−1b: (5.3)

It can be readily proved that the AOR method is the union of the Extrapolated Jacobi method (r=0)
with extrapolation parameter ! and of the Extrapolated SOR method (r 6= 0) with extrapolation
parameter s = !=r of an SOR method with relaxation factor r. It is obvious that the Jacobi, the
Gauss–Seidel, the SOR method and their extrapolated counterparts can be considered as special
cases of the AOR method.
Note: Niethammer [65] refers to a similar to the AOR method that was introduced in a series of

papers by Sisler [76–78].
For Hermitian matrices A ∈ Cn;n a statement analogous to the Reich–Ostrowski–Varga theorem

holds for the AOR method as well. Here is one version of it given in [42].

Theorem 5.1. Let A = D − E − EH ∈ Cn;n be Hermitian; D be Hermitian and positive de�nite;
det(D− rE) 6= 0; ∀! ∈ (0; 2) and r ∈ (!+(2−!)=�m; !+(2−!)=�M) with �m¡ 0¡�M being the
smallest and the largest eigenvalues of D−1(E + EH). Then; �(Lr;!)¡ 1 i� A is positive de�nite.
(Note: Except for the restrictions in the statement the matrices D; E ∈ Cn;n can be any matrices.)

Many more theoretical results can be proved in case A is p-cyclic consistently ordered. For
example, if A is 2-cyclic consistently ordered and �(J 22) is either nonnegative or nonpositive then
optimal parameters for the AOR method can be derived. They are better than the optimal ones for
the corresponding SOR method if some further assumptions are satis�ed. These results can be found
in [1,62,27].

Theorem 5.2. Under the notation and the assumptions so far; let � and �� denote the absolutely
smallest and the absolutely largest of the eigenvalues of the Jacobi iteration matrix J2 of a 2-cyclic
consistently ordered matrix A. Then: For �(J 22) nonnegative and 0¡�¡ ��¡ 1 if 1 − �2¡ (1 −
��2)1=2 the optimal parameters of the AOR method are given by the expressions

rb =
2

1 + (1− ��2)1=2
; !b =

1− �2 + (1− ��2)1=2

(1− ��2)(1 + (1− ��2)1=2)
; (5.4)

�(Lrb;!b) =
�(��2 − �2)1=2

(1− �2)1=2(1 + (1− ��2)1=2)
:

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 193

Furthermore, for 0¡� = ��¡ 1 there are two pairs of optimal parameters

(rb; !b) =
(

2
1 + �(1− ��2)1=2

;
�

(1− ��2)1=2

)
; �=±1; (5.5)

both of which give �(Lrb;!b) = 0: For �(J
2
2) nonpositive and if (1 + ��2)1=2¡ 1 + �2 the optimal

parameters of the AOR method are given by the expressions

rb =
2

1 + (1 + ��2)1=2
; !b =

1 + �2 + (1 + ��2)1=2

(1 + ��2)(1 + (1 + ��2)1=2)
; (5.6)

�(Lrb;!b) =
�(��2 − �2)1=2

(1 + �2)1=2(1 + (1 + ��2)1=2)
:

Again for 0¡� = �� there are two pairs of optimal parameters

(rb; !b) =
(

2
1 + �(1 + ��2)1=2

;
�

(1 + ��2)1=2

)
; �=±1; (5.7)

both of which give �(Lrb;!b) = 0:
Notes: (i) The assumptions on � and �� of Theorem 5.2 are very demanding. Practically, to have

an optimal AOR better than the optimal SOR, � must be “di�erent” from 0 and “very close” to ��.
It is not known whether these assumptions are true for any real life problem. (ii) The assumptions
�= �� 6= 0 indicate that the Jacobi iteration matrix J2 has only two distinct, of opposite sign and of
the same multiplicity eigenvalues. This leads directly to the fact that all eigenvalues of Lrb;!b are
zero.
Methods analogous to the MSOR, SSOR, etc, have been developed and thus MAOR [39], SAOR

[41], etc., can be found in the literature. Here we only give the functional eigenvalue relationship
for GCO(q; p− q) matrices that generalizes many other similar equations and especially the one by
Saridakis [74] for the AOR method

p∏
j=1

(�+ !j − 1) =
q∏
j=1

!j�p
p∏

j=q+1

(!j − rj + rj�): (5.8)

6. Linear (non-)stationary higher-order(degree), semi-iterative methods and SOR

All the iterative methods studied so far are linear stationary �rst-order(degree) ones. The term
stationary means that any parameters involved in the iterative scheme are kept �xed during the
iterations, �rst order(degree) means that the new iteration x(m+1) depends only on the previous one
x(m) and linear that x(m+1) is a linear function of x(m).
Among the linear non-stationary �rst-order methods the adaptive SOR method is one of the most

important and most popular in practical problems and is now incorporated in all the well-known
computer packages like, e.g., ITPACK [48]. For an introduction to the adaptive SOR which was
�rst considered for real symmetric positive de�nite 2-cyclic consistently ordered matrices but now
is of a more general application the reader is referred to [44].

194 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

A class of linear stationary second-order methods, where each new iteration depends linearly on
the two previous ones, that can handle e�ectively linear systems Ax = b, rewritten equivalently as
x= Tx+ c, where �(T) is assumed to be enclosed by an ellipse lying strictly to the left of the line
Re z¡ 1 of the complex plane, are described in [93]. In [93] the reader can �nd interesting results,
when A is 2-cyclic consistently ordered with �(J 22) nonnegative and �(J2)¡ 1; as well as some
other interesting references.
A similar linear stationary second-order method is also given by Manteu�el in [59]. This method is

derived directly from a linear non-stationary second-order one [56–58] which, in turn, is developed by
using translated and scaled Chebyshev polynomials in the complex plane. It is worth pointing out that
a 2-cyclic MSOR method is equivalent in the Chebyshev sense to a linear stationary second-order
one and therefore “optimal” values of its parameters can be found by using either Manteu�el’s
algorithm [40] or a “continuous” analog of it [2].
There is also a class of iterative methods that are called Semi-Iterative and are described in a

very nice way in [83] (see also [93]). In [83] it is shown that if one uses Chebyshev polynomials
and bases one’s analysis on them one can derive a linear non-stationary second-order scheme with
very nice properties. The study of semi-iterative methods seems to have begun in [68] followed by
a number of papers among which are [12–15]. Especially in the last two (see also [9]) when as the
matrix T in x = Tx + c, the SOR iteration matrix, associated with a 2-cyclic consistently ordered
matrix A with �(J 22) nonnegative and �(J2)¡ 1; is considered, it is proved that it converges for all
! ∈ (−∞; 2=(1− (1−�2(J2))1=2)) \ {0} which constitutes an amazingly wider range than that of the
SOR method!

7. Operator relationships for generalized (q; p− q)-cyclic consistently ordered matrices

Before we conclude this article we would like to mention one more point. As we have seen so
far in case A is a GCO(q; p − q) matrix there is always a functional relationship that connects the
eigenvalues of the Jacobi iteration matrix and the eigenvalues of the iteration operator associated
with any of the methods considered. E.g., SOR, MSOR, SSOR, USSOR, AOR, MAOR, SAOR,
etc. However, it seems that exactly the same functional relationship holds for the iteration operators
involved.
The �rst who observed that such a relationship held was Young and Kincaid [95] (see also [93]),

who proved that for a 2-cyclic consistently ordered matrix there holds

(L! + (!− 1)I)2 = !2J 22L!: (7.1)

Using this equation as a starting point a discussion started whether similar relationships held as well
for other functional relationships associated with operators of a p-cyclic consistently ordered matrix.
The theory behind the proof of such relationships is basically graph theory and combinatorics. The
most general relationships that can be found in the literature are the following two which refer to
the MSOR and to the USSOR methods associated with a GCO(q; p− q) matrix, respectively,

p∏
j=1

(L
 + (!j − 1)I) = (
Jq;p−q)pLp−q

 ; (7.2)

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 195

where
 = diag(!1In1 ; !2In2 ; : : : ; !pInp);
∑p

i=1 ni = n; and

(S!1 ;!2 − (1− !1)(1− !2)I)p
=(!1 + !2 − !1!2)2qJ pq;p−qSq

!1 ;!2 (!1S!1 ;!2 + !2(1− !1)I)|�L|−q
×(!2S!1 ;!2 + !1(1− !2)I)|�U |−q; (7.3)

where for the various notations see previous section and [33,54,70]. From these relationships simpler
ones can be obtained, e.g., for the p-cyclic consistently ordered SOR, for the GCO(q; p− q) SSOR,
and also the same relationships can be extended to cover the p-cyclic AOR, MAOR, SAOR, etc.,
cases.
Use of the functional relationships can be made in order to transform a one-step iterative scheme

into another equivalent p-step one. For more details the reader is referred to the references of this
section and also to [68].

8. Final remarks

In this article an e�ort was made to present the SOR method and some of its properties together
with some other methods closely related to it. For the methods presented the most common classes of
matrices A that led to some interesting results were considered. Of course, not all of the well-known
classes of matrices A was possible to cover. For example, matrices like strictly diagonally dominant,
irreducibly diagonally dominant, etc., were left out.
Finally, we mentioned only very briey the role of the SOR, SSOR, etc, methods as preconditioners

for the class of semi-iterative (see [93]) and we did not examine at all their roles for the class of
conjugate gradient methods (see [23]). This was done purposefully for otherwise the basic theory
of the other classes of methods involved should have been analyzed to some extent and this would
be beyond the scope of the present article. On the other hand, it is the author’s opinion that other
expert researchers in the corresponding areas will cover these subjects in a much better and more
e�cient way in their articles in the present volume.

Acknowledgements

The author cordially thanks Dr. Dimitrios Noutsos of the University of Ioannina for constructive
criticism on a �rst draft of this article. He is most grateful to Professor Richard S. Varga for many
helpful comments and suggestions as well as for material he kindly provided from the revised version
of his “matrix iterative analysis” book and also to an anonymous referee, who made a number of
points and provided some basic bibliography that led to the improvement of the previous version of
this article.

References

[1] G. Avdelas, A. Hadjidimos, Optimum accelerated overrelaxation method in a special case, Math. Comp. 36 (1981)
183–187.

[2] G. Avdelas, A. Hadjidimos, Optimal 2-cyclic MSOR for “Bowtie” spectra and the “Continuous” Manteu�el algorithm,
Linear Algebra Appl. 265 (1997) 29–54.

196 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

[3] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
[4] J.J. Buoni, M. Neumann, R.S. Varga, Theorems of Stein–Rosenberg type III, the singular case, Linear Algebra Appl.

42 (1982) 183–198.
[5] J.J. Buoni, R.S. Varga, Theorems of Stein–Rosenberg type, in: R. Ansorge, K. Glasho�, B. Werner (Eds.), Numerical

Mathematics, Birkh�auser, Basel, 1979, pp. 65–75.
[6] J.J. Buoni, R.S. Varga, Theorems of Stein–Rosenberg type II, optimal paths of relaxation in the complex plane,

in: M.H. Schultz (Ed.), Elliptic Problem Solvers, Academic Press, New York, 1981, pp. 231–240.
[7] R.C.Y. Chin, T.A. Manteu�el, An analysis of block successive overrelaxation for a class of matrices with complex

spectra, SIAM J. Numer. Anal. 25 (1988) 564–585.
[8] L. Chong, D.-Y. Cai, Relationship between eigenvalues of Jacobi and SSOR iterative matrix with p-weak cyclic

matrix J. Comput. Math. Coll. Univ. 1 (1985) 79–84 (in Chinese).
[9] J. Dancis, The optimal ! is not best for the SOR iteration method, Linear Algebra Appl. 154–156 (1991) 819–845.
[10] E. D’Sylva, G.A. Miles, The S.S.O.R. iteration scheme for equations with �1-orderings, Comput. J. 6 (1963) 271–273.
[11] M. Eiermann, W. Niethammer, A. Ruttan, Optimal successive overrelaxation iterative methods for p-cyclic matrices,

Numer. Math. 57 (1990) 593–606.
[12] M. Eiermann, W. Niethammer, R.S. Varga, A study of semi-iterative methods for non-symmetric systems of linear

equations, Numer. Math. 47 (1985) 503–533.
[13] M. Eiermann, W. Niethammer, R.S. Varga, Acceleration of relaxation methods for non-Hermitian linear systems,

SIAM J. Matrix Anal. Appl. 13 (1991) 979–991.
[14] M. Eiermann, R.S. Varga, Is the optimal ! best for the SOR iterative method? Linear Algebra Appl. 182 (1993)

257–277.
[15] M. Eiermann, R.S. Varga, Optimal semi-iterative methods applied to SOR in the mixed case, in: L. Reichel,

A. Ruttan, R.S. Varga (Eds.), Numerical Linear Algebra, Walter de Gruyter, New York, 1993, pp. 47–73.
[16] S.P. Frankel, Convergence rates of iterative treatments of partial di�erential equations, Math. Tables Aids Comput.

4 (1950) 65–75.
[17] S. Galanis, A. Hadjidimos, Best cyclic repartitioning for optimal SOR convergence, SIAM J. Matrix Anal. Appl. 13

(1992) 102–120.
[18] S. Galanis, A. Hadjidimos, D. Noutsos, On the equivalence of the k-step iterative Euler methods and successive

overrelaxation (SOR) methods for k-cyclic matrices, Math. Comput. Simulation 30 (1988) 213–230.
[19] S. Galanis, A. Hadjidimos, D. Noutsos, Optimal p-cyclic SOR for complex spectra, Linear Algebra Appl. 263 (1997)

233–260.
[20] S. Galanis, A. Hadjidimos, D. Noutsos, A Young-Eidson’s type algorithm for complex p-cyclic SOR spectra, Linear

Algebra Appl. 286 (1999) 87–106.
[21] S. Galanis, A. Hadjidimos, D. Noutsos, M. Tzoumas, On the optimum relaxation factor associated with p-cyclic

matrices, Linear Algebra Appl. 162–164 (1992) 433–445.
[22] G.H. Golub, J. de Pillis, Toward an e�ective two-parameter method, in: D.R. Kincaid, L. Hayes (Eds.), Iterative

Methods for Large Linear Systems, Academic Press, New York, 1990, pp. 107–118.
[23] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.
[24] A. Hadjidimos, Accelerated overrelaxation method, Math. Comp. 32 (1978) 149–157.
[25] A. Hadjidimos, The optimal solution to the problem of complex extrapolation of a �rst order scheme, Linear Algebra

Appl. 62 (1984) 241–261.
[26] A. Hadjidimos, On the optimization of the classical iterative schemes for the solution of complex singular linear

systems, SIAM J. Algebra Discrete Methods 6 (1985) 555–566.
[27] A. Hadjidimos, A survey of the iterative methods for the solution of linear systems by extrapolation, relaxation and

other techniques, J. Comput. Appl. Math. 20 (1987) 37–51.
[28] A. Hadjidimos, X.-Z. Li, R.S. Varga, Application of the Schur-Cohn theorem to precise convergence domains for

the cyclic SOR iterative method, unpublished manuscript, 1985.
[29] A. Hadjidimos, M. Neumann, Precise domains of convergence for the block SSOR method associated with p-cyclic

matrices, BIT 29 (1989) 311–320.
[30] A. Hadjidimos, M. Neumann, Convergence domains of the SSOR method for generalized consistently ordered

matrices, J. Comput. Appl. Math. 33 (1990) 35–52.

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 197

[31] A. Hadjidimos, M. Neumann, Euclidean norm minimization of the SOR operators, SIAM J. Matrix Anal. Appl. 19
(1998) 191–204.

[32] A. Hadjidimos, D. Noutsos, The Young-Eidson algorithm: applications and extensions, SIAM J. Matrix Anal. Appl.
11 (1990) 620–631.

[33] A. Hadjidimos, D. Noutsos, On a matrix identity connecting iteration operators associated with a p-cyclic matrix,
Linear Algebra Appl. 182 (1993) 157–178.

[34] A. Hadjidimos, D. Noutsos, M. Tzoumas, Exact SOR convergence regions for a general class of p-cyclic matrices,
BIT 35 (1995) 469–487.

[35] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the exact p-cyclic SSOR convergence domains, Linear Algebra Appl.
232 (1996) 213–236.

[36] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the convergence domains of the p-cyclic SOR, J. Comput. Appl. Math.
72 (1996) 63–83.

[37] A. Hadjidimos, D. Noutsos, M. Tzoumas, Towards the determination of the optimal p-cyclic SSOR, J. Comput.
Appl. Math. 90 (1997) 1–14.

[38] A. Hadjidimos, R.J. Plemmons, Optimal p-cyclic SOR, Numer. Math. 67 (1994) 475–490.
[39] A. Hadjidimos, A. Psimarni, A.K. Yeyios, On the convergence of the modi�ed accelerated overrelaxation (MAOR)

method, Applied Numer. Math. 10 (1992) 115–127.
[40] A. Hadjidimos, Y.G. Saridakis, Modi�ed successive overrelaxation (MSOR) and equivalent 2-step iterative methods

for collocation matrices, J. Comput. Appl. Math. 42 (1992) 375–393.
[41] A. Hadjidimos, A. Yeyios, Symmetric accelerated overrelaxation (SAOR) method, Math. Comput. Simulation XXIV

(1982) 72–76.
[42] A. Hadjidimos, A. Yeyios, On some extensions of the accelerated overrelaxation (AOR) theory, Internat. J. Math.

Math. Sci. 5 (1982) 49–60.
[43] A. Hadjidimos, A.K. Yeyios, Some recent results on the modi�ed SOR theory, Linear Algebra Appl. 154–156 (1991)

5–21.
[44] L.A. Hageman, D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981.
[45] P. Henrici, Applied and Computational Complex Analysis, Wiley, New York, 1974.
[46] W. Kahan, Gauss–Seidel methods of solving large systems of linear equations, Doctoral Thesis, University of Toronto,

Toronto, Canada, 1958.
[47] D.R. Kincaid, Norms of the successive overrelaxation method, Math. Comp. 118 (1972) 345–357.
[48] D.R. Kincaid, J.R. Respess, D.M. Young, R.G. Grimes, ITPACK 2C: a fortran package for solving large sparse

linear systems by adaptive accelerated iterative methods, ACM Trans. Math. Software 8 (1992) 302–322.
[49] D.R. Kincaid, D.M. Young, The modi�ed successive overrelaxation method with �xed parameters, Math. Comp. 119

(1972) 705–717.
[50] G. Kjellberg, On the convergence of the successive over-relaxation applied to a class of linear systems of equations

with complex eigenvalues, Ericsson Technics Stockholm 2 (1958) 245–258.
[51] K. Kontovasilis, R.J. Plemmons, W.J. Stewart, Block cyclic SOR for Markov chains with p-cyclic in�nitesimal

generator, Linear Algebra Appl. 154–156 (1991) 145–223.
[52] B. Kredell, On complex successive overrelaxation, BIT 2 (1962) 143–152.
[53] Y.A. Kuznetsov, in: Matrix iterative methods in subspaces, Proceedings of the International Congress of

Mathematicians, Warszawa, August 16–24, 1983, North Holland, Amsterdam, 1984.
[54] X. Li, R.S. Varga, A note on the SSOR and USSOR iterative methods applied to p-cyclic matrices, Numer. Math.

56 (1989) 109–121.
[55] M.S. Lynn, On the equivalence of SOR, SSOR and USSOR as applied to �1-ordered systems of linear equations,

Comput. J. 7 (1964) 72–75.
[56] T.A. Manteu�el, An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters,

UTUCSD-R-75, Department of Computer Science, University of Illinois, Urbana, IL, 1975.
[57] T.A. Manteu�el, The Tchebychev iteration for non-symmetric linear systems, Numer. Math. 28 (1977) 307–327.
[58] T.A. Manteu�el, Adaptive procedure for estimating parameters for the non-symmetric Tchebychev iteration, Numer.

Math. 31 (1978) 183–208.
[59] T.A. Manteu�el, Optimal parameters for linear second-degree stationary iterative methods, SIAM J. Numer. Anal.

19 (1982) 833–839.

198 A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199

[60] T.L. Markham, M. Neumann, R.J. Plemmons, Convergence of a direct-iterative method for large-scale least squares
problems, Linear Algebra Appl. 69 (1985) 155–167.

[61] L.K. McDowell, Variable successive overrelaxation, Report No. 244, Department of Computer Sciences, University
of Illinois, Urbana, IL.

[62] N.M. Missirlis, Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear
systems, Numer. Math. 45 (1984) 447–458.

[63] A. Neumaier, R.S. Varga, Exact convergence and divergence domains for the symmetric successive overrelaxation
iterative (SSOR) method applied to H -matrices, Linear Algebra Appl. 58 (1984) 261–272.

[64] N.K. Nichols, L. Fox, Generalized consistent ordering and the optimum successive over-relaxation factor, Numer.
Math. 13 (1969) 425–433.

[65] W. Niethammer, On di�erent splittings and the associated iteration methods, SIAM J. Numer. Anal. 16 (1979)
186–200.

[66] W. Niethammer, Relaxation bei Matrizen mit der Eigenschaft “A”, Z. Angew. Math. Mech. 44 (1964) T49–T52.
[67] W. Niethammer, J. de Pillis, R.S. Varga, Convergence of block iterative methods applied to sparse least squares

problems, Linear Algebra Appl. 58 (1984) 327–341.
[68] W. Niethammer, R.S. Varga, The analysis of k-step iterative methods for linear systems from summability theory,

Numer. Math. 41 (1983) 177–206.
[69] D. Noutsos, Optimal stretched parameters for the SOR iterative method, J. Comput. Appl. Math. 48 (1993) 293–308.
[70] D. Noutsos, An operator relation of the USSOR and the Jacobi iteration matrices of a p-cyclic matrix, SIAM J.

Matrix. Anal. Appl. 17 (1996) 515–529.
[71] G. Opfer, G. Schober, Richardson’s iterations for nonsymmetric matrices, Linear Algebra Appl. 58 (1984) 343–361.
[72] D.J. Pierce, A. Hadjidimos, R.J. Plemmons, Optimality relationships for p-cyclic SOR, Numer. Math. 56 (1990)

635–643.
[73] D.B. Russell, On obtaining solutions to Navier–Stokes equations with automatic digital computers, Aeronautical

Research Council Report R & M 3331 Engineering Laboratory, Oxford, 1963.
[74] Y.G. Saridakis, Generalized consistent orderings and the accelerated overrelaxation method, BIT 26 (1986) 369–376.
[75] Y.G. Saridakis, On the analysis of the unsymmetric overrelaxation method when applied to p-cyclic matrices, Numer.

Math. 49 (1986) 461–473.
[76] M. Sisler, Uber ein Zweiparametrigen Iterationsverfahrens, Apl. Mat. 18 (1973) 325–332.
[77] M. Sisler, Uber die Optimierung eines Zweiparametrigen Iterationsverfahrens, Apl. Mat. 20 (1975) 126–142.
[78] M. Sisler, Bemerkungen zur Optimierung eines Zweiparametrigen Iterationsverfahrens, Apl. Mat. 21 (1976) 213–220.
[79] R.V. Southwell, Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford, 1946.
[80] D.O. Tall, Functions of a Complex Variable, Library of Mathematics, Routledge & Kegan Paul, London, 1970.
[81] P.J. Taylor, A generalisation of systematic relaxation methods for consistently ordered matrices, Numer. Math. 13

(1969) 377–395.
[82] R.S. Varga, p-cyclic matrices: a generalization of the Young-Frankel successive overrelaxation scheme, Paci�c J.

Math. 9 (1959) 617–628.
[83] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.
[84] R.S. Varga, Extensions of the successive overrelaxation theory with applications to �nite element approximations,

in: J.H.H. Miller (Ed.), Topics in Numerical Analysis, Academic Press, New York, 1973, pp. 242–247.
[85] R.S. Varga, Personal communication (also, revision of [83], 1999).
[86] R.S. Varga, W. Niethammer, D.Y. Cai, p-cyclic matrices and the symmetric successive overrelaxation method, Linear

Algebra Appl. 58 (1984) 425–439.
[87] J.H. Verner, M.J.M. Bernal, On generalizations of the theory of consistent orderings for successive overrelaxation

methods, Numer. Math. 12 (1968) 215–222.
[88] P. Wild, W. Niethammer, Over and underrelaxation for linear systems with weakly cyclic Jacobi matrices of index

p, Linear Algebra Appl. 91 (1987) 29–52.
[89] E.E. Wrigley, On accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation

when the eigenvalues of the iteration matrix are complex, Comput. J. 6 (1963) 169–176.
[90] D.M. Young, Iterative methods for solving partial di�erential equations of elliptic type, Doctoral Thesis, Harvard

University, Cambridge, MA, 1950.

A. Hadjidimos / Journal of Computational and Applied Mathematics 123 (2000) 177–199 199

[91] D.M. Young, Iterative methods for solving partial di�erential equations of elliptic type, Trans. Amer. Math. Soc. 76
(1954) 92–111.

[92] D.M. Young, Convergence properties of the symmetric and unsymmetric successive overrelaxation methods and
related methods, Math. Comp. 112 (1970) 793–807.

[93] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
[94] D.M. Young, H.E. Eidson, On the determination of the optimum relaxation factor for the SOR method when the

eigenvalues of the Jacobi matrix are complex, Report CNA-1, Center for Numerical Analysis, University of Texas,
Austin, TX, 1970.

[95] D.M. Young, D.R. Kincaid, Norms of the successive overrelaxation method and related methods, Report TNN-94,
Computation Center, University of Texas, Austin, TX, 1969.

Journal of Computational and Applied Mathematics 123 (2000) 201–216
www.elsevier.nl/locate/cam

On asynchronous iterations
Andreas Frommera, Daniel B. Szyldb; ∗; 1

aFachbereich Mathematik, Bergische Universit�at GH Wuppertal, Gauss-Strasse 20, 42 097 Wuppertal, Germany
bDepartment of Mathematics, Temple University (038-16), 1805 N. Broad Street, Philadelphia, PA 19122-6094,

USA

Received 3 June 1999

Abstract

Asynchronous iterations arise naturally on parallel computers if one wants to minimize idle times. This paper reviews
certain models of asynchronous iterations, using a common theoretical framework. The corresponding convergence theory
and various domains of applications are presented. These include nonsingular linear systems, nonlinear systems, and initial
value problems. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

With the advent of parallel computers, many new algorithms were devised or rediscovered for
the new architectures. An important concept in the design of parallel algorithms is that of load
balancing, which simply means that the work has to be approximately equally distributed among
processors. Otherwise, some processors �nish their task much earlier than others, and the waiting
time (also called idle time) degrades the performance of the algorithm. This concept has been
widely accepted as a requirement for e�cient algorithms, and has dictated for example that when
the geometric domain of a physical problem is divided into subdomains (to be processed by the
di�erent processors), each should be of approximately the same size.
In contrast to load balancing, the idea of asynchronous methods is to avoid processor idle time by

eliminating as much as possible synchronization points, i.e., points at which a processor must wait
for information from other processors. In this way, problems which naturally would decompose into
processes of very di�erent size, e.g., those with unstructured meshes, can do so without di�culty.
The price one pays for this freedom is that some processors will perform extra computations, and it

∗ Corresponding author.
E-mail addresses: frommer@math.uni-wuppertal.de (A. Frommer), szyld@math.temple.edu (D.B. Szyld).
1 Supported by National Science Foundation grants DMS-9625865 and DMS-9973219.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00409-X

202 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

is only when the load is not well balanced, or when communication between the processors is slow,
that this approach is advantageous.
Since the publication of the pioneering paper in 1969 by Chazan and Miranker [21], the theory

and application of asynchronous iterations has been studied and used by many authors. For early
surveys of asynchronous iterative methods, see [3,13,14,33] (see also the recent papers [53,56]).
Asynchronous methods are not considered “mainstream” by many researchers, at least in numerical

analysis. We believe that this is so in part because the load balancing requirement is so prevalent
in the minds of many practitioners. Nevertheless, asynchronous methods are being increasingly used
and studied, particularly so in connection with the use of heterogeneous workstation clusters where
the available computational power of each processor becomes unpredictable. Experiments reported
in the literature, e.g., in [18,35,42], show practical problems for which the asynchronous parallel
times are about half to two-thirds of those reported for synchronous parallel times (which of course
are much faster than sequential times); see further Section 4.3. In [18,35], asynchronous solutions
of systems of several million variables are reported. In addition, asynchronous iterations are possibly
the kind of methods which will allow the next generation of parallel machines to attain the expected
potential. These machines are being designed today with thousands of processors.
Let us mention some recent papers where the application of asynchronous iterations to di�erent

areas is discussed: to the solution of partial di�erential equations [1,2,52]; to inverse problems in
geophysics and oil exploration [48]; to continuous time Markov chains problems for queueing and
stochastic automata networks [18]; to electrical power networks [9]; to network ow [60], to convex
programming [58], and other optimization [25,26], and nonlinear problems [7,59,65]; and to singular
systems of linear equations [5,50].
The purpose of this paper is to review some of the di�erent models of asynchronous iterations

which have been developed during the last three decades, using a common theoretical framework.
We give some results on their convergence, and illustrate the use of these models and convergence
results in various applications, including the iterative solution of linear systems, nonlinear systems,
and initial value problems for systems of ordinary di�erential equations.
It is outside the scope of the paper to present a complete survey of the state-of-the-art in parallel

asynchronous computations. Of the topics not covered we mention a few: analysis and implementa-
tion of stopping criteria [24,51] (and also [15]), enclosure methods for nonlinear systems of equations
[32,34], the theory of multisplittings for the analysis of asynchronous iterations [17,20,55], and its
application to domain decomposition methods using overlapping subdomains [7,35]. Our aim instead
is to present a snapshot of some broad class of applications, together with a general theory which
applies to them.
To that end, we present, in the next section, general computational and mathematical models

representing asynchronous iterations. The computational models correspond to the way the methods
are actually programmed in the parallel computers. The mathematical models are tools used to
analyze the algorithms. In Section 3 we present very general convergence results which apply to
these mathematical models, and in Section 4 we apply these results to speci�c problems.

2. Computational and mathematical models

To start, let us consider a structurally simple and quite general construct. Assume that we are
given a product space E = E1 × · · · × Em and an application H : E → E whose components are

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 203

denoted Hi, i.e., we have

H : E → E; x = (x1; : : : ; xm)→ ((Hx)1; : : : ; (Hx)m); (1)

where xi; (Hx)i = Hi(x) ∈ Ei; i = 1; : : : ; m. The problem at hand is to �nd a �xed point of H . A
standard procedure is to approximate such �xed point by variants of the successive approximation
procedure

xk+1 = H (xk); k = 0; 1; : : : : (2)

Assume for now that we are working with a (shared memory) parallel computer with p processors
P1; : : : ; Pp (p6m) and associate a block of components Jj⊆{1; : : : ; m} with each processor Pj. Then
a parallel variant of the successive approximation procedure (2) can be implemented as follows
(pseudocode for processor Pj):

Computational Model 2.1.

until convergence do
read x from common memory
compute xnewi = Hi(x) for i ∈ Jj
overwrite xi in common memory with xnewi ; i ∈ Jj.
If processors would wait for each other to complete each run through the loop we would indeed

get a (parallel synchronous) implementation of the successive approximation scheme (2). Since here
processors do not wait, we actually get a much less structured iterative process where, due to di�erent
run times for each loop, processors get out of phase. At a given time point, di�erent processors will
have achieved di�erent numbers of iterations (the iteration number k in (2) looses its meaning in
this context). No idle times occur, since processors never wait for each other.
In order to mathematically analyze the Computational Model 2:1, we now step the iteration counter

k by 1 each time x is read from the common memory by some processor Pj(k). Then this x is made
up of components each of which has been written back to memory as the result of the computation
belonging to some earlier iteration. We therefore have x = (xs1(k)1 ; : : : ; xsm(k)m) with iteration counts
s‘(k) ∈ N0; ‘ = 1; : : : ; m, prior to k, indicating the iteration when the ‘th component just read was
computed. A set I k is de�ned indicating which components are computed at the kth iteration, i.e.,
I k = Jj(k). Using these sets, and under the very weak assumptions (3) explained further below, the
Computational Model 2:1 can be modeled mathematically according to the following de�nition; see,
e.g., [33,57],

De�nition 2.2. For k ∈ N, let I k ⊆{1; : : : ; m} and (s1(k); : : : ; sp(k)) ∈ Nm
0 such that

si(k)6k − 1 for i ∈ {1; : : : ; m}; k ∈ N;
lim
k→∞

si(k) =∞ for i ∈ {1; : : : ; m};
|{k ∈ N: i ∈ I k}|=∞ for i ∈ {1; : : : ; m}:

(3)

Given an initial guess x0 ∈ E = E1 × · · · × Em, the iteration

xki =

{
xk−1i for i 6∈ I k
Hi(x

s1(k)
1 ; : : : ; xsm(k)m) for i ∈ I k ; (4)

204 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

is termed an asynchronous iteration (with strategy I k ; k ∈ N and delays di(k) = k − si(k); i =
1; : : : ; n; k ∈ N).

The �rst hypothesis in (3) simply indicates that only components computed earlier (and not future
ones) are used in the current approximation. The second one indicates that as the computation
proceeds, eventually one reads newer information for each of the components. The third one indicates
that no component fails to be updated as time goes on.
This mathematical model goes back at least to Baudet [10], although other authors had equivalent

models; see the historical remarks in [57]. Note that De�nition 2.2 includes as special cases the
classical synchronous successive approximation method (2) (si(k) = k − 1; I k = {1; : : : ; m}) as well
as block Gauss–Seidel-type methods (si(k)= k − 1; I k = {k modm+1}) or symmetric block Gauss–
Seidel methods.
Let us mention at this point that asynchronous iterations on local memory machines (using message

passing to communicate data) are also modeled by De�nition 2.2.
The fundamental model (4) has a wide range of applications. Nevertheless, other various extensions

to account for more general or more speci�c situations are possible. For example, some authors
impose additional conditions on the sequence of delays di(k) = k − si(k) such as being uniformly
bounded; some others restrict them in such a way that overlap is not allowed; see some examples of
these, e.g., in [57] and the bibliography therein. These additional restrictions appear to be necessary
in the convergence theory for the solution of singular linear systems; see [5,41,50].
In several practical situations, the component Hi of H may be given only implicitly (or it may be

expensive to compute) so that we will actually only compute an approximation (which may change
at each step k) to Hi(x

s1(k)
1 ; : : : ; xsm(k)m) in (4). We are then in a non-stationary setting, which includes

in particular the case of two-stage iterations (with an “inner” and an “outer” iteration) which can
be modeled by making H dependent of the iteration index k, i.e., we have the following process

xki =

{
xk−1i for i =∈ I k ;
H k
i (x

s1(k)
1 ; : : : ; xsm(k)m) for i ∈ I k (5)

with Hk : E → E, for k ∈ N, having the same �xed point as H .
One way to study the inner iterations is to consider a “splitting” of the application H of (1) into

K : E × E → E such that K(x; x) = H (x), and the following model.

Computational Model 2.3.

until convergence do
read (x) from common memory
set y = x

until convergence do
compute ynewi = Ki(x; y) for i ∈ Jj
overwrite xi in common memory with ynewi ; i ∈ Jj
set yi = ynewi (in local memory).

This computational model describes in particular asynchronous methods with exible communica-
tion (see [25,44]), in which new information is sent to the other processors as soon as it is computed,

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 205

even before the inner iterations have converged. A mathematical model for it can be obtained by
introducing a second set of delays de�ned through iteration indices r‘(k) ∈ N0; ‘=1; : : : ; m; k ∈ N,
satisfying the same �rst two hypotheses in (3), and by considering the following process, which is
slightly more general than the one given in [38],

xki =

{
xk−1i for i =∈ I k ;
Ki((x

s1(k)
1 ; : : : ; xsm(k)m); (xr1(k)1 ; : : : ; xrm(k)m)) for i ∈ I k : (6)

We note that further generalizations of these mathematical models are possible (and applicable
to speci�c situations), where the domain of the application analogous to H (or K) consists of
multiple copies of E, and each component of each copy of E may be subject to di�erent delays;
see [31,37,50].
It is crucial to realize that our Computational Models 2:1 and 2:3 do not preclude the blocks Jj to

overlap, i.e., we may have Jj ∩ Jl 6= ∅ for j 6= l. This situation cannot be modeled by the expression
(1), but our mathematical models (4)–(6) are still applicable. In some instances, it turns out that
a certain degree of overlapping together with a scheme for combining di�erent contributions within
the overlap will usually accelerate the overall iteration (see, e.g., [7,35]).

3. Convergence theory

A general convergence theorem for the asynchronous iteration (4) is the following result of Bert-
sekas [12] (see also [61]).

Theorem 3.1. Assume that there are sets Ek ⊆E which satisfy
(a) Ek = Ek1 × · · · × Ekm; k ∈ N0, (box condition)
(b) H (Ek)⊆Ek+1⊆Ek; k ∈ N0, (nested sets condition)
(c) there exists x∗ such that

yk ∈ Ek; k ∈ N⇒ lim
k→∞

yk = x∗

(synchronous convergence condition).
Then the sequence of asynchronous iterates xk from (4) converges to x∗; the unique �xed point

of H; provided assumptions (3) hold.

The idea of the proof is to show that starting in a box Ek , after some time all components xi
belong to some E‘i , ‘¿k, and by collecting them we are now in the box Ek+1. A careful inspection
of the proof of this result, e.g., in [12], reveals that we can easily obtain the following corollary for
non-stationary iterations.

Corollary 3.2. Replace (b) in Theorem 3:1 by
(b′) Hk(Ek)⊆Ek+1⊆Ek; k ∈ N0.
Then the asynchronous nonstationary iterates xk from (5) converge to x∗; the unique common

�xed point of all Hk .

206 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

There are several special cases of Theorem 3.1 which merit further discussion. Let us �rst consider
the case where each component space Ei is a normed linear space (Ei; ‖·‖i). De�ne ‖·‖w the weighted
max-norm on E given as

‖x‖w = m
max
i=1

‖xi‖i
wi

; (7)

where w = (w1; : : : ; wm) is a positive vector, i.e., wi ¿ 0 for i = 1; : : : ; m.

Theorem 3.3. Assume that there exists x∗ ∈ E such that Hk(x∗) = x∗ for all k. Moreover; assume
that there exists ∈ [0; 1) and w ∈ Rm positive, such that for all k we have

‖Hk(x)− x∗‖w6 · ‖x − x∗‖w: (8)

Then the asynchronous (non-stationary) iterates xk from (5) converge to x∗; the unique common
�xed point of all Hk .

For a proof, set Ek = {x ∈ E: ‖x − x∗‖w6k · ‖x0 − x∗‖w} and apply Corollary 3.2 (see [37]).
Di�erent proofs of similar theorems can be found in [28,29]. For the stationary case (Hk = H) the
above theorem is known as El Tarazi’s theorem [27].
An even more special case arises in the presence of P-contractions. The mapping H is called a

P-contraction with respect to a �xed point x∗, if there exists a nonnegative matrix P ∈ Rm×m with
�(P)¡ 1 such that for all x ∈ E we have

‖(Hx)1 − x∗1‖1

...
‖(Hx)m − x∗m‖m

6P

‖x1 − x∗1‖1

...
‖xm − x∗m‖m

 ;

where the inequality in Rm is componentwise [47]. It can be shown quite easily that a P-contraction
with respect to x∗ satis�es the assumption of Theorem 3.3 (w has to be taken as the Perron-vector
of a positive matrix su�ciently close to P). We therefore have

Corollary 3.4 (Baudet [10]). Assume that each Hk is a P-contraction with respect to x∗ with P
independent of k. Then the asynchronous (nonstationary) iterates xk from (5) converge to x∗; the
unique common �xed point of all Hk .

The contraction conditions considered so far can be somewhat relaxed to account for situations
where, instead of (8) one just has

x 6= x∗ ⇒ ‖Hx − x∗‖w ¡ ‖x − x∗‖w: (9)

This is particularly interesting for certain M -functions and diagonally dominant functions in the sense
of Mor�e [46] (see [30]). We mention here that if the implication in (9) is in both directions, such
maps are called paracontracting (with respect to the weighted max morm) [28,29,50].
The following is a further generalization of El Tarazi’s theorem which is applicable to process

(6), and in particular to asynchronous methods with exible communication [38].

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 207

Theorem 3.5. Assume that there exists x∗ ∈ E such that K(x∗; x∗) = x∗. Moreover; assume; that
there exists ∈ [0; 1) and a weighted max norm such that

‖K(x; y)− x∗‖w6 ·max{‖x − x∗‖w; ‖y − x∗‖w} for all x; y ∈ E:
Then the asynchronous (with exible communication) iterates xk from (6) converge to x∗.

Another important special case arises for isotone mappings, i.e., mappings H where x6y implies
Hx6Hy. The following result goes back to Miellou [43]; see also [31] for the slightly more general
version given here, as well as for a related result for isotonically decomposable mappings.

Theorem 3.6. Assume that E is equipped with a partial ordering based on partial orderings for
each component; and that the partial ordering is compatible with the topology on E so that we
have

x06x16x26 · · ·6xk6 · · ·6y0 ⇒ lim
k→∞

xk = x∗ exists and x∗6y0:

Assume further that H is continuous and isotone and that there exist x06y0 such that x06Hx06
Hy06y0. Then the asynchronous iterates xk from (4) converge to x∗ with x∗ = Hx∗.

For a proof, let zk = H (zk−1) with z0 = x0, let x∗ = limk→∞ zk6y0 and take Ek = {x: zk6x6x∗}
in Theorem 3.1.

4. Applications of the theory

In the remainder of the paper we show how the convergence theory for the general models
(4)–(6) can be applied to a wide range of scienti�c problems.

4.1. Nonsingular linear systems

Let us start by considering a linear system of the form

Ax = b; (10)

where A ∈ Rn×n is nonsingular. Let A =M − N be a splitting of A, i.e., M is nonsingular. Let us
de�ne the iteration operator

H : Rn → Rn; x → M−1(Nx + b) (11)

and analyze the convergence of its associated asynchronous iteration (4) in the case that E = Rn =
E1× · · · ×En with Ei =R, i.e. we allow each component to be treated individually. One example of
such splitting is the Jacobi operator, when M is the diagonal part of A. Let |H | denote the matrix
of absolute values of entries of H .

Theorem 4.1. (a) H is a P-contraction if and only if �(|H |)¡ 1.
(b) If �(|H |)¡ 1; then the asynchronous iteration (4) (with H) converges to x∗; the solution of

Ax = b.

208 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

(c) If �(|H |)¿1; then there exists an asynchronous iteration i.e.; a set of delays and strategies
satisfying (3); and an initial guess x0 such that the iterates xk produced by (4) do not converge to
x∗ = A−1b.

Proof. (a) is a simple calculation, (b) follows from Corollary 3.4. Part (c) can be found in [21],
where a version of a proof of (b) was given for the �rst time. Bertsekas and Tsitsiklis [13], Strikwerda
[54], and Su et al. [56] suggested di�erent constructions of the non-convergent sequences.

We remark that the class of matrices with �(|H |)¡ 1 is just the class of H -matrices (see, e.g.,
[11]). H -matrices include M -matrices and strictly diagonally dominant or irreducibly diagonally
dominant matrices [62].
If we think of grouping components together into (disjoint) blocks Bi⊆{1; : : : ; n}; i=1; : : : ; m, we

can write (10) in block notation as
m∑
j=1

Aijxj = bi; i = 1; : : : ; m; (12)

where xj ∈ Rnj ; nj is the cardinality of Bj; Aij ∈ Rni×nj ; ∑m
i=1 ni = n. The corresponding block Jacobi

operator H is given by (11), where now M = diag(A11; : : : ; Amm) is the block diagonal of A which
is assumed to be nonsingular, and A =M − N . In view of Theorem 3.3 we are now interested in
cases where H is a contraction with respect to a weighted max-norm (7) where ‖ · ‖i is a norm on
block i. Interestingly, this is again so for H -matrices.

Lemma 4.2. Let A be an H -matrix and let x∗=A−1b. Then there exist norms ‖ · ‖i on each block
i; i ∈ {1; : : : ; m} such that with the (unweighted) max-norm ‖x‖ = maxni=1 ‖xi‖i, the Block Jacobi
operator H satis�es

‖Hx − x∗‖6 · ‖x − x∗‖ with ∈ [0; 1):

Proof. One proceeds by showing �(|H |)¡ 1, which is true because the block Jacobi-splitting is an
H -splitting [36]. This implies the existence of v ∈ Rn, v¿ 0 with |H |v6 · v, ∈ [0; 1). One then
de�nes ‖ · ‖i to be the weighted max-norm on block i with weights from the respective components
of v.

Alternatively, the following result can be helpful.

Lemma 4.3. Let ‖ · ‖i be a norm on Rni ; i = 1; : : : ; n. For each block Aij let ‖ · ‖ij denote the
corresponding matrix norm

‖Aij‖ij = max
‖xj‖j=1

‖Aijxj‖i :

Let P = (mij) ∈ Rn×n with

mij =
{
0 if i = j;
‖Aij‖ij · ‖A−1

ii ‖ii if i 6= j:
Then; if �(P)¡ 1 we have that H is a P-contraction with respect to x∗.

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 209

The proof is a straightforward computation.
In view of the above lemma one may thus generalize the concept of an H -matrix to block

H -matrices, a block H -matrix being one for which

1=‖A−1

11 ‖11 −‖A12‖12 : : : −‖A1m‖1m
−‖A21‖21 1=|A−1

22 ‖22 −‖A2m‖2m
...

...
. . .

...
−‖Am1‖m1 : : : : : : 1=‖A−1

mm‖mm

is an M -matrix (see, e.g., [8,49]). This then implies that the block Jacobi operator is indeed a
P-contraction, so that asynchronous iterations converge. Note also that in Lemma 4.3 we have
freedom in the choice of the norms for each block.
Let us mention that the above results remain unchanged if we replace ‖A−1

ii ‖ii in the de�nition of
P by 1=mii if we assume each block Aii to be strongly accretive with constant mii (see, e.g., [39]),
i.e., we assume that for all xi ∈ (Rni ; ‖ · ‖i) there exists a dual li(xi) of xi such that

〈Aiixi; li(xi)〉¿mii‖xi‖2i :
Here, 〈·; ·〉 denotes the bilinear form between (Rni ; ‖ · ‖i) as a Banach space and its dual, and li(xi)
is an element of (Rni ; ‖ · ‖i)∗ with

‖li(xi)‖∗i = ‖xi‖i and 〈li(xi); xi〉= ‖xi‖2i :
In this asynchronous block Jacobi setting, each processor needs to solve a linear system with the

coe�cient matrix Aii in (4) (see (11)). The solution of each of these systems by an iterative method
based on a splitting Aii = Fi − Gi in Rni × Rni gives rise to a non-stationary process (5) with

Hk
i (x) = (F

−1
i Gi)

‘(i; k)xi +
‘(i; k)−1∑
j=0

(F−1
i Gi)

j(Nx + b);

where F=diag(F1; : : : ; Fm) and G=diag(G1; : : : ; Gm) are block diagonal, M=F−G, and ‘(i; k) is the
number of inner iterations. In the context of the Computational Model 2.3, we have a process of the
form (6) with K(x; y) =F−1(Gy+Nx+ b). Under suitable hypotheses on the splittings A=M −N ,
and M = F − G (related to weak regular splittings and H -splittings), these methods can be shown
to converge using Theorems 3.3 and 3.5, respectively (see [37,38] and also [66,67]).
In the case of overlapping variables, i.e., when the blocks Bi de�ning the partitions for (12) are

not disjoint, one can still de�ne a block Jacobi iteration with overlap by solving (or approximating)
in di�erent processors the linear systems

Aiixi = bi −
m∑

j=1; j 6=i
Aijxj; i = 1; : : : ; m;

cf. the Computational Model 2.1. A consistent approximation to the solution of (10) can then be
obtained by convex combinations of the elements in each component xi belonging to nonempty
intersections of the blocks Bi. The coe�cients of these convex combinations, which can simply be
ones and zeros, may change from one iteration to the next. A full mathematical description of this
case will not be undertaken here, but we point out that for its analysis operators Hk : Em → Em are
de�ned representing each asynchronous step. Convergence of this asynchronous additive algebraic
Schwarz iteration is then obtained using Theorem 3.3 (see [7,35]).

210 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

We conclude this subsection with some comments on the case where A in (10) is singular. Any
splitting A=M −N (M nonsingular) of a singular matrix A produces an iteration matrix H =M−1N
with 1 as an eigenvalue. Assume for simplicity that H¿0 so that |H | = H and �(H) = 1 with
1 being an eigenvalue of H . The �xed points of H are the eigenvectors of H corresponding to
the eigenvalue 1, and thus form a subspace of Rn. Theorem 3.1 and its generalizations cannot be
directly applied to this situation, since the nested set condition would normally be violated. In fact,
part of the problem is that we no longer have a unique �xed point. In other words, the singular case
lies outside the general theory of Section 3 and more restrictive hypotheses on the asynchronous
iteration are needed in order to ensure convergence. For example, Lubachevsky and Mitra [41]
consider the situation where (basically) H is irreducible, the starting vector is nonnegative and the
asynchronous iteration is restricted in such a manner that for some �xed index i we always have
si(k) = k − 1 whenever i ∈ I k . In this case, one can then actually again construct a nested set of
boxes El; l = 0; 1; : : : which converge to some singleton consisting of a �xed point of H , and for
all l the asynchronous iterates xk satisfy xk ∈ El for l¿l(k).
Another approach was taken in [5,50] using the concept of paracontractions. Again, additional

restrictions have to be imposed on the asynchronous iteration in order to guarantee convergence.
For example, Bahi [5] requires to do a “true” step of (synchronous) successive approximation every
once in a while.

4.2. Nonlinear equations

Assume that we are given a nonlinear system of equations

F(x) = 0 where F : DF ⊆Rn → Rn: (13)

Assume that this equation has exactly one solution x∗ and let H : DH ⊆Rn → Rn be an iteration
function for this problem, i.e., x∗ is the unique �xed point of H . Not too surprisingly, the following
local version of Corollary 3.4 can be shown to hold [27].

Theorem 4.4. Assume that x∗ lies in the interior of DH and that H is Fr�echet di�erentiable at x∗.
If �(|H ′(x∗)|)¡ 1; then there exists a neighborhood N of x∗ such that the asynchronous iterates
(4) converge to x∗; provided x0 ∈N.

The standard iteration operator for (13) is the Newton operator HN(x) = x − F ′(x)−1F(x): Here,
H ′(x∗) = 0 so that Theorem 4.4 can be applied. However, for practical reasons it is mandatory in
asynchronous computations that the components of H can be evaluated individually at much lower
cost than all components together. Due to the presence of the term F ′(x)−1 in HN this is usually not
the case. A favorable situation arises, for example, in the Durand–Kerner method [22,23], for the
simultaneous computation of all zeros of a polynomial, which is Newton’s method on the equations
expressing the coe�cients of the polynomial via the elementary symmetric functions on its roots,
but where one has a simple, explicit formula for each component of HN.
If D(x) denotes the diagonal part of F ′(x) = D(x) − B(x), the Newton–Jacobi operator is given

as HNJ(x) = x − D−1(x)F(x) [47]. We can regard HNJ as a two-stage approximation to HN with
one inner step. Here it is trivial that components of HNJ can be evaluated individually. We have
H ′
NJ(x

∗) = D(x∗)−1B(x∗). So, as in the remark following Theorem 4.1, we see that we get local

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 211

convergence of the asynchronous iterates if H ′(x∗) is an H -matrix. It is important to notice that
functions F satisfying the above conditions arise in several applications, including discretizations of
elliptic partial di�erential equations.
In a general way, we can de�ne the components of the nonlinear Jacobi operator HJ for (13)

through

yi = (HJ)i(x) ⇔ Fi(x1; : : : ; xi−1; yi; xi+1; : : : ; xn) = 0:

The generalization to a block nonlinear Jacobi operator should be obvious (cf. (16)). Another asyn-
chronous approach to Newton’s method includes the work by Boja�nczyk [16], where the Newton
operator can be viewed as K(x; y) = x − F ′(y)−1F(x) (cf. Theorem 3.5). Yet another extension is
to consider quasi-Newton methods [64].
Interestingly, there are several important situations where global convergence of asynchronous iter-

ates for HJ can be proved. As a generalization of Lemma 4.3 it was shown in [39] that Theorem 3.3
holds for the (block) Jacobi operator HJ for certain mildly non-linear functions arising in discretiza-
tions of elliptic boundary value problems, the obstacle problem or the Hamilton–Jacobi–Bellman
problem.
If the function F is an M -function (see [47]), one can also prove global convergence of the

asynchronous iterates for HJ, now using Theorem 3.6 [68]. Generalizations for further classes of
functions, including a nonlinear analog of H -matrices have been developed in [30].

4.3. Waveform relaxation

Waveform relaxation methods are parallel iterative methods for initial value problems based on a
splitting principle. They were developed at the beginning of the 1980s for the simulation of electronic
circuits (see [63]).
Consider the initial value problem

ẋ(t) = F(t; x(t)); t ∈ [0; T];
x(0) = x0;

(14)

where F : [0; T]×Rn → Rn; x(t) ∈ Rn. Instead of solving (14) directly, waveform relaxation methods
split the function F into a function G : [0; T]× Rn × Rn → Rn with G(t; x; x) = F(t; x) for all t and
x. Starting with a function x0 : [0; T] → Rn satisfying x0(0) = x0 (for example x0 ≡ x0) one then
successively solves the systems

ẋk(t) = G(t; xk(t); xk−1(t)); t ∈ [0; T];
xk(0) = x0

(15)

for k = 1; 2; : : : . Here, the function xk−1 is known and xk is to be determined.
Note that the familiar Picard iteration

ẋk(t) =F(t; xk−1(t)); t ∈ [0; T];
xk(0) = x0

is a special waveform relaxation method where G(t; x; y)=F(t; y). Since the Picard iteration usually
converges very slowly, one is interested in better splittings G which yield faster convergence. One

212 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

possibility is to take a block Jacobi type splitting which, given a block decomposition x=(x1; : : : ; xm)
(and similarly F(t; x) = ((F(t; x))1; : : : ; (F(t; x))m)) de�nes block i of G as

(G(t; x; y))i := (F(t; (x1; : : : ; xi−1; yi; xi+1; : : : ; xm)))i : (16)

From now on, let us assume that G satis�es a one-sided Lipschitz condition with respect to the
�rst argument, and a strong Lipschitz-condition with respect to the second argument, i.e., one has

〈G(t; x; y)− G(t; �x; y); x − �x〉6l · ‖x − �x‖2; ‖G(t; x; y)− G(t; x; �y)‖6L · ‖y − �y‖ (17)

for all t ∈ [0; T];]; x; �x; y; �y ∈ Rn. The Lipschitz condition with respect to the �rst argument implies
that (15) has a unique solution xk . Moreover, since F(t; x) = G(t; x; x), the function F also satis�es
a (one-sided) Lipschitz condition which shows that (14) has a unique solution x∗.
Iteration (15) de�nes an operator H where y = H (x) if

ẏ(t) =G(t; y(t); x(t)); t ∈ [0; T];
y(0) = x0: (18)

Here, H acts on a space of functions. We take this space to be C([0; T];Rn), the Banach space of
all continuous functions from [0; T] to Rn with the norm

‖|x‖|� = max
t∈[0;T]

e−�t‖x(t)‖∞; �¿ 0: (19)

It is crucial for us to notice that ‖| · ‖|� is in fact a maximum norm over the block components of
x since

‖|x‖|� = m
max
i=1

]|xi|[�; (20)

where for continuous f : [0; T]→ Rni (ni is the dimension of block i) the norm]| · |[� is given as
]|f|[� = max

t∈[0;T]
e−�t‖f(t)‖∞: (21)

The following theorem proved very recently by Martin [42] shows that for � su�ciently large the
operator H from (18) is contracting with respect to the max-norm ‖|x‖|�. Therefore, Theorem 3.3
shows that asynchronous iterations for H converge.

Theorem 4.5. Assume that G satis�es (17) and let x∗ ∈ C([0; T];Rn) be the solution of (14). There
exists � su�ciently large such that for all x ∈ C([0; T];Rn) we have

‖|H (x)− x∗‖|�6 1
2 · ‖|x − x∗‖|�:

Proof. Denote y = H (x) and u(t) = y(t)− x∗(t).
Then u̇(t) = G(t; y(t); x(t))− G(t; x∗(t); x∗(t)), so that from (17) we get

〈u̇(t); u(t)〉6l · ‖u(t)‖2 + L · ‖u(t)‖ · ‖x(t)− x∗(t)‖; t ∈ [0; T]:
Since 〈u̇(t); u(t)〉= (d=dt)‖u(t)‖2 whenever u(t) 6= 0, a standard argument from the theory of di�er-
ential inequalities (see, e.g., [19]) yields

‖u(t)‖6L · e|l|t
∫ t

0
‖x(s)− x∗(s)‖e−|l|s ds:

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 213

Turning from ‖ · ‖ to ‖ · ‖∞ we get

‖u(t)‖∞6cL · e|l|t
∫ t

0
‖x(s)− x∗(s)‖∞e−|l|s ds

with some constant c¿ 0. From the latter inequality we conclude

‖u(t)‖∞6 cL · e|l|t
∫ t

0
‖x(s)− x∗(s)‖∞e−�se�se−|l|s ds

6 cL · e|l|t · ‖|x − x∗‖|�
∫ t

0
e(�−|l|)s ds:

For �¿ |l| the last integral is less than e(�−|l|)t =(�− |l|), so that we get

‖u(t)‖∞e−�t6 cL
�− |l|‖|x − x

∗‖|�; t ∈ [0; T]

and thus

‖|u‖|�6 cL
�− |l| · ‖|x − x

∗‖|�:

So taking �¿ 2cL+ |l| proves the theorem.

For an in�nite time interval [45] gives a convergence result for asynchronous iterations under
much more restrictive assumptions. For di�erential-algebraic systems and asynchronous iterations,
see [4,6].
In [42] several numerical results on asynchronous waveform relaxation methods have been re-

ported. These computations were done on a cluster of 8 SUN Ultra Sparc 10 workstations, con-
nected via fast Ethernet. The example considered arises from a model describing the penetration of
radioactively marked antibodies into cancerous tissue (MedicalAkzo from [40]). The total system
size was 400, and the splitting G was obtained by a block Jacobi decomposition of F assigning a
block of 50 to each processor. The asynchronous variant then needed only 66% (120 s) of the time
required for the synchronous variant (180 s).

References

[1] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, On parallel asynchronous high-order solutions of parabolic PDEs,
Numer. Algorithms 12 (1996) 159–192.

[2] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, Implicit-explicit parallel asynchronous solver for PDEs, SIAM J.
Sci. Comput. 19 (1998) 1366–1404.

[3] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, E. Turkel, A survey of asynchronous �nite-di�erence methods for
parabolic PDEs on multiprocessors, Appl. Numer. Math. 12 (1993) 27–45.

[4] J. Bahi, Asynchronous Runge–Kutta methods for di�erential-algebraic systems, Adv. Parallel Comput. 11 (1996)
205–212.

[5] J. Bahi, Algorithmes parall�eles asynchrones pour des syst�emes singuliers, C.R. l’Acad. Sci. S�er. 326 (1998) 1421–
1425.

[6] J. Bahi, E. Griepentrog, J.-C. Miellou, Parallel treatment of a class of di�erential-algebraic systems, SIAM J. Numer.
Anal. 23 (1996) 1969–1980.

214 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

[7] J. Bahi, J.-C. Miellou, K. Rho�r, Asynchronous multisplitting methods for nonlinear �xed point problems, Numer.
Algorithms 15 (1997) 315–345.

[8] Z.-Z. Bai, V. Migall�on, J. Penad�es, D.B. Szyld, Block and asynchronous two-stage methods for mildly nonlinear
systems, Numer. Math. 82 (1999) 1–20.

[9] B. Bar�an, E. Kaszkurewicz, A. Bhaya, Parallel asynchronous team algorithms: Convergence and performance analysis,
IEEE Trans. Parallel Distributed Systems 7 (1996) 677–688.

[10] G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach. 25 (1978) 226–244.
[11] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, Third

edition, 1979 (reprinted by SIAM, Philadelphia, 1994).
[12] D.P. Bertsekas, Distributed asynchronous computation of �xed points, Math. Programming 27 (1983) 107–120.
[13] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall, Englewood Cli�s, NJ, 1989.
[14] D.P. Bertsekas, J.N. Tsitsiklis, Some aspects of parallel and distributed iterative algorithms – a survey, Automatica

27 (1991) 3–21.
[15] K. Blathras, D.B. Szyld, Y. Shi, Timing models and local stopping criteria for asynchronous iterative algorithms. J.

Parallel Distributed Comput. 58 (1999) 446–465.
[16] A. Boja�nczyk, Optimal asynchronous Newton method for the solution of nonlinear equations, J. Assoc. Comput.

Mach. 31 (1984) 792–803.
[17] R. Bru, V. Migall�on, J. Penad�es, D.B. Szyld, Parallel, synchronous and asynchronous two-stage multisplitting

methods, Electron. Trans. Numer. Anal. 3 (1995) 24–38.
[18] P. Buchholz, M. Fischer, P. Kemper, Distributed steady state analysis using Kronecker algebra, in: B. Plateau,

W.J. Stewart (Eds.), Numerical Solution of Markov Chains (NSMC ’99), Prensas Universitarias de Zaragoza, 1999,
pp. 76–95.

[19] K. Burrage, Sequential and Parallel Methods for Ordinary Di�erential Equations, Oxford University Press, Oxford,
1995.

[20] M.J. Castel, V. Migall�on, J. Penad�es, Convergence of non-stationary multisplitting methods for Hermitian positive
de�nite matrices, Math. Comput. 67 (1998) 209–220.

[21] D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969) 199–222.
[22] M. Cosnard, P. Fraigniaud, Asynchronous Durand-Kerner and Aberth polynomial root �nding methods on a

distributed memory multicomputer, in: D. Evans, G. Joubert, F. Peters (Eds.), Parallel Computing 89, North-Holland,
Amsterdam, 1990.

[23] E. Durand, Solutions num�eriques des �equations alg�ebriques, Vol. I, Masson, Paris, 1960.
[24] D. El Baz, A method of terminating asynchronous iterative algorithms on message passing systems, Parallel

Algorithms Appl. 9 (1996) 153–158.
[25] D. El Baz, D. Gazen, J.-C. Miellou, P. Spiteri, Mise en �uvre de m�ethodes it�eratives asynchrones avec communication

exible, application �a la r�esolution d’une classe de probl�emes d’optimisation, Calculateurs Parall�eles 8 (1996) 393–
410.

[26] D. El Baz, P. Spiteri, J.-C. Miellou, Distributed asynchronous iterative methods with order intervals for a class of
nonlinear optimization problems, J. Parallel Distributed Comput. 38 (1996) 1–15.

[27] M.N. El Tarazi, Some convergence results for asynchronous algorithms, Numer. Math. 39 (1982) 325–340.
[28] L. Elsner, I. Koltracht, M. Neumann, On the convergence of asynchronous paracontractions with application to

tomographic reconstruction from incomplete data, Linear Algebra Appl. 130 (1990) 65–82.
[29] L. Elsner, I. Koltracht, M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numer.

Math. 62 (1992) 305–319.
[30] A. Frommer, Generalized nonlinear diagonal dominance and applications to asynchronous iterative methods, J.

Comput. Appl. Math. 38 (1991) 105–124.
[31] A. Frommer, On asynchronous iterations in partially ordered spaces, Numer. Functional Anal. Optim. 12 (1991)

315–325.
[32] A. Frommer, Asynchronous iterations for enclosing solutions of �xed point problems, in: L. Atanassova,

J. Herzberger (Eds.), Computer Arithmetic and Enclosure Methods, Elsevier, Amsterdam, 1992, pp. 243–252.
[33] A. Frommer, Parallele asynchrone Iterationen. in: J. Herzberger (Ed.), Wissenschaftliches Rechnen, Akademie, Berlin,

1995, pp. 187–231 (Chapter 4).

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 215

[34] A. Frommer, H. Schwandt, Asynchronous parallel methods for enclosing solutions of nonlinear equations, J. Comput.
Appl. Math. 60 (1995) 47–62.

[35] A. Frommer, H. Schwandt, D.B. Szyld, Asynchronous weighted additive Schwarz methods, Electron. Trans. Numer.
Anal. 5 (1997) 48–61.

[36] A. Frommer, D.B. Szyld, H -splittings and two-stage iterative methods, Numer. Math. 63 (1992) 345–356.
[37] A. Frommer, D.B. Szyld, Asynchronous two-stage iterative methods, Numer. Math. 69 (1994) 141–153.
[38] A. Frommer, D.B. Szyld, Asynchronous iterations with exible communication for linear systems, Calculateurs

Parall�eles 10 (1998) 421–429.
[39] L. Giraud, P. Spit�eri, R�esolution parall�ele de probl�emes aux limites non lineaires, Math. Modelling Numer. Anal.

25 (1991) 579–606.
[40] W. Lioen, J. de Swart, W. van der Veen, Test set for IVP solvers. CWI Amsterdam, Online at

http://www.cwi.nl/cwi/projects/IVPtestset.
[41] B. Lubachevsky, D. Mitra, A chaotic asynchronous algorithm for computing the �xed point of a nonnegative matrix

of unit spectral radius, J. Assoc. Comput. Mach. 33 (1986) 130–150.
[42] S. Martin, Parallele asynchrone Waveform-Relaxation f�ur Anfangswertaufgaben, Master’s thesis, Department of

Mathematics, University of Wuppertal, 1999.
[43] J.C. Miellou, It�erations chaotiques �a retards; �etudes de la convergence dans le cas d‘espaces partiellement ordonn�es,

C.R. l’Acad. Sci. Paris, S�er. A 280 (1975) 233–236.
[44] J.C. Miellou, D. El Baz, P. Spit�eri, A new class of asynchronous iterative algorithms with order intervals, Math.

Comput. 67 (1998) 237–255.
[45] D. Mitra, Asynchronous relaxations for the numerical solution of di�erential equations by parallel processors, SIAM

J. Sci. Statist. Comput. 8 (1987) s43–s58.
[46] J.J. Mor�e, Nonlinear generalizations of matrix diagonal dominance with application to Gauss–Seidel iterations, SIAM

J. Numer. Anal. 9 (1972) 357–378.
[47] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New

York and London, 1970.
[48] V. Pereyra, Asynchronous distributed solution of large scale nonlinear inversion problems, Appl. Numer. Math. 30

(1999) 31–40.
[49] B. Polman, Incomplete blockwise factorization of (block) H -matrices, Linear Algebra Appl. 90 (1987) 119–132.
[50] M. Pott, On the convergence of asynchronous iteration methods for nonlinear paracontractions and consistent linear

systems, Linear Algebra Appl. 283 (1998) 1–33.
[51] S.A. Savari, D.P. Bertserkas, Finite termination of asynchronous iterative algorithms, Parallel Comput. 22 (1996)

39–56.
[52] W. Shangmeng, L. Xiaomei, A class of stable di�erence schemes for linear elliptic PDE’s and their asynchronous

parallel computation, Wuhan Univ. J. Nat. Sci. 1 (1996) 553–556.
[53] J. �Silc, B. Robi�c, T. Ungerer, Asynchrony in parallel computing: From dataow to multithreading, Parallel Distributed

Comput. Practices 1 (1998) 3–30.
[54] J.C. Strikwerda, A convergence theorem for chaotic asynchronous relaxation, Linear Algebra Appl. 253 (1997)

15–24.
[55] Y. Su, A. Bhaya, Convergence of pseudocontractions and applications to two-stage and asynchronous multisplittings,

Technical Report SB97=NACAD=05, Laboratory for High Performance Computing, Graduate School of Engineering,
Federal University of Rio de Janeiro, 1997.

[56] Y. Su, A. Bhaya, E. Kaszkurewicz, V.S. Kozyakin, Further results on convergence of asynchronous linear iterations,
Linear Algebra Appl. 281 (1998) 11–24.

[57] D.B. Szyld, Di�erent models of parallel asynchronous iterations with overlapping blocks, Comput. Appl. Math. 17
(1998) 101–115.

[58] X.-C. Tai, P. Tseng, An asynchronous space decomposition method, in: C.-H. Lai, P.E. BjHrstad, M. Cross,
O.B. Widlund (Eds.), Eleventh International Conference on Domain Decomposition Methods (London), DDM.org
Press, 1999, pp. 348–358.

[59] P. Tseng, On the rate of convergence of a partially asynchronous gradient projection algorithm, SIAM J. Optim. 1
(1991) 603–619.

216 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

[60] P. Tseng, D.P. Bertsekas, J.N. Tsitsiklis, Partially asynchronous, parallel algorithm for network ow and other
problems, SIAM J. Control Optim. 28 (1990) 678–710.

[61] A. �Uresin, M. Dubois, Su�cient conditions for the convergence of asynchronous iterations, Parallel Comput. 10
(1989) 83–92.

[62] R.S. Varga, On recurring theorems on diagonal dominance, Linear Algebra Appl. 13 (1976) 1–9.
[63] J. White, A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation on VLSI Circuits, Kluwer Academic

Publishers, Boston, 1987.
[64] J.-J. Xu, Convergence of partially asynchronous block quasi-Newton methods for nonlinear systems of equations, J.

Comput. Appl. Math. 103 (1999) 307–321.
[65] J. Aral, V. Migall�on, J. Penad�es, Non-stationary parallel multisplitting algorithms for almost linear systems, Numer.

Linear Algebra Appl. 6 (1999) 79–92.
[66] R. Bru, L. Elsner, M. Neumann, Models of parallel chaotic iteration methods, Linear Algebra Appl. 103 (1988)

175–192.
[67] R. Bru, L. Elsner, M. Neumann, Convergence of in�nite products of matrices and inner–outer iteration schemes,

Electron. Trans. Numer. Anal. 2 (1994) 183–193.
[68] D. El Baz, M -functions and parallel asynchronous algorithms, SIAM J. Numer. Anal. 27 (1990) 136–140.

Journal of Computational and Applied Mathematics 123 (2000) 217–240
www.elsevier.nl/locate/cam

Iterative methods for large continuation problems
D. Calvettia ; ∗; 1, L. Reichelb; 2

aDepartment of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA
bDepartment of Mathematics and Computer Science, Kent State University, Kent, OH 44242, USA

Received 1 September 1999; received in revised form 11 September 1999

Abstract

The computation of solution paths for continuation problems requires the solution of a sequence of nonlinear systems of
equations. Each nonlinear system can be solved by computing the solution of a succession of linear systems of equations
determined by Jacobian matrices associated with the nonlinear system of equations. Points on the solution path where the
Jacobian matrix is singular are referred to as singular points and require special handling. They may be turning points or
bifurcation points. In order to detect singular points, it is essential to monitor the eigenvalues of smallest magnitude of
the Jacobian matrices generated as the solution path is traversed. We describe iterative methods for the computation of
solution paths for continuation problems so large that factorization of the Jacobian matrices is infeasible or impractical.
The iterative methods simultaneously solve linear systems of equations determined by the Jacobian matrices and compute
a few eigenvalue–eigenvector pairs associated with the eigenvalues of smallest magnitude of each Jacobian. A bordering
algorithm with a pseudo-arclength parametrization is applied in the vicinity of turning points to overcome the singularity
of the Jacobian. A bifurcation perturbation strategy is used to compute solution paths at bifurcation points. Our iterative
methods are based on the block-Lanczos algorithm and are applicable to problems with large symmetric Jacobian matrices.
c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F15

Keywords: Path following; Turning point; Bifurcation point; Eigenvalue computation; Bordering algorithm; Nonlinear
system

1. Introduction

Many problems in science and engineering require the computation of a family of solutions u(�) ∈
Rn; a6�6b, of a nonlinear system of equations of the form

∗ Corresponding author.
E-mail addresses: dxc57@po.cwru.edu (D. Calvetti), reichel@mcs.kent.edu (L. Reichel).
1 Research supported in part by NSF grant DMS-9806702.
2 Research supported in part by NSF grants DMS-9806413 and ASC-9720221.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00405-2

218 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

G(u; �) = 0; u= u(�); (1.1)

where G : Rn×R→ Rn is a continuously di�erentiable function of u ∈ Rn and � ∈ R. The parameter
� is often a quantity of physical signi�cance, such as temperature in liquid crystal modeling [4] or
the Reynolds number in hydrodynamical ow [15], and is commonly referred to as the “natural
parameter”. We are interested in determining solution paths

� := {(u; �): G(u; �) = 0; u= u(�); a6�6b}
associated with (1.1). Here a and b are given bounds for �.
The solutions u(�); a6�6b, of (1.1) are commonly computed by a continuation method. In these

methods an initial value problem for u is derived by di�erentiating Eq. (1.1) with respect to �. Thus,
let u= u(�) satisfy (1.1). Then di�erentiation of (1.1) yields

Gu(u(�); �)u̇(�) + G�(u(�); �) = 0; (1.2)

where u̇=du=d�. Given u(a) and assuming that the Jacobian matrix Gu is nonsingular in a neighbor-
hood of the solution path, we can compute u(�) for a¡�6b by solving the initial value problem
(1.2) for u=u(�). Points where the Jacobian matrix Gu(u; �) is nonsingular are referred to as regular
points; points where Gu(u; �) is singular are referred to as singular points. Singular points on the
solution path are either turning points or bifurcation points of the solution path. The determination
of the solution path in a neighborhood of a turning point or bifurcation point requires special care.
It is therefore important to detect singular points on the solution path.
This paper describes new algorithms for path following. The algorithms are designed to be appli-

cable to problems so large that factorization of the Jacobian matrices into triangular or orthogonal
factors is unfeasible or undesirable. Our algorithms only evaluate matrix–vector products with the
Jacobian matrices. Therefore, only a few of the nonvanishing entries of each Jacobian matrix gener-
ated have to be stored in fast computer memory simultaneously; the entries can be computed as they
are required for the evaluation of matrix–vector products and discarded when they are not needed.
This approach requires little computer memory and is therefore well suited for large problems, such
as the liquid crystal modeling problem discussed in [4].
We assume that the Jacobian matrices are symmetric. Our algorithms are based on an iterative

method for the simultaneous solution of linear systems of equations with the Jacobian matrix and
computation of a few of the eigenvalues of smallest magnitude and associated eigenvectors of the
Jacobian. Since the Jacobian is singular at turning and bifurcation points on the solution path and
regular elsewhere on the solution path, knowledge of the eigenvalue closest to the origin makes it
easy to identify these points. Moreover, the eigenvectors associated with the smallest eigenvalues
are helpful for path following in the vicinity of a turning or bifurcation point.
Our iterative method for solving linear systems, while simultaneously computing a few eigen-

value–eigenvector pairs, is based on the implicitly restricted block-Lanczos (IRBL) method intro-
duced in [4]. This method is a block-variant of the implicitly restarted Lanczos method discussed in
[2,6,17].
Bifurcation points are traversed by two or more solution paths. Di�erent methods for continuing

paths across bifurcation points have been proposed in the literature. This paper only discusses the
“perturbed bifurcation” method, where a small perturbation of Eq. (1.1) is introduced at a bifurcation
point. This makes a bifurcation point split into close regular or turning points; see Georg [13] for a
discussion and illustrations.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 219

Continuation methods for path following have received considerable attention. A nice survey of
the mathematical background is provided by Keller [16]. Only few algorithms are available for
large-scale problems; see, e.g., [1,8,9,14,15,18]. Our algorithms di�er from those available in the
literature in that they are based on the IRBL method and are designed to be applicable for problems
with very large symmetric Jacobian matrices.
This paper is organized as follows. Section 2 recalls a few useful results on the solution of contin-

uation problems and discusses the calculations needed for path following. In Section 3, we outline an
iterative method, previously introduced in [5], for the computation of a few eigenpairs of a large sym-
metric matrix, and the simultaneous solution of a linear system of equations with this matrix. Section
4 describes how to apply this iterative method to path following in the presence of turning and bifur-
cation points. We present path following algorithms based on the Euler–Newton predictor-corrector
scheme for use at regular points on the solution path. A pseudo-arclength parametrization is used
in the vicinity of turning points. Numerical examples are presented in Section 5 and concluding
remarks can be found in Section 6.

2. An overview of the path following problem

The �rst part of this section reviews the continuation problem and introduces notation to be used
in the remainder of the paper. In the second part the computational problems are described.

2.1. Theory

In this subsection the Jacobian matrix is allowed to be nonsymmetric. We focus on the interplay
between geometry and computations. An excellent introduction to the numerical analysis of contin-
uation problems is provided by Keller [16] and much of our discussion follows his presentation.
The purpose of a continuation method is to determine solutions of problem (1.1) for all � in a

speci�ed interval [a; b]. Let �1 = �0 +�� with �0; �1 ∈ [a; b] and assume that the solution u0 = u(�0)
of (1.1) for � = �0 is known. The Implicit Function Theorem provides the theoretical basis for
computational methods for determining the solution u1 = u(�1) of (1.1) for � = �1 when �� is of
su�ciently small magnitude.
Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the induced matrix norm. We

note, however, that when G stems from the discretization of a di�erential or integral equation, it
can be advantageous to select a norm that depends on the discretization; see Ferng and Kelley [12]
for a discussion.
Introduce the sets

B�(u0) := {u ∈ Rn: ‖u− u0‖¡�}; B�(�0) := {� ∈ R : |�− �0|¡�}
for �¿ 0.

Theorem 2.1 (Implicit Function Theorem). Let G : Rn×R→ Rn be a function; such that for some
su�ciently small constants �1¿ 0 and �2¿ 0;

(i) G(u0; �0) = 0 for some u0 ∈ Rn and �0 ∈ R;

220 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

(ii) G and Gu are continuous in B�1 (u
0)× B�2 (�

0);
(iii) Gu(u0; �0) is nonsingular with a bounded inverse.

Then for every � ∈ B�2 (�
0) there is a unique u := u(�) ∈ B�1 (u

0); such that

(a) G(u; �) = 0 and u(�0) = u0,
(b) u= u(�) is a continuous function of � on B�2 (�

0).

Proof. The theorem can be formulated for u and � in more general sets than Rn and R, respectively.
For instance, Keller [16, Section 2:7] presents a proof when u belongs to a Banach space and � to
a parameter space.

It is an immediate consequence of the Implicit Function Theorem that the continuation problem
for (1.1) has a unique solution in a neighborhood of a regular point (u0; �0) on the solution path.
Given a regular point (u0; �0) for (1.1), the solution u1=u(�1) of (1.1) for �=�1 can be computed

by a predictor–corrector scheme when ��=�1−�0 is of su�ciently small magnitude. The predictor
determines an initial approximation u0(�1) of the solution u(�1) of (1.1). It follows from Theorem
2.1 that for some �2¿ 0 and every � ∈ B�2 (�

0), there is a unique u(�) ∈ Rn, such that

G(u(�); �) = 0: (2.1)

Di�erentiating (2.1) with respect to � yields (1.2). Substituting �=�0 into Gu and G� in (1.2) gives
the linear system of equations

Gu(u0; �0)u̇
0 =−G�(u0; �0) (2.2)

for u̇0 = u̇(�0). Application of Euler’s method as a predictor yields the approximation

u0(�) := u0 + (�− �0)u̇0 (2.3)

of u(�). The error in this approximation is given by

u(�)− u0(�) = 1
2 �u(�

0)(�− �0)2 + O((�− �0)3);

which reects that Euler’s method is an integration method of order one. Here �u=d2u=d�2.
In general, (u0(�); �) does not satisfy (1.1). It is convenient to use Newton’s method for (1.1) as

a corrector. The iterates uk ; k = 1; 2; : : : ; determined by Newton’s method are given by

uk+1 := uk +�u; k = 0; 1; : : : ; (2.4)

where �u solves the linear system of equations

Gu(uk ; �)�u=−G(uk ; �): (2.5)

Assume that the conditions of Theorem 2.1 are satis�ed at (u0; �0). Then Gu is continuous and
invertible in a neighborhood of (u0; �0). It can be shown that for a step size �� of su�ciently
small magnitude, the iterates determined by the Euler–Newton predictor–corrector scheme converge
to u(�). The following de�nitions are helpful for the analysis of the continuation problem for (1.1)
at points where the Jacobian matrix is singular.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 221

De�nition 2.2. Let G : Rn ×R→ Rn be a continuously di�erentiable function. A point (u(�); �) on
the solution path is said to be a simple singular point if Gu = Gu(u(�); �)) is singular and

dimN(Gu) = 1; (2.6)

where N(Gu) denotes the null space of Gu.

De�nition 2.3. A simple singular point (u(�); �) on a solution path � is said to be a turning point
if

G� 6∈ R(Gu) (2.7)

and a bifurcation point if

G� ∈ R(Gu); (2.8)

where R(Gu) denotes the range of Gu = Gu(u(�); �), and G� = G�(u(�); �).

In this paper we only consider turning points and bifurcation points that are simple singular points.
We refer to Decker and Keller [10], Georg [13] and Keller [16] for discussions on more general
singular points.
We �rst consider turning points. It is convenient to introduce the arclength parameter s of �.

Henceforth, we write u=u(s); �=�(s) and G(s)=G(u(s); �(s)), and the derivatives u̇ and �̇ denote
di�erentiation with respect to s. We have

‖u̇‖2 + �̇
2
= 1; (2.9)

which shows that the tangent vector (u̇(s); �̇(s)) of � is of unit length.
Assume that (u(s0); �(s0)) is a turning point. Di�erentiating G(s) = 0 with respect to s yields,

analogously to (1.2),

Gu(s)u̇(s) + G�(s)�̇(s) = 0: (2.10)

Proposition 2.4. Let (u(s0); �(s0)) be a simple turning point on the solution path �. Then

�̇(s0) = 0; u̇(s0) ∈N(Gu(s0)): (2.11)

Proof. Assume that �̇(s0) 6= 0. Then

G�(s0) =−Gu(s0)u̇(s0)

�̇(s0)
;

which contradicts (2.7). Substituting �̇(s0)= 0 into (2.10) yields Gu(s0)u̇(s0)= 0 and the proposition
follows.

The null spaces of Gu(s0) and GT
u (s

0) are of the same dimension. For future reference we introduce
basis vectors � and of these spaces, i.e.,

N(Gu(s0)) = span{�}; N(GT
u (s

0)) = span{ }; ‖�‖= ‖ ‖= 1: (2.12)

Since Gu(s) is singular at a turning point, Newton’s method cannot be applied with arclength
parameterization to continue the solution path across a turning point. This di�culty can be overcome

222 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

by imposing an additional constraint. Recall that the unit tangent vector of � at (u(s0); �(s0)) is given
by (u̇(s0); �̇(s0)), cf. (2.9). The equation of a plane orthogonal to the unit tangent at a distance �s
from the point (u0; �0) is given by N (u; �;�s) = 0, with

N (u; �;�s) := u̇ 0T(u− u0) + �̇0(�− �0)−�s:

This plane intersects the path � provided that the curvature of � at (u0; �0) or �s are su�ciently
small. Thus, the point of intersection between the path and the plane satis�es the nonlinear system
of equations

G(u; �) = 0; (2.13)

N (u; �;�s) = 0: (2.14)

The solution of these equations by Newton’s method yields iterates

(uk+1; �k+1) := (uk +�u; �k +��);

where �u and �� satisfy the linear system of equations[
Gk

u Gk
�

u̇ 0T �̇0

] [
�u
��

]
=
[−Gk

−Nk

]
: (2.15)

Here and below, we use the notation

Gk = G(uk ; �k); Gk
u = Gu(uk ; �k); Gk

� = G�(uk ; �k);

N k = N (uk ; �k ;�s); u̇0 = u̇(s0); �̇0 = �̇(s0): (2.16)

The solution of (2.15) exists and is unique even if Gk
u is singular, provided that the matrix

G̃
k
:=

[
Gk

u Gk
�

u̇ 0T �̇0

]
(2.17)

is nonsingular. Necessary and su�cient conditions for G̃
k
to be nonsingular are discussed in Section

2.2 below.
Following Keller [16], we refer to the parameterization which uses the plane normal to the path as

pseudo-arclength parameterization. Although the pseudo-arclength parameterization is usually applied
to singular points, it can be used also at regular points.
Constraint (2.14) is advocated by Keller [16] and will be used in the numerical examples of Section

5. Other constraints, among them Eq. (2.38) below, have also been proposed in the literature; see
e.g., [1,15] for discussions.
We turn to bifurcation points (u0; �0) of the solution path and assume that the Jacobian Gu =

Gu(u0; �0) satis�es (2.6) and (2.8).

Proposition 2.5. Let (u0; �0) be a bifurcation point on the solution path. Then

N([G0
u; G

0
�]) = span

{[
�
0

]
;
[
v
1

]}
;

where � satis�es (2:12) and v is the unique vector determined by

G0
uv=−G0

�; �Tv= 0: (2.18)

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 223

Moreover; for some � ∈ R;
u̇0 = ��+ �̇0v: (2.19)

Proof. It follows from (2.8) that there is a vector w that satis�es

G0
uw =−G0

�: (2.20)

In view of (2.8) and (2.12), the general solution of (2.20) is given by w() = w + � for ∈ R.
Assume �rst that G0

� 6= 0. Then the vectors w and � are linearly independent. Therefore, there is a
unique constant , such that v=w() and � are orthogonal. On the other hand, if G0

� =0, then Eqs.
(2.6) and (2.18) imply that v= 0.
We turn to the proof of (2.19). Substitute G0

uv=−G0
� into (2.10) for s= s0. We obtain

0 = G0
uu̇
0 + G0

��̇
0 = G0

uu̇
0 − (G0

uv)�̇
0;

which in view of (2.12) shows (2.19).

Assume that the conditions of Proposition 2.5 hold. Di�erentiate (2.10) with respect to s and
evaluate the expression obtained at s= s0. This yields

G0
u �u

0 + G0
u
��
0
+ G0

uuu̇
0u̇0 + 2G0

u�u̇
0�̇0 + G0

���̇
0�̇0 = 0; (2.21)

where �u 0 and ��
0
denote second-order derivatives of u(s) and �(s) with respect to s evaluated s= s0.

Multiply (2.21) by T from the left and recall that TG0
u = 0 to obtain

 TG0
uuu̇

0u̇0 + 2 TG0
u�u̇

0�̇0 + TG0
���̇

0�̇0 = 0:

Replacing u̇0 by the right-hand side of (2.19), �̇0 by �, and letting

a11 := TG0
uu��;

a12 := TG0
uu�v+ TG0

u��;

a22 := TG0
uuvv+ 2

TG0
u�v+ TG0

��;

yields

a11�2 + a12�� + a22�2 = 0: (2.22)

Eq. (2.22) is usually referred to as the algebraic bifurcation equation. It can be shown, see, e.g.,
[16, Section 5:20] that its discriminant D := a212 − 4a11a22 is nonnegative. If D¿ 0, then (2.22) has
two distinct roots, (�1; �1) and (�2; �2). Each root (�∗; �∗) corresponds to a smooth solution path for
(1.1) in a neighborhood of the bifurcation point

u(s) = u0 + (s− s0)[�∗(s)v+ �∗(s)�] + (s− s0)2w∗(s);

�(s) = �0 + (s− s0)�∗(s);

where

 Tw∗(s) = 0; �∗(s0) = �∗; �∗(s0) = �∗:

The quantity TG0
uu, required for the evaluation of the coe�cients aij in (2.22), is in general not

available. Typically, approximations of TG0
uu in terms of Gu are used in computations.

224 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

The perturbed bifurcation method avoids the computation of these approximants as well as the
solution of the algebraic bifurcation Eq. (2.22). This method is based on the observation that
the set of points in the domain of G(u; �) where the Jacobian Gu(u; �) is nonsingular are dense
and the Jacobian is singular at bifurcation points. Therefore, if (u0; �0) is not a regular point, then
we can perturb the right-hand side in Eq. (1.1), i.e., we replace (1.1) by

G(u; �) = �q; u= u(�); (2.23)

where q ∈ Rn; ‖q‖= 1 and � 6= 0, so that Gu is nonsingular at the solution of (2.23). Upon deletion
of a small neighborhood containing in its interior the bifurcation point (u0; �0), the two smooth
solutions branches intersecting at the bifurcation point generate four di�erent solution branches. It
can be shown that the two solution branches which belong to the same path lie adjacent to each
other, and therefore paths do not cross in the neighborhood of a bifurcation point. Hence, path
following across a bifurcation point can be viewed as a limit case of following two regular paths.
Further details on the perturbed bifurcation method are discussed by Georg [13] and Keller [16].

2.2. Computation

In this subsection we consider the quantities that need to be computed for path following. The
algorithms of Section 4 for computing these quantities are based on the discussion of the present
subsection. At a regular point (u0; �0) of a solution path, we compute an initial approximate solution
of (1.1) by Euler’s method (2.3), where u̇ 0 is de�ned in (2.2). The vector u̇ 0 is determined by
solving the linear system of equations (2.2). This system has a unique solution at any regular point
on the solution path, because the Jacobian matrix G0

u is nonsingular there.
The iterates uk of Newton’s method are solutions of the linear systems (2.5). For each value of

� several systems (2.5) may have to be solved. It is important to monitor if any Jacobian matrix
Gk

u determined during the iterations with Newton’s method is singular, because a singular Jacobian
may imply that (2.5) does not have a solution.
If Gk

u is singular and (uk ; �) satis�es (1.1), then we are either at a bifurcation point or at a turning
point. In either case we cannot use Newton’s method to compute the next point on the path. However,
if the eigenvector corresponding to the zero eigenvalue of the Jacobian matrix is available, then we
can introduce a pseudo-arclength parameterization and use the bordering algorithm to �nd the next
point on the path. The bordering algorithm requires that we solve linear systems of equations of the
form (2.15). Conditions under which these linear systems have a unique solution are stated in the
following proposition.

Proposition 2.6. Let G̃
k
be de�ned by (2:17). The following situations can be distinguished:

(i) If Gk
u is nonsingular; then G̃

k
is nonsingular if and only if

�̇0 − u̇ 0T(Gk
u)

−1Gk
� 6= 0: (2.24)

(ii) If Gk
u is singular and dimN(Gk

u) = 1; then G̃
k
is nonsingular if and only if Gk

� 6∈ R(Gk
u) and

u̇0 6∈ R((Gk
u)
T).

(iii) If Gk
u is singular and dimN(Gk

u)¿ 1; then G̃
k
is singular.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 225

Proof. The proposition follows by elementary matrix manipulations; see, e.g., [15] or [16, p. 76].
Note that the left-hand side of (2.24) is a Schur complement. Assume that both (u0; �0) and (uk ; �k)
lie on a solution path for (1.1). Then (2.24) expresses that the tangents (u̇0; �̇0) and (u̇ k ; �̇k) must
not be orthogonal.

Several solution methods for linear systems of equations of form (2.15) will be discussed. Di�erent
methods are tailored to matrices (2.17) with di�erent properties.
We use notation (2.16). It is convenient to write (2.15) in the form

Gk
u�u+ Gk

���=−Gk; (2.25)

u̇ 0T�u+ �̇0��=−Nk: (2.26)

Assume that Gk
u is nonsingular and �̇0 6= 0. We obtain from (2.26) that

��=
1

�̇0
(−Nk − u̇ 0T�u); (2.27)

which, substituted into (2.25), yields(
Gk

u −
1

�̇0
(Gk

�u̇
0T)
)
�u=−Gk +

1

�̇0
Gk

�N
k: (2.28)

Thus, when �̇0 6= 0, we can compute �u by solving (2.28) and �� from (2.27). We will refer to
this as the bordering algorithm for regular points. The matrix in (2.28) is a rank-one modi�cation
of Gk

u . It is nonsingular if and only if (2.24) is satis�ed, i.e., if and only if the system of equations
(2.25)–(2.26) has a unique solution.
The bordering algorithm for a regular point described above cannot be used at a turning point

(u0; �0) since �̇0=0 there. We now derive a simple solution method for system (2.25)–(2.26) for k=0
under the assumption that (u0; �0) is a turning point on the solution path. Note that the right-hand
side of (2.25) vanishes for k = 0 because the turning point is on the solution path. Multiply (2.25)
by T from the left and recall that TG0

u = 0; see (2.12). We obtain

 TG0
���= 0: (2.29)

The factor TG0
� does not vanish because ∈N(G0T

u) and it follows from (2.7) that G
0
� 6∈N(G0T

u)
⊥.

We conclude that ��= 0. Eq. (2.25) simpli�es to

G0
u�u= 0; (2.30)

which is satis�ed by

�u= ��; ∀� ∈ R: (2.31)

We determine � so that �u satis�es (2.26), i.e.,

�=− N 0

u̇ 0T�
: (2.32)

The denominator in (2.32) does not vanish due to (2.11).
Having determined the corrections �u and ��=0 of the turning point (u0; �0) as described above,

yields the approximation u1 = u0 +�u and �1 = �0 of the solution of (2.13)–(2.14). The subsequent

226 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

Newton steps require the solution of linear systems (2.25)–(2.26) for k =1; 2; : : : : The Jacobian Gk
u

of these systems is in general nonsingular. We outline how the system (2.25)–(2.26) can be solved
when Gk

u is nonsingular and �̇0 = 0. Compute the solutions y and z of the linear systems

Gk
uz = Gk

�; (2.33)

Gk
uy =−Gk: (2.34)

Then

�u= y − z�� (2.35)

satis�es (2.25) for arbitrary �� ∈ R. Substituting (2.35) into (2.26) gives

��=
Nk + u̇ 0Ty

u̇ 0Tz
: (2.36)

Thus, we solve (2.25)–(2.26) for k = 0 by using formulas (2.29)–(2.32), and for k¿1 by �rst
solving the linear systems (2.33) and (2.34) and then using (2.35)–(2.36). We refer to this method
for determining �u and �� at a turning point as the bordering algorithm for simple turning points.
The unit tangent vector (u̇0; �̇0) to the solution path at (u0; �0) plays a central role in the bordering

algorithm. We described how it can be computed. Eqs. (2.9) and (2.10) can be written as

G0
uu̇
0 + G0

��̇
0 = 0; (2.37)

‖u̇0‖2 + |�̇0|2 = 1: (2.38)

We �rst consider the case when G0
u is nonsingular and �̇0 6= 0. Then we can express u̇0 as

u̇0 = �̇0�; (2.39)

where � solves the linear system

G0
u� =−G0

�: (2.40)

Eqs. (2.38) and (2.39) yield

�̇0 =
±1√
1 + ‖�‖2 : (2.41)

The sign of �̇0 is chosen so that the tangent vector points in the positive direction of the path. If
(u̇ −1; �̇−1) is the unit tangent vector at a previous point on the path, we choose the sign in the
right-hand side of (2.41) so that the cosine of the angle between (u̇0; �̇0) and (u̇ −1; �̇−1) is positive,
i.e.,

u̇ −1u̇0 + �̇
−1

�̇0¿ 0 (2.42)

or, equivalently,

�̇0(u̇ −1� + �̇
−1
)¿ 0:

If the wrong orientation of the tangent vector is chosen, then the bordering algorithm will backtrack
the path already computed.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 227

We turn to the solution on (2.37)–(2.38) at a turning point. Then G0
u is singular, �̇ = 0 and

u̇0 ∈N(G0
u). The computation of the unit tangent vector at a turning point amounts to computing

the eigenvector of Euclidean norm one of the Jacobian associated with the zero eigenvalue and
choosing its orientation according to (2.42).
We conclude this section with a discussion of the solution of linear systems with a nonsingular

matrix (2.17), whose n × n leading principal submatrix Gk
u is singular with dimN(Gk

u) = 1. The
right-hand side is a general vector. Thus, consider the linear system

Gk
ux + Gk

��= g; (2.43)

u̇ 0Tx + �̇0�= (2.44)

and let the vectors � and satisfy (2.12). Then the solution of (2.43)–(2.44) can be expressed as

x = y − �z + ��; (2.45)

�=
 Tg
 TGk

�

; (2.46)

where

Gk
uy = g− (Tg) ; Gk

uz = Gk
� − (TGk

�) ; (2.47)

�Ty = �Tz = 0; (2.48)

�=
− �̇0�− u̇ 0T(y − �z)

u̇ 0T�
: (2.49)

This can be seen as follows. Multiplying Eq. (2.43) by T yields (2.46). The denominator is nonva-
nishing because ∈R(Gk

u)
⊥ and, by Proposition 2.6, Gk

� 6∈R(Gk
u). The linear systems of equations

(2.47) are consistent and the orthogonality conditions (2.48) determine the solutions y and z of these
systems uniquely. Eq. (2.43) is satis�ed by x and � given by (2.45)–(2.46) for any �∈R. Eq. (2.49)
determines � so that Eq. (2.44) is satis�ed. It follows from Proposition 2.6 that the denominator in
(2.49) does not vanish.

3. The IRBL method

We outline the implicitly restarted block-Lanczos (IRBL) method for the computation of a few of
the smallest eigenvalues and associated eigenvectors of a symmetric matrix A∈Rn×n. This method is
used in the algorithms for path following described in Section 4. In the applications discussed there,
A is a Jacobian matrix Gu associated with the nonlinear system of equations (1.1). The IRBL method
helps us determine whether the Jacobian matrix is singular. For singular matrices, the method yields
a basis of the null space. It is important to detect singular points on the solution path during path
following, and knowledge of the null space of singular Jacobian matrices helps us to follow the path
across a singular point.
The IRBL method is an iterative scheme for the computation of a few eigenvalues and associated

eigenvectors in a speci�ed portion of the spectrum. It is based on the recurrence relations of the

228 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

block-Lanczos algorithm. The IRBL method was introduced in [4]; here we only discuss aspects
pertinent for the application considered in Section 4. When the block-size r is chosen to be one, the
IRBL method simpli�es to the implicitly Restarted Lanczos (IRL) method described in [2,6]. In our
experience the IRBL method is better suited for computing eigenvalue–eigenvector pairs associated
with multiple or close eigenvalues than the IRL method.
In the present paper, we choose the block-size r to be the number of desired eigenpairs. Let
{vj}rj=1 be a set of orthonormal vectors in Rn and introduce the matrix Vr = [v1; v2; : : : ; vr]. Assume
for simplicity that the block-Lanczos process does not break down. Then m steps the block-Lanczos
process yield a symmetric block-tridiagonal matrix Tmr ∈Rmr×mr with r×r blocks and upper triangular
subdiagonal blocks, such that

AVmr = VmrTmr + FrETr ; (3.1)

where Vmr ∈Rn×mr; VmrImr×r = Vr; V T
mrVmr = Imr and Fr ∈Rn×r satis�es V T

mrFr = 0. Here Imr denotes
the mr×mr identity matrix, Imr×r ∈Rmr×r consists of the �rst r columns of Imr and Er consists of the
r last columns of Imr . The columns of Vmr span the Krylov subspace Kmr(A; Vr) := span{Vr; AVr; : : : ;
Am−1Vr} and

Tmr = V T
mrAVmr:

Introduce the spectral factorization

Tmr = Ymr�mrY Tmr;

where �mr = diag[�1; �2; : : : ; �mr]; Ymr ∈Rmr×mr; Y TmrYmr = Imr. The eigenvalues �16�26 · · ·6�mr of
Tmr approximate eigenvalues of A and are usually referred to as Ritz values. The vectors xj =
Vmryj; 16j6mr, approximate eigenvectors of A and are referred to as Ritz vectors. It follows from
(3.1) that the residual error Axj − xj�j associated with the Ritz pair (�j; xj) satis�es

‖Axj − xj�j‖= ‖(AVmr − VmrTmr)yj‖= ‖FrETr yj‖:
We say that a Ritz pair (�j; xj) is an acceptable approximation of an eigenpair of the matrix A if

‖FrETr yj‖6�; (3.2)

where �¿ 0 is a small constant. Then (�j; xj) is an eigenpair of a matrix Â∈Rn×n, such that
‖A− Â‖6�.
As the value of m increases the Ritz pairs become better approximations of eigenpairs of A. On

the other hand each unit increase in m requires that r additional n-vectors be stored. Therefore,
when the matrix A is very large and a large number of Lanczos steps are needed, use of secondary
computer memory may become necessary. To avoid the slow-down which typically occurs when
using secondary storage, a restarting scheme is employed. The recurrence relation of the IRBL
method described in [4] for restarting allows us to compute

V̂r = m(A)VrR (3.3)

from the block-Lanczos decomposition (3.1) without additional evaluations of matrix–vector products
with the matrix A. Here m(t) is a polynomial of degree m, R is an upper triangular matrix and V̂r

is an n × r matrix with orthonormal columns which will be used as the initial block for the next
block-Lanczos recursion. We seek to choose the polynomials m so that the columns of V̂r are in,
or close to, the invariant subspace of A associated with the desired eigenvalues. To achieve this, we

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 229

allocate the zeros z1; z2; : : : ; zm of m in one or two intervals away from the wanted portion of the
spectrum. For example, if the smallest eigenvalues of A are desired, then we choose the zj to be
in the interval [�m(r−1); �mr]. When we wish to determine a few nearby nonextreme eigenvalues, the
zeros are allocated in two interval, one on each side of the set of desired eigenvalues. Details on
how to select the zeros can be found in [2–4].
Once the matrix V̂r and its columns have been orthogonalized against each other as well as against

any converged eigenvectors, we compute a new block-Lanczos factorization (3.1) with Vr := V̂r. We
repeat this process until r eigenpairs have been determined. The reliability of this scheme is illustrated
by computed examples reported in [2–4].
We conclude this section with a few implementation issues. In each application of the IRBL

method we determine the initial matrix Vr by orthogonalizing r columns of random numbers from
the standard normal distribution; see Ericsson and Ruhe [11] for an explanation of the advantage of
using normally distributed instead of uniformly distributed random numbers. Further, we note that
in order to reduce data movement, it may be advantageous to implement the block-Lanczos process
so that the r vectors in a block are multiplied by the matrix A simultaneously.
Columns of the matrix Vmr that are associated with the same block of r vectors are generated

by �rst applying a three-term recursion formula determined by (3.1) followed by orthogonalization
of the columns in the same block. In exact arithmetic and in the absence of break-down, these
computations give a matrix Vmr with orthogonal columns. In order to secure orthogonality in the
presence of round-o� errors, we explicitly reorthogonalize the generated columns to all already
available columns of the matrix. If the new columns generated fail to be numerically orthogonal
after one reorthogonalization, then this signals that they are linearly dependent and a break down
of the block-Lanczos process has occurred. Details of how to handle break downs will be discussed
elsewhere. Here it su�ces to say that break downs are easy to handle, and a procedure for this has
been implemented in the code used for the numerical experiments reported in Section 5.

4. Algorithms for path following

We present several iterative methods for computing a solution path for nonlinear systems of
equations (1.1) with a symmetric Jacobian Gu. First we describe the iterative method proposed in
[5] for the simultaneous computation of a few eigenpairs associated with the eigenvalues of smallest
magnitude and the solution of a linear system.
Consider the nonlinear system of equations (1.1) and assume that (u0; �0) is a regular point on

a solution path. We would like to determine the point (u1; �1) on the path, where u1 = u(�1) and
�1 := �0 + ��. The application of the Euler–Newton continuation method requires the solution of a
sequence of linear systems of equations of the form (2.5) with � = �1. Assume that the iterates uk

de�ned by (2.4) converge to u1 as k increases. If Gu(u1; �1) is singular, then by a continuity argument
the matrices Gu(uk ; �1) for k su�ciently large have an eigenvalue close to the origin. Therefore, by
tracking the eigenvalues of smallest magnitude of the Jacobian matrices Gu(uk ; �1) while computing
iterates (2.4), we can detect when we approach a singular point on the solution path. Algorithm
4.1 below determines an approximate solution of (2.5) while simultaneously computing r Ritz pairs
{(�k

‘; x
k
‘)}r‘=1 that approximate eigenpairs of Gu(uk ; �1) associated with the r smallest eigenvalues.

230 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

Algorithm 4.1. Simultaneous solution of linear system and eigenproblem:
Input: �1, u0, A :=Gu(uk ; �1), b := − G(uk ; �1); m; r; Vr; �.
Output: Approximations {�k

‘}r‘=1 of the r smallest eigenvalues of Gu(uk ; �1), approximations {xk
‘}r‘=1

of associated orthonormal approximate eigenvectors and an approximate solution �ũ of (2.5) with
�= �1.
1. �ũ := 0.
2. for � := 1; 2; : : : until r approximate eigenpairs found
3. Orthogonalize Vr against already computed approximate eigenvectors.
4. Compute block-Lanczos decomposition (3.1) with initial block Vr .
5. Update approximate solution of (2.5):

Solve Tmr�y = V T
mrb; �ũ :=�ũ+ Vmr�y.

6. Determine Ritz pairs that satisfy (3.2) and store the Ritz vectors. We refer
to the stored vectors as approximate eigenvectors and denote them by u(k)‘ .

7. Apply m shifts {zj}mj=1 to determine the matrix V̂r given by (3.3). The
zj are chosen to be fast Leja shifts described in [3]. Let Vr := V̂r .

8. endfor
9. Improve approximate solution �ũ by a conjugate gradient method. Terminate
the iterations when the residual error is of norm smaller than �. Denote the
computed solution by �ũ.

Step 6 of Algorithm 4.1 yields approximations of the r eigenpairs associates with the eigenvalues
of smallest magnitude. The solution of (2.5) can be expanded in terms of eigenvectors of the matrix.
Step 5 essentially removes eigenvector components associated with the smallest eigenvalues from
this expansion. The solution of the linear system that is solved in Step 9 can be expressed in terms
of an expansion of eigenvectors associated with the remaining (larger) eigenvalues. Therefore, Step
5 of Algorithm 4.1 can be thought of as preconditioning the linear system (2.5).
In our numerical examples in Section 5, we use the conjugate gradient method designed for the

solution of inconsistent linear systems with a symmetric possibly inde�nite matrix described in [7].
The matrix Vr ∈Rn×r required as input for Algorithm 4.1 is assumed to have orthonormal columns.

In the very �rst application of Algorithm 4.1, Vr is initialized with normally distributed random entries
in each column, which then are orthonormalized. In later applications of Algorithm 4.1 the columns
of the input matrix Vr are chosen to be the approximate eigenvectors {wk

‘}r‘=1 determined during the
most recent application of the algorithm.
Assume now that G0

u is singular with dimN(G0
u) = 1, and let � satisfy (2.12). It follows from

the symmetry of the Jacobian and a discussion analogous to the one following (2.29) that the point
(u0; �0) is a turning point on the solution path if and only if �TG0

� 6= 0. Let (u0; �0) be a turning
point. We describe how to determine the pseudo-arclength parameterization required by the bordering
algorithm. This parameterization requires that the unit tangent vector

(u̇0�̇0) = (±�; 0) (4.1)

be available. If the unit tangent vector (u̇ −1; �̇
−1
) at the previous point on the path is available,

then we choose the sign in the right-hand side of (4.1) so that (2.42) is satis�ed. When the tangent
vector (u̇ −1; �̇

−1
) is not known, we approximate it by the secant (u0; �0)− (u−1; �−1). The solution

of (2.25)–(2.26) for k = 0 is given by ��= 0 and (2.31)–(2.32).

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 231

The performance of the Euler–Newton predictor–corrector method (2:3)–(2:5) with the natural
parameter � requires that the steps �� be small in the vicinity of a turning point. Therefore,
we switch from the natural to the pseudo-arclength parameterization when we are close to a
turning point and compute the next point on the path via the following variant of the bordering
algorithm. We �rst solve the linear systems of equations (2.33) and (2.34) and then determine
�� from

��=
u̇ 0Ty + Nk

u̇ 0Tz − �̇0
(4.2)

and �u from (2.35). The vector (�u;��) satis�es (2.25)–(2.26). Formula (4.2) simpli�es to (2.36)
when �̇0=0. Since in �nite precision arithmetic |�̇0| is small but possibly nonvanishing at a computed
approximate turning point, we use (4.2) instead of (2.36) in computations. We switch from natural to
pseudo-arclength parameterization when either the Jacobian has an eigenvalue of magnitude smaller
than a tolerance �s or the step size required with the natural parameterization is below a given
threshold. The following algorithm summarizes how to organize the calculation to compute regular
points on a solution path across a turning point.

Algorithm 4.2. Path following around a turning point:
Input: �0, u0, �̇0, u̇0, Gu(u0; �0), �s, �; kmax.
Output: u1, �1.
1. convergence :=false, u0 := u0, �0 := �0.
2. while not convergence,
3. for k := 0; 1; : : : ; kmax
4. Solve (2.33) for z and (2.34) for y.
5. Compute �� from (4.2).
6. Compute �u from (2.35).
7. uk+1 := uk +�u, �k+1 := �k +��.
8. if ‖G(uk+1; �k+1)‖¡� then
9. convergence := true, u1 := uk+1, �1 := �k+1, exit.
10. endif
11. endfor
12. �s :=�s=2.
13. endwhile

We turn to the problem of branch switching at a bifurcation point. In �nite precision arithmetic
computation, we may not be able to determine exact bifurcation points. Instead we are in a posi-
tion to compute approximations of bifurcation points. We refer to these points as perturbed bifur-
cation points. The presence of a perturbed bifurcation point on the solution path is signaled
numerically by the Jacobian matrix becoming nearly singular and by the magnitude of �TG0

� being
very small.
Let (u0; �0) be a perturbed bifurcation point on the solution path. We discuss how to switch path

there. In view of (2.10) the tangent vectors at the bifurcation point are in the null space of the

232 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

matrix [G0
u; G

0
�] and can, by Proposition 2.5, be written as

� := �
[
�
0

]
+ �

[
v
1

]
:

A tangent to the active branch at (u0; �0) is determined by � = �̇0 and u̇0 = �� + �v, where the
coe�cient � easily can be found by using the orthogonality (2.18). We search for the other branch
by moving in a direction parallel to � starting from a point at a distance �b from (u0; �0) on the
normal to � in the plane N([G0

u; G
0
�]). Note that the vector

�̂ := �̂
[
�
0

]
+ �̂

[
v
1

]

with �̂ = t�(1 + ‖v‖2) and �̂ = −t�‖�‖2 is orthogonal to � and in N([G0
u; G

0
�]) for any t¿0. We

choose the scaling factor t so that �̂ is of unit length. Thus, we would like to determine a point
(u2; �2)∈Rn+1 with coordinates of the form

u2 = u0 + �b(�̂v+ �̂�) + w;

�2 = �0 + �b�̂ + �;
(4.3)

where w∈Rn and �∈R are chosen so that

G(u2; �2) = 0; (4.4)

N (u2; �2) = 0 (4.5)

and N (u2; �2) := (�̂vT + �̂�T)w + �̂�. Condition (4.5) imposes that the vector (w; �) is orthogonal
to �̂. We compute w and � by applying Newton’s method to the system (4.4)–(4.5) with initial
approximate solution w= 0 and �= 0. The sequence of linear systems of equations obtained in this
manner are solved by the methods described in Section 2.
The computations for branch switching at a bifurcation point (u0; �0) are summarized by the

following algorithm. The vector � is de�ned by (2.12).

Algorithm 4.3. Branch switching at a bifurcation point:
Input: �0, u0; �̇0; u̇0; �; �b.
Output: u2, �2.

1. � :=�Tu̇0, � := �̇0.
2. v := (u̇0 − ��)=�.

3. �̂ := t�(1 + ‖v‖2), �̂ := − t�‖�‖2 with t ¿ 0 chosen so that �̂2 + �̂
2
= 1.

4. Solve (4.4)–(4.5) for (u2; �2) given by (4.3) using Newton’s method.

We conclude this section with an algorithm that outlines how to compute a new point on a solution
path for (1.1) with special handling of turning and bifurcation points.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 233

Algorithm 4.4. Iterative method for path following:
Input: �0, �1, u0, �; �n; �s; �min = eigenvector of smallest magnitude of G0

u .
Output: u1.

1. if |�min|¿�s then
% (u0; �0) is a regular point.

2. Compute the Euler predictor u0.
3. Use Newton’s method to �nd u1, such that ‖G(u1; �1‖¡�. Compute Newton

iterates by Algorithm 4:1.
4. else

% Test whether we are at a turning point or at a bifurcation point.
5. if |�TG0

�|¿�n then
% Turning point

6. Compute (u1; �1) by Algorithm 4:2.
7. else

% Bifurcation point: �rst continue on active branch then switch branch.
8. Compute (u1; �1) by Algorithm 4:2.
9. Switch branch by Algorithm 4:3. Compute points on other branch.
10. endif
11. endif

5. Numerical examples

This section presents computations with the algorithms described in Section 4. The algorithms were
implemented in MATLAB on a Silicon Graphics workstation. It is the purpose of the examples to
illustrate the ease of use of the algorithms for path following in an interactive computing environment.
We report the number of times the Jacobian is used to multiply one or several n-vectors as a

measure of the computational e�ort required. However, our algorithms have not (yet) been tuned
for e�ciency, and we expect that the computational e�ort required by carefully designed algorithms
to be smaller. We return to this issue after the examples.

Example 5.1. Consider the nonlinear eigenvalue problem

−LU − � sin(U) = 0 in
;

U = 0 on @
; (5.1)

where
 := {(s; t): 06s61, 06t61} and @
 denotes the boundary of
. We discretize
 by
a uniform grid with grid points sj := (j − 1)h and tj := (j − 1)h for 16j6‘ + 1 and h = 1=‘.
The Laplacian L is approximated by the standard �ve-point stencil. This yields a system of n :=
(‘− 1)2 nonlinear algebraic equations of the form (1.1). The entries of the solution u∈Rn of (1.1)
approximate U (s; t) at the nodes sj and tj.
The discretization error is O(h2) and we let � := h2 in the algorithms of Section 4. In particular, a

Jacobian Gu is considered singular when it has an eigenvalue of magnitude smaller than h2. Iterations

234 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

Table 1
Legend for Examples 5.1 and 5.2

EP Computation of eigenpairs of Jacobian by the IRBL algorithm.
NW Newton’s method for solution of (1.1), eigenpairs of Jacobian by Algorithm 4.1.
EN Continuation by the Euler–Newton method, step length ��.
SB Switch branch using Algorithm 4.3, step length �b.
BR Continuation by bordering using Algorithm 4.2, Jacobian regular, step length �s.
BS Continuation by bordering using Algorithm 4.2, Jacobian singular, step length �s.

Table 2
Example 5.1: Solution path with bifurcation point

Step Smallest Solut. Matrix Mat.–vec. CG
Step Comput. � length eig. val. norm acces. prod. iter.

a EP 18.0000 — 1:6987 0 58 113 0
b EN 19.6987 1.6987 −4 · 10−5 0 72 137 0
c SB 19:6987∗ 0.1 5 · 10−4 1 · 10−1 139 214 53
d BS 19.6987 0.1 2 · 10−3 2 · 10−1 200 285 100
e BR 19:7003∗ 0.1 5 · 10−3 3 · 10−1 223 318 109
f BR 19.7016 0.1 6 · 10−3 4 · 10−1 256 371 115
g BR 19:7136∗ 0.1 3 · 10−2 9 · 10−1 288 423 120
h EN 19:8136∗ 0.1 3 · 10−1 2 · 100 336 511 128
i EN 20:3136∗ 0.5 1 · 100 6 · 100 434 679 138

with Newton’s method are terminated as soon as an iterate has been found that gives a value of G
of norm less than h2. In the present example l = 20, h= 5 · 10−2 and �= 2:5 · 10−3.
We use the algorithms of Section 4 to determine a bifurcation point and switch path in an

interactive computing environment. The computations carried out are shown in the column “comput.”
of Table 2. The abbreviations used are explained in Table 1.
The boundary value problem (5.1) has the trivial solution U (s; t) = 0 for any value of �, and the

discretized problem has the solution u=0. The Jacobian matrices associated with the solution u=0
are singular when � is an eigenvalue of the discretized Laplacian. We choose (u; �)=(0; 18) as initial
point on the solution path and use the IRBL algorithm with block-size r=2 and m=5 block-Lanczos
steps between the restarts to compute the two smallest eigenvalues and associated eigenvectors of
the Jacobian matrix. This is Step (a) in Table 2. The table shows the computed approximation of
the eigenvalue of the Jacobian closest to the origin in the column labeled “Smallest eig. val.” In all
computations reported the eigenvalue closest to the origin is also the smallest one. Two measures of
the computational e�ort required for the computation of the eigenpairs are reported in the columns
“Matrix acces.” and “Mat.–vec. prod.” The former column reports the number of matrix accesses, i.e.,
the number of times the Jacobian is multiplied by a vector or a block of r vectors. This count is of
interest when the entries of the Jacobian are evaluated every time they are used in order to reduce the
computer storage required, and measures the number of times each matrix entry has to be computed.
This approach is used in the code for liquid crystal modeling described in [4] in order to reduce
the storage requirement for the Jacobian, as well as in �nite element codes for large-scale problems.
The column “Mat.–vec. prod.” shows the number of times the Jacobian matrix is multiplied by an

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 235

n-vector. Multiplying a block of r n-vectors by the Jacobian counts as r matrix–vector products.
Whether this count is relevant depends on the size of the problem and the on architecture of the
computer used. For large-scale problems, this count, in general, is of less interest than the number
of matrix accesses.
We add the computed approximation 1.6987 of the smallest eigenvalue of the Jacobian determined

in Step (a) to � in order to obtain a nearly singular Jacobian matrix and take a step with the
Euler–Newton method with ��=1:6987. This is Step (b) in Table 2. The table reports the cumulative
number of matrix accesses and matrix–vector products required. Thus, the computations for Step (b)
require 16 matrix accesses and the evaluation of 24 matrix–vector products. We do not use the fact
that the eigenvectors for the Jacobian at �=18 and 19.6987 are the same. The matrix–vector products
reported are used to take a step with the Euler–Newton method and to verify that r eigenpairs and
a solution u for �= 19:6987 have been determined to desired accuracy.
The smallest eigenvalue of the Jacobian determined in this manner is in magnitude smaller than

� = h2. We therefore consider the Jacobian singular. Algorithm 4.3 with �b = 0:1 is applied to
determine a nontrivial solution u of (1.1) for � close to 19.6987. Note that if u solves (1.1), then
so does −u. The arithmetic work required is reported in step (c) in Table 2. Algorithm 4.1 is used
with m = 5 block-Lanczos steps between restarts. The column “CG iter.” displays the number of
iterations, 53, carried out with the conjugate gradient method in Step 9 of Algorithm 4.1. These
iterations are included in the count of matrix accesses and matrix–vector products reported in the
table. Subsequent entries of the column “CG iter.” report the cumulative number of iterations. The
column “Solut. norm” of Table 2 displays the Euclidean norm of the computed solution u. Starred
parameter values in the column “�” indicate that the solution is plotted in Fig. 1. The (s; t)-plane in
Figs. 1(c)–(i) displays the computed approximations of U (sj; tk) as a function of j and k.
We turn to the computations of step (d). The Jacobian obtained in step (c) has an eigenvalue

of magnitude smaller than h2. We therefore consider the Jacobian singular and apply a bordering
method with �s=0:1 to determine a new point on the solution path. Steps (e)–(g) in Table 2 di�er
from step (d) only in that a bordering method, Algorithm 4.2, for nonsingular Jacobian matrices is
used.
Finally, we determine two points on the solution path with the Euler–Newton method using step

lengths �� = 0:1 and 0.5, respectively. The computational work required is reported in Steps (h)
and (i) in Table 2.

Example 5.2. The nonlinear boundary value problem

−LU − � exp(U) = 0 in
;

U = 0 on @
; (5.2)

where
 and @
 are the same as in (5.1) is known as the Bratu problem and is a common test
problem for path following methods. We discretize (5.2) in the same manner as Eqs. (5.1) of
Example 5.1.

This example illustrates the application of the algorithms of Section 4 to traverse a turning point.
The computational steps are displayed in Table 3, which is analogous to Table 2. We let the initial
approximate solution of the nonlinear system of equations (1.1) determined by (5.2) with �= 5 be

236 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

Fig. 1. Example 5.1: Solution path with bifurcation point. Figure (p) shows a solution path. Figures (c)–(i) display the
solutions u associated with points on the graph in �gure (p).

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 237

Table 3
Example 5.2: Solution path with turning point

Step Smallest Solut. Matrix Mat.–vec. CG
Step Comput. � length eig. val. norm acces. prod. iter.

a NW 5:0000∗ — 1 · 101 6:14 · 100 307 507 98
b EN 6.0000 1.00 8 · 100 8:63 · 100 399 639 144
c EN 6.5000 0.50 5 · 100 1:08 · 101 481 761 180
d EN 6:7500∗ 0.25 1 · 100 1:33 · 101 581 916 217
e BR 6.7655 0.75 2 · 10−1 1:41 · 101 689 1064 278
f BR 6.7658 0.10 4 · 10−2 1:42 · 101 786 1191 338
g BR 6:7658∗ 0.05 −4 · 10−2 1:42 · 101 889 1319 409
h BR 6.7655 0.10 −2 · 10−1 1:43 · 101 991 1451 474
i BR 6.7509 0.75 −1 · 100 1:51 · 101 1107 1602 548
j EN 6:5009∗ −0:25 −7 · 100 1:81 · 101 1259 1839 605
k EN 5:5009∗ −1:00 −2 · 101 2:36 · 101 1398 2058 656
l EN 4.5009 −1:00 −3 · 101 2:78 · 101 1510 2225 707
m EN 3:5009∗ −1:00 −5 · 101 3:19 · 101 1622 2397 753
n EN 2.5009 −1:00 −8 · 101 3:61 · 101 1742 2577 807
o EN 1.5009 −1:00 −1 · 102 4:07 · 101 1927 2862 884

Fig. 2. Example 5.2: Solution path with turning point.

a random vector, and use Newton’s method (2.4)–(2.5) to compute an approximate solution u of
desired accuracy. The linear systems of Eqs. (2.5) in Newton’s method are solved by Algorithm
4.1, which also gives eigenpairs of the Jacobian associated with the two smallest eigenvalues. The
computational e�ort required is reported in Step (a) of Table 3. Steps (b)–(o) report path following
by the Euler–Newton method and by bordering. All eigenvalues of all Jacobian matrices generated
are of magnitude larger than � = h2. The Jacobian matrices are therefore considered nonsingular.
Similarly as in Example 5.1, the computational e�ort reported is cumulative. For instance, the matrix
accesses reported in Step (o) are for all computations in Steps (a)–(o). The matrix accesses and

238 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

Fig. 3. Example 5.2: Solutions u associated with points on the graph of Fig. 2.

D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240 239

matrix–vector products required for the CG iterations are included in the counts of matrix accesses
and matrix–vector products, respectively.
Fig. 2 shows the solution path computed. Solutions u associated with points marked on the solution

path, corresponding to starred �-values in Table 3, are plotted in Fig. 3.

The examples illustrate that the algorithms of the present paper can be used for path following
in the presence of bifurcation and turning points. We remark that the number of matrix accesses
required often decreases when the block-size r is increased, but the number of matrix–vector products
typically increases with the block-size. Numerical examples that illustrate this for Algorithm 4.1 are
reported in [5]. The selection of block-size should depend both on the problem at hand and on the
architecture of the computer being used.
The step sizes ��, �s and �b have been selected in a fairly arbitrary manner in the experiments.

Implementation of a step-size control is likely to reduce the computational e�ort. We are presently
investigating this issue.

6. Conclusion and future work

Experience from a large number of problems indicates that the algorithms presented in this paper
are versatile tools for path following of large problems with symmetric Jacobians in an interactive
computing environment. We are presently developing algorithms that are applicable to large-scale
path following problems with nonsymmetric Jacobian matrices.

References

[1] E.L. Allgower, C.-S. Chien, K. Georg, C.-F. Wang, Conjugate gradient methods for continuation problems, J. Comput.
Appl. Math. 38 (1991) 1–16.

[2] J. Baglama, D. Calvetti, L. Reichel, Iterative methods for computing a few eigenvalues of a large symmetric matrix,
BIT 36 (1996) 400–421.

[3] J. Baglama, D. Calvetti, L. Reichel, Fast Leja points, Elec. Trans. Numer. Anal. 7 (1998) 124–140.
[4] J. Baglama, D. Calvetti, L. Reichel, A. Ruttan, Computation of a few small eigenvalues of a large matrix with

application to liquid crystal modeling, J. Comput. Phys. 146 (1998) 203–226.
[5] D. Calvetti, L. Reichel, A block Lanczos method for large continuation problems, Numer. Algorithms 21 (1999)

109–118.
[6] D. Calvetti, L. Reichel, D.C. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue

problems, Elec. Trans. Numer. Anal. 2 (1994) 1–21.
[7] D. Calvetti, L. Reichel, Q. Zhang, Conjugate gradient algorithms for symmetric inconsistent linear systems, in: J.D.

Brown, M.T. Chu, D.C. Ellison, R.J. Plemmons (Eds.), Proceedings of the Cornelius Lanczos International Centenary
Conference, SIAM, Philadelphia, 1994, pp. 267–272.

[8] C.-S. Chien, N.-H. Lu, Z.-L. Weng, Conjugate gradient methods for continuation problems II, J. Comput. Appl.
Math. 62 (1995) 197–216.

[9] K.A. Cli�e, T.J. Garratt, A. Spence, Eigenvalues of the discretized Navier–Stokes equation with application to the
detection of Hopf bifurcations, Adv. Comput. Math. 1 (1993) 337–356.

[10] D.W. Decker, H.B. Keller, Multiple limit point bifurcation, J. Math. Anal. Appl. 75 (1980) 417–430.
[11] T. Ericsson, A. Ruhe, The spectral transformation Lanczos method for the solution of large sparse symmetric

generalized eigenvalue problems, Math. Comput. 35 (1980) 1251–1268.
[12] W.R. Ferng, C.T. Kelley, Mesh independence of matrix-free methods for path following, Report, Department of

Mathematics, North Carolina State University, Raleigh, 1999.

240 D. Calvetti, L. Reichel / Journal of Computational and Applied Mathematics 123 (2000) 217–240

[13] K. Georg, On tracing an implicitly de�ned curve by quasi-Newton steps and calculating bifurcation by local
perturbation, SIAM J. Sci. Statist. Comput. 2 (1981) 35–50.

[14] J. Huitfeldt, Nonlinear eigenvalue problems – prediction of bifurcation points and branch switching, Report,
Department of Computer Science, Chalmers University of Technology, G�oteborg, 1991.

[15] J. Huitfeldt, A. Ruhe, A new algorithm for numerical path following applied to an example from hydrodynamics,
SIAM J. Sci. Statist. Comput. 11 (1990) 1181–1192.

[16] H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Springer, Berlin, 1987.
[17] D.C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl.

13 (1992) 357–385.
[18] Y.F. Zhou, A. Ruhe, Numerical path following and eigenvalue criteria for branch switching, in: J. Cullum, R.A.

Willoughby (Eds.), Large Scale Eigenvalue Problems, Elsevier, Amsterdam, 1986, pp. 121–142.

Journal of Computational and Applied Mathematics 123 (2000) 241–260
www.elsevier.nl/locate/cam

The matrix and polynomial approaches to Lanczos-type
algorithms

C. Brezinskia ;∗, M. Redivo-Zagliab, H. Sadokc
aLaboratoire d’Analyse Num�erique et d’Optimisation, Universit�e des Sciences et Technologies de Lille, France

bDipartimento di Matematica, Universit�a degli Studi della Calabria, Arcavacata di Rende, 87036-Rende (CS), Italy
cLaboratoire de Mathematiques Appliqu�ees, Universit�e du Littoral, Calais, France

Received 16 September 1999; received in revised form 7 December 1999

Abstract

Lanczos method for solving a system of linear equations can be derived by using formal orthogonal polynomials. It can
be implemented by several recurrence relationships, thus leading to several algorithms. In this paper, the Lanczos=Orthodir
algorithm will be derived in two di�erent ways. The �rst one is based on a matrix approach and on the recursive
computation of two successive regular matrices. We will show that it can be directly obtained from the orthogonality
conditions and the fact that Lanczos method is a Krylov subspace method. The second approach is based on formal
orthogonal polynomials. The case of breakdowns will be treated similarly. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

In 1950, Lanczos [27] proposed a method for transforming a matrix into a similar tridiagonal one.
Since, by the theorem of Cayley–Hamilton, the computation of the characteristic polynomial of a
matrix and the solution of a system of linear equations are equivalent problems, Lanczos [28], in
1952, used his method for that purpose.
Owing to its numerous advantages, Lanczos method was the subject of very many investigations

and several Lanczos-type algorithms for its implementation were obtained. Among them, the famous
conjugate gradient algorithm of Hestenes and Stiefel [25] when the matrix is Hermitian and the
bi-conjugate gradient algorithm of Fletcher [18] in the general case must be mentioned.
In these algorithms, the coe�cients of the recurrence relationships are expressed as ratios of scalar

products. When a scalar product in a denominator vanishes, then a breakdown occurs in the algorithm.

∗ Corresponding author.
E-mail addresses: claude.brezinski@univ-lille1.fr (C. Brezinski), m.redivo-zaglia@unical.it (M. Redivo-Zaglia),

sadok@lma.univ-littoral.fr (H. Sadok).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00397-6

242 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

The treatment of breakdowns and near-breakdowns (division by a scalar product close to zero) in
these algorithms has been an outstanding problem for many years. The �rst attempts for solving it
make use of linear algebra techniques, a quite natural approach for a question related to that domain.
However, these attempts were not completely satisfactory. But, as mentioned by Lanczos himself
[27], his method is also related to formal orthogonal polynomials (FOP). In fact, all the recursive (old
and new) algorithms for the implementation of Lanczos method can be derived from the theory of
FOP [12]. Such polynomials also form the basis for the recursive computation of Pad�e approximants
[32,3,15] since the denominator of the Pad�e approximant [k − 1=k] is a FOP after reversing the
numbering of its coe�cients. Thus, the problem of breakdown in the recursive computation of
formal orthogonal polynomials was quite familiar to people working on Pad�e approximants. In the
recursive computation of FOP, a breakdown can be due to the nonexistence of some orthogonal
polynomial (true breakdown), or to the impossibility of using the recurrence under consideration
(ghost breakdown). In such cases, it is possible to jump over the nonexisting polynomials, or over
those which cannot be computed by the relation used, in order to obtain breakdown-free algorithms.
The same idea can be applied to Lanczos-type algorithms; see, for example, [5,9].
In this paper, we will �rst use linear algebra techniques to derive the Lanczos=Orthodir algorithm

[33,26]. Then, some algorithms for treating breakdowns will be explained in terms of linear algebra.
However, the conclusion of this work is that, although such algorithms can be obtained by purely
linear algebra techniques, the approach based on FOP is simpler and more powerfull. This is, in
particular, true for transpose-free Lanczos-type methods such as the CGS and the BiCGSTAB. Let
us mention that a linear algebra approach can also be used to derive the other algorithms for the
implementation of Lanczos’ method.
In the sequel, capital letters indicate matrices, bold lowercase letters indicate vectors, and Greek

letters refer to scalars.

2. Preliminary results

We consider the system of linear equations

Ax= b; (1)

where A is a real, nonsingular, n× n matrix and b ∈ Rn.
Lanczos method [28] for solving this system consists of the following steps:

• choose two arbitrary nonzero vectors x0 and r̃0 in Rn,
• set r0 = b− Ax0,
• determine xk such that

xk − x0 ∈ Kk(A; r0) = span(r0; Ar0; : : : ; Ak−1r0)
rk = b− Axk⊥Kk(AT; r̃0) = span(r̃0; ATr̃0; : : : ; (AT)k−1r̃0);

where AT is the transpose of A.
Let us set

xk − x0 =−a(k)1 r0 − · · · − a(k)k Ak−1r0:

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 243

Multiplying both sides by A, adding and subtracting b, we obtain

rk = r0 + a
(k)
1 Ar0 + · · ·+ a(k)k Akr0: (2)

The orthogonality conditions can be written as

((AT)i r̃0; rk) = 0 for i = 0; : : : ; k − 1
which is a system of k linear equations in the k unknowns a(k)1 ; : : : ; a

(k)
k . This system is nonsingular

if and only if the following Hankel determinant, denoted H (1)
k , is di�erent from zero,

H (1)
k =

∣∣∣∣∣∣∣∣∣

(r̃0; Ar0) (r̃0; A2r0) · · · (r̃0; Akr0)
(r̃0; A2r0) (r̃0; A3r0) · · · (r̃0; Ak+1r0)

...
...

...
(r̃0; Akr0) (r̃0; Ak+1r0) · · · (r̃0; A2k−1r0)

∣∣∣∣∣∣∣∣∣
:

We set wi = Air0 and C̃i = (AT)i r̃0 for i = 0; : : : ; k. Let Ṽ k = [C̃0; : : : ; C̃k−1] and Wk = [w1; : : : ;wk].
Then H (1)

k = det(Ṽ
T
kWk).

Under the assumption that ∀k, H (1)
k 6= 0, xk is well de�ned and we have

rk = r0 −Wk(Ṽ
T
kWk)−1Ṽ

T
k r0 = b− Axk :

If we denote by W L
k the left inverse of the matrix Wk de�ned by W L

k = (Ṽ
T
kWk)−1Ṽ

T
k , we also have

rk = r0 −WkW L
k r0: (3)

We remind that the minimal polynomial of a matrix A for a vector u is the polynomial p of
smallest degree such that p(A)u = 0.
We will now prove that a �nite termination property holds and characterize the last iteration.

Theorem 1. Let p be the minimal polynomial of the matrix A for the vector r0 and let m be its
degree. If H (1)

m 6= 0; then rm = p(A)r0 = 0.

Proof. Let us write the minimal polynomial p for r0 as p(�) =
∑m

i=0 di�
i with d0 = p(0) = 1 and

m=min

{
k

∣∣∣∣∣
k∑
i=0

diAir0 = 0;d0 = 1

}
:

The equality
∑m

i=0 diA
ir0 = 0 is, in matrix form,

Wmd =−r0; (4)

where d =(d1; : : : ; dm)T. It is important to remark that system (4) has a unique solution and that the
rank of Wm is m. Then

d =−W L
m r0

and (4) becomes

rm = r0 −WmW L
m r0 = p(A)r0 = 0:

Remark 2. If H (1)
m = 0, we have a so-called incurable breakdown. In this case, Lanczos method is

not de�ned.

244 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

3. Matrix approach

In this section, we will �rst derive some Lanczos-type algorithms by a linear algebra approach in
the regular case, that is when no breakdown occurs. Then, we will deal with a look-ahead strategy
for treating breakdowns in the nonregular case and show how to obtain the MRZ algorithm [8] and
the MRZ-Stab [10,11].

3.1. Regular case

First of all, we show how to compute the matrices Wk+1 and Wk+1W L
k+1 from Wk and WkW L

k .
We set

Pk = I −WkW L
k with P0 = I: (5)

We have the following result.

Theorem 3. If H (1)
k 6= 0 and H (1)

k+1 6= 0; then; for k¿1;
Pk+1 = Pk − ukuLk Pk ; (6)

where

uk = (I −WkW L
k)wk+1 (7)

and uLk = C̃
T
k =(C̃k ; uk).

Proof. The bordering method [17, pp. 105�.] allows to compute the inverse of a matrix bordered
by several new rows and columns from the initial matrix and, then, solving a bordered system of
linear equations accordingly. It follows from the bordering method

W L
k+1 =

W L
k −

1
�k
W L
k wk+1C̃

T
k (I −WkW L

k)

1
�k
C̃Tk (I −WkW L

k)

 ;

where �k = C̃Tk (I −WkW L
k)wk+1. Moreover

Wk+1W L
k+1 =WkW L

k + uku
L
k (I −WkW L

k)

which proves the result.

Remark 4. If det(Ṽ
T
kWk) 6= 0 then, using the Schur complement [14], we have �k 6= 0 if and only

if det(Ṽ
T
k+1Wk+1) 6= 0 since

�k =
det(Ṽ

T
k+1Wk+1)

det(Ṽ
T
kWk)

and �0 = (r̃0;w1).

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 245

Remark 5. By using the extensions of the Schur complement and the Schur determinantal formula
given in [4], the vector rk can be expressed as a ratio of determinants

rk =

∣∣∣∣∣∣∣∣∣

w0 w1 · · · wk
(C̃0;w0) (C̃0;w1) · · · (C̃0;wk)
...

...
...

(C̃k−1;w0) (C̃k−1;w1) · · · (C̃k−1;wk)

∣∣∣∣∣∣∣∣∣
/
det(Ṽ

T
kWk) ;

where the determinant in the numerator denotes the vector obtained by developing it with respect
to its �rst row by the classical rules (which means considering w0; : : : ;wk as numbers and, then,
developing the determinant).

We see that rk = Pkr0 and P2k = Pk . Hence Pk is a projector.
Now, from Theorem 3, we get

uk = Pkwk+1 =

∣∣∣∣∣∣∣∣∣

wk+1 w1 : : : wk
(C̃0;wk+1) (C̃0;w1) · · · (C̃0;wk)

...
...

...
(C̃k−1;wk+1) (C̃k−1;w1) · · · (C̃k−1;wk)

∣∣∣∣∣∣∣∣∣
/
det(Ṽ

T
kWk) : (8)

Multiplying r0 by the matrices on both sides of (6), we obtain

rk+1 = rk − �k+1uk (9)

with

�k+1 = uLk Pkr0 =
(C̃k ; rk)
(C̃k ; uk)

: (10)

Let us now show how to compute the vector uk . First, we need some properties of uk .
Let Uk=[u0; : : : ; uk−1], with u0=w1. As above U L

k will denote the left inverse matrix of the matrix
Uk de�ned by U L

k = (Ṽ
T
k Uk)

−1Ṽ
T
k .

Theorem 6. If H (1)
j 6= 0 for j = 1; : : : ; k; then

1. (C̃j; uk) = 0 for j = 0; : : : ; k − 1;
2. span(u0; : : : ; uk−1) = Kk(A; Ar0),
3. the vector uk can be written as

uk = Auk−1 − UkU L
k Auk−1; ∀k¿1 and u0 = Ar0;

4. uk = 0 if and only if wk+1 ∈ Kk(A; Ar0).

Proof. 1. Multiplying (7) by the matrix Ṽ
T
k and using the de�nition of W

L
k , we obtain

Ṽ
T
k uk = Ṽ

T
kwk+1 − (Ṽ

T
kWk)(Ṽ

T
kWk)−1Ṽ

T
kwk+1 = 0:

Consequently (C̃j; uk) = 0 for j = 0; : : : ; k − 1.
2. From the determinant in (8), we deduce that uk−1 ∈ span(w1; : : : ;wk), hence span(u0; : : : ; uk−1)⊆

span(w1; : : : ;wk).

246 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

Now, assuming that
∑k−1

i=0 �iui = 0, it follows that

k−1∑
i=0

�i(C̃j; ui) = 0 for j = 0; : : : ; k − 1:

We deduce, by using the �rst statement of this theorem, that the matrix of this system is lower
triangular. Moreover, its determinant is equal to

∏k−1
i=0 (C̃i ; ui), which is nonzero since (C̃i ; ui) = �i,

with

�i =
det(Ṽ

T
i+1Wi+1)

det(Ṽ
T
i Wi)

6= 0 for i = 1; : : : ; k − 1 and �0 = (r̃0;w1) 6= 0:

Thus span(u0; : : : ; uk−1) has dimension k and so it can only be identical to span(w1; : : : ;wk).
3. Multiplying the relation uk−1 = wk −Wk−1W L

k−1wk by A, and since wk+1 = Awk , we obtain

Auk−1 = wk+1 − AWk−1W L
k−1wk :

Then wk+1 = Auk−1 + AWk−1d ′
k with d

′
k = W

L
k−1wk . Since AWk−1 = [w2; : : : ;wk], we have wk+1 ∈

span(w2; : : : ;wk ; Auk−1). Moreover, we can write

wk+1 = Auk−1 +Wkdk

with dk = (0; d ′T
k)

T. Inserting the preceding relation in (7), we get

uk =Auk−1 +Wkdk −WkW L
k (Auk−1 +Wkdk)

=Auk−1 −WkW L
k Auk−1:

On the other hand, by induction, it is easy to show that we have the factorization

Wk = UkRk;

where Rk is a unit upper triangular k × k matrix. Hence WkW L
k = UkU

L
k .

4. If wk+1 ∈ span(w1; : : : ;wk), then we can write wk+1 = Wkd . Inserting this relation in (7), we
obtain

uk =Wkd −WkW L
k Wkd = 0:

Conversely if uk =0, then wk+1−WkW L
k wk+1 =0. Consequently wk+1 ∈ span(w1; : : : ;wk), which ends

the proof.

We turn now to the computation of the vector uk . From the preceding Theorem, we deduce that
uk+1 = Auk − Uk+1U L

k+1Auk = Auk − Uk+1dk , where dk is the solution of the linear system
(Ṽ

T
k+1Uk+1)dk = Ṽ

T
k+1Auk : (11)

But the right-hand side of this system is (C̃T0Auk ; : : : ; C̃
T
k Auk). Since C̃

T
j Auk = C̃

T
j+1uk and, by using the

�rst statement of Theorem 6, we obtain

((C̃0; Auk); : : : ; (C̃k ; Auk)) = ((C̃1; uk); : : : ; (C̃k−1; uk); (C̃k ; uk); (C̃k+1; uk))
= (0; : : : ; 0; (C̃k ; uk); (C̃k+1; uk)):

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 247

Since the matrix Ṽ
T
k+1Uk+1 is lower triangular, we deduce that dk = (0; : : : ; 0; k+1; �k+1)

T, where(
(C̃k−1; uk−1) 0
(C̃k ; uk−1) (C̃k ; uk)

)(
k+1
�k+1

)
=
(
(C̃k−1; Auk)
(C̃k ; Auk)

)
:

Using these relations, we can compute recursively the vector uk by

uk+1 = Auk − �k+1uk − k+1uk−1; (12)

where

k+1 =
(C̃k ; uk)

(C̃k−1; uk−1)
and �k+1 =

(C̃k ; Auk − k+1uk−1)
(C̃k ; uk)

: (13)

Now, since xk+1 cannot be computed directly from (9), we write uk as uk=Azk , with z0=r0. Since the
matrix A is nonsingular, then from statement 1 of Theorem 6 we have span(z0; : : : ; zk−1) =Kk(A; r0)
and from (8)

zk =

∣∣∣∣∣∣∣∣∣

wk w0 : : : wk−1
(C̃0;wk+1) (C̃0;w1) · · · (C̃0;wk)

...
...

...
(C̃k−1;wk+1) (C̃k−1;w1) · · · (C̃k−1;wk)

∣∣∣∣∣∣∣∣∣
/
det(Ṽ

T
k Wk): (14)

From (12) we immediately obtain that

zk+1 = Azk − �k+1zk − k+1zk−1
and since C̃k+1 = ATC̃k , the expression for �k+1 simplify. Gathering together all these formulas, we
�nally obtain the following algorithm [12].

Choose x0 and r̃0
Set r0 = b− Ax0; C̃0 = r̃0; z0 = r0; z−1 = 0; 1 = 0
For k = 0; 1; 2; : : : until convergence do

�k+1 =
(C̃k ; rk)
(C̃k ; Azk)

rk+1 = rk − �k+1Azk
xk+1 = xk + �k+1zk
C̃k+1 = ATC̃k

If k 6= 0 then k+1 = (C̃k ; Azk)
(C̃k−1; Azk−1)

�k+1 =
(C̃k+1; Azk − k+1zk−1)

(C̃k ; Azk)
zk+1 = Azk − �k+1zk − k+1zk−1

end for

This algorithm is mathematically equivalent to the Lanczos=Orthodir algorithm given in [33,26]
(also called BIODIR in [21]). Let us now show how to obtain the usual Lanczos=Orthodir algorithm.

248 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

From (10) we have

�k+1 =
(C̃k ; Pkr0)
(C̃k ; uk)

=
(PTk C̃k ; Pkr0)
(PTk C̃k ; uk)

:

Thus, if we set ũk = PTk C̃k and ũ0 = r̃0, we obtain

�k+1 =
(ũk ; rk)
(ũk ; uk)

: (15)

We will now consider some fundamental properties of the projectors Pk and of the vectors ũk .
Some of these properties are only needed in the proofs of statements 6 and 7 which are used in the
sequel. We set Ũ k = [ũ0; : : : ; ũk−1]. We have the following results.

Theorem 7. If H (1)
j 6= 0 for j = 1; : : : ; k; then

1. PiPj = PjPi = Pj; ∀i6j6k.
2. PkWk = 0.
3. Pk = I −∑k−1

j=0 ujũ
T
j =(ũj; uj).

4. (ũk ;wj) = (ũk ; uj−1) = 0 for j = 1; : : : ; k.
5. span(ũ0; : : : ; ũk−1) = Kk(AT; r̃0).
6. The vector ũk can be written as

ũk = ATũk−1 − Ũ k (U T
k Ũ k)−1U T

k A
Tũk−1:

7. The matrix Ũ
T
k Uk is a diagonal matrix whose ith diagonal element is �i.

8. (ũj; Auk) = 0 for j = 0; : : : ; k − 2.
9. ũk = 0 if and only if C̃k+1 ∈ Kk(AT; r̃0).

Proof. 1–3 are obvious.
4. By de�nition we have ũk=PTk C̃k and, as Pk−1Wk−1=0, it follows that Pk−1wj=0 for j=1; : : : ; k−1

and

(ũk ;wj) = (PTk C̃k ;wj) = (C̃k ; Pkwj) = 0 for j = 1; : : : ; k:

Moreover, from statement 1, we have

(C̃k ; Pkwj) = (C̃k ; Pk Pj−1 wj) = (PTk C̃k ; uj−1) = (ũk ; uj−1):
5. By transposing (5), we get PTk = I − Ṽ k(W T

k Ṽ k)
−1W T

k . It follows that

ũk = C̃k − Ṽ k(W T
k Ṽ k)

−1W T
k C̃k :

From the last relation, we deduce that ũk−1 ∈ span(C̃0; : : : ; C̃k−1). Hence span(ũ0; : : : ; ũk−1)⊆
span(C̃0; : : : ; C̃k−1).
Now, assume that

∑k−1
i=0 �iũi = 0, then

k−1∑
i=0

�i(ũi ;wj) = 0 for j = 1; : : : ; k:

But the matrix of this system is a lower triangular. Its determinant is the product, for i=0 to k− 1,
of (ũi ;wi+1). But (ũi ;wi+1)=(C̃i ; ui)=�i, which is di�erent from zero as seen in the proof of Theorem

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 249

6, item 2. Thus, this matrix is nonsingular and span(ũ0; : : : ; ũk−1) has dimension k and so it must
be identical to span(C̃0; : : : ; C̃k−1).
6. The proof is similar to that of item 3 of Theorem 6.
7. We have (ũi ; uj) = (PTi C̃i ; Pjwj+1). Consequently,

(ũi ; uj) =
{
(C̃i ; Pjwj+1) = (C̃i ; uj) if i¡ j6k;
(C̃i ; Piwj+1) = (ũi ;wj+1) if j¡ i6k:

Then, since (ũi ; ui) = �i 6= 0 and using the �rst part of Theorem 6 and part 4 of this theorem we
get the result.
8. We already show that Auk=uk+1+�k+1uk+k+1uk−1. Consequently, from the preceding statement,

we get (ũi ; Auk) = (ũi ; uk+1) + �k+1(ũi ; uk) + k+1(ũi ; uk−1) = 0 for i = 0; : : : ; k − 2.
9. The proof is similar to that of the last part of Theorem 6.

The linear system (11) can be written as

(Ũ
T
k+1Uk+1)dk = Ũ

T
k+1Auk : (16)

The matrix (Ũ
T
k+1Uk+1) is diagonal and from statement 8 of Theorem 7, we can see that only the

last two components of the right-hand side of system (16) are nonzero. Consequently, k+1 and �k+1
are given by

k+1 =
(ũk ; uk)

(ũk−1; uk−1)
; �k+1 =

(ATũk ; uk)
(ũk ; uk)

: (17)

The vectors ũk can be recursively computed as the vectors uk but with AT instead of A. These
formulas de�ne the algorithm known under the names Lanczos=Orthodir [33,26] and BIODIR [21].
It is as follows.

Lanczos=Orthodir algorithm
Choose x0 and r̃0
Set r0 = b− Ax0; z0 = r0; z−1 = 0; ũ−1 = 0; ũ0 = r̃0; 1 = 0
For k = 0; 1; 2; : : : until convergence do

�k+1 =
(ũk ; rk)
(ũk ; Azk)

rk+1 = rk − �k+1Azk
xk+1 = xk + �k+1zk

If k 6= 0 then k+1 = (ũk ; Azk)
(ũk−1; Azk−1)

�k+1 =
(AT ũk ; Azk)
(ũk ; Azk)

zk+1 = Azk − �k+1zk − k+1zk−1
ũk+1 = AT ũk − �k+1ũk − k+1ũk−1

end for

250 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

This algorithm is de�ned (that is xk exists) only if H
(1)
k 6= 0; ∀k. If this is not the case, it is possible

to jump over the nonexisting iterates and to use only those which exist. We have now to show how
to jump directly from xk to xk+m when H

(1)
k 6= 0; H (1)

k+i = 0; i = 1; : : : ; m− 1 and H (1)
k+m 6= 0.

3.2. Look-ahead strategy

Let us assume that some of the Hankel determinants H (1)
k are equal to zero. Then, due to a

division by zero, a breakdown occurs in the two preceding algorithms and the corresponding iterates
xk do not exist. It is possible to avoid such breakdowns by computing only the existing iterates.
Two successive existing iterates will be denoted by xnk and xnk+1 , where nk is the dimension of
the corresponding Krylov subspace, nk+1 = nk + mk , and where mk denotes the length of the jump
between the dimensions of the two Krylov subspaces.

3.2.1. Determination of the length of the jump
If the matrix Ṽ

T
nkWnk is nonsingular, that is H

(1)
nk 6= 0, then unk exists and we have

unk = wnk+1 −Wnk W
L
nkwnk+1; un0 = Ar0 with n0 = 0: (18)

Thus, from statement 1 of Theorem 6, Ṽ
T
nkunk = 0, which can be written, by setting unk = Aznk , as

(C̃i ; A znk) = 0 for i = 0; : : : ; nk − 1: (19)

We will now discuss how to determine the length mk of the jump. We assume that H
(1)
nk+i = 0 for

i=1; : : : ; mk−1 and that it is di�erent from zero for i=0 and i=mk . Applying Schur’s determinantal
formula to H (1)

nk+1 (see Remark 4), we see that

H (1)
nk+1=H

(1)
nk = (C̃nk ; Aznk):

Hence H (1)
nk+1 = 0 if and only if (C̃nk ; Aznk) = 0. More generally we have the following result.

Theorem 8. If H (1)
nk+j = 0 for j = 1; : : : ; i − 1; then H (1)

nk+i = 0 if and only if (C̃nk ; Aiznk) = 0.

Let us �rst remark that, if we assume that H (1)
nj 6= 0 for j=0; : : : ; k, then only the vectors zn0 ; : : : ; znk

are de�ned. To obtain a basis of Knk+i(A; r0), some auxiliary vectors are needed. The natural choice
is to take znj ;i = A

iznj ; i¿0. These vectors are called the inner vectors.

Since H (1)
nk+i = det(Ṽ

T
nk+iWnk+i), it is easy to verify that

1. span(zn0 ; zn0 ;1; : : : ; zn0 ;m0−1; : : : ; znk−1 ; znk−1 ;1; : : : ; znk−1 ;mk−1−1; znk ; znk ;1; : : : ; znk ;i−1) = Knk+i(A; r0).

2. det(Ṽ
T
nk+iWnk+i) = 0 if and only if det(Ṽ

T
nk+i AZnk+i) = 0, where Znk+i is the matrix whose columns

are zn0 ; zn0 ;1; : : : ; zn0 ;m0−1; : : : ; znk−1 ; znk−1 ;1; : : : ; znk−1 ;mk−1−1; znk ; znk ;1; : : : ; znk ;i−1.

3. |det(Ṽ Tnk+i AZnk+i)|= |det(Ṽ
T
nkAZnk)| |(C̃nk ; Aiznk)|i.

Hence mk is such that

(C̃nk ; Aiznk) = 0 for i = 1; : : : ; mk − 1 and (C̃nk ; Amkznk) 6= 0: (20)

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 251

3.2.2. Computation of the residual
We will now show how to deduce xnk+1 and rnk+1 from xnk ; rnk and znk . We have rnk+1 =Pnk+1r0 and

Pnk+1 = I −Wnk+1(Ṽ
T
nk+1Wnk+1)

−1Ṽ
T
nk+1 = I − AZnk+1(Ṽ

T
nk+1AZnk+1)

−1Ṽ
T
nk+1 :

We have to consider a block version of (6). We write Ṽ nk+1 = [Ṽ nk ; Ṽ nk ; mk] and Znk+1 = [Znk ; Znk ; mk],
which means that the matrix Ṽ nk ; mk is the matrix formed by the vectors to be added to Ṽ nk to obtain
Ṽ nk+1 and similarly for Znk ; mk . We have

Ṽ
T
nk+1AZnk+1 =

 Ṽ

T
nkAZnk Ṽ

T
nkAZnk ; mk

Ṽ
T
nk ; mkAZnk Ṽ

T
nk ; mkAZnk ; mk

 :

On the other hand, Ṽ
T
nkAZnk ; mk = 0. Then

Ṽ
T
nk+1AZnk+1 =

 Ṽ

T
nkAZnk 0

Ṽ
T
nk ; mkAZnk Ṽ

T
nk ; mkAZnk ; mk

 : (21)

Inverting the matrix Ṽ
T
nk+1AZnk+1 , we deduce

Pnk+1 = Pnk − AZnk ; mk (Ṽ
T
nk ; mkAZnk ; mk)

−1Ṽ
T
nk ; mkPnk :

Consequently,

rnk+1 = rnk − AZnk ; mk �nk+1 and xnk+1 = xnk + Znk ; mk�nk+1 ;

where the vector �nk+1 ∈ Rmk is the solution of the linear system
(Ṽ

T
nk ; mkAZnk ; mk)�nk+1 = Ṽ

T
nk ; mk rnk :

It is important to remark that the matrix of this system is an upper triangular Toeplitz matrix, since

Ṽ
T
nk ; mkAZnk ; mk =

(C̃nk ; Amkznk)
(C̃nk ; Amkznk) (C̃nk+1; Amkznk)

.
...

.
...

.
...

(C̃nk ; Amkznk) (C̃nk+1; Amkznk) · · · · · · (C̃nk+mk−1; Amkznk)

:

3.2.3. Computation of the vectors znk+1
The two relations (18) and (19) determine znk+1 , which can also be de�ned as

znk+1 − wnk+1 ∈ Knk+1(A; r0);
Ṽ
T
nk+1Aznk+1 = 0:

This leads to
znk+1 − Amkznk ∈ Knk+1(A; r0);
Ṽ
T
nk+1Aznk+1 = 0:

252 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

It follows that

znk+1 = A
mkznk − Znk+1(Ṽ

T
nk+1AZnk+1)

−1Ṽ
T
nk+1A

mk+1znk :

From (19) and (20) we deduce that (C̃i ; Amk+1znk) = 0 for i = 0; : : : ; nk − 2. Consequently,
Ṽ
T
nk+1A

mk+1znk = (0; : : : ; 0; (C̃nk ; Amkznk); : : : ; (C̃nk+mk ; Amkznk))T:
Let dnk+1 be the solution of the linear system

(Ṽ
T
nk+1AZnk+1)dnk+1 = (0; : : : ; 0; (C̃nk ; A

mkznk); : : : ; (C̃nk+mk ; Amkznk))T:
Then

dnk+1 = (0; : : : ; 0; nk+1 ; 0; : : : ; 0; �nk+1)
T;

where nk+1 is a scalar and �nk+1 ∈ Rmk is a vector. Thus
znk+1 = A

mkznk − Znk ; mk�nk+1 − nk+1znk−1 :

From (21) we have

nk+1 =
(C̃nk ; Amkznk)

(C̃nk−1 ; Amk−1znk−1)

and

(Ṽ
T
nk ; mkAZnk ; mk)�nk+1 = Ṽ

T
nk+1;mk (A

mkznk − nk+1znk−1):

Gathering together all these formulas, we �nally obtain the following algorithm called method of
recursive zoom (MRZ) [8]

MRZ algorithm
Choose x0 and r̃0
Set n0 = 0, rn0 = b− Ax0, C̃n0 = r̃0, zn0 = r0, zn−1 = 0
For k = 0; 1; 2; : : : until convergence do

Find mk such that (C̃nk ; Aiznk) = 0 for i = 1; : : : ; mk − 1 and (C̃nk ; Amkznk) 6= 0
nk+1 = nk + mk

Solve (Ṽ
T
nk ; mkAZnk ; mk)�nk+1 = Ṽ

T
nk ; mk rnk

rnk+1 = rnk − AZnk ; mk�nk+1
xnk+1 = xnk + Znk ; mk�nk+1

If k 6= 0 then nk+1 =
(C̃nk ; Amkznk)

(C̃nk−1 ; Amk−1znk−1)
else nk+1 = 0

Solve (Ṽ
T
nk ; mkAZnk ; mk)�nk+1 = Ṽ

T
nk+1;mk (A

mkznk − nk+1znk−1)

znk+1 = A
mkznk − Znk ; mk�nk+1 − nk+1znk−1 and C̃nk+1 = (AT)mk C̃nk

end for

Clearly, this algorithm is a generalization of the Lanczos=Orthodir algorithm. It cannot su�er from
breakdown, except the incurable hard one which occurs when the matrix (Ṽ

T
mAZm) is singular, where

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 253

m is the degree of the minimal polynomial of A for r0. The pseudo-code of this algorithm and the
corresponding subroutine are given in [6,7].
This algorithm may be unstable due to the powers of AT. This drawback will be avoided in

the MRZ-Stab algorithm which generalizes the BIODIR algorithm and will now be presented. The
derivation of the formulas will not be given in details.
Let us set ũnj = P

T
nj C̃nj with ũn0 = r̃0, and ũnj ;i = A

Ti ũnj ; i¿0. Then it is easy to show that

1. span(ũn0 ; ũn0 ;1 : : : ; ũn0 ;m0−1; : : : ; ũnk−1 ; ũnk−1 ;1; : : : ; ũnk−1 ;mk−1−1; ũnk ; ũnk ;1; : : : ; ũnk ;i−1) = Knk+i(A
T; r̃0).

2. det(Ṽ
T
nk+iWnk+i)=0 if and only if det(Ũ

T
nk+i AZnk+i)=0, where Ũ nk+i is the matrix whose columns

are ũn0 ; ũn0 ;1 : : : ; ũn0 ;m0−1; : : : ; ũnk−1 ; ũnk−1 ;1; : : : ; ũnk−1 ;mk−1−1; ũnk ; ũnk ;1; : : : ; ũnk ;i−1.

3. Pnk+1 = Pnk − AZnk ; mk (Ũ
T
nk ; mk AZnk ; mk)

−1Ũ
T
nk ; mkPnk where the matrices Ũ nk ; mk are de�ned similarly to

the matrices Ṽ nk ; mk and Znk ; mk .
4. The matrix (Ũ

T
nk ; mkAZnk ; mk) is an upper triangular Toeplitz matrix

(Ũ
T
nk ; mkAZnk ; mk) =

(ũnk ; A
mkznk)

(ũnk ; A
mkznk) (ũnk ;1; A

mkznk)

.
...

.
...

.
...

(ũnk ; A
mkznk) (ũnk ;1; A

mkznk) · · · · · · (ũnk ; mk−1; A
mkznk)

:

We obtain the following algorithm called (MRZ)-Stab [10,11].

MRZ-Stab algorithm
Choose x0 and r̃0
Set n0 = 0, rn0 = b− Ax0, zn0 = r0, ũn−1 = 0, ũ0 = r̃0; zn−1 = 0
For k = 0; 1; 2; : : : until convergence do

Find mk such that (ũnk ; A
iznk) = 0 for i = 1; : : : ; mk − 1 and (ũnk ; Amkznk) 6= 0

nk+1 = nk + mk

Solve (Ũ
T
nk ; mkAZnk ; mk)�nk+1 = Ũ

T
nk ; mk rnk

rnk+1 = rnk − AZnk ; mk�nk+1
xnk+1 = xnk + Znk ; mk�nk+1

If k 6= 0 then nk+1 =
(ũnk ; A

mkznk)
(ũnk−1 ; Amk−1znk−1)

else nk+1 = 0

Solve (Ũ
T
nk ; mkAZnk ; mk)�nk+1 = Ũ

T
nk ; mk (A

mk+1znk)

znk+1 = A
mkznk − Znk ; mk�nk+1 − nk+1znk−1

ũnk+1 = A
mk ũnk − Ũ nk ; mk�nk+1 − nk+1 ũnk−1

end for

254 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

4. Polynomial approach

In this section, we will consider the same algorithms as in the preceding section, but we will now
derive them from the formal orthogonal polynomial approach. Again, the regular and the nonregular
cases will be treated. We will not develop this approach in much details since our aim is only to
show that this polynomial approach is much simpler than the matrix one. The interested reader will
�nd more details in the literature given at the end of the paper.

4.1. Regular case

If we set

pk(�) = 1 + a
(k)
1 �+ · · ·+ a(k)k �k = 1 + �qk−1(�)r0

then, from (2), we have

rk = pk(A)r0

and

xk = x0 − qk−1(A)r0:
Moreover, if we de�ne the linear functional c on the space of polynomials by

c(�i) = (r̃0; Air0) = (r̃0;wi) = ci; i = 0; 1; : : : (22)

then

c(vi(�)pk(�)) = 0; i = 0; : : : ; k − 1;
where ∀i; vi is an arbitrary polynomial of exact degree i.
These relations show that pk is the polynomial of degree at most k belonging to the family of

formal orthogonal polynomials (FOP) with respect to c [3]. This polynomial is de�ned apart from
a multiplying factor which is chosen, in our case, such that pk(0) = 1. With this normalization, the
polynomial pk can be written as a ratio of determinants

pk(�) =

∣∣∣∣∣∣∣∣∣

1 � · · · �k

c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣
:

Then we have

rk =

∣∣∣∣∣∣∣∣∣

r0 Ar0 · · · Akr0
c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 255

which correspond exactly to the ratio of determinants given in Remark 5, and

xk − x0 =

∣∣∣∣∣∣∣∣∣

0 r0 · · · Ak−1r0
c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣
:

Since the determinants in the denominators of pk , rk and xk −x0 are in fact the preceding Hankel
determinant H (1)

k , pk exists and is unique if and only if this determinant is di�erent from zero and
the existence of the polynomial pk guarantees the existence and the uniqueness of rk and xk .
Let us now consider the monic polynomial p(1)k of degree k belonging to the family of FOP with

respect to the functional c(1) de�ned by c(1)(�i) = c(�i+1). It satis�es the orthogonality conditions

c(1)(vi(�)p
(1)
k (�)) = 0; i = 0; : : : ; k − 1

and it can be written as a ratio of determinants

p(1)k (�) =

∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck+1
...

...
...

ck ck+1 · · · c2k
1 � · · · �k

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣
:

Since it has the same denominator as pk , p
(1)
k exists under the same condition and conversely.

If we consider the vector zk = p
(1)
k (A)r0, we obtain

zk =

∣∣∣∣∣∣∣∣∣

Akr0 r0 · · · Ak−1r0
ck+1 c1 · · · ck
...

...
...

c2k ck · · · c2k−1

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

c1 c2 · · · ck
c2 c3 · · · ck+1
...

...
...

ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣
and since ci=((AT)i−j r̃0; Ajr0)=(C̃i−j;wj), for j=0; : : : ; i, we recover the ratio of determinants given
in (14).
In the sequel, the linear functionals c and c(1) will always act on the variable � which will be

suppressed when unnecessary.
The recursive computation of the polynomials pk , needed in Lanczos method, can be achieved in

several ways. For instance, we can use the usual three-term recurrence relation, or relations involving
also the polynomials of the family {p(1)k } or polynomials proportional to them. Using such recurrence
relationships leads to all the known algorithms for implementing the method of Lanczos and also to
new ones. See [12] for a uni�ed presentation of all these methods based on the theory of FOP and
[2] for more details.
Let us now see how to compute the polynomial pk+1 from pk and p

(1)
k . The following relation

holds:

pk+1(�) = pk(�)− �k+1�p(1)k (�) (23)

with p0(�) = p
(1)
0 (�) = 1.

Indeed, let p̃i be an auxiliary family of polynomials so that, for all i, p̃i has degree i exactly.
Multiplying (23) by p̃i and applying c gives

c(p̃ipk+1) = c(p̃ipk)− �k+1c(1)(p̃ip(1)k):

256 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

Owing to the orthogonality conditions of the two families of formal orthogonal polynomials, the
quantities on the right-hand side are equal to zero for i = 0; : : : ; k − 1. So, c(p̃ipk+1) = 0 for i =
0; : : : ; k − 1. Moreover, taking

�k+1 = c(p̃kpk)=c
(1)(p̃kp

(1)
k) (24)

leads to c(p̃kpk+1)=0 which shows (by a uniqueness argument) that the polynomial pk+1 obtained by
the preceding recurrence relationship is the (k +1)th polynomial of the family of formal orthogonal
polynomials with respect to the linear functional c. Replacing � by A in (23) gives a matrix.
Multiplying r0 by this matrix leads to

rk+1 = rk − �k+1Azk :
As it is easily seen, this recurrence relationship is much simpler to obtain by using the theory of

formal orthogonal polynomials than by the matrix approach of Section 3.
It must be noticed that replacing p(1)k by a proportional polynomial qk(�) = akp

(1)
k (�) in (23) and

(24) does not change (23) since

�k+1qk =
c(p̃kpk)
c(1)(p̃kqk)

qk =
c(p̃kpk)

akc(1)(p̃kp
(1)
k)
akp

(1)
k = �k+1p

(1)
k :

A breakdown occurs in this relation if and only if

c(1)(p̃kp
(1)
k) = c

(1)(�kp(1)k) = 0:

Thus, we see that a breakdown occurs if and only if H (1)
k+1 =0 or, in other terms, if and only if p

(1)
k+1

and pk+1 do not exist.
Since the polynomials {p(1)k } form a family of FOP, they also satisfy the usual three-term recur-

rence relationship which becomes, since they are monic

p(1)k+1(�) = (�− �k+1)p(1)k (�)− k+1p(1)k−1(�) (25)

with p(1)0 (�) = 1 and p
(1)
−1(�) = 0. Again, by the same type of procedure as above, we obtain the

coe�cients �k+1 and k+1 as

k+1 = c(1)(�p̃k−1p
(1)
k)=c

(1)(p̃k−1p
(1)
k−1);

�k+1 = [c(1)(�p̃kp
(1)
k)− k+1c(1)(p̃kp(1)k−1)]=c(1)(p̃kp(1)k):

So, a breakdown occurs in this relation if and only if c(1)(p̃kp
(1)
k) = 0 (since p

(1)
k exists it means

that c(1)(p̃k−1p
(1)
k−1) 6= 0 and, thus, no division by zero can occur in the expression of k+1). But

c(1)(p̃kp
(1)
k) = c

(1)(�kp(1)k) = H
(1)
k+1=H

(1)
k

and we recover the condition for the existence of pk+1. Thus, a breakdown occurs in (25) if and
only if the polynomials pk+1 and p

(1)
k+1 do not exist. Such a breakdown is called a true breakdown.

Using alternately relations (23) and (25) allows to compute simultaneously the two families {pk}
and {p(1)k }. Only true breakdowns can occur in these two relations.
These recurrence relationships can be used for implementing Lanczos method and they give

rk+1 = rk − �k+1Azk ;

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 257

xk+1 = xk + �k+1zk ;

zk+1 = Azk − �k+1zk − k+1zk−1:
The coe�cients of these recurrence relationships can be computed as above. Using de�nition (22) of
the linear functional c, we obtain formulas (10) and (13) for the choice p̃k(�)=�

k , and formulas (15)
and (17) for the choice p̃k(�) ≡ p(1)k (�). Hence the algorithms of Section 3.1 have been recovered.

4.2. Avoiding breakdowns

Let us now see how to avoid the true breakdowns which can occur in the recurrence relationships
given in the preceding section.
The treatment of a true breakdown consists of the following steps:

1. recognize the occurrence of such a breakdown, that is the nonexistence of the next orthogonal
polynomial(s),

2. determine the degree of the next existing (called regular) orthogonal polynomial,
3. jump over the nonexisting orthogonal polynomials and built a recurrence relationship which only
uses the regular ones.

This problem was completely solved by Draux [15] in the case of monic orthogonal polynomials.
Since the polynomials p(1)k are monic and the conditions for the existence of the polynomials pk
and p(1)k are the same, we will apply his results to avoid true breakdowns.
The subsequence of regular orthogonal polynomials will be denoted by {p(1)nk }. The polynomials

of degrees nk + 1; : : : ; nk + mk − 1 do not exist. So, the kth regular polynomial of the family, p(1)nk ,
has degree nk , with nk¿k, and the next regular polynomial is p(1)nk+1 with nk+1 = nk + mk . Then, as
above, mk is the length of the jump between the degree of p(1)nk and the degree of p(1)nk+1 . Similar
considerations hold for the polynomials of the family {pk}.
It was proved by Draux [15] that the length mk of the jump is given by the conditions

c(1)(�ip(1)nk)
{
=0 for i = 0; : : : ; nk + mk − 2;
6= 0 for i = nk + mk − 1:

Moreover, these polynomials can be recursively computed by the relationship

p(1)nk+1(�) = (�0 + · · ·+ �mk−1�mk−1 + �mk)p(1)nk (�)− k+1p(1)nk−1
(�) (26)

for k = 0; 1; : : : ; with p(1)−1(�) = 0; p
(1)
0 (�) = 1, 1 = 0 and

k+1 = c(1)(�nk+mk−1p(1)nk)=c
(1)(�nk−1p(1)nk−1

);

�mk−1c
(1)(�nk+mk−1p(1)nk) + c

(1)(�nk+mkp(1)nk) = k+1c
(1)(�nkp(1)nk−1

);
...
�0c(1)(�nk+mk−1p(1)nk) + · · ·+ �mk−1c(1)(�nk+2mk−2p(1)nk) + c(1)(�nk+2mk−1p(1)nk)
= k+1c(1)(�nk+mk−1p(1)nk−1

):

Since, by de�nition of mk , c(1)(�nk+mk−1p(1)nk) 6= 0, this system is never singular and no breakdown
can occur in (26).

258 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

For implementing Lanczos method by the algorithm Lanczos=Orthodir, we also need to compute
pnk+1 from pnk and p

(1)
nk . As proved in [8], we have the following relation which generalizes (23):

pnk+1(�) = pnk (�)− �(�0 + · · ·+ �mk−1�mk−1)p(1)nk (�); (27)

where the �i’s are the solution of the system

�mk−1c
(1)(�nk+mk−1p(1)nk) = c(�

nkpnk);
...
�0c(1)(�nk+mk−1p(1)nk) + · · ·+ �mk−1c(1)(�nk+2mk−2p(1)nk) = c(�nk+mk−1pnk):

Again, since, by de�nition of mk , c(1)(�nk+mk−1p(1)nk) 6= 0, this system is never singular and no break-
down can occur in (27).
The systems giving the coe�cients �i, k+1 and �i are the same as those given in Section 3.2

and we have �nk+1 = (�0; : : : ; �mk−1)
T and �nk+1 = (�0; : : : ; �mk−1)

T. Then, using alternately (26) and (27)
gives the MRZ algorithm.
The MRZ-Stab algorithm given above can be also obtained from the polynomial approach by

writing the orthogonality conditions on a di�erent basis than the canonical one. Another version
of the MRZ, which is more stable and only needs the storage of a �xed number of vectors in-
dependently of the length of the jumps, was recently proposed in [11]; see also [10]. It is based
on Horner’s rule for computing a polynomial and, for that reason, it was called the HMRZ algo-
rithm. The HMRZ-Stab was obtained as a variant of the HMRZ, writing again the orthogonality
conditions on a basis di�erent from the canonical one. A quite similar technique is also described
in [1].
Quite similar algorithms for treating this kind of breakdowns were also given by Gutknecht

[22,23]. They are based on the fact that the occurrence of a breakdown corresponds to a square
block of adjacent identical approximants in the Pad�e table and a look-ahead strategy is also used.
This approach and that of this subsection were compared in [16]. Another technique, due to Graves–
Morris [19], is based on the connection between FOP and Pad�e approximants. Indeed, a break-
down also corresponds to a block of identical adjacent FOP and his technique consists of turning
around such a block instead of going through it. This idea was extended to the BICGSTAB in
[20]. Zero divisor-free Hestenes–Stiefel-type conjugate direction algorithms can be found in [24].
Another scheme, based on a modi�ed Krylov subspace approach, is presented in [31]. The prob-
lem of breakdown can also be treated by introducing new vectors into Krylov subspaces [29] or
by an adaptative block Lanczos algorithm [30]. Necessary and su�cient conditions for look-ahead
versions of the block conjugate gradient algorithm to be free from serious and incurable break-
downs are given in [13]. Thus, unstable versions of the algorithms can be identi�ed and stable ones
proposed.

Acknowledgements

We would like to thank the referees for constructive comments.

C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260 259

References

[1] H. Ayachour, Avoiding look-ahead in the Lanczos method and Pad�e approximation, Appl. Math. 26 (1999) 33–62.
[2] C. Baheux, New implementations of Lanczos method, J. Comput. Appl. Math. 57 (1995) 3–15.
[3] C. Brezinski, Pad�e-Type Approximation and General Orthogonal Polynomials, ISNM Vol. 50, Birkh�auser-Verlag,

Basel, 1980.
[4] C. Brezinski, Other manifestations of the Schur complement, Linear Algebra Appl. 111 (1988) 231–247.
[5] C. Brezinski, M. Redivo-Zaglia, Breakdowns in the computation of orthogonal polynomials, in: A. Cuyt (Ed.),

Nonlinear Numerical Methods and Rational Approximation, Kluwer, Dordrecht, 1994, pp. 49–59.
[6] C. Brezinski, M. Redivo-Zaglia, H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms,

Numer. Algorithms 1 (1991) 261–284.
[7] C. Brezinski, M. Redivo-Zaglia, H. Sadok, Addendum to Avoiding breakdown and near-breakdown in Lanczos type

algorithms, Numer. Algorithms 2 (1992) 133–136.
[8] C. Brezinski, M. Redivo-Zaglia, H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems,

Numer. Math. 63 (1992) 29–38.
[9] C. Brezinski, M. Redivo-Zaglia, H. Sadok, Breakdowns in the implementation of the L�anczos method for solving

linear systems, Comput. Math. Appl. 33 (1997) 31–44.
[10] C. Brezinski, M. Redivo-Zaglia, H. Sadok, New look-ahead implementations of Lanczos method for unsymmetric

systems, in: J. Wang et al. (Eds.), Iterative Methods in Scienti�c Computation, IMACS Ser. Comput. Appl. Math.
Vol. 4, 1998, pp. 9–14.

[11] C. Brezinski, M. Redivo-Zaglia, H. Sadok, New look-ahead Lanczos-type algorithms for linear systems, Numer.
Math. 83 (1999) 53–85.

[12] C. Brezinski, H. Sadok, Lanczos type methods for solving systems of linear equations, Appl. Numer. Math. 11
(1993) 443–473.

[13] C.G. Broyden, Look-ahead block-CG algorithms, Optim. Methods Software, to appear.
[14] R.W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974) 189–211.
[15] A. Draux, in: Polynômes Orthogonaux Formels. Applications, Lecture Notes in Mathematics, Vol. 974, Springer,

Berlin, 1983.
[16] A. El Guennouni, A uni�ed approach to some strategies for the treatment of breakdown in Lanczos-type algorithms,

Applicationes Mathematical 26 (1999) 477–488.
[17] V.N. Faddeeva, Computational Methods of Linear Algebra, Dover, New York, 1959.
[18] R. Fletcher, Conjugate gradient methods for inde�nite systems, in: G.A. Watson (Ed.), Numerical Analysis, Dundee

1975, Lecture Notes in Mathematics, Vol. 506, Springer, Berlin, 1976.
[19] P.R. Graves-Morris, A “Look-around Lanczos” algorithm for solving a system of linear equations, Numer. Algorithms

15 (1998) 246–274.
[20] P.R. Graves-Morris, A. Salam, Avoiding breakdown in Van der Vorst’s method, Numer. Algorithms 21 (1999)

205–223.
[21] M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Pad�e approximation, continued fractions

and the qd algorithm, Proceedings of the Copper Mountain Conference on Iterative Methods, 1990, unpublished.
[22] M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J.

Matrix Anal. Appl. 13 (1992) 594–639.
[23] M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, SIAM J.

Matrix Anal. Appl. 15 (1994) 15–58.
[24] Cs.J. Heged�us, Generating conjugate directions for arbitrary matrices by matrix equations, Comput. Math. Appl. 21

(1991) 71–85; 87–94.
[25] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. 49

(1952) 409–436.
[26] K.C. Jea, D.M. Young, On the simpli�cation of generalized conjugate gradient methods for nonsymmetrizable linear

systems, Linear Algebra Appl. 52=53 (1983) 399–417.
[27] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear di�erential and integral operators,

J. Res. Natl. Bur. Stand. 45 (1950) 255–282.

260 C. Brezinski et al. / Journal of Computational and Applied Mathematics 123 (2000) 241–260

[28] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49 (1952)
33–53.

[29] Qiang Ye, A breakdown-free variation of the nonsymmetric Lanczos algorithm, Math. Comput. 62 (1994) 179–207.
[30] Qiang Ye, An adaptative block Lanczos algorithm, Numer. Algorithms 12 (1996) 97–110.
[31] C.H. Tong, Qiang Ye, A linear system solver based on a modi�ed Krylov subspace method for breakdown recovery,

Numer. Algorithms 12 (1996) 233–251.
[32] P. Wynn, Upon systems of recursions which obtain among the quotients of the Pad�e table, Numer. Math. 8 (1966)

264–269.
[33] D.M. Young, K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear

Algebra Appl. 34 (1980) 159–194.

Journal of Computational and Applied Mathematics 123 (2000) 261–292
www.elsevier.nl/locate/cam

Analysis of acceleration strategies for restarted
minimal residual methods

Michael Eiermanna ; ∗, Oliver G. Ernsta, Olaf Schneiderb
aInstitut f�ur Angewandte Mathematik II, TU Bergakademie Freiberg, Germany
bGraduiertenkolleg R�aumliche Statistik, TU Bergakademie Freiberg, Germany

Received 31 August 1999; received in revised form 30 November 1999

Abstract

We provide an overview of existing strategies which compensate for the deterioration of convergence of minimum
residual (MR) Krylov subspace methods due to restarting. We evaluate the popular practice of using nearly invariant
subspaces to either augment Krylov subspaces or to construct preconditioners which invert on these subspaces. In the case
where these spaces are exactly invariant, the augmentation approach is shown to be superior. We further show how a
strategy recently introduced by de Sturler for truncating the approximation space of an MR method can be interpreted as
a controlled loosening of the condition for global MR approximation based on the canonical angles between subspaces.
For the special case of Krylov subspace methods, we give a concise derivation of the role of Ritz and harmonic Ritz
values and vectors in the polynomial description of Krylov spaces as well as of the use of the implicitly updated Arnoldi
method for manipulating Krylov spaces. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F10; 65F15

Keywords: Krylov subspace methods; Restarted Krylov subspace methods; Augmented Krylov subspace methods;
Deated Krylov subspace methods; Optimal truncation; GMRES; GMRES(m); Ritz values; Harmonic Ritz values;
Implicitly restarted Arnoldi method

1. Introduction

When Krylov subspace methods are employed for approximating the solution of large sparse or
structured linear systems of equations

Ax= b; A nonsingular; (1)

their stable implementation requires the construction of orthonormal bases of spaces which increase
in dimension with each iteration step.

∗ Corresponding author.
E-mail address: eiermann@math.tu-freiberg.de (M. Eiermann).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00398-8

262 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

If the operator A is Hermitian, or if the notion of orthogonality is suitably modi�ed (see [3]), then
these bases can be generated by short recurrence formulas, and this is the key to the e�ciency of
such widely used methods as CG, MINRES, BCG and QMR (see the monographs of Saad [18] and
Greenbaum [9] for an exposition of these methods). For non-Hermitian A, however, a result of Faber
and Manteu�el [6] implies that the construction of such bases which are orthonormal with respect to
a given inner product generally involves orthogonalization against all previously generated vectors,
as in algorithms such as FOM, GCR and GMRES. When the resulting storage and computation
requirements make these methods impractical, they are often modi�ed to compute an approximation
with respect to a space of a�ordable size, after which the algorithm is restarted using the current
approximation as the initial guess. Since restarting usually results in slower convergence (or the loss
thereof altogether), much recent work has been devoted to compensating for the loss of informa-
tion that occurs upon restarting by retaining a judiciously chosen part of the previously generated
space.
We distinguish two fundamental strategies in existing work: One lies in identifying a subspace U

which slows convergence, approximating this space and eliminating its inuence from the iteration
process. We shall refer to such a procedure as deation. Such “problematic” subspaces are often
identi�ed as eigenspaces of A associated with eigenvalues of small magnitude, but other spaces
may sometimes be better suited. Examples of this approach are the augmentation method introduced
by Morgan [13,14] and analyzed by Saad [19,20] and Chapman and Saad [2]. Another device for
eliminating U from the iteration is to introduce a preconditioner which inverts the orthogonal section
of A onto U, as proposed by Erhel et al. [5], Baglama et al. [1] and, with certain modi�cations, by
Kharchenko and Yeremin [10]. The second fundamental strategy consists of identifying the essential
orthogonality constraints by comparing angles between subspaces and maintaining orthogonality only
against the most important subspace of a given dimension. Such a strategy is proposed by de Sturler
[26].
The main intent of this paper is to provide an abstract framework which permits a uniform

presentation as well as a comparison of these methods. Although proposed originally in association
with Krylov subspace methods, these approaches can all be applied in the case of completely general
correction spaces, as we show in Sections 2.3 and 2.4. In the Krylov subspace case, much emphasis
has been placed on the approximation properties of invariant or nearly invariant correction spaces,
particularly so in connection with augmentation strategies. We present several results which attempt to
shed light on exactly when nearly invariant subspaces are useful. We also show that Krylov spaces
can never contain invariant subspaces without being themselves invariant; similarly, an invariant
space cannot contain a Krylov space without also containing the associated smallest invariant Krylov
space. However, we show that augmenting by invariant subspaces does eliminate the components of
the resulting residual in this space.
Since none of the results we shall derive are restricted to the �nite-dimensional case, the setting

of a separable Hilbert space H with inner product (·; ·) and associated norm ‖·‖ is the most natural,
and we assume that A in (1) is a bounded linear operator.
Section 2 reviews the basic theory of iterative subspace correction methods for solving (1), which

are based on the minimal residual (MR) and orthogonal residual (OR) approaches. We highlight
the fundamental role of the angles between correction and approximation spaces as introduced in
[3]. In addition, the necessary orthogonality relations are described, which must hold for the MR
approximation with respect to two arbitrary subspaces to yield the MR approximation with respect

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 263

to the sum of these spaces, and it is shown how these orthogonality relations may be relaxed in an
optimal way.
Section 3 reviews the implications of using Krylov spaces with regard to the simpli�cation of the

algorithms and the advantages of the polynomial representation of the residuals. We include new,
much simpli�ed derivations of the role of Ritz and harmonic Ritz values and vectors of A as well
as how the recently developed implicitly restarted Arnoldi method can be used to restart the Arnoldi
process without additional matrix–vector multiplications.
Section 4 discusses possible strategies for augmenting Krylov spaces and derives some results

showing the limitations for augmenting Krylov spaces to obtain A-invariant subspaces. The remainder
of Section 4 gives an overview of the most popular restart algorithms, beginning with restarted
GMRES itself, for which we give a surprising example for which GMRES with longer restart
lengths actually displays slower convergence than for shorter restart lengths. Next, the augmentation
algorithm of Morgan is presented, and a new, much simpli�ed proof is given that the augmented
Krylov spaces are themselves Krylov spaces. In addition, we show that, at least in the case of
exactly invariant subspaces, the augmentation approach is superior to the preconditioning algorithms
of Erhel et al. [5] and Baglama et al. [1]. Finally, the optimal truncation algorithm of de Sturler is
presented as an implementation of the selective orthogonalization strategy of Section 2.4.

2. Minimal and orthogonal residual methods

2.1. De�nitions and basic theory

Given an initial guess x0 for the solution of (1) together with the associated residual vector
r0 = b− Ax0 and a sequence of nested correction spaces in H,

{0}= C0⊂C1⊂C2⊂ · · ·⊂Cm⊂Cm+1⊂ · · ·
(for notational convenience, we assume that dimCm = m), all methods we shall consider lead to
iterates of the form xm=x0 +cm with cm ∈ Cm. They di�er in the way the corrections cm are selected
from Cm.
For the mth MR iterate xMRm = x0 + cMRm , the correction cMRm is chosen from Cm to satisfy

‖b− AxMRm ‖= ‖r0 − AcMRm ‖=minc∈Cm
‖r0 − Ac‖; (2)

or equivalently, such that AcMRm is the best approximation to r0 from the mth approximation space
Wm :=ACm. As A is invertible, cMRm and xMRm are uniquely de�ned; speci�cally, they are characterized
by

rMRm = b− AxMRm = r0 − AcMRm ⊥Wm: (3)

To de�ne the OR iterates we introduce the residual spaces

Vm+1 := span{r0}+Wm; m¿0; (4)

the name of which derives from the fact that the residual b−Ax lies in the space span{r0}+ACm=Vm+1
whenever x= x0 + c; c ∈ Cm. We now set xORm = x0 + cORm with cORm ∈ Cm such that

rORm = b− AxORm = r0 − AcORm ⊥Vm: (5)

264 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

In contrast to the MR approximation, the OR iterate may not exist for every m; when it does exist,
which is the case if and only if H =Wm ⊕ V⊥

m (see [3, Proposition 2:2]), then it is uniquely
determined.
Clearly, the mth MR approximant xMRm as well as the mth OR approximation xORm coincide with

the exact solution of (1) if and only if A−1r0 ∈ Cm or equivalently, if and only if r0 ∈Wm. If such
an index m exists we de�ne

L :=min{m :xMRm = A−1b}=min{m :xORm = A−1b} (6)

and otherwise set L :=∞. Alternative characterizations of the termination index L are
L=min{m : r0 ∈Wm}=min{m :Wm =Vm}=min{m :Vm =Vm+1}: (7)

The most popular implementations of both MR and OR methods rely on orthonormal bases
{C1; : : : ; Cm+1} of the residual spaces Vm+1 generated inductively by orthonormalizing Acm against
a (previously constructed) orthonormal basis {C1; : : : ; Cm} of Vm using the (modi�ed) Gram–Schmidt
algorithm. Here cm is an arbitrary vector from Cm \ Cm−1 and C1 = r0=� with � := ‖r0‖. As long
as Acm 6∈ Vm, a new orthonormal vector Cm+1 is generated and we may proceed to the next step.
If, however, Acm ∈ Vm, which is equivalent to Acm ∈ span{r0; Ac1; : : : ; Acm−1}, then the algorithm
terminates in step m. Since Ac1; : : : ; Acm are linearly independent (because A is invertible), we see
from (6) that Acm ∈ Vm is equivalent to m = L. In summary: The Gram–Schmidt process is well
de�ned up to the last step, in which xMRL = xORL = A−1b.
With Cm := [c1c2 · · · cm] and Vm+1 := [C1C2 · · · Cm+1], the �rst m orthonormalization steps establish

the following Arnoldi-type decomposition of A:

ACm = Vm+1H̃m = VmHm + �m+1;mCm+1uTm; (8)

(for m= L, we have ACL=VLHL), where H̃m= [�j;k] ∈ C(m+1)×m is an upper Hessenberg matrix and
Hm := [Im 0]H̃m ∈ Cm×m is the square matrix obtained by deleting the last row of H̃m. The entries
of H̃m are given by �j;k = (Ack ; Cj); 16k6j6m, and �k+1; k = ‖Ack −∑k

j=1 �j;kCj‖¿0, with equality
holding if and only if k = L. In other words, H̃m is an unreduced upper Hessenberg matrix (and
hence of full rank m) as long as m¡L. For m = L; ACL = VLHL implies that HL is nonsingular
because A is invertible and both CL and VL have rank L.
With respect to the orthonormal basis 1 Vm+1 of Vm+1, the vector r0 = �C1 = Vm+1�u(m+1)1 has the

coordinates �u(m+1)1 (u(m+1)1 ∈ Cm+1 denotes the �rst unit vector), while the approximation space
Wm = ACm is represented by the column space of H̃m. Consequently,

min
c=Cmy∈Cm

‖r0 − Ac‖ and min
y∈Cm
‖�u(m+1)1 − H̃my‖2

are equivalent problems (‖ · ‖2 denotes the Euclidean norm in Cm+1).
For xMRm = x0 + CmyMRm , condition (2) therefore leads to the least-squares problem

‖�u(m+1)1 − H̃myMRm ‖2 = miny∈Cm
‖�u(m+1)1 − H̃my‖2: (9)

Representing the OR iterate as xORm =x0+Cmy
OR
m , the Galerkin condition r

OR
m ⊥Vm (cf. (5)) similarly

leads to the linear system

0= [Im 0](�u(m+1)1 − H̃myORm) = �u
(m)
1 − HmyORm :

1 For convenience we shall identify a basis {C1; : : : ; Cm} with its representation as the row vector Vm = [C1 · · · Cm].

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 265

It can be shown (see [3, Remark 4:2]) that nonsingularity of Hm is equivalent to the existence of
the OR approximation xORm .
The orthonormal basis {C1; : : : ; Cm; Cm+1} of the residual space Vm+1 is the key to a simple repre-

sentation of the quantities related to the OR approximation. For instance, rORm is a scalar multiple
of Cm+1, as follows immediately from Vm+1 3 rORm ⊥Vm = span{C1; : : : ; Cm}. Since rMRm ⊥Wm (see (3)),
an orthonormal basis {Ĉ1; : : : ; Ĉm; C̃m+1} of Vm+1 with the analogous property with regard to the MR
approximation should ful�ll the condition span{Ĉ1; : : : ; Ĉm}=Wm.
It was already noted by Paige and Saunders [16] that the construction of such a basis derives

from the computation of a QR decomposition of H̃m. Indeed, if

QmH̃m =
[
Rm
0

]
(10)

with Qm ∈ C(m+1)×(m+1) unitary and Rm ∈ Cm×m upper triangular (and nonsingular since H̃m has full
rank), then

[V̂m C̃m+1] = [Ĉ1 · · · Ĉm C̃m+1] :=Vm+1QHm (11)

forms an orthonormal basis of Vm+1. Moreover,

ACm = Vm+1H̃m = Vm+1QHm

[
Rm
0

]
= [V̂m C̃m+1]

[
Rm
0

]
= V̂mRm (12)

shows that V̂m constitutes a basis of Wm = ACm.
On the other hand, using the QR factorization (10) the least-squares problem (9) can be rewritten

as

min
y∈Cm
‖�u(m+1)1 − H̃my‖2 = miny∈Cm

∥∥∥∥QHm
(
�Qmu

(m+1)
1 −

[
Rm
0

]
y
)∥∥∥∥

2

= min
y∈Cm

∥∥∥∥�Qmu(m+1)1 −
[
Rm
0

]
y
∥∥∥∥
2

= min
y∈Cm

∥∥∥∥∥
[
�qm − Rmy
�q(m)m+1;1

]∥∥∥∥∥
2

;

where [qTm q
(m)
m+1;1]

T = Qmu
(m+1)
1 (qm ∈ Cm) denotes the �rst column of Qm. The unique solution of

the above least-squares problem is yMRm = �R−1
m qm and the associated least-squares error is given by

‖rMRm ‖= �|q(m)m+1;1|.
A QR factorization of H̃m (and simultaneously the basis [V̂m C̃m+1]) can be computed inductively.

The matrices Qm; m= 1; 2; : : : ; L− 1, are usually constructed as products of Givens rotations
Qm = Gm

[
Qm−1 0
0 1

]
= Gm

[
Gm−1 0
0 1

] [
Gm−2 O
O I2

]
· · ·
[
G1 O
O Im−1

]
(13)

where, for k = 1; 2; : : : ; m,

Gk :=

 Ik−1 0 0
0 ck ske−i�k

0 −skei�k ck

 (ck ; sk¿0; c2k + s

2
k = 1; �k ∈ R)

(for the choice of ck ; sk and �k see, e.g., [3]).
In view of (11) we have

[V̂m C̃m+1] =Vm+1QHm = [Vm Cm+1]
[
QHm−1 0
0 1

]
GHm = [V̂m−1 C̃m Cm+1]GHm;

266 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

i.e., with C̃1 = C1,

Ĉm = cmC̃m + sme−i�mCm+1;
C̃m+1 =−smei�m C̃m + cmCm+1

for m= 1; 2; : : : ; L− 1. For ease of notation, we further set ĈL := C̃L.
Expressions for the entries of the unitary matrices Qm=[q

(m)
k; j]16k; j6m+1 can be obtained by forming

the products of the Givens matrices in (13). For the �rst column, this yields

q(m)k;1 = ck
k−1∏
j=1

[− sjei�j] (16k6m); q(m)m+1;1 =
m∏
j=1

[− sjei�j];

which immediately leads to the following result (cf. [3, Proposition 4.7]):

Proposition 2.1. For the MR and OR residual vectors of index m= 1; 2; : : : ; L− 1 there holds:

rMRm = �q(m)m+1;1C̃m+1 = �
m∏
j=1

[− sjei�j]C̃m+1;

rORm =−� sm
cm
ei�mq(m−1)m;1 Cm+1 =

�
cm

m∏
j=1

[− sjei�j]Cm+1;

rMRm−1 − rORm =
�
cm
q(m−1)m;1 Ĉm =

�
cm

m−1∏
j=1

[− sjei�j]Ĉm:

Proposition 2.1 shows that the convergence history of an MR method (and, in essence, also of
an OR method) is completely determined by the entries in the �rst column of the matrices Qm. To
emphasize this point we assume a �nite termination index L and note that the matrix HL possesses the
QR factorization QL−1HL=RL. Now r0 ∈WL (cf. (6)) can be represented as a linear combination of
the orthonormal basis {Ĉ1; Ĉ2; : : : ; ĈL} ofWL; r0=�VLu1=�VLQHL−1QL−1u1=�V̂LQL−1u1, or equivalently,
r0 = �

∑L
j=1 q

(L−1)
j;1 Ĉj = �

∑L
j=1 q

(j)
j;1 Ĉj (where we set q

(L)
L;1 := q

(L−1)
L;1). This equation states that, up to the

factor �, the �rst column of the matrix QL−1 contains the Fourier coe�cients of the expansion of r0
with respect to the basis V̂L of WL. The MR correction cMRm is selected such that AcMRm is the best
approximation to r0 from Wm, i.e.,

AcMRm = �
m∑
j=1

q(j)j;1 Ĉj and rMRm = r0 − AcMRm = �
L∑

j=m+1

q(j)j;1 Ĉj:

2.2. The angle connection

We saw in Proposition 2.1 that the sines and cosines of the Givens rotations used to construct the
QR decomposition of H̃m completely determine the residuals of both the MR and the OR approach.
In this section, we recall that these sines and cosines are not merely artifacts of the computational
scheme but are the sines and cosines of the angles between Wm and Vm, i.e., between the mth
approximation and the mth residual space.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 267

By

’m :=“(rMRm−1; ACm) =“(r
MR
m−1;Wm) (m= 1; 2; : : : ; L);

we denote the angle between rMRm−1 and ACm =Wm. 2 Note that 0¡’m6�=2 for m= 1; 2; : : : ; L− 1,
but ’L = 0 because rMRL−1 ∈VL =WL.
The following relations are fundamental for our later investigations (for a proof, see [3, Section

2]).

Theorem 2.2. For m= 2; 3; : : : ; L; there holds

sin’m =
sin“(r0;Wm)
sin“(r0;Wm−1)

= sin“(Vm;Wm);

where “(Vm;Wm) denotes the largest canonical angle between the spaces Vm and Wm. 3 For the
case of m= 1; we have V1 = span{r0} and thus sin’1 = sin“(V1;W1). In addition; there holds

sin“(r0;Wm) = sin’1 sin’2 · · · sin’m (m= 1; 2; : : : ; L):

Moreover; the quantities cm and sm which de�ne the Givens rotations Gm of (13) are given by

cm = cos’m and sm = sin’m (m= 1; 2; : : : ; L− 1):

As a consequence of these assertions, we cite from [3, Section 3] how the vectors involved in the
MR and OR approximations are related.

Theorem 2.3. With sm=sin“(rMRm−1; ACm) and cm=cos“(r
MR
m−1; ACm) the MR and OR approxima-

tions with respect to the correction spaces Cm satisfy

‖rMRm ‖= sm‖rMRm−1‖= s1s2 : : : sm‖r0‖; (14)

‖rMRm ‖= cm‖rORm ‖; (15)

xMRm = s2mx
MR
m−1 + c

2
mx

OR
m and rMRm = s2mr

MR
m−1 + c

2
mr
OR
m : (16)

2 For the reader’s convenience, we recall that the angle between a nonzero vector x ∈H and a subspace U⊂H; U 6=
{0}, is de�ned by

cos“(x;U) = sup
06=u∈U

cos“(x; u) = sup
06=u∈U

|(x; u)|
‖x‖ ‖u‖ :

If U is �nite dimensional this angle is also given by cos“(x;U)=‖PUx‖=‖x‖, where PU denotes the orthogonal projection
onto U, and consequently, “(x;U)=0 if and only if x ∈ U. Moreover, sin“(x;U)=‖(I−PU)x‖=‖x‖, and consequently,
“(x;U) = �=2 if and only if x⊥U.

3 Given orthonormal bases {Cj}mj=1 and {wj}mj=1 of two m-dimensional subspaces V and W, then the cosines of the
canonical angles between V and W are the singular values of the matrix of inner products [(Cj ;wk)] ∈ Cm×m. For later
use, we remark that the sine of the largest canonical angle between the spaces V and W of equal dimension is given by
‖(I − PV)PW‖ (cf. [23, Theorem 4:37]).

268 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

For later use, we mention another important relation

‖rMRm ‖= sin“(r0; ACm)‖r0‖; (17)

which follows from (14) and Theorem 2.2.

In view of sm= ‖rMRm ‖=‖rMRm−1‖, i.e., cm=
√
1− ‖rMRm ‖2=‖rMRm−1‖2, (15) and (16) are easily rewritten

as

‖rMRm ‖=
√√√√1− ‖rMRm ‖2‖rMRm−1‖2

‖rORm ‖;

xORm =
‖rMRm−1‖2

‖rMRm−1‖2 − ‖rMRm ‖2
xMRm −

‖rMRm ‖2
‖rMRm−1‖2 − ‖rMRm ‖2

xMRm−1:

As can be seen from the last two equations, the OR approximation and residual can easily be
computed from the corresponding MR quantities. Moreover, since the latter can always be computed
in a stable fashion, this is the preferable way of computing these quantities. (An exception is, of
course, the Hermitian positive-de�nite case, in which the OR quantities may be computed stably and
at lower expense than their MR counterparts by the classical method of conjugate gradients.)

2.3. Multiple subspace correction

Various recently developed enhancements of the basic MR and OR schemes presented above are
based on introducing additional subspace corrections aside from those associated with the stepwise
increasing correction spaces. Existing approaches include generating such auxiliary projections from
spectral information on the operator A gained during the iteration process or from additional in-
ner iteration or restart cycles. In addition, time and storage constraints often make it necessary to
form these projections only approximately, while at the same time keeping this approximation as
e�ective as possible. To better describe and compare these new developments, we �rst formulate
the basic projection steps required to combine two subspace corrections and then, in Section 2.4,
discuss how subspace information may be quanti�ed in order to construct e�ective approximate
projections.
Consider an initial approximation x0 to the solution of (1) for which we seek the MR approx-

imation x0 + c with c selected from the correction space C. We assume C to be the direct sum
C=C1⊕C2 of two spaces C1 and C2, and our goal is to obtain the MR approximation as the result
of two separate projection steps involving C1 and C2, respectively. This task is equivalent to �nding
the best approximation w= Ac ∈W = AC =W1 ⊕W2 to r0, where Wj :=ACj, j = 1; 2.
If, in a �rst step, we obtain the best approximation w1 =PW1r0 in W1, then the best approximation

in W is obtained by introducing the orthogonal complement Z :=W∩W⊥
1 of W1 in W, in terms of

which W has the direct and orthogonal decomposition W=W1⊕Z. The global best approximation
is now given by

w :=PWr0 = (PW1 + PZ)r0 = PW1r0 + PZ(I − PW1)r0: (18)

The last expression shows that the contribution from the second projection consists of the orthogonal
projection onto Z of the error (I − PW1)r0 of the �rst approximation.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 269

Expressing all spaces in terms of C1 and C2 and noting that Z=(I −PAC1)AC2, we conclude that
the correction c associated with the residual approximation w satis�es

Ac = w= PAC1r0 + P(I−PAC1)AC2 (I − PAC1)r0:
The global correction is thus of the form c = c1 + d , where

Ac1 = PAC1r0; (19)

Ad = P(I−PAC1)AC2 (I − PAC1)r0: (20)

The solution c1 of (19) is simply the MR solution of the equation Ac = r0 with respect to the
correction space C1. To obtain a useful representation of d , we note that the right-hand side of (20)
may be viewed as the MR approximation with respect to C2 of the equation

(I − PAC1)Ac = (I − PAC1)r0: (21)

Lemma 2.4. The operator (I − PAC1)A restricted to C2 is a bijection from C2 to Z.

Proof. The assertion follows by showing that the operator in question is one-to-one: (I−PAC1)Ac̃=0
for c̃ ∈ C2 implies Ac̃ ∈ AC1 ∩ AC2 = {0}.

The solution d of (20) yielding the second component of the combined correction c may thus be
obtained by �rst determining the MR solution c2 of (21) and then evaluating

d = A−1(I − PAC1)Ac2 = c2 − A−1PAC1Ac2: (22)

Lemma 2.5. The operator P :=A−1(I−PAC1)A restricted to C2 is the oblique projection onto A−1Z
along C1.

Proof. The projection property follows immediately upon squaring P. Since A is nonsingular, null(P)=
A−1W1 = C1 and range(P) = A−1(AC1)⊥. Restricted to C2, the range reduces to the preimage under
A of the orthogonal complement of AC1 with respect to AC2, i.e., A−1Z.

At �rst glance, the evaluation of d as given in (22) appears to require a multiplication by A as
well as the solution of another equation involving A with a right-hand side from AC1, in addition
to the computation of the two projections. In fact, we show how d can be calculated inexpensively
using quantities generated in the course of the two MR approximation steps.
Assume C1 has dimension m and that C(1)m = [c(1)1 · · · c(1)m] denotes a basis of C1. The MR ap-

proximation c1 has the coordinate representation c1 = C(1)m y1 with y1 ∈ Cm. We write the associated
Arnoldi-type decomposition (8) as AC(1)m =V

(1)
m+1H̃

(1)
m . The QR decomposition Q

(1)
m H̃

(1)
m =R

(1)
m (cf. (10))

makes available the Paige–Saunders basis V̂
(1)
m (cf. (11)), which forms an orthonormal basis of AC1.

Note also that, in view of relation (12), there holds

A−1V̂
(1)
m = C(1)m R

−1
m : (23)

The orthogonal projection PAC1 may be expressed in terms of V̂
(1)
m as V̂

(1)
m [V̂

(1)
m]

∗, (for V =[C1 · · · Cm],
W=[w1 · · ·wm], we denote by VW ∗ the linear operator x 7→∑m

j=1 (x;wj)Cj) and, denoting the residual

270 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

of the �rst MR approximation by r1 := r0 − Ac1, Eq. (21) may be written
(I − V̂ (1)m [V̂

(1)
m]

∗)Ac = r1:

The Arnoldi-type decomposition associated with Eq. (21) in terms of the basis C(2)k = [c(2)1 · · · c(2)k]
of the correction space C2 is given by

(I − V̂ (1)m [V̂
(1)
m]

∗)AC(2)k = V (2)k+1H̃
(2)
k (24)

with the associated MR approximation c2 = C
(2)
k y2, for some y2 ∈ Ck . The solution d of (20) as

given in (22) can now be expressed as

d = c2 − A−1PAC1Ac2 = C
(2)
k y2 − A−1V̂

(1)
m [V̂

(1)
m]

∗AC(2)k y2

=C(2)k y2 − C(1)m [R(1)m]−1([V̂
(1)
m]

∗AC(2)k)y2;

which shows that the action of A−1 in (22) is e�ected by the inverse of the (small) triangular matrix
R(1)m . We further observe that the evaluation of Ac2 in (22) is accomplished through the m×k matrix
[V̂

(1)
m]

∗AC(2)k , which is available at no extra cost as a by-product of the orthogonalization process
carried out in the second MR step to obtain (24). In fact, (23) and (24) can be combined to yield
the global decomposition

A[C(1)m C(2)k] = [V̂
(1)
m V (2)k+1]

R(1)m [V̂

(1)
m]

∗AC(2)k

O H̃
(2)
k

 (25)

with respect to C. We summarize the coordinate representation of these two successive projections
as

Theorem 2.6. The MR approximation of the solution of Ac = r0 with respect to the correction
space C = C1 ⊕ C2 is given by

c = C(1)m y1 + C
(2)
k y2 + C

(1)
m [R

(1)
m]

−1([V̂
(1)
m]

∗AC(2)k)y2;

where the coe�cient vectors y1 ∈ Cm and y2 ∈ Ck solve the least-squares problems
‖ ‖r0‖u(m+1)1 − H̃ (1)

m y1‖2 → min
y1∈Cm

; ‖ ‖r1‖u(k+1)1 − H̃ (2)
k y2‖2 → min

y2∈Ck

and the matrices C(1)m ; C
(2)
k ; V̂

(1)
m ; R

(1)
m ; H̃

(1)
m ; and H̃

(2)
k as well as the vector r1 are de�ned above.

2.4. Incomplete orthogonalization

The MR approximation applied to Eq. (21) in e�ect maintains orthogonality of the basis vectors
of the residual space V2 against W1 = AC1. Computationally, this is manifested in the generation of
the m×k matrix (V̂ (1)m)

∗AC(2)k during the orthonormalization process (cf. (25)). In order to reduce the

cost of both the storage of V̂
(1)
m and the work involved in the orthogonalization, we now consider

performing the MR approximation to the solution of (21) only approximately in the sense that
orthogonality is maintained only against a subspace of W1 of �xed dimension. When faced with
the choice of such a subspace against which one can a�ord to maintain orthogonality, one possible

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 271

criterion is to select that space which results in the greatest reduction of the residual norm after the
second MR approximation. Such an approach was proposed by de Sturler [25], and will be further
described in Section 4.5.
As in Section 2.3, consider the MR approximation with respect to the correction space C=C1⊕C2.

The global MR approximation (18) consists of an MR approximation with respect to C1 followed
by a second projection involving the orthogonal complement Z := (I − PW1)W2 of W1 = AC1 with
respect to W2 = AC2. The simplest approach of completely omitting the orthogonalization involved
in constructing PZ results in the combined approximation

w̃ :=PW1r0 + PW2 (I − PW1)r0;

in place of (18). This is the standard way of restarting an MR algorithm. Besides the two extremes
of complete orthogonalization against W1 or none at all, it is also possible to orthogonalize against
only a subspace W̃1⊂W1 of dimension ‘¡m, which brings up the problem of determining W̃1 such
that, if orthogonality of the residual space V2 of the second MR approximation is maintained against
W̃1, this results in the smallest residual norm over all ‘-dimensional subspaces of W1.
The solution of this problem is greatly facilitated by a judicious choice of bases: Let W (1)

m =
[w(1)1 · · ·w(1)m] and W (2)

k = [w(2)1 · · ·w(2)k] denote biorthogonal orthonormal bases of W1 and W2 or-
dered such that the (diagonal) m× k matrix � := [W (1)

m]
∗W (2)

k has nonincreasing nonnegative entries
1; : : : ; min{m;k}. The numbers j are the cosines of the canonical angles between the spaces W1 and
W2 (cf. [23, Chapter 4.5]) and therefore lie between zero and one. In addition, the assumption
C1 ∩ C2 = {0} along with the nonsingularity of A implies W1 ∩W2 = {0} and therefore each j is
strictly less than one.
An orthogonal basis of Z is given by Ẑ k := (I −W (1)

m [W
(1)
m]

∗)W (2)
k , and we set Ẑ

∗
k Ẑ k = I −�H�=:

�2 ∈ Ck×k , where �= diag(�1; : : : ; �k) with

�j =

{√
1− 2j ; 16j6min{k; m};

1; otherwise;

in view of which Zk := Ẑ k�−1 is an orthonormal basis of Z. Denoting Zk = [z1 · · · zk], the following
theorem expresses the e�ect of complete orthogonalization versus none at all:

Theorem 2.7. In the notation introduced above and with r1 := (I − PW1)r0; there holds

(PW2 − PZ)r1 =
min{k;m}∑
j=1

(r1; zj)j(�jw
(1)
j − jzj); (26)

‖(PW2 − PZ)r1‖2 =
min{k;m}∑
j=1

2j |(r1; zj)|2: (27)

Proof. Taking note of r1⊥W1 and W
(2)
k = Zk�+W (1)

m �, we obtain

(PW2 − PZ)r1 = (W
(2)
k [W

(2)
k]

∗ − ZkZ∗
k)r1

= ((Zk�+W (1)
m �)(Zk�+W

(1)
m �)

∗ − ZkZ∗
k)r1

= (W (1)
m ��− Zk�H�)Z∗

k r1;

272 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

which is a reformulation of (26). Taking norms and noting W1⊥Z as well as 2j + �
2
j = 1 yields

(27):

‖(PW2 − PZ)r1‖2 = (Z∗
k r1)

∗(��H��+ (�H�)2)(Z∗
k r1) = ‖�Z∗

k r1‖22:

We see that the di�erence between the two projections depends on the Z-components of the
approximation error r1 remaining after the �rst projection weighted by the corresponding cosines j
of the canonical angles between W1 and W2. Whenever j=0, the projection onto W2 would already
have produced the correct component in the direction zj, whereas in case j=1 the associated basis
vectors w(1)j and w(2)j are collinear and PW2 would have yielded no component in direction zj.
To consider the case of incomplete orthogonalization, let W̃1⊂W1 with dim W̃1 = ‘¡m. By

orthogonalizing the basis of W2 against W̃1, we construct the orthogonal projection onto Z̃ := (W̃1⊕
W2) ∩ W̃⊥

1 , which, applied to r1, yields the di�erence between PW1r0 and the best approximation of
r0 in W̃1 ⊕W2.

Theorem 2.8. Of all ‘-dimensional subspaces W̃1⊂W1; that which minimizes ‖(PZ̃−PZ)(I−PW1)r0‖
over all r0 ∈H is given by W̃1 = span{w(1)1 ; : : : ;w(1)‘ }; and results in

‖(PZ̃ − PZ)(I − PW1)r0‖= ‖(PZ̃ − PZ)r1‖=
min{k;m}∑
j=‘+1

2j |(r1; zj)|2:

Proof. Any orthonormal basis W̃
(1)
‘ = [w̃1 · · · w̃‘] of W̃1 has the form W̃

(1)
‘ =W (1)

m Q1 with a matrix
Q1 ∈ Cm×‘ consisting of the �rst ‘ columns of a unitary m × m matrix Q = [Q1Q2]. We obtain a
basis of Z̃ by orthogonalizing W (2)

k against W̃
(1)
‘ :

Ẑ‘ := (I − W̃ (1)
‘ [W̃

(1)
‘]

∗)W (2)
k =W (2)

k −W (1)
m Q1Q

H
1 �

= (Zk�+W
(2)
k �)−W (1)

m Q1Q
H
1 � = Zk�+W

(1)
m (I − Q1QH1)�

= Zk�+W (1)
m Q2Q

H
2 �:

Because of 06j ¡ 1 the Hermitian matrix

Ẑ
∗
‘ Ẑ‘ = �

2 + �HQ2QH2 � = I − �HQ1QH1 �=: S2
is positive de�nite and therefore possesses a square root S, by means of which we obtain an or-
thonormal basis of Z̃ as Z‘ := Ẑ‘S−1. Again recalling r1⊥W1, we obtain for the di�erence of the
two projections

(PZ̃ − PZ)r1 = (Z‘Z∗
‘ − ZkZ∗

k)r1
= (Zk(�S−2�− I) +W (1)

m (Q2Q
H
2 �S

−2�))Z∗
k r1: (28)

From the de�nition of S2, we have

�S−2�= (�−1S2�−1)−1 = (I + �−1�HQ2QH2 ��
−1)−1 =: (I +MMH)−1

with M = �−1�HQ2. We thus obtain

�S−2�− I = (I +MMH)−1 − I =−MMH(I +MMH)−1

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 273

as well as Q2QH2 �S
−2�= Q2MH(I +MMH)−1, which we insert in (18) to obtain

‖(PZ̃ − PZ)r1‖2 = (Z∗
k r1)[(I +MM

H)−1MMH](Z∗
k r1): (29)

This expression is minimized for all r1 – hence also for all r0 – by choosing Q1 to minimize the
largest eigenvalue of the Hermitian matrix (I + MMH)−1MMH or, equivalently, that of MMH =
�−1�H(I − Q1QH1)��−1. The entries j=�j of the m × k diagonal matrix ��−1 are nonincreasing,
hence the minimum occurs for

Q1 =
[
I‘
O

]

and the assertion follows by inserting the resulting choice of M in (29).

3. Corrections selected from Krylov spaces

The overwhelming majority of subspace correction methods for solving linear systems of equations
employ correction spaces of a particularly simple structure known as Krylov spaces (or Krylov
subspaces), which are de�ned by

Km :=Km(A; r0) := span{r0; Ar0; : : : ; Am−1r0}: (30)

In this section we survey some of the rami�cations of this choice. Section 3.1 discusses the advan-
tages of using Krylov spaces, recalls their description in terms of polynomial spaces and states some
technical lemmata. In Sections 3.2 and 3.3 we derive the polynomial counterparts of the OR and MR
residual vectors and express their zeros as Ritz and harmonic Ritz values of A, respectively. Finally,
we describe the implicitly restarted Arnoldi process of Sorensen [22] for later use as a technique
for manipulating Krylov spaces.

3.1. Why Krylov subspaces?

One regard in which (30) is a reasonable choice for a correction space is that it enables the suc-
cessive generation of the sequence {Cm} using only matrix–vector multiplication by A, an operation
which is inexpensive for sparse or structured matrices. Moreover, note that Cm =Km(A; r0) results
in the residual space (cf. (4))

Vm+1 = span {r0}+ ACm = span {r0}+ AKm =Km+1;

i.e., the residual space Vm+1 of index m+1 coincides with the correction space Cm+1 of the next iter-
ation, obviating the need to store two separate bases. This e�ectively halves the storage requirements
of algorithms which are based on orthonormal bases of the residual spaces. As another consequence,
the Arnoldi-type decomposition (8) now becomes a proper Arnoldi decomposition

AVm = Vm+1H̃m = VmHm + �m+1;mCm+1uTm;
which identi�es Hm as the orthogonal section of A onto Km, i.e., it represents the linear map
AKm :=PKmA|Km :Km →Km with respect to the basis Vm.
Whether or not Krylov spaces are well suited as correction spaces will, as shown before, depend

on the behavior of the angles “(Km; AKm) as m approaches ∞. There are classes of problems

274 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

for which this behavior is very favorable. An example where the angles actually tend to zero,
which, in view of (14), implies superlinear convergence of the MR and OR approximants, is given
by second-kind Fredholm equations (cf. [3, Theorem 6:12]). On the other hand, there are matrix
problems of dimension n for which “(Km; AKm)=�=2 (m=1; 2; : : : ; n−1), i.e., no Krylov subspace
method is able to improve the initial residual until the very last step.
Finally, the theoretical investigation of Krylov subspace methods is greatly facilitated by the

intimate connection between a Krylov space and an associated space of polynomials, as can be seen
from the representation

Km(A; r0) = {q(A)r0 : q ∈ Pm−1} (m= 1; 2; : : :);

where Pm denotes the space of all complex polynomials of degree at most m. The linear map

Pm−1 3 q 7→ q(A)r0 ∈Km(A; r0)

is thus always surjective, but fails to be an isomorphism if and only if there exists a nonzero
polynomial q ∈ Pm−1 with q(A)r0 = 0. If such a polynomial exists (e.g., if A has �nite rank) then
there also exists a (unique) monic polynomial c = cA; r0 of minimal degree for which c(A)r0 = 0,
which is usually called the minimal polynomial of r0 with respect to A. It is easy to see that the
degree of c equals the smallest integer m for which Km =Km+1 and thus coincides with the index
L introduced in (6) (cf. also (7)),

L=min{m ∈ N0 :Km =Km+1}=min{m ∈ N0 :A−1r0 ∈Km}
=min{deg q : q monic and q(A)r0 = 0}: (31)

In other words, Pm−1 and Km are isomorphic linear spaces if and only if m6L.
The positive-semide�nite sesquilinear form

(p; q) := (p(A)r0; q(A)r0)

(
p; q ∈ P∞ :=

⋃
m¿0

Pm

)
(32)

is therefore positive de�nite when restricted to PL−1 and hence de�nes an inner product on this
space. We will use the same notation (·; ·) for this inner product as for its counterpart on H,
as well as for derived quantities such as its induced norm ‖ · ‖ := (·; ·)1=2 and the orthogonality
relation ⊥.
Since every vector x ∈ x0 +Km is of the form x = x0 + qm−1(A)r0 for some qm−1 ∈ Pm−1, the

corresponding residual r = b− Ax can be written
r = r0 − Aqm−1(A)r0 = pm(A)r0; where pm(�) := 1− �qm−1(�) ∈ Pm:

Note that the residual polynomial pm satis�es the normalization condition pm(0) = 1. Later in this
section we will characterize the residual polynomials which belong to the OR and MR iterates as
well as their zeros.
First, however, we provide three lemmata for later use. The �rst recalls a well-known (see, e.g.,

[15]) consequence of the Arnoldi decomposition AVm = VmHm + �m+1;mCm+1uTm of A (see (8)), the
second states the conditions under which a Krylov space can have A-invariant subspaces. The third
lemma shows that the orthogonal complement of a Krylov space with respect to an A-invariant
subspace is itself a Krylov space.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 275

Lemma 3.1. For every polynomial q(�) = �m�m + · · ·+ �1�+ �0 ∈ Pm; there holds

q(A)r0 = �Vmq(Hm)u1 + �m�
m∏
j=1

�j+1; jCm+1;

where u1 ∈ Cm denotes the �rst unit vector. In particular; q(A)r0=�Vmq(Hm)u1 for every q ∈ Pm−1.

Lemma 3.2. A Krylov space Km(A; r0) contains an A-invariant subspace if and only if it is itself
A-invariant.

Proof. If U⊂Km(A; r0) is A-invariant, it must contain an eigenvector z of A. As an element of
Km, z has a representation z = qm−1(A)r0 in terms of a nonzero polynomial qm−1 of degree at most
m − 1. Moreover, if � denotes the eigenvalue of A associated with z and p(�) := (� − �)qm−1(�),
then p(A)r0 = 0 and hence the degree of the minimal polynomial cA; r0 of r0 with respect to A is at
most m. Consequently L= degcA; r06m and Km is A-invariant (cf. (31)).

Lemma 3.3. Let U be an A-invariant subspace; T = U⊥ its orthogonal complement and set
AT :=PTAPT. Then there holds for m= 1; 2; : : :

PTKm(A; r0) =Km(PTA; PTr0) =Km(AT; PTr0)

and

PTAKm(A; r0) = PTAKm(PTA; PTr0) = ATKm(AT; PTr0):

Proof. We have PTAPU = O, because U is A-invariant, and therefore

PTA= PTAPU + PTAPT = PTAPT:

An obvious induction now shows that for k = 1; 2; : : :

PTAkr0 = [PTA]
kr0 = [PTAPT]

kr0;

which proves the assertions.

With regard to the notation used in Lemma 3.3, we remark that so far in this paper AT has
denoted the orthogonal section PTA|T of A onto T. We henceforth identify PTAPT with AT since
PTAPT = PTA|T on T and PTAPT = O on T⊥.

3.2. OR residual polynomials

We �rst investigate the residual polynomials associated with the OR approach: rORm = pORm (A)r0.
The condition rORm ⊥Km translates to pORm ⊥Pm−1, i.e., pORm is an orthogonal polynomial of degree m
(normalized to satisfy pORm (0) = 1). This also follows from the fact that rORm is a scalar multiple of
Cm+1, the last element of the orthonormal basis {C1; : : : ; Cm; Cm+1} of Km+1 (cf. Section 2.1): The basis
vector Cm+1 ∈Km+1\Km has the form Cm+1=vm(A)r0 for some polynomial vm of exact degree m, and
pORm must be a scalar multiple of vm. Next, Cm+1⊥Km, i.e., vm⊥Pm−1, and ‖Cm+1‖= ‖vm‖= 1 show
that vm is an orthonormal polynomial of degree m. We arrive at pORm = vm=vm(0), a normalization
which is, of course, only possible if vm does not vanish at the origin.

276 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

The close relation of vm to the characteristic polynomial of the Hessenberg matrix Hm will
show that vm(0) = 0 is equivalent to Hm being singular: We know that vm+1 = vm(A)r0 spans the
one-dimensional space Km+1 ∩K⊥

m . If, on the other hand, hm(�) := det(�I − Hm) ∈ Pm denotes the
characteristic polynomial of Hm, then by Lemma 3.1 and the Cayley–Hamilton theorem

(hm(A)r0; Ck) = �(Vmhm(Hm)u1; Ck) + �
m∏
j=1

�j+1; j(Cm+1; Ck) = 0 (33)

(k=1; 2; : : : ; m). In other words, C=hm(A)r0 belongs to Km+1∩K⊥
m and is therefore a scalar multiple

of Cm+1. We have thus shown that the polynomials vm and hm can di�er only by a scalar factor. We
summarize these observations in

Proposition 3.4. The characteristic polynomial hm of the Hessenberg matrix Hm is the (unique)
monic orthogonal polynomial of degree m with respect to the inner product (32). The mth OR
iterate exists if and only if hm(0) 6= 0 and; in this case; the corresponding residual polynomial is
given by pORm = hm=hm(0).

We next consider the zeros of pORm or, equivalently, the eigenvalues of Hm=V ∗
mAVm, the orthogonal

section AKm of A onto Km. Its eigenvalues �j, where

Hmyj = �jyj with yj ∈ Cm; ‖yj‖2 = 1 (34)

are called the Ritz values of A (with respect to Km), while zj :=Vmyj are the associated Ritz vectors.
As the eigenvalues of the nonderogatory matrix Hm, Ritz values have geometric multiplicity one.

In case �j has algebraic multiplicity kj ¿ 1, we denote by y(0)j =yj; y
(1)
j ; : : : ; y

(kj−1)
j the principal vectors

of Hm which belong to the eigenvalue �j, so that

Hmy
(‘)
j = �jy

(‘)
j + y(‘−1)j (‘ = 1; : : : ; kj − 1)

and de�ne z(0)j :=Vmy
(0)
j and z(‘)j :=Vmy

(‘)
j as the associated Ritz vectors.

Although all our conclusions remain valid in this more general case, we will assume in the
remaining sections that Hm has m distinct eigenvalues to avoid the (notational) complication of
requiring principal vectors.
The Ritz vectors constitute a basis of Km, and their residual vectors with regard to the eigenvalue

problem (34) are given by

Azj − �jzj = AVmyj − �jVmyj =VmHmyj + �m+1;mCm+1uTmyj − �jVmyj
= �m+1(uTmyj)Cm+1: (35)

This implies Azj−�jzj⊥Km; which is the commonly used de�nition of Ritz values and Ritz vectors.
We also observe that (A−�jI)zj ∈ span{Cm+1}=span{hm(A)r0} for every eigenvalue �j of Hm. As an
element of Km, each Ritz vector zj can be represented as zj = zj(A)r0 with a polynomial zj ∈ Pm−1.
Eq. (35) now implies (�− �j)zj(�) = �jhm(�) with �j ∈ C \ {0}, which we express as

zj(�) = �j
h(�)
�− �j :

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 277

Proposition 3.5. Let

hm(�) =
J∏
j=1

(�− �j)kj (�i 6= �j for i 6= j)

denote the characteristic polynomial of Hm. The Ritz vectors z
(‘)
j (‘=0; : : : ; kj−1) of A with respect

to Km(A; r0) have the form

z(‘)j = z(‘)j (A)r0; where z(‘)j (�) = hm(�)
‘∑
i=0

�j; i
(�− �j)i+1

is a polynomial of exact degree m− 1. Moreover; there holds
(A− �jI)‘+1z(‘)j ∈ span{Cm+1}= span{hm(A)r0}= span{rORm };

where the last equality assumes that the mth OR iterate is de�ned.

3.3. MR residual polynomials

We now turn to the investigation of the residual polynomials pMRm associated with the MR residuals
rMRm = pMRm (A)r0. Obviously, these polynomials possess the following minimization property:

‖pMRm ‖=min{‖p‖ : degp6m;p(0) = 1}:
The condition rMRm ⊥AKm translates to pMRm ⊥�Pm−1, from which we deduce the reproducing property
(36) of the MR residual polynomials: For any q(�) = q(0) +

∑m
j=1 �j�

j ∈ Pm, there holds

(q; pMRm) = (q(0); pMRm) +

 m∑
j=1

�j�j; pMRm

= q(0)(1; pMRm)

and because this identity is valid in particular for q = pMRm yielding ‖pMRm ‖2 = pMRm (0)(1; pMRm) =
(1; pMRm), we obtain

(q; pMRm) = q(0)‖pMRm ‖2 for all q ∈ Pm: (36)

The coe�cients of pMRm with respect to the orthonormal basis {v0; v1; : : : ; vm} of Pm are thus given
by

(pMRm ; vj) = vj(0)‖pMRm ‖2

which, in view of ‖pMRm ‖2 =
∑m

j=0 |vj(0)|2‖pMRm ‖4, results in the expansion

pMRm (�) =

∑m
j=0 vj(0)vj(�)∑m
j=0 |vj(0)|2

(37)

(note that the denominator
∑m

j=0 |vj(0)|2¿|v0(0)|2 is always positive since v0 is a nonzero constant).
Furthermore, this representation shows that, since the polynomials vj are of exact degree j, pMRm will
have degree m if and only if vm(0) 6= 0, i.e., if the OR polynomial of degree m exists. Otherwise
pMRm =pMRm−1 = · · ·=pMRk and degpMRm = k, if k is the largest index less than m for which vk(0) 6= 0.

278 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

To characterize the zeros of the MR residual polynomials in an analogous manner as for the OR
residual polynomials, we begin by identifying them as the eigenvalues of an orthogonal section of
A−1 onto the Krylov space

Km(A−1; Amr0) = span{Amr0; Am−1r0; : : : ; Ar0}= AKm(A; r0):

We denote the associated Arnoldi decomposition by

A−1Wm =Wm+1G̃m =WmGm + m+1;mwm+1uTm;

in which G̃m=[j; k] ∈ C(m+1)×m is an upper Hessenberg matrix, Gm the associated square Hessenberg
matrix obtained by deleting the last row of G̃m and Wm+1 = [w1 : : : wm+1] is an orthonormal basis
of Km+1(A−1; Amr0) =Km+1(A; r0). If we invoke Lemma 3.1 applied to this Arnoldi decomposition,
we obtain

q(A−1)Amr0 =Wmq(Gm)�muT1 + �m�m
m∏
j=1

j+1; jwm+1

for any polynomial q(�) = �m�m + · · · + �1� + �0 ∈ Pm, where �m = ‖Amr0‖. Denoting by gm the
characteristic polynomial of Gm, we conclude just as in (33) that

(gm(A−1)Amr0;wk) = 0; k = 1; : : : ; m

and that w := gm(A−1)Amr0 belongs to

Km+1(A−1; Amr0) ∩Km(A−1; Amr0)⊥ =Km+1(A; r0) ∩ (AKm(A; r0))
⊥ :

By virtue of its inclusion in the latter space, we conclude that the vector w is a scalar multiple
of the MR residual vector rMRm . Moreover, we observe that ĝm(�) := gm(�

−1)�m is a polynomial in
� of degree at most m, which is sometimes denoted as the reversed polynomial of gm since it is
obtained from gm by reversing the order of the coe�cients. Since w= ĝm(A)r0 and r

MR
m = pMRm (A)r0

are collinear, the same is true for the associated polynomials. Furthermore, since the characteristic
polynomial gm is monic, it follows that ĝm has value one at zero, and therefore that ĝm coincides
with pMRm . The desired zeros of pMRm thus coincide with those of ĝm, which are easily seen to be
the reciprocals of the zeros of gm, which in turn are the eigenvalues of Gm. Since this matrix is
not readily available, we instead derive a matrix which is similar to Gm and therefore has the same
characteristic polynomial.
Departing from AVm= V̂mRm (cf. (12)), where V̂m denotes the Paige–Saunders basis of AKm(A; r0)

and Rm is the triangular factor in the QR-factorization of H̃m, we obtain

A−1V̂m=VmR−1
m = Vm+1

[
R−1
m

0

]
= Vm+1QHmQm

[
R−1
m

0

]

= [V̂m C̃m+1]Qm
[
R−1
m

0

]
=: [V̂m C̃m+1]F̃m

= V̂mFm + C̃m+1f Tm with F̃m partitioned as F̃m =
[
Fm
f Tm

]
: (38)

We note that both V̂m and Wm are orthonormal bases of the same space AKm, which implies a
relation of the form V̂m =WmT with a unitary matrix T ∈ Cm×m. Therefore,

Fm = V̂
∗
mA

−1V̂m = THGmT

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 279

and Fm is similar to Gm. The zeros �̃j of pMRm are therefore the reciprocals of the eigenvalues of Fm,
determined by

1

�̃j
ŷj = Fmŷj = [Im 0]Qm

[
R−1
m

0

]
ŷj = [Im 0]Qm

[
Im
0

]
R−1
m ŷj = :Q̂mR

−1
m ŷj;

or equivalently, as solution of the generalized eigenvalue problem

Rmỹj = �̃jQ̂mỹj; ỹj :=R
−1
m ŷj:

The matrix Q̂m is obtained by deleting the last row and column of Qm, which, by (13), yields

Q̂m =
[
Im−1 0
0 cm

]
Gm−1

[
Gm−2 0
0 1

]
· · ·
[
G1 O
O Im−2

]
:

Eq. (38) shows that Fm represents the orthogonal section of A−1 onto AKm with respect to V̂m.
Its eigenvalues 1=�̃j are therefore the Ritz values of A−1 with respect to this space, and thus satisfy

0= V̂
∗
m

(
A−1V̂mŷj −

1

�̃j
V̂mŷj

)
= V̂

∗
m

(
A−1ẑj − 1

�̃j
ẑj

)

with Ritz vectors ẑj := V̂mŷj, which, upon multiplication by �̃j, substituting A
−1V̂m = VmR−1

m and
multiplication by RHm, becomes

0= RHmV̂
∗
m (AVmR

−1
m ŷj − �̃jVmR−1

m ŷj) = (AVm)
∗(Az̃j − �̃jz̃j); (39)

where z̃j :=Vmỹj=VmR
−1
m ŷj=A

−1ẑj. Vectors z̃j and numbers �̃j which satisfy (39) are called harmonic
Ritz vectors and values with respect to A and Km (cf. [15]). A better known characterization of
these quantities is

(AVm)∗Vmỹj =
1

�̃j
(AVm)∗AVmỹj; i:e:; HH

m ỹj =
1

�̃j
H̃
H
mH̃mỹj:

That this formulation gives rise to the same set of eigenvalues can be seen from the similarity
transformation

(H̃
H
mH̃m)−1HH

m = [R
−1
m 0]Qm

[
Im
0

]
= R−1

m [Im 0]Qm

[
R−1
m

0

]
Rm = R−1

m FmRm:

The harmonic Ritz vectors lie in Km and, in view of (39), satisfy

(A− �̃jI)z̃j⊥AKm:

In other words, (A−�̃jI)z̃j ∈Km+1∩(AKm)⊥=span{rMRm } and therefore, if the polynomials z̃j ∈ Pm−1
are de�ned by z̃j = z̃j(A)r0; there holds

z̃j(�) = �j
pMRm (�)

�− �̃j
= �j

ĝm(�)

�− �̃j
(40)

for some normalization factor �j 6= 0.

Remark. Polynomials which possess the reproducing property (36) are called kernel polynomials.
Their role in Krylov subspace methods was �rst explored by Stiefel [24] in the Hermitian case and
later extended to the non-Hermitian case by Freund [8,7] (see also [11]).

280 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

3.4. The implicitly restarted Arnoldi process

When manipulating Krylov subspaces, the following fundamental task often arises: given a Krylov
space Km(A; C1) which is not A-invariant, along with the associated Arnoldi factorization

AVm = VmHm + �m+1;mCm+1uTm (�m+1;m 6= 0) (41)

and given an arbitrary vector C ∈ Km−1(A; C1), generate the Arnoldi factorization associated with
Kp(A; C), i.e., using v as the initial vector, with p as large as possible without performing addi-
tional multiplications with A. The technique which accomplishes this task is known as the implicitly
restarted Arnoldi (IRA) process and is due to Sorensen [22].
As a member of Km−1, C has the representation C = qk−1(A)C1 with qk−1 of exact degree k − 1,

16k ¡m. In other words, C ∈Kk \Kk−1. We will show that p=m−k is maximal and the resulting
Arnoldi factorization has the form

A �Vp = �Vp �Hp + ��p+1;p �Cp+1uTp (42)

with �C1 = C=‖C‖. That p = m − k holds should not come as a surprise because the construction
of factorization (41) requires m multiplications by A, whereas C can be computed by only k − 1
matrix–vector products. Exactly p+1=m−k+1, i.e., the number of the ‘remaining’ multiplications
by A are needed to construct (42) in the conventional way.
We assume the polynomial qk−1 is given in factored form qk−1(�)=

∏k−1
j=1 (�−�j), as this is how it

is used in the IRA method. The arguments that follow remain valid upon multiplying by a nonzero
factor, so we may, without loss of generality, assume qk−1 to be monic. It is obviously su�cient to
show how decomposition (42) can be established in the case k=2, i.e., if C=(A−�I)C1. Polynomials
of higher degree can then be handled by repeated application of the procedure below.
Each step of the IRA method is based on one step of the shifted QR algorithm. Following Sorensen

[22, p. 363], we begin by subtracting �Vm on both sides of the Arnoldi decomposition (41)

(A− �I)Vm = Vm(Hm − �I) + �m+1;mCm+1uTm;
then form the QR factorization of Hm − �I ,

(A− �I)Vm = VmQR+ �m+1;mCm+1uTm; (43)

multiply by Q from the right,

(A− �I)VmQ = (VmQ)(RQ) + �m+1;mCm+1uTmQ;
and add �VmQ on both sides to obtain

A(VmQ) = (VmQ)(RQ + �I) + �m+1;mCm+1uTmQ: (44)

We rewrite (44) to introduce some extra notation:

A[�C1 : : : �Cm−1 C+m] = [�C1 : : : �Cm−1 C+m]
[
�Hm−1 ∗
�+uTm−1 ∗

]

+ �m+1;mCm+1[0 : : : 0 qm;m−1 qm;m];

where we have made use of the fact that

RQ + �I =

[
�Hm−1 ∗
�+uTm−1 ∗

]
∈ Cm×m

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 281

is again an upper Hessenberg matrix due to the upper Hessenberg form of Q. We note in passing
that, in case � happens to be an eigenvalue of Hm (and only then), the last row of R is zero (and
only the last row since Hm is nonderogatory) and therefore �+ = 0.
We now omit the last column in (44), giving

A[�C1 : : : �Cm−1] = [�C1 : : : �Cm−1] �Hm−1 + (�+C+m + �m+1;mqm;m−1Cm+1)uTm−1;
which, setting ��m;m−1 := ‖�+C+m + �m+1;mqm;m−1Cm+1‖; becomes

A �Vm−1 = �Vm−1 �Hm−1 + ��m;m−1 �CmuTm−1: (45)

Theorem 3.6. With the notation introduced above; the decomposition (45) is an Arnoldi factoriza-
tion of A with respect to the Krylov space Km−1(A; (A− �I)C1).

Proof. Since Q is unitary, it follows that the elements of �Vm−1 = [�C1 : : : �Cm−1] are orthonormal
as the �rst m− 1 elements of VmQ. Next, the vector

�Cm = (�+C+m + �m+1;mqm;m−1Cm+1)= ��m;m−1
has unit norm and is orthogonal to �C1; : : : ; �Cm−1 since C+m , as the last element VmQ, is orthogonal to
the previous elements �C1; : : : ; �Cm−1 and since Cm+1 is orthogonal to Vm and hence also to VmQ. That
the new �rst basis vector �C1 is a multiple of (A− �I)C1 follows by equating the �rst vector on both
sides of (43). It remains to show that the Hessenberg matrix �Hm−1 is unreduced. If ��k+1; k = 0 for
some k ¡m, then this would imply that Kk(A; �C1) is a proper A-invariant subspace of Km(A; C1),
which, in view of Lemma 3.2, contradicts the assumption �m+1;m 6= 0.

As mentioned previously, decomposition (42) involving a new starting vector �C1 = qk−1(A)C1 is
e�ected by k − 1 steps of the procedure outlined above. For later use, we note that the associated
Krylov space is given by

Kp(A; �C1) = {r(A)qk−1(A)C1 : r ∈ Pp−1}⊂Kp+k−1(A; C1):

4. Augmentation strategies and some algorithmic realizations

Up to this point we have not yet considered the question of how to construct suitable correction
spaces Cm for a given initial approximation x0 to the solution of a linear system (1). In practice,
this task usually arises in the following form. Given a correction space C, select vectors a1; : : : ; ak
such that the augmented correction space C̃ :=C+ span{a1; : : : ; ak} has better correction properties.
We �rst specify the (obvious) meaning of phrases such as ‘well-suited correction space’, ‘better

correction properties’, etc. Let C⊂H be a �nite-dimensional subspace and denote by rMR the
residual vector of the MR approximation with respect to the correction space C. Whether or not C
is well suited as a correction space, i.e., whether or not AC contains an acceptable approximation
to r0, depends, in view of ‖rMR‖ = sin“(r0; AC)‖r0‖ (cf. (17)), only on the size of the angle
’ :=“(r0; AC). C is optimal, i.e., rMR = 0 if and only if ’=0. The worst case is that in which the
optimal correction from C is the null vector (i.e., rMR = r0), and this occurs precisely for ’= �=2,
or equivalently, for r0⊥AC.

282 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

In Section 4.1 we comment on two general strategies for augmenting correction spaces, the �rst
of which adds nearly A-invariant subspaces to the correction space, whereas the second adds ap-
proximate solution of residual equations. Subsequently we survey and compare existing algorithms
in which the ideas and strategies developed in the previous sections have been realized.

4.1. General augmentation strategies

It has often been suggested, primarily in the context of Krylov subspace methods, that it is a
desirable goal that the correction space C be either nearly A-invariant or contain a nearly A-invariant
subspace, usually spanned by a few approximate eigenvectors of A. Clearly, if a given correction
space C which contains the initial residual r0 – as do e.g. all Krylov spaces – is exactly A-invariant,
then ’=0 and the MR approximation with respect to C yields the exact solution. If only a subspace
U of C is A-invariant, or nearly so in the sense that it lies at a small angle to its image under A,
Proposition 4.1 shows that the MR residual with respect to C then has a small component in the
direction of U.

Proposition 4.1. Given a correction space C; let U⊂C denote a subspace such that sin“(AU;U)6
�. Then the MR residual rMR with respect to C satis�es ‖PUrMR‖6�‖r0‖.

Proof. The assertion follows from PUrMR = PU(I − PAC)r0 and ‖PU(I − PAC)‖6‖PU(I − PAU)‖ =
sin“(AU;U)6�.

In particular, if C contains an exactly invariant subspace U, then the MR approximation removes
the components of the initial residual in the direction of U completely. Of course, this may only be
of limited use if ‖(I − PU)r0‖=‖r0‖ is large, i.e., if U does not contain a good approximation of r0.
In short, the existence of A-invariant subspaces of C per se need not be bene�cial.
In Lemma 3.2 we already proved that if C=Km(A; r0) is a Krylov space, then it cannot contain an

A-invariant subspace U unless Km(A; r0) is itself A-invariant, i.e., Km(A; r0) =KL(A; r0). Obviously,
augmenting Km(A; r0) by span{Amr0; : : : ; AL−1r0} leads to the new correction space KL(A; r0) which
is A-invariant. We now show that there is no ‘faster’ way to augment Km(A; r0) to an A-invariant
space.

Proposition 4.2. Let C̃ be an A-invariant subspace containingKm(A; r0). Then C̃ containsKL(A; r0).

Proof. By U0 :=∩{U :U is an A-invariant subspace with Km⊆U} we denote the smallest A-invariant
subspace containing Km. By de�nition, U0⊆KL. On the other hand, since U0 contains r0 and is
invariant under A, it must contain also Amr0 for very m= 0; 1; : : : ; i.e., KL⊆U0.

Proposition 4.2 should not lead to the conclusion that it is useless to augment a Krylov subspace
C =Km by an A-invariant subspace U. After all, by Proposition 4.1 the MR residual with respect
to C̃ = C +U contains no component in the direction of U. We show next that the MR approach
with respect to the augmented space C̃ yields an MR approximation with respect to another Krylov
subspace, associated with a ‘smaller’ linear system.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 283

Lemma 4.3. Let r̃MR denote the MR residual with respect to C̃ =Km(A; r0) + U; where U is an
A-invariant subspace. Set further T :=U⊥; AT :=PTAPT and; �nally; let rMR be the residual of
the MR approximation for ATx = PTr0 with respect to the correction space Km(AT; PTr0). Then
there holds

r̃MR = rMR or; equivalently PUr̃
MR = 0 and PTr̃

MR = rMR :

Proof. As in Section 2.3 we split the computation of r̃MR into two subtasks and write (using that
U is A-invariant)

r̃MR = (I − PU)r0 − PZ(I − PU)r0 = (I − PZ)PTr0;

where Z=(I −PU)AKm(A; r0)=AKm(A; r0)∩T⊆T, whereby PUPZ=O. This implies PUr̃
MR = 0

(a fact we could also have deduced directly from Proposition 4.1).
Since PTAKm(A; r0) = ATKm(AT; PTr0) (cf. Lemma 3.3),

r̃MR = (I − PPTAKm(A;r0))PTr0 = (I − PATKm(AT ;PTr0))PTr0;

identifying r̃MR as the residual of the MR approximation for ATx=PTr0 with respect to the Krylov
space Km(AT; PTr0).

A di�erent strategy for enriching correction spaces is common for many inner–outer iteration
schemes and based on the following trivial observation: Suppose that, for a given correction space
C and associated residual space V= span{r0}+ AC, we are able to solve Ac = r for some r ∈V.
Such an r has a representation r = r0 − Ac̃ with c̃ ∈ C, and therefore, by virtue of

Ac = r = r0 − Ac̃; i:e:; r0 = A(c + c̃);

we see that the augmented correction space C̃=C+span{c} contains the exact correction. In practice,
since solving Ac = r is generally as di�cult as the original problem, one applies an inexpensive
approximate solution method to this auxiliary problem, yielding a vector c satisfying Ac= r+ h and
consequently, ‖r̃MR‖6‖h‖ for the MR residual with respect to C̃.
The FGMRES algorithm of Saad [17], which is the natural generalization of GMRES to the case

of an arbitrary correction space, was originally introduced as a technique that enlarges the correction
space at each step by an approximate solution of such a residual equation. In [17], this is achieved
by selecting the new correction direction cm+1 as the result of a preconditioning step applied to the
most recent basis vector Cm+1 of the residual space Vm+1, which may be viewed as an approximate
solution of the equation Ac = Cm+1.
A similar approach is taken in the GMRESR (which stands for GMRES Recursive) method of

van der Vorst and Vuik [27]. In each step of GMRESR, the new correction vector cm+1 is chosen
as the approximate solution of the equation Ac = rm obtained by a given number of GMRES steps,
where rm is the residual of the MR approximation using the current correction space Cm. This
method was improved upon by de Sturler [25], who observed that, by enforcing orthogonality of the
approximation space of the inner GMRES iteration, one can obtain as a result of the inner GMRES
iteration the best approximation of r0 from the sum of the inner and outer approximation spaces as
described in Section 2.3. In other words, the inner iteration consists of GMRES applied to Eq. (21).
The resulting inner–outer iteration scheme is called GCRO.

284 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

4.2. Restarted GMRES

In general, the implementation of OR and MR methods require computing and storing at least
one orthonormal basis of a space which grows in dimension with each step. A result of Faber and
Manteu�el [6] shows that this considerable computational e�ort can be avoided essentially only for
self-adjoint A. It is therefore not surprising that the necessity of truncating or restarting in practical
implementations of MR and OR methods is as old as these methods themselves (cf. [21,4]). The
most widely used algorithm is GMRES(m), the restarted version of GMRES, which uses a Krylov
space of dimension m. One cycle of GMRES(m) for solving (1) with initial residual r0 consists of
generating the Krylov space Km(A; r0), forming the MR approximation with respect to the correction
space C=Km(A; r0) and repeating this process using the resulting residual as the initial residual for
the next cycle until a stopping criterion is satis�ed.
In the terminology of Section 2, two consecutive cycles of GMRES(m) consist of two MR ap-

proximations with respect to the correction spaces

C1 =Km(A; r0) and C2 =Km(A; rm);

where rm denotes the residual of the MR approximation computed in the �rst cycle. No orthogo-
nalization of the residual space V2 against the approximation space AC1 is performed in the second
cycle, and thus, in general, the approximation after the second cycle is no longer the MR approx-
imation with respect to C1 + C2. Besides this inexact approximation, it may also happen that the
sum is not direct. In the extreme case there holds rm = r0 after the �rst cycle, so that the second
cycle constructs the identical Krylov space (as do all subsequent cycles) and no progress is made,
a phenomenon known as stalling.

Proposition 4.4. For two consecutive cycles of GMRES(m) with initial residual r0; there holds

Km(A; r0)⊕Km(A; rm) =K2m(A; r0) (46)

if and only if no stagnation occurs in the last step of the �rst cycle.

Proof. By de�nition,Km(A; rm)={q(A)pMRm (A)r0 : q ∈ Pm−1}; where pMRm denotes the MR polynomial
of the last step of the �rst cycle, and this shows that (46) holds if and only if pMRm has degree m.
Representation (37) of pMRm shows that this is equivalent with vm(0) 6= 0, which is equivalent to
stagnation at step m.

One of the more common misconceptions regarding GMRES(m) is that a method with larger
restart length m applied to the same problem will converge at least as fast as the method with
smaller m. A simple counterexample 4 is provided by the 3× 3 system

Ax= b; A=

 1 0 01 1 0
0 1 1

 ; b=

−11
1

4 The authors would like to thank E. de Sturler for pointing out this phenomenon reporting a similar observation in the
context of a discrete convection–di�usion problem.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 285

with initial guess x0=0. Two cycles of GMRES(2) applied to this example result in a residual norm
of ‖r(2)4 ‖ = 4=15 = 0:26 : : :, whereas four cycles of GMRES(1), which involve the same number of
matrix–vector multiplications, yields ‖r(1)4 ‖=0:057 : : : . The gap between GMRES(1) and GMRES(2)
widens further in subsequent iteration steps, e.g., ‖r(1)18 ‖2 =1:6 : : : 10−12, whereas ‖r(2)18 ‖2 =3:9 : : : 10−5.
Even more surprising in this example is that ‖r(1)10 ‖2¡ ‖r(2)20 ‖2, showing that ten cycles of GMRES(1)
have reduced the residual further than ten cycles of GMRES(2). By expanding this example to the
analogous matrix for higher dimensions n one can observe that GMRES(m) is ultimately slower for
this system than GMRES(m− 1) for m= 2; : : : ; n− 1.

4.3. Deation by augmentation

The �rst algorithm which attempts to improve the restarted GMRES method by augmenting the
Krylov space is due to Morgan [14]. This approach selects a �xed number of approximate eigenvec-
tors of A to add to the Krylov space of the following cycle, as motivated, e.g., by Lemma 4.3. Since
the emphasis of [13] is on cases in which the eigenvalues close to the origin limit the convergence
rate the most – as is the case, e.g., for the so-called model problem of the discrete Laplacian on the
unit cube – harmonic Ritz vectors are chosen as the eigenvector approximations, since, as argued
in [12], harmonic Ritz values tend to approximate eigenvalues close to zero more accurately than
classical Ritz values.
Each step except the �rst consists of forming the MR approximation with respect to a cor-

rection space C = C1 + C2 with C1 =Km(A; r0) and C2 = span{z̃1; : : : ; z̃k}. The vectors z̃1; : : : ; z̃k
are the harmonic Ritz vectors associated with the k harmonic Ritz values �̃1; : : : ; �̃k of A with
respect to the previous correction space which are closest to the origin. Since no eigenvector
information is available in the �rst cycle, the �rst correction space is chosen simply as C =
Km+k(A; r0).
As subsequently shown by Morgan [14], there is a less expensive implementation of this approach.

Consider the MR approximation with initial residual r0 with respect to the (m+k)-dimensional Krylov
space Km+k(A; r0). As shown in Section 3.3, the associated residual vector has the
representation

rMRm+k = p
MR
m+k(A)r0; where pMRm+k(�) =

m+k∏
j=1

(
1− �

�̃j

)
:

We denote by qm the polynomial whose zeros are the harmonic Ritz values �̃k+1; : : : ; �̃k+m, i.e., those
largest in modulus.

Theorem 4.5. The correction space C of Morgan’s method is itself a Krylov space; namely

C =Km(A; rm+k) + span{z̃1; : : : ; z̃k}=Km+k(A; qm(A)r0): (47)

Proof. The rightmost member of (47) can be represented as

Km+k(A; qm(A)r0) = {r(A)qm(A)r0 : r ∈ Pm+k−1}:

286 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

On the other hand, by (40), the harmonic Ritz vectors may be represented in terms of polynomials
as z̃j = z̃j(A)r0 with

z̃j(�) =
pMRm+k(�)

�− �̃j
= qm(�)

k∏
‘=1
‘ 6=j

(
1− �

�̃‘

)
;

whereas rMRm+k = p
MR
m+k(A)r0, with

pMRm+k(�) = qm(�)
k∏
‘=1

(
1− �

�̃‘

)
:

Therefore, the correction space of Morgan’s method may be characterized as

C = {qm(A)q(A)r0 : q ∈ Q};
where the polynomial space Q is given by

Q :=
k∏
‘=1

(
1− �

�̃‘

)
Pm−1 + span

k∏
‘=1
‘ 6=j

(
1− �

�̃‘

)
: j = 1 : : : ; k

=
k∏
‘=1

(
1− �

�̃‘

)
Pm−1 +Pk−1 =Pm+k−1;

where the middle equality follows from the fact that �̃1; : : : ; �̃k are distinct.

Eq. (47) shows that C can be generated by applying the IRA method to Km+k(A; r0), using
�̃k+1; : : : ; �̃m+k as shifts, to obtain Kk(A; qm(A)r0). The space C is then obtained after m further steps
of the Arnoldi process. This approach is computationally less expensive in that k fewer matrix–vector
multiplications with A are required.
As also noted by Morgan, an analogous method can be used to augment the Krylov space in

conjunction with an OR iteration. In this case, however, Ritz values and vectors must be used in
place of harmonic Ritz values=vectors, as the Ritz values are the zeros of the OR residual polynomial.

4.4. Deation by preconditioning

The methods of the next class also attempt to utilize spectral information gained during the course
of the iteration to accelerate convergence. Instead of augmenting the Krylov space, however, these
methods use this information to construct preconditioners which can be improved as more accurate
spectral information becomes available. Such an approach was proposed by Erhel et al. [5].
To motivate this approach, assume U is an A-invariant subspace of dimension k with orthonormal

basis U , i.e.,

AU =:UAU ; AU ∈ Ck×k :
Note that AU is the speci�c representation of the orthogonal section AU with respect to the basis U .
Denoting by T an orthonormal basis of the orthogonal complement T =U⊥, we can represent the

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 287

action of A as

A[U T] = [U T]
[
AU U ∗AT
O T ∗AT

]
:

Under the assumption that k is small, it is feasible to solve systems involving AU directly, and thus
to precondition by M de�ned as

M [U T] = [U T]
[
AU O
O I

]
(48)

at each step of the iteration. The resulting right-preconditioned operator is then

AM−1[U T] = [U T]
[
I U ∗AT
O T ∗AT

]
; i:e:; AM−1 = PU + APT: (49)

We want to compare this approach with Morgan’s method of augmenting the Krylov space
Km(A; r0) by the A-invariant subspace U.

Theorem 4.6. Let rMm denote the MR residual with respect to the correction space U+Km(A; r0);
where U is an A-invariant subspace; and let rEm denote the MR residual with respect to the
correction space Km(AM−1; r0) resulting from preconditioning A from the right by M as de�ned
in (48). Then there holds

0 = ‖PUrMm ‖6‖PUrEm‖ and ‖PTrMm ‖6‖PTrEm‖; (50)

in particular; ‖rMm ‖6‖rEm‖. If; in addition; also T = U⊥ is A-invariant; then; PUr0 = 0 implies
rEm = r

M
m .

Proof. The left set of inequalities in (50) follow from PUrMm = 0 which was proved in Lemma 4.3.
We next recall that AT=PTAPT is the orthogonal section of A onto T (cf. the remark following

Lemma 3.3). Since rEm = r0 − AM−1c; for some c ∈Km(AM−1; r0) we obtain using (49)

PTrEm = PTr0 − PTAM−1c = PTr0 − PTAPTc = PTr0 − ATPTc:

Moreover, AM−1U=U together with Lemma 3.3 yield

PTc ∈ PTKm(AM−1; r0) =Km(PTAM−1; PTr0) =Km(AT; PTr0):

The last two statements show that PTrEm is of the form PTr0−ATc̃ with c̃ ∈Km(AT; PTr0). On the
other hand, by Proposition 4:3 there holds

‖rMm ‖= min
c∈Km(AT ;PTr0)

‖PTr0 − ATc‖;

i.e., ‖rMm ‖ minimizes all expressions of this form, yielding the right inequality of (50).
Next, assuming AT =T; (49) implies AM−1r0 = ATr0 for r0 ∈ T, and thus Km(AM−1; r0) =

Km(AT; PTr0); which shows that in this case both methods minimize over the same space, hence
rEm = r

M
m .

We note that the assumption PUr0 = 0 is not restrictive, as the preconditioner is built upon the
premise that AU is easily invertible. Since PUr0 = 0 by no means implies that PUrEm = 0, it cannot
be guaranteed that ‖rEm‖= ‖rMm ‖ even for such a special choice of initial residual unless AT=T.

288 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

The availability of an (exactly) A-invariant subspace U, on the other hand, is an assumption that
can rarely be satis�ed in practice. In such a case, one can nonetheless still de�ne the preconditioner
as above, where now AU :=U ∗AU represents the orthogonal section of A onto U, resulting in

AM−1[U T] = [U T]
[

I U ∗AT
T ∗AUA−1

U T ∗AT

]
;

based on the heuristic argument that T ∗AUA−1
U will be small whenever U is nearly A-invariant.

Such nearly A-invariant spaces are obtained as the span of selected Ritz or harmonic Ritz vectors
determined from Krylov spaces generated during previous cycles. In practice it is common to suitably
scale AU in the preconditioner M (see [7]).
Baglama et al. [1] propose a similar algorithm, which preconditions by (48) from the left, leading—

again under the assumption that U is exactly A-invariant—to the preconditioned operator

M−1A[U T] = [U T]

[
I A−1

U U
∗AT

O T ∗AT

]
;

M−1A= PU + APT + (A−1 − I)PUAPT:

The MR correction of the left-preconditioned system is the solution of the minimization problem

‖M−1rBm‖=min{‖M−1(r0 − AM−1c)‖ : c ∈Km(AM−1; r0)}
(cf. [18, p. 255]).
From (48), it is evident that

M−1 = A−1PU + PT

and, consequently, if AU=U,

PTM−1C= PTC for all C:
These are the essential ingredients for showing that Proposition 4:6 holds in exactly the same way
with rEm in place of r

B
m.

The construction of an approximately invariant subspace U is accomplished in [1] by employing
the IRA process (cf. Section 3.4).
Kharchenko and Yeremin [10] suggest another adaptive right preconditioner M̃ constructed as

follows: After each GMRES cycle the Ritz values and the corresponding left 5 and right Ritz vectors
of A with respect Km are extracted. The aim is to obtain a preconditioner such that the extremal
eigenvalues of A, which are approximated by the Ritz values, are translated to one (or at least to a
small cluster around one).
The extremal Ritz values are partitioned into, say, k subsets �j of nearby Ritz values. For each

�j, a rank-one transformation of the form I+CjC̃∗j is constructed, where Cj and C̃j are linear combina-
tions of the associated right and left Ritz vectors. These linear combinations are chosen to translate
simultaneously all Ritz values of �j into a small cluster around one, while satisfying certain sta-
bility criteria. One preconditioning step now consists of successive multiplication by these rank-one
matrices, i.e.,

M̃
−1
= (I + C1C̃∗1) : : : (I + Ck C̃

∗
k) = I + [C1 : : : Ck][C̃1 : : : C̃k]∗:

5 Left Ritz vectors are de�ned by A∗z̃j − ��j z̃j⊥Km and can be obtained from the left eigenvectors of Hm.

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 289

For the last equality we have made use of the fact that C̃∗j Ci = 0 for i 6= j, since all eigenvalues
of Hm have geometric multiplicity one. Note that, if �j has a small diameter and the Ritz values
contained in �j are good approximations of eigenvalues of A, then Cj and C̃j are approximate right
and left eigenvectors of A. It can be shown that the statement made in Theorem 4.6 also holds for
this preconditioning approach.

4.5. Optimal truncation

The methods of the preceding sections were based on restarting an MR iteration once the correction
space has reached a given dimension m, and attempted to compensate for the attendant loss of
information by augmenting or preconditioning. The methods discussed in this section are related to
the former in that they also attempt to retain information contained in the current correction space
– in this case orthogonality constraints – which is deemed most useful for convergence.
In place of restarting, the basic scheme underlying this class of methods is a truncated MR

iteration, in which, as soon as the correction space has reached a maximal dimension m, only a
subset of the most recent m basis vectors of the correction space is retained, or equivalently, one or
more of these basis vectors is periodically discarded during the iteration. In [26] de Sturler proposes
a scheme for selectively discarding subspaces rather than individual basis vectors. This selection
process, however, does not rely on spectral or invariant subspace information, but rather on angles
between subspaces.
To discard a subspace of dimension ‘, the subspace selection scheme proposed by de Sturler

compares two approximation spaces W1 and W2 associated with correction spaces C1 and C2. It
assumes the availibility of an orthonormal basis W (1)

m = [w(1)1 ; : : : ;w
(1)
m] of W1, an arbitrary basis

Ŵ
(2)
k = [ŵ(2)1 ; : : : ; ŵ

(2)
k] of W2 as well as a factorization

(Ik −W (1)
m [W

(1)
m]

∗)Ŵ
(2)
k = ZkR

with Zk =[z1; : : : ; zk], Z∗
k Zk = Ik and R ∈ Ck×k nonsingular and upper triangular. After computing the

singular value decomposition

([W (1)
m]

∗Ŵ
(2)
k)(Z

∗
k Ŵ

(2)
k)

−1 = X�Ŷ
H
; (51)

the subspace of W1 to be retained is chosen as that spanned by the vectors W (1)
m [x1 · · · x‘], where the

vectors xj are the left singular vectors associated with the ‘ largest singular values. The following
proposition relates this choice to the results of Section 2.4.

Proposition 4.7. With the above notation under the assumption W1∩W2 ={0}; the singular values
appearing in (51) are the cotangents of the canonical angles between the spaces W1 and W2.

Proof. Let W (2)
k denote an orthonormal basis of W2 such that Ŵ

(2)
k =W

(2)
k S with a nonsingular matrix

S ∈ Ck×k . Then the cosines of the canonical angles between W1 and W2 are the singular values of
[W (1)

m]
∗W (2)

k , and we write the associated singular value decomposition as [W
(1)
m]

∗W (2)
k = X�Y H with

a diagonal matrix � ∈ Rm×k and the unitary matrices X ∈ Cm×m and Y ∈ Ck×k . From
ZkR= (Ik −W (1)

m [W
(1)
m]

∗)Ŵ
(2)
k = (Ik − (W (1)

m X)(W
(1)
m X)

∗)(W (2)
k Y)Y

HS

= [(W (2)
k Y)− (W (1)

m X)�]Y
HS;

290 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

we obtain Zk = [(W
(2)
k Y)− (W (1)

m X)�]Y
HSR−1 and therefore, de�ning the diagonal matrix � ∈ Rk×k

by Ik − �H� = �2, there results
Ik = Z∗

k Zk = (SR
−1)HY�2Y H(SR−1) = (�Y HSR−1)H�Y HSR−1

which reveals that the k × k matrix �Y HSR−1 is also unitary. Note that, in view of W1 ∩W2 = {0},
none of the cosines in � are one, hence � is nonsingular. Now, inserting

[W (1)
m]

∗Ŵ
(2)
k = [W (1)

m]
∗W (2)

k S = X�Y
HS;

Z∗
k Ŵ

(2)
k = (SR−1)HY [(W (2)

k Y)
∗ − �H(W (1)

m X)
∗]W (2)

k S = (SR
−1)HY�2Y HS

can express the singular value decomposition (51) as

([W (1)
m]

∗Ŵ
(2)
k)(Z

∗
k Ŵ

(2)
k)

−1 = X (��−1)(�Y HSR−1);

which reveals that its singular values are indeed the cotangents of the angles between W1 and W2.

The proof also shows that the left singular vectors of (51) coincide with those of [W (1)
m]

∗W (2)
k ,

hence the selection scheme discards that subspace of W1 which lies at the largest canonical angles
with W2. As shown in Section 2.4, this choice yields the greatest possible residual reduction when
replacing the approximation space W1 +W2 by W̃1 +W2 with W̃1 a subspace of W1 of dimension
dimW1 − k.
In [26] de Sturler applies this scheme to a GMRES cycle of length m in order to determine

which directions of the s-dimensional Krylov subspace Ks(A; r0), s¡m, are most important for
convergence in the sense that maintaining orthogonality against these directions upon restarting after
the �rst s steps results in the greatest residual reduction. The subspaces to be compared are thus
AKs(A; r0) and AKm−s(A; rs). The subspace comparison in this case is particularly inexpensive, as
both spaces lie in Km(A; r0), for which the Arnoldi process has computed an orthonormal basis.
Hence, the angle computations can be performed in the coordinate space with respect to this basis,
and therefore involve only small matrices. For details, we refer to [26].
This subspace selection scheme is further used in [26] to improve the inner-outer iteration algo-

rithm GCRO (see Section 4.1). The resulting method, named GCROT, uses the subspace selection
scheme specialized to GMRES to transfer several vectors from the inner to the outer approximation
space after each inner iteration cycle. In addition, once the outer approximation space exceeds a
maximal dimension, it is truncated by comparing it against the inner approximation space in the
manner outlined above.

5. Concluding remark

Having described all these improvements of restarted GMRES of course raises the question of
which method one should use in practice. Some of the theoretical statements we have made in this
paper required simplifying assumptions which seldom hold in practice. Our results can be viewed

M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292 291

as a mathematical justi�cation of why and how these methods work, but need to be supplemented
by thorough numerical investigations for realistic applications to yield a complete comparison.
We can, however, make the following statement independently of any numerical evidence: None

of the techniques presented here can replace an e�ective preconditioning strategy, but can sometimes
dramatically improve the performance of restarted GMRES when applied to a properly preconditioned
linear system.

References

[1] J. Baglama, D. Calvetti, G.H. Golub, L. Reichel, Adaptively preconditioned GMRES algorithms, SIAM J. Sci.
Comput. 20 (1998) 243–269.

[2] A. Chapman, Y. Saad, Deated and augmented Krylov subspace techniques, Numer. Linear Algebra Appl. 4 (1997)
43–66.

[3] M. Eiermann, O.G. Ernst, Geometric aspects in the theory of Krylov subspace methods, Acta Numerica, to appear.
[4] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations,

SIAM J. Sci. Comput. 20 (1983) 345–357.
[5] J. Erhel, K. Burrage, B. Pohl, Restarted GMRES preconditioned by deation, J. Comput. Appl. Math. 69 (1996)

303–318.
[6] V. Faber, T.A. Manteu�el, Necessary and su�cient conditions for the existence of a conjugate gradient method,

SIAM J. Numer. Anal. 21 (1984) 352–362.
[7] R.W. Freund, Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations, in: D. Braess,

L.L. Schumaker (Eds.), Numerical Methods of Approximation Theory, Birkhauser, Basel, 1992.
[8] R.W. Freund, Quasi-kernel polynomials and their use in non-Hermitian matrix iterations, J. Comput. Appl. Math. 43

(1992) 135–158.
[9] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics, Vol. 17, SIAM,

Philadelphia, PA, 1997.
[10] S.A. Kharchenko, A.Yu. Yeremin, Eigenvalue translation based preconditioners for the GMRES(k) method, Numer.

Linear Algebra Appl. 2 (1995) 51–77.
[11] T.A Manteu�el, J.S. Otto, On the roots of the orthogonal polynomials and residual polynomials associated with a

conjugate gradient method, Numer. Linear Algebra Appl. 1 (5) (1994) 449–475.
[12] R.B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl. 154–156 (1991) 289–309.
[13] R.B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl. 16 (1995)

1154–1171.
[14] R.B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations, SIAM J.

Matrix Anal. Appl. 21 (2000) 1112–1135.
[15] C.C. Paige, B.N. Parlett, H.A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces,

Numer. Linear Algebra Appl. 2 (1995) 115–133.
[16] C.C. Paige, M.A. Saunders, Solution of sparse inde�nite systems of linear equations, SIAM J. Numer. Anal. 12

(1975) 617–629.
[17] Y. Saad, A exible inner–outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993) 461–469.
[18] Y. Saad, Iterative Methods for Sparse Linear Systems, Prindle, Weber & Schmidt, Boston, MA, 1996.
[19] Y. Saad, Analysis of augmented Krylov subspace methods, SIAM J. Matrix Anal. Appl. 18 (1997) 435–449.
[20] Y. Saad, Further analysis of minimumn residual iterations, Technical Report UMSI-97-14, University of Minnesota

Supercomputer Institute, 1997.
[21] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Comput. 7 (1986) 856–869.
[22] D.C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl.

13 (1992) 357–385.
[23] G.W. Stewart, Matrix Algorithms, Vol. I, Basic Decompositions, SIAM, Philadelphia, PA, 1998.

292 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

[24] E.L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, J. Res. Nat. Bur. Standards Appl.
Math. Ser. 49 (1958) 1–22.

[25] E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math. 67 (1996) 15–41.
[26] E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal. 36 (1999) 864–889.
[27] H.A. van der Vorst, C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra Appl. 1

(1994) 369–386.

Journal of Computational and Applied Mathematics 123 (2000) 293–306
www.elsevier.nl/locate/cam

Re�ning an approximate inverse(

Robert Bridson a; ∗, Wei-Pai Tang b
aSCCM Gates 2B, Stanford University, CA 94305, USA

bDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received 29 July 1999; received in revised form 10 September 1999

Abstract

Direct methods have made remarkable progress in the computational e�ciency of factorization algorithms during the last
three decades. The advances in graph theoretic algorithms have not received enough attention from the iterative methods
community. For example, we demonstrate how symbolic factorization algorithms from direct methods can accelerate the
computation of a factored approximate inverse preconditioner. For very sparse preconditioners, however, a reformulation of
the algorithm with outer products can exploit even more zeros to good advantage. We also explore the possibilities of im-
proving cache e�ciency in the application of the preconditioner through reorderings. The article ends by proposing a block
version of the algorithm for further gains in e�ciency and robustness. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Approximate inverse; Cache; Ordering; Performance; Preconditioner; Symbolic factorization

1. Introduction

So far research into sparse approximate inverse preconditioners has focused on convergence,
ignoring more subtle e�ciency issues for the most part. This paper explores how to get the best
performance out of an approximate inverse preconditioner, particularly on modern superscalar work-
stations.
The algorithm we turn our attention to is Benzi and T�uma’s AINV [2,3], or more speci�cally,

a slight variation on the stabilized version SAINV [1] that is guaranteed to avoid breakdown for
positive-de�ninte problems. We previously explored the issue of ordering in [7], noting that for good
orderings the set-up time for the preconditioner can be reduced dramatically. Here we go into details
on that and other techniques for boosting the performance of the method. We note that in [2,3],

(This work was supported by the Natural Sciences and Engineering Council of Canada, and Communications and
Information Technology Ontario (CITO), funded by the Province of Ontario.

∗ Corresponding author.
E-mail addresses: rbridson@stanford.edu (R. Bridson), wptang@elora.uwaterloo.ca (W.-P. Tang).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00399-X

294 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

Benzi and T�uma had already implemented the symbolic factorization enhancement and outer-product
form below, though do not discuss it in depth.
Before proceeding, we introduce some notation. Column i of a matrix A is written Ai (and so row

i is (AT)Ti). The jth entry of a vector v is given by vj (and so the (i; j)th entry of a matrix is indeed
Aij). The column vector of all zeros except for the one at the ith position is ei: ei is thus column i
of the identity matrix I . In algorithms, x ← y indicates that variable x is assigned the value of y.

2. Basic implementation

The simplest form of SAINV is a left-looking, inner-product-based algorithm, given in Algorithm
1. It can be viewed as the generalization of classical Gram–Schmidt 1 to constructing A-biconjugate
sets of vectors from the standard basis, with small entries dropped to preserve sparsity. The results
are two upper-triangular matrices W and Z containing the sets of vectors as columns and a diagonal
matrix D with W T AZ ≈ D. (In fact, with the presented choice of dropping, the diagonal of W T AZ
is exactly D – it is just the o�-diagonal terms that might not be zero.) When A is symmetric, the
algorithm can be simpli�ed by eliminating the W computations, using W = Z .

Algorithm 1. The left-looking, inner-product form of SAINV
• Take A, an n× n matrix, and some drop tolerance �¿0 as input.
• For i = 1; : : : ; n

. Initialize columns i of W and Z to the i’th standard basis vector
• Set Wi ← ei and Zi ← ei.
. Make column i of W biconjugate with previous columns
• Get row i of A: r ← (AT)Ti = e

T
i A.

• For j = 1; : : : ; i − 1
• Set Wi ← Wi − (rZj=Djj)Wj

. Make column i of Z biconjugate with previous columns
• Get column i of A: c← Ai = Aei.
• For j = 1; : : : ; i − 1

• Set Zi ← Zi − (W T
j c=Djj)Zj

. Drop small entries to keep W and Z sparse
• Zero any above-diagonal entry of Wi or Zi with magnitude 6�.
. Find the “pivot” Dii
• Set Dii ← W T

i AZi.
• Return W , Z , and D.

Of course, all the matrices should be stored in sparse mode. For this article, compressed column
storage format is assumed: each matrix is a collection of n sparse column vectors.
However, the inner products rZj and W T

j c are more e�ciently computed if one of the vectors
is stored in full mode; while a sparse–sparse operation could theoretically be faster, a typical

1 SAINV in [1] is actually a generalization of modi�ed Gram–Schmidt; this variation is a slightly faster but typically
equal quality algorithm.

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 295

implementations more complicated branching and memory accesses make it slower on today’s hard-
ware. Since each r and c is reused over many inner iterations, it is natural to keep these in full
storage – though of course, there is the drawback that often W and Z will be denser than A, so the
inner products would be even more e�cient with Wj and Zj in full storage.
One n-vector su�ces to store both r and c. To avoid unnecessary O(n2) work, it should not be

completely zeroed out after use: only the nonzero locations should be reset. Further unnecessary
work can be eliminated by only copying nonzeros up to position i − 1, since W and Z are upper
triangular and thus locations from i onwards will not be involved in the inner products.
With compressed column storage, accessing each column c is simple, but �nding each row r

is more time-consuming. In the symmetric case, this is of course unnecessary. Even if A just has
symmetric structure, r can be found faster since not every column of A need be checked for a
nonzero at position i: only those columns corresponding to nonzeros in column i. 2

The updates to Wi and Zi require some thought, as they should be done in sparse mode; if
constructed as dense vectors, there will be unnecessary O(n) work in every iteration to gather them
up into sparse storage. If the sparse columns are not kept in sorted order, the simplest way of adding
the scaled Wj to Wi (or Zj to Zi) is to do a linear search in Wi for each nonzero in Wj; if there is
a nonzero already in that location, add it to it, and otherwise append it. If the columns are sorted,
then a faster merge operation may be used instead.
However, both of these methods require time depending on the number of nonzeros already in Wi

(some fraction of the elements in Wi will be scanned to determine where to add the update), which
may grow with each inner iteration as updates are applied. A better implementation is described
below, adding the scaled Wj to Wi in time just proportional to the number of nonzeros in Wj,
independent of how many are already in Wi (avoiding any scan of existing elements).
Maintain two n-vectors, exists and location. The former is a Boolean vector with

exists (k) true when Wi has a nonzero in position k; then location (k) points to where that
nonzero is stored in the sparse data structure. Now adding an entry from the scaled Wj to Wi, say at
position k, takes O(1) time: look-up exists (k); if true use location (k) to modify the existing
entry in Wi, otherwise append the new entry to Wi. If the vectors must be stored in sorted order,
after the inner loop Wi can be radix or bin-sorted very e�ciently.
Of course, exists must be reset to all false before each inner loop. A cheap method to avoid

this cost is to let exists (k) = i indicate true for Wi, and n+ i true for Zi, on the i’th iteration.
The calculation of the pivot W T

i AZi is best done with Wi in full storage, viewing it as a sum of
full-sparse inner products:

W T
i AZi =

∑
Zji 6=0

(W T
i Aj)Zji:

Thus, after small entries have been dropped, Wi should be scattered into a full n-vector, and after
the pivot has been calculated, only those nonzeros reset.

2 It is also possible to store a row-oriented copy of A along side the column-oriented version, as is done in [3]; for
the scalar case here we have chosen not to, trading higher complexity for more lower storage requirements. Experiments
indicate that typically the row-oriented copy is only worthwhile when A is not structurally symmetric, but then essentially
the same performance can be obtained by adding zeros to symmetrize the structure, as will be discussed later.

296 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

3. Fruitless inner products

Even with good handling of the sparse vs. dense issues, the algorithm as it stands must take at
least O(n2) time due to the nested loops. This can be improved signi�cantly after realizing that often
many of the inner j iterations are unnecessary: the inner products rZj and W T

j c are often zero simply
because there are no nonzero locations in common.
Table 1 shows some sample statistics of how many inner products turn out to be exactly zero in

the preconditioner construction for some typical test matrices, symmetrically ordered with the nested
dissection routine from Metis [13]. 3 This does not include the small fraction of inner products from
the pivot calculation W T

i AZi.
Fortunately, many of these inner products can be avoided. We begin by considering those inner

products which are zero even without small entries dropped in the algorithm, i.e., when the true
inverse factors are computed. Because the algorithm does not rely on cancellation anywhere, dropping
can only result in more zero dot products – thus, we are always safe to avoid the ones that are zero
without dropping.
First, consider the case when A has symmetric structure, so the true inverse factors have the same

structure as each other. Then we have the following result:

Theorem 3.1. Assuming symmetric structure; at step i with r equal to the ith row of A; the inner
product rZj 6= 0 only if j¡ i and j is an ancestor in the elimination tree [16] of some k with
Aik 6= 0.

Proof. In [7] the structure of the true inverse factors, assuming no felicitous cancellation, was shown:
Zkj 6= 0 if and only if k is a descendent of j in the elimination tree of A. The inner product rZj is
nonzero if and only if there is some k with Aik 6= 0 and Zkj 6= 0. Therefore, the inner product is

Table 1
When SAINV with drop tolerance 0:1 is applied to several standard test matrices, almost all the
inner products are exactly zero. The ordering in all cases is nested dissection

Matrix Total number of Number that are Percentage
inner products exactly zero of total (%)

ADD32 24,596,640 24,580,218 99.9
BCSSTK25 238,347,282 237,781,980 99.8
MEMPLUS 315,328,806 315,240,589 99.97
NASA2146 4,603,170 4,464,828 97.0
ORSREG1 4,859,820 4,838,964 99.6
PORES2 1,496,952 1,484,637 99.2
SHERMAN2 1,165,320 1,118,651 96.0
SHERMAN3 25,045,020 25,013,829 99.9
WATSON5 3,431,756 3,421,143 99.7

3 In [4,7] other orderings were considered for AINV, but as nested dissection is generally close to best in convergence,
often best in construction time, and most easily parallelized, this article sticks with just nested dissection. Results for other
inverse factor �ll reducing orderings are similar.

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 297

nonzero only when there is some k with Aik 6= 0 and k a descendent of j, i.e., j an ancestor of k.
Only values j¡ i are considered in the original loop, and so the result follows.

Another proof of this result can be made from the factorization A=LDU (with L unit lower trian-
gular, U unit upper triangular, and D diagonal), so Z=U−1 and thus AZ=LD. Then the inner product
rZj at step i is simply LijDjj, and the nonzero structure of each row of L has been characterized pre-
cisely as above in [15]. The only di�culty with this route is determining what role cancellation plays
in the structure of AZ – with inexact arithmetic and especially with dropping, it is not immediately
clear that the structure of the lower triangle of AZ will be a subset of the structure of L.
In [15] a very e�cient algorithm is given for �nding the elimination tree of A, leading to a fast

symbolic factorization. We can use this to create a symbolic factorization enhanced AINV, replacing
the inner j=1; : : : ; i−1 loop with one just over the nonzeros in row i of L. Of course, taking note of
the symmetric structure and column-oriented storage of A, the upwards-traversals of the elimination
tree to �nd those indices should start with the nonzeros in column i of A with indices less than i.
When A does not have symmetric structure, things get a little more complicated. Often A is close

to structurally symmetric and so ordering, symbolic factorization, and biconjugation can all be done
e�ciently with zeros inserted into the sparsity structure to make it symmetric. However, there may
be cases when it is best to exploit the nonsymmetric zeros in any or all of these steps. (For example,
it may be possible to exploit unsymmetric zeros in ordering to reduce the matrix to block triangular
form, in which case only smaller submatrices need be preconditioned.) Here we will consider an
unsymmetric symbolic factorization enhancement.
The key again is the structure of the true inverse factors. This is most easily discussed with the

language of graph theory, where the nonzero structure of an n× n matrix M corresponds to a graph
GM with vertices labelled 1; : : : ; n and directed edge i → j if and only if Mij 6= 0. See [10], for
example, for more discussion of graph theory and sparse matrix computations.
As proven in [12], the inverse of a matrix M has the structure of the transitive closure G∗

M of
GM , that is a graph G∗

M with a directed edge i → j whenever there is a path from i to j in GM . The
simplest characterization of the structure of the true inverse factors W T=L−1 and Z=U−1 is then as
the transitive closures of the graphs of L and U , respectively. However, there are many unnecessary
edges in GL and GU from this standpoint – if an edge i → j exists alongside a disjoint path from
i to j, the edge i → j may be deleted without e�ecting the transitive closure. If all such redundant
edges are deleted, the result is called the transitive reduction. If A was structurally symmetric, this
turns out to be the elimination tree mentioned above [16]; otherwise, GL and GU reduce to a pair
of directed acyclic graphs called elimination dags [11].
Unfortunately, the elimination dags can be fairly expensive to compute, and so somewhat denser

but cheaper graphs, intermediate between the triangular factors and their transitive reductions, have
been investigated in [9]. For this application, an alternative route is to use graphs whose transitive
closures contain the structures of W T and Z but may be a little denser still – for example, the
elimination tree of the symmetrized A. With these cases in mind, the unsymmetric generalization of
the previous theorem is:

Theorem 3.2. Let GoL and G
o
U be directed acyclic graphs whose transitive closures contain the

structures of W T and Z , respectively. Then at step i of AINV; the inner-product rZj 6= 0 only

298 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

if j¡ i and there is a path in GoU to j from some k with Aik 6= 0; similarly; the inner-product
W T
j c 6= 0 only if j¡ i and j is reachable in GoL from some k with Aki 6= 0.

Proof. We will only prove the rZj part, as the W T
j c part is essentially the same. Since the transitive

closure of GoU contains the structure of Z , Zkj 6= 0 only if there is a path in GoU from k to j. The
inner-product rZj 6= 0 if and only if there is some k with Aik 6= 0 and Zkj 6= 0. Therefore, the
inner-product is nonzero only if there is some k with Aik 6= 0 and with a path to j in GoU . Only
values j¡ i are considered in the original loop, and so the result follows.

Just as before, this can be interpreted as symbolic factorization, if GoL and G
o
U are chosen to be

the elimination dags or other intermediate structures between the elimination dags and the triangular
factors. For example, the inner-product rZj at step i is just LijDjj, and the above characterization is
the same as that shown for the rows of L in [11,9].
Table 2 compares the regular form of AINV with the symbolic factorization enhanced version,

with a drop tolerance of 0.1 for each test matrix as before. The timing counts are from a C imple-
mentation running on an Apple Macintosh workstation with a 233 MHz Power PC 750 processor.
For the matrices with nonsymmetric structure an elimination dag version is tested �rst, followed by
a symmetrized version. Even without the time required for �nding the elimination dags taken into
account, and even though more unnecessary zero inner products are performed, the symmetrized
version is clearly much faster for these typical matrices. In all cases, the enhanced algorithm is
signi�cantly faster than the original algorithm, often by an order of magnitude or more.
For a successful ordering, the number of nonzeros in the LDU factors, hence the number of inner

products in the symbolic factorization enhanced algorithm, is an order of magnitude less than O(n2)
(see, e.g., [14] for guarantees on two-dimensional �nite element meshes). Assuming that the average

Table 2
A comparison of regular and symbolic factorization enhanced SAINV on some standard test
matrices. The matrices marked as “symmetrized” had zeros inserted in their sparsity structure to
make them structurally symmetric, albeit not numerically symmetric

Matrix Millions of inner Percentage of Seconds spent on
products zero inner products AINV

Regular Enhanced Regular Enhanced Regular Enhanced

ADD32 25 0.02 99.9 15.5 15.2 0.04
BCSSTK25 238 1.57 99.8 82.0 730 6.8
MEMPLUS 315 0.11 99.97 18.9 310 44.5
(symmetrized) 0.11 21.4 260 0.42
NASA2146 4.6 0.14 97.0 50.2 7.7 0.31
ORSREG1 4.9 0.17 99.6 87.6 3.4 0.20
PORES2 1.5 0.06 99.2 78.4 1.2 0.28
(symmetrized) 0.09 86.0 1.1 0.07
SHERMAN2 1.2 0.12 96.0 60.3 1.8 0.71
(symmetrized) 0.16 70.1 1.4 0.50
SHERMAN3 25 0.20 99.9 84.3 18.1 0.34
WATSON5 3.4 0.02 99.7 50.8 3.7 0.46
(symmetrized) 0.09 88.8 3.7 0.08

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 299

cost of an inner-product in the regular and the enhanced algorithms is the same – which is probably
not strictly true, but still is a good rough estimate – this explains why the enhanced version is so
much faster.

4. Revisiting the outer-product form

The symbolic factorization enhancement may avoid all inner products that can be determined zero
a priori. However, there are still more that result from the nonzeros that are dropped during the
algorithm. Possibly, these could be avoided by pruning the elimination structures as the algorithm
goes, but a simpler approach is to rewrite SAINV as a right-looking outer-product algorithm by
switching the order of the loops. With the obvious sparsity enhancement, the result is given in
Algorithm 2.

Algorithm 2. The outer-product form of SAINV
• Take as input A and �.
• Set W ← I and Z ← I .
• For j = 1; : : : ; n
• Set l← AZj
• Set u← W T

j A
• Set Djj ← uZj or equivalently W T

j l, whichever is cheapest
• For i¿ j, li 6= 0
• Update Wi ← Wi − drop((li=Djj)Wj; �), where entries of the update
vector with magnitude 6� are dropped.

• For i¿ j, ui 6= 0
• Update Zi ← Zi − drop((ui=Djj)Zj; �).

• Return W , Z , and D.

In exact arithmetic without dropping, the vectors l and u at step j are the jth column and row
of LD and DU , respectively. With dropping, they naturally become sparser, giving the improvement
over the symbolic factorization enhanced inner-product algorithm.
Note that because small entries are dropped before being added in this formulation, the result will

in general be di�erent from the inner-product version. Usually, the same drop tolerance will produce
a sparser but less accurate preconditioner than the inner-product form.
The primary drawback of the outer-product form is its right-looking nature: all of columns

j + 1; : : : ; n of W and Z must be stored in dynamic data structures, since updates to them may
insert entries in any row up to j. The natural implementation with each column of W and Z in a
sorted linked list then can su�er from ine�cient insertions, poor cache usage, and di�culties for
vectorization. 4 However, the savings from exploiting the dropped zeros hopefully can make up for
this.

4 More sophisticated data structures such as B-trees may do better in some cases – normally though, the number of
nonzeros in each column of W and Z is so small that the increased overhead is not worth it.

300 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

Just as with the inner-product form, there is a di�culty when A does not have symmetric structure
and a row-oriented copy is not available: the left-multiplication W T

j A cannot be made in an e�cient
fully sparse mode. All entries must be computed, even though most will be zero. One possibility
to speed this up is to use a similar symbolic factorization approach as before, making use of a
characterization of the columns of L (rather than the rows) to a priori eliminate most of the zero
computations. However, this would lose the motivation for the outer-product form – exploiting the
zeros that cannot be determined a priori – while still incurring the dynamic data structure penalties.
Therefore, we have chosen to symmetrize the sparse matrix data structure as before.
A timing comparison between the inner-product and outer-product algorithms is given in Table 3.

Since the same drop tolerance of 0.1 produces slightly di�erent factors for the outer-product form
than for the inner-product form, I have chosen new drop tolerances for the outer-product tests to
give it roughly the same number of nonzeros.
As the results show, while for some problems the extra overhead of outer-product SAINV is

not worth the small gain made from exploiting the full sparsity, in several cases the bene�t is
considerable.
With these results in mind the choice of algorithm depends on several factors:

• How much storage is available? Enough for the overhead of the dynamic data structures in the
outer-product form? Enough for an additional row-oriented copy of A?

• Approximately how full will the factors be? Full enough that there will be so few zero inner
products that inner-product AINV is faster?
• Is A so far from structurally symmetric that it pays to exploit the unsymmetric zeros in some
way (e.g., using unsymmetric elimination structures for inner-product SAINV rather than the
elimination tree of the symmetrized matrix)?

It should be noted also that for some problems, A is known only as an operator or as a product
of matrices, not in explicit matrix form. In this case, �nding elimination structures for A may
be impossible, prompting the choice of the outer-product form which does not require them (for
example, see [6]).

Table 3
Timing comparison for inner-product SAINV versus outer-product SAINV. Matrices with un-
symmetric structure are symmetrized with additional zeros

Matrix Time for Time for
inner-product form outer-product form

ADD32 0.04 0.06
BCSSTK25 6.75 0.97
MEMPLUS 0.42 0.55
NASA2146 0.31 0.17
ORSREG1 0.20 0.06
PORES2 0.07 0.04
SHERMAN2 0.50 0.44
SHERMAN3 0.34 0.10
WATSON5 0.08 0.11

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 301

5. Ordering for application

Forgetting the trivial diagonal matrix D for the time being, the basic operation in an iterative
solver is applying the preconditioned operator to a dense vector: W TAZx. Algorithm 3 shows the
simplest algorithm for doing this with compressed column storage.
One major issue in the speed of this algorithm on modern superscalar processors comes from the

memory hierarchy: e�cient cache usage. For example, in the �rst main loop (multiplying u = Zx)
each entry of u may be accessed several times according to the structure of Z . The more cache
misses there are – the more times an entry of u has to be fetched from main memory – the slower
the loop will run. Ideally, once an entry from u is fetched from cache it will stay there until done
with, and will not be prematurely bumped out of the cache. The situation is complicated by how
entire cache “lines” of consecutive memory locations are brought into cache at each miss – typically
on the order of 64 bytes.

Algorithm 3. Multiplying W TAZx
• Take as input sparse matrices W , A, and Z (in compressed column format)
and a dense vector x.

• Initialize dense vectors u= 0 and v= 0
• For i = 1; : : : ; n
• For j with Zji 6= 0
• Update uj ← uj + Zjixi

• For i = 1; : : : ; n
• For j with Aji 6= 0
• Update vj ← vj + Ajiui

• For i = 1; : : : ; n
• Set ui ← 0
• For j with Wji 6= 0
• Update ui ← ui +Wjivj

• Return the result in u.

One of the advantages of approximate inverses is that any orderings may be used in the matrix–
vector multiplies – the rows and columns of the matrices and vectors may be permuted without
e�ecting the result, modulo �nite precision arithmetic errors, with the only restriction coming from
the compatibility of the orderings in multiplication (e.g., the ordering of x must be the same as the
columns of Z). With detailed knowledge of the hardware hopefully this can be exploited to promote
e�cient cache usage in the multiplies. Such tuning is beyond the scope of this article, but some
simple tests can show the potential e�ect of ordering for application. We hope to raise questions
here, rather than provide answers.
Table 4 compares the performance for random orderings, the nested dissection ordering used in

construction of the preconditioner, and a reordering of the elimination tree for the nested dissection
ordering starting at the leaves and progressing upwards level by level. This last ordering is an entirely
equivalent elimination sequence to the nested dissection, but mimics the greedy choices made by
minimum degree or MIP [7].

302 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

Table 4
The number of milliseconds taken to compute W TAZx for various orderings of the matrices
and x. W and Z are computed from inner-product SAINV with a drop tolerance of 0.1 and
the nested dissection ordering. The leaf reordering is an equivalent elimination sequence to the
nested dissection, but begins with all the leaves of the elimination tree and progresses upwards
level by level, mimicking minimum degree and MIP to some extent

Matrix Ordering
Random Nested Leaf

dissection reordering

ADD32 5.6 4.7 4.8
BCSSTK25 102.3 70.6 91.6
MEMPLUS 33.6 7.4 28.6
NASA2146 13.0 12.4 12.7
ORSREG1 2.3 2.6 2.2
PORES2 1.3 1.3 1.3
SHERMAN2 4.2 4.3 4.4
SHERMAN3 7.9 6.6 6.9
WATSON5 3.7 3.4 3.8

The di�erences in performance, at least for ADD32, BCSSTK25, MEM-PLUS, and SHERMAN3,
highlight how important ordering might be here. Random ordering is clearly bad – indicating for
example that unstructured meshes created with no natural ordering should be appropriately reordered
for iterations. The standard nested dissection is generally better than the elimination tree equivalent
leaf reordering, perhaps indicating that if minimum degree or MIP is used for construction a further
reordering is necessary. We believe the reason for these di�erences is that standard nested dissection
tends to cluster most of the nonzeros in small blocks (excepting the large block separators), which
intuitively will allow e�cient cache usage. We note that other factors may be involved, such as how
fully used are multiple instruction pipelines, but for the moment we do not see a reason they would
have this e�ect; we refer the reader to [8] for a full discussion of all the factors involved in tuning
a (dense) matrix-multiplication routine.
The question remains whether there are signi�cantly superior orderings to standard nested dissec-

tion. The following theorem suggests that for fairly full approximate inverses, the nested dissection
ordering could well be the best. In general, for symmetrically structured matrices, a post-ordering of
the elimination tree [10] is a natural generalization of the nested dissection ordering even when the
ordering was not constructed in that manner.

Theorem 5.1. For symmetrically structured A with a post-ordering of the elimination tree [10]; the
true upper triangular inverse factor has a dense skyline. In other words; its columns consist of a
block of zeros followed by a single dense block of nonzeros ending at the diagonal.

Proof. The key characterization of a post-ordering is that any subtree is ordered in a contiguous
block, with the root of the subtree coming last. The nonzeros in column i of the true upper triangular
inverse factor correspond to all children of i in the etree, i.e., to the others nodes in the subtree
rooted at i. Thus, the nonzeros form one contiguous block, ending at the diagonal (the ith row).

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 303

This simple block structure is near optimal for cache use within each column, though the question
of the order in which the columns should be considered is still open.

6. Block methods

As with the direct methods, the eventual goal of the algorithms should be to cut the symbolic
operations to a minimum while doing the necessary numerical operations e�ciently in cache. We
have shown the ways to eliminate unnecessary numerical operations in the preconditioner construc-
tion, and the possibility of promoting cache usage in the application. For further improvements we
now turn to block methods to cut down symbolic operations and further cache e�ciency.
This approach, partitioning A into small dense block matrices, is used to great advantage in direct

methods, where for example supernodes [17] are used to eliminate redundant symbolic operations.
There are also many problems, e.g., from systems of PDEs, that naturally have a block structure
and it sometimes makes sense to treat them as such: convergence may sometimes be improved, as
shown below.
The generalization of SAINV to block matrices is straightforward. We rede�ne our notation some-

what for block structures. Throughout we assume that A and all other matrices have been partitioned
with 1 = b1¡b2¡ · · ·¡bm+1 = n + 1. Then Ai indicates block column i of A, consisting of the
“point” columns bi to bi+1 − 1, and Aij indicates the jth block in this block vector, the submatrix
of A extending from position (bi; bj) to (bi+1 − 1; bj+1 − 1). The ith block column of the identity is
given by Ei. Notice that diagonal blocks of a matrix are necessarily square, but o�-diagonal blocks
might not be if the block size is not constant.
Block SAINV produces matrices W , Z , and D that approximately satisfy W TAZ=D, where W and

Z are block upper triangular and D is block diagonal. The inner-product form is given in Algorithm 4;
for this paper we do not explore the performance of the somewhat more complicated outer-product
form. The generalization of the scalar outer-product algorithm is straightforward nonetheless.

Algorithm 4. The left-looking, inner-product form of block SAINV with symbolic
factorization enhancement

• Take A, an m× m block matrix, and some drop tolerance �¿0 as input.
• For i = 1; : : : ; m

. Initialize block columns i of W and Z to the i’th standard basis
block vector
• Set Wi ← Ei and Zi ← Ei.
• Get block row i of A : R← (AT)Ti = E

T
i A (up to column i − 1)

• For j¡ i, Uji 6= 0 (determined by symbolic factorization)
• Wi ← Wi −Wj(RZjD−1

jj)T

• Get block column i of A : C ← Ai = AEi (up to row i − 1)
• For j¡ i, Lij 6= 0 (determined by symbolic factorization)
• Zi ← Zi − Zj(D−1

jj W T
j C)

• Zero any above-diagonal block of Wi or Zi with norm 6�.
• Set Dii ← W T

i AZi (and store D
−1
ii).

• Return W , Z , and D.

304 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

The symbolic factorization enhancement now must use the graph of the block form of A, where
each vertex represents a diagonal block and each edge a nonzero o�-diagonal block. Also notice
that since the storage requirements of a sparse block matrix is strongly dominated by the numerical
entries in the dense blocks, it is perfectly reasonable to store a row-oriented version of the sparsity
structure (referencing the same numerical entries) along side the column-oriented version – so �nding
block rows of unsymmetric A can be done with ease.
Determining when to drop “small” blocks from W and Z is an interesting issue, especially as

one drop tolerance is used for blocks of potentially di�erent sizes. One possibility, used here, is to
compare the Frobenius norm of the block divided by the number of entries in the block against the
drop tolerance �.
In the scalar case, it is possible that a pivot will be zero (or small enough to cause problems

when dividing by the pivot later). This problem is alleviated somewhat with the block algorithm,
since the inversion of the block pivots can be carried out more robustly with a partial pivoting
LU decomposition, a QR decomposition, or even an SVD operation to be completely con�dent
of numerical stability. However, it still may happen that a block pivot is singular or so close to
singular that problems emerge. Our implementation currently only checks for exact zeros in the partial
pivoting LU decomposition; this never happenned in the testing however. Several possibilities exist
for recovery if this does happen – adding a diagonal shift to the block, for example, or using a
shifted SVD instead.
Some of the test problems have a natural block structure while it is not so clear for others. One

possibility is to use the supernodes following a nested dissection ordering, hoping that since the
nodes making up a supernode have essentially the same structure in the true inverse factors, they
should have similar structure in the approximate inverse and thus be correctly handled with dense
blocks. The problem is that usually many supernodes are singletons, so unless care is taken in coding
the algorithm, the overhead of the block algorithm is wasted. It is also important to note that there
are typically some supernodes of very large size, which must be broken up into more manageable
sizes for storage and computational e�ciency.
Perhaps, a better approach is to use the aggregation algorithms of algebraic multigrid. Here we

tried applying the ideas from [5] (using |A|+ |AT| for the unsymmetric matrices).
Table 5 shows construction times and convergence rates for scalar inner-product AINV and block

inner-product AINV, with the same drop tolerance of 0.1 as before. For these examples, the block
form is always slower – the overhead simply is not worth any gains in dense operations. It should be
noted that the BLAS and LAPACK libraries used for these timings were not highly tuned, however,
so better results are de�nitely anticipated in better implementations. The convergence is generally
worse for the block method, presumably because the block version may drop important nonzeros in
otherwise near zero blocks while retaining unimportant nonzeros that happen to occur in the same
blocks as important nonzeros. The exception is SHERMAN2, where as suggested in [7] the block
form succeeds but the scalar form fails.
It seems then that the block version might only be appropriate in certain cases, unless a better

determination of blocks and a more sophisticated dropping strategy are adopted. For example, the
improvement for SHERMAN2 over the scalar version is probably because the scalar version’s simple
diagonal pivoting is inappropriate – with weak diagonals and condition numbers ranging from 107 to
1011, the diagonal blocks require partial pivoting to be inverted. (For the other matrices, the diagonal

R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306 305

Table 5
A comparison of preconditioner construction times and convergence rates. The drop tolerance
for scalar inner-product AINV is 0.1, and the drop tolerance for the block version is chosen to
give approximately the same number of nonzeros. CG is used for s.p.d. problems and BiCGstab
for the rest; the right-hand side is the vector of all ones, the initial guess is all zeros, and
convergence is agged when the residual 2-norm is decreased by a factor of 106

Matrix Scalar Block

Time for Iterations Average Time for Iterations
AINV block size AINV

ADD32 0.04 5 2 0.10 32
BCSSTK25 6.75 ∞ 3.0 7.88 ∞
MEMPLUS 0.42 17 2 0.58 ∞
NASA2146 0.31 85 3.9 0.30 135
ORSREG1 0.20 31 2.5 0.31 46
PORES2 0.07 ∞ 2 0.20 ∞
SHERMAN2 0.50 ∞ 6 0.57 21
SHERMAN3 0.34 96 1.7 1.13 127
WATSON5 0.08 127 2.7 0.13 ∞

blocks are not nearly as badly conditioned.) Of course, this raises the question whether a simple
block diagonal rescaling applied before scalar AINV would be enough to cure the problem.

7. Conclusions

We have presented several re�nements for improving the performance of the SAINV-factored
approximate inverse. Ideas and algorithms from direct methods allowed signi�cant performance en-
hancements for the inner-product form of the algorithm; for many problems, however, even faster
construction was possible with an outer-product reformulation. Experimental results demonstrated
how reordering the approximate inverse can greatly e�ect the cache e�ciency during its application
in an iterative solver. We �nally proposed a block version of the algorithm for further gains in
cache e�ciency, which unfortunately are o�-set by increased overhead in the current implementation
– we expect further tuning of the code will make block processing worthwhile. The block version
can give better convergence for some badly conditioned block-structured problems thanks to its bet-
ter treatment of pivots, but for other matrices appears to be less robust since the block-by-block
dropping is more likely to make bad choices. More sophisticated ideas from algebraic multigrid for
�nding better block structures may alleviate this di�culty, as might better dropping strategies than
the current ad hoc choice.
The underlying theme to this research is that signi�cant gains can be made for iterative solvers by

considering the techniques designed originally for direct solvers. Progress towards high-performance
iterative methods requires solving many of the algorithmic problems that have confronted the direct
methods community; the solutions developed there, tempered with knowledge of iterative approaches,
are bound to be valuable.

306 R. Bridson, W.-P. Tang / Journal of Computational and Applied Mathematics 123 (2000) 293–306

References

[1] M. Benzi, J. Cullum, M. T�uma, Robust approximate inverse preconditioning for the conjugate gradient method,
SIAM J. Sci. Comput., to appear.

[2] M. Benzi, C. Meyer, M. T�uma, A sparse approximate inverse preconditioner for the conjugate gradient method,
SIAM J. Sci. Comput. 17 (5) (1996) 1135–1149.

[3] M. Benzi, M. T�uma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci.
Comput. 19 (3) (1998) 968–994.

[4] M. Benzi, M. T�uma, Orderings for factorized sparse approximate inverse preconditioners, SIAM J. Sci. Comput. 21
(2000) 1851–1868.

[5] M. Brezina, J. Mandel, P. Van�ek, Algebraic multigrid by smoothed aggregation for second and fourth-order elliptic
problems, Computing 56 (1996) 179–196.

[6] R. Bridson, Multi-resolution approximate inverses, Masters Thesis, Department of Computer Science, University of
Waterloo, 1999.

[7] R. Bridson, W.-P. Tang, Ordering, anisotropy and factored sparse approximate inverses, SIAM J. Sci. Comput. 21
(1999) 867–882.

[8] J. Dongarra, R. Whaley, Automatically Tuned Linear Algebra Software (ATLAS), SC98: High-Performance
Networking and Computing Conference, Electronic Proceedings.

[9] S. Eisenstat, J. Liu, Exploiting structural symmetry in unsymmetric sparse symbolic factorization, SIAM J. Matrix
Anal. Appl. 13 (1) (1992) 202–211.

[10] A. George, J. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood Cli�s,
NJ, 1981.

[11] J. Gilbert, J. Liu, Elimination structures for unsymmetric sparse LU factors, SIAM J. Matrix Anal. Appl. 14 (2)
(1993) 334–352.

[12] J. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal. Appl. 15 (1994) 62–79.
[13] G. Karypis, V. Kumar, A fast and high-quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci.

Comput. (electronic) 20 (1) (1999) 359–392.
[14] R. Lipton, D. Rose, R. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (1979) 346–358.
[15] J. Liu, A compact row storage scheme for Cholesky factors, ACM Trans. Math. Software 12 (2) (1986) 127–148.
[16] J. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990) 134–172.
[17] J. Liu, E. Ng, B. Peyton, On �nding supernodes for sparse matrix computations, SIAM J. Matrix Anal. Appl. 14

(1993) 242–252.

Journal of Computational and Applied Mathematics 123 (2000) 307–321
www.elsevier.nl/locate/cam

Scalable preconditioned conjugate gradient inversion of vector
�nite element mass matrices(

Joe Koninga, Garry Rodriguea ; ∗, Dan Whiteb
aDepartment of Applied Science, University of California, Davis, and Institute for Scienti�c Computing Research,

Lawrence Livermore National Laboratory, L-561, P.O. Box 808 L-794, Livermore, CA 94550, USA
bCenter for Advanced Scienti�c Computing, Lawrence Livermore National Laboratory, L-561, Livermore, CA, USA

Received 4 June 1999

Abstract

Mass matrices arise in the numerical solution of time-dependent partial di�erential equations by the Galerkin method.
Since these systems must be inverted at each time step, rapid inversion algorithms for these systems are important. When
nodal �nite elements are used as basis functions, it is known that the mass matrices can be consistently approximated by
a diagonal matrix or solved by a scalable conjugate gradient method. This may not be the case for other basis functions.
In this paper, we show that the preconditioned conjugate gradient method is scalable when used to invert mass matrices
that arise from vector �nite element basis functions. These basis functions are particularly important for solving Maxwell’s
equations on unstructured grids by the Galerkin method. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Galerkin method; Mass matrices; Vector �nite elements; Conjugate gradient method; Vector wave equation;
Maxwell’s equations

1. Mass matrices

The Gram matrix of the linear-independent elements �1; �2; : : : ; �n in an inner product space V is
the symmetric positive-de�nite n× n matrix

(This research was supported under the auspices of the United States Department of Energy by Lawrence Livermore
National Laboratory contract W-7405-Eng-48.

∗ Correspondence address: Department of Applied Science, University of California, Davis, and Institute for Scienti�c
Computing Research, Lawrence Livermore National Laboratory, L-561, P.O.Box 808 L-794, Livermore, CA 94550, USA.
E-mail addresses: koning@llnl.gov (J. Koning), rodrigue@llnl.gov (G. Rodrigue), white37@llnl.gov (D. White).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00407-6

308 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

G =

(�1; �1) (�1; �2) · · · (�1; �n)
(�2; �1) (�2; �2) · · · (�2; �n)
...

...
...

...
(�n; �1) (�n; �2) · · · (�n; �n)

 ; (1)

[5]. A classic example of a Gram matrix is the Hilbert matrix given by �(x) = xi−1 and the inner
product (u; v)=

∫ 1
0 u(x)v(x) dx in which case G=[gij]=[(i+ j−1)−1]. Gram matrices naturally arise

in the numerical solution of time-dependent partial di�erential equations by the Galerkin method
[14]. Speci�cally, given the weak di�erential equation(

@u
@t
; v
)
= (L[u]; v); (2)

a function ũ(x; t) =
∑n

i=1 �i(t)�1(x) is sought out in a �nite-dimensional subspace spanned by a lin-
early independent set of basis functions �1(x); �2(x); : : : ; �n(x) that approximates the weak solution
of Eq. (2). The Galerkin method calculates this approximation by de�ning ũ to satisfy(

@
@t
ũ; �j

)
= (L[ũ]; �j); j = 1; 2; : : : ; n: (3)

Then, if we let �(t) = [�1; �2; : : : ; �n]
t , this results in a system of ordinary di�erential equations

G
d�
dt
= F(�); (4)

where G is the Gram matrix of Eq. (1) and is called the mass matrix of the Galerkin procedure.
If one approximates Eq. (4) by any numerical time di�erencing scheme, we see that it is necessary

to invert the mass matrix at each time step. Hence, the ease and rapidity of the mass matrix inversion
process is an important part of any Galerkin method.

2. Numerical inversion of the mass matrix

Since the mass matrix G is symmetric and positive de�nite, the natural choice for its inversion is
the preconditioned conjugate gradient method. The e�ciency of the preconditioned conjugate gradient
method relies on the choice of the preconditioner Q [11]. Examples of preconditioners include the
incomplete Cholesky factorization [9], the SSOR preconditioner [22], multigrid preconditioners [3]
and domain decomposition preconditioners [2].
An e�cient preconditioner must possess three properties:

1. The preconditioner must be relatively easy to solve.
2. The matrix Q−1G must “approximate the identity”.
3. The preconditioner must yield a “scalable” method in the sense that the number of iterations to
convergence must approach a constant as the size of the matrix n approaches in�nity.

For the preconditioned conjugate gradient method, the spectral condition number ratio

�(Q−1G) =
�max(Q−1G)
�min(Q−1G)

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 309

of the largest to the smallest eigenvalue of Q−1G enters into the upper bound for the error

‖ek‖G
‖e0‖G62

[
�1=2 − 1
�1=2 + 1

]k
; (5)

where the G-norm of the error ‖ek‖G, is de�ned as (ek)tGek . The bound in Eq. (5) is not sharp for
the conjugate gradient method. A sharp error bound for the conjugate gradient method is more com-
plicated [10], involving the distribution of the eigenvalues of Q−1G. However, a spectral condition
number close to 1 and bounded from above as the size n approaches in�nity is su�cient to ensure
fast and scalable convergence of the conjugate gradient algorithm.
In this paper we concentrate on determining preconditioners that yield scalable conjugate gradient

algorithms. That is we seek preconditioners such that

lim
n→∞ �(Q

−1G)¡C

for some constant C independent of n.
Condition number bounds can sometimes be achieved by obtaining a bound on the condition

number of an associated matrix and then “comparing” it to the original system. Unfortunately,
there are few theoretical comparison results for the condition number of preconditioned systems. An
exception is the case of diagonal and block diagonal preconditioners. Van der Sluis [19] proved the
following theorem about diagonal scaling of a symmetric positive matrix G.

Theorem (Van der Sluis [19]). Let D be the diagonal of the symmetric positive-de�nite matrix G;
and let D̂ be any other positive-de�nite diagonal matrix. Then

�(D−1G)6m�(D̂
−1
G);

where m is the maximum number of nonzeros in any row of G.

When the matrix G has property-A, that is when G can be permuted in the form

G =
[
D1 B
Bt D2

]
;

where D1 and D2 are diagonal matrices, a stronger result holds [8].

Theorem (Forsythe and Strauss [8]). Using the above notation; if the symmetric positive-de�nite
matrix G has property-A; then

�(D−1G)6�(D̂
−1
G):

A generalization of the Van der Sluis theorem has also been proved for block diagonal precondi-
tioners [6].

Theorem (Demmel [6]). Let D be the block diagonal of the symmetric positive-de�nite matrix G;
and let D̂ be any other symmetric positive-de�nite block diagonal matrix with same size blocks.
Then

�(D−1G)6b�(D̂
−1
G);

where b is the number of blocks in D.

310 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

Fig. 1. Numbering con�guration for reference element K0 and quadrilateral element K .

A result similar to that of Forsythe and Strauss has also been proved for block diagonal precon-
ditioners [7], when the matrix G is block 2-cyclic and is permuted in the form

G =
[
D1 C
Ct D2

]
; (6)

where Di; i = 1; 2, is a block diagonal matrix with diagonal blocks Di;j; j = 1; 2; : : : ; ri.

Theorem (Eisenstat et al. [7]). Let G be the form in Eq. (6) and let D be the block diagonal matrix
whose diagonal blocks are {D1;1; : : : ; D1; r1 ; D2;1; : : : ; D2; r2}. Let D̂ be any other block diagonal matrix
with same size blocks. Then

�(D−1G)6�(D̂
−1
G):

3. The �nite element Galerkin method

The �nite element Galerkin method is a systematic technique for constructing the basis functions
�i for the Galerkin method based around a numerical grid. Irregular domains and mixed boundary
conditions are easily accommodated and the resulting equations describing the discrete model are
generally well-conditioned [1].
Formally, a �nite element (K; PK ; AK) is de�ned as follows [4]:

1. K , a quadrilateral domain.
2. PK = (P1)N = P1 ⊗ · · · ⊗ PN , a vector space consisting of the tensor product of a polynomial
vector spaces Pi de�ned on K . PK has a basis {	1; 	2; 	3; 	4}.

3. AK , a set of linear functionals de�ned on PK having a basis �1; �2; �3; �4 (called degrees of
freedom).

Each �nite element (K; PK ; AK) will be isoparametrically equivalent to a single reference �nite element
(K0; P0; A0) where K0 = {−16x; y61}. If we assume the numbering con�guration for the nodes
and edges of a given quadrilateral in Fig. 1, then the isoparametric mapping is given by

FK(�; �) =
[
x
y

]
=
[
x1
y1

]
N1 +

[
x2
y2

]
N2 +

[
x3
y3

]
N3 +

[
x4
y4

]
N4;

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 311

where K is the quadrilateral with vertices {(xi; yi); i = 1; 2; 3; 4} and
N1(�; �) = 1

4(1− �)(1− �);
N2(�; �) = 1

4(1 + �)(1− �);
N3(�; �) = 1

4(1 + �)(1 + �); (7)

N4(�; �) = 1
4(1− �)(1 + �):

Then, PK is de�ned by

PK = {p= p0 · F−1
K : p0 ∈ P0} (8)

and the basis of PK is given by 	i =	
(0)
i · F−1

K where

P0 = span[
(0)
1 ; 	

(0)
2 ; 	

(0)
3 ; 	

(0)
4]:

A �nite element is said to be unisolvent if the set of degrees of freedom AK determines a unique
polynomial in PK . If this is the case, then for any function f de�ned on K , there exists a unique
interpolant �(f) ∈ P such that �(f) = �[�(f)] for all � ∈ AK .
The element mass matrix is de�ned to be the 4× 4 matrix

MK =
[∫

K
	i · 	j dK

]
=

[∫ 1

−1

∫ 1

−1
	(0)
i · 	(0)

j det (JK) d� d�

]
;

where

JK =
[
x� y�
x� y�

]
:

The mass matrix is then given by

M =
∑
K

MK;

where the matrix behind the summation signs are expanded or augmented by zero �lling.

4. Nodal �nite elements

Here, the polynomial space PK = P = span[1; x; y; xy]. The four degrees of freedom are

AK = span[�i(p) = p(xi; yi); p ∈ PK; i = 1; 2; 3; 4]; (9)

where (xi; yi) are the coordinates of the nodes of K . Clearly, the �nite element is unisolvent under
the degrees of freedom in Eq. (9). For the reference element, P0 = span[N1; N2; N3; N4] (the Ni are
de�ned in Eq. (7)). An important result regarding the scalability of the conjugate gradient method
for solving mass matrix systems arising from nodal �nite elements is the following.

Theorem (Ciarlet [4]). Assume

•
 a polynomial domain in R2.
• � the boundary of
.

312 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

• Gh a quadrilateral decomposition of
; i.e.; a decomposition of
 into a set Gh=K1; K2; : : : ; Km
of nonoverlapping quadrilaterals Ki such that
=

⋃
K∈Gh K and no vertex of one quadrilateral

lies on the edge of another quadrilateral.
• h=maxK∈Gh diam(K) where diam(K) is the longest side of quadrilateral K .
• There exists positive constants �1; �2 independent of h such that for all K ∈ Gh;

�1h6hK = diam(K)6�2h:

• �1; �2; : : : ; �n are a nodal basis functions of Vh.

Then if M =matrix(
∫

 �i�jd
) is the mass matrix; there exist constants C1; C2 depending only

on �1; �2 such that

�(M)6
C2
C1
:

Hence, we see that if a sequence of grids satis�es the previous theorem, then the preconditioned
conjugate gradient will attain a constant number of iterations as the number of grid points increases
whenever the preconditioner satis�es any of the theorems in Section 2.
Another important property of nodal mass matrices is that they can be consistently “lumped” [15].

That is, they can be consistently approximated by a diagonal matrix.

5. Motivation – the vector wave equation

The two-dimensional Maxwell’s equations consist of two equations that relate the vector electric
�eld E = [E1; E2], a scalar magnetic �eld H and a divergence condition [12].

3 × E =−@H
@t
; (10)

*
3 ×H = @D

@t
; (11)

3 · D = 0; (12)

where
*
3 ×H =

[
@H
@y
;−@H
@x

]t
; 3 × E = @E2

@x
− @E1
@y
:

Two constitutive relations are required to close Maxwell’s equations,

D = �E ; B= �H; (13)

where the dielectric permittivity � and the magnetic permeability � are scalar functions of position.

The magnetic �eld is eliminated by applying the operation
*
3 × to Eq. (10) and applying the

identities Eqs. (11) and (13) to obtain the vector wave equation for the electric �eld

�
@2E
@t2

=−*3 ×1
�
3 × E (14)

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 313

The Galerkin method for solving Eq. (14) computes an approximation

Ẽ = [Ẽ1; Ẽ2]
t =

n∑
i=1

�i(t)
*
�(x; y);

such that∫

�

[
@2

@t2
Ẽ

]t
*
�jd
=−

∫

[
*
3 ×1

�
3 × Ẽ

]t
*
�j d

=−
∫

1
�
[3 × E]t[3 × *

�j] d
;

where the second equality follows from Green’s second vector theorem [20]. Substituting the expan-
sion for E we get a square system of equations

∑
i

(∫

*
� t
i

*
�j d

)
@2�i
@t2

=−
∑
i

(∫

[3 × *

�i]
t[3 × *

�j] d

)
�i

yielding the system of ordinary di�erential equations in Eq. (4) where the mass matrix G is given
by

G =
[∫

*
� t
i

*
�j d

]
:

One could, of course, use the nodal �nite elements to provide Galerkin vector approximations to
the vector wave equation in Eq. (14). This has the advantage that the mass matrices can be consis-
tently lumped or be solved by a scalable preconditioned conjugate gradient algorithm. Unfortunately,
the continuity of the nodal �nite element approximations turns out to be a liability when applied
to the vector wave equation when the dielectric � has a jump discontinuity. In this case, it is known
that the tangential component of the electric �eld is continuous across the discontinuity while its
normal component may be discontinuous. Consequently, an important property of electric �elds that
should be preserved in any numerical approximation is the following: The tangential component of
E across an interface is continuous but the normal component f E across the same interface may
be discontinuous. To ensure this, the tangential component of the numerical approximation Ẽ should
be continuous along the edges of each quadrilateral of the grid but its normal component need not
be. More speci�cally, if K1 and K2 are two elements with a common edge e then the tangential
components of �1(u) and �2(u) are the same on e for all u ∈ C∞(K1 ∪ K2) [16]. Finite elements
with this property are said to be conformal. Since the tangential and normal components of the
Galerkin approximation provided by the nodal �nite elements are continuous, nonphysical spurious
oscillations have been observed when they are used to solve Eq. (14) [13].

6. Edge elements

Finite elements that enforce continuity of the electric �eld across edges have been recently dis-
covered and analyzed [16,17]. Basically, these “vector �nite element” assign degrees of freedom to
the edges rather than to the nodes of the elements. For this reason, they are called edge elements.
Although these types of elements were described in [21], as early as 35 years ago, their use and

314 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

importance in electromagnetics was not realized until recently. Extensive investigations as well as
some very successful applications have been carried over the past few years [18,20]. In this section,
we introduce the edge elements (K; PK ; AK) in two dimensions and analyze the mass matrices that
arise from their use in the Galerkin procedure.
The degrees of freedom AK for the edge elements are the line integrals

�i(p) =
∫
eii

p · ti dei; p ∈ P

where ti is the unit tangent along edge ei; i = 1; 2; 3; 4 [13]. The fact that these elements are con-
forming is found in [17]. On the reference element,

P0 = {a+ b�} ⊗ {c + d�}

and the conditions

�i(p) =
∫
eij

p · tj d� = �ij; p ∈ P0

yields the basis functions

	(0)
1 (�; �) =

1
4
(1− �)

[
1
0

]
;

	(0)
2 (�; �) =

1
4
(1 + �)

[
1
0

]
;

	(0)
3 (�; �) =

1
4
(1− �)

[
0
1

]
;

	(0)
4 (�; �) =

1
4
(1 + �)

[
0
1

]
:

Then, PK = span[1; 	2; 	3; 	4] where 	i(x; y) =	
(0)
i [F

−1
K (x; y)]. Note that if tj is the unit tangent

vector along edge ej; then∫
ej
(i(x; y) · tj) dej = �ij:

The element mass matrix is given by

∫
K
	t
i	j dK =

∫ 1

−1

∫ 1

−1
(0

i)
t	(0)

j det(JK) d� d�:

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 315

Table 1
Mass matrix condition number for n edge elements

n �(M)

12 2.37
40 3.87
144 3.92
544 3.97
2112 4.0
5320 4.0
33024 4.07

7. Edge element mass matrices

7.1. Uniform grid

We �rst consider the edge element mass matrices generated on a uniform grid of grid size h.
Here, K = {(xi6x6xi + h; yi6y6yi + h)} and the element matrix is given by

MK =
h2

6

2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

 :

This yields a block diagonal mass matrix

M =
h2

6

A1
A2

. . .
An−1

An

 ; Ai =

 2 1 0
1 4 1
0 1 2

 :

If we estimate the eigenvalues of the mass matrix M using Gerschgorin discs, we get the following
result.

Theorem 1. If M is the mass matrix generated from vector edge elements on a uniform rectangular
grid; then

�(M)66: (15)

Table 1 tabulates the actual condition number for a variety of matrix sizes. We see that the bound
on the condition number in Eq. (15) appears to be an over-estimate.
Of course, a natural question to ask would be whether the mass matrix can be consistently

approximated by a diagonal matrix much in the same manner as is commonly done using mass
lumping techniques for nodal elements. In this regard, if the trapezoid rule is used to evaluate the
inner product integrals, we get the following result.

316 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

Table 2
Condition number of element mass matrix for f = 0:44

n f = 0:49 f = 0:47 f = 0:44 f = 0:35

144 3.86 4.41 5.27 10.31
544 3.92 4.95 6.76 20.28
2112 3.97 5.49 8.35 45.35
5320 3.99 6.15 10.69 86.18
33024 4.0 7.2 15.72 230

Table 3
Condition number calculations for diagonally preconditioned systems

n f = 0:49 f = 0:47 f = 0:44 f = 0:35

40 3.0 3.15 3.33 4.08
144 3.0 3.18 3.43 4.43
544 3.0 3.28 3.64 5.58
2112 3.0 3.43 3.95 10.87
5320 3.0 3.63 4.3 16.28

Theorem 2.
h
64
I =MK +O(h2): (16)

A corollary to Theorem 2 is that the diagonal approximation in Eq. (16) yields the well-known
Yee’s method which is totally consistent with the vector wave equation [13].

7.2. Non-uniform grid

We now examine the edge element mass matrices based upon a nonuniform grid. In this case,
no consistent mass lumping procedure is known to exist and matrix inversion of the mass matrix is
necessary to use the Galerkin procedure. In this section, we examine the condition numbers of the
preconditioned mass matrices to determine if a scalable preconditioned conjugate gradient method
exists.
The nonuniform grids were constructed by recursively forming four new quadrilaterals out of one

initial quadrilateral. Along each edge of the quad, a random position is chosen using: xnewnode =
sxnode i + (1− s)xnode j; ynewnode = synode i + (1− s)ynode j; where s is de�ned by a user chosen variable
f as s = f + (1 − 2f) rand(·) and rand(·) is a random number between 0 and 1. These four
new nodes are used to de�ne the center by �nding random positions between the new left and right
nodes, as well as the new top and bottom nodes, thus giving four new quadrilaterals. This operation
is performed on each new quadrilateral until the desired number of elements is reached (see Fig. 2).
Tables 2 and 3 list the condition number of the unconditioned and diagonally preconditioned mass

matrices. Inner product integrations were performed using a four-point Gaussian quadrature rule.

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 317

Fig. 2. 32× 32 numerical grids for di�erent f values.

Table 4
Number of preconditioned conj. grad. iterations for f = 0:44

n Jacobi ILU

144 14 5
544 15 6
2112 16 6
33024 16 7

Table 4 list the number of iterations for convergence of the preconditioned conjugate gradient
algorithm for the mass matrices generated on the unstructured grids generated when f = 0:44. The
preconditioners used were Jacobi diagonal scaling and the Incomplete-LU.
As one can be seen from the condition number computations for f=0:35 in Table 3, the condition

number of the preconditioned does not seem to be approaching a constant as would be hoped. The

318 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

Fig. 3. 16× 16 numerical grid for f = 0:35.

Table 5
Ratio of maximum zone area to minimum zone area for di�erent grid sizes

n f = 0:47 f = 0:44 f = 0:35

40 0.86 0.72 0.44
144 0.77 0.59 0.24
544 0.69 0.47 0.12
2112 0.62 0.37 0.07
5320 0.54 0.29 0.03
33024 0.48 0.23 0.01

Table 6
Ratio of maximum edge length to minimum edge length for di�erent grid sizes

n f = 0:47 f = 0:44 f = 0:35

40 0.856 0.733 0.441
144 0.796 0.626 0.293
544 0.719 0.509 0.172
2112 0.657 0.424 0.107
5320 0.597 0.351 0.069
33024 0.547 0.294 0.42

reason for this is that, unlike uniform grids, the fundamental structure of the grid is not the same
as the number of grid points is increased, compare the grids in Figs. 2 and 3. This becomes evident
when one compares the zone sizes and edge lengths of the di�erent grids. Tables 5 and 6 list ratios
of maximum to minimum zone sizes and edge lengths of the di�erent grid sizes. In this case, n
refers to the number of edges in the grid.
In order to determine if a result holds that is similar to the Ciarlet Theorem for nodal �nite

elements, the previous computations were carried out on a sequence of grids whose diameters are

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 319

Fig. 4. 2n−1 + 1× 2n−1 + 1 grids.

related (see Fig. 4). The initial coarse grid was constructed using a seed of f = 0:35. Mesh met-
rics, condition numbers and preconditioned conjugate gradient iterations are given in Tables 7–9,
respectively.

8. Conclusions

In this paper we have established computationally that the condition number of the diagonally
preconditioned mass edge element matrix essentially remains constant as the size of a grid increases
provided the ratio of the mesh lengths remains constant. This is useful when the preconditioned
conjugate gradient algorithm is used to invert the edge element mass matrix in Galerkin procedures
for solving Maxwell’s equations.

320 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

Table 7
Mesh metrics

n max(area)
min(area)

max(diam)
min(diam)

4 0.237794 0.293104
5 0.217542 0.293099
6 0.207517 0.293091
7 0.197316 0.293072
8 0.192447 0.293035

Table 8
Condition numbers of mass matrix M and diagonally preconditioned matrix Q−1M

n �(M) �(Q−1M)

4 20.29 4.44
5 25.32 4.56
6 30.05 4.71
7 34.1 4.91
8 36.75 5.17

Table 9
Number of iterations for diagonally scaled conj. grad. and ILU conj. grad.

n Jacobi ILU

4 17 7
5 17 8
6 18 9
7 18 9
8 18 9

Acknowledgements

The authors would like to thank the Institute for Scienti�c Computing Research at the Lawrence
Livermore National Laboratory for partial support of this research.

References

[1] A. Axelsson, V. Barker, Finite Element Solution of Boundary Value Problems, Academic Press, New York, 1984.
[2] P.E. Bjorstad, O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into

substructures, SIAM J. Numer. Anal. 23(6) (1986) 1097–1120.
[3] A. Brandt, Multilevel adaptive solutions to boundary value problems, Math. Comput. 31 (1977) 333–390.
[4] P. Ciarlet, The Finite Element Methods for Elliptic problems, North-Holland, Amsterdam, 1987.
[5] P. Davis, Interpolation and Approximation, Blaisdell, Waltham, MA, 1963.
[6] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix pencils, SIAM J.

Numer. Anal. 20 (1983) 599–610.
[7] S. Eisenstat, J. Lewis, M. Schultz, Optimal block diagonal scaling of blick 2-cyclic matrices, Linear Algebra Appl.

44 (1982) 181–186.

J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 321

[8] G.E. Forsythe, E.G. Strauss, On best conditioned matrices, Proc. Amer. Math. Soc. 6 (1955) 340–345.
[9] G. Golub, C. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, 1983.
[10] A. Greenbaum, Comparison of splitting used with the conjugate gradient method, Numer. Math. d 33 (1979) 181–194.
[11] A. Greenbaum, G. Rodrigue, Optimal preconditioners of a given sparsity pattern, BIT 29 (1989) 610–634.
[12] J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1975.
[13] J. Jin, The Finite Element Method in Electromagnetics, Wiley, New York, 1993.
[14] C. Johnson, Numerical Solution of Partial Di�erential Equations by the Finite Element Method, Cambridge University

Press, Cambridge, 1987.
[15] L. Lapidus, G. Pinder, Numerical Solution of Partial Di�erential Equations in Science and Engineering, Wiley, New

York, 1982.
[16] J.C. Nedelec, Mixed �nite elements in R3, Numer. Math. 35 (1980) 315–341.
[17] J.C. Nedelec, A new family of mixed �nite elements in R3, Numer. Math. 50 (1986) 57–81.
[18] G. Rodrigue, D. White, A vector �nite element time-domain method for solving Maxwell’s equations on unstructured

hexahedral grids, submitted for publication.
[19] A. Van der Sluis, Condition numbers and equilibration matrices, Numer. Math. 14 (1969) 14–23.
[20] D. White, G. Rodrigue, Improved vector FEM solutions of Maxwell’s equations using grid pre-conditioning, Internat.

J. Numer. Methods Eng. 40 (1997) 3815–3837.
[21] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, NJ, 1957.
[22] D.M. Young, Iteration Solution of Large Linear Systems, Academic Press, New York, 1971.

Journal of Computational and Applied Mathematics 123 (2000) 323–352
www.elsevier.nl/locate/cam

Robust multigrid methods for nonsmooth coe�cient elliptic
linear systems

Tony F. Chana ;∗; 1, W.L. Wanb; 2
aDepartment of Mathematics, University California at Los Angeles, Los Angeles, CA 90095-1555, USA

bSCCM Program, Gates Building 2B, Stanford University, Stanford, CA 94305-9025, USA

Received 15 September 1999

Abstract

We survey the literature on robust multigrid methods which have been developed in recent years for solving second-order
elliptic PDEs with nonsmooth coe�cients. We highlight the key ideas of designing robust multigrid methods which are
able to recover the usual multigrid e�ciency for nonsmooth coe�cient PDEs on structured or unstructured grids. In
particular, we shall describe various approaches for constructing the interpolation and the smoothing operators, and the
coarse grid points selections. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Multigrid methods are multilevel techniques for solving partial di�erential equations (PDEs) by
eliminating errors in di�erent parts of the spectrum on a sequence of coarse grids, or more gener-
ally, coarse subspaces. The basic principle is based on the interplay of smoothing and coarse grid
correction which complement each other; the smooth errors not being reduced by smoothing are
eliminated by coarse grid corrections. These techniques can generally be applied directly to PDEs
but are of most interest when applied to the linear systems arising from their discretizations. Multi-
grid methods have been widely used in a broad variety of applications, from Poisson equations
to full Navier–Stokes equations, from two-dimensional square domains to three-dimensional unstruc-
tured airfoil grids, etc. Multigrid has proved itself as a powerful and successful numerical technology
for fast and e�cient computations. In contrast with many other iterative methods such as classical
relaxation methods, multigrid o�ers the capability of solving elliptic PDE problems with complexity

∗ Corresponding author.
E-mail addresses: chan@math.ucla.edu (T.F. Chan), wan@sccm.stanford.edu (W.L. Wan).
1 Partially supported by the NSF under Contract ASC-9720257, NASA Ames under Contract NAG2-1238, and Sandia

National Laboratory under Contract LG-4440.
2 Partially supported by the Department of Energy under the Accelerated Strategic Computing Initiative (ASCI).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00411-8

324 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Fig. 1. A spectrum of multigrid methods.

and storage proportional to the number of unknowns, and its convergence rate is often independent
of the problem size.
In this article, we survey robust multigrid methods in the literature which have been developed

in recent years for solving second-order elliptic PDEs with nonsmooth coe�cients. While multigrid
converges rapidly for model problems such as the Poisson equation on a square, its convergence
rate can be severely a�ected by PDEs with highly nonsmooth coe�cients, or problems de�ned on
complicated geometries, and unstructured grids. Unfortunately, these types of problems often arise
in industrial applications, and hence traditional multigrid methods must be redesigned for them. The
primary focus of this paper is in the design of robust multigrid methods which are able to retain
the usual multigrid e�ciency for smooth coe�cient PDEs on structured grids. In particular, we shall
describe various approaches for constructing the interpolation and the smoothing operators, and the
coarse grid points selections.
General surveys of multigrid methods for solving di�erent kinds of applications can be found in

Brandt [20,21,23]. A survey on multilevel methods on unstructured grids can be found in Chan et al.
[28]. Also, see [61,70] for a survey of parallel implementation of multigrid, which is not within the
scope of this paper. Surveys on other aspects of multigrid methods can be found in [24,54,60,93]. We
also note that the introductory note by Wagner [90] contains a lot of the details of the interpolation
approaches discussed in this paper. Finally, we refer the readers to MGNet http://www.mgnet.org
for a database of an extensive collection of multigrid papers in the literature.
The idea of multigrid was introduced and analyzed by Brakhage [15], and Fedorenko [47,48]

in the 1960s, followed by Bachvalov [5]. Multigrid methods have not been paid much attention
in the 1970s until the works of Astrachancer [2], Bank and Dupont [6], Brandt [19], Hackbusch
[53], Nicolaides [74], and others showed that multigrid is indeed a very useful technique practically
and theoretically. An enormous amount of progress has been achieved since then. Various multigrid
methods have been developed, ranging from geometry speci�c to purely algebraic black box methods,
and a spectrum of methods exist between the two extremes; see Fig. 1. We refer to this spectrum of
methods as gray box methods: they require more information about the problem (e.g. grids, matrix
graph, etc.) than a complete black box approach, but on the other hand, they can produce better
robustness and performance.
Close to the geometric-dependent end of the spectrum where Cartesian grid was used, Alcou�e

et al. [1] was one of the earliest papers to address the issue of nonsmooth coe�cient PDE problems,
and proposed robust interpolation methods for multigrid; see also [62]. Along this line were also the
black box multigrid method by Dendy [38,39], and matrix-dependent approaches by de Zeeuw [102]
and Reusken [76,77]. Other related approaches include frequency decomposition by Hackbusch [56],
and �ltering decomposition by Wittum [96,97]. The purely algebraic methods, on the other end of

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 325

the spectrum, were �rst proposed by Brandt et al. [25], and then popularized by Ruge and St�uben
[79]. There is a recent resurgence of interest in AMG and other multigrid algorithms with focuses
on parallel implementation and memory hierarchy aspects [26,36,37,43,44,64,75,87]. An introduction
to AMG is recently given by St�uben [84]. See also the algebraic multilevel methods by Axelsson
and Vassilevski [3,4], and an additive version of AMG by Grauschopf et al. [49]. The geometric
unstructured multigrid methods were studied by Bank and Xu [9], Chan et al. [32], Guillard [52],
Lallemand et al. [65], Morano et al. [72], and Xu [100]. The recent interest in energy minimization
was studied by Brezina et al. [26], Brezina et al. [67,68], Chan et al. [33] with a local minimization
perspective, and Wan et al. [92] with a global minimization perspective. Another recent interest is
in the direction of bridging the gap between Gaussian elimination and multigrid; see [8,78]. Other
multilevel methods include the hierarchical basis multigrid methods proposed by Yserentant [101],
and Bank et al. [7], and the BPX method proposed by Bramble, Pasciak and Xu [17]. In Griebel [50],
multilevel methods including multigrid and BPX were viewed as iterative methods on semide�nite
systems. General multigrid references can be found in the books of Bramble [16], Briggs [27],
Hackbusch [55], Smith et al. [80], and Wesseling [94]. Finally, we note that we are not able to
survey the many more references in the literature here.
This paper is organized as follows: Section 1 begins with the basic principles of multigrid, and

its classical convergence analysis. The design of robust multigrid will be discussed component by
component. In Section 2, the construction of various sophisticated interpolation operators is described.
Section 3 concerns the robustness and e�ciency of smoothers. Algebraic and geometric coarsening
strategies are covered in Section 4. Finally, Section 5 summarizes the current and future research
on robust multigrid methods for elliptic linear systems.
In the rest of this section, we introduce the model problem and notation used in this paper,

followed by the standard multigrid algorithm and the classical convergence analysis for smooth
coe�cient problems.

1.1. Elliptic PDEs

Elliptic PDE problems are among the most extensively investigated problems in applied math-
ematics. Their relation to many physical models is well known and the theoretical and numerical
results obtained in this area are very useful in practice. The design of numerical methods for such
model problems can often be adapted and applied to more complicated situations. Elliptic problems
are also important in their own right, for instance, in the solution of the pressure equation arising
from incompressible uid problems, implicit time integration schemes, etc.
The model problem of primary interest is the following elliptic PDE which exhibits the funda-

mental properties and challenges that the elliptic problems above generally experience:

−3 · a(x)3u(x) = f(x) x ∈
;
u= 0 x ∈ @
;

where
⊂Rd; d=2; 3, is a polygonal or polyhedral domain, and a(x), in general, is a d×d symmetric
positive-de�nite matrix whose eigenvalues are bounded uniformly on �
, and its coe�cients can be
oscillatory or discontinuous with large jumps across the interfaces. We note that Dirichlet boundary
condition is used just for simplicity, and other boundary conditions are also permissible.

326 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Many of the multigrid methods discussed in this paper apply to the discretization matrices given
by �nite element, �nite di�erence or �nite volume methods. For easy exposition, we set up notations
based on �nite element discretization. Let H 1(
) be the standard Sobolov space consisting of square
integrable functions with square integrable derivatives of �rst order, and H 1

0 (
) the subspace of
H 1(
) whose functions vanish on @
. Solving the PDE problem is equivalent to �nding u ∈ H 1

0 (
)
such that

a(u; v) = (f; v) ∀v ∈ H 1
0 (
); (1)

where

a(u; v) =
∫

a(x)3u ·3v dx; (f; v) =

∫

fv dx:

Suppose
 is triangulated by quasi-uniform nonoverlapping simplices �i with size h, i.e.,
=
⋃
i �i.

De�ne the �nite element subspace by

V h = {vh ∈ H 1
0 (
): v

h|�i ∈ P1(�i); ∀i};
where P1(�i) is the set of linear functions on �i. The �nite element approximation is the function
uh ∈ V h such that

a(uh; vh) = (f; vh) ∀vh ∈ V h: (2)

De�ne a linear operator Ah : V h → V h by

(Ahuh; vh) = a(uh; vh) uh; vh ∈ V h:
Then (2) is equivalent to

Ahuh = fh; (3)

where fh is the projection of f on V h. Let {�hj}nj=1 be the set of nodal basis of V h. Write uh =∑n
j=1 �

h
j�

h
j , and f

h =
∑n

j=1 bj�
h
j . Then (3) is equivalent to the linear system

Ah�h = bh; (4)

where Ah is the sti�ness matrix, �h = (�h1; : : : ; �
h
n)
T, bh =Mh(bh1; : : : ; b

h
n)
T, and Mh the mass matrix.

It is well known that the condition number of Ah grows in the order of O(h−2), and hence classical
iterative methods converge very slowly for large-scale problems. In the next sections, we describe
a fast solution procedure – multigrid – for solving (4) whose convergence rate is often independent
of the mesh size h.

Remark. We distinguish Ah, a linear operator of V h, from Ah, the corresponding sti�ness matrix.
The multigrid algorithms discussed in this paper are fast solution methods for solving the matrix
equation (4).

1.2. Basic principles of multigrid

The idea of multigrid consists of two main components: smoothing and coarse grid correction.
The smoothing process, usually carried out by a few iterations of a relaxation method, damps away
the high frequency error components. The coarse grid correction process, carried out by a restriction,

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 327

a coarse grid solve, and an interpolation, eliminates the low-frequency error components. Hence, the
key of multigrid is that smoothing and coarse grid correction complement each other. As a result,
the combination of the two yields a signi�cant error reduction, resulting in a fast solution procedure.
Moreover, we gain e�ciency since the coarse grid solves are less expensive than the �ne grid one.
The two-grid solution process is made more precise in the following.
We begin with an initial guess �h and we smooth the error by applying a relaxation iteration

�h1 = �
h +Rh(bh −Ah�h); (5)

where Rh is the approximate inverse of Ah given by the relaxation method. Then, we improve �h1
by a coarse grid correction consisting of the following steps (Eqs. (6)–(8)): First, we restrict the
residual to the coarse grid VH :

rH =IH
h (b

h −Ah�h1); (6)

where IH
h is the restriction operator. Second, we solve the coarse grid error equation:

AHeH = rH ; (7)

where the coarse grid matrix AH is formed by the Galerkin process: AH =IH
h A

hIh
H . The Galerkin

approach can be shown to be optimal for symmetric positive-de�nite elliptic problems. Here Ih
H =

(IH
h)

T is the interpolation operator. The coarse grid error is then interpolated back to the �ne grid
and the �ne grid approximation is updated by

�h2 = �
h
1 +IH

h e
H : (8)

Finally, we apply a post-smoothing at the end:

�hnew = �
h
2 +Rh(bh −Ah�h2): (9)

Combining (5)–(9), the entire process can be summarized by the following result.

Lemma 1.1. The iteration matrix Mtg of the two-grid method with �1 steps of pre-smoothing and
�2 steps of post-smoothing is given by

Mtg = (I −Rh
2A

h)�2 (I −IH
h (A

H)−1IH
h A

h)(I −Rh
1A

h)�1 ; (10)

where RH
1 and Rh

2 denote the approximate inverses of A
h given by the pre- and post-smoother;

respectively.

If we solve the coarse grid problem (7) recursively by the same two-grid method, we obtain a
multigrid algorithm. We use the following notations for the multilevel methods in the next sections.
Let VJ = V h be the �ne grid space, and V1⊂V2⊂ · · ·⊂VJ be a sequence of nested coarse grid
subspace of V h. On each level k, Ak : Vk → Vk is the restriction of AJ =Ah on Vk , and Rk : Vk → Vk
is an approximate inverse of Ak given by the smoother. Their corresponding sti�ness matrix is
denoted by Ak and Rk , respectively. Let I kk−1 : Vk−1 → Vk be the interpolation operator and its
adjoint I k−1k : Vk → Vk−1 the restriction operator. Their matrix representation is denoted by Ik

k−1 and
Ik−1
k = (Ik

k−1)
T, respectively.

In addition, associated with each Ak , we de�ne the A-inner product by (·; ·)Ak ≡ (Ak ·; ·). Let
Qk : Vj → Vk and Pk : VJ → Vk be the projection operators with respect to the L2 and A inner
products, respectively.

328 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

1.3. Convergence theory

In view of (10), the classical convergence analysis involves the norm estimates of

‖I −RhAh‖ and ‖I −IH
h (A

H)−1IH
h A

h‖:
See [16,22,55,71] for details. Here, we summarize the results in the literature based on the subspace
correction framework developed by Xu [99]. The convergence of multigrid is governed by two
constants K0 and K1 de�ned as
K0: For any v ∈ V , there exists a decomposition v=∑J

i=1 vi for vi ∈ Vi such that
J∑
i=1

(R−1
i vi; vi)6K0(Av; v); (11)

where Ri is the approximate inverse operator given by the smoother.
K1: For any S ⊂{1; : : : ; J} × {1; : : : ; J} and ui; vi ∈ V for i = 1; : : : ; J ,

∑
(i; j)∈S

(Tiui; Tjuj)A6K1

(
J∑
i=1

(Tiui; ui)A

)1=2 J∑
j=1

(Tjvj; vj)A

1=2

; (12)

where Ti = Ri Ai Pi.

Theorem 1.2. Let Mmg be the iteration matrix given by the V -cycle multigrid. Then

‖Mmg‖2A61−
2− !1

K0(1 + K1)2
;

where !1 = max16i6J � (RiAi).

Proof. See [99].

By Theorem 1.2, the convergence rate can be improved by producing a smaller K0 or K1. By
de�nition, it can be easily proved the following result.

Lemma 1.3.

K16!1J:

Proof. See [99].

Thus, the estimate of K0 is crucial. We analyze K0 from the domain decomposition perspective.
For second order scaler elliptic PDEs, K0 depends on two inequalities:

‖Q1v‖2A +
J∑
k=2

‖(Qk − Qk−1)v‖2A6C0‖v‖2A; (13)

‖(Qk − Qk−1)v‖6C0hk−1‖Qkv‖A; k ¿ 1; (14)

where Qk : V → Vk is the L2 projection. More precisely, we have the following estimate:

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 329

Lemma 1.4. Suppose (13) and (14) are satis�ed. Then

K06
C0
!0
;

where !0 = min16k6j �min(R−1
k Ak).

Proof. See [99].

The stability inequality (13) is known as the partition lemma [66,69] which plays an essential
role in the convergence analysis of domain decomposition methods. It requires that for any given
v ∈ V , we must be able to decompose it into vk ∈ Vk such that the total energy of all the pieces
vk is bounded by a small constant factor of the original energy of v. In the multigrid context, it
can be translated into the following: the coarse grid basis functions must have small energy. The
approximation inequality (14) requires that the functions on the coarse grids approximate the �ne
grid functions to at least �rst-order accuracy. A su�cient condition is that the coarse subspace
contains constant functions.
In conclusion, one major approach of improving robustness is to devise multigrid methods which

lead to a small K0. For instance, the constructions of the robust interpolation operators described in
Section 2.5 are based on the stability and approximation inequalities.

1.4. Multigrid for nonsmooth coe�cient PDEs

The success of multigrid hinges on the choice of coarse grids, and the smoothing, interpolation
and coarse grid operators. In standard multigrid, full coarsening, damped Jacobi or Gauss–Seidel
smoothing, and linear interpolation are often used. Classical convergence theory and practice shows
that these simple choices are enough to achieve mesh independent convergence.
For PDE problems with nonsmooth coe�cients, however, mesh-independent convergence does

not necessarily result in fast convergence. The nonsmoothness of the PDE coe�cients typically
lead to a large constant C0 in (13) and (14). Thus, multigrid converges slowly when the coe�-
cients exhibit anisotropy [55], large jumps in discontinuity [1,19,38,39], or large oscillations [46,85].
Special techniques such as line Gauss–Seidel [19], semi-coarsening [40,41,81], algebraic multigrid
[14,25,76,79,83], frequency decomposition [42,56,85], and homogenization [46], are used to han-
dle some of these cases. In the next sections, we survey the state-of-the-art of each individual
multigrid components and discuss how they bring insight into the design of robust multigrid meth-
ods.

2. Interpolation

Sophisticated designs of interpolation have been the key in developing robust multigrid methods.
The many di�erent methods can be generally divided into four categories ranging from geometric
speci�c to purely algebraic. The structured grid approach takes advantages of the special PDE and
algebraic structures associated with the Cartesian grids. The unstructured grid approach exploits
the given grid information to derive interpolations. The algebraic multigrid approach, on the other

330 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Fig. 2. Linear interpolation makes an O(h) error for a typical solution of the PDEs whose coe�cient is piecewise constant.

hand, focuses on the algebraic aspect and derives interpolation from the residual equations. A recent
approach constructs interpolation based on energy minimization which exploits the properties of the
underlying PDEs while allowing general computational domains.
In the following, without loss of generality, we only discuss interpolation from coarse to �ne,

since the Galerkin process will automatically generate a multigrid method; see Section 1.2. Thus,
superscripts h or H are used to denote quantities in the �ne or coarse grid. Moreover, we sometimes
describe the construction of coarse grid basis functions rather than the interpolation operators since
they are essentially the same. In the �nite element context, the coarse grid space VH is often a
subspace of V h. Thus, if {�hj}nj=1 and {�Hi }mi=1 are the nodal basis for V h and VH , respectively, then
we have the following equality:

[�H1 · · ·�Hm] = [�h1 · · ·�hn]IH
h ;

where IH
h is the interpolation matrix. Hence, the set of coarse grid basis functions de�nes an inter-

polation, and vice versa. In particular, in the subsequent sections on the agglomeration unstructured
grid approach and energy minimization approach, we shall describe the constructions of the coarse
grid basis in place of interpolation. We note that the coarse grid subspaces need not be nested, for
instance, in geometric unstructured grid multigrid methods. However, multigrid methods resulting
from nested coarse subspaces are generally more robust, and hence we shall focus on this case in
the next sections.
Before going on, we �rst discuss a well-known interpolation technique in one dimension, which

is one of the earliest attempts to construct robust interpolation operator for nonsmooth coe�cients.
It turns out the basic design strategies in higher dimensions can be viewed as trying to extend this
one-dimensional approach.

2.1. One dimension

For nonsmooth coe�cient PDEs, linear interpolation is not able to accurately approximate the
irregular shape of the numerical solutions during the multigrid process. For example, Fig. 2 shows
a typical solution of the PDEs whose coe�cient is piecewise constant. In the worst case, linear
interpolation can make an O(h) error, which is much poorer than the usual O(h2) error.
A robust interpolation can be constructed by solving local PDEs [55]. Given the values v2i and

v2i+2 at the coarse grid points x2i and x2i+2, respectively, the value v2i+1 is computed by solving a

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 331

homogeneous two-point boundary value problem:

− d
dx
a(x)

d
dx
v(x) = 0; x ∈ (x2i ; x2i+2);

v(x2i) = v2i ; v(x2i+2) = v2i+2: (15)

Suppose a(x) is piecewise constant, for instance, a(x) ≡ a−; x2i ¡ x¡x2i+1; and a(x) ≡ a+; x2i+1
¡x¡x2i+2. Then the �nite element solution of (15) yields

v2i+1 =
a−

a− + a+
v2i +

a+

a− + a+
v2i+2: (16)

The new interpolated solution is more accurate at the discontinuities. It is well known that the
resulting multigrid is very robust and converges rapidly for nonsmooth coe�cient a(x).
The local PDE approach has the property of preserving ux continuity. It can be proved [55] that

the interpolated v given by (16) satis�es the jump condition

lim
x→x−2i+1

a(x)v′(x) = lim
x→x+2i+1

a(x)v′(x)

at x2i+1 which the exact solution does. In fact, the converse is also true; that is, if v satis�es the
jump condition, then it solves the local PDE (15).
The interpolation can be interpreted by pure linear algebra. Ordering the noncoarse grid points �F

and then the coarse grid points �C, we can write the permuted matrix, still denoted by Ah, in a
2× 2 block form[

A11 A12

A21 A22

] [
�F
�C

]
=
[
bF
bC

]
;

where A11 is a diagonal matrix. After eliminating �F, we obtain the Schur complement equation for
�C:

S�C = bC −A21A
−1
11 bF; (17)

where S=A22 −A21A
−1
11 A12. De�ne the interpolation and restriction matrices, respectively, by

Ih
H =

[−A−1
11 A12

I

]
; and IH

h = (I
h
H)

T = [−A21A
−1
11 ; I]: (18)

Then S =IH
h A

hIh
H is precisely the coarse grid matrix AH in the multigrid context, and (17) is

the usual coarse grid equation for �C with the right-hand side given by restriction: IH
h [bF; bC]

T. The
noncoarse grid values �F are obtained by backward substitution:

�F =−A−1
11 A12�C +A−1

11 bC: (19)

Using (19), we can write [�F; �C]
T as[

�F
�C

]
=Ih

H�C +
(
A−1

11 0
0 0

)
(bh −AhIh

H�C): (20)

Thus, the backward substitution can be interpreted as applying a Jacobi relaxation smoothing on the
noncoarse grid points to the interpolated solution Ih

H�C.

332 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

We note that the block Gaussian elimination can be also written as block LU form:

Ah =
[
A11 A12

A21 A22

]
=
[
I 0
A21A

−1
11 I

] [
A11 0
0 AH

] [
I A−1

11 A12

0 I

]
;

where the interpolation Ih
H and the restriction IH

h operators are related to the upper and lower
triangular factors, respectively.
To summarize, the block Gaussian elimination process is a two-level multigrid with Ih

H and IH
h

de�ned as in (18), and post-smoothing step (20). Furthermore, the inversion of the Schur complement
in (17) can be done by recursively applying the previous procedure to S. The resulting algorithm
is known as cyclic reduction, and the corresponding multigrid method is a backslash cycle [99].
Moreover, it can be easily veri�ed that the particular matrix-dependent interpolation matrix de�ned
in (18) is precisely the one obtained by solving local PDEs.
Lastly, one may interpret the local PDE solve as an energy minimization to be described in

Section 2.5. These four interpretations of the same interpolation: local PDE solve, ux continuity,
the Schur complement, and energy minimization constitute the basic design principles of constructing
the robust interpolations discussed in the following sections.
Finally, we remark that convergence analysis of robust multigrid methods in general is very limited

in the literature since the interpolation operator is usually complicatedly de�ned. However, in one
dimension, we have the following result [91].

Theorem 2.1. If the interpolation operator discussed above is used together with damped Jacobi
or Gauss–Seidel smoothers, the resulting multigrid convergence is independent of the mesh size
and the PDE coe�cient a(x).

The proof uses the fact that the coarse grid basis functions from all the levels form an A-orthogonal
hierarchical basis, and hence the damped Jacobi and Gauss–Seidel smoothers give an optimal constant
bound for K0 and K1 which are the essential elements for estimating multigrid convergence by
Theorem 1.2. Details can be found in [91].

2.2. Structured grid approaches

Structured grids, in particular, Cartesian grids, have been very popular in applications for their
regularity in geometry and in the algebraic structure of the resulting discretization matrix. Thus
e�cient numerical methods can be easily derived and employed. This approach also includes nested
�nite element grids obtained by recursive re�nement where the discontinuities of the PDE coe�cients
are aligned with all the coarse grids. As a result, according to the domain decomposition theory
[18,45,98], it can be proved that the convergence rate is independent of the size of the jumps in the
coe�cient using even the linear interpolation. However, in general, the discontinuities do not align
with some of the coarse grids. Then other approaches are needed; see Sections 2.3–2.5.
Assuming Cartesian grids, the structured grid multigrid methods can generally be categorized into

two: the stencil and Schur complement approaches.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 333

Fig. 3. A portion of a �ne grid with coarse grid points denoted by circles, and noncoarse grid points by crosses.

2.2.1. Stencil
The one-dimensional local PDE technique cannot be applied directly to higher dimensions. Con-

sider a portion of the �ne grid with coarse grid points denoted by circles as shown in Fig. 3. In
contrast to one dimension, the noncoarse grid points are not enclosed by only coarse grid points, and
hence a local boundary value problem similar to (15) cannot be set up. The challenge of extending
the one-dimensional technique to higher dimensions is to set up local PDEs appropriately.
Alcou�e et al. [1] used special harmonic averaging techniques to construct operator-induced in-

terpolations, and in black box multigrid, Dendy [38,39] simpli�ed the interpolation procedure by
considering the stencil of the discrete operators. The key of the stencil approach is to �rst de�ne
interpolation on edges, i.e. noncoarse grid points lying on coarse grid lines (nodes 1–4 in Fig. 3),
and then the interpolation at the interior (node 5) can be de�ned by a local PDE solve. In par-
ticular, black box multigrid de�nes the interpolation on the edges by preserving the continuity of
ux across the interfaces. Thus, this multigrid method is e�cient for PDE problems with discon-
tinuous coe�cients; the convergence rate is often independent of the mesh size and the size of the
jumps.
The construction is as follows. Consider the nine-point stencil at the noncoarse grid points, for

instance, node 1 (Fig. 3) lying on a horizontal edges:

�(1)NW �(1)N �(1)NE

�(1)W �(1)C �(1)E

�(1)SW �(1)S �(1)SE

 :

The �rst and third rows are lumped to the second row, thus producing a one-dimensional three-point
stencil. The ux preserving interpolation (16) yields

ṽ−h2i+1;2j+1 =
�(1)NW + �

(1)
W + �(1)SW

�(1)N + �(1)C + �(1)S
vHi; j+1 +

�(1)NE + �
(1)
E + �(1)SE

�(1)N + �(1)C + �(1)S
vHi+1; j+1: (21)

The lumping is used to preserve the continuity of the ux on the average along the vertical segment
through nodes 1 and 2. The interpolation on vertical coarse grid lines (nodes 3 and 4) are de�ned
analogously. Finally, since all the values on the edges are known, the interpolated value at node 5

334 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

can be obtained by solving a local PDE problem as in (15) where the solution is given by

ṽ2i+1;2j+1 =
�(5)NW
�(5)C

vHi; j+1 +
�(5)N
�(5)C
ṽh2i+1;2j+2 +

�(5)NE
�(5)C
vHi+1; j+1 +

�(5)W
�(5)C
ṽh2i;2j+1

+
�(5)E
�(5)C
ṽh2i+2;2j+1 +

�(5)SW
�(5)C

vHi; j +
�(5)S
�(5)C
ṽh2i+1;2j +

�(5)SE
�(5)C
vHi+1; j : (22)

Another stencil-based method is the matrix-dependent prolongation proposed by de Zeeuw [102].
It di�ers from the previous method in that the interpolated values on the edges are de�ned based on
a decomposition of the nine-point stencil. Viewing the stencil as a 3×3 matrix, it can be written as a
linear combination of nine basis matrices, or equivalently, stencils. De Zeeuw considered a particular
set of basis stencils corresponding to the discretization of the �rst and second derivatives. The
interpolation formula which depends on the coe�cients of the linear combination is very technical,
and we refer the interested readers to [90,102] for details. This approach coincides with the black
box multigrid of Dendy [38] for solving the model equation (1), and can be directly applied to
certain nonsymmetric problems such as convection di�usion equations.

2.2.2. Schur complement and lumping
In this approach, we exploit the special algebraic structure associated with the discretization matrix

arising from Cartesian grids. As in one dimension, the �ve-point stencil matrix in two dimensions
can be written in a 2× 2 block form:

Ah =
[
A11 A12

A21 A22

]
;

where A11 is diagonal if the red-black ordering is used. However, the coarse grid matrix AH =S=
A22 −A21A

−1
11 A12 now corresponds to a nine-point stencil instead. Thus the algorithm cannot be

repeated recursively.
In order to recover a �ve-point stencil structure, Reusken [76,77] applies a lumping strategy to the

nine-point stencil coarse grid operator as follows. He replaced the nine-point stencil at a noncoarse
grid point by a �ve-point stencil:

 �NW �N �NE
�W �C �E
�SW �S �SE

→

 0 �N 0
�W �C �E
0 �S 0

 ;

where

�N = �N + �NW + �NE; �W = �W + �NW + �SW ;

�C = �C − (�NW + �NE + �SW + �SE); �E = �E + �NE + �SE;

�E = �S + �SW + �SE:

The lumping procedure essentially substitutes the unknowns vHi−1; j+1; v
H
i+1; j+1; v

H
i−1; j−1, and v

H
i+1; j−1 by

the unknowns vHi; j−1; v
H
i; j+1; v

H
i−1; j ; v

H
i+1; j, and v

H
i; j in the �nite di�erence equation corresponding to the

coarse grid point (xHi ; y
H
j) based on a linear approximation; for instance, v

H
i−1; j+1 ≈ −vHi; j+vHi; j+1+vHi−1; j :

In matrix form, the resulting discretization matrix becomes

Ã
H
=

[
Ã11 Ã12
Ã21 Ã22

]
;

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 335

where Ã11 is now a diagonal matrix. Moreover, the interpolation and restriction operators given by
(18) are local, and the entire procedure can be repeated recursively.

2.3. Unstructured grid approaches

Unstructured gridding, which has a high exibility of capturing complex geometrical shapes and
providing adaptive local re�nements, are useful for solving problems involving rapidly changing
solutions, irregular boundaries, and multiscale geometries. However, as a result, the computational
grids do not have any particular nested grid hierarchical structure to be exploited. Thus, the structured
grid multigrid methods must be redesigned to handle the irregularity without losing too much in terms
of complexity and performance.
The two main di�culties of designing multigrid methods on unstructured grids are the extraction

of a hierarchy of coarser grids from a given �ne grid, and the de�nition of the interpolation operators
between grids. In the following sections, we describe several approaches of solving the two problems
with increasing mathematical structures and decreasing intuition.

2.3.1. Independent grids
The �rst approach is based on independently generated coarse grids and piecewise linear inter-

polation between the grids. Thus, one can use the grid generator which generates the unstructured
�ne grid to generate a sequence of coarser grids. Moreover, since the coarser grids consist of the
usual �nite elements, for instance, linear elements on triangles, linear interpolation and the coarse
grid operator can be easily de�ned.
The advantage of this approach is convenience; the coarse grids can be generated by using the

same grid generator which produced the original �ne grid. The disadvantage is that the construction
of the interpolation operator is very expensive since one has to identify which coarse triangles
the noncoarse grid points are in. Another disadvantage is nonblack box nature of the coarse grid
construction; the user is required to manually generate the grids.

2.3.2. Node nested grids
An alternative approach [29,32,52] is based on generating node-nested coarse grids, which are

created by selecting subsets of a vertex set, retriangulating the subset, and using piecewise linear
interpolation between the grids. This provides an automatic way of generating coarse grids and a
simpler implementation (O(n)) of the interpolation. The main disadvantage is that critical geometrical
details may be lost through the coarsening and retriangulation process, and hence special treatments
are needed to preserve the important geometric features of the �ne grid. Moreover, the coarse
grid boundaries may not match that of the �ne grid, and hence the boundary conditions must be
incorporated properly, especially for Neumann boundary condition [30]. Another drawback is that in
three dimensions, retetrahedralization can be problematic.

Remark. Both the independent grid and node nested grid approaches are not designed to be robust
for PDE problems with nonsmooth coe�cients since linear interpolation is used.

336 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Fig. 4. Typical macroelements in a computational domain.

2.3.3. Agglomeration
To avoid the problem of losing geometrical details, a promising agglomeration technique [65,89]

motivated by �nite volume based methods is introduced. Instead of regenerating the coarse grids,
neighboring �ne grid elements are agglomerated together to form macroelements; see Fig. 4. For
�rst order PDE problems, Venkatakrishnan and Mavriplis [89] used piecewise constant interpolation.
More precisely, let �i be a macroelement and �Hi =

⋃
j∈Ni �

h
j , where Ni is the set of neighboring nodes.

Then

vhj = ci ≡ constant; j ∈ Ni:
However, their constant interpolation approach leads to slow convergence for second-order PDE
problems since the basis is not stable. Within each macroelement, we need more robust weightings
which mimic linear interpolation on structured grids.
In general, the coarse space VH can be de�ned as the subspace spanned by a set of coarse grid

basis functions {�Hi } constructed as follows. For each coarse grid point i, de�ne
�Hi =

∑
j∈Ñ i

whij�
h
j + �

h
i ; (23)

where whij are appropriately chosen constants for robust interpolation, and

Ñ i = { j: Ah
i; j 6= 0; and line segment [xi; xj] is an edge of a macroelement}:

Thus, the coarse grid basis functions are linear combinations of the �ne grid basis, and VH is
a subspace of V h; that is, we obtain a nested sequence of subspaces by recursive construction.
Moreover, the interpolation weights are given by the coe�cients whij. To summarize, the construction
of VH consists of two parts. We agglomerate the �ne grid elements to form macroelements, and
then we de�ne robust coarse grid basis functions on the macroelements.
Smoothed aggregation: For second-order PDEs, the piecewise constant basis functions are not

e�ective since they possess large energy norm due to the discontinuities. Van�ek et al. [88] proposed
the smoothed aggregation approach which applies a relaxation method to smooth the piecewise
constant basis, and hence reducing the energy norm. More precisely, similar to agglomeration,
the computational nodes are aggregated into disjoint aggregates based on the AMG coarsening

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 337

technique (cf. Section 4.2). Trying to achieve the approximation property (14), one de�nes a tentative
interpolation operator as the piecewise constant prolongator:

(Ĩ
h

H)ij =
{
1 if i ∈ �j;
0 otherwise;

where �j is the jth aggregate. Since the induced piecewise constant basis functions exhibit large
energy, the stability property (13) is violated. One may smooth the basis by applying a damped
Jacobi smoother to Ĩ

h

H and obtain

Ih
H = (I − !(Dh)−1AF)Ĩ

h

H ;

where AF is the �ltered matrix of Ah de�ned as

AF
ij =

Ah
ij if j ∈ Ni(�); i 6= j;

Ah
ii −

n∑
j=1; j 6=i

(Ah
ij −AF

ij) i = j;

0 otherwise

and Ni(�)={j: |Ah
ij|¿�

√
Ah

iiA
h
jj}. Basically, AF is obtained by lumping the small entries in Ah to

the diagonal, thus controlling the number of nonzeros in the interpolation and coarse grid operators.
Due to the smoothing e�ect of damped Jacobi, it smears the sharp edges of the coarse grid basis
functions obtained from the piecewise constant prolongator, and hence the energies are reduced.
Moreover, it can be proved that Ih

H preserves constant if Ĩ
h

H does.

2.3.4. Others
Other unstructured grid multigrid approaches have also been proposed. Bank and Xu [9] developed

an e�ective coarsening and interpolation strategy using the geometrical coordinates of the �ne grid.
The basic idea is to treat the �ne grid as if it came from a re�nement procedure, and then recover
the re�nement structure through a symbolic Gaussian elimination. Another multigrid method based
on incomplete Gaussian elimination was proposed by Reusken [78]. Hackbusch and Sauter [57]
constructed a triangulation for the computational domain by adaptively re�ning a coarse triangulation
of a rectangular domain covering the computational domain. Thus, a hierarchy of coarse grids is
naturally embedded in the �ne triangulation.

2.4. Algebraic multigrid approaches

The structured and unstructured grid approaches make use of the grid information either explicitly
or implicitly and hence are geometry dependent. The algebraic multigrid (AMG) approach [79], on
the other hand, exploits the algebraic information of the discretization matrix. This approach was
�rst introduced by Brandt et al. [25] and later popularized by Ruge and St�uben [79]. Other related
work have been studied by Huang [59], and Chang et al. [34] to extend AMG to matrices which
are not symmetric M -matrices.
The success of AMG is that for symmetric positive-de�nite M -matrices, for instance, matrices

arising from discretization of the Laplacian operator, AMG is able to identify algebraically the
smooth errors obtained from standard relaxation methods such as Gauss–Seidel, and then construct

338 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

interpolation operators accordingly to eliminate such errors. In the following sections, we describe
a de�nition of algebraic smooth errors and discuss how they motivate the construction of an inter-
polation operator.

2.4.1. Algebraic smoothness and strong connection
Let Gh be the iteration matrix of the relaxation smoother. In AMG, an error eh is algebraically

smooth if it is slow to converge with respect to Gh, i.e.,

‖Gheh‖A ≈ ‖eh‖A:
For common relaxation smoothers, it can be argued [79] that an algebraically smooth error eh is
characterized by a small residual

rh =Aheh ≈ 0;
in the sense that the residual norm is small compared to the error. Thus, we obtain a good approx-
imation for ehi as a function of its neighboring values e

h
j by making r

h
i = 0:

rhi =Ah
iie
h
i +

∑
j∈Ni

Ah
ije
h
j = 0; (24)

where Ni = {j 6= i: Ah
ij 6= 0}, the set of neighboring nodes of i. For symmetric M -matrices, the

smooth error eh often satis�es

‖eh‖A�‖eh‖D;
where ‖eh‖2D = (eh;Dheh), and Dh is the diagonal of Ah. Note that ‖eh‖A essentially measures the
norm of the residual. We have the following inequality:

1
2

∑
i; j

−Ah
ij(e

h
i − ehj)2 +

∑
i

(∑
j

Ah
ij

)
(ehi)

2�
∑
i

Ah
ii(e

h
i)
2: (25)

If
∑

j 6=i |Ah
ij| ≈Ah

ii, for instance, A
h = Laplacian, then (25) can be written as

∑
j 6=i

Ah
ij

Ah
ii

(ehi − ehj)2
(ehi)2

�1; (26)

on the average for each i. Thus, if |Ah
ij=A

h
ii| is relatively large, then ehi and ehj must be close,

and hence ehj is not negligible compared to e
h
i . The nodes i and j are called strongly connected if

|Ah
ij=A

h
ii| is relatively large. This will be made more precise in (31). The strongly connectedness

forms the basic notion for algebraic smoothing and interpolation.

2.4.2. Algebraic interpolation
Suppose Ah is a symmetric, weakly diagonally M -matrix. The derivation of the algebraic inter-

polation of Ruge and St�uben [79], again, stems from the idea of the one-dimensional interpolation,
and has a strong connection with the stencil approach for Cartesian grids (Section 2.2.1). We start
with the residual equation (24) corresponding to algebraic smooth errors where i is an index corre-
sponding to a noncoarse grid point. Let C be the set of coarse grid points, and Ci⊆Ni ∩ C the set
of coarse grid points in a neighborhood of i. Given the coarse grid values ehk ; k ∈ Ci, we want to

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 339

Fig. 5. A portion of a �ne grid with coarse grid points denoted by circles, and noncoarse grid points by crosses. The
coarse and noncoarse grid point connections with respect to ehi are denoted by the superscripts.

de�ne a value ehi such that r
h
i is as small as possible. If C is selected such that Ci = Ni, then the

choice of ehi

ehi =
∑
k∈Ci

whike
h
k ; whik =−

Ah
ik

Aii
(27)

leads to an ideal interpolation since rhi = 0. This is indeed equivalent to solving a local PDE with
the ith node as interior noncoarse grid point and its neighbors as coarse grid points. However,
such selection of C yields a dense coarse grid operator. Hence, in general, one has Ci⊂Ni and
Di ≡ Ni \Ci 6= ∅. For example, on a Cartesian grid with standard full coarsening (Fig. 5), the two
set of variables in Ci and Di are indicated by their superscripts.
Consider (24) again where rhi is to be made 0:

Ah
iie
h
i +

∑
k∈Ci

Ah
ike

h
k +

∑
j∈Di

Ah
ije
h
j = 0: (28)

The value ehi to be interpolated can be obtained by (28) provided e
h
k’s and e

h
j ’s are known. Given

only the coarse grid values ehk , the idea is to �rst interpolate the noncoarse grid values e
h
j , j ∈ Di,

by the ehk’s k ∈ Ci. For j ∈ Di; ehj is approximated by a weighted average:

ehj ≈
(∑
k∈Ci

Ah
jke

h
k

)/(∑
k∈Ci

Ah
jk

)
: (29)

This local interpolation formula (29) is nothing but the one-dimensional local solve technique. Con-
sidering eDj1 in Fig. 5, by formula (29), we have

eDj1 ≈
Ah

j1 ; k1e
C
k1 +Ah

j1 ; k2e
C
k2

Ah
j1 ; k1 +Ah

j1 ; k2

: (30)

Comparing (30) with (21), and using the stencil terminology, we note that the one-dimensional
interpolation (29) used by AMG is obtained by the second row of the stencil at the node eDj1
whereas the one used by the black box multigrid in Section 2.2.1 is obtained by the average of
the three rows of the stencil. Once ehj ’s are known, the interpolated value e

h
i is then given by (28),

which is the same as the local PDE solve formula (22) used by Dendy’s black box multigrid.

340 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

In general, the computation of (29) may still be too large. We want to interpolate ehi by only
those ehj ’s which are signi�cant. In view of the discussion after formula (26), the complexity can be
reduced by the notion of strong connectedness. A point i is strongly connected to j if

−Ah
ij¿� maxl6=i

{−Ah
il} (31)

with 0¡�61 as an input parameter. One only considers strong connections in the construction.
Speci�cally, denote by Si the set of all strong connections of point i. De�ne Ci = C ∩ Si, and let
DSi = Di ∩ Si and DWi = Di \ Si. For the weak connections (j ∈ DWi); ehj is simply replaced by ehi ;
i.e., lumping the weak entries to the diagonal. For the strong connections (j ∈ DSi); ehj is de�ned as
in (29).
Other variants of the algebraic interpolation are discussed in [79]. See also the recent survey by

St�uben [84].

2.5. Energy minimization approaches

The AMG approach is purely algebraic and potentially applies to more general problems than the
other methods, but the underlying PDE and geometry information, if exist, may not be fully utilized.
In this section, we discuss another approach based on energy minimization which bridges the gap
between the two extremes: geometry dependent and purely algebraic. It exploits the properties of
the underlying PDEs using primarily the algebraic information, thus allowing general computational
domains. The essential idea is motivated by the classical multigrid convergence theory, in particular,
the stability and approximation inequalities (13) and (14) described in Section 1.3. The key is to
construct coarse grid basis which has minimal energy while preserving the zero energy modes. Van�ek
et al. [88] identi�ed altogether seven objectives the coarse grid basis should satisfy:

1. Compact support.
2. Coarse supports should follow strong couplings.
3. Reasonable geometry of supports.
4. Bounded intersections among the coarse supports.
5. Polynomial (null space) preserving property.
6. Small energy of coarse basis functions.
7. Uniform l2 equivalence with L2.

Based on these objectives, we try to construct coarse grid basis to achieve them, in particular, small
energy, and null space preserving. For our model equation (1), the null space consists of constant
functions.

2.5.1. Smoothed aggregation
In the smoothed aggregation method described in Section 2.3.3, one begins with the piecewise

constant basis, which has high energy, and then smooths (or reduce the energy of) the basis by
applying a relaxation method such as damped Jacobi to the interpolation operator. Thus, the energy
of the basis is minimized locally. Moreover, it can be shown that the resulting basis preserves
constants.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 341

Fig. 6. Basis de�ned on macroelements. (Left) H 1=2 minimization on edges and harmonic extension inside. (Center) Graph
distance weightings on edges and harmonic extension inside. (Right) Graph distance weightings on edges and inside.

We remark that the energy norm of the smoothed basis may not necessarily be minimal. One
may further reduce the energy by applying more damped Jacobi steps which, however, increases
the supports of the basis functions. Consequently, the coarse grid operator becomes denser for more
smoothed interpolation operator.

2.5.2. Harmonic extension
A graph and agglomeration-based technique was proposed by Chan et al. [28,33]. The supports of

the basis functions compose of macroelements formed by agglomeration. The basis functions on the
edges are �rst constructed, and then they are extended by harmonic extension to the interiors. This
procedure can be viewed as a local energy minimization. Moreover, if the basis preserves constant
on the edges, it will also preserve constants in the interiors. There are several strategies to de�ne
the basis functions on the edges as well as in the interior with small energy. They are made more
precise in the following.
H 1=2 norm minimization+harmonic extension: One de�nes the coarse grid basis functions on the

edges as linear functions which are minimized in the H 1=2 norm-the interface analogue of the energy
norm. More precisely, consider the coarse grid basis �Hi on a macroelement with coarse grid points
denoted by the black dots; see Fig. 6. Suppose �Hi = �0, a linear function, on the edge formed by
x0; x1; x2 and x3, i.e.,

�0 = bx + c:

With two boundary conditions: �0(x0)=1, �0(x3)=0, and hence one degree of freedom, one requires
that �0 minimizes the functional (discrete H 1=2 norm):

F(�0) =
3∑
i=1

3∑
j=i+1

hihj
h2ij

(�0(xi)− �0(xj))2;

where hi is the length of the edge (xi; xi+1) and hij = |xi − xj|. After incorporating the two boundary
conditions, the one-dimensional minimization of F(�0) can be solved analytically. The same proce-
dure is applied to the other edges, and the values at the interior points are obtained by harmonic
extension.

342 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Graph distance+harmonic extension: The H 1=2 norm minimization combined with the harmonic
extension approach is robust but the entire procedure may be too complex. A simpli�ed variant is
to use a simpler boundary interpolation based on graph distance. Note that x1 is distance 1 from
x0; x2 distance 2 from x0, etc. De�ne

�Hi (xj) =
3− j
3

on the edge formed by x0; x1; x2 and x3, and piecewise linear on the edges. As in the previous
approach, the values in the interior are given by the solution of a local PDE.
Pure graph distance: One may simplify the construction further by substituting the local PDE

solve by a technique similar to graph distance. Suppose the macroelement has m number of coarse
grid points on the boundary. Then the value of coarse grid basis function at each of the interior point
is 1=m. Thus, in our example, �Hi (x) = 1=3, x = interior points. Note that constants are preserved.

2.5.3. Energy-minimizing interpolation
The previous approaches construct basis which �rst satis�es the approximation property, followed

by minimizing the energy locally. Another approach proposed by Wan et al. [92] is to prescribe
the energy minimization and constant preserving explicitly into the formulation of the interpolation
operator while �xing the size of the supports. As opposed to all the previous approaches, we deter-
mine the interpolation values on the edges and in the interior at the same time by a minimization
formulation, and hence we do not actually identify edges nor interiors. Meanwhile, the constant
preserving property is enforced by a constraint setup which globally couples all the individual basis
functions.
The idea is based on another interpretation of the one-dimensional interpolation now described.

Consider the two-point boundary value problem (15) again. The equivalent variational formulation
is given by

min ‖�Hi ‖A (xh2i ; x
h
2i+2)

s:t: �Hi (x
h
2i) = 1; �Hi (x

H
2i+2) = 0:

(32)

Thus, the local PDE formulation in one dimension is precisely minimizing the energy of the coarse
grid basis functions. Moreover, if constant functions are in the kernel of the di�erential operator, the
minimal energy basis will automatically preserve constants [91].
The extension to higher dimensions, however, is not obvious. First, the basis {�Hi }, each of which

has minimum energy, does not preserve constant functions. Second, the boundary of the support of
each �Hi , in general, consists of both coarse and noncoarse grid points and hence the boundary
conditions of (15) need to be modi�ed. A clue is provided in the two-level setting. Let �h

H be the
usual nodal value interpolant. By the Cauchy–Schwarz and Poincar�e inequalities, we obtain a rough
estimate

‖�h
Hv

H‖A =
∥∥∥∥∥
∑
i

vH (xHi)�
H
i

∥∥∥∥∥
A

6
C
H

(∑
i

‖�Hi ‖2A
)1=2
‖vH‖A; (33)

where C is a constant independent of h. Comparing (33) with the stability inequality (13), we
see that the constant C0 in (13) depends on the total energy of {�Hi }. Thus, the formulation is to
minimize the sum of energies of {�Hi } so that the constant C0 and hence the multigrid convergence
will be improved.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 343

Write the coarse grid basis function �Hi as in (23). We determine the coe�cients w
h
ij by solving

a constrained minimization problem:

min
1
2

m∑
i=1

‖�Hi ‖2A s:t:
m∑
i=1

�Hi (x) = 1 in �
: (34)

Lemma 2.2. An equivalent formulation of (15) and (32) is the global minimization

min
1
2

m∑
i=1

‖�Hi ‖2A s:t:
m∑
i=1

�Hi (x) = 1 on [0; 1]:

Proof. See [92].

Thus, we see a way to naturally generalize the approach for generating a robust interpolation from
one dimension to multiple dimensions.

Remark. (1) The values of the basis functions are de�ned implicitly by the solution of (34) and
are not known explicitly in general. However, for the Laplacian, we recover exactly the bilinear
interpolation on Cartesian grids [91], which is known to lead to optimal multigrid convergence for
Poisson equation. (2) Like algebraic multigrid, the construction is purely algebraic. In other words,
geometry and in particular the grid information are not needed. However, if the additional knowledge
of the geometry is useful, for instance, semi-coarsening on Cartesian grids for anisotropic problems,
we can still apply the same formulation. In fact, the coarse grid points can be provided geometrically
by semi-coarsening or interface preserving techniques (cf. Section 4.3), or algebraically by AMG
coarsening. Moreover, the formulation of the interpolation remains valid even if the coarse grid
points do not form an independent set. (3) Mandel et al. [67] generalized this approach to solve
systems of elliptic PDEs arising from linear elasticity problems.

Solution of the minimization problem: A detailed solution procedure is described in [92], and
we only discuss the main steps here. It can be shown that the minimization problem (34) can be
written as a constrained quadratic minimization. Thus, Newton’s method only takes one iteration to
convergence, which, however, need to invert the Jacobian matrix. Since the solution of the mini-
mization problem is used as an interpolation operator for multigrid only, we do not need an exact
solution. An e�cient approximation can be obtained by a preconditioned conjugate gradient method.
Empirical evidence shows that in most cases, only a few iterations su�ce, except for oscillatory
PDE coe�cients. In [67], Mandel et al. showed that the interpolation obtained from the �rst step of
the steepest descent procedure in solving (34) yields the same result as the smoothed aggregation
with a single smoothing step.

2.5.4. AMGe
The use of energy minimization in the formulation of the interpolation operator has shown to

be powerful in the energy-minimizing interpolation approach. AMGe, algebraic multigrid based on
element sti�ness matrices, proposed by Brezina et al. [26], uses the local measures of algebraic
smoothness derived from multigrid theory to construct the interpolation operator. The key observation
is that the interpolation must be able to approximate an eigenvector with an error bound proportional

344 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

to the size of the associated eigenvalue. More precisely, the interpolation must be de�ned such that
either of the following measures are bounded by a constant independent of h:

M1(Q; eh) =
((I − Q)eh; (I − Q)eh)

(Aeh; eh)
;

M2(Q; eh) =
(A(I − Q)eh; (I − Q)eh)

(Aeh; Aeh)
;

where Q is a projection onto the range of the interpolation matrix Ih
H . Note that Q is related to Ih

H

by

Q = [0 Ih
H];

if the unknowns corresponding to the noncoarse grid points are ordered before the coarse grid points.
The boundedness of M1 or M2 requires Q to accurately interpolate the eigenvectors corresponding
to small eigenvalues, but not necessarily as accurate as for the eigenvectors corresponding to large
eigenvalues. In addition, the quantities M1 or M2, as opposed to the matrix entries used in standard
AMG, give a potentially better measure of strong connectedness, especially for non-M -matrices.
In the previous approaches, the interpolation matrix is constructed by de�ning the coarse grid

basis whose coe�cients wij (cf. (23)) are the entries of the jth column of Ih
H . Hence, the matrix

Ih
H is constructed column by column whereas in AMGe, I

h
H is constructed row by row. Let qi be

the ith row of Q. Then, qi is de�ned as the solution of the following min–max problem:

min
qi

max
eh 6∈Null(Ah

i)
Mi;p(qi; eh) (35)

for p= 1 or 2. Here, Mi;p(qi; eh) is a local measure derived from the corresponding global measure
Mp(Q; eh) which is practically inaccessible, and Ah

i is the sum of local element sti�ness matrices
connected with i. It can be shown [26] that the solution of (35) is to �t the eigenvectors of Ah

i

subject to the constraint that constants are preserved. Hence, it can be considered as another local
energy minimization strategy.
Finally, we note that AMGe requires the knowledge of the element sti�ness matrices which

sometimes may not be conveniently available. Thus, this approach is less algebraic than the other
energy-minimizing approaches.

3. Smoothing

Interpolation alone is not enough for fast convergence as the success of multigrid requires di�erent
components complement each other. The interpolation is e�ective only when the smoothers produce
smooth errors either in the geometric sense, or in the algebraic sense (cf. Section 2.4). A classi-
cal example in the literature where smoothing plays an important role in improving the multigrid
convergence is when solving PDEs with anisotropic coe�cients, for instance,

−�uxx − uyy = f in
;
u= 0 on @
: (36)

Assuming standard coarsening, it can be shown by Fourier analysis [19,94] that point relaxation meth-
ods as smoothers are not e�ective for small � since the errors are only smoothed in the y-direction,

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 345

and the errors in the x-direction can be highly oscillatory, leading to slow convergence of multigrid.
In the next sections, we discuss the use of block\line relaxation methods, incomplete LU (ILU)
factorization preconditioners, and sparse approximate inverses as smoothers for anisotropic as well
as other types of elliptic PDE problems.

3.1. Block\line relaxation

A well-suited smoother can be derived from considering the limiting case when � → 0. The
resulting PDE is a decoupled system of elliptic equations along the vertical lines, suggesting the use
of block Gauss–Seidel as smoother where the blocks are associated with the lines in the y-direction,
or equivalently, the direction of the anisotropy. It can be proved [19,55] that the two-grid method
with this smoother converges independently of �. In the case of variable coe�cients where the
anisotropy direction may change from y to x at di�erent locations, one may alternate the direction
of the line relaxation. Another option is to use the alternating direction implicit method [68].
The disadvantage of this approach is that the smoothing is most e�ective when the anisotropy is

either in the x- or y-direction. Another problem is that it is essentially a Cartesian grid technique.
Although similar idea can be adapted in unstructured grid computations [72], the determination of
the lines or planes of anisotropy in three dimensions is complicated. Besides, inverting a line or a
plane requires more work than point relaxations.

3.2. ILU

One needs a direction free and robust iterative method as smoother for solving anisotropic prob-
lems, and we shall discuss two possibilities in this and the next section. An incomplete LU fac-
torization based on the stencil pattern was studied by Wesseling [94] and Wittum [95]. Given a
�ve-point stencil matrix, for instance, one may use the stencil pattern for the incomplete L, U
factors. Speci�cally, an incomplete LU factorization can be written as

Ah =LhUh + Eh;

where the incomplete lower triangular factor Lh has a three-point stencil structure corresponding to
the lower triangular part of a �ve-point stencil matrix, and similarly for the upper triangular factor
Uh. Similar ideas can be applied to other stencil patterns. The resulting ILU smoother is e�ective for
a wide range of directions of anisotropy. More precisely, suppose the model equation (36) is rotated
by an angle �. Hemker [58] showed that ILU is an e�ective smoother for �=46�6�. However, it
may lead to divergence for 0¡�¡ �=4. In the latter, the line relaxation smoother is still e�ective
since the angle is small. One may combine both ideas and derive an incomplete line LU (ILLU)
smoother [82] which uses block triangular factors for Lh and Uh.

3.3. Sparse approximate inverse

The drawback of ILU smoothers is the lack of parallelism, since the (incomplete) LU factorization
process is sequential in nature. Another class of direction free smoothers, which are inherently
parallel, are sparse approximate inverses (SAI).

346 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

Most sparse approximate inverse (SAI) approaches seek a sparse matrix Mh so that the error of
the residual is minimized in some measure. One of the earliest approaches was the Frobenius norm
approach proposed by Benson [10] and Benson and Frederickson [13]:

min
Mh
‖AhMh − I‖2F ;

subject to some constraints on the number and position of the nonzero entries of Mh. The mini-
mization problem is equivalent to n independent least-squares problems:

min
mj
‖Ahmj − ej‖2; j = 1; : : : ; n; (37)

where mj and ej are the jth column of Mh and I , respectively, and they can be solved in parallel.
For e�cient construction, the sparsity pattern may be selected as banded diagonal [63], for example,
or determined adaptively by heuristic searching algorithms [35,51] which, however, may decrease
parallelism.
Several SAI smoothers have been studied. Benson [11], and Benson and Banerjee [12] used a

sparsity pattern based on graph neighbors. Recently, Huckle and Grote independently experimented
a sparse approximate smoother based on SPAI [51] which adaptively search the nonzero pattern.
In the following, we describe the approach proposed by Tang and Wan [86]. Since the major

cost of multigrid algorithms is smoothing, it is important to derive simple and yet e�ective sparsity
patterns. In addition, the least-squares problems (37) must be solved e�ciently. It turns out that
a pre-de�ned pattern based on neighbors of the matrix graph is su�cient for e�ective smoothing
[86]. Given a node j, de�ne Lk(j) as its k-level neighbor set in graph distance. For instance, L0(j)
contains simply the set of stencil points in case of PDE problems. Furthermore, one modify the
Frobenius norm approach (37) and introduce the (k; l)-level least-squares approximation:

min
mj
‖Ak; lmj − ej‖2;

where Ak; l ≡ Ah(Lk(j); Ll(j)) is the (k; l)-level local submatrix of Ah. The sparsity pattern is
determined by the l-level neighbors, and the size of the least squares matrix is controlled by the
selections of k and l. Hence, the two main issues of SAI smoothers are handled. Moreover, it can
be proved that high frequency errors will be damped away e�ciently for k = 1 and l= 0 [86].
More importantly, SAI smoothers have the exibility of using larger values of k and l to improve

the smoothing quality for di�cult PDE problems. The potential higher computational cost can be
reduced by dropping strategies. For anisotropic coe�cient PDEs, the matrix Ah and its inverse
typically have many small entries. Thus, one may drop the neighbors with weak connections in Ak; l

before computing the approximate inverse. This is essentially the same idea as line relaxation which
only applies to structured grids. One may further reduce the cost by discarding small entries in Mh.
It has been shown empirically [86] that the resulting complexity is only twice as expensive as point
Gauss–Seidel for the anisotropic problem (36). In addition, since the determination of the lines or
planes of anisotropy is done algebraically and automatically, SAI smoothing is applicable to both
structured and unstructured grid computations in higher dimensions.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 347

4. Coarsening

The design of interpolation and smoothing operators has been the main focus in improving multi-
grid performance. Coarsening, the selection of coarse grid points, can be as important as interpolation
and smoothing, for instance, AMG coarsening [79] and semi-coarsening [40,41,81] are both criti-
cal components in their respective algorithms. The former selects coarse grid points algebraically
according to strong connections and is robust for discontinuous and anisotropic coe�cient PDEs.
The latter selects coarse grid points geometrically according to the direction of strong coupling for
anisotropic coe�cient PDEs. Another approach, interface preserving coarsening [91], selects coarse
grid points geometrically according to the shape of interfaces.

4.1. Semi-coarsening

For anisotropic coe�cient problems, special smoothing techniques are discussed in Section 3 to
improve multigrid e�ciency. Coarsening has also shown to be another approach to recover fast
multigrid convergence. The failure of standard multigrid is that the errors in the direction of weak
anisotropy are not smoothed. Thus, they cannot be solved on the coarse grid. In the case of structured
grids, one can apply standard coarsening to the direction of strong coupling only, i.e., the y-direction
for the model problem (36), and select all the grid points as coarse grid points in the other directions,
resulting in alternating y = constant lines of coarse grid points. The drawback, however, is that the
overall cost of multigrid will increase.
A related coarsening technique is the use of multiple semi-coarsened grids proposed by Mulder

[73]. For nonlinear PDE problems where the direction of anisotropy changes from time to time,
Mulder performed the coarse grid correction on two semi-coarsened grids in both x- and y-direction
on each level of grid. The complexity of the resulting algorithm turns out still to be proportional
to the number of unknowns. Frequency decomposition multigrid, proposed by Hackbusch [56], is
another method using several grid corrections. Three additional fully coarsened grids are formed by
shifting the standard coarse grid by one grid point in the x- and=or y-direction. Moreover, special
prolongation and restriction operators are used to include also the high frequencies on the additional
coarse grids so that the union of the ranges of the prolongation operators is the same as the �ne
grid function space. The �ltering decomposition by Wittum [96,97] is another coarse grid correction
method. Instead of including all the high frequencies, the coarse grid operator is required to have the
same e�ect as the �ne grid operator on a selected set of vectors, for instance, discrete sine functions
with di�erent frequencies. This principle is similar to the probing method proposed by Chan and
Mathew [31] in domain decomposition.

4.2. AMG coarsening

In algebraic multigrid [79], the selection of coarse grid points ties strongly with the algebraic
multigrid interpolation. Divide the �ne grid points into the set of coarse (C) and noncoarse (F)
grid points. In the ideal case where C is chosen such that for each noncoarse grid point i ∈ F , its
neighbors are all coarse gird points, i.e., Ni = Ci (Section 2.4), the algebraic interpolation de�ned
in (27) is exact; it is just Gaussian elimination as described in one dimension. Otherwise, the
interpolation needs to approximate the values at the noncoarse grid point connections as given in

348 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

(29). On the other hand, the notion of strong connectedness is introduced to maintain sparsity by
ignoring weak connections. Moreover, the approximation in (29) is more accurate if many strong
noncoarse grid connection neighbors of j are actually in Ci. Summing up, there are two criteria for
algebraic coarsening:

1. For each noncoarse grid point i, each strong connection j ∈ Si should either be a coarse grid
point (j ∈ Ci), or should be strongly connected to at least one point in Ci.

2. The set of coarse grid point should form a maximal independent set with respect to strong
connections.

The two criteria, in general, are conicting with each other. Usually, the second criterion is used
to select a potential small set of coarse grid points. Then noncoarse grid points may be added to
satisfy the �rst criterion.

4.3. Other approach

Algebraic coarsening selects coarse grid points based on matrix entries. A recent approach, the
interface preserving coarsening, can be considered as its geometric counterpart which is speci�cally
designed for discontinuous coe�cient PDEs. For this class of problems, multigrid is typically im-
proved by a sophisticated interpolation such as those described in Section 2 which captures the
discontinuous behavior of the derivatives of the solution along the interfaces. This is particularly
important since the interface may not necessarily align with the coarse grids as usually demanded
by theory [18,45,98]. However, linear interpolation can be just �ne if the interface aligns with all
coarse grids. The main idea of interface preserving coarsening [91] is thus to select coarse grid
points which resolve the shape of the interface on all coarse grids.

5. Conclusion

Signi�cant advances have been made in robust multigrid methods for elliptic linear systems in
recent years. The variety of techniques developed have been steadily maturing, but will still have
not quite reached the holy grail for multigrid methods that is algebraic and easily parallelizable,
with complexity proportional to the number of unknowns, and with rate of convergence independent
of the mesh size, the nature of the PDE coe�cients, and the computational grids. The gray box
philosophy may ultimately lead to a more exible approach to developing multigrid algorithms
which can make optimal use of any available information. Our discussion has been con�ned to
the algorithmic developments. Parallelization and theoretical issues are nonetheless essential for the
practical and intelligent use of multigrid in large scale numerical simulations.
There is still plenty of room for improvements in every aspects of robust multigrid to come in

the years ahead. For instance, it is likely that the energy minimization principle will continue to
be useful in constructing robust interpolation operators as new techniques are developed. On the
other hand, the interplay between coarse grid basis and interpolation provides another perspective
for constructing robust interpolation, for instance, through the use of special �nite element basis
recently developed for discontinuous and oscillatory coe�cient PDEs.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 349

References

[1] R.E. Alcou�e, A. Brandt, J.E. Dendy Jr., J.W. Painter, The multi-grid method for the di�usion equation with
strongly discontinuous coe�cients, SIAM J. Sci. Statist. Comput. 2 (4) (1981) 430–454.

[2] G.P. Astrachancer, An iterative method of solving elliptic net problems, USSR Comput. Math. Math. Phys. 11
(1971) 171–182.

[3] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, Part I, Numer. Math. 56 (1989)
157–177.

[4] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, Part II, SIAM J. Numer. Anal. 27
(1990) 1569–1590.

[5] N.S. Bachvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR
Comput. Math. Phys. 6 (1966) 101–135.

[6] R.E. Bank, T. Dupont, An optimal order process for solving elliptic �nite element equations, Math. Comp. 36
(1981) 35–51.

[7] R.E. Bank, T.F. Dupont, H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.
[8] R.E. Bank, R.K. Smith, The incomplete factorization multigraph algorithm, SIAM J. Sci. Comput. 20 (1999)

1349–1364.
[9] R.E. Bank, J. Xu, An algorithm for coarsening unstructured meshes, Numer. Math. 73 (1996) 1–36.
[10] M.W. Benson, Iterative solution of large scale linear systems, Master’s Thesis, Lakehead University, Thunder Bay,

Ontario, 1973.
[11] M.W. Benson, Frequency domain behavior of a set of parallel multigrid smoothing operators, Internat. J. Comput.

Math. 36 (1990) 77–88.
[12] M.W. Benson, R.N. Banerjee, An approximate inverse based multigrid approach to the biharmonic problem, Internat.

J. Comput. Math. 40 (1991) 201–210.
[13] M.W. Benson, P.O. Frederickson, Iterative solution of large sparse linear systems arising in certain multidimensional

approximation problems, Utilitas Math. 22 (1982) 127–140.
[14] D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing 55 (1995) 379–393.
[15] H. Brakhage, �Uber die numerishe behandlung von integralgleichungen nach der quadraturformelmethode, Numer.

Math. 2 (1960) 183–196.
[16] J. Bramble, Multigrid Methods, Longman Scienti�c & Technical, Essex, UK, 1993.
[17] J. Bramble, J. Pasciak, J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990) 1–22.
[18] J. Bramble, J. Xu, Some estimates for a weighted l2 projection, Math. Comp. 56 (1991) 463–476.
[19] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333–390.
[20] A. Brandt, Guide to multigrid developments, in: W. Hackbusch, U. Trottenberg (Eds.), Multigrid Methods, Lectures

Notes in Mathematics, Vol. 960, Springer, Berlin, 1982, pp. 220–312.
[21] A. Brandt, Multigrid techniques: 1984 guide with applications to uid dynamics, GMD-Studien No. 85, Gesellschaft

f�ur Mathematik und Datenverarbeitung, St. Augustin, 1984.
[22] A. Brandt, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput. 19 (1986) 23–56.
[23] A. Brandt, The gauss center research in multiscale scienti�c computation, Electron. Trans. Numer. Anal. 6 (1997)

1–34.
[24] A. Brandt, General highly accurate algebraic coarsening schemes, Proceedings of the Nineth Copper Mountain

Conference on Multigrid Methods, Copper Mountain, CO, 1999.
[25] A. Brandt, S. McCormick, J.W. Ruge, Algebraic multigrid (AMG) for automatic multigrid solution with application

to geodetic computations, Technical Report, Inst. for Computational Studies, Fort Collins, CO, 1982.
[26] M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteu�el, S.F. McCormick, J.W. Ruge,

Algebraic multigrid based on element interpolation (AMGe), Technical Report UCRL-JC-131752, Lawrence
Livermore National Laboratory, 1998.

[27] W. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
[28] T.F. Chan, S. Go, L. Zikatanov, Lecture Notes on Multilevel Methods for Elliptic Problems on Unstructured Grids,

Lecture Course 28th Computational Fluid Dynamics, March 3–7, 1997, von Karman Institute for Fluid Dynamics,
Belgium, 1997.

350 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

[29] T.F. Chan, S. Go, J. Zou, Multilevel domain decomposition and multigrid methods for unstructured meshes:
algorithms and theory, Technical Report CAM 95-24, Department of Mathematics, UCLA, May 1995.

[30] T.F. Chan, S. Go, J. Zou, Boundary treatments for multilevel methods on unstructured meshes, Technical Report
CAM 96-30, Department of Mathematics, UCLA, September 1996.

[31] T.F. Chan, T.P. Mathew, The interface probing technique in domain decomposition, SIAM J. Matrix Anal. Appl.
13 (1992) 212–238.

[32] T.F. Chan, B. Smith, J. Zou, Multigrid and domain decomposition methods for unstructured meshes, in: I.T. Dimov,
Bl. Sendov, P. Vassilevski (Eds.), Proceedings of the Third International Conference on Advances in Numerical
Methods and Applications, So�a, Bulgaria, World Scienti�c, Singapore, 1994, pp. 53–62.

[33] T.F. Chan, J. Xu, L. Zikatanov, An agglomeration multigrid method for unstructured grids, Technical Report CAM
98-8, Department of Mathematics, UCLA, February 1998.

[34] Q. Chang, Y.S. Wong, Z. Li, New interpolation formulas of using geometric assumptions in the algebraic multigrid
method, Appl. Math. Comput. 50 (1992) 223–254.

[35] E. Chow, Y. Saad, Approximate inverse preconditioners via sparse–sparse iterations, SIAM J. Sci. Comput. 19
(1998) 995–1023.

[36] A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, Coarse-grid selection for parallel algebraic multigrid, Technical
Report UCRL-JC-130893, Lawrence Livermore National Laboratory, 1998.

[37] A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteu�el, S.F. McCormick, G.N. Miranda, J.W. Ruge,
Robustness and scalability of algebraic multigrid, Technical Report UCRL-JC-130718, Lawrence Livermore National
Laboratory, 1998.

[38] J.E. Dendy Jr., Black box multigrid, J. Comput. Phys. 48 (1982) 366–386.
[39] J.E. Dendy Jr., Black box multigrid for nonsymmetric problems, Appl. Math. Comput. 13 (1983) 261–283.
[40] J.E. Dendy Jr., M.P. Ida, J.M. Rutledge, A semi-coarsening multigrid algorithm for SIMD machines, SIAM J. Sci.

Statist. Comput. 13 (1992) 1460–1469.
[41] J.E. Dendy Jr., S.F. McCormick, J.W. Ruge, T.F. Russell, S. Scha�er, Multigrid methods for three-dimensional

petroleum reservoir simulation, 10th Symposium on Reservoir Simulation, Houston, Society of Petroleum Engineers
(SPE), February 6–8 1989, pp. 19–25.

[42] J.E. Dendy Jr., C.C. Tazartes, Grandchild of the frequency decomposition multigrid method, SIAM J. Sci. Comput.
16 (2) (1994) 307–319.

[43] C.C. Douglas, Caching in with multigrid algorithms: problems in two dimensions, Parallel Algorithms Appl. 9
(1996) 195–204.

[44] C.C. Douglas, U. R�ude, J. Hu, M. Bittencourt, A guide to designing cache aware multigrid algorithms, submitted
for publication.

[45] M. Dryja, M. Sarkis, O. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coe�cients
in three dimensions, Numer. Math. 72 (1996) 313–348.

[46] B. Engquist, E. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coe�cients,
SIAM J. Numer. Anal. 34 (1997) 2254–2273.

[47] R.P. Fedorenko, A relaxation method for solving elliptic di�erence equations, USSR Comput. Math. Phys. 1 (1961)
1092–1096.

[48] R.P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Phys. 4 (1964) 227–235.
[49] T. Grauschopf, M. Griebel, H. Regler, Additive multilevel-preconditioners based on bilinear interpolation,

matrix-dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic pdes, Appl.
Numer. Math. 23 (1997) 63–96.

[50] M. Griebel, Multilevel algorithms considered as iterative methods on semide�nite systems, SIAM J. Sci. Comput.
15 (1994) 547–565.

[51] M. Grote, T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput. 18 (1997)
838–853.

[52] H. Guillard, Node-nested multigrid method with Delaunay coarsening, Technical Report 1898, INRIA, Sophia
Antipolis, France, 1993.

[53] W. Hackbusch, A fast iterative method solving Poisson’s equation in a general region, in: R. Bulirsch,
R.D. Grigorie�, J. Schr�oder (Eds.), Proceedings, Oberwolfach, July 1976, Lecture Notes in Mathematics, Vol.
631, Springer, Berlin, 1978, pp. 51–62.

T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352 351

[54] W. Hackbusch, Survey of convergence proofs for multigrid iterations, in: J. Frehse, D. Pallaschke, U. Trottenberg
(Eds.), Special Topics of Applied Mathematics, North-Holland, Amsterdam, 1980, pp. 151–164.

[55] W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin, 1985.
[56] W. Hackbusch, The frequency decomposition multigrid method, Part I: application to anisotropic equations, Numer.

Math. 56 (1989) 229–245.
[57] W. Hackbusch, S. Sauter, Adaptive composite �nite elements for the solutions of pdes containing non-uniformly

distributed micro-scales, Mat. Model. 8 (1996) 31–43.
[58] P.W. Hemker, Multigrid methods for problems with a small parameter, in: D.F. Gri�ths (Ed.), Proceedings, Dundee,

June–July 1983, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, 1983, pp. 106–121.
[59] W.Z. Huang, Convergence of algebraic multigrid methods for symmetric positive de�nite matrices with weak

diagonal dominance, Appl. Math. Comput. 46 (1991) 145–164.
[60] D.C. Jespersen, Recent developments in multigrid methods for the steady Euler equations, Lecture Notes for Lecture

Series on Computational Fluid Dynamics, von Karman Institute for Fluid Dynamics, Rhode-St.-Genese, Belgium,
1984.

[61] J. Jones, S. McCormick, Parallel multigrid methods, in: D. Keyes, A. Sameh, V. Venkatakrishnan (Eds.), Parallel
Numerical Algorithms, NASA=LaRC Interdisciplinary Series in Science and Engineering, Kluwer, Dordrecht, 1997.

[62] R. Kettler, J.A. Meijerink, A multigrid method and a combined multigrid-conjugate gradient method for elliptic
problems with strongly discontinuous coe�cients in general domains, Shell Publ. 604, KSEPL, Rijswijk, 1981.

[63] L.Yu. Kolotilina, A.Yu. Yeremin, Factorized sparse approximate inverse preconditionings I, theory, SIAM J. Matrix
Anal. Appl. 14 (1993) 45–58.

[64] A. Krechel, K. St�uben, Operator dependent interpolation in algebraic multigrid, in: Lecture Notes in Computational
Science and Engineering, Vol. 3. Proceedings of the Fifth European Multigrid Conference, Stuttgart, October 1–4,
1996, Springer, Berlin, 1998.

[65] M.H. Lallemand, H. Steve, A. Dervieux, Unstructured multigridding by volume agglomeration: current status,
Comput. Fluids 21 (1992) 397–433.

[66] P.L. Lions, On the Schwarz alternating method, I, in: R. Glowinski, G.H. Golub, G.A. Meurant, J. Periaux
(Eds.), First International Conference on Domain Decomposition Methods for Partial Di�erential Equations, SIAM,
Philadelphia, PA, 1988.

[67] J. Mandel, M. Brezina, P. Van�e k, Energy optimization of algebraic multigrid bases, Technical Report UCD=CCM
125, Center for Computational Mathematics, University of Colorado, Denver, 1998.

[68] G.I. Marchuk, Splitting and alternating direction methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical
Analysis, Vol. 1, North-Holland, Amsterdam, 1990.

[69] A.M. Matsokin, S.V. Nepomnyaschikh, A Schwarz alternating method in a subspace, Soviet Math. 29 (10) (1985)
78–84.

[70] O.A. McBryan, P.O. Frederickson, J. Linden, A. Schuller, K. Solchenbach, K. St�uben, C.A. Thole, U. Trottenberg,
Multigrid methods on parallel computers a survey of recent developments, Impact Comput. Sci. Eng. 3 (1991)
1–75.

[71] S. McCormick, Multigrid methods for variational problems: general theory for the V-cycle, SIAM J. Numer. Anal.
22 (1985) 634–643.

[72] E. Morano, D.J. Mavriplis, V. Venkatakrishnan, Coarsening strategies for unstructured multigrid techniques with
application to anisotropic problems, SIAM J. Sci. Comput. 20 (1999) 393–415.

[73] W. Mulder, A high-resolution Euler solver, Technical Report CAM 89-08, Department of Mathematics, UCLA,
April 1989.

[74] R.A. Nicolaides, On multiple grid and related techniques for solving discrete elliptic systems, J. Comput. Phys. 19
(1975) 418–431.

[75] C.W. Oosterlee, The covergence of parallel multiblock multigrid, Appl. Numer. Math. 19 (1995) 115–128.
[76] A. Reusken, Multigrid with matrix-dependent transfer operators for a singular perturbation problem, Computing 50

(1993) 199–211.
[77] A. Reusken, Multigrid with matrix-dependent transfer operators for convection–di�usion problems, in: Multigrid

Methods, Vol. IV, Lectures in Mathematics, Springer, Berlin, 1993.
[78] A. Reusken, A multigrid method based on incomplete Gaussian elimination, J. Numer. Linear Algebra Appl. 3

(1996) 369–390.

352 T.F. Chan, W.L. Wan / Journal of Computational and Applied Mathematics 123 (2000) 323–352

[79] J.W. Ruge, K. St�uben, Algebraic multigrid, in: S. McCormick (Ed.), Multigrid Methods, SIAM, Philadelphia, PA,
1987, pp. 73–130.

[80] B. Smith, P. BjHrstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Di�erential
Equations, Cambridge University Press, Cambridge, 1996.

[81] R.A. Smith, A. Weiser, Semicoarsening multigrid on a hypercube, SIAM J. Sci. Statist. Comput. 13 (1992)
1314–1329.

[82] P. Sonneveld, P. Wesseling, P.M. de Zeeuw, Multigrid and conjugate gradient methods as convergence acceleration
techniques, in: H. Holstein, D.J. Paddon (Eds.), Short Course on Multigrid Methods, Proceedings, Bristol, September
1983, Oxford Press, Oxford, 1985.

[83] K. St�uben, Algebraic multigrid: experience and comparisons, Appl. Math. Comput. 13 (1983) 419–451.
[84] K. St�uben, Algebraic multigrid (AMG): an introduction with applications, Technical Report 53, GMD, March 1999,

in: U. Trottenbery, C.W. Oosterlee, A. Sch�uller (Eds.), Multigrid (appendix), Academic Press, New York, 1999,
to appear.

[85] S. Ta’asan, Multigrid methods for highly oscillatory problems, Ph.D. Thesis, Weizmann Institute of Science,
Rehovat, Israel, 1984.

[86] W.P. Tang, W.L. Wan, Sparse approximate inverse smoother for multi-grid, SIAM J. Matrix Anal. Appl. (1999),
to appear.

[87] U. Trottenberg, C.W. Oosterlee, A. Sch�uller, Basic, Parallel and Adaptive Multigrid Methods, Academic Press,
New York, 1998, to appear.

[88] P. Van�e k, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic
problems, Computing 56 (1996) 179–196.

[89] V. Venkatakrishnan, D.J. Mavriplis, Agglomeration multigrid for the three-dimensional Euler equations, Technical
Report 94-5, ICASE, NASA Langley, USA, 1994.

[90] C. Wagner, Introduction to algebraic multigrid, Course Notes of an Algebraic Multigrid Course, University of
Heidelberg, 1999.

[91] W.L. Wan, Scalable and multilevel iterative methods, Ph.D. Thesis, Department of Mathematics, UCLA,
Los Angeles, June 1998.

[92] W.L. Wan, T.F. Chan, B. Smith, An energy-minimizing interpolation for robust multigrid, SIAM J. Sci. Comput.
(1998), to appear.

[93] P. Wesseling, A survey of fourier smoothing analysis results, in: W. Hackbusch, U. Trottenberg (Eds.), Multigrid
Methods III, International Series of Numerical Mathematics, Vol. 98, Birkh�auser, Basel, 1991, pp. 105–127.

[94] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1992.
[95] G. Wittum, On the robustness of ilu smoothing, SIAM J. Sci. Statist. Comput. 10 (1989) 699–717.
[96] G. Wittum, An ILU-based smoothing correction scheme, in: W. Hackbusch (Ed.), Parallel Algorithms for PDEs,

Proceedings, Kiel, January, 1990, Notes on Numerical Fluid Mechanics, Vol. 31, Vieweg, Braunschweig, 1991.
[97] G. Wittum, Filternde zerlegungen: schnelle l�oser f�ur gro�e gleichungssysteme (Filtering decomposition: fast solvers

for large systems of equations), Teubner Skripten zur Numerik, Teubner, Stuttgart, 1992.
[98] J. Xu, Theory of multilevel methods, Ph.D. Thesis, Cornell University, Ithaca, New York, 1989.
[99] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992) 581–613.
[100] J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grid,

Computing 56 (1996) 215–235.
[101] H. Yserentant, On the multilevel splitting of �nite element spaces, Numer. Math. 49 (1986) 379–412.
[102] P.M. De Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl.

Math. 33 (1990) 1–27.

Journal of Computational and Applied Mathematics 123 (2000) 353–369
www.elsevier.nl/locate/cam

The Rook’s pivoting strategy
George Poole ∗, Larry Neal 1

Mathematics Department, East Tennessee State University, Johnson City, TN 37614-0663, USA

Received 24 February 1999

Abstract

Based on the geometric analysis of Gaussian elimination (GE) found in Neal and Poole (Linear Algebra Appl. 173
(1992) 239–264) and Poole and Neal (Linear Algebra Appl. 149 (1991) 249–272; 162–164 (1992) 309–324), a new
pivoting strategy, Rook’s pivoting (RP), was introduced in Neal and Poole (Linear Algebra Appl. 173 (1992) 239–264)
which encourages stability in the back-substitution phase of GE while controlling the growth of round-o� error during
the sweep-out. In fact, Foster (J. Comput. Appl. Math. 86 (1997) 177–194) has previously shown that RP, as with
complete pivoting, cannot have exponential growth error. Empirical evidence presented in Neal and Poole (Linear Algebra
Appl. 173 (1992) 239–264) showed that RP produces computed solutions with consistently greater accuracy than partial
pivoting. That is, Rook’s pivoting is, on average, more accurate than partial pivoting, with comparable costs. Moreover,
the overhead to implement Rook’s pivoting in a scalar or serial environment is only about three times the overhead to
implement partial pivoting. The theoretical proof establishing this fact is presented here, and is empirically con�rmed in
this paper and supported in Foster (J. Comput. Appl. Math. 86 (1997) 177–194). c© 2000 Elsevier Science B.V. All
rights reserved.

MSC: 65F05; 65F35

Keywords: Gaussian elimination; Pivoting

1. Introduction

The geometric analysis of Gaussian elimination (GE) presented in [3,5,6] suggests that if the pivot-
ing strategy used during the sweep-out phase (SWOP) of GE makes no attempt to control instability
during the back-substitution phase (BSP), then the computed solution after back-substitution has
been performed may bear little resemblance to the exact solution of the triangular system produced

∗ Corresponding author.
E-mail address: pooleg@etsu.edu (G. Poole).
1 On October 16, 1995, Larry Neal died after a nine-year, �ercely fought battle with cancer. Without his technical

expertise, creative mind, and incomparable friendship, this work could not have been completed. This work was sponsored
in part by a grant from the East Tennessee State University Research Development Committee, #2-25417.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00406-4

354 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

by the sweep-out. Rook’s pivoting (RP) was introduced in [3] and is designed to simultaneously
reduce round-o� error during the SWOP and control instability that might arise during the BSP. Very
simply, RP searches for pivots that are maximal in absolute value in both the row and column they
reside. Partial pivoting (PP) abdicates any power to control BSP instability while complete pivoting
(CP) does, in fact, exercise some control (during the SWOP) over the instability that might arise
during the BSP. In fact, PP can admit exponential growth error while CP and RP do not [2]. In a
minimal sense, RP resembles the pivoting strategy of Bunch and Kaufmann [1] applied to symmetric
matrices. Sometimes referred to as “diagonal pivoting”, the BK strategy, at each pivot selection step,
searches two rows and columns in order to �nd a “pivoting element” (either of order one or order
two) to maintain stability and symmetry throughout the SWOP. However, the similarity of the two
strategies abruptly ends here.
Section 2 outlines the philosophy of the RP strategy. Section 3 contains an outline of a formal

mathematical proof of the fact that the cost or overhead to implement RP in a scalar or serial
environment is the same order of magnitude as the cost to implement PP. The empirical evidence
supporting the theory in Section 3 is the subject of Section 4 (and corroborated in [2]). Section 5
contains empirical data to show that computed solutions based on RP are, on average, more nearly
accurate than those based on PP. In Section 6, an example promised in an earlier paper [3], is
presented to show a worst-case instability during the BSP of GE, in either CP or RP. This example
underscores and clari�es the misunderstandings regarding the so-called “no problem phase” (i.e.,
BSP) of GE. Section 7 contains some conclusions and remarks. Finally, an ampli�ed version with
complete details is contained in [4].

2. The Rook’s pivoting strategy

Suppose A = [aij] is a square matrix of order n and Ax = b is a linear system to be solved by
Gaussian elimination (GE). As with PP and CP, RP is a strategy based on the magnitude of elements
of A. In RP, the kth pivot is selected to have “dominion” (maximal absolute value) over both the
row and column in which it lies. As does CP, RP con�nes its search for the kth pivot to elements
in rows k through n and columns k through n of A(k), the modi�ed coe�cient matrix before the
kth step of the SWOP of GE is performed. Also, as with CP, RP selects for a pivot in the (k; k)
position of the upper-triangular matrix U an entry whose magnitude is greater than or equal to the
magnitudes of all other entries in both its column (to minimize round-o� error in the SWOP) and
in its row (to foster stability during the BSP). However, unlike CP, it is established theoretically
in Section 3 (and con�rmed empirically in Section 4 and [2]) that RP rarely requires a complete
search of every entry in the unswept sub-matrix of order (n − k + 1) in the lower right corner of
A(k) in order to �nd a suitable kth pivot (k = 1; 2; : : : ; n− 1). To locate the kth pivot using RP, one
performs a sequential search (column, row, column, etc.) of the remaining unsearched vectors until
an element has been located whose magnitude in absolute value is not exceeded by any other element
in either the row or column it resides. If r ¿k, rows r and k are interchanged. If c¿k, columns
c and k are interchanged. Then the kth step of the sweep-out phase of GE is performed on A(k) to
eliminate nonzero entries below the diagonal in column k, thus producing A(k+1), (k=1; 2; : : : ; n−1).
Consequently, the cost of implementing RP in a serial environment varies between twice the cost of
PP and the full cost of CP. In fact, we shall prove that the expected cost of implementing RP in a
serial environment is about three times the cost of PP. This is precisely the goal of the next section.

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 355

3. The cost of implementing Rook’s pivoting

No matter what pivoting-for-size strategy is employed, the amount of arithmetic performed to
complete the SWOP and BSP of GE is exactly the same. The di�erence in the costs between
strategies lies in the number of compares required to determine the pivots, as well as any other
costs that might arise from data access and data management (to be discussed shortly).
When unnecessary duplicate compares are avoided, the total cost in number of compares required

to locate all n − 1 pivots using RP varies between the cost of PP and the cost of CP, namely
between O(n2=2) and O(n3=3). We shall prove that the expected total number of compares for RP
is O(3n2=2) for all n¿2, even if duplicate compares are allowed. This compares favorably with the
�xed cost of PP, namely O(n2=2) compares. As will be demonstrated in this section and the next,
within the con�nes of a serial computing environment, rarely does the cost of RP approach the �xed
cost of CP. Foster [2] empirically con�rms, under independent testing, that RP is only slightly more
costly than PP. Moreover, Foster has shown that RP does not have the exponential growth error that
PP sometimes experiences.
Before outlining the proof regarding the expected costs of RP, there is one other issue we must

discuss regarding the implementation of RP, namely the costs of data access. Unlike PP and CP in
which data can be organized to take advantage of storage and retrieval in some architectures relative
to some languages (i.e., by rows in a “C” environment or by columns in a FORTRAN environment),
the RP strategy necessitates that one access data by both rows and columns. On the surface, one
might question the use of RP for large linear systems since severe page faulting may arise throughout
the process of searching for its pivots. The investigation into this issue depends on the size of the
linear system and the size of machine memory. However, a careful but simple analysis of the entire
process of GE (including data management, the pivot selection strategy, the SWOP and the BSP),
one can easily show for a given �xed memory size (pages of memory available), that as the size n of
the linear system increases, the percentage of time spent in page faults for the pivot-selection phase
against the total time of the GE algorithm decreases towards zero. In other words, if page faulting
becomes a problem for pivot selection, it becomes a problem for the entire algorithm, especially in
view of the theory presented in this section and the empirical evidence presented in the next section.
Besides, cache and register management is more of a concern today for large data sets than page
faults. For example, LAPACK involves a block algorithm design to address good cache behavior.
Finally, all the numerical experiments found in [2], and in this paper, con�rm the fact that RP is
only slightly more expensive than PP in a serial environment.
We begin to outline our proof with a theoretical demonstration. Suppose we are attempting to

locate the �rst Rook’s pivot, labeled p∗, in a linear system of order n. Here, V may denote either
a row vector or column vector. Eventually, we wish to (1) compute Pi, the probabilities that p∗ is
in Vi, the ith vector searched (and in no previous vector Vj, j¡ i), and (2) compute C(i), the total
number of compares required to con�rm that p∗ is in the ith vector searched (and in no previous
vectors) using the RP strategy. To perform these computations, we shall de�ne a random variable
C whose possible values depend on the size of the matrix and the (variable) number of vectors that
must be searched in order to locate a suitable Rook’s pivot. To this end, we o�er a few preliminary
observations and establish some basic notation.
We shall say that a component t of the vector V is maximal in V if it is the �rst element

encountered (top-to-bottom of a column vector or left-to-right of a row vector) whose magnitude is

356 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

greater than or equal to the magnitude of every component of V . Also, we shall use L(V) to denote
the number of components in V .
First, consider a coe�cient matrix A of order n in which the �rst Rook’s pivot, p∗, happens to be

in column number one. This means that p∗ is the �rst element in a top-to-bottom search of column
one whose magnitude is greater than or equal to the magnitude of all other elements of column one,
and whose magnitude (by chance) happens to be greater than or equal to the magnitudes of all other
elements to its right in the same row. For convenience, it is initially assumed that p∗ is in row r
of A. That is, ar1 is maximal in the �rst column vector of the matrix A.
Let V1 = [a11 a21 · · · an1]t denote the n-component vector in column one of A and let V2 =

[ar2 ar3 ar4 · · · arn] denote the (n − 1)-component vector in row r of A which omits the column
one component. So |p∗| is at least as big as the magnitudes of every entry in V1 and V2. We shall
describe this situation by saying that the maximal entry p∗ of V1 is maximal through V2.
Let Pk be the probability that a suitable Rook’s pivot is located in the kth vector searched (and

in no previous vectors). Then P1 is the probability that p∗ is in the �rst column of the matrix A.
That is, P1 is the conditional probability that p∗ is maximal through V2 given that p∗ is maximal
in V1. The probability that p∗ is maximal in V1 is just 1=L(V1) = 1=n. The probability that p∗ is
maximal through V2 is 1=[L(V1) + L(V2)] = 1=(n+ n− 1). So,

P1 =
1=(L(V1) + L(V2))

1=L(V1)
=

L(V1)
L(V1) + L(V2)

=
n

2n− 1 : (3.3)

Moreover, the number of compares required to con�rm that p∗ = ar1 is the �rst pivot is given by

C(1) = (L(V1)− 1) + L(V2) = (n− 1) + (n− 1) = 2(n− 1): (3.4)

Before determining the remaining probabilities, P2 through P2n−1, it is important to clarify the
assumptions used in computing P1, which are also used in computing the remaining probabilities Pi.
In the absence of knowing the initial matrix pattern (for example, symmetric, diagonally dominant,
banded, etc.), we shall assume the entries of the coe�cient matrix are randomly distributed among
the positions of the matrix. Moreover, in the absence of knowing the initial distribution of the entries
themselves (uniform, normal, symmetric, skewed, etc.), we shall assume the entries of the coe�cient
matrix form a uniformly distributed set.
The �rst assumption is not unreasonable. The more random the distribution of the matrix entries,

the more time must be consumed to locate a suitable Rook’s pivot. Likewise, the second assumption
is not unreasonable because Trefethen and Schreiber [8] have observed that whatever the distribu-
tion of the entries in the initial coe�cient matrix, the entries in the sequence A(k) of submatrices
determined by PP tend toward a normal distribution. We believe the same property holds for RP
and will assume this to be the case. With these assumptions we shall proceed with the computation
of probabilities.
Now, suppose ar1 is maximal in V1, but ars (s¿ 1) is maximal in V2 so that |ar1|¡ |ars|. Then

ar1 is not the �rst Rook’s pivot, and the magnitudes of the n− 1 components of the column vector
V3 = [a1s a2s · · · ar−1; s ar+1; s · · · an; s]t must be compared to |ars| to determine if p∗=ars. In what
follows, it is important to understand how the sequence of vectors {V1;V2; : : : ;Vk} is determined
and de�ned using the RP strategy to locate p∗.
In searching for p∗ in any matrix A of order n, V1 is the �rst vector searched (column one of A),

V2 is the second vector searched (the partial row of A corresponding to the entry maximal in V1,

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 357

omitting the component common to V1), and Vi is the ith vector searched, omitting any components
in Vj, for j = 1; : : : ; i − 1. If i¿ 1 is odd, Vi is a partial column vector of A; otherwise, Vi is a
partial row vector. Note that L(V1) = n, L(V2) = L(V3) = (n− 1), and L(V4) = L(V5) = n− 2, and
so forth. Furthermore, it is not di�cult to show

L(Vi) = n− [i=2] for i = 1; 2; : : : ; (2n− 1); (3.5)

where [i=2] denotes the greatest integer function. Note that L(Vi)¿L(Vi+1) for each 16i62n− 1,
and L(V2n−2) = L(V2n−1) = n− (n− 1) = 1. So n¿L(Vi)¿1 for each 16i62n− 1. Also note that
L(V2n) = 0:
Now suppose {V1;V2;V3; : : : ;Vk ;Vk+1} is the exact sequence of vectors searched to locate a

suitable Rook’s pivot p∗ where k¿1. If k ¡ (2n − 2), then k represents the smallest integer for
which (1) p∗ is maximal in Vk , (2) p∗ has magnitude greater than or equal to the magnitude of
each component in Vk+1, and (3) p∗ has magnitude strictly greater than the magnitude of each
component of the vectors in {V1;V2; : : : ;Vk−1}. In this case, p∗ is in Vk , the second to last vector
searched and we shall say that p∗ is maximal up through Vk+1. In case k = (2n− 2), p∗ could be
in either V2n−2, the second-to-last vector searched or in V2n−1, the last vector searched (a column
vector of length one).
Now P2 is the probability that p∗ is not in V1 multiplied by the conditional probability that p∗

is maximal up through V3 given that p∗ is maximal in V2. That is,

P2 = (1− P1)1=(L(V1) + L(V2) + L(V3))1=(L(V1) + L(V2))
=
n− 1
3n− 1 : (3.6)

Also, the number of compares required to con�rm that p∗ is in V2 is given by

C(2) = (L(V1)− 1) + L(V2) + L(V3) = C(1) + L(V3) = 3(n− 1): (3.7)

To determine Pk for k = 3; 4; : : : ; 2n− 1, we list the following lemmas, corollaries, and theorems,
but for the sake of space, proofs are omitted. However, some proofs are rather technical, but easy
[4].

Lemma 3.1. For all n¿2 and for each k = 2; 3; : : : ; 2n− 1;

Pk =
(1−∑k−1

i=1 Pi) (
∑k

i=1 L(Vi))∑k+1
i=1 L(Vi)

:

Lemma 3.2. For all n¿2 and for any k = 2; 3; : : : ; 2n;

1−
k−1∑
i=1

Pi =
k∏
j=2

(
L(Vj)∑j
i=1 L(Vi)

)
:

Corollary 3.3. For all n¿2;
∑2n−1

i=1 Pi = 1.

Lemma 3.4. For any n¿2 and for all k = 2; 3; : : : ; 2n− 1;

Pk =
k−1∏
j=2

(
L(Vj)∑j
i=1 L(Vi)

)(
L(Vk)∑k+1
i=1 L(Vi)

)
:

358 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

Lemma 3.5. For any integer j¿2; j[j=2]−∑j
i=1 [i=2]¿ 0.

Lemma 3.6. For any n¿2 and for all k = 2; 3; : : : ; 2n− 1;

0¡

(
L(Vj)∑j
i=1 L(Vi)

)
¡
1
j
:

Lemma 3.7. For any n¿2 and for all k = 2; 3; : : : ; 2n− 1;

0¡

(
L(Vk)∑k+1
i=1 L(Vi)

)
¡

1
k + 1

:

Theorem 3.8. For any n¿2 and for all k = 2; 3; : : : ; 2n− 1;
0¡Pk ¡

k
(k + 1)!

Proof. Follows immediately from Lemmas 3.4, 3.6 and 3.7.

Theorem 3.8 provides practical and useful upper bounds for Pk (k = 2; 3; : : : ; 2n − 1) which are
independent of n, the size of the square matrix being searched using the Rook’s pivot strategy. These
bounds show just how unlikely it is that the RP search strategy requires anything near an entire
search of the matrix A before an entry is found whose magnitude is maximal in both its row and
its column.
Eq. (3.3) provides a lower bound of 1

2 for P1 if n¿2. So a rather important observation about
PP is that for any position, PP selects a pivot that is maximal in its row as well as in its column
with a probability at least 1

2 . This is precisely the reason PP is so successful in practice. At least
half the time PP makes the correct choice for a pivot.
Corollary 3.3 and the �rst inequality of Theorem 3.8 show that the Pi’s, for i = 1; 2; : : : ; 2n − 1

satisfy the criteria to be a valid probability distribution. So the number of compares required to
locate the �rst Rook’s pivot p∗ in a matrix of order n is indeed a random variable C with 2n− 1
integer values (one for each Pk). Now C(k) denotes the number of compares required to con�rm
that the �rst pivot is found in Vk , the kth vector searched, and not in any previous vector Vi for
i = 1; 2; : : : ; k − 1 using the RP strategy. We have seen that C(1) = 2(n− 1) is the minimum value
of this random variable (Eq. (3.4)).

Theorem 3.9. For any n¿2 and for each k = 2; 3; : : : ; 2n− 1;

C(k) = (k + 1)(n− 1)−
[
(k − 1)2
4

]
:

Proof. Note that C(k) =C(k − 1) + L(Vk+1) =C(k − 1) + n− [(k + 1)=2]. Now use induction on k
and Eqs. (3.4) and (3.7).
From Theorem 3.9,

C(2n− 1) = C(2n− 2) = n2 − 1: (3.8)

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 359

Just before proving the main theorem, by considering the previous lemmas and theorems, notice
what is involved to determine the expected number of compares E2 to locate the �rst pivot for a
system of order n= 2. That is, since 2n− 1 = 3, C(2) = C(3) = 3 and we have

E2 =
3∑
k=1

PkC(k) = (23)(2) + (
1
5)(3) + (

2
15)(3) =

7
3 : (3.9)

We are now prepared to state and prove the main theorem in this paper which establishes that, on
average and under the stated assumptions, RP requires approximately 3(n − 1) compares to locate
the �rst pivot of a matrix of order n. That is, RP is about three times more expensive than PP.

Theorem 3.10. The expected number of compares En required to locate the �rst Rook’s pivot p∗

in a linear system of order n¿2 is O(3(n− 1)).

Proof. By Eq. (3.9), E2 = 7
3¡ 3(n − 1) when n = 2. Now assume that n¿ 2 and note that En =∑2n−1

k=1 C(k)Pk . Consequently, En satis�es the following equalities and inequalities:

En =
2n−1∑
k=1

{(k + 1)(n− 1)− [(k − 1)2=4]}Pk

6
2n−1∑
k=1

(k + 1)(n− 1)Pk = (n− 1)
2n−1∑
k=1

(k + 1)Pk

¡ (n− 1)
(
2
(

n
2n− 1

)
+

2n−1∑
k=2

(
(k + 1)k
(k + 1)!

))

= (n− 1)
((

2n
2n− 1

)
+

2n−1∑
k=2

(
1

(k − 1)!
))

¡ (n− 1)
(
1 +

1
2n− 1 + e − 1

)

=
(
n− 1
2n− 1

)
+ e(n− 1)

¡ 1
2 + e(n− 1)

¡ 3(n− 1) for all n¿ 2:

Therefore, O(En)6O[e(n− 1)]6O[3(n− 1)] = O(n− 1).

Note that the �rst inequality above abandons the assumption that unnecessary duplicate compares
are avoided. By way of contrast, recall the number of compares required to locate the �rst pivot
using PP and CP are, respectively, (n−1) and (n2−1). So, with n¿2, the expected cost of locating
the �rst pivot using RP is approximately 3 times the cost of PP, even when unnecessary duplicate

360 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

Table 1
Cost in number of compares to locate all n− 1 pivots of a system of order n using the PP, CP, and RP strategies

Number of compares required to locate all n− 1 pivots using
PP CP RP (expected) RP (expected)∑n

i=2 (i − 1)
∑n

i=2 (i
2 − 1) ∑2n−1

i=1 P(i)C(i) approximated
n e(n−1)n

2

2 1 3 2.333 2.7
5 10 50 25.125 27.2
10 45 375 117.041 122.3
50 1225 42 875 3296.626 3329.9
100 4950 338 250 13 386.490 13 455.5
103 499 500 333 832 500 1357063.656 1357781.8
104 4 999 500 3:33383325× 1011 1:35893× 108 1:3590× 108
105 4:99995× 109 3:3333833325× 1014 1:35912× 1010 1:35913× 1010

compares are not avoided. As we shall observe, the expected cost to locate all (n− 1) RP pivots is
about 3 times the cost to locate all PP pivots.
The nature of the random variable C, that is, the formulas that give the number of compares

required to locate a suitable Rook’s pivot (Theorem 3.9) and the probabilities associated with these
number of compares (Lemma 3.4 and Theorem 3.8) are assumed to be the same for any square
sub-matrix of the original square matrix of order n. Thus, one need only replace n with n − q in
Theorems 3.8, 3.9 and Lemma 3.4 to obtain the random variable C and its associated probability
distribution for the number of compares to locate the (q+ 1)th Rook’s pivot (q= 1; 2; : : : ; n− 2).

Corollary 3.11. The expected total number of compares ET required to locate all (n− 1) Rook’s
pivots is O(3n2=2) = O(n2).

Proof. ET ∼∑n
i=2 3(i − 1) = 3

∑n
i=2 (i − 1) = 3

∑n−1
k=1 k = 3(n− 1)n=2.

By way of comparison, the total number of compares required to locate all (n− 1) pivots by PP
(Eq. (3:1)) and CP (Eq. (3:2)) are, respectively, (n− 1)n=2 and (2n3 + 3n2 − 5n)=6.

Table 1 shows the cost in number of compares required to implement partial, Rook’s, and complete
pivoting on linear systems of order n. To insure accuracy, the third column of Table 1 was obtained
using Lemma 3.4 and Theorem 3.9 and extended precision (19–20 digit oating point arithmetic).
Under the stated assumptions about the initial coe�cient matrix and the subsequent, sweep-out

induced submatrices A(k), it is clear that RP and PP are similar in costs and both are orders of
magnitude less expensive than CP. Moreover, Section 5 will contain empirical evidence establishing
that the accuracy expected from RP is superior to that expected from PP. This is due, in part, to
two factors: First, RP cannot have exponential error growth as can PP [2]. Second, unlike PP, the
favorably oriented hyperplanes (i.e., the measure of orthogonality between the rows of U in the LU
decomposition) produced by RP fosters a high degree of stability during the back-substitution phase
(see [3,5,6,9]).

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 361

Table 2
Ratio of number of compares using RP to number of compares using PP for randomly generated
matrices with entries which represent either a uniform distribution or normal distribution

n Number of Uniform Normal
matrix systems dist dist
order (k) An=Wn An=Wn

10 1000 2.719 2.658
15 1000 2.770 2.709
20 1000 2.819 2.753
25 1000 2.872 2.782
50 1000 2.989 2.894
75 1000 3.053 2.966
100 1000 3.107 3.021
125 1000 3.136 3.055
150 1000 3.163 3.096
200 500 3.2184 3.149
300 200 3.2787 3.215
400 150 3.3146 3.273
500 100 3.3432 3.305

4. Empirical evidence on cost of Rook’s pivoting

This section contains empirical data supporting the conclusions of Theorem 3.10 regarding the
cost of locating the �rst Rook’s pivot. Moreover, we compare the cost of locating all of the Rook’s
pivots to the cost of locating all the pivots by PP and CP.
The power of MATLAB [11] and specially designed M-�les were exploited to generate, massage,

and provide appropriate graphs to empirically compare the cost of RP to PP. For certain values k
and n, k coe�cient matrices of order n were generated whose entries were uniform over the interval
[− 104; 104], and randomly distributed by position. The actual number of compares required to
implement the RP strategy was calculated for each system and the average An was determined over
the k generated systems of order n. Then, to compare RP to PP, the quotient An=[n(n−1)=2]=An=Wn

was computed for each size n. We repeated this experiment using a normal distribution of the entries
in the coe�cient matrix which were randomly distributed across the positions of the matrix. The
results are provided in Table 2.
In addition, for each matrix, the number of vectors searched required to locate each of the n− 1

Rook’s pivots was saved. From this information, the number of compares required to locate each
of the pivots could be computed. Then, over the k generated matrices, the average number of
compares was computed. The pivot which generated the largest average over the k matrices was
also determined. From the data generated for each triple (n = size; type = uniform or normal; k =
How many matrices), a sequence of graphs was produced. The purpose of studying these sequences
of graphs was to observe the behavior of RP as the size of the coe�cient matrix increased, for
either the uniform case or the normal case. Our analysis included systems of orders up to 1000 and
was much more extensive than the results presented here. However, we will limit our presentation
to matrices of order n=200 and provide a sample of the results. Figs. 1a and b represent data from

362 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

Fig. 1. (a) Uniform. (b) Normal.

500 uniform and 500 normal systems, each of order 500. Additional data and graphs are contained
in [4].
There are three important observations regarding Figs. 1a and b. First, since the theory presented

in Section 3 is based on uniform distributions and all 500 coe�cient matrices were designed to
have such an initial distribution, it is not surprising that the ratio of averages for the �rst pivot
is approximately Napier’s e, as theorized and expected. In fact, by running a simulation over 600
matrices of orders 10–300, in which each submatrix throughout the sweep-out phase was designed
to have a normal distribution, the average number of compares for RP was 2.7157 times the cost of

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 363

Fig. 2.

PP. By running an identical simulation for matrices with normal distributions, the factor was 2.7105.
The graphs of this simulation are presented in Fig. 2. Second, since an initial uniform distribution
challenges the RP strategy more than an initial normal one, the pivot requiring the largest number
of compares, on average, is realized earlier in the uniform case than the normal one. Third, as noted
in [8], the distribution of the elements in A(k) tends toward normal throughout the SWOP. This
fact explains why the two graphs in Figs. 1a and b resemble each other as the SWOP progresses.
Namely, the graphs tend toward the same number of vectors searched, or the same ratio of compares
(Rook’s to partial). Fourth, even though A(k) tends towards a normal distribution as k increases,
“normal” does not have much meaning when n¡ 6 and the number of elements in the coe�cient
matrix is less than 30. This explains why the last portion of these two graphs drops o� accordingly
at the end. That is, when the SWOP of Gaussian elimination has reduced the search for the Rook’s
pivot from a given matrix A of order n to a matrix A(k) of order less than 6, the number of compares
required to locate the Rook’s pivots is signi�cantly less than e.

5. Empirical evidence on accuracy of Rook’s pivoting

The geometric analysis of both phases of GE presented in [3,5] clearly indicates that a pivoting-
for-size strategy which selects as pivots those entries whose magnitudes are maximal in both their
column and their row will, on average, produce more nearly accurate results than PP. CP is such a
strategy, but it is cost prohibitive. As demonstrated in the previous section, RP is such a strategy
whose magnitude of cost is the same as PP, far less than the cost for CP. In this section we
compare the average total error between solutions of linear systems computed by PP, MATLAB’s
A\b Routine (ML), RP, and CP. These linear systems were designed to provide a range of examples
with the following properties: (1) All entries and solutions are exactly machine representable, (2) all

364 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

systems are solved in IEEE double-precision, (3) the entries of each matrix are either normally or
uniformly distributed among themselves and the magnitudes of the entries in the coe�cient matrices
lie in the interval [10−4; 104], (4) the collection of systems and their condition numbers cover the
spectrum from 106 to 1018, (5) systems of order 25–500 were considered in the analysis. However,
we only discuss and present the graphs for the case n=100. The results are comparable for systems
of other orders [4].
The method by which these linear systems were crafted is explained in Section 3 of Neal and

Poole [3]. Briey, thousands of integer linear systems with integer solutions were randomly generated
and then modi�ed by the technique of Rice [7] to assume condition numbers within some designated
interval, usually [106; 1018]. Note: The reason for not including linear systems with condition numbers
inside the interval [100; 106] is that in double-precision arithmetic, the errors resulting from any one
of the four methods (PP, ML, RP, CP) is insigni�cant. That is, double-precision is su�cient to
minimize the e�ects of round-o� error during the SWOP and to mask any instability during the
BSP, even for moderately ill-conditioned systems.
To compare the accuracies of the double-precision-computed solutions between the four pivoting

strategies, over 6000 linear systems of order 100 were generated whose coe�cients represented a
Normal distribution, and whose condition numbers spanned the interval [106; 1018]. Each of these
linear systems was solved by each of the four methods: PP, RP, CP and ML. Fourteen pieces
of data were stored for each of the linear systems in a 6000 by 14 data �le called datanorm.ill:
L2-norm condition number, the seed producing the system, the L2-norm error from each of the
four methods, L-in�nity norm error from each of the four methods, and the back-substitution phase
error multipliers (a single vector) for each of the four strategies. To summarize the process of
graphically comparing the accuracies between PP, RP, CP and ML, we constructed an M-�le, called
plotill.m, designed to massage the datanorm.ill �le in the following manner: For size = 100, plotill
(size, increments, minlog, maxlog) (1) loads the data �le datanorm.ill and accepts as input k =
increments, and 66minlog¡maxlog618, then sets w=maxlog−minlog; (2) partitions the interval
[minlog;maxlog + 1=k] into w ∗ k + 1 subintervals or “bins” of equal width 1=k; (3) scans the
array datanorm.ill and locates all systems with condition numbers COND such that log10(COND)
is contained in the interval [minlog;maxlog + 1=k]; (4) for each bin, the average L2-norm error is
computed for each of the four pivoting strategies over the systems in the bin. The resulting four
plot points are assigned with �rst component being the average of the condition numbers over
the systems in the bin. Any bin not containing a minimum of 30 systems is omitted; (5) plots four
polygonal graphs, one for each of PP, RP, ML and CP, with horizontal axis ranging over [10minlog,
10maxlog] and vertical axis ranging over [0, maxerror +], automatically scaled by MATLAB [11].
The generation of data was repeated for linear systems of order 100 whose coe�cients represented

a uniform distribution. As long as (minlog−maxlog)¿2, the resulting graphs all had an appearance
similar to that represented by the four graphs in Figs. 3–6.
Fig. 3 contains four graphs generated from the data bank datanorm.ill (containing 6000 nor-

mal systems) when the parameters entered for M-�le plotill were minlog = 6; maxlog = 9, and
increments = 2. The L2-norm (rather than the L-in�nity norm) was selected to measure the error. The
code at the top of each �gure matches the pivoting strategy to its graph type. The vertical scale is
based on the maximum L2-norm error. In Fig. 3, the error ranged from very small to approximately
4:5×10−8. The text inside the �gure indicates that 1668 of the 6000 systems had coe�cient matrices
with condition numbers in the interval [106; 109].

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 365

Fig. 3. Normal.

Fig. 4. Normal.

The parameters and data sets give in Table 3 were used to generate the next three sets of graphs
in Figs. 4–6.
The magnitudes of the average L2-norm errors in each bin were generally ordered (largest to

smallest) as PP¿ML¿RP¿CP. Moreover, RP tracked closely with CP, while MATLAB’s method
tracked closely with PP. It might be noted here that MATLAB (ML) uses the code that was histor-
ically attributed to Fortran’s management of data, namely by columns and not rows. On the other
hand, our code for PP uses the traditional, pedagogical management of data, namely by rows. It is

366 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

Fig. 5. Uniform.

Fig. 6. Uniform.

Table 3

Figure Data set Condition Increments No. of sys.

5.2 Datanorm [108; 1010:5] 3 1549
5.3 Dataunif [1012; 1016:5] 2 1869
5.4 Dataunif [1014; 1016] 2 834

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 367

the di�erence in the order of arithmetic that explains the di�erence in computed solutions. However,
the explanation of why ML does a better job than PP, on average, is not yet fully understood.

6. Worst-case instability in back substitution

As noted in [3], computing and reviewing the back-substitution phase error multipliers (BSP
EMs) is an inexpensive way to check for instability in the back-substitution phase of GE. It is our
experience that the magnitudes of all BSP EMs for either CP or RP rarely exceed 10 [3]. However, it
can be shown by induction that in the worst case, CP and RP may produce upper-triangular systems
for which ‖m‖∞ = 2n−2 where n is the dimension of the system [3]. So even CP and RP might
produce upper-triangular systems for which the BSP is unstable, a rarity under either strategy. We
illustrate this fact with the following example which was promised in [3, p. 254].

Example 6.1. Recall from [3, p. 247] that the BSP error multipliers can be obtained by solving the
triangular system Uy= � where U is the triangular matrix derived from the sweep-out phase of GE
and � = [0; 0; : : : ; 0; unn]

t. Consider the upper triangular matrix U of order n for which uii = 1, for
i = 1 to n and uij = −1 for j¿i: U could be obtained through the sweep-out phase using either
CP or RP (or any other strategy which leaves |uii|¿|uij| for each i). Solving Uy = �, one �nds
that m = [2n−2; 2n−3; : : : ; 2; 1; 1]t and hence, ‖m‖∞ = 2n−2. Thus, apart from any round-o� error that
may occur during the back-substitution phase, if there is any error in the �rst computed component,
no matter how small or seemingly insigni�cant, the error will be magni�ed (instability) as it is
propagated through the back-substitution process (see example in [5, p. 257]). However, as noted
earlier, such examples are very pathological and our experiences indicate that usually ‖m‖∞610
with RP.

7. Conclusions

In addition to the many remarks found in the conclusions of Neal and Poole [3] and Poole and
Neal [5,6] three additional practical conclusions are provided here, as well as one philosophical
remark.
First, as with CP, RP usually produces an upper-triangular system whose hyperplanes are very

well-oriented with respect to their corresponding coordinate axes [3,5,9]. Also, as with CP, RP
usually produces BSP EMs whose magnitudes are much smaller than those produced by PP. That is,
empirical evidence suggests that except for highly contrived pathological systems, RP and CP usually
produce upper-triangular systems whose corresponding hyperplanes are well-oriented with respect to
their coordinate axes, but more importantly, they are also well-oriented with respect to each other
[3,9]. So, if the sweep-out phase of GE is performed in double-precision using the RP strategy,
round-o� error during the sweep-out phase is usually well controlled and the back-substitution phase
is almost always numerically stable [3,9].
Second, if one insist on using PP with Gaussian elimination to solve a large linear system, one

should calculate the back-substitution phase error multipliers [3]. If any are large compared to the
precision used for the calculations, then iterative re�nement should be used after the back-substitution

368 G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369

phase has been completed, or RP should be used. See Foster [2] for a “partial Rook pivoting”
strategy, one threshold in nature.
Three, the important point made in Section 3 is worth repeating. That is, PP is very successful

in practice because at least half the time it selects a pivot which controls round-o� error during the
SWOP while fostering stability during the BSP.
Philosophical point: The future of computing technology and management of binary information

is unknown. Today’s literature contains new creative ways to manage GE that di�er signi�cantly
from former or even contemporary techniques [10]. Many current philosophies and practices are
reections of old computer architecture, one-dimensional data structures, and dei�ed programming
languages. History is very important. But in the area of electronic manipulation of binary information,
sharing knowledge and perspectives among those who aspire to compute is more important than
controlling research based on yesteryear’s beliefs. David Wise [10] says it better than we: “Such a
trend (separating ourselves from the knowledge and perspectives of others) is not only scienti�cally,
but politically foolish; we are all colleagues learning how to compute. We must better share problems,
solutions, styles, techniques, and philosophy”.

Acknowledgements

We appreciate the care and patience required of the referees who “walked” through this paper
without many details available to them, but contained in [4]. Cleve Ashcraft read a version of
this paper and suggested several good improvements. Moreover, we are grateful and indebted to
the editorial sta� of CAM for their support and encouragement, particularly Apostolos Hadjidimos.
Finally, we are forever grateful to John R. Rice for his “underwing” encouragement throughout the
last decade of the 20th century.

References

[1] J. Bunch, L. Kaufmann, Math. Comput. 31 (137) (1977) 163–179.
[2] L. Foster, The growth factor and e�ciency of Gaussian elimination with rook pivoting, J. Comput. Appl. Math. 86

(1997) 177–194.
[3] L. Neal, G. Poole, A Geometric analysis of Gaussian elimination, II, Linear Algebra Appl. 173 (1992) 239–264.
[4] L. Neal, G. Poole, The Rook’s pivoting strategy, Technical Report GP112595001, ETSU, 1995.
[5] G. Poole, L. Neal, A geometric analysis of Gaussian elimination, I, Linear Algebra Appl. 149 (1991) 249–272.
[6] G. Poole, L. Neal, Gaussian elimination: when is scaling bene�cial?, Linear Algebra Appl. 162–164 (1992) 309–324.
[7] J.R. Rice, Numerical Methods, Software, and Analysis, McGraw-Hill, New York, 1983.
[8] L.N. Trefethen, R.S. Schreiber, Average-case stability of Gaussian elimination, SIAM J. Matrix Anal. Appl. 11

(1990) 335–360.
[9] E. van der Biest, A study of di�erent pivoting strategies and error reducing algorithms for Gaussian elimination,

M.S. Thesis, East Tennessee State University, 1991.
[10] D. Wise, Undulant-block elimination and integer-preserving matrix inversion, Sci. Comput. Programming 33 (1999)

29–85.
[11] MATLAB, A software product of Math Works Inc.

G. Poole, L. Neal / Journal of Computational and Applied Mathematics 123 (2000) 353–369 369

Further reading

1. L. Eld�en, L. Wittmeyer-Koch, Numerical Analysis, An Introduction, Academic Press, San Diego, CA, 1990.
2. G. Forsythe, M. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood
Cli�s, NJ, 1977.

3. G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

Journal of Computational and Applied Mathematics 123 (2000) 371–394
www.elsevier.nl/locate/cam

Numerical methods in control
Volker Mehrmanna ; ∗; 1, Hongguo Xub; 2

aFakult�at f�ur Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany
bDepartment of Mathematics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA

Received 21 June 1999; received in revised form 30 October 1999

Abstract

We study classical control problems like pole assignment, stabilization, linear quadratic control and H∞ control from
a numerical analysis point of view. We present several examples that show the di�culties with classical approaches and
suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.
c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F15; 93B40; 93B36; 93C60

Keywords: Pole placement; Linear quadratic control; Stabilization H∞ control; Algebraic Riccati equation; Hamiltonian
matrix; Skew Hamiltonian matrix; Two-point boundary-value problem

1. Introduction

In the last 40 years systems and control theory has evolved into a mature �eld that has found a
stable position on the borderline between applied mathematics, engineering and computer science.
The major success is not only due to the fact that beautiful mathematical theories (like linear
algebra, ring theory, representation theory and others) �nd direct application but also since the
results have immediately found their ways into production code software packages like MATLAB
toolboxes [54,55] or the SLICOT subroutine library [13], which can be and are directly used by
engineers working in practice. In this paper we will discuss several problems of linear control
theory, as there are pole assignment, stabilization, linear quadratic control and H∞ control. In

∗ Corresponding author.
E-mail address: volker.mehrmann@mathematik.tu-chemnitz.de (V. Mehrmann).
1 Supported by Deutsche Forschungsgemeinschaft, within Sonderforschungsbereich SFB393, ‘Numerische Simulation

auf massiv parallelen Rechnern’.
2 Supported by Deutsche Forschungsgemeinschaft, within Sonderforschungsbereich SFB393, ‘Numerische Simulation

auf massiv parallelen Rechnern’.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00392-7

372 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

the solution techniques for these problems important developments have taken place in recent years,
which have lead to changes in viewpoints in particular what the numerical solution of these problems
is concerned. In our opinion there are three central questions that need to be studied in more detail
in the context of numerical methods for the solution of control problems and it is the aim of this
paper to initiate more research and software developments in this direction.
First of all, as is well known, di�erent mathematically equivalent formulations of the same problem

may lead to drastically di�erent sensitivity of the problem to perturbations (such as round-o� errors)
and thus it is important to �nd the best formulation for numerical solution.
The second issue is that the numerical methods should reect the physical properties of the problem

in the maximal way, to get higher e�ciency but also to guarantee even in �nite arithmetic that the
computed results are physically meaningful.
The third important topic is that with the growing complexity of problems, in particular in the

context of large-scale control problems, solution approaches and numerical methods have to be
reviewed and completely new methods have to be developed.
We will only discuss the �rst two issues but large-scale control problems are currently a very

important research topic.
Consider linear constant coe�cient dynamical systems of the form

ẋ = Ax + Bu; x(t0) = x0; (1)

where x(t) ∈ Rn is the state, x0 is an initial vector, u(t) ∈ Rm is the control input of the system and
the matrices A ∈ Rn;n, B ∈ Rn;m are constant. The topics that we discuss here also apply in a similar
fashion to problems with output and also to complex problems, but for the sake of brevity we only
discuss real problems.
The classical pole placement problem is to �nd a state feedback control law

u= Kx; (2)

such that the closed-loop system

ẋ = (A+ BK)x (3)

has desired poles, or in linear algebra terminology, that the spectrum of the closed-loop system matrix
A + BF is a given set of complex numbers. Here, the case of stabilization, where the closed-loop
poles are desired to be in the open left-half plane represents an important special case.
For a discussion of the classical theory of the pole placement problem and related problems, we

refer the reader to monographs in linear control theory, e.g. [7,27,41,44,50,65,85]. In Section 2 we
discuss some new perturbation results and the resulting consequences for numerical methods. These
results indicate that the numerical solution of the classical formulation of the pole placement problem
is often and in particular for large n and small m a highly ill-conditioned problem that should be
modi�ed.
This analysis and the resulting conclusions hold also for the stabilization problem which alter-

natively may be solved also via the solution of a linear quadratic control problem. For this the
objective is to �nd a control law u(t) such that the closed-loop system is asymptotically stable and
such that the performance criterion

S(x; u) =
∫ ∞

t0

[
x(t)
u(t)

]T [
Q L
LT R

] [
x(t)
u(t)

]
dt; (4)

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 373

is minimized, where Q = QT ∈ Rn;n, R = RT ∈ Rm;m is positive de�nite and
[
Q L
LT R

]
is positive

semide�nite.
The basics for this problem can be found in classical monographs on linear control [4,7,16,27,51,41,

44,50,58,65,73,85].
Application of the maximum principle [58,69] leads to the problem of �nding a stable solution to

the two-point boundary value problem of Euler–Lagrange equations

Ec

 ẋ�̇
u̇

=Ac

 x�
u

 ; x(t0) = x0; lim

t→∞ �(t) = 0 (5)

with the matrix pencil

�Ec − �Ac := �

 I 0 0
0 −I 0
0 0 0

− �

A 0 B

Q AT L

LT BT R

 : (6)

If R is well conditioned with respect to inversion, then (5) may be reduced to the two-point
boundary-value problem[

ẋ
−�̇

]
=H

[
x
−�

]
; x(t0) = x0; lim

t→∞ �(t) = 0 (7)

with the Hamiltonian matrix

H=
[
F G
H −FT

]
:=
[
A− BR−1LT BR−1BT

Q − LR−1LT −(A− BR−1LT)T

]
: (8)

The solution of the boundary value problems (5) and(7) can be obtained in many di�erent ways.
The classical way, that is implemented in most design packages is to determine �rst X , the positive
semide�nite (stabilizing) solution of the associated algebraic Riccati equation

0 = H + XF + FTX − XGX (9)

and then obtaining the optimal stabilizing feedback as

u(t) =−R−1BTXx(t): (10)

The solution of the algebraic Riccati equation is also often used for the decoupling of the forward
and backward integration. But one may also directly solve the two-point boundary value problem (5)
or alternatively (7) without going via the Riccati equation and we will show in Section 3 that this is
actually numerically a much better approach and that the Riccati equation presents an unnecessary
and sometimes dangerous detour.
As we have already mentioned, we may use both linear quadratic control and pole placement for

the objective of stabilization. In Section 4, we compare pole assignment and the solution of linear
quadratic control problems for stabilization.
The third problem that we include into our discussion is the standard H∞ control problem which

arises in the context of robust control in frequency domain, see, e.g., the recent monographs [33,87].

374 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

In this problem one studies the linear system

ẋ = Ax + B1u+ B2w; x(t0) = x0;

z = C1x + D11u+ D12w;

y = C2x + D21u+ D22w;

(11)

where A ∈ Rn;n, Bk ∈ Rn;mk , Ck ∈ Rpk ;n for k = 1; 2, and Dij ∈ Rpi;mj for i; j = 1; 2. Here w(t) ∈ Rm2
describes noise, modeling errors or an unknown part of the system, y(t) ∈ Rp2 describes measured
outputs while z ∈ Rp1 describes the regulated outputs. The objective of optimal H∞ control is to
�nd a control law

q̇= Âq+ B̂y;

u= Ĉq+ D̂y;
(12)

to minimize the closed-loop transfer function Tzw from w to z in H∞ norm.
Under some technical assumptions, see [87] or [30] for the general case, for a given parameter

¿ 0, a necessary and su�cient condition for the existence of an admissible controller such that
||Tzw||∞¡, is that the following conditions hold (e.g. [87, Theorem 16:4, p. 419]):

(A1) For the matrix

H∞:=

[
A −2B1BT1 − B2BT2

−CT1C1 −AT
]
; (13)

there exists matrices Q1; Q2 ∈ Rn;n such that

H∞

[
Q1
Q2

]
=
[
Q1
Q2

]
Tx; (14)

where Tx has only eigenvalues with nonpositive real parts, Q1 is nonsingular, and X∞:=Q2Q−1
1

is symmetric positive semide�nite.
(A2) For the matrix

J∞:=

[
A −B1BT1

−2CT1C1 − CT2C2 −AT
]
; (15)

there exist matrices U1; U2 ∈ Rn;n such that[
U1

U2

]T
J∞ = Ty

[
U1

U2

]T
; (16)

where Ty has only eigenvalues with nonpositive real parts, U1 is nonsingular, and Y∞:=U2U−1
1

is symmetric positive semide�nite.
(A3) For the matrices X∞; Y∞ we have that 2¿�(X∞Y∞), where �(A) denotes the spectral radius

of the matrix A.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 375

The optimal ∞ control is then obtained by �nding the smallest admissable so that conditions
(A1)–(A3) still hold. The optimal controller yields system (12) with

Â:=A+ −2B1BT1X∞ + B2Ĉ − B̂C2;
B̂:=(I − −2Y∞X∞)−1Y∞CT2 ; Ĉ :=− BT2X∞; D̂ := 0:

(17)

We see that for conditions (A1) and (A2), we have Hamiltonian matrices which (except for
the inde�niteness of blocks) are similar to the Hamiltonians arising in the linear quadratic control
problem, and hence the analysis and improvements for the linear quadratic control problem also hold
for the H∞ problem. We discuss this topic in Section 6.
Before going into details, let us recall that we have the following objectives in mind. We want

to determine the best formulation of the problem for the use in numerical solution methods and
furthermore we wish to obtain methods that are best adapted to all the underlying physical and
mathematical structures in order to obtain e�cient and accurate solution methods.

2. Pole placement

As we have discussed in the introduction, in linear algebra terminology the pole placement problem
is as follows:

Problem 1. For given matrices A ∈ Rn;n; B ∈ Rn;m and a given set of n complex numbers P =
{�1; : : : ; �n}⊂C; that is closed under conjugation; �nd a matrix K ∈ Rm;n; such that the set of
eigenvalues of A+ BK is equal to P.

It is well known, see e.g. [41,84], that a feedback gain matrix K exists for all possible sets P⊂C,
that are closed under conjugation if and only if (A; B) is controllable, i.e.,

rank[A− �In; B] = n; ∀� ∈ C: (18)

There is a large literature on this problem. Extensions of Ackermann’s explicit formula [1] for the
single-input case were given in [60,78] and also many numerical algorithms were developed for this
problem, see [42,63,66,72,82]. For some of these methods, numerical backward stability has been
established, see e.g. [6,25,26,42,63,66]. However, it is nevertheless often observed that the numerical
results are very inaccurate. If a numerically stable method yields highly inaccurate results then this
is due to ill-conditioning of the problem. Therefore the conditioning of the pole placement problem
was analyzed but the conclusions from the analysis are quite di�erent, see [5,35,45,47], and there
are several reasons for these di�erences.
First of all pole assignment is usually approached via a two-step procedure, which �rst brings the

pair (A; B) to a simpler form and then assigns the poles in this simpler form. But in such a two-step
procedure it may sometimes happen that although the original problem was well conditioned (i.e.,
small perturbations in the data only lead to small changes in the solution) one of the intermediate
steps is very ill-conditioned. To avoid this problem a good method for the initial reduction has to
be used. For the pole assignment problem the best reduction is given by the staircase form of Van
Dooren [79] or variations of it, see [46], which essentially does not a�ect the perturbations except

376 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

for situations where the problem is very near to an uncontrollable problem, i.e., a problem (A; B)
for which the distance to uncontrollability de�ned as

du(A; B):=min
�∈C

�n[A− �I; B]; (19)

see [29], is small. Here �n(A) is the smallest singular value of the matrix A. Since controllability
is the necessary and su�cient condition for solvability of the pole placement problem, it is clear
that a problem that is near to an uncontrollable problem will be very sensitive to perturbations.
Hence the distance to uncontrollability (if small) is an important factor in the perturbation analysis
of the pole placement problem but, as we will see below, other factors are equally or even more
important.
The second reason for confusion in the evaluation of the pole placement problem is that one has

to de�ne clearly what the solution of the problem is. This could be the feedback K , the closed-loop
matrix A+BK or its spectrum, respectively. All of these are solutions of the pole placement problem
but they exhibit largely di�erent perturbation results. A striking example of a stabilization problem
is the case m=1 in Example 1 below, see also [59], which shows that even though the feedback K
is computed analytically, and the distance to uncontrollability is large, the (presumingly) stabilized
closed-loop system has eigenvalues with positive real part, something which could be a disaster in
a practical application.
In our opinion the most important goal of pole placement is that the poles of the closed-loop system

obtained with the computed feedback are close to the desired ones and in the case of stabilization the
resulting closed-loop system is robustly stable. If the desired poles of the exact closed-loop system
are very sensitive to perturbations then this ultimate goal usually cannot be guaranteed. And this
may happen even if the computation of K is reliable or even exact.
With this goal in mind, a new analysis and new explicit solution formulas that cover all the

aspects of the problem have recently been given in [59,60] and we will interpret some of these
results here. The major conclusions can be obtained from the following result which generalizes a
perturbation result of [76]. For this result we need the scaled spectral condition number of a matrix
A given by ||TD|| ||(TD)−1||, where T is the matrix that transforms A to Jordan canonical form and
D is a diagonal matrix that scales the columns of T to have all unit norm, see [28].

Theorem 1 (Mehrmann and Xu [61]). Consider a controllable matrix pair (A; B); and a set of poles
P={�1; : : : ; �n}. Consider a perturbed system (Â; B̂) which is also controllable and a perturbed set
of poles P̂= {�̂1; : : : ; �̂n}: Set Â− A=: �A; B̂− B=: �B and �̂k − �k =: ��k ;=1; : : : ; n. Suppose that
both the pole placement problems with A; B; P and Â; B̂; P̂ have solutions with a diagonalizable
closed-loop matrix. Set

�:=|| [�A; �B] || (20)

and suppose that

max
i

�+ |��i|
�n([A− �iI; B])¡

3
4
: (21)

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 377

Then there exists a feedback gain K̂ :=K + �K of (Â; B̂) such that

||�K ||¡ 5
√
n
4
�
√
1 + ||K̂ ||2 max

i

{√
1 + (||B†(A− �iI)||)2(�+ |��i|)

�n([A− �iI; B])

}
; (22)

the spectrum of (Â+ B̂K̂) is P̂ and Â+ B̂K̂ is diagonalizable.
Moreover; for each eigenvalue �i of the closed-loop matrix A+BK̂; (i.e.; the perturbed feedback

is used for the unperturbed system); there is a corresponding �i ∈ P such that

|�i − �i|¡ |��i|+ ��̂
√
1 + ||K̂ ||2: (23)

Here �; �̂ are the scaled spectral condition numbers of A+ BK and Â+ B̂K̂ ; respectively; and B†

is the Moore–Penrose pseudoinverse of B.

Note that under additional mild assumptions in the bounds (22) and (23) the terms �̂; K̂ can be
replaced by � and K , respectively. If this is not possible, then the problem is extremely ill-conditioned
and hence not suitable for numerical computation anyway.
Theorem 1 only gives upper bounds for the perturbations. This is the usual situation in most

perturbation results. But these bounds are usually quite tight and very well describe the major
di�culties of the pole placement problem. Consider the following numerical example from [59]. For
this and all the other numerical examples the results were obtained on an HP-700 workstation with
machine precision eps = 2:22× 10−16, under MATLAB Version 5:2.

Example 1. Let A=diag(1; : : : ; 20), P={−1; : : : ;−20} and let B be formed from the �rst m columns
of a random 20× 20 orthogonal matrix.

The MATLAB pole placement code place of the control system toolbox Version 4.1, which is an
implementation of the method given in [42], was used to compute the feedback gain K . We ran m
from 1 to 20 and in each case we computed 20 times with 20 random orthogonal matrices B. In Table

1 we list the geometric means (over the 20 experiments) of �̂, K̂ , bound=eps||[A; B]||�̂
√
1 + ||K̂ ||2,

and err = max16i620|�i − �i|, with �i and the real parts of �i arranged in increasing order.
It should be noted that for all 400 tests the values of mini�n([A− �iI; B]) varied from 2:0 to 2:24,

so the factor in the denominator of (22) is negligible. Furthermore, we computed in all cases the
distance to uncontrollability and found that the pair (A; B) was controllable with a large distance
to uncontrollability. Nevertheless for m = 1 the method produced an error message “Can’t place
eigenvalues there” and for m = 2; 3 a warning “Pole locations are more than 10% in error” was
displayed. The reason for this failure of the method is probably due to the large norm of K and the
large closed-loop condition number which is computed in the course of the algorithm. Other pole
placement algorithms have similar di�culties for small m, see [59,60].
The results of Example 1 and most other examples with n−m large lead to the interpretation that

the sensitivity (conditioning) of all possible results of the pole placement problem, i.e., the feedback
gain K as well as the poles of the closed-loop system A+BK̂ obtained with the perturbed feedback
K̂ , depends heavily on the size of n− m as well as on the factor

S := �
√
1 + ||K ||2 (24)

378 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

Table 1
Results for Example 1

m �̂ K̂ Bound Err

1
2 1:1× 109 2:5× 106 1:2× 101 2:0× 101
3 4:6× 108 1:3× 106 2:6 1:2× 101
4 9:6× 106 2:3× 105 9:6× 10−3 1:2× 10−3
5 3:0× 105 3:4× 104 4:6× 10−5 1:6× 10−6
6 3:0× 104 1:0× 104 1:3× 10−6 3:1× 10−8
7 5:6× 103 4:2× 103 1:0× 10−7 1:3× 10−9
8 1:6× 103 2:1× 103 1:5× 10−8 1:3× 10−10
9 5:3× 102 1:1× 103 2:6× 10−9 1:9× 10−11
10 2:7× 102 8:9× 102 1:1× 10−9 6:3× 10−12
11 1:2× 102 5:2× 102 2:7× 10−10 1:8× 10−12
12 7:6× 101 4:0× 102 1:4× 10−10 8:3× 10−13
13 4:4× 101 2:7× 102 5:3× 10−11 3:6× 10−13
14 3:0× 101 1:9× 102 2:6× 10−11 2:0× 10−13
15 2:4× 101 1:6× 102 1:7× 10−11 1:5× 10−13
16 1:9× 101 1:3× 102 1:1× 10−11 9:5× 10−14
17 1:5× 101 1:2× 102 7:8× 10−12 6:9× 10−14
18 1:3× 101 1:1× 102 6:8× 10−12 6:6× 10−14
19 9:0 8:8× 101 3:5× 10−12 4:5× 10−14
20 1:0 4:0× 101 1:8× 10−13 3:2× 10−14

even if the distance to uncontrollability is large. The additional factor d:=1=mini�n[A − �iI; B] in
the perturbation bound only plays a role if the distance to uncontrollability is small. It is obvious
that if du(A; B) is small then d may be very large and the problem to compute K is de�nitely
ill-conditioned. If, however, du(A; B) is large, then clearly d is small and may be neglected.
The factor S has been analyzed in detail in [59,60], where it was observed that in the single-input

case S is essentially given by the condition number of the Cauchy matrix C = [1=(�i − �j)], where
the �i are the eigenvalues of A and the �i are the desired poles. This condition number is very
large if n is large. In the multi-input case S is essentially given by the condition number of a
Vandermonde-like matrix which is usually also very ill-conditioned (see [38, Chapter 21] and the
references therein), in particular if n− m is large.
This analysis indicates that serious numerical di�culties may arise in the pole placement problem

if n−m is large. Furthermore the analysis demonstrates that the currently used strategies to resolve
the freedom in K in the numerical method, which is to minimize ||K ||, see [15,43,63,66,72,82] or
� as in [42], may both not be su�cient to get good results. A better choice would be to minimize
S:=�

√
1 + ||K ||2, since this factor describes the perturbation very well. A similar strategy has been

proposed and implemented by Varga [83]. We can actually formulate this strategy as a re�ned robust
pole placement problem.

Problem 2. For given matrices A ∈ Rn;n; B ∈ Rn;m and a given set of n complex numbers P =
{�1; : : : ; �n}⊂C, (closed under conjugation); �nd a matrix K ∈ Rm;n; such that the set of eigenvalues
of A+ BK is equal to P; and that minimizes S := �

√
1 + ||K ||2.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 379

A solution to this problem for small systems can actually be obtained via standard optimization
software by using the explicit formula for K given in [60]. In practice one probably does not even
need the global minimum, but just one, where S is small enough to guarantee small bounds (22)
and (23), which then can be actually computed and used as condition estimator.
But we propose to go even further in the reformulation of the pole placement problem, see also

[35]. One should �rst ask the following question.
Does one really have a �xed set of poles or does one rather have a speci�c region in the complex

plane where one wants the closed-loop poles to be?
If the latter is the case then not only the minimization over the freedom in K but also a min-

imization over the position of the poles in the given set should be used. This would lead to the
optimized robust pole placement problem:

Problem 3. For given matrices A ∈ Rn;n; B ∈ Rn;m and a given set P⊂C; �nd a matrix K ∈ Rm;n;
such that the set of eigenvalues of A + BK is contained in P and at the same time a robustness
measure is optimized.

There are many papers that cover the placing of poles in speci�ed regions like disks, strips
or sectors, or the optimized placement of poles, see e.g. [14,24,39,40,49,68,71,74,77,86] and the
references therein. A clear and practical formulation of such a general robust measure as well as
suitable algorithms to determine this optimized pole assignment will depend on the application and
on the set P. In the stabilization problem this is the left-half plane or in the case of damped
stabilization a particular part of the left-half plane, see [37]. If the set P is a very small region
of the complex plane, as when it has exactly n points, then, as we have demonstrated above, even
an optimization of some robustness measures may still yield a very sensitive system, but if the
set P covers a large area in the complex plane, then quite good results may be obtained, see for
example [22].
In the case of stabilization the robustness measure would certainly include the distance to insta-

bility, i.e., the smallest perturbation that makes the closed-loop system have an unstable eigenvalue.
To make sure that the closed-loop system is securely stable, a constraint should be added in the
optimization that guarantees that the perturbation bounds are smaller than the distance to instabil-
ity. To verify and guarantee this constraint the distance to instability as well as the perturbation
bound have to be computed, which alone is a di�cult numerical problem, see [21]. In the context
of stabilization this would be a part of the optimization loop and from this it may already be seen
that the development of good numerical methods for this optimized stabilization is an important but
extremely di�cult problem that needs a lot of further attention, see also [61].
For large control problems with only few unstable poles the situation can be reduced to a small

problem provided one can design a method for the separation of eigenvalues inside P and outside of
P. If this can be done, then the complexity of the optimization problem can be drastically reduced,
see [70,36,82] and the references therein.
As we have mentioned already before, for the stabilization problem there are also other ap-

proaches to design a stabilizing feedback, such as the solution of Lyapunov or Riccati equations
or just the solution of the linear quadratic control problem which we discuss in the next sec-
tion. A comparison of stabilization via pole placement and linear quadratic control is given in
Section 4.

380 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

3. Linear quadratic control

For the solution of the linear quadratic control problem, i.e., to minimize (4) subject to (1), a
large number of approaches have been discussed in the literature, see the monographs [58,65,51,73].
Let us compare the Riccati equation approach with the solution of the two-point boundary value
problem via a matrix pencil approach. An observation of Van Dooren [80] is that it su�ces to
study the deating subspaces of the pencil (Ec;Ac) in (6). Suppose (Ec;Ac) has an n-dimensional
deating subspace associated with eigenvalues in the left-half plane. Let this subspace be spanned
by the columns of a matrix U, partitioned analogous to the pencil as

U=

U1U2
U3

 : (25)

Then, if U1 is invertible, the optimal control is a linear feedback of the form u(t) = U3U−1
1 x(t).

The solution of the associated Riccati equation (9) is X =U2U−1
1 , see [58] for details. We see that

an explicit solution of the Riccati equation is not needed to determine the optimal control and it
is also clear that the sensitivity of the computation of U3U−1

1 x(t) may be di�erent than that of the
procedure to �rst compute X = U2U−1

1 and then the feedback u(t) = −R−1BTXx(t) from this. In
particular if the matrix R is close to singular, then the coe�cients in the Riccati equation (9) may
be highly corrupted so that a solution approach via the Riccati equation may be completely useless.
We demonstrate these observations in the following example.

Example 2. Let U be a randomly generated real orthogonal matrix, L = 0; A = U
[
2 0
0 1

]
U T, B =

U; R=
[
0:5 0
0

]
and Q = U

[
6 0
0 3

]
U T where ¿ 0.

The positive-semide�nite (stabilizing) solution of the corresponding algebraic Riccati equation (9)

is X = U
[
3 0
0 3

]
U T, the associated feedback gain matrix K = −

[
6 0
0 3

]
U T and the closed-loop

spectrum is {−4;−2}, both independent of the value of . Since U is orthogonal, we see that ||K ||
is small and hence we do not expect large perturbations in the solution. The solution via the Riccati
equation, however, depends on and hence we may expect that the feedback K when computed via
the Riccati equation will depend heavily on .
We applied the MATLAB m-�les are, care from di�erent versions of the MATLAB control tool

box [54] which are solvers for algebraic Riccati equations and compare the results with those obtained
by just computing the deating subspace by the MATLAB implementation qz of the QZ-algorithm.
The Riccati solution is used to compute K = −R−1BTX while via the deating subspace (25) of
�Ec − �Ac, the feedback K is directly obtained as U3U−1

1 . The method are uses the Hamiltonian
matrix H as in (8) to determine the Riccati solution X while the method care works on a balanced
version of H if (�min(R)=�max(R))¿

√
eps and on the extended pencil �Ec−�Ac as in (6) otherwise.

The relative error in X and K for all three methods and di�erent values of are listed in Table 2.
We see that the direct computation of the optimal control via the subspace yields much smaller

relative errors than the solution via the Riccati equation. Note that the subspace method always
computed the Riccati solution to high relative accuracy.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 381

Table 2
Relative errors in Example 2

 Method ||X̂−X ||2
|X |2

||K̂−K||2
|K|2

are 7:6× 10−16 2:1× 10−14
10−2 care 7:0× 10−16 1:3× 10−15

qz 2:4× 10−16 4:9× 10−15

are 3:5× 10−11 5:7× 10−7
10−6 care 3:1× 10−12 3:2× 10−9

qz 2:6× 10−15 4:7× 10−11

are 1:8× 10−8 9:1× 10−1
10−9 care 2:1× 10−8 1:3× 10−4

qz 1:6× 10−15 5:9× 10−9

are 7:7× 10−5 1:2× 104
10−13 care 9:2× 10−5 3:9× 101

qz 1:7× 10−15 5:0× 10−4

This example demonstrates that the solution of the linear quadratic control problem via the solution
of the algebraic Riccati equation presents a dangerous detour that may lead to very bad results and
is really not necessary, since the feedback and the closed-loop matrix can be computed from the
deating subspace of the extended pencil directly. This is even more critical in the situation that R
is inde�nite or singular as in the H∞ problem discussed below. The situation is even worse in the
case of descriptor systems, see [8,9,58], where it is known that the Riccati equation may not have
anything to do with the solution of the optimal control problem [48].
But also for the linear quadratic control problem the question of robustness has to be asked in

terms of the performance criterion, i.e., the choice of Q; L; R which, as we have seen in Example 2,
is critical in the Riccati approach. But since this is a freedom in the problem, we should make use
of it to optimize the robustness. In the context of stabilization or other regions P of the complex
plane we may, therefore, formulate the optimized linear quadratic control problem.

Problem 4. Consider matrices A ∈ Rn;n; B ∈ Rn;m and a set P⊂C. Determine cost matrices Q; L; R
such that the closed-loop system obtained via the solution of the associated linear quadratic control
problem has eigenvalues that are contained in P and at the same time a robustness measure is
optimized.

If the robustness measure in Problem 4 is the same as in Problem 3, then these two problems are
actually equivalent.

Proposition 2. Consider matrices A ∈ Rn;n; B ∈ Rn;m and a set P⊂C. Consider furthermore the
optimized linear quadratic control Problem 4 and the optimized robust pole assignment Problem
3. If the same robustness measure is used in both problems; then the problems are equivalent; i.e.;
they have the same solution sets.

382 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

Proof. Since the feedbacks in Problem 3 are not restricted, it is clear that the solution set of Problem
3 contains the solution set of Problem 4. Suppose now that a feedback gain K optimizes Problem
3. Choosing an arbitrary positive-de�nite matrix R and setting L = −KTR; Q = LR−1LT, it follows
that the linear quadratic control generates the same feedback gain matrix K as well as the same
closed-loop system A+ BK . Hence the solution set of Problem 3 is contained in the solution set of
Problem 4.

It should be noted, however, that in many applications cost functionals with L=0 are used. In this
situation the optimal solution via Problem 4 may be worse than that of Problem 3 as the following
example demonstrates, see also Example 4.

Example 3. Consider the scalar system with A=1 and B=1 and the set P={x|Re x6−�; 0¡�¡ 1}.
Obviously in this case the distance to uncontrollability satis�es du(A; B) = 1, and the scaled spectral
condition is �(A+ BK) = 1 for arbitrary K . Thus we only need to minimize ||K ||2. For Problem 3
the optimal feedback is K = −(1 + �) and the closed-loop system is A + BK = −�. However, for
Problem 4 with L=0, the optimal solution, i.e., the minimum norm K , is K =−2 which is obtained
with arbitary R¿ 0 and Q=0. The associated closed-loop system is A+BK=−1. In fact for R¿ 0
and Q¿0 the pole of A+ BK is −√1 + Q=R which cannot be greater than −1.
It follows from this example that in order to obtain results which are as good as those from

optimized robust pole placement the block L in the cost functional has to be included in the opti-
mization.
As we have discussed already in the context of pole assignment, there are many di�erent possi-

bilities of general robust measures. These depend on the speci�c application and lead to di�erent
numerical methods. An analysis of di�erent criteria should deserve more attention. Some numerical
examples in the context of stabilization are discussed in the next section.

4. Stabilization

In this section we compare the results obtained from optimized robust pole assignment and op-
timized linear quadratic control for the speci�c problem of stabilization, i.e., the set P is the open
left-half plane.
Our �rst example discusses the optimization of the condition number S in (24) in the particular

situation that in the cost functional we use L= 0.

Example 4. Consider the stabilization problem with A = diag(1; 2; 3; 4) and B = [1; 1; 1; 1]T and a
stability margin of 0:5, i.e., P= {� ∈ C |Re(�)6− 0:5}.

We used a heuristic “random search” algorithm for the optimal poles as in [61], to minimize
the condition number S in (24). For the solution of the pole-placement problem a MATLAB code
based on the method of Miminis and Paige [63] was used. It should be noted that the MATLAB
code place often generated incorrect results, which is probably due to a small distance to instability
in some of the cases. The computed optimal poles, the norm of the feedback gain and the condition

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 383

Table 3
A comparison between stabilization by LQ and pole placement

Method Closed-loop poles ||K || S Dis

Pole placement −0:5± 3:69i; −0:5± 1:02i 222 1:1× 105 0:005
LQ −12:6;−4:26;−3:04;−1:66 2:0× 103 3:9× 107 0:013

number S are listed in Table 3, as well as the distance to instability displayed in column dis of the
closed-loop matrix A+ BK . The distance to instability was computed by the method of Byers [21].
For comparison, we used the solution of the optimized linear quadratic control problem with a

shift, see e.g. [37], to compute the feedback gain using the MATLAB code surv based on the
structure preserving Algorithm 1 below to determine the feedback gains. In the cost functional we
chose L = 0 and R = 50 ∗ ||B||2=k with k = 1; : : : ; 100 as well as R = ||B||2=2k+1 with k = 1; : : : ; 20.
For each such R we chose 100 randomly chosen unit norm positive de�nite matrices Q. Note that,
as desired, all eigenvalues of A+ BK have real parts less than −0:5. Among all tests the minimum
for S was obtained for R= (12)

6 (note ||B||= 2). The results are also shown in Table 3.
We see from this example, as we have already discussed before, that optimized robust pole

assigment performs better than optimized linear quadratic control with L = 0. On the other hand
even for this small-sized single-input problem the optimal condition number is very large.
Furthermore, we observe and this is typical, see also [61], that the optimal condition number is

obtained with eigenvalues close to or on the boundary of the desired region. Thus if we choose the
region P to be the open left-half plane then we will typically get a small distance to instability.
For this reason and to show that more theoretical investigation is necessary, in the next example we
compare di�erent optimality criteria.

Example 5. Let A =
[
1 1
0 2

]
; B = I2 and P = {� ∈ C |Re(�)6 − 1}. As robustness measures we

minimize �F; ||K ||F and SF = �F
√
1 + ||K ||2F, respectively, where the index F indicates that the

Frobenius norm is used. Clearly in this case K =T�T−1−A for an arbitrary nonsingular real matrix
T and arbitrary real � with eigenvalues in the required region.
If the scaled spectral condition number of the closed-loop system is to be minimized, then the

optimal solution is obtained with an orthogonal matrix T and freely chosen �.
In the optimization of ||K ||F and SF the optimal case is that � has a pair of complex conjugate

eigenvalues. Let

�=
[
� �
−� �

]
:

The general form of T is

T = Ts

[
a b
0 1

]
;

where ; a 6= 0 and Ts is a plane rotation. Since Ts commutes with � and since does not a�ect the
norms, we can set Ts = I2 and =1. To simplify the computation of the minimal SF we furthermore
set b=0, which only gives a suboptimal result. In Table 4 we give the resulting values of SF; ||K ||F

384 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

Table 4
A comparison of optimality criteria

Objective Closed-loop poles ||K ||F �F SF dis

�F {−1} 3:74 2 7:75 1:0
||K ||F −1± 0:5× 10−8i 3:54 2:4× 108 8:7× 108 0:56
SF −1± 0:52i 3:67 2:001 7:61 0:9994

as well as the distance to instability dis of the associated closed-loop matrix A + BK . Here in the
optimization of �F we have chosen both eigenvalues to be at −1.
The associated feedback gain matrices in the three cases are

−
[
2 1
0 3

]
; −

[
2:4534 0
0:2056 2:5466

]
; −

[
2 0:4656

0:4988 3

]
;

respectively.

We see from this example that a pure optimization of ||K ||F may lead to drastically di�erent
results than an optimization of �F and SF, but we also see that a detailed further investigation is
necessary to obtain the best possible criteria.

5. Structure preservation

In the context of the linear quadratic control problem the second important topic that needs to be
discussed, is the preservation of structure.
A feature of the pencils associated with the two-point boundary value problem (5) is that they

have algebraic structures which lead to a certain symmetry in the spectrum. Roundo� errors can
destroy this symmetry leading to physically meaningless results unless the numerical method also
preserves the algebraic structure, see [79]. Moreover, preservation of the algebraic structure usually
leads to more e�cient as well as more accurate numerical methods. Let us briey introduce the
relevant structures.

De�nition 3. Let

J :=
[
0 In
−In 0

]
;

where In is the n× n identity matrix.

(a) A matrix H ∈ R2n×2n is Hamiltonian if (HJ)T =HJ and a matrix H ∈ R2n×2n is skew-
Hamiltonian if (HJ)T =−HJ .

(b) A matrix Z ∈ Rn×n is symplectic if ZJZT = J and a matrix U ∈ R2n×2n is orthogonal
symplectic if UJUT = J and UUT = I2n. The group of orthogonal symplectic matrices in Rn×n
is denoted by US2n.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 385

(c) We call a real matrix Hamiltonian quasi-triangular if it is Hamiltonian and has the form[
F G
0 −FT

]
;

where F is quasi-triangular in real Schur form, see [32]. If a Hamiltonian matrix H can be
transformed into Hamiltonian quasi-triangular form by a similarity transformation with a matrix
U ∈ US2n, then we say that UTHU has Hamiltonian Schur form.

The reduced Euler–Lagrange equations (7) involve a Hamiltonian matrix, but the pencil (6) does
not directly have this structure. Nonetheless many of the properties of Hamiltonian matrices carry
over, see [58]. Furthermore, we may endow the pencil (6) with a similar structure by embedding the
Euler–Lagrange equations (5) into a larger system. If m is even then this is easily done by splitting
u(t); B; L; R into half-sized parts and a permutation of the pencil, see [8]. If m is odd then we may
apply this splitting after introducing an arti�cial input. The resulting pencil (after some permutation)
has the form

�Eec − �Ae
c := �

I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

− �

A B1 0 B2
LH2 RH12 BH2 R22

−Q −L1 −AH −L2
−LH1 −R11 −BH1 −R12

 ; (26)

with one Hamiltonian and one skew-Hamiltonian matrix.
The solution of the eigenproblem for Hamiltonian matrices and skew-Hamiltonian=Hamiltonian

pencils has been a topic of several publications, see [8,17,52,56–58] and the references therein. The
goal is to obtain a numerically backward stable method, that has a complexity of O(n3) and at the
same time preserves the structure. There are two main reasons why this problem is di�cult. First
of all one needs a triangular-like form under orthogonal symplectic similarity transformations from
which the desired invariant subspaces can be read o�. Such a Hamiltonian Schur form was �rst
suggested in [64] but not every Hamiltonian matrix or skew-Hamiltonian=Hamiltonian pencil has
such a condensed form, see [53,56,57]. The second di�culty arises from the fact that even if a
Hamiltonian Schur form exists, it is still di�cult to construct a method with the desired features,
see [2,3,9,10,19,20].
We dicuss here only the computation of the structured Schur form for Hamiltonian matrices.

For skew-Hamiltonian=Hamiltonian pencils we refer the reader to [9,56,57]. Necessary and su�cient
conditions for the Hamiltonian Schur form are given by the following theorem.

Theorem 4 (Lin et al. [53]). Let H be a real Hamiltonian matrix; let i�1; : : : ; i�� be its pairwise
distinct nonzero purely imaginary eigenvalues and let Uk; k = 1; : : : ; �; be the associated invariant
subspaces. Then the following are equivalent:
(i) There exists a real symplectic matrix Z such that Z−1HZ is real Hamiltonian quasi-

triangular.
(ii) There exists a real orthogonal symplectic matrix U such that UTHU is real Hamiltonian

quasi-triangular.
(iii) UH

k JUk is congruent to J for all k =1; : : : ; �; where J is always of the appropriate dimension.

386 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

A similar theorem for skew-Hamiltonian=Hamiltonian pencils has been given in [56,57].
This result shows that whenever a structured triangular form exists, then it also exists under

orthogonal transformations and hence there is hope that these forms and therefore also the eigenvalues
and invariant and deating subspaces can be computed with structure preserving numerically stable
methods.
Let us �rst discuss the computation of eigenvalues. It is well known that if H is a Hamiltonian

matrix, thenH2 is a skew-Hamiltonian matrix for which a structure preserving method was suggested
in [81]. This suggests computing the eigenvalues of H by taking square roots of the eigenvalues
of H2. Unfortunately, in a worst case scenario via this approach one might obtain only half of the
possible accuracy in the computed eigenvalues [19,81]. A way out of this dilemma was recently
presented in [11]. This approach uses the following decomposition.

Theorem 5 (Benner et al. [11]). Let H be Hamiltonian. Then there exist Q1; Q2 ∈ US2n; such
that

QT1HQ2 =
[
H11 H12
0 H22

]
; (27)

with H11 upper triangular and H T
22 quasi-upper triangular. Furthermore the eigenvalues of H are

the square roots of the eigenvalues of −H11H T
22.

Note that the resulting matrix in (27) is neither Hamiltonian nor similar to H, but a simple
calculation shows that both QT1H

2Q1 and QT2H
2Q2 are real skew-Hamiltonian quasi-triangular. For

skew-Hamiltonian=Hamiltonian pencils similar results have been given in [9]. After the form (27)
has been computed, one can compute the eigenvalues of H by solving 1 × 1 or 2 × 2 eigenvalue
problems and taking square roots without loosing accuracy. For algorithmic details, a detailed error
analysis as well as illustrative numerical examples, see [11], where it is demonstrated that these
methods speed up the computation of eigenvalues while still achieving full possible accuracy.
This new approach has also been extended to the computation of the desired deating and invariant

subspaces. Let us �rst introduce the basic theory behind the method. Let for A ∈ Rn×n the sets
�−(A); �+(A); �0(A) denote the part of the spectrum of A in the open left half-plane, in the open
right half-plane and on the imaginary axis, respectively, and denote the associated invariant subspaces

by Inv−(A); Inv+(A), Inv0(A). In [10] it has been observed that for A ∈ Rn×n and B =
[
0 A
A 0

]
, if

one determines an orthogonal matrix such that

B
[
Q1
Q2

]
=
[
Q1
Q2

]
R; (28)

where

�+(B)⊆ �(R)⊆ �+(B) ∪ �0(B); (29)

then

range{Q1 + Q2}= Inv+(A) +N1 where N1⊆ Inv0(A); (30)

range{Q1 − Q2}= Inv−(A) +N2 where N2⊆ Inv0(A): (31)

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 387

Moreover, if we partition R =
[
R11 R12
0 R22

]
with �(R11) = �+(B) and, accordingly, Q1 = [Q11 Q12],

Q2 = [Q21 Q22], then

B
[
Q11
Q21

]
=
[
Q11
Q21

]
R11 (32)

and there exists an orthogonal matrix Z such that
√
2
2
(Q11 + Q21) = [0 P+]Z;

√
2
2
(Q11 − Q21) = [P− 0]Z; (33)

where P+, P− are orthogonal bases of Inv+(A), Inv−(A), respectively.
In the case of a Hamiltonian matrix

H=
[
F G
H −FT

]

one considers the block matrix

B=
[
0 H
H 0

]

and, using the block permutation

P=

In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

;

one obtains that

B̃ :=PTBP=

0 F 0 G
F 0 G 0
0 H 0 −FT
H 0 −FT 0

 (34)

is again Hamiltonian. Furthermore it follows from Theorem 4 that B̃ has a Hamiltonian Schur form.

Theorem 6 (Benner et al. [10]). Let H be Hamiltonian and let B =
[
0 H
H 0

]
. Then there exists

an orthogonal matrix U such that

UTBU=
[
R D
0 −RT

]
=:R (35)

is in Hamiltonian quasi-triangular form and �−(R) = ∅. Moreover; U=PW with W ∈ US4n; and
R=WT ˜BW; (36)

i.e.; R is the Hamiltonian quasi-triangular form of the Hamiltonian matrix B̃. Furthermore; if H
has no purely imaginary eigenvalues; then R has only eigenvalues with positive real part.

388 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

The structure preserving, numerically stable algorithm to compute the invariant subspace of a
Hamiltonian matrix associated with the eigenvalues in the left-half plane is then as follows.

Algorithm 1.
Input: A Hamiltonian matrixH having an n-dimensional Lagrangian invariant subspace associated
with the eigenvalues in the left half-plane.
Output: Y ∈ R2n×n; with Y TY = In; such that the columns of Y span this invariant subspace.
Step 1: Apply Algorithm 2 of [11] to H and compute orthogonal symplectic matrices Q1; Q2 ∈

US2n such that

QT1HQ2 =
[
H11 H12
0 H22

]

is the decomposition (27).
Step 2: Determine an orthogonal matrix Q3; such that

QT3

[
0 −H T

22

H11 0

]
Q3 =

[
T11 T12
0 T22

]

is in real Schur form ordered such that the eigenvalues of T11 have positive real part and
the eigenvalues of T22 have negative real part.

Step 3: Use the orthogonal symplectic reordering scheme of [20] to determine an orthogonal sym-
plectic matrix V ∈ US4n such that with

U =
[
U11 U12
U21 U22

]
:=
[
Q1Q3 0
0 Q2Q3

]
V

we have the Hamiltonian quasi-triangular form

U TBU =

F11 F12 G11 G12
0 F22 G21 G22
0 0 −FT11 0
0 0 −FT12 −FT22

 ;

where F11; F22 are quasi-upper triangular with eigenvalues only in the closed right-half
plane.

Step 4: Set Ŷ :=(
√
2=2)(U11−U21). Compute Y; an orthogonal basis of range {Ŷ}; using any numer-

ically stable orthogonalization scheme; for example a rank-revealing QR-decomposition;
see, e.g. [23].

End

Generalizations of these results to the complex case and algorithms are presented in [12]. Cor-
responding results and methods for skew-Hamiltonian=Hamiltonian pencils have been constructed
in [9].
It should be noted that these new methods are already very close to the desired structure preserving

methods but they are still not optimal, since not all structures are fully exploited. But the methods
are more e�cient and at least as accurate as methods that do not address structure preservation. This
approach works, in principle, also for Hamiltonian matrices with eigenvalues on the imaginary axis

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 389

provided the appropriate subspaces can be seperated. When this is the case and how the numerical
method can detect this, as well as the perturbation analysis is still under investigation, see [62]. A
complete analysis of this case will be also very important for the treatment of H∞ control problems,
that we discuss in the next section.

6. Standard H∞ control

The solution of the standard H∞ control problem addresses another robustness measure in the
computation of a feedback solution, which is di�erent from the criteria that we have discussed so
far. For the numerical solution of the H∞ control problem the usual procedure is to use a optimization
scheme to determine the smallest ¿ 0 so that all three conditions (A1)–(A3) in Section 1 hold
by determining the �rst value of where one of these conditions fail, see for example [33,67,87].
In each step of the optimization procedure, two linear quadratic optimal control problems are solved
plus a positivity check.
Typically in current design packages like the MATLAB robust control toolbox [55], the solution

is obtained by a procedure which uses the solution of algebraic Riccati equations to determine X∞
and Y∞.
In view of the discussion in Section 3 on the solution of linear quadratic control problems and

Riccati equations we should construct new methods for the H∞ control problem that avoid the
detour via the Riccati equation. This conclusion is complemented by the observation that during
the optimization procedure, typically one or both of the Riccati solutions becomes very large in
norm. This leads to the question whether a numerical solution of the H∞ via the solution of Riccati
equations makes sense at all, since in order to obtain a robust control, a highly ill-conditioned
numerical problem has to be solved.
The usual way out of this dilemma in practice is to compute suboptimal controls, see [34,67]. But

in view of the previous discussions one might ask whether this potential ill-conditioning is inherent
in the problem formulation or due to the approach for its solution. Let us consider an example.

Example 6. Let A = 1, B1 = 2, B2 = 1, C1 = 1 and C2 =
√
3. Then for ¿x;1 =

√
2 the matrix

H∞ in (13) has no purely imaginary eigenvalues and hence a Lagrange subspace associated with
the stable eigenvalues always exists. The stabilizing solution of the Riccati equation, however, is

X () =
2 +

√
22 − 4

2 − 4 :

For ¿x;2 = 2 we have that X () is positive de�nite and for ¡x;2, X () is negative de�nite.
For = x;2 the Riccati solution is not de�ned.
Analogously for the Riccati equation associated with J∞ in (15) we have y;1 = (2

√
13=13) and

y;2 = (
√
3=3), and the associated stabilizing solution of the Riccati equation is

Y () =
2 +

√
132 − 4

32 − 1 :

It follows that the optimal parameter opt must be greater than x;2 = 2.

390 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

For the third condition (A3) we have 2x;1¿�(X (x;1)Y (x;1)), since X (x;1) =−1 and

Y (x;1) =
2(1 +

√
11)

5
:

But x;1 is obviously not optimal. So in a typical optimization procedure to determine the optimal
one needs �rst to determine x;2 and y;2, but X (x;2); Y (y;2) are not de�ned.

We see from this example that, as for the solution of the linear quadratic control problem, the
Riccati solutions X∞ and Y∞ should be avoided. Fortunately, this can again be done quite easily.
In [87, Theorem 16:16, p. 445] it is shown that conditions (A1)–(A3) may be replaced by the
alternative conditions
(B1) There exist matrices Q1; Q2 ∈ Rn;n such that

H∞

[
Q1
Q2

]
=
[
Q1
Q2

]
Tx;

where Tx has only eigenvalues with nonpositive real parts and QT1Q2 = Q
T
2Q1.

(B2) There exist matrices U1; U2 ∈ Rn;n such that[
U1
U2

]T
J∞ = Ty

[
U1
U2

]T
;

where Ty has only eigenvalues with nonpositive real parts and U T
1 U2 = U

T
2 U1.

(B3) [
QT2Q1 −1QT2U2

−1U T
2 Q2 U T

2 U1

]

is symmetric positive semide�nite.
If these conditions hold then ||Tzw||∞6 and the admissable controller is in descriptor form

Êq̇= Âq+ B̂y

u= Ĉq+ D̂y;
(37)

with Ê =U T
1 Q1 − −1U T

2 Q2, B̂=U
T
2 C

T
2 , Ĉ =−BT2Q2, D̂= 0 and Â= ÊTx − B̂C2Q1 = TyÊ +U T

1 B2Ĉ.
Using this result, only the invariant subspaces of H∞ and J∞ are involved and they can be

determined via the same methods that we have discussed in the previous section.
Thus not only is it possible to avoid the ill-conditioned Riccati equation but also we can employ

structure preservation as described above and as in the case of the linear quadratic control problem.
The computation of these subspaces is usually much better conditioned than the computation of the
Riccati solutions.
Thus, the solution of the H∞ control problem should be approached via the usual optimization

procedures like in [18,31,34,75], using in each optimization step Algorithm 1 to determine the
subspaces in (B1) and (B2) and a Cholesky factorization to check condition (B3). An implementation
and analysis of such a procedure is currently under investigation.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 391

7. Conclusion

We have discussed several standard problems of linear control theory, like pole assignment, sta-
bilization, linear quadratic and H∞ control and have demonstrated some of the di�culties that arise
in the numerical solution of these problems due to inherent ill-conditioning in the problem. We have
also suggested several reformulated versions of the problem, which are sometimes more complicated
to solve, but which yield results that are much more robust to perturbations.

References

[1] J. Ackermann, Der Entwurf linearer Regelungssysteme im Zustandsraum, Regelungstechnik und Prozessdaten-
verarbeitung 7 (1972) 297–300.

[2] G.S. Ammar, P. Benner, V. Mehrmann, A multishift algorithm for the numerical solution of algebraic Riccati
equations, Electr. Trans. Numer. Anal. 1 (1993) 33–48.

[3] G.S. Ammar, V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms, Linear Algebra Appl. 149 (1991)
55–72.

[4] B.D.O. Anderson, J.B. Moore, Linear Optimal Control, Prentice-Hall, Englewood Cli�s, NJ, 1971.
[5] M. Arnold, Algorithms and conditioning for eigenvalue assigment, Ph.D. Thesis, Department of Mathematics,

Northern Illinois University, De Kalb, 1993.
[6] M. Arnold, B.N. Datta, Single-input eigenvalue assignment algorithms: a close-look, SIAM J. Matrix Anal. Appl.

19 (1997) 444–467.
[7] M. Athans, P.L. Falb, Optimal Control, McGraw-Hill, New York, 1966.
[8] P. Benner, R. Byers, V. Mehrmann, H. Xu, Numerical methods for linear quadratic and H∞ control problems, in: G.

Picci, D.S. Gillian (Eds.), Dynamical Systems, Control, Coding, Computer Vision, Progress in Systems and Control
Theory, Vol. 25, Birkh�auser, Basel, 1999, pp. 203–222.

[9] P. Benner, R. Byers, V. Mehrmann, H. Xu, Numerical computation of deating subspaces of embedded Hamiltonian
pencils, preprint SFB393/99-22, Sonderforschungsbereich 393 Th Chemnitz, Germany (1999).

[10] P. Benner, V. Mehrmann, H. Xu, A new method for computing the stable invariant subspace of a real Hamiltonian
matrix, J. Comput. Appl. Math. 86 (1997) 17–43.

[11] P. Benner, V. Mehrmann, H. Xu, A numerically stable, structure preserving method for computing the eigenvalues
of real Hamiltonian or symplectic pencils, Numer. Math. 78 (1998) 329–358.

[12] P. Benner, V. Mehrmann, H. Xu, A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian
eigenvalue problems, Electron. Trans. Numer. Anal. 8 (1999) 115–126.

[13] P. Benner, V. Mehrmann, V. Sima, S. Van Hu�el, A. Varga, SLICOT – a subroutine library in systems and control
theory, Appl. Comp. Control Signals Circuits 1 (1999) 499–532.

[14] C.S. Berger, Robust pole-placement algorithm for adaptive control, Proc. IEE-D 135 (1988) 493–498.
[15] S.P. Bhattacharyya, E. De Souza, Pole assignment via Sylvester’s equations, Systems Control Lett. 1 (4) (1982)

261–263.
[16] S. Bittanti, A. Laub, J.C. Willems (Eds.), The Riccati Equation, Springer, Berlin, 1991.
[17] A. Bunse-Gerstner, R. Byers, V. Mehrmann, Numerical methods for algebraic Riccati equations, in: S. Bittanti

(Ed.), Proceedings of the Workshop on the Riccati Equation in Control, Systems, and Signals, Como, Italy, 1989,
pp. 107–116.

[18] S. Boyd, V. Balakrishnan, A regularity result for the singular values of a transfer matrix and a quadratically
convergent algorithm for computing its L∞ norm, Systems Control Lett. 15 (1990) 1–7.

[19] R. Byers, Hamiltonian, symplectic algorithms for the algebraic Riccati equation, Ph.D Thesis, Cornell University,
Department of Computer Science, Ithaca, NY, 1983.

[20] R. Byers, A Hamiltonian QR-algorithm, SIAM J. Sci. Statist. Comput. 7 (1986) 212–229.
[21] R. Byers, A bisection method for measuring the distance of a stable to unstable matrices, SIAM J. Sci. Statist.

Comput. 9 (1988) 875–881.

392 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

[22] D. Calvetti, B. Lewis, L. Reichel, On the selection of poles in the single input pole placement problem, Linear
Algebra Appl. 301–303 (1999) 331–345.

[23] T. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88=89 (1987) 67–82.
[24] J.-H. Chou, Control systems design for robust pole-assignment in a speci�ed circular region, Control Theory Adv.

Tech. 7 (2) (1991) 237–245.
[25] C.L. Cox, W.F. Moss, Backward error analysis for a pole assignment algorithm, SIAM J. Matrix Anal. Appl. 10

(1989) 446–456.
[26] C.L. Cox, W.F. Moss, Backward error analysis for a pole assignment algorithm II: The complex case, SIAM J.

Matrix Anal. Appl. 13 (1992) 1159–1171.
[27] L. Dai, Singular Control Systems, Lecture Notes in Control, Information Sciences, Vol. 118, Springer, Berlin, 1989.
[28] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix pencils, in: B.

K�agstr�om, A. Ruhe (Eds.), Matrix Pencils, Lecture Notes in Mathematies, Vol. 973, Springer, Berlin, 1982, pp.
2–16.

[29] R. Eising, Between controllable and uncontrollable, Systems Control Lett. 4 (1984) 263–264.
[30] P. Gahinet, A.J. Laub, Numerically reliable computation of optimal performance in singular H∞ control, SIAM J.

Control Optim. 35 (5) (1997) 1690–1710.
[31] Y. Genin, P. Van Dooren, V. Vermaut, Convergence of the calculation of H∞-norms and related questions, in: G.

Picci, D.S. Gillian (Eds.), Proceedings of the MTNS-98, Padua, Birkh�auser, Basel, 1999.
[32] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, 1996.
[33] M. Green, D.J.N. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cli�s, NJ, 1995.
[34] D.W. Gu, P.Hr. Petkov, M.M. Konstantinov, Direct formulae for the H∞ sub-optimal central controller, SLICOT

Working Note SLWN1998-7, Department of Electrical Engineering, KU Leuven, see http:=www.esat.
kuleuven.ac.be=pub=WGS=REPORTS=.

[35] C. He, A.J. Laub, V. Mehrmann, Placing plenty of poles is pretty preposterous, Preprint 95–17: DFG-Forschergruppe
Scienti�c Parallel Computing, Fak. f. Mathematik, TU Chemnitz-Zwickau, D-09107 Chemnitz, FRG, May 1995.

[36] C. He, V. Mehrmann, Stabilization of large linear systems, in: L. Kulhav�a, M. K�arn�y, K. Warwick (Eds.), Proceedings
of the European IEEE Workshop CMP’94, Prague, September 1994, pp. 91–100.

[37] J.J. Hench, C. He, V. Kucera, V. Mehrmann, Dampening controllers via a Riccati equation approach, IEEE Trans.
Automat. Control AC-43 (1998) 1280–1284.

[38] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[39] Y.-T. Juang, Robust stability, robust pole assignment of linear systems with structured uncertainty, IEEE Trans.

Automat. Control 36 (5) (1991) 635–637.
[40] Y.-T. Juang, K.-H. Chen, Robust pole-assignment of linear dynamic systems, Control Theory Adv. Tech. 5 (1)

(1989) 67–74.
[41] T. Kailath, Systems Theory, Prentice-Hall, Englewood Cli�s, NJ, 1980.
[42] J. Kautsky, N.K. Nichols, P. Van Dooren, Robust pole assignment in linear state feedback, Internat. J. Control 41

(1985) 1129–1155.
[43] L.H. Keel, J.A. Fleming, S.P. Bhattacharya, Minimum norm pole assignment via Sylvester’s equation, Contemp.

Math. 47 (1985) 265–272.
[44] H.W. Knobloch, H. Kwakernaak, Lineare Kontrolltheorie, Springer, Berlin, 1985.
[45] M.M. Konstantinov, P.Hr. Petkov, Conditioning of linear state feedback, Technical Report 93-61, Department of

Engineering, Leicester University, 1993.
[46] M.M. Konstantinov, P.Hr. Petkov, N.D. Christov, Invariants and canonical forms for linear multivariable systems

under the action of orthogonal transformation groups, Kybernetika, Prague 17 (1981) 413–424.
[47] M.M. Konstantinov, P.Hr. Petkov, N.D. Christov, Conditioning of the output pole assignment, in Proceedings of

Third European Control Conference, Rome, Italy, September 1995.
[48] P. Kunkel, V. Mehrmann, The linear quadratic control problem for linear descriptor systems with variable coe�cients,

Math. Control Signals Systems 10 (1997) 247–264.
[49] V. Kucera, F.J. Kraus, Regional pole placement, Kybernetika, Prague 31 (1995) 541–546.
[50] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York, 1972.
[51] P. Lancaster, L. Rodman, The Algebraic Riccati Equation, Oxford University Press, Oxford, 1995.

V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394 393

[52] A.J. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in: S. Bittanti, A.J. Laub,
J.C. Willems (Eds.), The Riccati Equation, Springer, Berlin, 1991, pp. 163–196.

[53] W.-W. Lin, V. Mehrmann, H. Xu, Canonical forms for Hamiltonian, symplectic matrices and pencils, Lin. Alg.
Appl. 301–303 (1999) 469–553.

[54] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA 01760, The MATLAB Control Toolbox,
Version 3.0b, 1993.

[55] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA 01760, The MATLAB Robust Control
Toolbox, Version 2.0b, 1994.

[56] C. Mehl, Condensed forms for skew-Hamiltonian=Hamiltonian pencils, SIAM J. Matrix Anal. Appl. 21 (2000)
454–476.

[57] C. Mehl, Compatible Lie and Jordan Algebras and Applications to Structured Matrices and Pencils, Ph.D. Thesis,
Fakult�at f�ur Mathematik, TU Chemnitz, 09107 Chemnitz (FRG), 1998.

[58] V. Mehrmann, in: The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, Lecture
Notes in Control and Information Sciences, Vol. 163, Springer, Heidelberg, July 1991.

[59] V. Mehrmann, H. Xu, An analysis of the pole placement problem. I. The single-input case, Electr. Trans. Numer.
Anal. 4 (1996) 89–105.

[60] V. Mehrmann, H. Xu, Analysis of the pole placement problem II. The multi-input case, Electr. Trans. Numer. Anal.
5 (1997) 77–97.

[61] V. Mehrmann, H. Xu, Choosing poles so that the single-input pole placement problem is well-conditioned, SIAM
J. Matrix Anal. Appl. 19 (1998) 664–681.

[62] V. Mehrmann, H. Xu, Lagrangian invariant subspaces of Hamiltonian matrices, Preprint SFB393=98-25,
Sonderforschungsbereich 393, ‘Numerische Simulation auf massiv parallelen Rechnern’, Fakult�at f�ur Mathematik,
TU Chemnitz.

[63] G.S. Miminis, C.C. Paige, A direct algorithm for pole assignment of time-invariant multi-input linear systems using
state feedback, Automatica 24 (1988) 343–356.

[64] C.C. Paige, C.F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl. 14 (1981)
11–32.

[65] P.Hr. Petkov, N.D. Christov, M.M. Konstantinov, Computational Methods for Linear Control Systems, Prentice-Hall,
Hertfordshire, UK, 1991.

[66] P.Hr. Petkov, N.D. Christov, M.M. Konstantinov, Reliability of the algorithms and software for synthesis of
linear optimal systems, Technical Report, Department of Automatics, Higher Institute of Mechanical and Electrical
Engineering B1.2; 1156 So�a, Bulgaria, 1986.

[67] P.Hr. Petkov, D.W. Gu, M.M. Konstantinov, Fortran 77 routines for H∞; H2 design of continuous-time
linear control systems. SLICOT Working Note SLWN1998-8, Dept. of Electrical Engineering, KU Leuven, see
http:=www.esat.kuleuven.ac.be=pub=WGS=REPORTS=.

[68] M.M. Konstantinov, P.Hr. Petkov, D.W. Gu, I. Postlethwaite, Optimal pole assignment design of linear multi-input
systems, Technical Report 96–11, Department of Engineering, Leicester University, 1996.

[69] L.S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, E. Mishenko, The Mathematical Theory of Optimal Processes,
Interscience, New York, 1962.

[70] Y. Saad, Projection and deation methods for partial pole assignment in linear state feedback, IEEE Trans. Automat.
Control AC-33 (1988) 290–297.

[71] R. Santos-Mendes, J. Aguilar-Martin, Robust pole placement design, Internat. J. Control 50 (1) (1989) 113–128.
[72] V. Sima, An e�cient Schur method to solve the stabilization problem, IEEE Trans. Automat. Control AC-26 (1981)

724–725.
[73] V. Sima, Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics, Vol. 200, Marcel Dekker,

New York, NY, 1996.
[74] Y.C. Soh, R.J. Evans, I.R. Petersen, R.E. Betz, Robust pole assignment, Automatica 23 (1987) 601–610.
[75] J. Sreedhar, P. Van Dooren, A.L. Tits, A fast algorithm to compute the real structured stability radius, in: R. Jeltsch,

M. Mansour (Eds.), Stability Theory: Proceedings of Hurwitz Centenary Conference, Ticino, Switzerland, Birkh�auser,
Basel, 1996, pp. 219–230.

[76] J.G. Sun, Perturbation analysis of the pole assignment problem, SIAM J. Matrix Anal. Appl. 17 (1996) 313–331.

394 V. Mehrmann, H. Xu / Journal of Computational and Applied Mathematics 123 (2000) 371–394

[77] A.L. Tits, Y. Yang, Globally convergent algorithms for rubust pole assignment by state feedback, IEEE Trans.
Automat. Control 41 (1996) 1432–1452.

[78] M. Vala�s, N. Olgac, E�cient eigenvalue assignment for general linear MIMO systems, Automatica 31 (1995) 1605–
1617.

[79] P. Van Dooren, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat. Control
AC-26 (1981) 111–129.

[80] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist. Comput. 2
(1981) 121–135.

[81] C.F. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix, Linear Algebra
Appl. 61 (1984) 233–251.

[82] A. Varga, A Schur method for pole assignment, IEEE Trans. Automat. Control AC-26 (1981) 517–519.
[83] A. Varga, Robust and minimum norm pole assignement with periodic state feedback, IEEE Trans. Automat. Control

(2000), to appear.
[84] W.M. Wonham, On pole assignment in multi input controllable linear systems, IEEE Trans. Automat. Control AC-12

(1967) 660–665.
[85] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd Edition, Springer, New York, 1979.
[86] Y. Yang, A.L. Tits, On robust pole assignment by state feedback, Proceedings of the 1993 American Control

Conference San Francisco, Vol. 3, 1993, pp. 2765–2766.
[87] K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, 1996.

Journal of Computational and Applied Mathematics 123 (2000) 395–421
www.elsevier.nl/locate/cam

Krylov-subspace methods for reduced-order modeling
in circuit simulation

Roland W. Freund
Bell Laboratories, Lucent Technologies, Room 2C-525, 700 Mountain Avenue, Murray Hill, New Jersey 07974-0636,

USA

Received 11 September 1999; received in revised form 9 December 1999

Abstract

The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear,
systems of di�erential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the
equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper,
we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular
emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits. c© 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Lanczos algorithm; Arnoldi process; Linear dynamical system; VLSI interconnect; Transfer function; Pad�e
approximation; Stability; Passivity; Positive real function

1. Introduction

Today’s integrated electronic circuits are extremely complex, with up to tens of millions of devices.
Prototyping of such circuits is no longer possible, and instead, computational methods are used to
simulate and analyze the behavior of the electronic circuit at the design stage. This allows to correct
the design before the circuit is actually fabricated in silicon.
The simulation of electronic circuits involves the numerical solution of very large-scale, sparse,

in general nonlinear, systems of time-dependent di�erential-algebraic equations (DAEs); see, e.g.
[10,29,30] and the references given there. These systems can be so large that time integration
becomes ine�cient or even prohibitive. On the other hand, electronic circuits often contain large
linear subcircuits of passive components that contribute only linear equations to the system of DAEs
describing the whole circuit. In particular, such linear subcircuits may result from extracted RLC
models of the circuit’s wiring, the so-called interconnect, models of the circuit’s package, or models
of wireless propagation channels. By replacing the equations corresponding to linear subcircuits
by approximate models of much smaller state-space dimension, the size of the system of DAEs

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00396-4

396 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

describing the whole circuit can be reduced signi�cantly, so that time integration of the resulting
system becomes feasible; see, e.g. [11,20,24,26] and the references given there. In recent years, there
has been a lot of interest in generating suitable reduced-order models of linear subcircuits by means
of Krylov-subspace methods, such as the Lanczos algorithm and the Arnoldi process. For a survey
of these recent developments, we refer the reader to [13].
In this paper, we describe the use of Krylov-subspace methods for generating reduced-order models

of systems of linear DAEs, such as the ones arising in circuit simulation. Particular emphasis is on
projection techniques that, when applied to a passive circuit, preserve the passivity of the circuit.
We stress that the methods discussed in this paper are not restricted to systems of DAEs arising in
circuit simulation and that they can be applied to general time-invariant linear dynamical systems.
However, the development of these methods was mostly motivated by the need for reduced-order
modeling in circuit simulation.
The remainder of the paper is organized as follows. In Section 2, we briey review the sys-

tems of DAEs that arise in circuit simulation, and we describe how reduced-order models of linear
subcircuits can be employed to reduce the dimension of these systems. In Section 3, we introduce
our notion of block Krylov subspaces and review the construction of basis vectors via Lanczos and
Arnoldi algorithms. In Section 4, we de�ne reduced-order models based on projection and describe
their computation via Krylov-subspace methods. In Section 5, we discuss connections with Pad�e
and Pad�e-type approximants. In Section 6, we establish results on the stability and passivity of
reduced-order models obtained via projection. In Section 7, numerical results for two circuit exam-
ples are reported. Finally, in Section 8, we make some concluding remarks and mention a few open
problems.
Throughout this article, we use boldface letters to denote vectors and matrices. Unless stated

otherwise, vectors and matrices are allowed to have complex entries. As usual, M = [mjk]; MT =
[mkj], and MH =M

T
= [mkj] denote the complex conjugate, transpose, and the conjugate transpose,

respectively, of the matrix M = [mjk], and M¿0 means that M is Hermitian positive semi-de�nite.
The vector norm ‖x‖ :=√xH x is always the Euclidean norm, and ‖M‖ :=max‖x‖=1‖Mx‖ is the
corresponding induced matrix norm. We use In to denote the n × n identity matrix and 0n×m to
denote the n× m zero matrix; we will omit these indices whenever the actual dimensions of I and
0 are apparent from the context. The sets of real and complex numbers are denoted by R and C,
respectively. For s ∈ C; Re(s) is the real part of s. Finally, C+ := {s ∈ C |Re(s)¿ 0} is the open
right-half of the complex plane.

2. Circuit equations

In this section, we briey describe the systems of DAEs that arise in circuit simulation and
review how reduced-order modeling of linear subcircuits is employed in the numerical solution of
such systems. For introductions to circuit simulation and overviews of typical simulation tasks, we
refer the reader to [10,29,30].

2.1. General circuit equations

Electronic circuits are usually modeled as networks whose branches correspond to the circuit
elements and whose nodes correspond to the interconnections of the circuit elements; see, e.g.

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 397

[10,29,30]. Such networks are characterized by three types of equations: Kirchho� ’s current law
(KCL), Kirchho� ’s voltage law (KVL), and branch constitutive relations (BCRs). The unknowns
in these equations are the currents through the branches of the network, the voltage drops along the
branches, and the voltages at the nodes of the network. The KCLs and KVLs are linear algebraic
equations that only depend on the topology of the circuit. The KCLs state that, at each node N of
the network, the currents owing in and out of N sum up to zero. The KVLs state that, for each
closed loop L of the network, the voltage drops along L sum up to zero. The BCRs are equations
that characterize the actual circuit elements. For example, the BCR of a linear resistor is Ohm’s
law. The BCRs are linear equations for simple devices, such as linear resistors, capacitors, and in-
ductors, and they are nonlinear equations for more complex devices, such as diodes and transistors.
Furthermore, in general, the BCRs involve �rst time derivatives of the unknowns, and thus they are
�rst-order DAEs.
All the KCLs, KVLs, and BCRs characterizing a given circuit can be summarized as a system of

�rst-order, in general nonlinear, DAEs of the form

f (x̂; t) +
d
dt
q(x̂; t) = 0; (1)

together with suitable initial conditions. Here, x̂= x̂(t) is the unknown vector of circuit variables at
time t, the vector-valued function f (x̂; t) represents the contributions of nonreactive elements such
as resistors, sources, etc., and the vector-valued function (d=dt)q(x̂; t) represents the contributions
of reactive elements such as capacitors and inductors. There are a number of established methods,
such as sparse tableau, nodal formulation, and modi�ed nodal analysis, for writing down the system
(1); see, e.g. [30]. The vector functions x̂; f ; q in (1), as well as their dimension, N̂ , depend on
the chosen formulation method. The most general method is sparse tableau, which consists of just
listing all the KCLs, KVLs, and BCRs. The other formulation methods can be interpreted as starting
from sparse tableau and eliminating some of the unknowns by using some of the KCL or KVL
equations. For all the standard formulation methods, the dimension N̂ is of the order of the number
of devices in the circuit.

2.2. Linear subcircuits

Traditional circuit simulators are based on the numerical solution of the system of DAEs (1); see,
e.g. [30]. However, the dimension of (1) can be so large that time integration of (1) is ine�cient or
even prohibitive. On the other hand, circuits often contain large linear subcircuits that can be well
approximated by reduced-order models of much smaller dimension. By replacing the equations in
(1) corresponding to such linear subcircuits by their respective reduced-order models, one obtains
an approximate system of DAEs of much smaller dimension that can then be solved numerically by
time integration. We now describe this process in more detail.
Let Cl be a large linear subcircuit of a given circuit, and denote by Cr the, in general nonlinear,

remainder of the circuit. After a suitable reordering, the vector x̂ of circuit variables in (1) can be
partitioned as follows:

x̂=

 x̂ry
x̂l

 : (2)

398 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Here, x̂r and x̂l denote the circuit variables exclusive to Cr and Cl, respectively, and y represents
the variables shared by Cr and Cl. Using the partitioning (2) and setting

x0 :=
[
x̂r
y

]
and x :=

[
y
x̂l

]
; (3)

the functions f and q in (1), after a suitable reordering of the equations in (1), can be expressed
as follows:

f (x̂; t) =
[
f0(x0; t)
0k×1

]
+
[
0N̂−N×1
Gx

]
; q(x̂; t) =

[
q0(x0; t)
0k×1

]
+
[
0N̂−N×1
Cx

]
: (4)

Here, f0 and q0 represent the contributions of resistive and reactive elements from the subcircuit Cr,
and the matrices G and C represent the contributions of resistive and reactive elements in the linear
subcircuit Cl. In (4), without loss of generality, we have assumed that the vector-valued functions f0
and q0 have the same number of components, that the zero vectors below f0 and q0 have the same
length, k, and that the matrices G and C are square and of the same size, N ×N ; this can always be
achieved by padding f0; q0; G , and C with additional zeros, if necessary. Unless the subcircuit Cl
is completely decoupled form the remainder circuit Cr, we have m :=N −k ¿ 0. This means that, in
(4), the last m components of the, in general nonlinear, functions f0 and q0 are connected with the
�rst m components of the linear functions Gx and Cx. By introducing an additional m-dimensional
vector, u = u(t), of circuit variables, these m connecting equations can be decoupled. Indeed, using
(4), one readily veri�es that the original system (1) is equivalent to the following system:

f0(x0; t) +
d
dt
q0(x0; t) +

[
0
Im

]
u = 0; (5)

C
dx
dt
+ Gx=

[
Im
0

]
u: (6)

We remark that the additional variables u in (5) and (6) can be interpreted as interface signals
between the subcircuits Cr and Cl.
Let p denote the length of the vector y in the partitioning (2) of x̂, and set

B :=
[

Im
0N−m×m

]
and L :=

[
Ip

0N−p×p

]
:

Note that, by (3), the matrix LH = LT selects the subvector y from x, i.e.

y= LHx: (7)

Eqs. (6) and (7) constitute a linear dynamical system of the form

C
dx
dt
=−Gx+ Bu(t);

y(t) = LHx(t): (8)

In (8), in general, C ; G ∈ CN×N ; B ∈ CN×m, and L ∈ CN×p are given matrices, m and p denote
the number of inputs and outputs, respectively, the components of the given vector-valued function
u : [0;∞) 7→ Cm are the inputs, and y : [0;∞) 7→ Cp is the unknown function of outputs. The
components of the unknown vector-valued function x : [0;∞) 7→ CN are the state variables, and N

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 399

is the state-space dimension. In general, the matrices C and G in (8) are allowed to be singular.
However, we assume that G+sC is a regular matrix pencil, i.e., G+sC is singular only for �nitely
many values of s ∈ C. This condition is always satis�ed for linear dynamical systems (8) arising in
circuit simulation.
A reduced-order model of (8) is a linear dynamical system of the same form as (8), but of smaller

state-space dimension n¡N . More precisely, a reduced-order model of state-space dimension n is
of the form

Cn
dz
dt
=−Gnz + Bnu(t);

y(t) = LHn z(t): (9)

Here, Cn; Gn ∈ Cn×n; Bn ∈ Cn×m, and Ln ∈ Cn×p are matrices that should be chosen such that the
input–output mapping u(t) 7→ y(t) of (9) somehow approximates the input–output mapping of the
original system (8); see Section 2.3 below.
After a suitable reduced-order model (9) for systems (6) and (7) has been determined, the linear

part (6) of the circuit equations is replaced by the �rst set of equations in (9). The result is a
reduced-order system of DAEs that represents an approximation to the original system (1); see, e.g.
[9,26]. Provided that the size of Cl dominates that of Cr, the approximate system has a much smaller
state-space dimension than (1), and thus time integration by means of standard circuit simulators
becomes feasible.

2.3. Transfer functions

Next, we introduce the so-called transfer function, which describes the input–output behavior of
a linear dynamical system (9) in frequency domain.
For vector-valued functions g(t); t ∈ [0;∞), with g(0) = 0, we denote by

ĝ(s) =
∫ ∞

0
g(t)e−st dt; s ∈ C; (10)

the (frequency-domain) Laplace transform of g. We remark that in (10), the purely imaginary
values s= i!; !¿0, correspond to the frequency !; these are the physically meaningful values of
the complex variable s.
We now assume, for simplicity, zero initial conditions x(0) = 0 and u(0) = 0 in (8). By applying

(10) to the linear dynamical system (8), we obtain its frequency-domain formulation

sCx̂=−Gx̂+ Bû(s);
ŷ(s) = LHx̂(s): (11)

Eliminating x̂ in (11) results in the frequency-domain input–output relation ŷ(s) =H(s)û(s), where
H , the transfer function of (8), is given by

H(s) :=LH(G + sC)−1B; s ∈ C: (12)

Note that H : C 7→ (C ∪ {∞})p×m is a matrix-valued rational function.
Similarly, the transfer function Hn : C 7→ (C ∪ {∞})p×m of the reduced-order model (9) is given

by

Hn(s) :=LHn (Gn + sCn)
−1Bn; s ∈ C: (13)

400 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

In terms of transfer functions, the problem of constructing a reduced-order model (9) of size n
that approximates the input–output behavior of (8) can be stated as follows: Determine the matrices
Cn; Gn; Bn, and Ln in (9) such that the reduced-order transfer function (13), Hn, in some sense
approximates the transfer function (12), H , of the original linear dynamical system (8).
For systems (8) of small-to-moderate state-space dimension N , there is a variety of techniques

to construct reduced-order models such that, in some appropriate norm, Hn approximates H over a
whole range of values of s; see the references given in [13]. However, these techniques are usually
not applicable to large-scale systems (8), such as the ones arising in circuit simulation. In the latter
case, the matrices C and G in (8) are large and sparse. Note that, in view of (12), the evaluation
of H(s0) at even a single point s0 ∈ C requires the solution of systems of linear equations with the
large sparse coe�cient matrix G + s0C . Fortunately, the circuit matrices C and G are usually such
that sparse Gaussian elimination can be employed to compute an LU factorization

G + s0C = P1L0U0P2 (14)

of the matrix G + s0C . In (14), P1 and P2 are permutation matrices that record pivoting for sparsity
and numerical stability, L0 is a lower triangular matrix, and U0 is an upper triangular matrix. Pivoting
for sparsity means that the original ordering of the rows and columns of G + s0C is changed so
that potential �ll-in in the factors L0 and U0 is reduced. For circuit matrices, typically very little
�ll-in occurs in L0 and U0, although this cannot be guaranteed in general. Once the factorization
(14) is computed, the solution of the linear systems needed to evaluate H(s0) is obtained by sparse
backsolves.
Note that evaluating H(s0) at several points s0 would require the computation of a new fac-

torization (14) for each new point s0. Despite the limited �ll-in for circuit matrices, the cost for
factoring G + s0C is high enough that one tries to get away with computing a single factorization
(14). This is the case for reduced-order models that are characterized by a matching of the leading
terms in Taylor expansions of H and Hn about a given expansion point s0. More precisely, such a
reduced-order model of given size n is de�ned by

Hn(s) =H(s) + O(s− s0)q(n): (15)

If q(n) in (15) is as large as possible, then Hn is an nth matrix-Pad�e approximant of H ; see, e.g.
[5]. In Section 5, we will also discuss certain matrix-Pad�e-type approximants for which q(n) is not
maximal.

2.4. Linear RLC subcircuits

In circuit simulation, an important special case is linear subcircuits that consist of only resistors,
inductors, and capacitors. Such linear RLC subcircuits arise in the modeling of a circuit’s interconnect
and package; see, e.g. [16,17,20,24].
The equations describing linear RLC subcircuits are of the form (8). Furthermore, the equations can

be formulated such that the matrices in (8) exhibit certain symmetries; see [15,17]. More precisely,
the N × N matrices G and C are real and symmetric, and have the following block structure:

G = GT =
[
G11 G12
GT
12 0

]
and C = CT =

[
C11 0
0 −C22

]
: (16)

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 401

Here, the submatrices G11;C11 ∈ RN1×N1 and C22 ∈ RN2×N2 are symmetric positive semi-de�nite, and
N = N1 + N2. Note that, except for the special case N2 = 0, the matrices G and C are inde�nite.
The special case N2 = 0 arises for RC subcircuits that contain only resistors and capacitors, but no
inductors.
If the RLC subcircuit is viewed as an m-terminal component with m=p inputs and outputs, then

the matrices B and L in (8) are identical and of the form

B = L=
[
B1
0N2×m

]
with B1 ∈ RN1×m: (17)

For such an m-terminal RLC subcircuit, in view of (16) and (17), the transfer function (12) reduces
to

H(s) = BT(G + sC)−1B where G = GT; C = CT: (18)

We call a transfer function H symmetric if it is of the form (18) with real matrices G , C , and
B. For symmetric transfer functions, we will always assume that the expansion point s0 in (15) is
chosen to be real:

s0 ∈ R if H is symmetric: (19)

The condition (19) is necessary in order to generate passive reduced-order models of symmetric
transfer functions.
We will also use the following nonsymmetric formulation of (18). Let J be the block matrix

J =
[
IN1 0
0 −IN2

]
: (20)

Note that, by (17) and (20), we have B = JB. Using this relation, as well as (16), we can rewrite
(18) as follows:

H(s) = BT(JG + sJC)−1B; (21)

where

JG =
[
G11 G12
−GT

12 0

]
and JC =

[
C11 0
0 C22

]
:

In this formulation, the matrix JG is no longer symmetric, but now

JG + (JG)T¿0 and JC¿0: (22)

3. Basis vectors for block Krylov subspaces

In this section, we introduce our notion of block Krylov subspaces for multiple starting vectors.
We also review variants of the Arnoldi and Lanczos algorithms for generating basis vectors for
block Krylov subspaces.

3.1. Reduction to one matrix

Let s0 ∈ C be the expansion point that is to be used in the characterization (15) of the reduced-order
transfer function Hn. The only assumption on s0 is that the matrix G + s0C be nonsingular; this
guarantees that s0 is not a pole of the original transfer function (12), H .

402 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

An approximate transfer function Hn satisfying (15) could be obtained by �rst explicitly computing
the leading q(n) Taylor coe�cients of the expansion of H about s0 and then generating Hn from
these coe�cients; see, e.g. [25]. However, any approach based on explicitly computing the Taylor
coe�cients of H is inherently numerically unstable; see [8]. A much better alternative is to use
block Krylov-subspace methods that obtain the same information as contained in the leading q(n)
Taylor coe�cients of H , but in a more stable manner.
Before block Krylov-subspace methods can be employed, the two matrices G and C in the

de�nition (12) of H have to be reduced to a single matrix, denoted by A in the sequel. This can
be done by rewriting (12) as follows:

H(s) = LH(I + (s− s0)A)−1R; (23)

where

A := (G + s0C)−1C and R := (G + s0C)−1B:

Although G and C are sparse matrices, in general, the matrix A in (23) is a dense matrix. However,
block Krylov-subspace methods involve A only in the form of matrix-vector products AC and possibly
AHw. To e�ciently compute these products, one never needs to form A explicitly. Instead, one
uses the sparse factorization (14) of G + s0C . Each matrix–vector product AC then requires one
multiplication with the sparse matrix C and two backsolves with the sparse triangular matrices L0
and U0 from (14). Similarly, AHw requires one multiplication with CH and two backsolves with the
sparse triangular matrices LH0 and U

H
0 .

3.2. Block Krylov subspaces

Next, we introduce block Krylov subspaces. The proper de�nition of these subspaces is necessarily
quite involved, and the reader may ask if block Krylov subspaces could not be avoided altogether by
using standard Krylov subspaces induced by single vectors instead. For example, one can generate
scalar approximations for all the p · m coe�cient functions of the p × m-matrix-valued transfer
function H via suitable basis vectors for m+ p standard Krylov subspaces. However, the resulting
approximation is not a matrix-Pad�e approximant of H , and in fact, one can show that, in order to
obtain an approximation of the same quality as the matrix-Pad�e approximant, at least b(m + p)=2c
times more computational work is required compared to computing a matrix-Pad�e approximant.
Therefore, the use of block Krylov subspaces results in much more e�cient reduced-order modeling
techniques than those based on standard Krylov subspaces.
Let A ∈ CN×N be a given N × N matrix and

R= [r1 r2 · · · rm] ∈ CN×m (24)

be a given matrix of m right starting vectors, r1; r2; : : : ; rm. Before we introduce block Krylov
subspaces induced by A and R, we briey review the standard case m=1 of a single starting vector
r = r1. In this case, the usual nth Krylov subspace (induced by A and r) is given by

Kn(A; r) := span{r;Ar;A2r; : : : ;An−1r}: (25)

Let n0 be de�ned as the largest possible integer n such that in (25), all the Krylov vectors, A j−1r,
16j6n − 1, are linearly independent. Note that n06N . By the de�nition of n0, the nth Krylov

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 403

subspace (25) has dimension n if 16n6n0 and dimension n0 if n¿n0. Moreover, Kn(A; r) =
Kn0 (A; r) for all n¿n0. Thus, Kn0 (A; r) is the largest possible Krylov subspace (induced by A and
r), and we call the Krylov sequence r;Ar;A2r; : : : ;An−1r exhausted if n¿n0.
In the general case of m¿1 starting vectors (24), the situation is more complicated; we refer

the reader to the discussion in [1]. The main di�culty is that in contrast to the case m = 1, linear
independence of the columns in the block Krylov sequence,

R;AR;A2R; : : : ;A j−1R; : : : ; (26)

is lost only gradually in general. More precisely, if the jth block, A j−1R, contains a column that
is linearly dependent on columns to its left in (26), then, in general, not all the columns of A j−1R
are linear dependent on columns to their left. Hence, the occurrence of a linear-dependent column
does not necessarily imply that the block Krylov sequence R;AR;A2R; : : : ;A j−1R is exhausted. As
a result, in general, the construction of suitable basis vectors for the subspaces spanned by the
columns of (26) needs to be continued even after a linear-dependent column has been found in
(26). However, a proper handling of such linear-dependent columns requires that the column itself
and all its successive A-multiples need to be deleted. Formally, this can be done as follows. By
scanning the columns of the matrices in (26) from left to right and deleting each column that is
linearly dependent on earlier columns, we obtain the deated block Krylov sequence

R1;AR2;A2R3; : : : ;A jmax−1Rjmax : (27)

This process of deleting linearly dependent vectors is referred to as exact deation in the following.
In (27), for each j=1; 2; : : : ; jmax, Rj is a submatrix of Rj−1, with Rj 6= Rj−1 if, and only if, deation
occurred within the jth Krylov block A j−1R in (26). Here, for j = 1, we set R0 = R. Denoting by
mj the number of columns of Rj, we thus have

m¿m1¿m2¿ · · ·¿mjmax¿1: (28)

By construction, the columns of the matrices (27) are linearly independent, and for each n, the
subspace spanned by the �rst n of these columns is called the nth block Krylov subspace (induced
by A and R). In the following, we denote the nth block Krylov subspace by Kn(A;R). For later
use, we remark that for

n= m1 + m2 + · · ·+ mj where 16j6jmax; (29)

the nth block Krylov subspace is given by

Kn(A;R) = Colspan{R1;AR2;A2R3; : : : ;A j−1Rj}: (30)

For Lanczos-based reduced-order modeling techniques, we will also need the block Krylov subspaces
induced by AH and a given matrix of p left starting vectors,

L= [l1 l2 · · · lp] ∈ CN×p: (31)

Applying the above construction to AH and L, the nth block Krylov subspace (induced by AH and
L), Kn(AH;L), is de�ned as the subspace spanned by the �rst n columns of the deated block
Krylov sequence

L1;AHL2; (AH)2L3; : : : ; (AH)kmax−1Lkmax : (32)

404 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Denoting by pk the number of columns of Lk , we have

p¿p1¿p2¿ · · ·¿pkmax¿1: (33)

Note that for

n= p1 + p2 + · · ·+ pk where 16k6kmax;

we have

Kn(AH;L) = Colspan{L1;AHL2; (AH)2L3; : : : ; (AH)k−1Lk}:
We stress that in our construction of block Krylov subspaces, we only have used exact deation of
columns that are linearly dependent. In an actual algorithm for constructing basis vectors forKn(A;R)
and Kn(AH;L) in �nite-precision arithmetic, one also needs to delete vectors that are in some sense
“almost” linearly dependent on earlier vectors. We will refer to the deletion of such almost linearly
dependent vectors as inexact deation. In Sections 3.4 and 3.5 below, we describe how exact and
inexact deation can be built easily into Arnoldi- and Lanczos-type algorithms for multiple starting
vectors. While inexact deation is crucial in practice, concise statements of theoretical results are
much simpler if only exact deation is performed. Throughout this paper, theoretical results are thus
formulated for exact deation only.
For later use, we note the following invariance property of the block Krylov subspaces Kn(A;R)

induced by the matrices A and R de�ned in (23).

Lemma 1. Let G ; C ; B be the matrix triplet used in the de�nition of the matrices A and R in
(23); and let J be any nonsingular matrix of the same size as A. Then the matrix triplets G ; C ; B
and JG ; JC ; JB lead to the same nth block Krylov subspace Kn(A;R).

Proof. By (23), we have

A= (G + s0C)−1C = (JG + s0JC)−1JC ;

R= (G + s0C)−1B = (JG + s0JC)−1JB:

Thus both matrix triplets result in the same matrices A and R and the associated block Krylov
subspaces are identical.

3.3. Basis vectors

The columns of the deated block Krylov sequences (27) and (32), which are used in the above
de�nitions of Kn(A;R) and Kn(AH;L), respectively, tend to be almost linearly dependent even for
moderate values of n. Therefore, they should not be used in numerical computations. Instead, we
construct other suitable basis vectors.
In the following,

C1; C2; : : : ; Cn ∈ CN (34)

denotes a set of basis vectors for Kn(A;R), i.e.,

span{C1; C2; : : : ; Cn}=Kn(A;R):

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 405

The N × n matrix
Vn := [C1 C2 · · · Cn] (35)

whose columns are the basis vectors (34) is called a basis matrix for Kn(A;R).
Similarly,

w1;w2; : : : ;wn ∈ CN (36)

denotes a set of basis vectors for Kn(AH;L), i.e.,

span{w1;w2; : : : ;wn}=Kn(AH;L):

The N × n matrix
Wn := [w1 w2 · · · wn] (37)

is called a basis matrix for Kn(AH;L).
We stress that even though (34) and (36) are basis vectors of block Krylov subspaces, the

algorithms discussed in this paper generate (34) and (36) in a vector-wise fashion, as opposed
to the block-wise construction employed in more traditional block Krylov-subspace methods; see,
e.g. the references given in [1]. There are two main reasons why the vector-wise construction is
preferable to a block-wise construction. First, it greatly simpli�es both the detection of necessary
deation and the actual deation itself. In fact, all that is required is checking if a suitable candidate
vector for the next basis vector is the zero vector (for exact deation) or close to the zero vector (for
inexact deation). Second, for Lanczos-type methods, which simultaneously construct basis vectors
(34) and (36) for Kn(A;R) and Kn(AH;L), respectively, only the vector-wise construction allows
the treatment of the general case where the block sizes (28) and (33) of the deated block Krylov
sequences (27) and (32) are not necessarily the same; for a detailed discussion, we refer the reader
to [1].

3.4. Arnoldi basis

The classical Arnoldi process [3] generates orthonormal basis vectors for the sequence of Krylov
subspaces Kn(A; r), n¿1, induced by A and a single starting vector r. In this subsection, we state
an Arnoldi-type algorithm that extends the classical algorithm to block-Krylov subspaces Kn(A;R),
n¿1.
Like the classical Arnoldi process, the algorithm constructs the basis vectors (34) to be orthonor-

mal. In terms of the basis matrix (35), this orthonormality can be expressed as follows:

VH
n Vn = I :

In addition to (34), the algorithm produces the so-called candidate vectors,

Ĉn+1; Ĉn+2; : : : ; Ĉn+mc ; (38)

for the next mc basis vectors Cn+1; Cn+2; : : : ; Cn+mc . Here, mc = mc(n) is the number m of columns in
the starting block (24), R, reduced by the number of exact and inexact deations that have occurred
so far. The candidate vectors (38) satisfy the orthogonality relation

VH
n [Ĉn+1 Ĉn+2 · · · Ĉn+mc] = 0:

406 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Due to the vector-wise construction of (34) and (38), detection of necessary deation and the
actual deation becomes trivial. In fact, essentially the same proof as given in [1] for the case of
a Lanczos-type algorithm can be used to show that exact deation at step n of the Arnoldi-type
process occurs if, and only if, Ĉn = 0. Similarly, inexact deation occurs if, and only if, ‖Ĉn‖ ≈ 0,
but Ĉn 6= 0. Therefore, in the algorithm, one checks if

‖Ĉn‖6dtol; (39)

where dtol¿0 is a suitably chosen deation tolerance. If (39) is satis�ed, then Ĉn is deated by
deleting Ĉn, shifting the indices of all remaining candidate vectors by −1, and setting mc = mc − 1.
If this results in mc = 0, then the block-Krylov subspace is exhausted and the algorithm is stopped.
Otherwise, the deation procedure is repeated until a vector Ĉn with ‖Ĉn‖¿ dtol is found. This
vector is then turned into Cn by normalizing it to have Euclidean norm 1.
A complete statement of the resulting Arnoldi-type algorithm is as follows.

Algorithm 1 (Construction of Arnoldi basis for Kn(A;R).).

(0) Set Ĉi = ri for i = 1; 2; : : : ; m.
Set mc = m.

For n= 1; 2; : : : ; do:
(1) Compute ‖Ĉn‖ and check if the deation criterion (39) is ful�lled.

If yes; Ĉn is deated by doing the following:
Set mc = mc − 1. If mc = 0; set n= n− 1 and stop.
Set Ĉi = Ĉi+1 for i = n; n+ 1; : : : ; n+ mc − 1.
Return to Step (1).

(2) Set tn;n−mc = ‖Ĉn‖ and Cn = Ĉn=tn;n−mc .
(3) Compute Ĉn+mc = ACn.
(4) For i = 1; 2; : : : ; n do:

Set ti; n = CHi Ĉn+mc and Ĉn+mc = Ĉn+mc − Citi; n.
(5) For i = n− mc + 1; n− mc + 2; : : : ; n− 1 do:

Set tn; i = CHn Ĉi+mc and Ĉi+mc = Ĉi+mc − Cntn; i.

Remark 2. If dtol= 0 in (39), then Algorithm 1 performs only exact deation.

Remark 3. Other block-Arnoldi algorithms (all without deation though) can be found in [28,
Section 6:12].

After n passes through the main loop, Algorithm 1 has constructed the �rst n basis vectors (34)
and the candidate vectors (38) for the next mc basis vectors. In terms of the basis matrix (35), Vn,
the recurrences used to generate all these vectors can be written compactly in matrix format. To this
end, we collect the recurrence coe�cients computed during the �rst n=m1 and n¿1 passes through
the main loop of Algorithm 1 in the matrices

� := [ti; l−m]i=1;2; :::;m1
l=1;2; :::;m

and Tn := [ti; l]i=1;2; :::; n
l=1;2; :::; n

; (40)

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 407

respectively. Here, m1 is the integer given by (27) and (28). Moreover, in (40), all elements ti; l−m
and ti; l that are not explicitly de�ned in Algorithm 1 are set to be zero. The compact statement of
the recurrences used in Algorithm 1 is now as follows. For n¿1, we have

AVn = VnTn + [0 · · · 0 Ĉn+1 Ĉn+2 · · · Ĉn+mc]: (41)

Furthermore, for n= m1, we have the relation

R= Vm1�; (42)

which reects the fact that the �rst m1 basis vectors are obtained by orthonormalizing the columns
of the matrix (24), R. In (41) and (42), we assumed that only exact deations are performed. If

both exact and inexact deations are performed, then an additional matrix term, say V̂
de

n , appears

on the right-hand side of (41), respectively (42). The only non-zero columns of V̂
de

n are those
non-zero vectors that satis�ed the deation check (39). Since at any stage of Algorithm 1, at most
m−mc =m−mc(n) vectors have been deated, the additional matrix term is small in the sense that

‖V̂ de

n ‖6dtol
√
m− mc(n):

3.5. Lanczos basis

The classical Lanczos process [21] generates two sequences of basis vectors (34) and (36) that
span the Krylov subspaces Kn(A; r) and Kn(AH; l), respectively, where r and l are single start-
ing vectors. In [1], a Lanczos-type method was presented that extends the classical algorithm to
block-Krylov subspaces Kn(A;R) and Kn(AH;L) with blocks R and L of multiple right and left
starting vectors (24) and (31). Such a Lanczos-type method is necessarily quite involved, and in
order to keep this paper reasonably short, here we only state the governing equations that underlie
the algorithm. For a complete listing of the actual algorithm, we refer the reader to [13, Algorithm
9:2].
Like the classical Lanczos process, the extended algorithm constructs the basis vectors (34) and

(36) to be biorthogonal. In terms of the associated basis matrices (35) and (37), the biorthogonality
can be expressed as follows:

WH
n Vn = �n := diag(�1; �2; : : : �n): (43)

Here, for simplicity, we have assumed that no look-ahead steps are necessary. This implies that �n
is a diagonal matrix, as stated in (43), and that all diagonal entries of �n are nonzero. If look-ahead
steps occur, then �n is a block-diagonal matrix; see [1] for further details. In addition to (34) and
(36), the algorithm constructs the candidate vectors

Ĉn+1; Ĉn+2; : : : ; Ĉn+mc and ŵn+1; ŵn+2; : : : ; ŵn+pc (44)

for the next mc basis vectors Cn+1; Cn+2; : : : ; Cn+mc and the next pc basis vectors wn+1;wn+2; : : : ;wn+pc ,
respectively. Here, as in Section 3.4, mc = mc(n) is the number m of columns in the right starting
block (24), R, reduced by the number of exact and inexact deations of candidate vectors Ĉn that
have occurred so far. Analogously, pc =pc(n) is the number p of columns in the left starting block
(31), L, reduced by the number of exact and inexact deations of candidate vectors ŵn that have

408 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

occurred so far. Similar to (39) a deation of the candidate vector Ĉn, respectively ŵn, is performed
if, and only if,

‖Ĉn‖6dtol; respectively ‖ŵn‖6dtol; (45)

where dtol¿0 is a suitably chosen deation tolerance. If dtol=0, then (45) only checks for exact
deation.
The candidate vectors (44) are constructed to satisfy the following biorthogonality relations:

WH
n [Ĉn+1 Ĉn+2 · · · Ĉn+mc] = 0;

VH
n [ŵn+1 ŵn+2 · · · ŵn+pc] = 0:

(46)

The actual recurrences used to generate the basis vectors (34) and (36) and the candidate vectors
(44) can be summarized compactly in matrix form. For simplicity, we again assume that only exact
deation is performed. Then, for n¿1, we have

AVn = VnTn + [0 · · · 0 Ĉn+1 Ĉn+2 · · · Ĉn+mc];
AHWn =WnT̃ n + [0 · · · 0 ŵn+1 ŵn+2 · · · ŵn+pc]: (47)

Moreover, for n= m1, respectively n= p1, we have the relations

Vm1�= R; respectively Wp1�= L; (48)

which summarize the recurrences for processing the starting blocks R and L. We note that the
matrices Tn and T̃ n in (47) essentially encode the same information. In fact, by pre-multiplying the
�rst and second relation in (47) by Wn and Vn and by using (43) and (46), it follows that

WH
n AVn = �nTn = T̃

H

n�n: (49)

In particular, (49) implies that T̃
H

n = �nTn�
−1
n .

Finally, we note that for symmetric transfer functions (18), such as the ones describing RLC
subcircuits, the Lanczos-type method sketched in this section can exploit the symmetry inherent in
(18). Indeed, in this case, the Lanczos basis vectors (34) and (36) are connected as follows:

wn = n(G + s0C)Cn for all n: (50)

Here, n 6= 0 are suitable normalization factors. In view of (50), only the vectors (34) need to be
generated. This results in a symmetric variant of the Lanczos-type method that requires only half the
computational work and storage of the general case; see [15–17] for further details. For later use,
we note that for symmetric transfer functions (18), the coe�cient matrices in (48) can be chosen
to be identical:

�= � ∈ Rm1×m: (51)

In fact, by (23), (18), and (19), (G + s0C)R = B = L and all these matrices are real. In view of
(48) and (50), this implies (51).

4. Reduced-order models based on projection

In this section, we introduce two reduced-order models based on a one-sided projection onto
Kn(A;R), respectively a two-sided projection onto Kn(A;R) and Kn(AH;L).

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 409

4.1. Projection onto Kn(A;R)

Let Vn ∈ CN×n be a given matrix with full column rank n. By simply projecting the matrices G ,
C , B, and L in the original linear dynamical system (8) onto the subspace spanned by the columns
of Vn, we obtain a reduced-order model (9) with matrices Gn, Cn, Bn, and Ln given by

Gn :=VH
n GVn; Cn :=VH

n CVn; Bn :=VH
n B; Ln :=VH

n L: (52)

In particular, we now assume that Vn is a basis matrix (35) forKn(A;R). In this case, the reduced-order
model de�ned by (9) and (35) represents a (one-sided) projection of the original system (8) onto the
nth block-Krylov subspace Kn(A;R). In the sequel, we denote the associated reduced-order transfer
function by

H (1)
n (s) :=L

H
n (Gn + sCn)

−1Bn; (53)

where the superscript (1) indicates the one-sided projection. In Section 5.1 below, we show that H (1)
n

is a certain Pad�e-type approximant of the original transfer function H .
The following proposition shows that H (1)

n is independent of the actual choice of the basis matrix
Vn for Kn(A;R).

Proposition 4. The reduced-order transfer function H (1)
n given by (52) and (53) does not depend

on the particular choice of the basis matrix (35); Vn; for the nth block Krylov subspace Kn(A;R).

Proof. Let Vn be the basis matrix for Kn(A;R) that is used in (52). Let Ṽn be any other basis
matrix for Kn(A;R). In analogy to (52) and (53), Ṽn induces the reduced-order transfer function

H̃ n(s) = L̃
H

n (G̃ n + sC̃ n)−1B̃n; (54)

where

G̃ n = Ṽ
H

n GṼn; C̃ n = Ṽ
H

n CṼn; B̃n = Ṽ
H

n B; L̃n = Ṽ
H

n L:

Since Vn and Ṽn are basis matrices for the same subspace, there exists a nonsingular n × n matrix
M such that Ṽn = VnM . Using this relation, we obtain from (54) and (52) that

G̃ n =MHGnM ; C̃ n =MHCnM ; B̃n =MHBn; L̃n =MHLn: (55)

Inserting (55) into (54), we get

H̃ n(s) =LHnM(M
H(Gn + sCn)M)−1MHBn

=LHn (Gn + sCn)
−1Bn =H (1)

n (s):

Thus, the reduced-order transfer functions H (1)
n and H̃ n are identical.

4.2. Two-sided projection onto Kn(A;R) and Kn(AH;L)

Let Vn and Wn be any two basis matrices of Kn(A;R) and Kn(AH;L), and consider the represen-
tation (23) of the transfer function H of (8). By projecting the matrices in (23) from the right and
left onto the columns of Vn and Wn, respectively, we obtain the reduced-order transfer function

H (2)
n (s) := (V

H
n L)

H(WH
n Vn + (s− s0)WH

n AVn)
−1(WH

n R): (56)

In analogy to Proposition 4, we have the following result.

410 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Proposition 5. The reduced-order transfer function H (2)
n given by (56) does not depend on the

particular choice of the basis matrices Vn and Wn for the nth block Krylov subspaces Kn(A;R)
and Kn(AH;L).

Proof. Analogous to the proof of Proposition 4.

4.3. Computation via Krylov-subspace algorithms

In view of Proposition 5, the reduced-order transfer function (56), H (2)
n , can be generated from

any two basis matrices Vn and Wn. However, there is one distinguished choice of Vn and Wn that
eliminates the need to explicitly compute the projections in (56). This choice is the Lanczos basis
described in Section 3.5.
Indeed, let n¿max{m1; p1}, and assume that the Lanczos-type algorithm is run for n steps. Let �n

be the diagonal matrix de�ned in (43), and let Tn, �, and � be the matrices of recurrence coe�cients
given by (47) and (48). Then, from (43) and (48), it readily follows that

WH
n R= �n�n and VH

n L= �
H
n �n; (57)

where

�n :=
[

�
0n−m1×m

]
and �n :=

[
�

0n−p1×p

]
: (58)

Furthermore, by multiplying the �rst relation in (47) from the left by WH
n and using the �rst relation

in (46), as well as (43), we get

WH
n AVn = �nTn and WH

n Vn = �n: (59)

Inserting (57) and (59) into (56), it readily follows that

H (2)
n (s) = �

H
n (�

−1
n + (s− s0)Tn�−1

n)
−1�n: (60)

The MPVL (matrix-Pad�e via Lanczos) algorithm, which was �rst proposed in [9], is a numerical
procedure for computing H (2)

n via the formula (60).
For symmetric transfer functions (18), by (51) and (58), the reduced-order transfer function (60)

is also symmetric:

H (2)
n (s) = �

T
n (�

−1
n + (s− s0)Tn�−1

n)
−1�n; (61)

where �−1
n and Tn�

−1
n are real symmetric matrices. The SyMPVL algorithm [16,17] is a special

symmetric variant of the general MPVL algorithm that computes symmetric reduced-order transfer
functions (61).
Furthermore, recall from Section 2.4 that RLC subcircuits are described by special symmetric

transfer functions (18) with matrices G , C , and B of the form (16) and (17). In this case, as
we will discuss in Section 6, the reduced-order transfer function (60) in general does not preserve
the passivity of the RLC subcircuit. However, one can easily augment the SyMPVL algorithm to
generate a second projected reduced-order model that, by Corollary 14 below, is always passive.
To this end, let J be the matrix de�ned in (20), and consider the nonsymmetric formulation (21)
of the symmetric transfer function (18). Note that by Lemma 1, both formulations (18) and (21)
result in the same nth block Krylov subspace Kn(A;R). In particular, the Lanczos basis matrix Vn

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 411

generated by SyMPVL is also a basis matrix for the nth block Krylov subspace associated with
the nonsymmetric formulation (21). Hence we can also use Vn to apply the one-sided projection of
Section 4.1 to (21). By (21), (52), and (53), the resulting projected reduced-order transfer function
is given by

H (1)
n (s) := (V

T
n B)

T(VT
n (JG)Vn + sV

T
n (JC)Vn)

−1(VT
n B): (62)

5. Connections with Pad�e-type and Pad�e approximants

In this section, we show that the one-sided projection H (1)
n is actually a matrix-Pad�e-type approx-

imant of H , and we review the matrix-Pad�e property of H (2)
n .

5.1. H (1)
n is a matrix-Pad�e-type approximant

Although the reduced-order transfer function (53), H (1)
n , is de�ned via the simple one-sided pro-

jection (52), it satis�es an approximation property of the form (15), where, however, q(n) is not
maximal in general. This means that H (1)

n is a matrix-Pad�e-type approximant of H . For the special
case of expansion point s0 = 0 and a basis matrix Vn generated by a simple block Arnoldi proce-
dure without deation, it was �rst observed in [22,23] that H (1)

n satis�es an approximation property
(15). Here, we extend this result to the most general case of arbitrary expansion points s0 and ar-
bitrary basis matrices Vn for the properly de�ned block Krylov subspaces Kn(A;R) that allow for
necessary deation of linearly dependent vectors. The only further assumption we need is that the
matrix

Gn + s0Cn is nonsingular: (63)

This guarantees that s0 is not a pole of H (1)
n . Since, by (52),

Gn + s0Cn = VH
n (G + s0C)Vn;

the condition (63) also ensures that the matrix G + s0C is nonsingular.
Expanding the transfer function H in (23) about s0, we get

H(s) =
∞∑
i=0

(−1)iMi(s− s0)i ; where Mi :=LHAiR: (64)

On the other hand, expanding the reduced-order transfer function H (1)
n in (52) about s0 gives

H (1)
n (s) =

∞∑
i=0

(−1)iM (1)
i (s− s0)i ; (65)

where

M (1)
i :=LHn ((Gn + s0Cn)

−1Cn)i(Gn + s0Cn)−1Bn:

We now show that for any n of the form (29), the �rst j terms in the expansions (64) and (65)
are identical. To this end, we �rst establish the following proposition.

412 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Proposition 6. Let n= m1 + m2 + · · ·+ mj; where 16j6jmax. Then; the matrix
Fn :=Vn(Gn + s0Cn)−1VH

n C (66)

satis�es the following relations:

M (1)
i = LHF inR for all i = 0; 1; : : : ; (67)

F inR= A
iR for all i = 0; 1; : : : ; j − 1: (68)

Proof. By (29) and (30), for each i = 1; 2; : : : ; j, the columns of the matrix AiR are all contained
in Kn(A;R). Since Vn is a basis matrix for Kn(A;R), for each i = 1; 2; : : : ; j, there exists an n× m
matrix Ei such that

Ai−1R= VnEi : (69)

We now prove (67). From (23) and (69) (for i = 1), we get

B = (G + s0C)R= (GVn + s0CVn)E1: (70)

Multiplying (70) from the left by VH
n and using (52), it follows that

(Gn + s0Cn)−1Bn = E1: (71)

Moreover, from (66), we obtain the relation FnVn = Vn(Gn + s0Cn)−1Cn, which, by induction on i,
implies that

F inVn = Vn((Gn + s0Cn)
−1Cn)i for all i = 0; 1; : : : : (72)

Note that, by (52), LHn =L
HVn. Using this relation, as well as (65), (71), (72), and (69) (for i=1),

it follows that, for all i = 0; 1; : : : ;

M (1)
i =LH(Vn((Gn + s0Cn)−1Cn)i)((Gn + s0Cn)−1Bn)

=LH(F inVn)E1 = L
HF inR:

This is just the desired relation (67).
Next, we prove (68) using induction on i. For i = 0, (68) is trivially satis�ed. Now assume that

(68) is true for some 06i¡ j − 1. We show that (68) then also holds true for i + 1, i.e.,
F i+1n R= Ai+1R: (73)

Using (23), (68), and (69) (with i replaced by i + 1), we get

((G + s0C)−1C)(F inR) = A(A
iR) = Ai+1R= VnEi+1: (74)

Multiplying (74) from the left by VH
n (G + s0C), it follows that

(VH
n C)(F

i
nR) = (V

H
n (G + s0C)Vn)Ei+1 = (Gn + s0Cn)Ei+1: (75)

Using (66) and (69) (with i replaced by i + 1), we obtain from (75) that

F i+1n R= Fn(F inR) = Vn((Gn + s0Cn)
−1VH

n C)(F
i
nR)

=VnEi+1 = Ai+1R;

which is just the desired relation (73).

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 413

Theorem 7. Let n=m1+m2+ · · ·+mj; where 16j6jmax; and let H (1)
n be the reduced-order transfer

function given by (52) and (53). Let s0 ∈ C be an expansion point such that (63) is satis�ed.
Then; H (1)

n satis�es

H (1)
n (s) =H(s) + O(s− s0) j; (76)

i.e.; H (1)
n is a matrix-Pad�e-type approximant of the transfer function (12); H .

Proof. By (64) and (65), the assertion (76) is equivalent to

M (1)
i =Mi for all i = 0; 1; : : : ; j − 1: (77)

By Proposition 6, the matrix Fn de�ned in (66) satis�es relations (67) and (68). Inserting (68) into
(67) gives

M (1)
i = LHF inR= L

HAiR=Mi for all i = 0; 1; : : : ; j − 1;
which is just the desired property (77).

Remark 8. By (28) and (29), we have j¿bn=mc. Therefore, by Theorem 7, the Taylor expansions
of H (1)

n and H about s0 match in at least the �rst bn=mc coe�cient matrices.

Remark 9. If p¡m, then a matrix-Pad�e-type approximant that matches at least the �rst bn=pc
Taylor coe�cient matrices of H about s0 can be obtained by performing the one-sided projection
described in Section 4.1 onto Kn(AH;L), instead of Kn(A;R).

5.2. H (2)
n is a matrix-Pad�e approximant

It turns out that, in general, the reduced-order transfer function H (2)
n de�ned in (56) is even a

better approximation to H than H (1)
n . To properly state this result, we �rst de�ne the integers

nmin :=max{m1; p1} and nmax :=min

jmax∑
j=1

mj;
kmax∑
k=1

pk

 ;

where the mj’s and pk’s are the integers given by (27), (28) and (32), (33), respectively. The main
result of this section is then as follows.

Theorem 10. Let nmin6n6nmax; and let j = j(n) and k = k(n) be the maximal integers such that

m1 + m2 + · · ·+ mj6n and p1 + p2 + · · ·+ pk6n; (78)

respectively. Let s0 ∈ C be an expansion point such that (63) is satis�ed; and let H (2)
n be the

reduced-order transfer function given by the two-sided projection (56). Then; H (2)
n satis�es

H (2)
n (s) =H(s) + O(s− s0)q(n); where q(n) = j(n) + k(n): (79)

Moreover; in (79); the exponent q(n) is as large as possible; and hence H (2)
n is a matrix-Pad�e

approximant of the transfer function (12); H .

414 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Proof. In [12], we studied the reduced-order transfer function H (2)
n given by (60), where �n, �n,

�n, and Tn are the matrices generated by n steps of the Lanczos-type method sketched in Section
3.5. In particular, in [12, Theorem 1], we showed that H (2)

n satis�es the properties listed in Theorem
10 above. Recall from Section 4.2 that the reduced-order transfer functions de�ned in (56) via a
two-sided projection and the one given by (60) in terms of the Lanczos-type method are identical.
Therefore, the assertions in Theorem 10 follow from [12, Theorem 1].

Remark 11. In view of (28), (33), and (78), we have j(n)¿bn=mc and k(n)¿bn=pc. Therefore, by
Theorem 10, the Taylor expansions of H (2)

n and H about s0 match in at least the �rst bn=mc+bn=pc
coe�cient matrices.

6. Passivity and stability

As we discussed in Section 2, in circuit simulation, reduced-order modeling is mostly applied
to large passive linear subcircuits, such as RLC networks consisting of only resistors, inductors,
and capacitors. When reduced-order models of such subcircuits are used within a simulation of the
whole circuit, stability of the overall simulation can only be guaranteed if the reduced-order models
preserve the passivity of the original subcircuits; see, e.g. [6,27]. Unfortunately, except for special
cases such as RC subcircuits consisting of only resistors and capacitors, the Pad�e model given by
H (2)
n is not passive in general; see, e.g. [4,7,14,15,19]. In this section, we derive a su�cient criterion

for passivity of general transfer functions, and then apply the criterion to establish passivity of the
particular projected model given by (62).
Roughly speaking, a (linear or nonlinear) dynamical system is passive if it does not generate

energy. The concept was �rst used in circuit theory; see, e.g. [2,18]. For example, networks consisting
of only resistors, inductors, and capacitors are passive.
The following well-known theorem (see, e.g. [2,31]) relates the passivity of the linear dynamical

system (8) to the positive realness of its transfer function. Here and in the sequel, we assume that
m= p in (8).

Theorem A. The linear dynamical system (8) is passive if; and only if; the associated transfer
function (12); H , is positive real.

The de�nition of a positive real matrix-valued function is as follows; see, e.g. [2].

De�nition 12. A function H : C 7→ (C ∪ {∞})m×m is called positive real if
(i) H has no poles in C+;
(ii) H(�s) =H(s) for all s ∈ C;
(iii) Re(xHH(s)x)¿0 for all s ∈ C+ and x ∈ Cm.

Recall that a function H : C 7→ (C ∪ {∞})m×m is stable if H has no poles in C+ and if all
possible purely imaginary poles of H are simple. It is well known that any positive real function is
necessary stable.
Next, we prove the following su�cient condition for positive realness.

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 415

Theorem 13. Let G ;C ∈ RN×N ; and B ∈ RN×m. Assume that G + GT¿0; C = CT¿0; and that
G + sC is a regular matrix pencil. Then; the transfer function

H(s) :=BT(G + sC)−1B; s ∈ C; (80)

is positive real.

Proof. We need to show that H satis�es the conditions (i)–(iii) given in De�nition 12.
Condition (ii) follows directly from the fact that the matrices G , C , and B in (80) are real.
Next, we verify condition (iii). Let s=s1+ is2 ∈ C+ be arbitrary, but �xed. Here i :=

√−1 denotes
the purely imaginary unit. Note that

(G + sC)H = S − K ; (81)

where

S := 1
2(G + G

T) + s1C ; K := 1
2(G − GT) + is2C :

Recall that G + GT¿0, C = CT¿0, and s1 = Re s¿ 0. This guarantees that S¿0 and K =−KH.
These properties imply that yHSy¿0 and Re(yHKy)=0 for all y ∈ CN . Therefore, by (81), we have

Re(yH(G + sC)Hy) = yHSy¿0 for all y ∈ CN : (82)

We now assume that s ∈ C+ is such that the matrix G + sC is nonsingular. Furthermore, let x ∈ Cm
be arbitrary, and set

y := (G + sC)−1Bx: (83)

Then, by (80) and (83), we have

xHH(s)x= xHBT(G + sC)−1Bx

= xHBT(G + sC)−H(G + sC)H(G + sC)−1Bx

= yH(G + sC)Hy: (84)

Combining (82) and (84), it follows that

Re(xHH(s)x) = Re(yH(G + sC)Hy)¿0 for all x ∈ Cm (85)

and for all s ∈ C+ for which G + sC is nonsingular. Now let ŝ ∈ C+ be such that G + ŝC is
singular. Note that there are at most N such “singular” points ŝ, since G + sC is assumed to be a
regular matrix pencil. Therefore, each ŝ is an isolated point in C+, i.e., there exists an �= �(ŝ)¿ 0
and a (punctured) neighborhood

D� := {s ∈ C | 0¡ |s− ŝ|6�}
of ŝ such that D�⊂C+ and the matrix G + sC is nonsingular for all s ∈ D�. Thus (85) holds
true for all s ∈ D�. If ŝ is not a pole of the rational function H , then H(ŝ) = lims→ŝH(s) is a
�nite m × m matrix. In this case, by taking limits s → ŝ in (85), it follows that (85) also holds
true for s = ŝ. Now suppose that ŝ is a pole of H . Then at least one of the components hjk(s) of
H(s) = [hjk(s)]16j; k6m has a pole at ŝ. Such an hjk(s) maps D� onto a suitable neighborhood of ∞
in the complex plane and, in particular, attains large negative numbers in D�. By selecting a suitable
component hjk of H and an associated vector x ∈ CN , it is thus possible to �nd a point s ∈ D� such

416 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

that Re(xHH(s)x)¡ 0. However, this is a contradiction to (85), and therefore, ŝ cannot be a pole
of H . This concludes the proof of (iii).
It remains to verify condition (i). By (80), if ŝ is a pole of H , then the matrix G + ŝC is

necessarily singular, i.e., ŝ is a singular point. However, we have just shown that there are no such
singular points ŝ ∈ C+. Consequently, H cannot have poles in C+.
The matrix function H satis�es all three conditions (i)–(iii), and hence H is positive real.

Finally, we apply Theorem 13 to the reduced-order transfer function (62).

Corollary 14. Let H be the transfer function given by (21) with matrices that satisfy (22). Let
Vn ∈ RN×n have rank n and assume that the matrix pencil

Gn + sCn :=VT
n (JG)Vn + sV

T
n (JC)Vn (86)

is regular. Then; the reduced-order transfer function

H (1)
n (s) := (V

T
n B)

T(Gn + sCn)−1(VT
n B) (87)

is positive real; and thus the reduced-order model given by (87) is passive.

Proof. By (22) and (86), it follows that Gn + GT
n¿0 and Cn = C

T
n¿0. The transfer function (87),

H (1)
n , is thus positive real by Theorem 13.

7. Numerical examples

In this section, we present two circuit examples.

7.1. A package model

The �rst example arises in the analysis of a 64-pin package model used for an RF integrated
circuit. Only eight of the package pins carry signals, the rest being either unused or carrying supply
voltages. The package is characterized as a passive linear dynamical system with m=p=16 inputs
and outputs, representing eight exterior and eight interior terminals. The package model is described
by approximately 4000 circuit elements, resistors, capacitors, inductors, and inductive couplings,
resulting in a linear dynamical system with a state-space dimension of about 2000.
In [16], SyMPVL was used to compute a Pad�e-based reduced-order model (61) of the package,

and it was found that a model H (2)
n of order n = 80 is su�cient to match the transfer-function

components of interest. However, the model H (2)
n has a few poles in the right half of the complex

plane, and therefore, it is not passive.
In order to obtain a passive reduced-order model, we ran SyMPVL again on the package example,

and this time, also generated the projected reduced-order model H (1)
n given by (62). The expansion

point s0=5�×109 was used. Recall that H (1)
n is only a Pad�e-type approximant and thus less accurate

than the Pad�e approximant H (2)
n . Therefore, one now has to go to order n=112 to obtain a projected

reduced-order model H (1)
n that matches the transfer-function components of interest. Figs. 1 and

2 show the voltage-to-voltage transfer function between the external terminal of pin no. 1 and the

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 417

Fig. 1. Package: Pin no. 1 external to Pin no. 1 internal, exact, projected model, and Pad�e model.

Fig. 2. Package: Pin no. 1 external to Pin no. 2 internal, exact, projected model, and Pad�e model.

418 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

Fig. 3. Relative error of projected model and Pad�e model.

internal terminals of the same pin and the neighboring pin no. 2, respectively. The plots show results
with the projected model H (1)

n and the Pad�e model H (2)
n , both of order n= 112, compared with an

exact analysis.
In Fig. 3, we compare the relative error of the projected model H (1)

112 and the Pad�e model H
(2)
112 of

the same size. Clearly, the Pad�e model is more accurate. However, out of the 112 poles of H (2)
112,

22 have positive real part, violating the passivity of the Pad�e model. On the other hand, the projected
model is passive.

7.2. An extracted RC circuit

This is an extracted RC circuit with about 4000 elements and m= 20 ports. The expansion point
s0 = 0 was used. Since the projected model and the Pad�e model are identical for RC circuits, we
only computed the Pad�e model via SyMPVL.
The point of this example is to illustrate the usefulness of the deation procedure built into SyM-

PVL. It turned out that sweeps through the �rst two Krylov blocks, R and AR, of the block Krylov
sequence (26) were su�cient to obtain a reduced-order model that matches the transfer function
in the frequency range of interest. During the sweep through the second block, 6 almost linearly
dependent vectors were discovered and deated. As a result, the reduced-order model obtained with
deation is only of size n=2m− 6= 34. When SyMPVL was rerun on this example, with deation
turned o�, a reduced-order model of size n = 40 was needed to match the transfer function. In
Fig. 4, we show the H1;11 component of the reduced-order model obtained with deation and
without deation, compared to the exact transfer function. Clearly, deation leads to a signi�cantly
smaller reduced-order model that is as accurate as the bigger one generated without deation.

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 419

Fig. 4. Impedance H1;11.

8. Concluding remarks

In the last few years, reduced-order modeling techniques based on Krylov subspaces have become
indispensable tools for tackling the large linear subcircuits that arise in the simulation of electronic
circuits. Much of this development was and continues to be driven by the emerging need to accurately
simulate the interconnect of electronic circuits. Today, circuit interconnect is typically modeled as
large linear passive subcircuits that are generated by automatic parasitics-extraction programs. Using
reduced-order modeling techniques has become crucial in order to reduce these subcircuits to a size
that is manageable for circuit simulators.
To guarantee stability of the overall simulation, it is crucial that passive subcircuits are approxi-

mated by passive reduced-order models. While reduced-order models based on projection are passive,
they are – in terms of number of matched Taylor coe�cients – only half as accurate as the cor-
responding, in general non-passive, Pad�e models of the same size. It remains an open problem to
describe and construct reduced-order models of a given size that are both passive and of maximal
possible accuracy.
Finally, today’s circuit simulation is based on the paradigm of lumped circuit elements, which

leads to systems of DAEs. As circuit feature sizes continue to decrease and circuit speeds continue
to increase, feature sizes are becoming comparable in size with signal wavelengths. As a result, at
least parts of a circuit must be modeled as distributed elements, such as transmission lines. Includ-
ing distributed elements in the simulation paradigm requires a fusion of traditional lumped circuit
simulation and electromagnetic simulation. Electromagnetic simulation, however, involves systems
of partial di�erential equations (PDEs). Combining lumped circuit simulation with electromagnetic

420 R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421

simulation will thus require e�cient techniques for the solution of very large systems of DAEs
coupled with PDEs. One of the challenges then is to develop reduced-order modeling techniques
that allow to replace parts of such coupled systems with much smaller models. Research into and
development of such techniques have hardly begun.

References

[1] J.I. Aliaga, D.L. Boley, R.W. Freund, V. Hern�andez, A Lanczos-type method for multiple starting vectors, Math.
Comp. 69 (2000) 1577–1601; Also available online from http://cm.bell-labs.com/cs/doc/98.

[2] B.D.O. Anderson, S. Vongpanitlerd, Network Analysis and Synthesis, Prentice-Hall, Englewood Cli�s, NJ, 1973.
[3] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl.

Math. 9 (1951) 17–29.
[4] Z. Bai, P. Feldmann, R.W. Freund, How to make theoretically passive reduced-order models passive in practice, in:

Proceedings of IEEE 1998 Custom Integrated Circuits Conference, IEEE, Piscataway, NJ, 1998, pp. 207–210.
[5] G.A. Baker Jr., P. Graves-Morris, Pad�e Approximants, 2nd Edition, Cambridge University Press, New York, 1996.
[6] P.M. Chirlian, Integrated and Active Network Analysis and Synthesis, Prentice-Hall, Englewood Cli�s, NJ, 1967.
[7] I.M. Elfadel, D.D. Ling, Zeros and passivity of Arnoldi-reduced-order models for interconnect networks, in:

Proceedings of the 34th ACM=IEEE Design Automation Conference, ACM, New York, 1997, pp. 28–33.
[8] P. Feldmann, R.W. Freund, E�cient linear circuit analysis by Pad�e approximation via the Lanczos process, IEEE

Trans. Computer-Aided Design 14 (1995) 639–649.
[9] P. Feldmann, R.W. Freund, Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm, in:

Proceedings of the 32nd ACM=IEEE Design Automation Conference, ACM, New York, 1995, pp. 474–479.
[10] P. Feldmann, R.W. Freund, Numerical Simulation of Electronic Circuits: State-of-the-Art Techniques and Challenges,

Course Notes, 1995. Available online from http://cm.bell-labs.com/who/freund.
[11] P. Feldmann, R.W. Freund, T. Young, Interconnect Extraction and Analysis in High-Frequency, Sub-Micron, Digital

VLSI Design, Tutorial at the 35th Design Automation Conference, San Francisco, CA, 1998. Available online from
http://cm.bell-labs.com/who/freund.

[12] R.W. Freund, Computation of matrix Pad�e approximations of transfer functions via a Lanczos-type process, in: C.K.
Chui, L.L. Schumaker (Eds.), Approximation Theory VIII, Vol. 1: Approximation and Interpolation, World Scienti�c,
Singapore, 1995, pp. 215–222.

[13] R.W. Freund, Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, in:
B.N. Datta (Ed.), Applied and Computational Control, Signals, and Circuits, Vol. 1, Birkh�auser, Boston, 1999, pp.
435–498.

[14] R.W. Freund, Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace
algorithms, in: Proceedings of the 36th ACM=IEEE Design Automation Conference, ACM, New York, 1999, pp.
195–200.

[15] R.W. Freund, P. Feldmann, Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm,
in: Tech. Dig. 1996 IEEE=ACM International Conference on Computer-Aided Design, IEEE Computer Society Press,
Los Alamitos, CA, 1996, pp. 280–287.

[16] R.W. Freund, P. Feldmann, The SyMPVL algorithm and its applications to interconnect simulation, in: Proceedings
of the 1997 International Conference on Simulation of Semiconductor Processes and Devices, IEEE, Piscataway, NJ,
1997, pp. 113–116.

[17] R.W. Freund, P. Feldmann, Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Pad�e
approximation, in: Proc. Design, Automation and Test in Europe Conference 1998, IEEE Computer Society Press,
Los Alamitos, CA, 1998, pp. 530–537.

[18] E.A. Guillemin, Synthesis of Passive Networks, Wiley, New York, 1957.
[19] K.J. Kerns, A.T. Yang, Preservation of passivity during RLC network reduction via split congruence transformations,

in: Proceedings of the 34th ACM=IEEE Design Automation Conference, ACM, New York, 1997, pp. 34–39.
[20] S.-Y. Kim, N. Gopal, L.T. Pillage, Time-domain macromodels for VLSI interconnect analysis, IEEE Trans.

Computer-Aided Design 13 (1994) 1257–1270.

R.W. Freund / Journal of Computational and Applied Mathematics 123 (2000) 395–421 421

[21] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear di�erential and integral operators,
J. Res. Nat. Bur. Standards 45 (1950) 255–282.

[22] A. Odabasioglu, Provably passive RLC circuit reduction, M.S. Thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, 1996.

[23] A. Odabasioglu, M. Celik, L.T. Pileggi, PRIMA: passive reduced-order interconnect macromodeling algorithm, in:
Tech. Dig. 1997 IEEE=ACM International Conference on Computer-Aided Design, IEEE Computer Society Press,
Los Alamitos, CA, 1997, pp. 58–65.

[24] L.T. Pileggi, Coping with RC(L) interconnect design headaches, in: Tech. Dig. 1995 IEEE=ACM International
Conference on Computer-Aided Design, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 246–253.

[25] L.T. Pillage, R.A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Computer-Aided Design
9 (1990) 352–366.

[26] V. Raghavan, J.E. Bracken, R.A. Rohrer, AWESpice: A general tool for the accurate and e�cient simulation of
interconnect problems, in: Proceedings of the 29th ACM=IEEE Design Automation Conference, ACM, New York,
1992, pp. 87–92.

[27] R.A. Rohrer, H. Nosrati, Passivity considerations in stability studies of numerical integration algorithms, IEEE Trans.
Circuits Syst. 28 (1981) 857–866.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
[29] A.L. Sangiovanni-Vincentelli, Circuit simulation, in: P. Antognetti, D.O. Pederson, D. de Man (Eds.), Computer

Design Aids for VLSI Circuits, Sijtho� & Noordho�, Alphen aan de Rijn, The Netherlands, 1981, pp. 19–112.
[30] J. Vlach, K. Singhal, Computer Methods for Circuit Analysis and Design, 2nd Edition, Van Nostrand Reinhold, New

York, 1993.
[31] M.R. Wohlers, Lumped and Distributed Passive Networks, Academic Press, New York, 1969.

Journal of Computational and Applied Mathematics 123 (2000) 423–446
www.elsevier.nl/locate/cam

Tikhonov regularization and the L-curve for large discrete
ill-posed problems

D. Calvettia ;1, S. Morigib, L. Reichelc;∗; 2, F. Sgallarid
aDepartment of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA

bDipartimento di Matematica, Universit�a di Bologna, Bologna, Italy
cDepartment of Mathematics and Computer Science, Kent State University, Kent, OH 44242, USA

dDipartimento di Matematica, Universit�a di Bologna, Bologna, Italy

Received 10 December 1999; received in revised form 4 February 2000

Abstract

Discretization of linear inverse problems generally gives rise to very ill-conditioned linear systems of algebraic equations.
Typically, the linear systems obtained have to be regularized to make the computation of a meaningful approximate solution
possible. Tikhonov regularization is one of the most popular regularization methods. A regularization parameter speci�es
the amount of regularization and, in general, an appropriate value of this parameter is not known a priori. We review
available iterative methods, and present new ones, for the determination of a suitable value of the regularization parameter
by the L-curve criterion and the solution of regularized systems of algebraic equations. c© 2000 Elsevier Science B.V.
All rights reserved.

Keywords: Ill-posed problem; Regularization; L-curve criterion; Gauss quadrature

1. Introduction

Many problems in science and engineering can be formulated as linear inverse problems, i.e., prob-
lems that require the determination of the unknown input to a linear system from the known output.
For instance, image reconstruction from projections is a linear inverse problems. The discretization
of a linear inverse problem typically gives rise to a linear system of equations

Ax= b; A ∈ Rm×n; x ∈ Rn; b ∈ Rm (1)

∗ Corresponding author.
E-mail addresses: dxc57@po.cwru.edu (D. Calvetti), morigi@dm.unibo.it (S. Morigi), reiche1@mcs.kent.edu

(L. Reichel), sgallari@dm.unibo.it (F. Sgallari).
1 Research supported in part by NSF grant DMS-9806702.
2 Research supported in part by NSF grants DMS-9721436 and DMS-9806413.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00414-3

424 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

with a very ill-conditioned matrix A of ill-determined rank. The computation of a meaningful ap-
proximate solution of the linear system (1) in general requires that the system be replaced by a
nearby system that is less sensitive to perturbations. This replacement is referred to as regulariza-
tion. Tikhonov regularization is one of the oldest and most popular regularization methods. In its
simplest form, Tikhonov regularization replaces the linear system (1) by the regularized system

(ATA+ �I)x= ATb; (2)

where �¿0 is a regularization parameter that determines the amount of regularization and I is the
identity operator. For any �xed �¿ 0, system (2) has the unique solution

x� = (ATA+ �I)−1ATb: (3)

It is the purpose of the present paper to discuss several iterative methods for the determination of a
suitable value of the regularization parameter �¿ 0 and the computation of the associated solution
x� of large-scale problems of the form (2). We remark that Bj�orck [3] described how iterative
methods for the solution of (2) can be modi�ed to be applicable to the solution of

(ATA+ �BTB)x= ATb

for a large class of regularization operators B.
Note that solution (3) of (2) satis�es x� → x0 = A†b as � ↘ 0, where A† denotes the Moore–

Penrose pseudo-inverse of A. In problems of interest to us, the matrix A has many “tiny” singular
values and the right-hand side vector b is contaminated by measurement errors (noise). Therefore,
the Moore–Penrose solution x0 in general has “huge” components and is of little practical interest.
For future reference, we note that the solution x� of (2) satis�es the minimization problem

min
x∈Rn
{‖Ax− b‖2 + �‖x‖2}: (4)

Here and below ‖ · ‖ denotes the Euclidean norm.
The determination of a suitable value of the regularization parameter � is an important task.

Several methods that assume knowledge of the norm of the noise in b are discussed in [7,12]. We
are interested in problems for which the norm of the noise (error) in b is not explicitly known,
and focus on methods that use the L-curve, de�ned below, to determine a suitable value of �. The
L-curve was �rst applied by Lawson and Hanson, see [22, Chapter 26], and more recently by Hansen
and O’Leary [14,18], to investigate properties of the regularized system (2) for di�erent values of
the regularization parameter �. Introduce the discrepancy

d� = Ax� − b; (5)

associated with the solution x� of the regularized system (2). Let � be a monotonically increasing
function and de�ne the curve

L= {(�(‖x�‖2); �(‖d�‖2)): �¿ 0}: (6)

Often � is chosen to be one of the functions

�(t) = t; �(t) =
√
t; or �(t) = 1

2 log10 t; t ¿ 0:

The curve (6) is known as the L-curve, because under suitable conditions on A and b it is shaped
roughly like the letter “L”. The following result speci�es the shape of the L-curve under quite
general conditions on A and b.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 425

Proposition 1.1. Let q(�) = �(‖x�‖2) and s(�) = �(‖d�‖2); where x� and d� are de�ned by (3)
and (5); respectively; and � is a di�erentiable monotonically increasing function. Then q(�) is a
decreasing function of �; s(�) is an increasing function of �; and the curve {(q(�); s(�)): �¿ 0}
has negative slope. Moreover; the curve is convex for �(t) = t.

Proof. The proposition follows by substituting the singular value decomposition of A into (3); see,
e.g., [24] for details. Related results are also discussed in [14,16,18].

An illuminating discussion on properties of the L-curve is presented by Hansen [16, Sections
7:5–7:7]. Hansen and O’Leary [14,18] proposed to use the value � of the regularization parameter
that corresponds to the point (�(‖x�‖2); �(‖d�‖2)) at the “vertex” of the “L”. We denote this value
by �L. A heuristic motivation for this choice of � is that when �¿ 0 is “tiny”, then the associated
solution x� of (2) is of “huge” norm and is likely to be contaminated by the propagated error that
stems from errors in the given right-hand side vector b. Conversely, when � is large, the vector x�

generally is a poor approximation of a solution of (1) and the associated discrepancy (5) is of large
norm. The choice �=�L seeks to balance the discrepancy and the propagated error in the computed
approximate solution x� due to errors in b. The parameter value �L is said to satisfy the L-curve
criterion.
The value �L of the regularization parameter is not guaranteed to be appropriate for all linear

systems of equations of the form (2) with very ill-conditioned matrices A of ill-determined rank.
However, considerable computational experience indicates that the L-curve criterion is a powerful
method for determining a suitable value of the regularization parameter for many problems of interest
in science and engineering; see [13;16, Section 7:5:1] and [17,25] for insightful discussions on the
properties and shortcomings of the L-curve criterion. This paper reviews available iterative methods,
and describes new ones, for the simultaneous determination of approximations of the value �L and
the associated solution x�L of (2).
The following result is helpful for determining the approximate location of the L-curve. It has

been shown for the function �(t) =
√
t by, e.g., Lawson and Hanson [22, p. 193].

Proposition 1.2. Let � be a monotonically increasing function and let x ∈ Rn. Then the point
(�(‖x‖2); �(‖Ax− b‖2)) is on or above the L-curve (6).

Proof. The proposition follows if for any x� given by (3),

�(‖Ax� − b‖2)6�(‖Ax− b‖2); ∀x ∈ Rn; such that �(‖x‖2)6�(‖x�‖2): (7)

We show (7) by contradiction. Thus, assume that there is a vector x̂ ∈ Rn, such that

�(‖Ax̂− b‖2)¡�(‖Ax� − b‖2); �(‖x̂‖2)6�(‖x�‖2)

for some x�. Since � is monotonically increasing, it follows that

‖Ax̂− b‖2¡ ‖Ax� − b‖2; ‖x̂‖26‖x�‖2

426 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

and therefore

‖Ax̂− b‖2 + �‖x̂‖2¡ ‖Ax� − b‖2 + �‖x�‖2:

However, this inequality violates the fact that x� solves (4).

This paper is organized as follows. Section 2 discusses iterative methods for the computation
of approximations of �L and x�L based on the Lanczos bidiagonalization method. In particular, we
describe a modi�cation of the L-ribbon method proposed in [6] that is well suited for the iterative
solution of large very ill-conditioned underdetermined systems. Section 3 discusses iterative methods
based on the Arnoldi process. These methods do not require the evaluation of matrix–vector products
with the transpose of the matrix A. Computed examples are presented in Section 4.

2. Iterative methods based on Lanczos bidiagonalization

The Lanczos bidiagonalization algorithm below is by Paige and Saunders [23] referred to as
bidiag1. It has been applied in many algorithms for the computation of approximate solutions of large
linear systems of equations (1) with very ill-conditioned matrices; see, e.g., [3–5,16] and references
therein. The algorithm carries out ‘ steps of the Lanczos bidiagonalization process applied to the
matrix A.

Algorithm 1 (Lanczos Bidiagonalization Algorithm).

Input: b ∈ Rm; A ∈ Rm×n; 0¡‘¡n;
Output: {uj}‘+1j=1 ; {Cj}‘j=1; {�j}‘j=1; {�j}‘+1j=1 ;
�1 := ‖b‖; u1 := b=�1; C̃1 := ATu1; �1 := ‖C̃1‖; C1 := C̃1=�1;
for j = 2; 3; : : : ; ‘ do

ũj := ACj−1 − �j−1uj−1; �j := ‖ũj‖; uj := ũj=�j;
C̃j := ATuj − �jCj−1; �j := ‖C̃j‖; Cj := C̃j=�j;

end j;
ũ‘+1 := AC‘ − �‘u‘; �‘+1 := ‖ũ‘+1‖; u‘+1 := ũ‘+1=�‘+1.

We assume that the parameter ‘ in Algorithm 1 is chosen small enough so that all computed �j

and �j are positive. Then the algorithm determines the matrices U‘ = [u1; u2; : : : ; u‘] ∈ Rm×‘; U‘+1 =
[U‘; u‘+1] ∈ Rm×(‘+1) and V‘ = [C1; C2; : : : ; C‘] ∈ Rn×‘ with orthonormal columns, as well as the lower
bidiagonal matrix

C‘ =

�1
�2 �2

.
�‘−1 �‘−1

�‘ �‘

 ∈ R

‘×‘: (8)

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 427

For future reference, we also introduce the matrix

�C‘−1 =
[

C‘−1
�‘eT‘−1

]
∈ R‘×(‘−1); (9)

which is made up of the ‘ − 1 �rst columns of C‘.
De�ne the Krylov spaces

K‘(ATA; ATb) = span{ATb; ATAATb; : : : ; (ATA)‘−1ATb}; (10)

K‘(AAT; b) = span{b; AATb; : : : ; (AAT)‘−1b}: (11)

It follows from the recursion formulas of Algorithm 1 that

K‘(ATA; ATb) = range(V‘); K‘(AAT; b) = range(U‘); (12)

i.e., the columns of V‘ and U‘ form orthonormal bases of the Krylov spaces (10) and (11), respec-
tively.
Moreover, the recursion formulas of Algorithm 1 show that

AV‘ = U‘C‘ + �‘+1u‘+1eT‘ ; ATU‘ = V‘CT
‘ ; b= ‖b‖U‘e1; (13)

where e‘ = [0; : : : ; 0; 1]
T ∈ R‘ denotes the ‘th axis vector. Combining these equations yields

AATU‘ = U‘C‘CT
‘ + �‘+1�‘u‘+1eT‘ : (14)

It follows that {uj}‘+1j=1 are Lanczos vectors and

T‘ = C‘CT
‘ (15)

is the symmetric tridiagonal Lanczos matrix obtained when applying ‘ steps of the Lanczos algorithm
for symmetric matrices to the matrix AAT with initial vector b; see, e.g., [11, Chapter 9.1] for a
discussion of the Lanczos algorithm. We will use the matrix (15) in our review of Gauss quadrature
rules in Section 2.1.1 below.
Our discussion so far has not taken the e�ect of round-o� errors into account. These errors

may cause the computed columns of the matrices U‘+1 and V‘ not to be orthogonal. Therefore
Algorithm 1 is often implemented with reorthogonalization of the columns of U‘+1 and V‘; see,
e.g., [5]. This approach requires that both matrices U‘+1 and V‘ be stored. On the other hand,
when Algorithm 1 is implemented without reorthogonalization, the application described in Section
2.1 requires that only the matrix U‘+1 and a few of the most recently generated columns of the
matrix V‘ be stored simultaneously in computer memory. 1 Analogously, the application described
in Section 2.2 requires that only the matrix V‘ and a few of the most recently generated columns of
U‘+1 be stored simultaneously. We propose to only reorthogonalize the columns of U‘+1 or of V‘.
This approach allows the same (low) storage requirement as when no reorthogonalization is carried
out and gives higher accuracy.
In the following proposition and its proof we use the notation a =̇ b to denote that a is an accurate

approximation of b.

1 We ignore the possibility of reducing storage demand by generating the columns of U‘+1 and V‘ twice because of the
high computational e�ort of this approach.

428 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

Proposition 2.1. Assume that the columns of U‘+1 are reorthogonalized in Algorithm 1 so that they
are numerically orthogonal; and that the columns of V‘ have been computed as described in the
algorithm; i.e.; without reorthogonalization. Then U T

‘ AA
TU‘ =̇C‘CT

‘ ; i.e.; the computed bidiagonal
matrix C‘ is such that the tridiagonal matrix C‘CT

‘ is an accurate approximation of an orthogonal
section of AAT.

Proof. According to Paige and Saunders [23, p. 47], the relations (13) hold to machine precision
also in the presence of round-o� errors. This is independent of whether the columns of U‘+1 or V‘

are reorthogonalized to be numerically orthogonal. Thus, the computed matrices U‘+1; V‘ and C‘

determined by Algorithm 1 in �nite precision arithmetic with reorthogonalization of the columns of
U‘+1, but not of the columns of V‘, satisfy

AV‘ =̇U‘C‘ + �‘+1u‘+1eT‘ ; (16)

ATU‘ =̇V‘CT
‘ : (17)

Multiplying (17) by A, and using the relation (16) yields

AATU‘ =̇AV‘CT
‘ =̇U‘C‘CT

‘ + �‘+1u‘+1eT‘C
T
‘ :

It follows from eT‘C
T
‘ = �‘eT‘ that

AATU‘ =̇U‘C‘CT
‘ + �‘+1�‘u‘+1eT‘ :

The proposition now follows from the orthonormality of the columns of U‘+1.

The above proposition justi�es the use of the computed matrix C‘ for the evaluation of Gauss
and Gauss–Radau quadrature rules described in Section 2.1.1. These quadrature rules allow us to
inexpensively compute an approximation of the L-curve, which we refer to as the L-ribbon. The
latter makes it possible to fairly inexpensively determine a value of the regularization parameter that
approximates the value �L.
Reorthogonalization of the columns of V‘, but not of the columns of U‘+1, is discussed in the

context of overdetermined systems of equations in Section 2.2.
We advocate reorthogonalization of the columns of U‘ because then the tridiagonal matrix (15)

can be associated with a Gauss rule; see Section 2.1.1. Example 4.1 of Section 4 illustrates the e�ect
of reorthogonalization. In addition, reorthogonalization may reduce the number of bidiagonalization
steps necessary to determine an acceptable approximate solution of the linear system of equations
(2) for a given value of the regularization parameter �.

2.1. Underdetermined systems

Assume that m� n in (1). Then the vectors uj ∈Rm generated by Algorithm 1 have fewer compo-
nents, and therefore require less computer storage, than the vectors Cj ∈Rn generated by the algorithm.
Application of the decompositions (13) to the standard formulation of Tikhonov regularization (2)
requires that all the vectors Cj generated be stored simultaneously, in addition to a few of the vec-
tors uj; see Section 2.2 for a discussion. Here we present a variant of Tikhonov regularization that
allows an interchange of the role of the vectors uj and Cj with the purpose of reducing the storage
requirement. Speci�cally, in this variant of Tikhonov regularization all of the vectors uj generated

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 429

have to be stored simultaneously, but only a few of the vectors Cj. We achieve this by solving the
following linear system of equations

(AAT + �I)y= b; (18)

instead of the standard Tikhonov system (2). The solution x� of the latter system can be computed
from the solution

y� = (AAT + �I)−1b (19)

of (18). We note that for any �xed �¿ 0, the solution y� of (18) is unique.

Proposition 2.2. Assume that �¿ 0 and let y� be de�ned by (19). Then the solution of (2) is
given by x� = ATy�.

Proof. Multiplication of (18) by AT from the left yields

(ATA+ �I)ATy� = ATb:

Since the system (2) has a unique solution, it is given by ATy�.

When � = 0, the solution y� of (18) might not satisfy the discrete Picard condition, see
[16, Section 4:5] for a de�nition, even if the associated solution x�=ATy� of (2) does. We therefore
only consider Eq. (18) for �¿ 0.
The L-curve for system (18) is given by

L= {(�(‖y�‖2); �(‖d�‖2)): �¿ 0}; (20)

where

d� = AATy� − b: (21)

The following analog of Proposition 1.1 is valid for the L-curve (20).

Proposition 2.3. Let q(�) = �(‖y�‖2) and s(�) = �(‖d�‖2); where y� and d� are de�ned by (19)
and (21); respectively; and � is a di�erentiable monotonically increasing function. Then q(�) is a
decreasing function of �; s(�) is an increasing function of �; and the curve {(q(�); s(�)): �¿ 0}
has negative slope.

Proof. The proposition follows by substituting the singular value decomposition of A into (19),
similarly as the proof of Proposition 1.1.

The above proposition shows that the L-curves (6) and (20) share some properties. However,
not all properties shown for the curve (6) hold for the curve (20). For instance, one can construct
examples for which the L-curve (20) is not convex when �(t) = t, cf. Proposition 1.1. Moreover,
there is no analog of Proposition 1.2 for the L-curve (20), i.e., for an arbitrary vector y ∈ Rm, the
point (�(‖y‖2); �(‖AATy− b‖2)) may be above, on or below the L-curve (20). Finally, the location
of the “vertices” of the L-curves (6) and (20) may di�er. Nevertheless, we have found the L-curve
(20) to be a valuable aid for determining a suitable value of the regularization parameter � when
the norm of the noise in the right-hand side vector b is not very small.

430 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

In this section, we assume that the “vertex” of the L-curve (20) gives a suitable value of the
regularization parameter �, and describe how an approximation of the L-curve, referred to as the
L-ribbon, can be computed inexpensively. We then choose a value of the regularization parameter
that corresponds to a point close to the “vertex” of the L-ribbon.
We will derive easily computable upper and lower bounds of the norm of the quantities (19) and

(21) in Section 2.1.1. These bounds are obtained by �rst representing ‖y�‖2 and ‖d�‖2 in terms of
a Stieltjes integral. We conclude this section by deriving these representations. It follows from (19)
that

‖y�‖2 = yT�y� = bT(AAT + �I)−2b; (22)

‖d�‖2 = ‖AAT(AAT + �I)−1b− b‖2 = �2bT(AAT + �I)−2b: (23)

De�ne the function

 �(t) = (t + �)−2: (24)

Then

‖y�‖2 = bT �(AAT)b; ‖d�‖2 = �2bT �(AAT)b: (25)

Introduce the spectral factorization

AAT =W�W T; (26)

where

�= diag[�1; �2; : : : ; �m] ∈ Rm×m; W ∈ Rm×m; W TW = I;

and let

h= [h1; h2; : : : ; hm]
T =W Tb:

Then

bT �(AAT)b= hT �(�)h=
m∑

k=1

 �(�k)h2k =
∫

 �(t) d!(t); (27)

where the right-hand side is a Stieltjes integral with a nondecreasing piecewise constant measure
!(t) with jump discontinuities at the eigenvalues �k . Substituting (27) into (25) gives the desired
representations

‖y�‖2 =
∫

 �(t) d!(t); ‖d�‖2 = �2
∫

 �(t) d!(t): (28)

2.1.1. Gauss quadrature for underdetermined systems
The quantities (25) depend on the regularization parameter �. Their computation for many di�erent

values of � is not feasible when the matrix A is very large. However, the computation of lower and
upper bounds for several values of � can be carried out e�ciently by using Gauss and Gauss–Radau
quadrature rules. We remark that the application of Gauss-type quadrature rules to compute bounds
for certain matrix functionals is well established; see for instance [10] for a thorough treatment.
Recently, Golub and von Matt [12] used this approach to develop a method di�erent from ours for

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 431

determining a suitable value of the regularization parameter for Tikhonov regularization in standard
form (2).
We briey review some known facts about Gauss quadrature rules and their connection with the

Lanczos process. A more detailed treatment is provided by Golub and Meurant [10]. De�ne the
inner product induced by the measure !(t) introduced in (27),

〈f; g〉=
∫

f(t)g(t) d!(t) =
m∑

k=1

f(�k)g(�k)h2k = h
Tf(�)g(�)h

and let {qk}m−1k=0 be the family of orthonormal polynomials with respect to this inner product, i.e.,

〈qk ; qj〉=
{
0; k 6= j;
1; k = j:

The qk satisfy a three-term recurrence relation of the form

tqk−1(t) = �kqk(t) + �kqk−1(t) + �k−1qk−2(t); k = 1; 2; : : : ; (29)

where q−1(t) = 0 and q0(t) = 〈1; 1〉−1=2. It is well known that the tridiagonal Lanczos matrix (15),
obtained by applying ‘ steps of the Lanczos algorithm to AAT with initial vector b, has the �rst
2‘ − 1 recurrence coe�cients for the qj as entries, i.e.,

T‘ =

�1 �1
�1 �2 �2

.
�‘−2 �‘−1 �‘−1

�‘−1 �‘

 ; (30)

see, e.g., [10]. We assume that ‘ is su�ciently small so that �j ¿ 0 for 16j¡‘.
It is convenient to discuss Gauss quadrature in terms of the matrix T‘ and its Cholesky factor (8).

Let the function f be de�ned and integrable on an interval that contains the support of the measure
!(t) and consider the approximation of the integral

If =
∫

f(t) d!(t)

by quadrature rules of Gauss-type. It is well known, see, e.g., Golub and Meurant [10], that the
‘-point Gauss rule associated with the measure !(t) de�ned in (27) can be written as

G‘(f) = ‖b‖2eT1f(T‘)e1 = ‖b‖2eT1f(C‘CT
‘)e1; (31)

where e1 = [1; 0; : : : ; 0]
T ∈R‘ denotes the �rst axis vector.

Analogously, the ‘-point Gauss–Radau quadrature rule associated with the measure !(t) with one
assigned node at the origin can be written as

R‘(f) = ‖b‖2eT1f(�C‘−1 �C
T
‘−1)e1; (32)

where the matrix �C‘−1 is de�ned by (9). This representation was proposed by Golub and von Matt
[12]. A proof can also be found in [6].
We now turn to the integrand f = � de�ned by (24).

432 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

Proposition 2.4. Assume that �¿ 0 and let � be de�ned by (24). Then; for ‘¿1;

bT �(AAT)b¿G‘(�); bT �(AAT)b¡R‘(�): (33)

Proof. We have to determine the sign of the quadrature error when approximating
∫
 �(t) d!(t)

by Gauss and Gauss–Radau rules, cf. (27). Since for �¿ 0 the derivatives of the integrand do not
change sign on the support of the measure !(t), the sign of the quadrature error can easily be
determined by the remainder formulas for Gauss and Gauss–Radau quadrature rules. We refer to
[10] or to [6] for details.

2.1.2. The L-ribbon for underdetermined systems
Proposition 2.4 indicates how a ribbon-like region that contains the L-curve (20) can be computed

inexpensively. Introduce, for �¿ 0,

�−� = �(G‘(�)); �+� = �(R‘+1(�));

�−� = �(�2G‘(�)); �+� = �(�2R‘+1(�)):
(34)

Assume that the conditions of Proposition 2.3 are satis�ed. Then it follows from the representations
(28) and the inequalities (33) that the L-curve (20) is above the curve L− = {(�−� ; �−�): �¿ 0} and
below the curve L+ = {(�+� ; �+�): �¿ 0}. We refer to the ribbon-like region between the curves L−
and L+ as the L-ribbon.
The width of the ribbon decreases as ‘ increases; when ‘ in Algorithm 1 is su�ciently large, the

L-ribbon has zero width and coincides with the L-curve.
Alternatively, we might de�ne the L-ribbon as the union for all �¿ 0 of the rectangular regions

with vertices �±� and �±� , i.e., the L-ribbon can be de�ned as⋃
�¿0

{(�; �): �−� 6�6�+� ; �−� 6�6�+� }:

The following algorithm determines rectangles associated with the parameter values �j, 16j6p.
These rectangles are plotted in the numerical examples of Section 4.

Algorithm 2 (L-Ribbon Algorithm).

Input: b ∈ Rm, A ∈ Rm×n, ‘, {�j}pj=1;
Output: {�+�j

}pj=1, {�−�j
}pj=1, {�+�j

}pj=1, {�−�j
}pj=1;

(i) Apply ‘ steps of Lanczos bidiagonalization of A with initial vector b using Algorithm 1 to
compute the entries of the bidiagonal matrices C‘ and �C‘.

(ii) for j = 1; 2; : : : ; p do
Evaluate G‘(�j) and R‘+1(�j);
Compute �±�j

and �±�j
de�ned by (34);

end j

Thus, Algorithm 2 computes the union of rectangles
p⋃

j=1

{(�; �): �−�j
6�6�+�j

; �−�j
6�6�+�j

}: (35)

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 433

We turn to the evaluation of the quadrature rules in (34). Formulas (31) and (32) yield

G‘(�) = ‖b‖2eT1 (C‘CT
‘ + �I)−2e1; (36)

R‘+1(�) = ‖b‖2eT1 (�C‘ �C
T
‘ + �I)−2e1: (37)

We evaluate the Gauss quadrature rule (36) by �rst determining the solution z�;‘ of the system of
equations

(�C‘ �C
T
‘ + �I)z = ‖b‖e1: (38)

These are the normal equations associated with the least-squares problem

min
z∈R‘

∥∥∥∥
[

CT
‘

�1=2I

]
z − �−1=2‖b‖

[
0
e1

]∥∥∥∥ ; 0 ∈ R‘; (39)

and we compute z�;‘ by solving (39). Eld�en [8] and Gander [9] describe how (39) can be solved
e�ciently with the aid of Givens rotations. Note that the matrix C‘ is independent of the regulariza-
tion parameter �. Therefore, given this matrix, the Gauss rule (36) can be evaluated in only O(‘)
arithmetic oating point operations for each value of �. The scaling factor ‖b‖ in (39) is computed
in Algorithm 1. The evaluation of the Gauss–Radau rule (37) can be carried out similarly.
In addition to giving a lower bound for the L-curve, the solution z�;‘ of (39) can be used to

determine an approximate solution

y�;‘ = U‘z�;‘ (40)

of (18). The following theorem discusses properties of y�;‘.

Theorem 2.5. Let �¿ 0 be a desired value of the regularization parameter; let z�;‘ solve the linear
system of equations (38) and let U‘ ∈ Rm×‘, u‘+1 ∈ Rm, C‘ ∈ R‘×‘ and �‘; �‘+1 ∈ R be determined
by Algorithm 1. Then z�;‘ solves the Galerkin equations

U T
‘ (AA

T + �I)U‘z = U T
‘ b; (41)

associated with the system (18). Thus; these equations are obtained by projecting the system of
equations (18) orthogonally onto the Krylov space (11) and determining an approximate solution
(40) of (18) in the same Krylov space. This approximate solution satis�es

‖y�;‘‖2 = G‘(�); (42)

‖AATy�;‘ − b‖2 = �2G‘(�) + �2‘+1�
2
‘‖b‖2|eT‘ (C‘CT

‘ + �I)−1e1|2: (43)

Proof. The formulas (13) and (14) show that the Galerkin equations (41) are equivalent to the
system of equations (38). Formula (42) now follows from (40) and (38),

yT�;‘y�;‘ = z
T
�;‘z�;‘ = ‖b‖2eT1 (C‘CT

‘ + �I)−2e1 = G‘(�):

We turn to the proof of (43). It follows from (13), (14) and C‘e‘ = �‘e‘ that

AATU‘z�;‘ − b= U‘(C‘CT
‘ z�;‘ − ‖b‖e1) + �‘�‘+1u‘+1eT‘ z�;‘: (44)

Substitute z�;‘ = ‖b‖(C‘CT
‘ + �I)−1e1 into (44) and use the identity

M (M + �I)−1 − I =−�(M + �I)−1;

434 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

which holds for all matrices M ∈ R‘×‘ and scalars � such that M + �I is invertible. We obtain

AATU‘z�;‘ − b=−�‖b‖U‘(C‘CT
‘ + �I)−1e1 + �‘�‘+1‖b‖u‘+1eT‘ (C‘CT

‘ + �I)−1e1:

Taking norms shows (43), because the columns of U‘ are orthonormal as well as orthogonal to the
unit vector u‘+1.

The computation of an approximate solution of (18) may proceed as follows. We increase the
number of bidiagonalization steps ‘ in Algorithm 1 until the L-ribbon is su�ciently narrow to
allow the determination of the approximate location of the vertex of the L-curve (20), where we use
Algorithm 2 to compute approximations of the form (35) of L-ribbons. Plotting these approximations
of the L-ribbons helps us determine a value of the regularization parameter, say �̂, that corresponds
to a point (�(‖y�̂‖2); �(‖AATy�̂ − b‖2)) close to the vertex of the L-curve, where y�̂ is de�ned by
(19).
Note that the quantities in the Lanczos decomposition (13) are independent of the regularization

parameter �. Therefore they do not have to be recomputed when the value of regularization parameter
is changed.
The vector y�̂; ‘ de�ned in Theorem 2.5 is an approximate solution of (18). It follows from (42)

and (43) that the point (�(‖y�̂; ‘‖2); �(‖AATy�̂; ‘ − b‖2)) is on or above the curve L−. If this point
is not su�ciently close to the L-curve, then we increase the number of bidiagonalization steps ‘
in Algorithm 1 until an approximate solution that corresponds to a point su�ciently close to the
L-curve is obtained.

2.2. Overdetermined systems

Assume that m¿n in (1). Then the standard form of Tikhonov regularization (2) is appropriate.
This form has received considerable attention in literature; see e.g., [4] and references therein.
A nice survey of solution methods, many of them based on Lanczos bidiagonalization, is presented
by Kilmer and O’Leary [21]. An interesting recent approach to locating the vertex of the L-curve is
described by Kaufman and Neumaier [20], who combine iterations by the conjugate gradient method
for the solution of (2) for a �xed value of the regularization parameter � with a minimization method
for computing a value of � that corresponds to a point in the vicinity of the vertex of the L-curve.
This section focuses on the use of an L-ribbon associated with the Tikhonov equations in standard

form (2). This ribbon is analogous to the L-ribbon for the system (18) introduced in Section 2.1.2.
We refer to [6] for details. Here we only outline the computations required and discuss reorthogo-
nalization.
Assume that the decompositions (13) are available. We seek to determine an approximate solution

of (2) of the form

x�;‘ = V‘z�;‘ (45)

and require z�;‘ ∈ R‘ to solve the Galerkin equation

V T
‘ (A

TA+ �I)V‘z = V T
‘ ATb; (46)

which is obtained by projecting the linear system of equations (2) orthogonally onto the Krylov
space (10) and determining an approximate solution (45) of (2) in the same space.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 435

Identities (13) allow us to simplify Eq. (46) to

(�C
T
‘
�C‘ + �I)z = ‖b‖ �CT

‘e1: (47)

These are the normal equations associated with the least-squares problem

min
z∈R‘

∥∥∥∥∥
[
�C‘

�1=2I

]
z − ‖b‖e1

∥∥∥∥∥ : (48)

We compute the solution z�;‘ of (46) by solving (48), and then determine the Galerkin solution (45)
of (2).
The solution of slight modi�cations of the least-squares problem (48) yields the values of Gauss

and Gauss–Radau quadrature rules for determining an L-ribbon that contains the L-curve (6). The
point (�(‖x�;‘‖2), �(‖Ax�;‘ − b‖2)) can be shown to be in this L-ribbon; see [6] for details.
In order to secure that Gauss quadrature rules can be applied to bound the L-curve, we reorthog-

onalize the columns of V‘ in the decomposition (13). Note that all columns of V‘ have to be stored
in computer memory until the approximate solution x�;‘ of (2) has been computed from (45), unless
we compute the matrix V‘ twice. Only a few of the columns of U‘+1 have to be stored in com-
puter memory simultaneously. Example 4.1 of Section 4 compares the L-ribbons and the computed
approximate solutions obtained with and without reorthogonalization of the columns of V‘.

3. Iterative methods based on the Arnoldi process

Let the matrix A and vector b be de�ned by (1). The Arnoldi process requires that A has the same
number of rows and columns. We achieve this by appending rows or columns with zero entries to
the given matrix if necessary. Thus, if m¿n, then we append m− n columns with zero entries to
A to obtain an m×m matrix, which we also denote by A. Similarly, when m¡n, we append n−m
rows with zero entries to A and to the vector b. Assume that the matrix A so obtained has k rows
and columns and the vector b has k rows.
Application of ‘ steps of the Arnoldi process to the matrix A with initial vector b yields the

decomposition

AW‘ =W‘H‘ + �‘+1w‘+1eT‘ ; (49)

where W‘ ∈ Rk×‘, W T
‘ W‘ = I , W‘e1 = b=‖b‖, w‘+1 ∈ Rk , W T

‘ w‘+1 = 0, ‖w‘+1‖ = 1, �‘+1 ∈ R
and H‘ ∈ R‘×‘ is an upper Hessenberg matrix; see, e.g., [11, Chapter 9:4]. We assume that ‘
is su�ciently small so that the decomposition (49) exists. For future reference, we note that the
columns of the matrix W‘ span the Krylov space

K‘(A; b) = span{b; Ab; : : : ; A‘−1b}: (50)

An advantage of the Arnoldi decomposition (49), compared with the Lanczos bidiagonalization
(13), is that the former can be determined without using the transpose of A. This is important for
problems for which matrix–vector products with the matrix A can be evaluated inexpensively, but
matrix–vector products with AT cannot. This situation may arise when A is de�ned by the discretiza-
tion of certain integral or di�erential operators. Another advantage of the Arnoldi decomposition is
that it can be cheaper to compute than the decomposition (13) for �xed ‘, because the computation

436 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

of the Arnoldi decomposition (49) does not require the evaluation of matrix–vector products with
the matrix AT.
This section describes how the decomposition (49) can be used to determine an approximate

solution of (2) of the form

x�;‘ =W‘z�;‘: (51)

Consider the Galerkin equations associated with (2),

W T
‘ (A

TA+ �I)W‘z =W T
‘ A

Tb: (52)

These equations are obtained by projecting the system of equations (2) orthogonally onto the Krylov
space (50) and determining an approximate solution (51) of (2) in the same Krylov space. Since
the Krylov spaces (50) and (10) di�er, the properties of the Galerkin equations (52) and (46) may
be di�erent. Theorem 3.1 below sheds some light on the properties of the system of equations (52).
Introduce the upper Hessenberg-like matrix

�H‘ =
[

H‘

�‘+1eT‘

]
∈ R(‘+1)×‘; (53)

where H‘ and �‘+1 are de�ned by the Arnoldi decomposition (49), and let W‘+1 = [W‘;w‘+1] ∈
Rk×(‘+1). Then (49) can be written as

AW‘ =W‘+1 �H‘ (54)

and therefore (52) is equivalent to

(�H
T
‘
�H‘ + �I)z = ‖b‖ �H T

‘e1: (55)

Theorem 3.1. Let; for ‘¿1; the matrix �H‘ be de�ned by (53) and introduce its singular values
�1(�H‘)¿�2(�H‘)¿ · · ·¿�‘(�H‘)¿0. Then

�1(�H‘+1)¿�1(�H‘)¿�2(�H‘+1)¿ · · ·¿�‘(�H‘+1)¿�‘(�H‘)¿�‘+1(�H‘+1): (56)

Let �1(A)¿�2(A)¿ · · ·¿�k(A) denote the singular values of A. Then

�1(A)¿�1(�H‘+1); �‘+1(�H‘+1)¿�min{m;n}(A): (57)

Assume that A is of rank r and that the Arnoldi decomposition

AWr =WrHr (58)

exists; where Wr ∈ Rk×r ; W T
r Wr = I; Wre1 = b=‖b‖ and Hr ∈ Rr×r is an upper Hessenberg matrix.

Then

�j(Hr) = �j(A); 16j6r: (59)

Proof. We obtain the matrix �H‘+1 from �H‘ by �rst appending a zero row to �H‘ and then appending
a column. The singular values of the matrix do not change when appending a zero row to �H‘. When
then appending a column, the singular values of the original and the augmented matrices interlace,
see e.g. [11, Corollary 8:6:3], and inequalities (56) follow.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 437

Inequalities (57) follow from (54) and the minimax property of singular values; see [11, Theorem
8:6:1] for the latter. Equalities (59) are a consequence of (58).

In general the inequalities in (56) are strict. The properties of the singular values formulated
in Theorem 3.1 are analogous to properties of the eigenvalues of the matrices �C

T
‘
�C‘ in (47), or,

equivalently, of the singular values of the matrices �C‘. We therefore would expect that Eqs. (47)
and (55) share many numerical properties, however, this issue deserves further investigation.
Eqs. (55) are the normal equations associated with the least-squares problem

min
z∈R‘

∥∥∥∥∥
[
�H‘

�1=2I

]
z − ‖b‖e1

∥∥∥∥∥ : (60)

We compute the solution z�;‘ of (52) by solving (60).
Typically, we would like to solve the least-squares problem (60) for many di�erent values of

the regularization parameter �. Therefore, it may be advantageous to �rst reduce the matrix �H‘

to bidiagonal form by application of a judiciously chosen sequence of Givens rotations from the
right-hand side and from the left-hand side. This reduction is independent of �. The least-squares
problem so obtained is equivalent to (60) and can be solved in only O(‘) arithmetic operations for
each value of �, similarly as (39).
For each value of ‘¿1, there is an associated curve

L‘ = {(�(‖x�;‘‖2); �(‖Ax�;‘ − b‖2)): �¿ 0}: (61)

It follows from Proposition 1.2 that the curves L‘; ‘¿1, are above or coincide with the L-curve
(6). The curves L‘ converge to the L-curve as ‘ increases. Since ‖x�;‘‖2 = ‖z�;‘‖2 and ‖Ax�;‘ −
b‖2 = ‖ �H‘z�;‘ − ‖b‖e1‖2, it is quite inexpensive to compute points on the curve L‘. This suggests
that we determine points on a sequence of curves L‘ for increasing values of ‘ in order to determine
the location of the vertex of the L-curve. Let �̂ be the value of the regularization parameter so
determined. The approximate solution x‘; �̂ of (2) is then computed using (60) and (51) with �= �̂.

4. Computed examples

All computations were carried out using Matlab on a Sun Ultra workstation with unit roundo�
� = 2−52 ≈ 2 × 10−16 except for some computations for Example 4.4. The �rst three examples
are concerned with fairly small test problems and illustrate various aspects of the solution methods
discussed. Our fourth example is a fairly large computerized tomography problem, in which an object
is reconstructed from its X-ray projections. All plotted L-curves and L-ribbons are for the function
�(t) = 1

2 log10(t).

Example 4.1. We consider the solution of the overdetermined system

Ax= b; (62)

where the matrix A ∈ R400×200 is de�ned by its singular value decomposition
A= U400DV T

200: (63)

438 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

The matrices in this decomposition are determined as follows. Let the matrix Cn = [cjk]
n
j; k=1 with

entries

cjk = exp
(
� 2j − 1
4n− 2cos

(
�2k − 1
2n− 1

))

have the singular value decomposition Cn =UnDnV T
n . The matrix U400 in (63) is the left orthogonal

matrix in the singular value decomposition of C400 and the matrix V T
200 in (63) is the right orthogonal

matrix is the singular value decomposition of C200. The columns of U400 have the property that the
number of sign changes in the sequence {eTj U400ej}400j=1 increases with k. The columns of V200 have
the same property. This property is typical of matrices obtained by discretizing Fredholm integral
equations of the �rst kind. The entries of the matrix D = [djk] ∈ R400×200 in (63) are given by

djk =
{
exp(− 2

5 (j − 1)); j = k;
0; j 6= k:

Thus, the matrix A has condition number d11=d200;200 = 4 · 1034 and therefore is numerically singular.
Let the right-hand side vector in (62) be of the form b = b̂ + e, where b̂ is thought of as the

“exact” right-hand side vector and e is thought of as an “error” or “noise” vector. The vector b̂ is
generated so that the linear system of equations

Ax= b̂ (64)

is consistent. Speci�cally, we let x be a unit vector with normally distributed random entries with
zero mean, and compute b̂= Ax.
The “noise” vector e has normally distributed random entries with zero mean. The variance of

the entries of e is chosen so that ‖e‖=‖b̂‖=1× 10−2. We refer to the quotient ‖e‖=‖b̂‖ as the noise
level.
Fig. 1(a) shows points on the L-curve, marked by “o”, for the values

�j = 1 · 10−7+(j−1)=4; 16j622; (65)

of the regularization parameter. Small values of j correspond to small �j and give Galerkin solutions
x�j; ‘ of (2), de�ned by (45), of large norm. The associated discrepancies d�j; ‘ = Ax�j; ‘ − b are of
small norm. Fig. 1(a) also shows 22 rectangles that approximate the L-ribbon. These rectangles are
determined by Algorithm 2 with ‘=15 and are associated with the values (65) of the regularization
parameter. The Lanczos bidiagonalization is computed by Algorithm 1 and the columns of the matrix
V15 are reorthogonalized in order to secure their numerical orthogonality.
We note that rectangles associated with small values �j of the regularization parameter are larger

than rectangles associated with large �j. This depends on that the support of the measure !(t)
de�ned by (27) is on the non-negative real axis and the integrand � has a pole at t=−�. Thus, the
larger �¿ 0 is, the further away the singularity of the integrand is from the support of the measure
!(t) and the more accurate the Gauss and Gauss–Radau rules are. The “vertex” of the L-curve is
seen to correspond to roughly the value �14 = 1 × 10−3:75 of the regularization parameter; this is
easier to see when the �gure is enlarged.
The vertices �−j ; �+j of the rectangles generated by Algorithm 2 for ‘ = 15 are marked by “x” in

Fig. 1(a). It is shown in [6, Theorem 5:1] that the Galerkin solutions x�j; ‘ of (2) determined by
(45) and (46) correspond to these vertices. When the rectangular region is “tiny” only the vertex
“x” is visible.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 439

Fig. 1. Example 4.1: (a) L-ribbon for 15 bidiagonalization steps with reorthogonalization of the columns of V15. (b)
Relative error ‖x − x�;15‖=‖x‖ as a function of �, where x�;15 denotes the Galerkin solution (45) of the linear system
(62) and x is the solution of system (64) with noise-free right-hand side.

Fig. 1(b) displays the 10-logarithm of the relative error ‖x�;15−x‖=‖x‖ in the computed Galerkin
solution x�;15 as a function of log10 �, where x denotes the solution of the linear system (64)
with the noise-free right-hand side. In particular, Fig. 1(b) shows that the value � = �14 yields
log10(‖x�;15 − x‖=‖x‖) = 1:5 × 10−2. This value of log10(‖x�;15 − x‖=‖x‖) can be seen to be fairly
close to minimal.
Fig. 2 is analogous to Fig. 1 and displays the computed L-ribbon and relative error in the computed

approximate solutions x�;15 when 15 bidiagonalization steps without reorthogonalization are carried
out. The rectangles of the L-ribbon in Fig. 2(a) are much larger than those of Fig. 1(a), and the
relative error of the computed approximate solution displayed in Fig. 2(b) looks quite di�erent from
the error shown in Fig. 1(b). The “vertex” of the L-curve of Fig. 2(a) is at roughly �16 =1×10−3:25
and Fig. 2(b) shows that for � = �16, we have log10(‖x�;15 − x‖=‖x‖) =−1:3× 10−2.
Comparing Figs. 1(a) and 2(a) shows that Gauss quadrature rules give tighter bounds when

reorthogonalization is carried out. Reorthogonalization may be crucial for problems with a small noise
level, because for these problems the desired value of the regularization parameter is typically small.
The e�ect of the loss of orthogonality of the columns of the matrix V‘ on the bounds determined
by the Gauss rules requires further investigation.
The “vertices” in Figs. 1(a) and 2(a) correspond to di�erent values of the regularization parameter

�. Figs. 1(b) and 2(b) show the relative error in the computed approximate solution x�14 ;15 determined
with reorthogonalization to be somewhat smaller than the relative error in the computed approximate
solution x�16 ;15 determined without reorthogonalization.
Fig. 3 di�ers from Fig. 2 only in that the number of bidiagonalization steps has been increased

from 15 to 22. No reorthogonalization is carried out. As expected, the Gauss rules give tighter
bounds when the number of bidiagonalization steps is increased. Fig. 3(a) suggests that the L-curve
has its “vertex” at � = �15 = 1 × 10−3:5. Fig. 3(b) shows that for this value of �, the approximate
solution x�;22 satis�es log10(‖x�;15 − x‖=‖x‖) =−1:4× 10−2. Thus, the relative error is smaller than

440 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

Fig. 2. Example 4.1: (a) L-ribbon for 15 bidiagonalization steps without reorthogonalization. (b) Relative error
‖x − x�;15‖=‖x‖ as a function of �, where x�;15 denotes the Galerkin solution (45) of linear system (62) and x is
the solution of system (64) with noise-free right-hand side.

Fig. 3. Example 4.1: (a) L-ribbon for 22 bidiagonalization steps without reorthogonalization. (b) Relative error
‖x − x�;22‖=‖x‖ as a function of �, where x�;22 denotes the Galerkin solution (45) of linear system (62) and x is
the solution of system (64) with noise-free right-hand side.

the relative error obtained with 15 bidiagonalization steps without reorthogonalization, but larger
than the relative error achieved with 15 bidiagonalization steps with reorthogonalization.
We remark that when the columns of both U‘+1 and V‘ are reorthogonalized, or when the columns

of U‘+1 but not the columns of V‘ are reorthogonalized, the graphs obtained are identical with the
graph of Fig. 1.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 441

Fig. 4. Example 4.2: L-ribbons for underdetermined systems: (a) noise level 1× 10−3, (b) noise level 1× 10−2.

In summary, the �gures of this example show the Gauss rules to give tighter bounds and the
relative error in the computed approximate solution to be somewhat smaller when the columns of
the matrix V‘ are reorthogonalized than when they are not.

Example 4.2. We are concerned with the solution of underdetermined systems of equations ATx=b,
where the matrix A is the same as in Example 4.1. The right-hand side vector is constructed in the
same way as in Example 4.1. Fig. 4 shows L-ribbons for di�erent noise levels. All graphs are for
‘ = 20 and �j = 1× 10−8+(j−1)=5; 16j640.
Let y�j; ‘ denote the Galerkin solution (40) of (18) for � = �j discussed in Theorem 2.5 and let

d�j; ‘ = AATy�j; ‘ − b be the associated discrepancy. The points (�(‖y�j; ‘‖2); �(‖d�j; ‘‖2)) are marked
by “x” in Fig. 4. The �gure also shows the rectangles (35) of the L-ribbon and illustrates that the
points “x” do not always lie in the L-ribbon, in agreement with Theorem 2.5. In addition Fig. 4
displays points on the L-curve (20) associated with the values �j of the regularization parameter.
These points are marked by “o”.
Fig. 4 illustrates the e�ect of changing the noise level. The location of the “vertex” is quite easily

determined in both graphs. The graphs show that an increase in the noise level results in an increase
of the value of the regularization parameter determined by the L-curve method.

Example 4.3. We solve the integral equation of the �rst kind∫ �

0
exp(s cos(t))x(t) dt = 2

sinh(s)
s

; 06s6
�
2
; (66)

considered by Baart [1]. Eq. (66) is discretized by a Galerkin method with orthonormal box functions.
We used the Matlab code by Hansen [15] for computing the nonsymmetric matrix A ∈ R400×400 and
the exact, i.e., noise-free, right-hand side vector b̂ ∈ R400. The matrix A so obtained is numerically
singular.

442 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

Fig. 5. Example 4.3: L‘ curves for ‘ = 4; 5; 6; 7; 8 using the Arnoldi decomposition.

We generate a “noise” vector e as described in Example 4.1 and solve the linear system of
equations (2) with right-hand side vector b= b̂+ e, where e is scaled to give noise level ‖e‖=‖b̂‖=
1× 10−3.
Fig. 5 shows L‘-curves (61) obtained by Arnoldi decompositions (49) for 46‘68. We use the

values �j=1×10−8+(j−1)=2; 16j69, of the regularization parameter. The L‘-curves converge to the
L-curve (6) as ‘ increases. Points on the L‘-curves are marked by “∗” and connected by straight
lines; points on the L-curve are marked by “o” and connected by straight lines. The points “∗” on
the curves L7 and L8 cannot be distinguished. They are very close to the points “o” on the L-curve.
Fig. 6 compares the L6-curve obtained by Arnoldi decomposition to the L4-curve obtained by

Lanczos bidiagonalization (13) for the values �j = 1 × 10−8+(j−1)=2; 16j69 of the regularization
parameter.
We remark that the L8-curve for Arnoldi decomposition (shown in Fig. 5) and L4-curve for Lanczos

bidiagonalization require the same number of matrix-vector product evaluations with the matrix A
or AT and their graphs are identical to plotting accuracy.

Example 4.4. We apply the L-ribbon method of Section 2.1 to computerized X-ray tomography.
This is a technique for representing a three-dimensional object by means of its two-dimensional
cross sections or slices. In this example we show the reconstruction of a slice from projection data.

The region that contains the slice is discretized by a Cartesian grid of 512 × 512 square picture
elements (pixels). To each one of 512 X-ray emitters there is an associated detector. The 512
rays between the emitters and detectors form parallel lines of angle � with the horizontal axis.
Measurements are made for 90 equidistant angles � ∈ [0; �).
Let bi denote the measured total attenuation of the ith ray when it traverses the object at a certain

angle. In the present example there are 512× 90 = 46080 measured attenuations. In the absence of

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 443

Fig. 6. Example 4.3: L‘ curves: Arnoldi decomposition for ‘ = 6, Lanczos bidiagonalization for ‘ = 4.

measurement errors, the value of bi would be the line integral of the unknown X-ray absorption
function along the path of the ray. In our computed example, the bi are contaminated by errors that
give a noise level of 1 × 10−1. The purpose of the computations is to determine an approximation
of the X-ray absorption function from the quantities bi and knowledge of the angles of the rays.
We display the computed approximation of the X-ray absorption function and refer to it as the
reconstructed image of the slice.
The X-ray absorption function is assumed to be constant throughout each pixel. Let xj denote the

value of the absorption function at pixel j. There are 5122 = 262144 pixels. For 16i646080 and
16j6262144, let aij be equal to 1 if the ith ray at the given angle intersects the jth pixel. Then
aijxj represents the attenuation of the ith ray by the jth pixel, and

∑262144
j=1 aijxj approximates the

total attenuation of the ith ray.
Introduce the 46080×262144 matrix A=[aij] and the right-hand side vector b=[b1; b2; : : : ; b46080]

T.
The linear system of equations obtained (1) is underdetermined. Therefore we use the solution
method described in Section 2.1. The matrix A is referred to as the projection matrix and the
solution x = [x1; x2; : : : ; x262144]

T as the image vector; see [2,19] for details on image reconstruction
from projections.
We show the result of a reconstruction of a slice of a human head. Fig. 7 shows the “original”

image that we wish to reconstruct by computerized tomography. This image is represented by 512×
512 pixels. Note that in “real” applications of computerized tomography the original image is not
available; we only know the entries of the matrix A and right-hand side b. We display the original
image to allow comparison with the reconstructed image shown in Fig. 9.
Algorithm 2 is used with ‘ = 200 Lanczos steps with reorthogonalization of the columns of the

matrix U‘+1. Fig. 8 shows the computed L-ribbon. Speci�cally, the �gure displays rectangles (35)

444 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

Fig. 7. Example 4.4: Original image.

Fig. 8. Example 4.4: Reconstructed image, ‘ = 200, � = 0:06, noise level 1× 10−1.

D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446 445

Fig. 9. Example 4.4: L-ribbon for the human head section reconstruction; ‘ = 200.

for �j = 2 × 10−3+(j−1)=2; 16j616. The computed L-ribbon is seen to have a “vertex” at roughly
�4 = 0:06.
Let y�j;‘ denote the Galerkin solution (40) for �=�j and let d�j; ‘=AATy�j; ‘− b be the associated

discrepancy. The points (�(‖y�j; ‘‖2); �(‖d�j; ‘‖2)) are marked by “x” in Fig. 8. The �gure shows that
for small values �j the rectangles (35) are large and the Galerkin solution is quite far away from
the L-ribbon. Fig. 9 displays the reconstructed image from projections for ‘=200 and the value �4
of the regularization parameter.
We remark that the location of “vertex” of the L-curve in Fig. 8 is not clearly discernible by visual

inspection and this makes it di�cult to accurately determine a value of the regularization parameter
which corresponds to a point at or near the “vertex” of the L-curve. Visual inspection of Fig. 8 leads
us to choose the value �4 = 0:06 of the regularization parameter. However, since the “vertex” of the
L-curve is not very pronounced, one may consider choosing the value �5 = 0:2 instead. It turns out
that the reconstructed images obtained with the values �4 and �5 of the regularization parameter look
essentially the same. We conclude that the L-ribbon provides a good guideline for how to choose
an appropriate value of the regularization parameter. Since the images associated with the values �4
or �5 of the regularization parameter do not di�er much, we only show the former.

Acknowledgements

We would like to thank Per Christian Hansen for comments on a previous version of the paper.

446 D. Calvetti et al. / Journal of Computational and Applied Mathematics 123 (2000) 423–446

References

[1] M.L. Baart, The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares
problems, IMA J. Numer. Anal. 2 (1982) 241–247.

[2] M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publ., Bristol, 1998.
[3] �A. Bj�orck, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT 18

(1988) 659–670.
[4] �A. Bj�orck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[5] �A. Bj�orck, E. Grimme, P. Van Dooren, An implicit shift bidiagonalization algorithm for ill-posed systems, BIT 34

(1994) 510–534.
[6] D. Calvetti, G.H. Golub, L. Reichel, Estimation of the L-curve via Lanczos bidiagonalization, BIT 39 (1999)

603–619.
[7] D. Calvetti, L. Reichel, F. Sgallari, G. Spaletta, A regularizing Lanczos iteration method for underdetermined linear

systems, J. Comput. Appl. Math. 20 (1999) 101–120.
[8] L. Eld�en, Algorithms for the regularization of ill-conditioned least squares problems, BIT 17 (1977) 134–145.
[9] W. Gander, Least squares with a quadratic constraint, Numer. Math. 36 (1981) 291–307.
[10] G.H. Golub, G. Meurant, Matrices, moments and quadrature, in: D.F. Gri�ths, G.A. Watson (Eds.), Numerical

Analysis 1993, Longman, Essex, England, 1994, pp. 105–156.
[11] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, 1996.
[12] G.H. Golub, U. von Matt, Tikhonov regularization for large scale problems, in: G.H. Golub, S.H. Lui, F. Luk,

R. Plemmons (Eds.), Workshop on Scienti�c Computing, Springer, New York, 1997, pp. 3–26.
[13] M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT 36 (1996) 287–301.
[14] P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev. 34 (1992) 561–580.
[15] P.C. Hansen, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer.

Algorithms 6 (1994) 1–35. Software is available in Netlib at http:==www.netlib.org.
[16] P.C. Hansen, Rank-De�cient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[17] P.C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, in: P. Johnston (Ed.),

Advances in Biomedicine, Vol. 3, WIT Press, in press.
[18] P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J.

Sci. Comput. 14 (1993) 1487–1503.
[19] G.T. Herman, Image Reconstruction from Projections, Academic Press, New York, 1980.
[20] L. Kaufman, A. Neumaier, Regularization of ill-posed problems by envelope guided conjugate gradients, J. Comput.

Graph. Statist. 6 (1997) 451–463.
[21] M. Kilmer, D.P. O’Leary, Choosing regularization parameters in iterative methods for ill-posed problems, Report,

Department of Computer Science, University of Maryland, 1998.
[22] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA, 1995. First published by

Prentice-Hall, 1974.
[23] C.C. Paige, M.A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans.

Math. Software 8 (1982) 43–71.
[24] T. Reginska, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput. 17 (1996) 740–749.
[25] C.R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems 12 (1996)

535–547.

Journal of Computational and Applied Mathematics 123 (2000) 447–465
www.elsevier.nl/locate/cam

Symbiosis between linear algebra and optimization(

Dianne P. O’Leary ∗

Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742, USA

Received 27 May 1999

Abstract

The e�ciency and e�ectiveness of most optimization algorithms hinges on the numerical linear algebra algorithms
that they utilize. E�ective linear algebra is crucial to their success, and because of this, optimization applications have
motivated fundamental advances in numerical linear algebra. This essay will highlight contributions of numerical linear
algebra to optimization, as well as some optimization problems encountered within linear algebra that contribute to a
symbiotic relationship. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The work in any continuous optimization algorithm neatly partitions into two pieces: the work in
acquiring information through evaluation of the function and perhaps its derivatives, and the overhead
involved in generating points approximating an optimal point. More often than not, this second part
of the work is dominated by linear algebra, usually in the form of solution of a linear system or
least-squares problem and updating of matrix information.
Thus, members of the optimization community have been consumers of linear algebra research,

and their needs have set some research directions for the computational linear algebra community.
Recently, this relationship has entered a new phase in which optimization problems arising in linear
algebra are also setting research agendas for the optimization community.
This essay will highlight the advances in numerical linear algebra that contributed to this symbiotic

relationship. First, in Section 2 we review the modeling problems that give rise to linear algebra
problems. Least-squares modeling is the subject of Section 3. We turn our attention to the linear
algebra of unconstrained optimization problems in Section 4, and then review the simplex method for

(This work was completed at the Departement Informatik, ETH Z�urich, Switzerland. This work was also supported in
part by the US National Science Foundation under Grant CCR-97-32022.

∗ Corresponding author.
E-mail address: oleary@cs.umd.edu (D.P. O’Leary).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00408-8

448 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

linear programming in Section 5. Section 6 discusses linear algebra problems arising in interior point
methods. Nonlinear problems are briey considered in Section 7. Section 8 concerns linear algebra
problems giving rise to optimization, and Section 9 discusses computational issues in optimization.
We summarize our survey in Section 10.

2. Linear and quadratic models

The modeling of complex phenomena in science and economics by linear and quadratic models
is ubiquitous. It is motivated by the Taylor series expansion of a thrice continuously di�erentiable
function f :Rn → R as

f(x) = f(x0) + f′(x0)(x − x0) + 1
2(x − x0)Tf′′(x0)(x − x0) + O(‖x − x0‖3);

as well as by the relative ease of handling these models rather than fully-nonlinear ones. Often the
full nonlinearity of f is neglected in the modeling process, either because the simpler models yield
su�cient accuracy or because the modeling process yields insu�cient information about the higher
order coe�cients.
We often determine the coe�cients in a linear model by obtaining the “best-possible” �t to

experimental data. The coe�cients can be highly dependent on our way of measuring “best.” In
general, given a model M (t; z) of some function y(t), and data (ti; yi); i = 1; : : : ; m, we try to
determine the model coe�cients z ∈ Z⊆Rp to minimize the norm of the residual vector, whose
entries are

ri = yi −M (ti; z); i = 1; : : : ; m:

Common choices of the norm are the 1-norm or in�nity-norm, leading to linear programming prob-
lems (See Section 5) or the 2-norm, leading to a linear least-squares problem (See Section 3). Narula
[68] discusses solution of these various regression problems. If the set Z is something other than
Rp, then there are constraints on the minimization problem.
Thus, modeling of physical phenomena leads to optimization problems, but, conversely, algorithms

for optimization often lead to linear and quadratic modeling. For instance, an objective function
f(x) might be locally modeled as a quadratic function in algorithms such as sequential quadratic
programming. As another example, we often temporarily replace a constraint by a local linear model
in order to make a subproblem easier to solve (See Section 7).
Perhaps the oldest use of quadratic models to solve nonlinear problems is the iteration of Newton

for minimizing a function or �nding a zero of a system of nonlinear equations. At each step in
the iteration, we construct a quadratic model of the function (or a linear model of the system of
equations) and use that model to generate a step in the direction of a better solution. A wonderful
survey of Newton’s method is given in [96], and we consider this method in Section 4.

3. Least squares

Consider the modeling problem

min
z
‖Mz − y‖2; (1)

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 449

where M ∈ Rm×n; z ∈ Rn, and y ∈ Rm. This linear least-squares problem was shown by Gauss [39]
to produce the z that yields the best linear unbiased estimator of any function cTztrue whenever the
errors in y have mean zero and variance �2I .
The oldest algorithms for solving the linear least-squares problem can be viewed as applying direct

or iterative methods to solve the normal equations

M TMz =M Ty;

obtained by setting the derivative of (1) to zero.
Within the past 50 years, advances in the solution of least-squares problems have been of three

types: analysis of sensitivity and stability, development of computational tools, and consideration of
problem variants.
The lucid textbook by Bj�orck [8] is the de�nitive reference on the entire subject of numerical

solution of least squares problems, and we recommend it for exposition and further references.
Higham [48] is an alternate source for the history of sensitivity analysis for these problems.

3.1. Sensitivity and stability of least-squares problems

Important contributions to the study of sensitivity of least-squares problems have been made in
recent years.
Wedin [94, Theorem 5:1], studied the normwise perturbation of z and the residual r = y − Mz

when M is perturbed, showing that if the relative perturbations in M and y are less than �, and if the
condition number �2(M) (the ratio of its largest to its smallest singular value) satis�es �2(M)�¡ 1,
then

‖z − ẑ‖
‖z‖ 6

�2(M)�
1− �2(M)�

(
2 + (�2(M) + 1)

‖r‖2
‖M‖2‖z‖2

)
;

‖r − r̂‖
‖y‖ 6 (1 + 2�2(M))�:

This result says that if the residual is small, then perturbations are proportional to �2(M), but if
the residual is large, then perturbations proportional to �2(M)2 might be seen, and that is indeed the
case.
Further analysis can be found in [8, Chapter 1], including component-wise bounds on the

error [4].

3.2. Computational tools for least-squares problems

The main computational algorithm for least-squares solves the problem by using the QR factor-
ization of the matrix M into the product of a matrix Q ∈ Rm×n with orthogonal columns, and an
upper triangular matrix R ∈ Rn×n. Use of this tool was �rst proposed by Golub [41], but great
attention has been given to the relative advantages of factorization using Householder reections,
Givens rotations, or modi�ed Gram–Schmidt [8, Section 2:4]. The �rst two alternatives were known
to have similar desirable error properties, and modi�ed Gram–Schmidt was �nally shown stable in
a paper of Bj�orck and Paige [10] by exploiting the fact, known to many early practitioners such as

450 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

She�eld, that modi�ed Gram-Schmidt is numerically equivalent to Householder QR applied to the
matrix[

0
M

]
:

If the problem is di�cult in the sense that M is ill-conditioned, then more re�ned tools are
needed. The QR factorization with column pivoting [41] can be used to try to identify the most
linearly independent columns �rst and perhaps construct a model of reduced size; see [18] for a
survey of such rank-revealing QR factorization methods. This is not foolproof, however, and the
singular value decomposition [42, Section 2:5] is a more reliable (and more expensive) factorization
algorithm for identifying dependencies; see Stewart [85] for historical remarks on the SVD.
The LU factorization of M can also be used to solve least-squares problems [77], but its use

is not common except when the matrix M is sparse, with many zero elements. In that case, the
QR factors may be quite dense, due to creation of nonzeros in the course of the factorization. To
minimize this �ll-in, it is important to use the best algorithms for reordering the rows and columns
of the matrix [29] before factorization.
The normal equations can be solved by Cholesky factorization into the product of a lower triangular

matrix times its transpose, but if the problem is large and sparse, then reordering strategies should
again be used to minimize �ll [40].
An alternate to factorization for large sparse problems is the use of iterative methods. The precon-

ditioned conjugate gradient algorithm [42] can be used to solve (8), and row-action methods [17]
and other specialized methods such as CGLS and LSQR avoid forming the normal equations [8,
Chapter 7].

3.3. Variants of least-squares problems

Often the matrix M has special structure that can be exploited in order to make solution of the
least-squares problem more e�cient. One example is the matrix that arises from �tting polynomials
using the power basis and equally spaced data points. The resulting matrix for the normal equations,
a Vandermonde matrix, has beautiful structure but is quite ill-conditioned [11,9,27,47]. A second
example is the band matrix structure that results from �tting functions whose support is local [80,23].
Wavelet [20] and Fourier bases often give matrices with small displacement rank [51] again leading
to e�cient solution algorithms [86,24,67,44,76].
Some models give rise to nonlinear least-squares problems

min
z
‖r(z)‖;

where r :Rn → Rm. These are usually solved by Newton variants discussed in Section 4.
Constrained least-squares problems also arise frequently in practice. For instance if the parameters

z are constrained to be nonnegative, then the resulting least-squares problem is a special case of
quadratic programming

min
z

1
2z
TMz + zTw;

Cz¿d
(2)

and e�cient algorithms for solving such non-negativity constrained least-squares problems were �rst
proposed by Lawson and Hanson [59]. Alternatively, if the vector z is constrained in 2-norm, then

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 451

this results in a quadratic objective function with a single quadratic constraint. This is the situation,
for example, in trust region methods for optimization (See Section 4).
Often a sequence of least-squares problems needs to be solved, each representing an update of

the previous one due to the addition of new data or the downgrading of the importance of old data.
Such problems arise, for example, in signal processing when we try to estimate the position of an
unknown number of signal sources (e.g., �nding the position of each aircraft within a given zone)
given data from a set of receivers. Updating and downdating can be done quite stably if the full QR
factorization is saved; in this case, Q is m×m. If this is too expensive, then a variety of algorithms
have been proposed that have decent numerical properties [8, Chapter 3].
The weighted least-squares problem

min
z
‖Mz − y‖W ;

where ‖x‖2W = xTWx, is also useful in practice. Here W is an estimate of the inverse covariance
matrix for the zero-mean errors in measurement of y. The normal equations become

M TWMz =M TWy;

and if we introduce the residuals s=W (y −Mz), then we can transform the normal equations into
an augmented system[

W−1 M
M T 0

] [
s
z

]
=
[
y
0

]
: (3)

We will see this system again in Section 6.
If there are outliers in the data, then the least-squares criterion is not very useful unless the

weights are adjusted so that the outliers do not a�ect the �t very much. This is the goal in iteratively
reweighted least-squares, or robust regression [50], in which the �xed weight matrix W is replaced
by some function of the size of a component of the residual

min
z

m∑
i=1

w(yi − (Mz)i):

If w(u)=u2, then we recover the least-squares problem. Functions that diminish the e�ects of outliers
include Huber’s choice [49]

w(u) =
{
u2=2; |u|6�;
�|u| − �2=2; |u|¿�;

where � is a problem-dependent parameter. Minimizing Huber’s function leads to a quadratic pro-
gramming problem. Computational issues arising in iteratively reweighted least-squares problems are
discussed, for example, in [73].

4. Unconstrained optimization

Given a point x0 and a quadratic model of a function

f(x) ≈ f(x0) + f′(x0)(x − x0) + 1
2(x − x0)Tf′′(x0)(x − x0);

452 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

it is natural to approximate the minimizer of f by the minimizer of this model. If f′′(x0) is positive
de�nite, this minimizer is given by

x = x0 − f′′(x0)−1f′(x0):

This equation motivates Newton’s method. Given x0, we de�ne a sequence of iterates

xk+1 = xk + pk;

where the direction pk is the solution to the linear system

�Bkpk =−f′(xk) (4)

and �Bk = f′′(xk). If f is quadratic, then x1 is a stationary point of f, a global minimizer if f′′ is
positive de�nite. If f is not quadratic, the procedure is convergent at a quadratic rate of convergence
to a local minimizer of f under conditions such as those of the Newton–Kantorovich theorem [74,
Section 12:6].
Developments of Newton’s method during the last 40 years have focussed on improving this

method by making it more reliable and by adapting it for use on very large problems.

4.1. Making Newton’s method more reliable: line searches and trust regions

Two methods have been used to make Newton’s method (or its variants) globally convergent to
a local minimizer: line searches and trust regions.
In the line search method, the Newton-like direction pk is scaled so that

xk+1 = xk + �kpk;

where �k is a parameter chosen to ensure that the objective function f decreases su�ciently in
proportion to the size of the step. See [74, Section 14:4:3] for conditions on �k that guarantee global
convergence (e.g., Wolfe conditions, Goldstein–Armijo conditions).
The trust region method constrains the length of the step so that we do not exit some region in

which we “trust” the accuracy of the quadratic model. Thus we solve the problem

min
p
M (xk + p);

‖p‖6�;
where M is the quadratic model and � is the radius of the trust region. If the constraint is active,
then the solution to this problem is

(�Bk + �I)p=−f′(xk)

for some nonnegative parameter � chosen to make ‖p‖= �. This problem can be solved by eigen-
decomposition of �Bk , but this is generally too expensive. Often an iterative approach is used; we
generate a sequence of approximations to p, stopping and backtracking when the norm of p exceeds
�; see, for example [38]. This does not give a step in the Newton direction unless the radius of the
trust region exceeds the norm of the Newton direction pk de�ned in (4).

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 453

4.2. Making Newton’s method more reliable for nonconvex functions

If the matrix �Bk used in the Newton equation is not positive de�nite, then Newton’s method may
fail to have a downhill search direction. To remedy this, algorithms based on line search usually
diagnose inde�niteness as (4) is solved and cure it by adding a small correction matrix. These
techniques are easily incorporated into a Cholesky factorization of the matrix [38].
Another approach to making Newton’s method more reliable is to take very small steps – in fact,

to follow the path

dx
dt
=−f′′(x)−1f′(x);

starting with x(0)= x0. This is the idea behind methods such as homotopy methods [54], which also
introduce a parameterized function in order to locate multiple local minimizers. The linear algebra
is heavily drawn from that used in ordinary di�erential equation solvers [93].

4.3. Adapting Newton’s method for large problems

Computing, storing, and factoring the Hessian matrix may be impractical if the size is large.
Quasi-Newton methods mimic Newton’s method by generating less expensive approximations Bk to
the matrix �Bk . These approximations are generated by updating the approximation for �Bk−1, and some
have come to be interpreted as matrix approximation problems [28]. The most popular quasi-Newton
variant is that proposed by Broyden, Fletcher, Goldfarb, and Shanno (BFGS), which is de�ned by
the update formula

Bk+1 = Bk − Bksks
T
k Bk

sTk Bksk
+
ykyTk
yTk sk

;

where yk is the change in gradient and sk is the change in x. Rather than storing and updating Bk+1,
we can also store and update its inverse or maintain the Cholesky factors of Bk+1; see, for example,
[37, Section 4:5:2:2].
An alternative is to use �Bk but avoid factoring it. This can be achieved by computing an approx-

imate Newton search direction pk as the solution to (4) using an iterative method (e.g., conjugate
gradients or some other Krylov subspace method) that uses �Bk only for matrix–vector products. If a
conjugate gradient algorithm is used, then there are very e�ective ways to handle inde�niteness and
to determine the step for the trust region. The iteration can be terminated if the increment d to p is
a direction of negative curvature (i.e., dT �Bkd¡ 0) or if the algorithm steps out of the trust region
[38]. Preconditioning can be used to improve convergence of the iterative methods [42, Section
10:3], but how this biases the generation of directions is an open question.
If �Bk is too expensive to compute or store, then the necessary products in the iterative method

can be approximated by di�erence quotients

�Bkp= f′′(xk)p ≈ f
′(xk + hp)− f′(xk)

h

for a suitably small parameter h. This produces an algorithm that has come to be known as the
truncated Newton method [26,72,69].

454 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

In very large problems, the updates to the quasi-Newton matrix may prove too numerous to store.
In that case we might discard updates as they age, or skip some intermediate updates. These limited
memory methods were proposed by Nocedal [70], and the properties of various discarding strategies
are studied in [57].

4.4. Alternatives to Newton’s method for large problems

There is a vast set of low-storage alternatives to Newton-like methods. They sacri�ce the superlin-
ear convergence rate that can be achieved under careful implementation of the Newton-like methods
[71] in order to avoid storing a matrix approximation. Many of these methods are derived from
methods for solving linear systems Ax∗ = b involving a symmetric positive-de�nite matrix A.
The conjugate gradient method [46] takes a sequence of A-conjugate descent steps for the function

(x − x∗)TA(x − x∗) beginning with the steepest descent direction. Many authors proposed nonlinear
extensions of this method, beginning with Fletcher-Reeves [34]. The algorithms are all equivalent to
quasi-Newton algorithms on quadratic functions [33, Chapter 3], but the most robust algorithm for
general functions is that of Polak and Ribi�ere [78], restarting with the steepest descent direction in
case trouble is diagnosed.
Another set of methods is related to �xed-point methods for solving linear systems. These linear

methods are of the form

xk+1 = Exk + c;

where x∗ is a �xed point of the iteration and the matrix E is chosen so that its spectral radius
is small, yielding linear convergence of the sequence to x∗. Often these methods are derived by
some variant of solving the ith equation for the ith variable, and then using estimates for the other
variables to form a new value for the ith component of x. Examples of such methods are Jacobi,
Gauss–Seidel, and SOR. See Varga [90] for a good discussion of such iterations in the linear case,
and Ortega and Rheinboldt [74] for the general case.

5. Simplex method for linear programming

In the 1940s and 1950s, several events led to an explosion of interest in computational methods.
The �rst was the computational need generated by the participants in World War II. Data �tting (least
squares) and logistics support (optimization) created enormous demands for solution to ever-larger
models. At the same time, electronic computing machines for the �rst time made it possible to solve
problems larger than those that could be handled by a roomful of human calculators.
George Dantzig was among those who realized the need for automatic algorithms for solving

optimization problems, and, working for the US war e�ort at Rand Corporation, he devised a tableau
to organize the data in a linear programming problem

min
x
cTx

Ax = b;

x¿0;

(5)

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 455

where A ∈ Rm×n, with m¡n. The tableau of numbers could be stored and modi�ed systematically to
produce an optimal solution to the problem, as well as information on the sensitivity of the solution
to the data in A, b, and c [25]. Not only was this scheme well adapted to single or multiple human
calculators, but it could also be implemented for large problems on electronic computers, enabling
logistics planning that was unthinkable a few years earlier. The solution of linear programs, which
earlier could in general be done only approximately by heuristic methods, could now be automated.
Dantzig’s simplex algorithm was based on generating a path through the feasible set S =
{x¿0: Ax=b} through a set of vertices (i.e., points x for which at most m components are nonzero)
that are adjacent (i.e., have all but one zero component in common). Along this path, the objective
function cTx usually decreases, but in any case does not increase. Once an anti-cycling safeguard is
added that prevents any vertex from being visited too many times, the algorithm can be proven to
converge, because there are only a �nite number of vertices and it can be shown that one of them
is an optimal solution.
For a given vertex x, we let I denote the set of indices i for which xi is nonzero. Then, if AI

denotes the set of columns of A corresponding to indices in I, we see that the nonzero components
xI are de�ned by

AIxI = b: (6)

In order to step from this vertex to an adjacent one, we replace one index in I by an index not
in I, and the index is determined by solving a linear system involving the matrix ATI. In order to
compute the x corresponding to this step, we must modify our coe�cient matrix by replacing one
column with a new one. Dantzig proposed accumulating the matrix inverse and updating it using
elementary row operations. Equivalently, his algorithm can be viewed as Gauss–Jordan elimination
without pivoting [5]. This algorithm is numerically unstable, and simplex practitioners use periodic
reinversions to recalculate the matrix inverse directly and eliminate the accumulated inaccuracies.
This is still not unconditionally stable, but for many applications it works well. For dense matrices,
the initial factorization cost is O(m3) and the cost of each update is O(m2). Typically the simplex
algorithm takes a reasonably small number of iterations – a small multiple of m [25, p. 160] – but
in the worst case the algorithm can visit every vertex [56], so the bound on the cost is exponential
in the problem size.
In the last half of the 20th century, the dimensions of linear programming problems have become

much larger than �rst envisioned. At the same time, the matrices of interest have tended to become
more sparse, with many zero elements. Consequently, even though the original matrix has large
dimension, it usually can be stored in a small amount of memory. But the original simplex algorithm
explicitly stores the matrix inverse, which is usually completely dense. Thus various modi�cations
were made to the linear algebra of the algorithm to make it less of a storage hog. In the revised
simplex algorithm with product form of the inverse, the inverse matrix is stored as a product of
updates: a matrix AI is represented as

A−1
I = Rk−1 : : : R1;

where each update matrix Ri di�ers from the identity by one column. This form is easily updated
by accumulating additional matrices R, but when the storage for the updates becomes prohibitive,
or when inaccuracies accumulate, reinversion is performed.

456 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

The computational linear algebra community became interested in the simplex method in the late
1960s. Bartels and Golub [6,5] showed how the updating algorithm could be made stable through
the use of partial pivoting, the interchange of rows of the matrix in order to bring the largest
magnitude element in the current column to the main diagonal at every stage of the factorization.
By computing in this way, it is possible to bound the error in the computed solution in two important
ways: the computed solution solves a nearby problem, and the computed solution is close to the true
solution [48, Chapter 9]. Neither of these properties is guaranteed to hold for earlier variants of the
simplex algorithm. Still, the use of this stabilized algorithm met with resistance. Pivoting makes the
implementation of updating much more costly, and for sparse matrices, it makes the data handling
more di�cult and the storage space generally higher.
The QR algorithm is an alternate matrix factorization that does not require pivoting for stability,

but its �ll-in often makes it prohibitively expensive for sparse matrices, so it was never widely used.
Much research in matrix reordering was spurred in part by the simplex algorithm. See [29] for

more information on reordering.
Although iterative methods could be used to solve the linear systems in the simplex method, they

have been proposed only for some special applications.

6. Interior point methods for linear programming

The proof by Khachian [55] that linear programming problems can be solved in polynomial time
began a new era in the solution of optimization problems. Khachian’s algorithm was not practical for
computation, but suddenly a great deal of attention was focused on the interior point method (IPM),
algorithms in which the path of the iterates stays in the relative interior of the feasible set rather
than marching around the boundary from vertex to vertex. Karmarkar [52] was the �rst to propose a
relatively practical interior point algorithm that had polynomial complexity, and that announcement
spurred a urry of work on new methods, as well as further work on older proposals such as the
SUMT technique of Fiacco and McCormick [31].
The structure of IPMs is quite di�erent from that of the simplex algorithm, but one similarity

remains: the main computational work in the algorithm is the solution of a linear system of equations.
Unlike the simplex algorithm, however, this linear system arises from a linear least-squares problem,
and this extra structure can be quite useful. Further, although the sparsity structure of the matrix in
the simplex algorithm changes from iteration to iteration, the structure of the matrix in the IPM is
constant, and only the weights in a diagonal matrix are changing. This fact makes data management
much easier.
Consider our linear programming problem (5). Gonzaga [43] and Wright [95] surveyed interior

point methods, and many computational issues are addressed by Lustig et al. [64] and Andersen
et al. [1]. The basic idea is to replace the linear program by a nonlinear problem formed by using
Lagrange multipliers y to handle the linear equality constraints, and using barrier functions to avoid
violating the nonnegativity constraints. One popular barrier function is the logarithmic barrier, ln xj,
which goes to −∞ as xj → 0+. The resulting Lagrange-barrier function is

L(x; y; �) = cTx − yT(Ax − b)− �
n∑
j=1

ln xj:

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 457

The solution to our linear programming problem (5) is the limit of the saddle-points of L as �→ 0.
If we set the derivative of L equal to zero, we obtain necessary (�rst-order) conditions for a solution
(x; y; �) to be optimal:

Ax = b;

c − ATy − z = 0;
XZe = �e:

Here, e denotes a vector of all ones, and upper-case letters X and Z denote diagonal matrices created
from the entries of the vectors x and z, respectively. In some sense this is a relaxation of the linear
program, since these are optimality conditions for the linear program if we take z = 0 and � = 0.
The idea is to solve a sequence of problems; initially, � is taken large in order to easily obtain a
solution, and then � is reduced.
The introduction of the variables z makes the �rst two equations linear, and the Lagrange mul-

tipliers y can also be interpreted as the solution to the linear programming problem that is dual to
(5). The most successful IPMs have been those that preserve primal feasibility by keeping Ax = b
while at the same time maintaining dual feasibility by keeping c − ATy¿0.
We now have a system of nonlinear equations to solve, and we can apply Newton’s method. We

compute the Newton direction by solving the KKT (Karush–Kuhn–Tucker) system(−X−1Z AT

A 0

)(
�x
�y

)
=
(
rd + Ze − �X−1e

rp

)
; (7)

or by solving the equations formed by eliminating �x from this system. De�ning rp = b − Ax,
rd = c − ATy − z, and D2 = Z−1X , we obtain the normal equations

(AD2AT)�y = AD2(rd + Ze − �x−1e) + rp: (8)

Once �y is determined, �x may be easily computed from

−(X−1Z)�x + AT�y = rd + Ze − �X−1e:

Solving either Eq. (7) or (8), then, is the central computational problem in applying IPMs to linear
programming problems. The remaining considerations are what sequence of � values to use, how
accurately to solve intermediate problems, and when to terminate the algorithm or switch to direct
solution once the optimal vertex is identi�ed. For more information on these aspects, see, for example,
[64,1]. Here we concentrate on the issues involved in solving (7) or (8).
The normal Eqs. (8) involve a symmetric positive semi-de�nite matrix (positive de�nite if A is

full rank), and the Cholesky factorization is an e�cient tool for solving such systems. If the matrix
is sparse, though, then the Cholesky factor has the same sparsity structure as the triangular factor
in the QR factorization of A, and this can be quite dense. We observe that

ATDA=
n∑
j=1

ajdjjaTj ;

where aj is a column of A. If a small number of columns are causing excessive �ll-in, then these
columns can be omitted from the factorization, and the Sherman–Morrison–Woodbury formula [42,
Section 2:1:3] can be used to correct for their absence [3].

458 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

Table 1
Comparison of matrix problems in the simplex algorithm and in IPMs

Simplex method Interior point methods

Nonsymmetric Symmetric positive de�nite (normal equations)
or inde�nite (augmented system)

Changing sparsity pattern Fixed sparsity pattern

Usually well conditioned Can become increasingly ill-conditioned as � becomes smaller

Matrix changes by rank-2 update Matrix changes completely, but only because D is changing

Table 1 compares the features of the matrix problems in the simplex algorithm and in IPMs.
If the matrix is ill-conditioned (which often happens at the end-stage, when � is small and some

solution components go to zero) or rank-de�cient (perhaps due to omission of columns in the
factorization), it may be desirable to add a diagonal correction to ATDA so that a factorization of a
better conditioned matrix is computed. This technique of Stewart [84] has been used by Andersen
[3] and others.
The matrix of the KKT system (7) is always symmetric inde�nite. We also saw this matrix in

optimality conditions (3) for weighted least-squares problems. Cholesky factorization is unstable for
inde�nite matrices, so other alternatives must be applied. The Bunch–Kaufman–Parlett factorization
[14,13] into the product LSLT, where L is lower triangular and S is block diagonal with 1 × 1 or
2× 2 blocks, is a convenient tool for such problems.
If A is large and sparse, then the factorizations for (7) or (8) usually include sparsity considerations

in the choice of pivot order.
Iterative methods for solving the linear systems in IPMs have received a great deal of attention

but rather limited success. The key problem is the choice of preconditioner. Chin and Vannelli [19]
solved the KKT system (7) using an incomplete factorization as a preconditioner, while Freund
and Jarre [36] proposed SSOR preconditioners. Most of the preconditioning work has been on the
normal equation formulation (8). Karmarkar and Ramakrishnan [53] used the factorization of the
matrix for one value of � to precondition the problem when � is changed. Mehrotra [65] used an
incomplete Cholesky factorization as a preconditioner, recomputing the factorization for each new �
value. Carpenter and Shanno [16] used diagonal preconditioning, and Portugal, Resende, Veiga, and
J�udice [79] also used spanning-tree preconditioners.
The best solution algorithm will surely be a hybrid approach that sometimes chooses direct solvers

and sometimes iterative ones. Wang and O’Leary [92,91] proposed an adaptive algorithm for deter-
mining whether to use a direct or iterative solver, whether to reinitialize or update the preconditioner,
and how many updates to apply, but further work remains.
The ill-conditioning of the matrices has stimulated a lot of work in trying to understand why the

algorithms work as well as they do. Saunders [81] sets forth a set of reliable solution strategies, and
a stability analysis is presented in [35].

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 459

7. Nonlinear programming

Optimization problems with nonlinearities in their objective function or their constraints can be
more di�cult to solve than linear programming. We survey selected nonlinear programming problems
and strategies that make use of linear algebra.
Linear algebra plays a key role in the solution of quadratic programming problems (2) and of

linear complementarity problems (LCP)

Ax − b= z;
xTz = 0;

x¿0; z¿0:

Approaches include variations of the simplex algorithm, extensions of linear iterations such as Jacobi
and Gauss–Seidel, descent methods such as conjugate gradient, and interior point algorithms. See
[66] for a comprehensive discussion. Questions of existence and uniqueness of solutions to LCP
spurred work in matrix theory on matrix cones [22].
In the past, two popular methods were used to handle constraints in nonlinear programming

problems [62, Chapter 11]. In the �rst, certain constraints were held active for a portion of the
iteration, and the iterates were not permitted to depart from them. Any descent step was augmented
by a step back to the active constraints. In the second, descent directions were projected onto equality
constraints before the step was taken; thus, steps were computed relative to a reduced gradient
that corresponded to the gradient on the constraint surface. The computations were performed by
projection matrices. Both of these strategies are currently in eclipse, due to the advent of sequential
quadratic programming (SQP) and interior point methods.
In SQP, we solve a sequence of quadratic programming problems (2) arising from quadratic models

of the original constrained problem, using IPM or simplex-based methods for the subproblems. Again
we need modi�cations to maintain positive de�niteness. Boggs and Tolle [12] give an excellent
survey of these methods.
Interior point methods are also applied to nonlinear optimization problems directly [87]. The matrix

in the augmented system (7) becomes somewhat more complicated than in the linear case; the lower
right block can become nonzero, the upper left block may be full instead of diagonal, and in many
formulations, the matrix is increasingly ill-conditioned [95,83]. The structure of this ill-conditioning
is now somewhat understood, though, and, with care, the linear systems can be solved success-
fully [81].
Even these newer approaches, SQP and IPM, are not completely satisfactory, especially when the

constraints are ill behaved [21].
A rather di�erent approach to some classes of optimization problems is the use of

neural networks [30]. These networks �t a surface to a function of many variables. There are
various viewpoints for interpreting such methods, but one way is that the training of the net-
work corresponds to optimizing parameters in a function that discriminates among di�erent classes
of points. The functional form is predetermined, and the optimization problem is generally non-
convex, with many local solutions. To overcome this di�culty, Vapnik and colleagues proposed
support vector machines, a more limited set of functional forms that are easier to analyze; see,

460 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

for example [89]. Many useful choices lead to convex optimization problems – in fact, to very
large dense least squares or quadratic programming problems (2). Burges [15] provides a
good introduction to the concepts and computational issues, while [88] is a more detailed
study.

8. Matrix and eigenvalue optimization problems

And now we come full circle. We have seen how computational linear algebra has enabled e�-
ciency advances in computational optimization. We have seen that the optimization community has
raised interesting questions about matrix theory and about stability analysis of linear algorithms.
Now we discuss a set of optimization problems that arise from linear algebra and have motivated
the development of important optimization algorithms and advances in the understanding of duality
theory for optimization problems.
These problems involve eigenvalue optimization [60]. An important subclass is the class of

semide�nite programs. Super�cially, they resemble linear programming problems (5), since they
can be written as

min
X
C • X; (9)

AX = B;

X¿0;

but here C and X are symmetric n × n matrices, C • X = trace(CX), and X¿0 means that X is
positive semide�nite. This problem is convex but nonlinear. The duality structure for semide�nite
programming, the existence and construction of another problem that has the same optimality condi-
tions as (9), is not as satisfying as that for linear programming. Despite the di�erences between the
two classes of problems, linear programming gives much insight here, both for the theory and for the
algorithms, and interior point methods that are direct generalizations of those for linear programming
are the methods of choice.
Thus, semide�nite programming problems are eigenvalue optimization problems, and these prob-

lems have important linear algebra applications in control, in minimizing the condition number of a
matrix by diagonal scaling, and in solving Lyapunov inequalities. Further information can be obtained
from a review article of Lewis and Overton [60], a review article of Lobo, Vandenberghe, Boyd,
and Lebret describing a subclass known as second-order cone programming [61], and a collection
of papers [75].

9. Computational trends

Optimization algorithms can consume a great deal of computational resources, and they have
always been run on state-of-the-art computer architectures. More and more, these algorithms are
packaged and portable. There is reliable software for least-squares problems on parallel computers
[82], and signi�cant work has been done with neural networks [30, Section 4.1] and systolic arrays
[58]. But there is limited experience with parallelization of constrained optimization codes. A notable
e�ort is the parallel version of the CPLEX code by Lustig and Rothberg [63].

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 461

A second computational trend is the development of software that performs more of the drudgery
for the user. Problem generators have been widely available for many years, but new tools are also
being developed. Programs for automatic di�erentiation, for example, have contributed to the practical
application of optimization techniques to a much larger set of problems. An automatic di�erentiation
program uses the computational de�nition of a function in some programming language to generate a
program for evaluating the derivative of the function. There are two basic strategies, both involving
repeated applications of the chain rule. The forward mode consumes a great deal of intermediate
storage, while the backward mode generally takes more time. Practical implementations generally
use a combination of the two strategies, guided by linear algebra tools such as sparsity structure
analysis and the construction of structurally orthogonal basis vectors [7].

10. Conclusions

Major developments in the basic linear algebra of optimization algorithms in the 20th century
include:

• Invention of the simplex algorithm, based on Gauss–Jordan elimination and updating.
• Learning to implement the simplex algorithm in a stable way while preserving sparsity.
• Development and understanding of Newton alternatives: truncated Newton for use when derivatives
are not available, quasi-Newton for use when second derivatives are not available, limited-memory
and conjugate gradient methods for large problems.
• Development of least-squares algorithms for solving dense and sparse problems in a provably
stable way.
• Development of algorithms for a wider range of constrained optimization problems, including
those involving eigenvalue placement.
• Making automatic di�erentiation practical.
• Understanding the sensitivity of linear [48] and constrained problems [25, Section 12:4] [32] to
perturbations in the data.

In addition, the development of e�cient “o�-the-shelf” packages of reliable software for dense linear
algebra (LAPACK) [2] and sparse linear algebra (e.g., Harwell codes [45]) makes the development
of e�cient and reliable optimization software much easier, and most optimization packages do make
use of this linear algebra basis.
Research areas that will remain active in the next century include:

• Hybrid algorithms for solving the linear systems from IPMs and other sources, involving automatic
preconditioning.
• More e�ective algorithms for global optimization.
• More e�ective algorithms for nonlinear constraints.
• Sensitivity analysis.
Much progress in linear algebra in the 20th century has been motivated, at least in part, by

optimization problems. This progress includes matrix up- and down-dating, sparse direct and iter-
ative methods for linear systems, and solution of least squares problems. Conversely, progress in

462 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

optimization enables many previously intractable linear algebra problems to be solved, especially
those related to eigenvalue placement. During the next century, this symbiosis will undoubtably
continue. Progress in optimization will inevitably be linked with progress in linear algebra.

Acknowledgements

I am grateful for the hospitality provided by Professor Walter Gander and the Departement Infor-
matik, ETH Z�urich, Switzerland, which enabled this work to be completed. I also appreciate helpful
comments on a draft of this article from Tamara G. Kolola.

References

[1] E.D. Andersen, J. Gondzio, C. M�esz�aros, X. Xu, Implementation of interior point methods for large scale linear
programs, in: T. Terlaky (Ed.), Interior Point Methods of Mathematical Programming, Kluwer Academic Publishers,
Boston, 1996, pp. 189–252.

[2] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 2000.

[3] K.D. Andersen, A modi�ed Schur-complement method for handling dense columns in interior point methods for
linear programming, ACM Trans. Math. Software 22 (1996) 348–356.

[4] M. Arioli, J.W. Demmel, I.S. Du�, Solving sparse linear systems with sparse backward error, SIAM J. Matrix Anal.
Appl. 10 (1989) 165–190.

[5] R.H. Bartels, A stablization of the simplex method, Numer. Math. 16 (1971) 414–434.
[6] R.H. Bartels, G.H. Golub, The Simplex method of linear programming using LU decomposition, Comm. ACM 12

(1969) 266–268.
[7] C. Bischof, A. Bouaricha, P. Khademi, J. Mor�e, Computing gradients in large-scale optimization using automatic

di�erentiation, INFORMS J. Comput. 9 (1997) 185–194.
[8] �A. Bj�orck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[9] �A. Bj�orck, T. Elfving, Algorithms for conuent Vandermonde systems, Numer. Math. 21 (1973) 130–137.
[10] �A. Bj�orck, C.C. Paige, Loss and recapture of orthogonality in the modi�ed Gram–Schmidt algorithm, SIAM J. Matrix

Anal. Appl. 13 (1992) 176–190.
[11] �A. Bj�orck, V. Pereyra, Solution of Vandermonde system of equations, Math. Comp. 24 (1970) 893–903.
[12] P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta Numerica 4 (1995) 1–51.
[13] J.R. Bunch, L. Kaufman, B.N. Parlett, Decomposition of a symmetric matrix, Numer. Math. 27 (1976) 95–109.
[14] J.R. Bunch, B.N. Parlett, Direct methods for solving symmetric inde�nite systems of linear equations, SIAM J.

Numer. Anal. 8 (1971) 639–655.
[15] C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery 2

(1998) 121–167.
[16] T.J. Carpenter, D.F. Shanno, An interior point method for quadratic programs based on conjugate projected gradients,

Comput. Optim. Appl. 2 (1993) 5–28.
[17] Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev. 23 (1981) 444–466.
[18] S. Chandrasekaran, I.C.F. Ipsen, On rank-revealing factorisations, SIAM J. Matrix Anal. Appl. 15 (1994) 592–622.
[19] P. Chin, A. Vannelli, Iterative methods for the augmented equations in large-scale linear programming, Technical

Report UWE& CE-94-01, Department of Electrical and Computer Engineering, University of Waterloo, October
1994.

[20] C.K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.
[21] A.R. Conn, N.I.M. Gould, P.L. Toint, Methods for nonlinear constraints in optimization calculations, in: I.S.

Du�, G.A. Watson (Eds.), The State of the Art in Numerical Analysis, Clarendon Press, Oxford, England, 1997,
pp. 363–390.

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 463

[22] R.W. Cottle, J.-S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
[23] M.G. Cox, The least squares solution of overdetermined linear equations having band or augmented band structure,

IMA J. Numer. Anal. 1 (1981) 3–22.
[24] G. Cybenko, Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist. Comput. 8 (1987) 734–740.
[25] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[26] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.
[27] C.J. Demeure, Fast QR factorization of Vandermonde matrices, Linear Algebra Appl. 122 (3=4) (1989) 165–194.
[28] J.E. Dennis Jr., J.J. Mor�e, Quasi-Newton methods, motivation and theory, SIAM Rev. 19 (1977) 46–89.
[29] I.S. Du�, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, Clarendon Press, Oxford, 1986.
[30] S.W. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer. 3 (1994) 145–202.
[31] A.V. Fiacco, G.P. McCormick, Nonlinear Programming : Sequential Unconstrained Minimization Techniques, Wiley,

New York, 1968 Reprint: Volume 4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia,
PA 19104–2688, USA, 1990).

[32] A.V. Fiacco (Ed.), Mathematical Programming with Data Perturbations, Marcel Dekker, New York, 1998.
[33] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.
[34] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964) 149–154.
[35] A. Forsgren, P.E. Gill, J.R. Shinnerl, Stability of symmetric ill-conditioned systems arising in interior methods for

constrained optimization, SIAM J. Matrix Anal. Appl. 17 (1996) 187–211.
[36] R.W. Freund, F. Jarre, A QMR-based interior-point algorithm for solving linear programs, Technical Report,

AT& T Bell Laboratories and Institut f�ur Angewandte Mathematik und Statistik, 1995.
[37] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, New York, 1981.
[38] J. Nocedal, Large Scale Unconstrained Optimization, in: I.S. Du�, G.A. Watson (Eds.), The State of the Art in

Numerical Analysis, Clarendon, Oxford, UK, 1997, pp. 311–338.
[39] C.F. Gauss, Theory of the Combination of Observations Least Subject to Errors, Part One, Part Two, Supplement,

SIAM, Philadelphia, PA, 1995 (Translated from the Latin by G. W. Stewart).
[40] J.A. George, J.W.-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood

Cli�s, NJ, 1981.
[41] G. Golub, Numerical methods for solving least squares problems, Numer. Math. 7 (1965) 206–216.
[42] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1996.
[43] C.C. Gonzaga, Path-following methods for linear programming, SIAM Rev. 34 (1992) 167–224.
[44] P.C. Hansen, H. Gesmar, Fast orthogonal decomposition of rank de�cient Toeplitz matrices, Numer. Algorithms 4

(1993) 151–166.
[45] Harwell subroutine library, HSL O�ce, Culham, Oxon OX14 3ED, United Kingdom, http:==www.cse.

clrc.ac.uk=Activity=HSL.
[46] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Standards

49 (1952) 409–436.
[47] N.J. Higham, Error analysis of the Bj�orck-Pereyra algorithms for solving Vandermonde systems, Numer. Math. 50

(1987) 613–632.
[48] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[49] P.J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964) 73–101.
[50] P.J. Huber, Robust Statistics, Wiley, New York, 1981.
[51] T. Kailath, A.H. Sayed, Displacement structure: theory and applications, SIAM Rev. 37 (1995) 297–386.
[52] N.K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395.
[53] N.K. Karmarkar, K.G. Ramakrishnan, Computational results of an interior point algorithm for large scale linear

programming, Math. Programming 52 (1991) 555–586.
[54] R.B. Kellogg, T.-Y. Li, J.A. Yorke, A constructive proof of the Brouwer �xed-point theorem and computational

results, SIAM J. Numer. Anal. 13 (1976) 473–483.
[55] L.G. Khachian, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR 244 (1979) 1093–1096.
[56] V. Klee, G.J. Minty, How good is the simplex algorithm? In: O. Shisha, (Ed.), Inequalities III, Academic Press,

New York, 1972, pp. 159–175.
[57] T. Kolda, D.P. O’Leary, L. Nazareth, BFGS with update skipping and varying memory, SIAM J. Optim. 8 (1998)

1060–1083.

464 D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465

[58] H.T. Kung, C.E. Leiserson, Introduction to VLSI systems, Addison-Wesley, Reading, MA, 1980.
[59] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cli�s, NJ, 1974; reprinted by

SIAM, Philadelphia, PA, 1995.
[60] A.S. Lewis, M.L. Overton, Eigenvalue optimization, Acta Numer. 5 (1996) 149–190.
[61] M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming, Linear Algebra

Appl. 284 (1998) 193–228.
[62] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[63] I.J. Lustig, E. Rothberg, Gigaops in linear programming, Technical Report, Silicon Graphics, 1995.
[64] I.J. Lustig, R.E. Marsten, D.F. Shanno, Interior point methods for linear programming: computational state of the

art, ORSA J. Comput. 6 (1) (1994) 1–14.
[65] S. Mehrotra, Implementation of a�ne scaling methods: Approximate solutions of systems of linear equations using

preconditioned conjugate gradient methods, ORSA J. Comput. 4 (2) (1992) 103–118.
[66] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann Verlag, Berlin, Germany,

1988.
[67] J.G. Nagy, Toeplitz least squares computations, Ph.D. Thesis, North Carolina State University, Raleigh, NC, 1991.
[68] S.C. Narula, Optimization techniques in linear regression: a review, TIMS=Stud. Management Sci. 19 (1982) 11–29.
[69] S.G. Nash, Preconditioning of truncated-Newton methods, SIAM J. Sci. Statist. Comput. 6 (1985) 599–616.
[70] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp. 35 (1980) 773–782.
[71] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numerica 1 (1992) 199–242.
[72] D.P. O’Leary, A discrete Newton algorithm for minimizing a function of many variables, Math. Programming 23

(1982) 20–33.
[73] D.P. O’Leary, Robust regression computation using iteratively reweighted least squares, SIAM J. Matrix Anal. Appl.

11 (1990) 466–480.
[74] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New

York, 1970.
[75] M. Overton, H. Wolkowicz, Forward: special issue on semide�nite programming, Math. Programming 77 (1997)

105–110.
[76] H. Park, L. Eld�en, Stability analysis and fast algorithms for triangularization of Toeplitz matrices, Numer. Math. 76

(1997) 383–402.
[77] G. Peters, J.H. Wilkinson, The least squares problem and pseudo-inverses, Comput. J. 13 (1970) 309–316.
[78] E. Polak, G. Ribi�ere, Note sur la convergence de methodes de directions conjug�ees, Rev. Francaise Informat

Recherche Operationelle 3eAnn�ee 16 (1969) 35–43.
[79] L.F. Portugal, M.G.C. Resende, G. Veiga, J.J. J�udice, A truncated primal-infeasible dual-feasible network interior

point method, Networks (2000), to appear.
[80] J.K. Reid, A Note on the least squares solution of a band system of linear equations by Householder reductions,

Comput J. 10 (1967) 188–189.
[81] M.A. Saunders, Cholesky-based methods for sparse least squares: the bene�ts of regularization, in: L. Adams,

J.L. Nazareth (Eds.), Linear and Nonlinear Conjugate Gradient-Related Methods, SIAM, Philadelphia, PA, 1996, pp.
92–100.

[82] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, 1997;
http:==www.netlib.org=scalapack=index.html.

[83] D.F. Shanno, E.M. Simantiraki, Interior point methods for linear and nonlinear programming, in: I.S. Du�, G.A.
Watson (Eds.), The State of the Art in Numerical Analysis, Clarendon Press, Oxford, England, 1997, pp. 339–362.

[84] G.W. Stewart, Modifying pivot elements in Gaussian elimination, Math. Comp. 28 (126) (1974) 537–542.
[85] G.W. Stewart, On the early history of the singular value decomposition, SIAM Rev. 35 (1993) 551–566.
[86] D.R. Sweet, Fast Toeplitz orthogonalization, Numer. Math. 43 (1984) 1–21.
[87] T. Terlaky (Ed.), Interior Point Methods of Mathematical Programming, Kluwer Academic Publishers, Boston, 1996.
[88] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[89] V. Vapnik, A. Ya. Lerner, Pattern recognition using generalized portraits, Automat. Remote Control 24 (1963)

709–719; transl. from Avtomatika i Telemekhanika 24 (6) (1963) 774–780.
[90] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.

D.P. O’Leary / Journal of Computational and Applied Mathematics 123 (2000) 447–465 465

[91] W. Wang, D.P. O’Leary, Adaptive use of iterative methods in predictor-corrector interior point methods for linear
programming, Technical Report CS-TR-4011, Computer Science Department, University of Maryland, College Park,
MD, April 1999, Numer. Algorithms, to appear.

[92] W. Wang, D.P. O’Leary, Adaptive use of iterative methods in interior point methods for linear programming,
Technical Report CS-TR-3560, Computer Science Department, University of Maryland, November 1995,
http:==www.cs.umd.edu=Dienst=UI=2.0=Describe=ncstrl.umcp=CS-TR-3560.

[93] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, H.F. Walker, Algorithm 777: HOMPACK90: a suite of
Fortran 90 codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 23 (1997) 514–549.

[94] P.- �A. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973) 217–232.
[95] M.H. Wright, Interior methods for constrained optimization, Acta Numerica 1 (1992) 341–407.
[96] T.J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev. 37 (1995) 531–551.

Journal of Computational and Applied Mathematics 123 (2000) 467–487
www.elsevier.nl/locate/cam

Some computational problems arising in adaptive optics
imaging systems

Robert J. Plemmonsa ; ∗; 1, Victor P. Paucab; 2
aDepartments of Mathematics and Computer Science, Box 7388, Wake Forest University, Winston-Salem, NC 27109,

USA
bDepartment of Computer Science, Box 90129, Duke University, Durham, NC 27708, USA

Received 31 May 1999

Abstract

Recently there has been growing interest and progress in using numerical linear algebra techniques in adaptive optics
imaging control computations. Real-time adaptive optics is a means for enhancing the resolution of ground based, optical
telescopes beyond the limits previously imposed by the turbulent atmosphere. An adaptive optics system automatically
corrects for light distortions caused by the medium of transmission. The system measures the characteristics of the phase
of the arriving wavefront and corrects for the degradations by means of one or more deformable mirrors controlled by
special purpose computers.
No attempt is made in this paper to give a comprehensive survey of recent numerical linear applications in optical

imaging. Rather, two fairly representative applications are discussed in some detail. The following research topics in the
area of adaptive optics control systems, each involving the formulation and numerical solution of di�cult problems in
numerical linear algebra, are described: (1) Jacobi-like eigenvalue computations for multiple bandwidth deformable mirror
control methods, and (2) covariance matrix computations for performance modeling of adaptive optics systems using fast
Hankel transforms. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Imaging through turbulence; Adaptive optics control; Eigenvalues; Covariance matrix computations; Fast
Hankel transforms; Structured matrices

∗ Corresponding author.
E-mail addresses: plemmons@wfu.edu. Web: http://www.mthcsc.wfu.edu (R.J. Plemmons), pauca@cs.duke.edu. Web:

http://www.cs.duke.edu (V.P. Pauca).
1 Research supported in part by the National Science Foundation.
2 Research supported in part by the Defense Advanced Research Projects Agency and by the National Science

Foundation.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00410-6

468 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

Fig. 1. Typical adaptive optics system.

1. Introduction

1.1. Atmospheric imaging and adaptive optics systems

Adaptive optics (AO) has emerged as the technique of choice to mitigate the blurring caused
by atmospheric turbulence in large aperture imaging systems that allow extremely dim objects to
be observed [11,15,18,20]. AO techniques compensate for degradations added along the path of the
light from the object being imaged, prior to the formation of the image of the object.
AO systems are designed to measure errors in the phase of the arriving wavefront continually

and correct them automatically. A typical AO imaging system consists of wave front sensors (WFS)
and deformable mirrors (DM), in addition to an imaging system. See for example Fig. 1. Basically,
the turbulence-induced wave front deformations, or aperture-averaged phase variance, are sensed by
a WFS and compensated by a DM. The surface of the DM must be adjusted, using a vector of
DM control commands, to be phase-conjugate to the incident wave front in a time commensurate
with the rate of the turbulence change. Any AO systems attempting to compensate for atmospheric
turbulence must address such real-time DM control problem. Typically, deformable mirrors operate
in a closed loop as shown in Fig. 1, and can partially compensate for the degradation e�ects of
atmospheric turbulence. However, to be e�ective, the DM control command vector must be computed
and issued to the hardware at real-time speed. The DM control commands are usually calculated as
some function of measurements of the incoming wavefront captured by the WFS, and parameters
speci�c to the particular AO hardware being used, e.g. aperture diameter, WFS and DM geometry,
level of sensor noise, etc. Exactly how to compute the DM control commands given the time and
system constrains is an important topic of investigation that is addressed in this paper.

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 469

Another related problem concerns performance modeling and design of adaptive optics systems.
AO systems modeling and evaluation are essential to assessment of performance capacities and
limitations and to the e�ective design of AO systems for large telescopes such as Gemini, Keck,
Subaru, and VLT [20]. The objective of AO system design is to select hardware parameters and
control approaches that will optimize system performance for the expected operating conditions
subject to the resources available, and maximize the resulting payo� for the intended scienti�c
applications.
The large range of possible observing scenarios and AO system parameters entail numerous cases

to be considered, and fast computational approaches for performance evaluation and optimization
are highly desirable. According to the conventional theory [17], turbulence is stochastic in nature.
Hence, in most cases, modeling requires intensive computations involving the covariance matrices
for the statistical relationship between phase gradient measurements and the DM control commands.
To cover a parameter sampling space of a reasonable size, there may be hundreds or thousands
of such covariance matrices to generate and compute with using today’s computational practice for
performance evaluation. Two-parameter Hankel transforms arise in the modeling of each covariance
matrix entry for performance evaluation and design of AO imaging systems. The fast computation
of such two-parameter Hankel transforms is addressed as well in this paper.
In modern facilities, AO-compensated image data is further processed by o�-line image restoration

(post-processing) tools that can scrub the captured optical images even cleaner. Image post-processing,
which will not be discussed in detail in this paper, involves further removal or minimization of
degradation (blur, clutter, noise, etc.) in an image using a priori knowledge about the degradation
phenomena. Post-processing may restore the adaptive optics recorded image to a state even closer to
perfection by �ltering out any remaining noise and blur that can be distinguished from the image.
The classic tool is regularized least squares; one of the newest techniques employed is based on the
solution of a nonlinear partial di�erential equations. The power of these tools can be substantial.
One of our simulations, for example, shows them improving the resolution of a telescope from being
barely able to spot an object the size of a house trailer in earth’s orbit to detecting a hand waving
from the trailer’s window!
Adaptive optics compensation plays an essential role in current state-of-the-art atmospheric tele-

scope imaging technology. The ideal earth-based astronomical telescope is built on bedrock, high
on a remote mountain. The solid foundation partially stabilizes the telescope against wind and other
potential causes of vibration, while the altitude and isolation minimize atmospheric degradation. The
Hubble space telescope carries this logic to its natural extreme, but even the Hubble’s accuracy is
limited by the e�ects of thermal stresses and other forces that shift the phase of the incoming light
ever so slightly. Adaptive optics corrects the higher frequency errors caused by atmospheric irreg-
ularities and telescope vibration. With adaptive optics, instruments like the 3.5-m telescope at the
Star�re Optical Range of the US Air Force Research Laboratory in New Mexico, can partially correct
the image before it is recorded. Note that this real-time control requires extraordinarily high-speed
computation – up to 10 billion oating point operations per second [15].

1.2. Linear algebra computations in optical imaging

We survey two topics concerning work in numerical linear algebra in investigations into algo-
rithms and software for high-performance, high-resolution adaptive optics imaging applications: (i)

470 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

eigenvalue computations in multiple bandwidth control in adaptive optics, and (ii) computation of
fast transforms in performance modeling and adaptive optics system design.
The AO control problem includes the determination of one or more optimal reconstructor matrices

for phase reconstruction as well as a set of commands to control the surface of the DM. Recently,
AO systems have been proposed that use multiple control bandwidths [6,14] and corresponding
techniques that may improve considerably AO compensation performance. These techniques concern
an important eigenvalue problem related to a matrix trace maximization optimization problem.
In ground-based atmospheric imaging, a closed-loop adaptive optics systems must compensate

for time-varying wavefront distortions on the basis of noisy sensor measurements. Time-varying
distortions are most accurately corrected by a system with a high control bandwidth. However,
the noise in wave front sensor measurements is best rejected by reducing the control bandwidth
and temporally smoothing the wave front correction to be applied. The optimal control bandwidth
minimizes the sum of these two e�ects and depends upon the wave front sensor noise and the
temporal characteristics of the wave front errors to be corrected.
Most adaptive optics systems developed to date have addressed this tradeo� using a common

control bandwidth for all components of the wave front distortion pro�le [3]. A system employing
several di�erent control bandwidths for separate wave front components has recently been tested [6].
Because wave front sensor noise statistics and the temporal dynamics of the wave front distortion
to be corrected vary as a function of spatial frequency [20], it should, in principle, be possible to
improve adaptive optics performance by using the more sophisticated multiple control bandwidth
approach.
On the performance modeling and design problem, various modeling approaches that consider the

stochastic nature of turbulence have been proposed. The linear systems model framework developed
by Ellerbroek [4] provides �rst-order performance estimates which account for the full range of
fundamental adaptive optics error sources and their interacting e�ects. It is being applied in the
evaluation of existing and future AO facilities [5]. The modeling requires intensive computations
involving the covariance matrices for the statistical relationship between the sensed phase gradient
measurements and the DM actuator commands.
The computation is intensive in two aspects. First, the computation for each given parameter set

includes generating all entries of certain covariance matrices, where each entry requires the evalua-
tion of a multiple integral. Subsequent computations with the covariance matrices require numerous
inversions and multiplications of large matrices [4] to obtain performance estimates such as the
residual mean-square phase error and the associated optical transfer function of the telescope. Sec-
ondly, such computations are carried out many times over a large sample space of AO performance
parameters. We describe briey the parameters according to their physical meaning: (a) observing
scenario parameters such as wavelength, aperture diameter, and zenith angle; (b) assumed atmosphere
characteristics such as the wind pro�le, the refractive index structure constant of turbulence, and the
turbulence outer scale; (c) architecture speci�cs of wave front sensing such as the WFS sub-aperture
geometry, beacon geometry, pupil conjugate range; (d) architecture speci�cs of deformable mirrors
such as the actuator geometry and conjugate range, and (e) level of noise, degree of hardware
imperfection or limitations.
In terms of the computation complexity, the size of the covariance matrices is proportional to the

number of deformable mirror actuators and the number of wavefront sensor measurements. Typically,
the matrices are of order from 100 to 5000 for high-order AO systems designed to compensate for

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 471

turbulence on very large telescopes. Present computational approaches for evaluating the integral for
each matrix entry may sample the integrand at up to 104 points, where the integrand itself may be
represented as an integral or a series [4].

1.3. Overview of the paper

In the following sections information is provided concerning work in numerical linear algebra
in investigations into algorithms and software for high-performance, high-resolution imaging appli-
cations. Much of the work is particularly directed toward the development and implementation of
innovative algorithms and techniques for optical imaging. The following research topics (each in-
volving the formulation and numerical solution of di�cult problems in numerical linear algebra) are
described in this paper:

• Jacobi-like eigenvalue computations for multiple bandwidth control.
• Covariance matrix computations for performance modeling of adaptive optics systems using fast
Hankel transforms.

Real-time adaptive-optics is a means for enhancing the resolution of ground based, optical tele-
scopes beyond the limits previously imposed by the turbulent atmosphere. Our purpose in recent
work on this topic has been to apply numerical linear algebra to investigate the areas of adaptive
closed-loop deformable mirror control systems. Section 2 concerns an important eigenvalue prob-
lem related to a trace maximization optimization problem, approached using a Jacobi-like spectral
algorithm [14]. In Section 3 fast integral transform methods [12] are applied to covariance ma-
trix computations useful in the important area of adaptive optics systems performance analysis and
design.

2. An eigenvalue problem in adaptive optics

We are concerned here with a non-smooth optimization problem arising in adaptive optics, which
involves the real-time control of a deformable mirror designed to compensate for atmospheric tur-
bulence and other dynamic image degradation factors [3]. One formulation of this problem yields a
functional

f(U) =
n∑
i=1

max
j
{(U TMjU)ii}; (1)

to be maximized over orthogonal matrices U for a �xed collection of n×n symmetric matrices Mj. A
study is made in [14] of eigenvalue computations used to solve this “trace maximization” problem.
The reader interested in the derivation of the optimization problem or additional background on
adaptive optics is referred to this paper.
First, the situation which can arise in practical applications where the matrices Mj are “nearly”

pairwise commutative is considered. Besides giving useful bounds, results for this case lead to
a theoretical closed-form solution for globally maximizing f. However, even here conventional
optimization methods for maximizing f are not practical in a real-time environment. The general
optimization problem is quite di�cult but can be approached using a heuristic Jacobi-like algorithm.

472 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

Numerical tests indicate that the algorithm provides an e�ective means to optimize performance for
some important adaptive-optics systems [14].

2.1. The nearly diagonalizable case

For computational convenience, we restrict our attention to the case of real n×n matrices Mj and
orthogonal U . The results given in this section extend in a natural way to the case where the Mj

are Hermitian and U is unitary.
It has been observed in practical data [6], that the Mj in (1) are nearly diagonal matrices, and

thus, of course, are almost simultaneously diagonalizable. The computations reported in [6] were
performed with such data. Below is given a bound that sheds light on this situation and clari�es
some observations reported in that paper. It also follows as a corollary to the theorem below that
if the matrices are, in fact, simultaneously diagonalizable, then any orthogonal matrix Q which
simultaneously diagonalizes the Mj globally maximizes f.
For notation purposes let

Dj = diag(Mj)

for each j, and de�ne the functional

h(U) =
n∑
i=1

max
j
{[U T(Mj − Dj)U]ii}: (2)

Let fmax denote the global maximum of f(U) over all orthogonal U . We say that the {Mj} form
a “nearly optimal” set of matrices if

n∑
i=1

max
j
{(Mj)ii}

is close to fmax.
It was conjectured by the authors of [6] that f in (1) is maximized by a particular orthogonal

matrix Q in the special case where the Mj are simultaneously diagonalized by Q. We now formally
state and prove this result through the following technical lemma and resulting theorem.

Lemma 1. Suppose {Mj}; 16j6k; is a collection of n-by-n symmetric matrices. Then for any
n-by-n orthogonal matrix U

f(I)¿f(U)− h(U):
It follows that

n∑
i=1

max
j
{(Mj)ii}¿fmax − h(U);

for any U that globally maximizes f(U).

Proof. The proof is quite technical and can be found in [14].

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 473

Let U denote the global maximizer of f(U). Then the Lemma tells us that

f(I) + h(U)¿f(U) = fmax:

It follows that

f(I) + max
U
h(U)¿fmax:

That is, the worst case of our bound will be

max
U
h(U)¿fmax − f(I)¿0:

Thus, if the Mj are “close” to diagonal, then since h(U) is “small”, the Mj are “nearly” optimal.
In the limiting case, we have the following theoretical result.

Theorem 1. Suppose {Mj}; 16j6k; is a collection of symmetric pairwise commuting matrices.
Let Q be any orthogonal matrix which simultaneously diagonalizes the Mj. Then Q is a global
maximizer of the functional f(U) given in (1).

Proof. Let Bj = U TMjU where U is an arbitrary orthogonal matrix. We can rewrite Bj using the
orthogonal matrix V = QTU :

Bj = U TMjU = (QV)TMj(QV) = V TQTMjQV = V TDjV;

where Dj = QTMjQ is the diagonalization of Mj using Q. Observe that

f(U) =
n∑
i=1

max
j
{(Bj)ii}

and that

f(Q) =
n∑
i=1

max
j
{(Dj)ii}:

Thus without loss of generality, we can assume the Mj are already diagonal matrices. We have to
show that f(Q)¿f(U). But this follows from the Theorem since in this case h(U) = 0.

Besides giving interesting bounds, results in this section lead to a result providing a theoretical
closed-form solution for globally maximizing f if the Mj are simultaneously diagonalizable. An
algorithm that “nearly” simultaneously diagonalizes the matrices Mj will “approximately” maximize
f(U).
Although Theorem 1 identi�es an orthogonal matrix Q that globally maximizes the functional

f(U) where the Mj are pairwise commutative, the process of computing the simultaneous diagonal-
izer Q can be quite nontrivial [1]. Thus, even here conventional optimization methods for maximizing
f are not practical in this real-time environment. Instead, the authors of [14] pursue a fast heuristic
approach to computing an acceptable U for our application. Further, the matrices Mj in their case
are not necessarily simultaneously diagonalizable. The general optimization problem is quite di�cult.

474 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

2.2. The general trace maximization problem

In this section we consider the general problem of maximizing f(U), where the Mj are generally
not simultaneously diagonalizable.
In view of Theorem 1, one obvious approach for approximating a maximizer U for the general

case would be to apply an extension of the simultaneous diagonalization of matrix pairs algorithm,
e.g. the algorithm in [1], to the M1; : : : ; Mk , until the transformed matrices are “close to” diagonal.
One might measure the progress toward simultaneous diagonalization by a quantity such as

o�(M1; : : : ; Mk) =
∑
i¡j

[M1]
2
ij + · · ·+

∑
i¡j

[Mk]
2
ij :

But the simultaneous diagonalization of more than two matrices is not an easy task to formulate
algorithmically, and any such scheme would be very intensive computationally [1]. The authors of
[14] have not implemented this approximate simultaneous diagonalization type of approach. Rather
they choose a faster heuristic scheme described in the following sections, which appears to perform
quite well on practical adaptive optics problems.
The general matrix optimization problem is considered next. Here, we describe a heuristic trace

maximization approach based on a hill climbing scheme for maximizing f(U) relative to pairs of
matrices. The case of k = 2 matrices is considered �rst, the solution of which leads to a heuristic
algorithm for general k.

2.2.1. A two-matrix algorithm
Let k = 2 and F =M1 and G =M2. Suppose the orthogonal matrix U with columns [u1 u2 : : : un]

is the maximizer. Without loss of generality, the columns of U can be ordered in such a way that
Eq. (1) can be written as

f(U) =
r∑
i=1

uTi Fui +
n∑

i=r+1

uTi Gui; (3)

where r is the number of the diagonal elements of the product U TFU that are larger than the
corresponding diagonal elements of U TGU . Let U = [U1|U2] with U1 = [u1 u2 : : : ur]. Since U is
orthogonal, it follows that

UU T = U1U T
1 + U2U

T
2 = I:

Using this and the trace properties

tr(MN) = tr(NM) and tr(M + N) = tr(M) + tr(N);

we can rewrite Eq. (3) as follows:

f(U) = tr(U T
1 FU1) + tr(U

T
2 GU2)

= tr(FU1U T
1) + tr(GU2U

T
2)

= tr(FU1U T
1) + tr(G(I − U1U T

1))

= tr(FU1U T
1) + tr(G − GU1U T

1)

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 475

= tr(FU1U T
1 − GU1U T

1) + tr(G)

= tr((F − G)U1U T
1) + tr(G)

= tr(U T
1 (F − G)U1) + tr(G):

Therefore, the maximizer of f(U) is the maximizer of the term tr(U T
1 (F −G)U1), by taking as U1

the eigenvectors of F −G that correspond to positive eigenvalues, a direct consequence of Theorem
1 for the simultaneously diagonalizable matrices F − G and G − G. This computation involves the
Schur decomposition of the symmetric matrix F −G. For a description of the Schur decomposition
algorithm see [7].

2.2.2. A Jacobi-like spectral algorithm
With the two-matrix maximization algorithm one can solve the general k-matrix problem with a

Jacobi-like approach. If M is a n× n matrix and s is a subset of the integers from 1 to n, we use
the notation M (s; s) to denote the sub-matrix of M with rows and columns in s. M (:; s) denotes the
sub-matrix with columns in s.

Let U = U0 (an initial guess).
While successive values of f(U) did not converge do

Let Bj be U TMjU for all j = 1 : : : k.
Choose a pair of matrices Bl; Bm.
Let u the set of indices i such that either Bl(i; i) or Bm(i; i)

is the maximum element over all Bj(i; i) for j = 1 : : : k.
Let U1 be the optimizer of the two-matrix subproblem

Bl(u; u), Bm(u; u).
Update U (:; u) with U (:; u)U1.

Since Mj is symmetric, then the sub-matrix Mj(u; u) is symmetric, for any set of indices u. The
two-matrix subproblem contains the current maximum elements for the indices in u, so for any
increase to the value of the sum of the maximum diagonal elements, there will be at least as big
an increase to the value of f(U). That means that the sequence of matrices {U (j)}, where U (j)

is the matrix U on the jth iteration of the main loop of the algorithm, de�nes a non-decreasing
sequence of values {f(U (j))}. The algorithm terminates when the sequence {f(U (j))} converges.
The work requirements in using this algorithm are O(kn3) operations per sweep. Experience with
some practical adaptive optics problems reported in [6] is that only a few sweeps are necessary for
convergence.
The strategy for choosing the pair of matrices to improve upon leads to di�erent algorithms. The

simplest one is a sweep of all possible pairs of matrices (Hill Climbing). An alternate strategy
is to choose the pair that gives the biggest increase in the value of f(U) (Steepest-Ascent Hill
Climbing). Other techniques of heuristic search can be applied too.
The advantage of search algorithms is that they can improve the result of any other algorithm.

One can consider any simpler heuristic algorithm as a preprocessing step for the search algorithms.
The preprocessing algorithms can help us choose the initial orthogonal matrix U0, instead of starting
from the identity or a completely random orthogonal matrix. Such possible preprocessing algorithms

476 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

could be:

• Find the diagonalizer of the matrix Mj with the largest trace to form U0.
• For matrices that are “close to” simultaneously diagonalizable, one can use the almost diagonalizing
U as U0.

• Find the matrix Mj that has the largest sum of positive eigenvalues, and use the eigenvectors
corresponding to this matrix in order to form an initial U0.

2.3. Sample computations

Given next is a summary of the results of sample numerical experiments conducted to assess
the utility of the Jacobi-like optimization algorithm for an actual adaptive optics application. We
recall from the introduction that the motivation for studying the functional f(U) is to determine
a set of wavefront control modes and associated temporal �lters to optimize adaptive optics sys-
tem performance, especially in cases where optical disturbances arise from several di�erent error
sources with signi�cantly di�erent temporal characteristics. The adaptive-optics scenario for these
calculations is based upon parameters taken from the Gemini-North 8-m telescope in Hawaii. The
optical disturbances to be corrected include atmospheric turbulence and telescope vibrations driven
by ground-level winds. Telescope vibrations introduce optical distortions which may vary at a much
higher frequency than atmospheric turbulence, but these distortions are restricted to two character-
istic wavefront modes associated with misaligned mirrors. It is important to see if the Jacobi-like
optimization method could identify these modes based solely upon the values of the matrices Mk and
adjust their temporal �lters accordingly. The performance of the modal control algorithm computed
using the Jacobi-like method was scored by comparing it against the best possible control algorithm
restricted to using a common temporal �lter for all modes of the optical distortion. As de�ned pre-
viously in [6], these two control approaches will be referred to as the MB (multiple bandwidth) and
SB (reduced range single bandwidth) control algorithms.
Adaptive-optics system performance is frequently quanti�ed in terms of the residual mean-square

phase error �2 which remains when the adaptive-optics loop is closed. �2 is related to the value of
the functional f(U) in (1) by

�2 = �20 − f(U); (4)

where �20 is the “open-loop” mean-square phase error due to turbulence and telescope vibration with
no adaptive optics at all. The value of f(U) can be quite close to �20 when the adaptive optics
system is correcting most of the optical disturbance, so that even a small (absolute) change in f(U)
can make a big (relative) di�erence in the value of the residual error �2.
Sample values of �2 for the MB and SB control algorithms are presented in Table 1 as a function

of the level of noise in the wavefront sensor measurements. The performance of the two control
algorithms is nearly identical when the wavefront sensor measurement noise is low, since in this
case the best control strategy is to apply little or no temporal �ltering and respond to the measured
optical distortions as rapidly as possible. The performance of both control algorithms degrades with
increasing WFS noise, but the MB control algorithm degrades less rapidly. For a high noise level
the MB algorithm (as found using the Jacobi-like method) applies minimal �ltering to the two
wavefront modes associated with telescope vibration and a much greater amount of smoothing to

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 477

Table 1
Residual errors �2 for the SB (single bandwidth) and MB (multiple bandwidth) control algo-
rithms as a function of WFS noise level for sample adaptive optics parameters

Noise level SB MB

0.00 0.009253 0.009252
0.05 0.011805 0.011267
0.10 0.017922 0.014464
0.20 0.037067 0.023678
0.40 0.075825 0.051618

the remaining modes resulting from atmospheric turbulence. For these conditions the SB algorithm
faces a dilemma: A uniform temporal �lter for all modes either fails to compensate the high-frequency
telescope vibrations, or adds unnecessary noise to the correction of low-frequency errors associated
with atmospheric turbulence. The resulting increase in �2 can be larger than a factor of 1.5 at the
higher noise levels.
An analysis, both theoretical and practical, has been given in this section for a di�cult optimization

problem arising in adaptive optics. This paper extends earlier work on an optimization method
from [6] for the real-time control of deformable mirrors with the use of multiple bandwidths for
adaptive-optics applications. See also [14] for more details.
Numerical tests, reported in Table 1, using a Jacobi-like algorithm to compare single band-

width with our multiple bandwidth control methods indicate that the performance of a closed-loop
adaptive-optics system which must compensate for the e�ects of both atmospheric turbulence and
telescope vibration may be greatly improved by the selection of distinct and independently opti-
mized multiple control bandwidths for separate modes of the wave-front-distortion pro�le. The Jacobi
algorithm is well known to be highly parallelizable [7].
Although the simulation tests reported here are for problems of modest dimensions, future tests will

involve adaptive optics systems utilizing deformable mirrors with many more degrees of freedom.
The adaptive-optics model assumed for the calculations reported here is based upon the current
Gemini design and includes a Shack–Hartmann wavefront sensor with 8 × 8 subapertures and a
continuous facesheet deformable mirror with 9 × 9 actuators. Segmented mirror systems with very
large numbers of degrees of freedom also are of interest. For example, the SELENE system [10] with
segmented rather than continuous facesheet mirrors, is envisioned to have about 250,000 subapertures.
Designing an adaptive optics system with a very large number of degrees of freedom taxes many
areas, including the development of fast numerical linear algebra techniques.

3. Covariance matrix computations in adaptive optics

This section is concerned with the computation of covariance matrices useful in adaptive optics
systems performance evaluations under various atmospheric conditions and hardware con�gurations.
To illustrate the basic ideas, we sketch in more detail the main components of an AO system in
Fig. 2. These include the deformable mirror (DM), the wave front sensor (WFS), and the actuator
command computer. Light in a narrow spectral band passing through the atmosphere is modeled by a
plane wave. When traveling through the atmosphere that does not have a uniform index of refraction,

478 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

Fig. 2. A simpli�ed closed-loop AO system with main components.

light waves are aberrated and no longer planar. In a closed-loop AO system, this aberrated light is
�rst reected from the DM. Some of this light is focused to form an image, and some is diverted
to the WFS that measures the wave front phase deformation. The actuator command computer takes
measurements from the WFS and map them into real time control commands for the DM. How this
translation is done depends on the criterion selected. In general, wave front sensing is a key aspect
of many optical techniques and systems such as optical shop testing, interferometry and imaging
through random media such as the earth’s atmosphere.

3.1. Modeling and adaptive optics system design

We present methods for the fast computation of two-parameter Hankel transforms arising in the
modeling and performance evaluation of adaptive optics (AO) imaging systems. The objective of
AO system design is to select hardware parameters and control approaches that will optimize system
performance for the expected operating conditions subject to the resources available, and maximize
the resulting payo� for the intended scienti�c applications.
The main hardware components of an AO imaging system consist of wave front sensors (WFS)

and deformable mirrors (DM) system (see Fig. 2). We let s denote the discrete WFS measurement
vector and c denote the DM actuator command vector. A linear systems model framework devel-
oped by Ellerbroek [3] provides �rst-order performance estimates which account for the full range
of fundamental adaptive optics error sources and their interacting e�ects. The modeling requires

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 479

intensive computations involving the covariance matrices for the statistical relationship between the
sensed phase gradient measurements s and the DM actuator commands c.
We describe the problem of computing the two-parameter Hankel transform that arises in Eller-

broek’s model and many statistical models, see for example [17] and the references therein. In
Section 3.3, we present two alternative approaches to representing the transform approximately by
structured matrices. The matrix structures are to be exploited in the subsequent computations to
reduce computation cost signi�cantly. Recent studies on this topic include [3,4,12,13].

3.2. Hankel transform methods in adaptive optics covariance computations

The basic computational quantities for AO system modeling and evaluation are the covariance
matrices which we express as

A= cov(c; c); B= cov(c; s); C = cov(s; s): (5)

These matrices describe the second-order statistics of the DM actuator command vector c, which
optimally compensate for turbulence-induced phase distortions, and the temporally �ltered WFS
measurements vector s. The scalar components ci of c can be represented as integrals of the form

ci =
∫
D
!i(r)�i(r) dr; (6)

where r denotes coordinates in the aperture plane D, �i(r) is, for example, an induced wave front
propagating (see Fig. 2) from a point source, and !i(r) is a weighting function. A similar integral
representation exists for the si components.
Ellerbroek’s derivation of (6), and hence (5), assumes isotropic turbulence with a Kolmogorov

or von K�arm�an spectrum, Taylor’s frozen-ow hypothesis, and no scintillation. In particular, if
outer scale e�ects are considered and the direction of the atmospheric wind velocity is random and
uniformly distributed, cov(ci; cj) may be represented mathematically as follows:

cov(ci; cj) =
[∫ ∞

0
C2n (h) dh

]−1 ∫ ∫
wi(r)wj(r′)

∫ H

0
C2n (h)

×
∫ ∞

0
f(x)

[
J0

(
2�y
L0
x
)
J0

(
2�y′

L0
x
)
− 1

]
dx dh dr dr′: (7)

Here, h is the range along the optical axis of the telescope, H is the range to the nearer of the two
sources for the wavefronts �i and �j; J0 is the zero-order Bessel function of the �rst kind, C2n is the
index of refraction structure constant, which speci�es the steady variation of the turbulence strength
at altitude h; y is a scalar function of h; r and r′; y′ is a scalar function depending on the wind
velocity at h; L0 is the outer scale of atmospheric turbulence at h, and is a normalization factor.
The scalar function f(x) in (7) is de�ned as

f(x) =
x

(x2 + 1)11=6
(8)

and is related to the von K�arm�an spectrum. In general, it depends on the characteristics of the
modeling problem being studied. We use (8) throughout the paper for illustration purposes.

480 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

Evidently, e�cient and accurate evaluation of the inner most integral in (7) is highly desirable.
Following the notation in [2], we denote the two-parameter Hankel transform of a function f(x)
by

h(�; �) =
∫ ∞

0
f(x)J0(�x)J0(�x) dx; (9)

where � and � are nonnegative real numbers. For the inner most integral along x in (7), the
parameters

�=
2�y
L0
; � =

2�y′

L0
; (10)

depend on the function y and y′. Thus, use of numerical quadratures for the outer integrals require
that the two-parameter Hankel transform f be evaluated at multiple points. As mentioned in the
introduction section, the number of quadrature nodes may be at the order of 104. Moreover, the
change in y and=or y′ may result in a di�erent set of parameters.
Let M ¿ 0 and N ¿ 0. Given M points a= a(1 : M) and N points b= b(1 : N), we denote by

H (a; b); a ∈ RM ; b ∈ RN : (11)

the M ×N matrix with entries h(ai; bj); i=1 : M; j=1 : N . For simplicity, we may assume M =N .
By the modeling framework, if, instead, the direction of the atmospheric wind velocity is assumed
to be known, then h(�; �) becomes a function of a single parameter, h(�) [4], i.e. a single-parameter
Hankel transform.
Two computational approaches for evaluating H (a; b) have been presented in previous work. One

approach simply employs numerical quadrature to the integration, requiring the evaluation of the
Bessel function J0 at many quadrature points, which in turn may be computed either by the integral
representation of J0,

J0(�) =
1
�

∫ �

0
cos(� cos �) d�: (12)

or by the series representation of J0,

J0(�) =
∞∑
k=0

(−1)k
(
�k

2kk!

)2
:

The alternative approach, which was proposed recently by Ellerbroek [3], applies the Mellin transform
convolution theorem and the Cauchy residue theorem to convert h(�; �) from integral form to a
double power series in two parameters when �¡�. The resulting expression is

h(�; �) = 1
∞∑
n=0

∞∑
m=0

un

(n!)2
(n+ m)!
(16)n+m

vm

(m!)2
+ 2v5=6

∞∑
n=0

∞∑
m=0

un

(n!)2
(116)n+m
(n+ m)!

vm

[(116)m]
2

+ 2v5=6
∞∑
n=0

∞∑
m=1

un(116)n
n!

1
[(n+ m)!]2

(u=v)m[(− 5
6)m]

2; (13)

where u = �2=4; v = �2=4; 1 = 3
5 , and 2 = (�(− 5

6))=(2�(
11
6)). Here � is the Gamma function [2],

and (z)k = (�(z + k))=�(z) is a Gamma ratio. With either approach, the elements of the matrix

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 481

H are computed approximately. Nevertheless, the errors introduced by numerical quadratures or
by truncating the power series may be made below a pre-speci�ed threshold. Both approaches,
however, are used at the element-wise level only, in the previous work [4]. In the next two sections,
we introduce matrix factorization approaches that exploit the geometry of the parameter points and
the smoothness of the integrand. These approaches lead to e�cient algorithms for the subsequent
computations involving H . Preliminary work by the authors on this topic appeared in [12].

3.3. Compact-form representations using structured matrices

We present in this section two approaches for obtaining a compact-form representation of H (a; b)
for e�cient subsequent computations with H (a; b). The �rst approach is based on numerical quadra-
tures, and the second one is based on the power expansion representation (13).

3.3.1. Numerical quadratures approach.
A fast single-parameter Hankel transform. We introduce �rst a fast approach for the single-parameter

Hankel transform,

h(�) =
1
�

∫ �

−�

F(u)√
a2 − u2 du; (14)

where

F(u)
∫ ∞

0
f(x) cos(ux) dx (15)

is the Fourier cosine transform of f and is even in u. Recall that this is related to the AO performance
evaluation case when the wind velocity is known. The fast transform approach comes from the work
of Kapur and Rokhlin in [9]. With properly designed numerical quadratures for the computation of
the integrals in (15) and (14), the transform at N equally spaced points can be done with O(N logN)
arithmetic operations.
To compute (15), the integration range is �rst truncated to [0; X] for some real number X ,

independent of u, so that
∫∞
X f(x) dx¡�=2, where � is a given bound on approximation error. Next,

we use a Newton–Cotes quadrature with N equally spaced nodes. Let hx = X=(N − 1). Then,

F(u) = hx
N−1∑
j=0

f(xj) cos(uxj)!j + �(u) = F̃(u) + �(u); (16)

where xj = jhx, !j are quadrature weights at xj, and �(u) is the approximation error in F̃(u), which
is bounded by �.
Let a(0 : N − 1) be an equally spaced set of evaluation points for the single-parameter transform

(14). We assume that a(i) = iha with ha= �=X . Let u= a. Then F̃ in (16) at the N points of u can
be written in matrix form

F̃(u) = Cv; C(i; j) = cos(ij�=(N − 1)); v(j) = hxf(xj)!j: (17)

The matrix–vector multiplication Cv can be done with O(N logN) operations with a fast discrete
cosine transform algorithm.

482 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

We consider next the computation of (14), assuming F(u) is available. Notice �rst that h(0) =∫∞
0 f(x) dx=F(0). For i¿ 0, using the Trapezoidal rule with end-point correction (EC) by Rokhlin
[16], we have

h(ai) = ha
i−1∑

l=−(i−1)

F(ul)√
a2i − u2l

+ EC(ai; k) + �(ai; k); i = 1 : N − 1; (18)

where the term

EC(ai; k)ha
k∑

l=−k;l 6=0
�(i; l)

F(ai + lha)√
|a2i − (ai + lha)2|

(19)

deals with the singularity of the integrand in (14) at the end points. With the end correction, the
error term �(ai) is bounded as follows:

|�(ai; k)|6
i4k−2

;

where is a constant, and k depends only on the required accuracy. The end-point correction
weights v(i; l) may be pre-computed with O(kN) operations, and be reused. An easy modi�cation to
the quadrature can make the errors at all points ai uniformly bounded by a pre-speci�ed threshold,
see [19]. Since k is independent of N and k�N , the cost for the end-point correction is O(N).
We now turn to the computation of the �rst term in (18) at all points ai. It is easy to check that

H (a) =MDF(u) + EC(a; k) + �(a; k); (20)

where D = 2I − e1eT1 , and

M (i; j) =

1; i = j = 0;

1√
i2−j2

; j ¡ i; i¿ 0;

0; otherwise

(21)

is a lower triangular matrix. The multiplication of M with a vector may take only O(N logN)
operations with an algorithm based on the same idea behind the fast multipole algorithm [8].
In summary, we have

H (a) = H̃ (a) +MD�(u) + �(a; k); H̃ (a) =MDCv+ EC(a; k):

The total cost for computing the approximate quantity H̃ (a) is O(N logN) operations. Since the
matrices C and M need not be formed element-wise explicitly, the computation may take only
O(N) memory units.
Two-parameter Hankel transform and compact form representation. The single-parameter Hankel

transform approach can be e�ciently extended to the two-parameter Hankel transform. Substituting
the integral representation of J0 (12) in (9) and changing the variables u= � cos �, v= � cos�, we
have

h(�; �) =
1
�2
∫ ∞

0

∫ �

0

∫ �

0
f(x) cos(�x cos�) cos(�x cos�) d� d� dx

=
1
�2
∫ �

−�

∫ �

−�

∫ ∞

0

f(x) cos(ux) cos(vx)√
�2 − u2√�2 − v2 dx du dv:

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 483

Let

F(u; v)
∫ ∞

0
f(x) cos(ux) cos(vx) dx; (22)

then F(u; v) is well de�ned for the function f in (8). The two-parameter Hankel transform becomes

h(�; �) =
1
�2
∫ �

−�

∫ �

−�

F(u; v)√
�2 − u2√�2 − v2 du dv: (23)

The integrand of (23) is even in u and v, and is singular at ±� and ±�.
Similar to the computation of the single-parameter transform, we compute F(u; v) in (22) at all

evaluation points needed for the computation of H (a; b). For simplicity, we assume a = b = u = v.
Thus, ha = hb = h. In matrix form

F(u; v) = F̃(u; v) + �(u; v); F̃(u; v) = CDfCT; (24)

where Df = hx diag(f(xj)!j). That is, the approximate matrix F̃(u; v) is the two dimensional dis-
crete cosine transform of Df. We note that F̃(u; v) has a compact representation of O(N) storage
complexity by using the structure of its matrix factors.
As in the single parameter case, the Trapezoidal rule with end correction can be applied to the

integral in (23) in both directions u and v. The matrix form equivalent to (20) is as follows

H (a; b) =MDF(u; v)DM T + EC(a; b; k) + �(a; b; k);

where EC(a; b; k)=BkF̃(u; v)BTk +E, Bk is narrow banded, E is of low rank, and k ¿ 0, is a constant
independent of N . Since F̃(u; v) has the compact representation in (24), the approximate to H (a; b)

H̃ (a; b) =MDF̃(u; v)DM T + EC(a; b; k);

has a compact-form representation of storage complexity O(N) as well.

3.3.2. Power-series expansion approach
We now employ Ellerbroek’s power-series expansion (13) to obtain another structured matrix

representation. First, the three double power series can be truncated so that the truncated errors are
below a pre-speci�ed bound. For convenience, we use K(ai; bj), or simply K , to denote the truncation
point, i.e., the largest number of remaining terms in the truncated sums for the (i; j) element. Denote
by vand(�) the Vandermonde vector

vand(�) = [a; �; �2; : : : ; �K−1]T;

at node � of length K . Based on (13), we can write element H (ai; bj) as follows:

H (ai; bj) = c1 vand
T(ui)H1 vand(vj);

+ c2 vand
T(ui)H2 vand(vj)v

5=6
j

+ c2 vand
T(ui)H3 vand(uj=vj)v

5=6
j + �(ai; bj) ai6bj; (25)

where c1 and c2 are constants, H1, H2, and H3 are K ×K Hankel matrices, up to diagonal scalings,
the elements of which are independent of the values ui = (ai=2)2 and vj = (bj=2)2.

484 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

Fig. 3. 3-D view (left) of the approximation of (;), with h= 3
256 , and (right) a corresponding hierarchical matrix partition.

The top left corner in the matrix partition corresponds to the position of the peak in the 3-D plot.

For simplicity, we assume that ai; bj ∈ [0; 1] and the elements of a and b are in increasing order.
Consider �rst the special case that aN−16b0. We get directly from (25)

H (a; b) = c1 Vand
T(u)H1 Vand(v);

+ c2 Vand
T(u)H2 Vand(v)D(v)5=6

+ c2 Vand
T(u)H3 Vand(u:=v)D(v)5=6 + �(a; b); (26)

where u is the vector with components ui and v is the vector with components vj, Vand((1 : N))
denotes the Vandermonde matrix [vand(x1); : : : ; vand(xN)], D() is the diagonal matrix with the ele-
ments of placed on the diagonal. Let K(a; b)¿ 0 be the truncation length for all elements so that
�(a; b) is element-wise below a pre-speci�ed bound. It can be seen from the third sum of (25) that
such a K decreases with the ratio r=aN−1=b0. Thus, for small K , H (a; b) can be approximated by a
matrix of rank 3K . Notice that as long as the ratio r remains the same, the rank of the approximate
matrix does not increase with N , and the matrix has a lower rank representation. In other words,
the N × N matrix has a representation of storage complexity O(N).
We are now in a position to show that for the case a = b, the matrix has a representation of

storage complexity O(N logN). In this case, H (a; b) is symmetric. In the upper part of the matrix,
all elements satisfy the expansion condition ai6bj as in (13). We partition the upper part into blocks
so that each block can be approximated by a lower rank matrix, and the number of blocks is O(N).
Let the ratio ai=bj in each block be bounded by 1. Let K be the truncation point. We illustrate such
a partition for the case that the ai are equally spaced in Fig. 3. Suppose the blocks on the diagonal
are of m× m, m6K . The size of the blocks is doubled along the anti-diagonal. Each block can be
approximated by a matrix of rank 63K . There are 3

2N=m blocks of order m,
3
2 ((N=2m)− 1) blocks

of order 2m, 32 ((N=4m)−1) blocks of order 4m, and so on. Thus, there are about 3N=m blocks in the
upper part of the matrix. Let N =m2p for some p¿ 0. Then, the representation storage complexity
is proportional to

∑p−1
j=0 [N=(m2

j)− 1]m2j = pN − (N − m)¡N logN .

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 485

3.4. Computations with the compact form matrix representations

The numerical computation of outer integrals in the generation of a covariance matrix element
described by the integral (7) amounts to the multiplication of a matrix H (a; b) with a weight vector
followed by a dot product. Each covariance matrix element is the sum of many such dot products.
Using the structured matrix representation of H (a; b) via numerical quadratures, the multiplication
of H (a; b) with a vector is obtained by a few matrix–vector multiplications and a vector summation.
The matrices are either diagonal, banded, the discrete cosine transform matrix of the �rst type, or
the multipole-type matrix as in (21). The structure of each matrix can be exploited so that the
matrix–vector multiplication can be done with O(N) or O(N logN) operations. Thus, the cost for
the multiplication of H (a; b) with a vector is O(N logN).
By the structured matrix representation via the power series, the matrix H (a; b) can be viewed

as a sum of block banded matrices along O(logN) diagonals. The multiplication of each block
banded matrix with a vector involves O(N) operations. The total matrix–vector multiplication cost
is thus O(N logN). We note that, although the two compact representations are di�erent in storage
requirement by a factor of O(logN), both lead to the matrix–vector multiplications with O(N logN)
arithmetic operations.

3.5. Additional comments

There is still room for reduction in computation cost. A study on the accuracy and e�ciency for
computing single-parameter Hankel transform on non-uniform sampling points as opposed to equally
spaced points is reported in [19], based on the use of numerical quadratures. A similar study of
two-parameter Hankel transforms is yet to be done.
The techniques to obtain power-series expansions can be extended to a larger class of compu-

tational problems with Bessel functions of the �rst kind as the inner most integrand. Numerical
experiments show, however, that the approach via numerical quadrature is less sensitive to rounding
errors than the power series approach. Our numerical experiments show that with the same parti-
tion of the H (a; b), the numerical rank of each block in double precision is much lower than that
suggested by the truncation point in the power series expansion.

4. Summary of the paper

To summarize this paper, we have considered certain representative numerical linear algebra prob-
lems arising in deformable mirror control computations in adaptive-optics compensated imaging. The
randomness and time evolution of the atmospheric inhomogeneities make imaging through turbulence
a di�cult and challenging problem. Adaptive optics techniques a�ord a mechanical means of sens-
ing and correcting for turbulence e�ects as they occur. High-resolution images are essential in many
important applications in defense, science, engineering, law enforcement, and medicine. The need
to extract meaningful information from degraded images is especially vital for such applications
as aero-optics imaging, surveillance photography, and other modern imaging systems. The goals of
this paper were to describe two recent innovative adaptive-optics deformable mirror control algo-
rithms, with concentration on performance analysis, software, for on-line adaptive-optics systems for

486 R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487

imaging through turbulence. We feel that it is important to exploit the general mathematical struc-
ture of computational matrix problems found in several optical imaging and other signal processing
problems. This may lead to a family of methods and routines that are adaptable to several scenarios
in obtaining high-resolution images using modern adaptive optics systems.

Acknowledgements

The authors would like to thank Dr. Brent Ellerbroek at the Air Force Research Laboratory Star�re
Optical Range, NM for providing motivation, encouragement, and very helpful advice for this study.
Bob Plemmons, would like to thank the Computer Science Department at Duke University for hosting
his sabbatical in Fall 1998, at which time he participated in a series of seminars on linear algebra in
adaptive optics with Moody Chu from NC State University, Nikos Pitsianis from BOPS, Inc., and
with Paul Pauca and Xiaobai Sun from Duke University.

References

[1] A. Bunse-Gerstner, R. Byers, V. Mehrmann, Numerical methods for simultaneous diagonalization, SIAM. J. Matrix
Anal. Appl. 14 (1993) 927–949.

[2] L. Debnath, Integral Transforms and their Applications, CRC Press, New York, 1995.
[3] B.L. Ellerbroek, First-order performance evaluation of adaptive optics systems for atmospheric turbulence

compensation in extended �eld-of-view astronomical telescopes, J. Opt. Soc. Am. A 11 (1994) 783–805.
[4] B.L. Ellerbroek, Including outer scale e�ects in zonal adaptive optics calculations, Appl. Opt. 36 (36) (1997) 9456–

9467.
[5] B.L. Ellerbroek, D.W. Tyler, Adaptive optics sky coverage calculations for the gemini-north telescope, Proc. Astron.

Soc. Pac. 110 (1998) 165–185.
[6] B.L. Ellerbroek, C. Van Loan, N. Pitsianis, R.J. Plemmons, Optimizing closed-loop adaptive optics performance

using multiple control bandwidths, J. Opt. Soc. Am. A 11 (1994) 2871–2886.
[7] G.H. Golub, C. Van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins University Press, Baltimore, MD,

1996.
[8] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 135 (1997) 280–292.
[9] S. Kapur, V. Rokhlin, An algorithm for the fast Hankel transform, Technical Report 1045, Computer Science

Department, Yale University, 1995.
[10] M. Milman, A. Fijany, Wave-front control algorithms and analysis for a dense adaptive optics system with segmented

deformable mirror, J. Opt. Soc. Am. A 13 (1996) 365–378.
[11] J. Nelson, Reinventing the telescope, Popular Science 85 (1995) 57–59.
[12] V.P. Pauca, B.L. Ellerbroek, N. Pitsianis, R.J. Plemmons, X. Sun, Performance modeling of adaptive-optics imaging

systems using fast Hankel transforms, Adv. Signal Process. Algorithms, Architectures, and Implementations VIII
3461 (1998) 339–347.

[13] V.P. Pauca, R.J. Plemmons, B.L. Ellerbroek, X. Sun, E�cient two-parameter Hankel transforms in adaptive optics
system evaluations, Lin. Algebra Appl., to appear.

[14] N.P. Pitsianis, B.L. Ellerbroek, C. Van Loan, R.J. Plemmons, Jacobi-like method for a control algorithm in
adaptive-optics imaging, Adv. Signal Process. Algorithms, Architectures, and Implementations VIII 3461 (1998)
296–307.

[15] M.C. Roggemann, B. Welsh, Imaging Through Turbulence, CRC Press, Boca Raton, FL, 1996.
[16] V. Rokhlin, End-point corrected trapezoidal quadrature rules for singular functions, Comput. Math. Appl. 20 (1990)

51–62.
[17] R.J. Sasiela, Electromagnetic Wave Propagation in Turbulence, Springer, Berlin, 1994.

R.J. Plemmons, V.P. Pauca / Journal of Computational and Applied Mathematics 123 (2000) 467–487 487

[18] R.A. Smith, Seeing the universe through new eyes, National Geographic Mag. 185 (1) (1994) 2–41.
[19] X. Sun, V.P. Pauca, A note on fast Hankel transforms, Technical report, Duke University, 1999.
[20] R.K. Tyson, Principles of Adaptive Optics, 2nd Edition, Academic Press, San Diego, 1998.

Journal of Computational and Applied Mathematics 123 (2000) 489–514
www.elsevier.nl/locate/cam

Numerical linear algebra algorithms and software

Jack J. Dongarraa ;b;∗, Victor Eijkhouta
aDepartment of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA
bMathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge,

TN 37831-6367, USA

Received 12 July 1999; received in revised form 16 August 1999

Abstract

The increasing availability of advanced-architecture computers has a signi�cant e�ect on all spheres of scienti�c compu-
tation, including algorithm research and software development in numerical linear algebra. Linear algebra – in particular,
the solution of linear systems of equations – lies at the heart of most calculations in scienti�c computing. This paper
discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers.
We discuss two broad classes of algorithms: those for dense, and those for sparse matrices. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction

The increasing availability of advanced-architecture computers has a signi�cant e�ect on all spheres
of scienti�c computation, including algorithm research and software development in numerical linear
algebra. Linear algebra – in particular, the solution of linear systems of equations – lies at the heart
of most calculations in scienti�c computing. This article discusses some of the recent developments
in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad
classes of algorithms: those for dense, and those for sparse matrices. A matrix is called sparse if it
has a substantial number of zero elements, making specialized storage and algorithms necessary.
Much of the work in developing linear algebra software for advanced-architecture computers is

motivated by the need to solve large problems on the fastest computers available. In this article,
we focus on four basic issues: (1) the motivation for the work; (2) the development of standards

∗ Corresponding author.
E-mail address: dongarra@cs.utk.edu (J.J. Dongarra).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00400-3

490 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

for use in linear algebra and the building blocks for libraries; (3) aspects of algorithm design and
parallel implementation; and (4) future directions for research.
As representative examples of dense matrix routines, we will consider the Cholesky and LU

factorizations, and these will be used to highlight the most important factors that must be considered
in designing linear algebra software for advanced-architecture computers. We use these factorization
routines for illustrative purposes not only because they are relatively simple, but also because of
their importance in several scienti�c and engineering applications that make use of boundary element
methods. These applications include electromagnetic scattering and computational uid dynamics
problems, as discussed in more detail in Section 2.1.2.
For the past 15 years or so, there has been a great deal of activity in the area of algorithms and

software for solving linear algebra problems. The goal of achieving high performance on codes that
are portable across platforms has largely been realized by the identi�cation of linear algebra kernels,
the basic linear algebra subprograms (BLAS). We will discuss the EISPACK, LINPACK, LAPACK,
and ScaLAPACK libraries which are expressed in successive levels of the BLAS.
The key insight of our approach to designing linear algebra algorithms for advanced architec-

ture computers is that the frequency with which data are moved between di�erent levels of the
memory hierarchy must be minimized in order to attain high performance. Thus, our main algo-
rithmic approach for exploiting both vectorization and parallelism in our implementations is the use
of block-partitioned algorithms, particularly in conjunction with highly tuned kernels for performing
matrix–vector and matrix–matrix operations (the Level 2 and 3 BLAS).

2. Dense linear algebra algorithms

2.1. Overview of dense algorithms

Common operations involving dense matrices are the solution of linear systems

Ax = b;

the least-squares solution of over- or underdetermined systems

min
x
||Ax − b||

and the computation of eigenvalues and -vectors

Ax = �x:

Although these problems are formulated as matrix–vector equations, their solution involves a de�nite
matrix–matrix component. For instance, in order to solve a linear system, the coe�cient matrix is
�rst factored as

A= LU

(or A = U TU in the case of symmetry) where L and U are lower and upper triangular matrices,
respectively. It is a common feature of these matrix–matrix operations that they take, on a matrix
of size n × n, a number of operations proportional to n3, a factor n more than the number of data
elements involved.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 491

Thus, we are led to identify three levels of linear algebra operations:

• Level 1: vector–vector operations such as the update y ← y + �x and the inner product d= xTy.
These operations involve (for vectors of length n) O(n) data and O(n) operations.

• Level 2: matrix–vector operations such as the matrix–vector product y=Ax. These involve O(n2)
operations on O(n2) data.

• Level 3: matrix–matrix operations such as the matrix–matrix product C=AB. These involve O(n3)
operations on O(n2) data.

These three levels of operations have been realized in a software standards known as the basic linear
algebra subprograms (BLAS) [17,18,46]. Although BLAS routines are freely available on the net,
many computer vendors supply a tuned, often assembly coded, BLAS library optimized for their
particular architecture, see also Section 4.3.
The relation between the number of operations and the amount of data is crucial for the perfor-

mance of the algorithm. We discuss this in detail in Section 3.1.

2.1.1. Loop rearranging
The operations of BLAS levels 2 and 3 can be implemented using doubly and triply nested loops,

respectively. With simply modi�cations, this means that for level 2 each algorithms has two, and
for level 3 six di�erent implementations [20]. For instance, solving a lower triangular system Lx=y
is mostly written

for i = 1 : : : n
t = 0
for j = 1 : : : i − 1

t ← t + ‘ijxj
x = ‘−1ii (yi − t)

but can also be written as
for j = 1 : : : n
xj = ‘−1jj yj
for i = j + 1 : : : n

yi ← yi − ‘ijxj
(The latter implementation overwrites the right-hand side vector y, but this can be eliminated.)
While the two implementations are equivalent in terms of number of operations, there may be

substantial di�erences in performance due to architectural considerations. We note, for instance, that
the inner loop in the �rst implementation uses a row of L, whereas the inner loop in the second
traverses a column. Since matrices are usually stored with either rows or columns in contiguous
locations, column storage the historical default inherited from the FORTRAN programming language,
the performance of the two can be radically di�erent. We discuss this point further in Section 3.1.

2.1.2. Uses of LU factorization in science and engineering
A major source of large dense linear systems is problems involving the solution of boundary

integral equations [26]. These are integral equations de�ned on the boundary of a region of interest.
All examples of practical interest compute some intermediate quantity on a two-dimensional boundary

492 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

and then use this information to compute the �nal desired quantity in three-dimensional space. The
price one pays for replacing three dimensions with two is that what started as a sparse problem in
O(n3) variables is replaced by a dense problem in O(n2).
Dense systems of linear equations are found in numerous applications, including:

• airplane wing design;
• radar cross-section studies;
• ow around ships and other o�-shore constructions;
• di�usion of solid bodies in a liquid;
• noise reduction; and
• di�usion of light through small particles.
The electromagnetics community is a major user of dense linear systems solvers. Of particular

interest to this community is the solution of the so-called radar cross-section problem. In this problem,
a signal of �xed frequency bounces o� an object; the goal is to determine the intensity of the reected
signal in all possible directions. The underlying di�erential equation may vary, depending on the
speci�c problem. In the design of stealth aircraft, the principal equation is the Helmholtz equation.
To solve this equation, researchers use the method of moments [37,62]. In the case of uid ow,
the problem often involves solving the Laplace or Poisson equation. Here, the boundary integral
solution is known as the panel method [38,39], so named from the quadrilaterals that discretize and
approximate a structure such as an airplane. Generally, these methods are called boundary element
methods.
Use of these methods produces a dense linear system of size O(N) × O(N), where N is the

number of boundary points (or panels) being used. It is not unusual to see size 3N × 3N , because
of three physical quantities of interest at every boundary element.
A typical approach to solving such systems is to use LU factorization. Each entry of the matrix

is computed as an interaction of two boundary elements. Often, many integrals must be computed.
In many instances, the time required to compute the matrix is considerably larger than the time for
solution.
The builders of stealth technology who are interested in radar cross-sections are using direct

Gaussian elimination methods for solving dense linear systems. These systems are always symmetric
and complex, but not Hermitian.
For further information on various methods for solving large dense linear algebra problems that

arise in computational uid dynamics, see the report by Alan Edelman [26].

2.2. Block algorithms and their derivation

It is comparatively straightforward to recode many of the dense linear algebra algorithms so that
they use level 2 BLAS. Indeed, in the simplest cases the same oating-point operations are done,
possibly even in the same order: it is just a matter of reorganizing the software. To illustrate this
point, we consider the Cholesky factorization algorithm, which factors a symmetric positive-de�nite
matrix as A = U TU . We consider Cholesky factorization because the algorithm is simple, and no
pivoting is required on a positive-de�nite matrix.
Suppose that after j − 1 steps the block A00 in the upper left-hand corner of A has been factored

as A00 = U T
00U00. The next row and column of the factorization can then be computed by writing

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 493

A= U TU as
A00 bj A02: ajj cTj

: : A22

=

U

T
00 0 0
vTj ujj 0
U T
02 wj U

T
22

U00 vj U020 ujj wTj
0 0 U22

 ;

where bj; cj; vj, and wj are column vectors of length j − 1, and ajj and ujj are scalars. Equating
coe�cients on the jth column, we obtain

bj = U T
00vj; ajj = vTj vj + u

2
jj:

Since U00 has already been computed, we can compute vj and ujj from the equations

U T
00vj = bj; u2jj = ajj − vTj vj:

The computation of vj is a triangular system solution, a BLAS level 2 operation. Thus, a code
using this will have a single call replacing a loop of level 1 calls or a doubly nested loop of scalar
operations.
This change by itself is su�cient to result in large gains in performance on a number of machines

– for example, from 72 to 251 megaops for a matrix of order 500 on one processor of a CRAY
Y-MP. Since this is 81% of the peak speed of matrix–matrix multiplication on this processor, we
cannot hope to do very much better by using level 3 BLAS.
We can, however, restructure the algorithm at a deeper level to exploit the faster speed of the

level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm – that is, an
algorithm that operates on blocks or submatrices of the original matrix.

2.2.1. Deriving a block algorithm
To derive a block form of Cholesky factorization, we partition the matrices as shown in Fig. 1,

in which the diagonal blocks of A and U are square, but of di�ering sizes. We assume that the �rst
block has already been factored as A00 = U T

00U00, and that we now want to determine the second
block column of U consisting of the blocks U01 and U11. Equating submatrices in the second block
of columns, we obtain

A01 = U T
00U01;

A11 = U T
01U01 + U

T
11U11:

Fig. 1. Partitioning of A; U T, and U into blocks. It is assumed that the �rst block has already been factored as A00=U T
00U00,

and we next want to determine the block column consisting of U01 and U11. Note that the diagonal blocks of A and U
are square matrices.

494 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

Table 1
Speed (Megaops) of Cholesky factorization A= U TU for n= 500

CRAY T-90 CRAY T-90
1 proc. 4 proc.

j-variant: LINPACK 376 392
j-variant: using level 3 BLAS 1222 2306
i-variant: using level 3 BLAS 1297 3279

Hence, since U00 has already been computed, we can compute U01 as the solution to the equation

U T
00U01 = A01

by a call to the level 3 BLAS routine STRSM; and then we can compute U11 from

U T
11U11 = A11 − U T

01U01:

This involves �rst updating the symmetric submatrix A11 by a call to the level 3 BLAS routine
SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow recursion, a
separate routine must be called, using level 2 BLAS rather than level 3. In this way, successive
blocks of columns of U are computed.
But that is not the end of the story, and the code given above is not the code actually used in the

LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computations there
are several algorithmic variants, often referred to as i-, j-, and k-variants, according to a convention
introduced in [15,20] and explored further in [53,54]. The same is true of the corresponding block
algorithms.
It turns out that the j-variant chosen for LINPACK, and used in the above examples, is not the

fastest on many machines, because it performs most of the work in solving triangular systems of
equations, which can be signi�cantly slower than matrix–matrix multiplication. The variant actually
used in LAPACK is the i-variant, which relies on matrix–matrix multiplication for most of the work.
Table 1 summarizes the results.

3. The inuence of computer architecture on performance

3.1. Discussion of architectural features

In Section 2.1.1 we noted that for BLAS levels 2 and 3 several equivalent implementations of
the operations exist. These di�er, for instance, in whether they access a matrix operand by rows or
columns in the inner loop. In FORTRAN, matrices are stored by columns, so accessing a column
corresponds to accessing consecutive memory elements. On the other hand, as one proceeds across
a row, the memory references jump across memory, the length of the jump being proportional to
the length of a column.
We will now give a simpli�ed discussion on the various architectural issues that inuence the

choice of algorithm. The following is, of necessity, a simpli�ed account of the state of a�airs for
any particular architecture.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 495

At �rst, we concentrate only on ‘nonblocked’ algorithms. In blocked methods, discussed in more
detail below, every algorithm has two levels on which we can consider loop arranging: the block
level, and the scalar level. Often, the best arrangement on one level is not the best on the other.
The next two subsections concern themselves with the scalar level.

3.1.1. Using consecutive elements
The decision how to traverse matrix elements should usually be taken so as to use elements that

are consecutive in storage. There are at least three architectural reasons for this.
Page swapping: By using consecutive memory elements, instead of ones at some stride distance

of each other, the amount of memory page swapping is minimized.
Memory banks: If the processor cycle is faster than the memory cycle, and memory consists

of interleaved banks, consecutive elements will be in di�erent banks. By contrast, taking elements
separated a distance equal to the number of banks, all elements will come from the same bank. This
will reduce the e�ective performance of the algorithm to the memory speed instead of the processor
speed.
Cache lines: Processors with a memory cache typically do not bring in single elements from

memory to cache, but move them one ‘cache line’ at a time. A cache line consists of a small
number of consecutive memory elements. Thus, using consecutive memory storage elements means
that a next element will already be in cache and does not have to be brought into cache. This cuts
down on memory tra�c.
Whether consecutive elements correspond to rows or columns in a matrix depends on the pro-

gramming language used. In Fortran, columns are stored consecutively, whereas C has row elements
contiguous in memory.
The e�ects of column orientation are quite dramatic: on systems with virtual or cache memo-

ries, the LINPACK library codes (Section 4.4.2), which are written in FORTRAN and which are
column-oriented, will signi�cantly outperform FORTRAN codes that are not column-oriented. In the
C language, however, algorithms should be formulated with row-orientation. We note that textbook
examples of matrix algorithms are usually given in a row-oriented manner.

3.1.2. Cache reuse
In many contemporary architectures, memory bandwidth is not enough to keep the processor

working at its peak rate. Therefore, the architecture incorporates some cache memory, a relatively
small store of faster memory. The memory bandwidth problem is now shifted to bringing the elements
into cache, and this problem can be obviated almost entirely if the algorithm can re-use cache
elements.
Consider for instance a matrix–vector product y = Ax. The doubly nested loop has an inner

statement

yi ← yi + aijaj

implying three reads and one write from memory for two operations. If we write the algorithm as

y∗ = x1a1∗ + x2a2∗ + · · · ;

496 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

we see that, keeping y in cache 1 and reusing the elements of x, we only need to load the column
of A, making the asymptotic demand on memory one element load once x and y have been brought
into cache.

3.1.3. Blocking for cache reuse
Above, we saw in the Cholesky example how algorithms can naturally be written in terms of

level 2 operations. In order to use level 3 operations, a more drastic rewrite is needed.
Suppose we want to perform the matrix–matrix multiplication C = AB, where all matrices are of

size n× n. We divide all matrices in subblocks of size k × k; and let for simplicity’s sake k divide
n: n= km. Then the triply nested scalar loop becomes, in one possible rearrangement

for i = 1 : : : m
for k = 1 : : : m
for j = 1 : : : m
Cij ← Cij + AikBkj

where the inner statement is now a size k matrix–matrix multiplication.
If the cache is now large enough for three of these smaller matrices, we can keep Cij and Aik in

cache, 2 while successive blocks Bkj are being brought in. The ratio of memory loads to operations
is then (ignoring the loads of the elements of C and A, which is amortised) k2=k3, that is, 1=k.
Thus, by blocking the algorithm, and arranging the loops so that blocks are reused in cache, we

can achieve high performance in spite of a low-memory bandwidth.

3.2. Target architectures

The EISPACK and LINPACK software libraries were designed for supercomputers used in the
1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These machines featured
multiple functional units pipelined for good performance [41]. The CDC-7600 was basically a
high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.
The development of LAPACK in the late 1980s was intended to make the EISPACK and LIN-

PACK libraries run e�ciently on shared memory, vector supercomputers. The ScaLAPACK software
library will extend the use of LAPACK to distributed memory concurrent supercomputers. The de-
velopment of ScaLAPACK began in 1991 and is had its �rst public release of software by the end
of 1994.
The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-

partitioned algorithms to minimize data movement between di�erent levels in hierarchical memory.
Thus, the ideas discussed in this chapter for developing a library for dense linear algebra computations
are applicable to any computer with a hierarchical memory that (1) imposes a su�ciently large
startup cost on the movement of data between di�erent levels in the hierarchy, and for which (2)
the cost of a context switch is too great to make �ne grain size multithreading worthwhile. Our
target machines are, therefore, medium and large grain size advanced-architecture computers. These

1 Since many level-1 caches are write-through, we would not actually keep y in cache, but rather keep a number of
elements of it in register, and reuse these registers by unrolling the ‘∗’ loop.

2 Again, with a write-through level-1 cache, one would try to keep Cij in registers.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 497

include “traditional” shared memory, vector supercomputers, such as the Cray C-90 and T-90, and
MIMD distributed memory concurrent supercomputers, such as the SGI Origin 2000, IBM SP, Cray
T3E, and HP=Convex Exemplar concurrent systems.
Future advances in compiler and hardware technologies are expected to make multithreading a

viable approach for masking communication costs. Since the blocks in a block-partitioned algorithm
can be regarded as separate threads, our approach will still be applicable on machines that exploit
medium and coarse grain size multithreading.

4. Dense linear algebra libraries

4.1. Requirements on high-quality, reusable, mathematical software

In developing a library of high-quality subroutines for dense linear algebra computations the design
goals fall into three broad classes:

• performance,
• ease-of-use,
• range-of-use.

4.1.1. Performance
Two important performance metrics are concurrent e�ciency and scalability. We seek good per-

formance characteristics in our algorithms by eliminating, as much as possible, overhead due to load
imbalance, data movement, and algorithm restructuring. The way the data are distributed (or de-
composed) over the memory hierarchy of a computer is of fundamental importance to these factors.
Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [32], where the concur-
rent speedup is the execution time, Tseq, for the best sequential algorithm running on one processor
of the concurrent computer, divided by the execution time, T , of the parallel algorithm running
on Np processors. When direct methods are used, as in LU factorization, the concurrent e�ciency
depends on the problem size and the number of processors, so on a given parallel computer and for
a �xed number of processors, the running time should not vary greatly for problems of the same
size. Thus, we may write

�(N; Np) =
1
Np

Tseq(N)
T (N; Np)

; (1)

where N represents the problem size. In dense linear algebra computations, the execution time is
usually dominated by the oating-point operation count, so the concurrent e�ciency is related to the
performance, G, measured in oating-point operations per second by

G(N; Np) =
NP
tcalc
�(N; Np); (2)

where tcalc is the time for oating-point operation. For iterative routines, such as eigensolvers, the
number of iterations, and hence the execution time, depends not only on the problem size, but also
on other characteristics of the input data, such as condition number. A parallel algorithm is said to
be scalable [34] if the concurrent e�ciency depends on the problem size and number of processors

498 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

only through their ratio. This ratio is simply the problem size per processor, often referred to as
the granularity. Thus, for a scalable algorithm, the concurrent e�ciency is constant as the number
of processors increases while keeping the granularity �xed. Alternatively, Eq. (2) shows that this is
equivalent to saying that, for a scalable algorithm, the performance depends linearly on the number
of processors for �xed granularity.

4.1.2. Ease-of-use
Ease-of-use is concerned with factors such as portability and the user interface to the library.

Portability, in its most inclusive sense, means that the code is written in a standard language, such as
Fortran or C, and that the source code can be compiled on an arbitrary machine to produce a program
that will run correctly. We call this the “mail-order software” model of portability, since it reects
the model used by software servers such as netlib [19]. This notion of portability is quite demanding.
It requires that all relevant properties of the computer’s arithmetic and architecture be discovered at
runtime within the con�nes of a compilable Fortran code. For example, if it is important to know the
overow threshold for scaling purposes, it must be determined at runtime without overowing, since
overow is generally fatal. Such demands have resulted in quite large and sophisticated programs
[24,44], which must be modi�ed frequently to deal with new architectures and software releases.
This “mail-order” notion of software portability also means that codes generally must be written for
the worst possible machine expected to be used, thereby often degrading performances on all others.
Ease-of-use is also enhanced if implementation details are largely hidden from the user, for example,
through the use of an object-based interface to the library [22].

4.1.3. Range-of-use
Range-of-use may be gauged by how numerically stable the algorithms are over a range of input

problems, and the range of data structures the library will support. For example, LINPACK and
EISPACK deal with dense matrices stored in a rectangular array, packed matrices where only the
upper- or lower-half of a symmetric matrix is stored, and banded matrices where only the nonzero
bands are stored. In addition, some special formats such as Householder vectors are used internally
to represent orthogonal matrices. In the second half of this paper we will focus on sparse matrices,
that is matrices with many zero elements, which may be stored in many di�erent ways.

4.2. Portability, scalability, and standards

Portability of programs has always been an important consideration. Portability was easy to achieve
when there was a single architectural paradigm (the serial von Neumann machine) and a single pro-
gramming language for scienti�c programming (Fortran) embodying that common model of com-
putation. Architectural and linguistic diversity have made portability much more di�cult, but no
less important, to attain. Users simply do not wish to invest signi�cant amounts of time to create
large-scale application codes for each new machine. Our answer is to develop portable software
libraries that hide machine-speci�c details.
In order to be truly portable, parallel software libraries must be standardized. In a parallel com-

puting environment in which the higher-level routines and=or abstractions are built upon lower-level
computation and message-passing routines, the bene�ts of standardization are particularly apparent.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 499

Furthermore, the de�nition of computational and message-passing standards provides vendors with
a clearly de�ned base set of routines that they can implement e�ciently.
From the user’s point of view, portability means that, as new machines are developed, they are

simply added to network, supplying cycles where they are most appropriate.
From the mathematical software developer’s point of view, portability may require signi�cant

e�ort. Economy in development and maintenance of mathematical software demands that such de-
velopment e�ort be leveraged over as many di�erent computer systems as possible. Given the great
diversity of parallel architectures, this type of portability is attainable to only a limited degree, but
machine dependences can at least be isolated.
LAPACK is an example of a mathematical software package whose highest-level components are

portable, while machine dependences are hidden in lower-level modules. Such a hierarchical approach
is probably the closest one can come to software portability across diverse parallel architectures. And
the BLAS that are used so heavily in LAPACK provide a portable, e�cient, and exible standard
for applications programmers.
Like portability, scalabililty demands that a program be reasonably e�ective over a wide range

of number of processors. Maintaining scalability of parallel algorithms, and the software libraries
implementing them, over a wide range of architectural designs and numbers of processors will
likely require that the fundamental granularity of computation be adjustable to suit the particular
circumstances in which the software may happen to execute. Our approach to this problem is block
algorithms with adjustable block size. In many cases, however, polyalgorithms 3 may be required
to deal with the full range of architectures and processor multiplicity likely to be available in the
future.
Scalable parallel architectures of the future are likely to be based on a distributed memory architec-

tural paradigm. In the longer term, progress in hardware development, operating systems, languages,
compilers, and communications may make it possible for users to view such distributed architectures
(without signi�cant loss of e�ciency) as having a shared memory with a global address space.
For the near term, however, the distributed nature of the underlying hardware will continue to be
visible at the programming level; therefore, e�cient procedures for explicit communication will
continue to be necessary. Given this fact, standards for basic message passing (send=receive), as
well as higher-level communication constructs (global summation, broadcast, etc.), become essential
to the development of scalable libraries that have any degree of portability. In addition to stan-
dardizing general communication primitives, it may also be advantageous to establish standards for
problem-speci�c constructs in commonly occurring areas such as linear algebra.
The basic linear algebra communication subprograms (BLACS) [16,23] is a package that provides

the same ease of use and portability for MIMD message-passing linear algebra communication that
the BLAS [17,18,46] provide for linear algebra computation. Therefore, we recommend that future
software for dense linear algebra on MIMD platforms consist of calls to the BLAS for computation
and calls to the BLACS for communication. Since both packages will have been optimized for a
particular platform, good performance should be achieved with relatively little e�ort. Also, since both
packages will be available on a wide variety of machines, code modi�cations required to change
platforms should be minimal.

3 In a polyalgorithm the actual algorithm used depends on the computing environment and the input data. The optimal
algorithm in a particular instance is automatically selected at runtime.

500 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

4.3. The BLAS as the key to portability

At least three factors a�ect the performance of compilable code:

1. Vectorization=cache reuse: Designing vectorizable algorithms in linear algebra is usually straight-
forward. Indeed, for many computations there are several variants, all vectorizable, but with
di�erent characteristics in performance (see, for example, [15]). Linear algebra algorithms can
approach the peak performance of many machines – principally because peak performance de-
pends on some form of chaining of vector addition and multiplication operations or cache reuse,
and this is just what the algorithms require. However, when the algorithms are realized in straight-
forward Fortran77 or C code, the performance may fall well short of the expected level, usually
because Fortran compilers fail to minimize the number of memory references – that is, the number
of vector load and store operations or e�ectively reuse cache.

2. Data movement: What often limits the actual performance of a vector, or scalar, oating-point
unit is the rate of transfer of data between di�erent levels of memory in the machine. Examples
include the transfer of vector operands in and out of vector registers, the transfer of scalar operands
in and out of a high speed cache, the movement of data between main memory and a high-speed
cache or local memory, paging between actual memory and disk storage in a virtual memory
system, and interprocessor communication on a distributed memory concurrent computer.

3. Parallelism: The nested loop structure of most linear algebra algorithms o�ers considerable scope
for loop-based parallelism. This is the principal type of parallelism that LAPACK and ScaLA-
PACK presently aim to exploit. On shared memory concurrent computers, this type of paral-
lelism can sometimes be generated automatically by a compiler, but often requires the insertion
of compiler directives. On distributed memory concurrent computers, data must be moved between
processors. This is usually done by explicit calls to message passing routines, although parallel
language extensions such as and Coherent Parallel C [30] and Split-C [13] do the message passing
implicitly.

These issues can be controlled, while obtaining the levels of performance that machines can o�er,
through use of the BLAS, introduced in Section 2.1.
Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they

perform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency on most
modern supercomputers. Also, the overhead entailed in calling the BLAS reduces the e�ciency of the
code. This reduction is negligible for large matrices, but it can be quite signi�cant for small matrices.
Fortunately, level 1 BLAS can be removed from the smaller, more frequently used LAPACK codes
in a short editing session.
Level 2 BLAS can achieve near-peak performance on many vector processors, such as a single

processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector processors
such as a CRAY-2 or an IBM 3090 VF, the performance of level 2 BLAS is limited by the rate of
data movement between di�erent levels of memory.
Level 3 BLAS overcome this limitation. Level 3 of BLAS performs O(n3) oating-point operations

on O(n2) data, whereas level 2 BLAS perform only O(n2) operations on O(n2) data. Level 3 BLAS
also allow us to exploit parallelism in a way that is transparent to the software that calls them.
While Level 2 BLAS o�er some scope for exploiting parallelism, greater scope is provided by Level
3 BLAS, as Table 2 illustrates.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 501

Table 2
Speed in Mop=s of level 2 and level 3 BLAS operations on a CRAY C90 (all matrices are of
order 1000; U is upper triangular)

Number of processors 1 2 4 8 16

Level 2: y ← �Ax + �y 899 1780 3491 6783 11207
Level 3: C ← �AB + �C 900 1800 3600 7199 14282
Level 2: x ← Ux 852 1620 3063 5554 6953
Level 3: B← UB 900 1800 3574 7147 13281
Level 2: x ← U−1x 802 1065 1452 1697 1558
Level 3: B← U−1B 896 1792 3578 7155 14009

The BLAS can provide portable high performance through being a standard that is available on
many platforms. Ideally, the computer manufacturer has provided an assembly coded BLAS tuned
for that particular architecture, but there is a standard implementation available that can simply be
compiled and linked. Using this standard BLAS may improve the e�ciency of programs when they
are run on nonoptimizing compilers. This is because doubly subscripted array references in the inner
loop of the algorithm are replaced by singly subscripted array references in the appropriate BLAS.
The e�ect can be seen for matrices of quite small order, and for large orders the savings are quite
signi�cant.

4.4. Overview of dense linear algebra libraries

Over the past 25 years, we have been directly involved in the development of several important
packages of dense linear algebra software: EISPACK, LINPACK, LAPACK, and the BLAS. Most
recently, we have been involved in the development of ScaLAPACK, a scalable version of LA-
PACK for distributed memory concurrent computers. In this section, we give a brief review of these
packages – their history, their advantages, and their limitations on high-performance computers.

4.4.1. EISPACK
EISPACK is a collection of Fortran subroutines that compute that eigenvalues and eigenvectors of

nine classes of matrices: complex general, complex Hermitian, real general, real symmetric, real sym-
metric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized
real symmetric matrices. In addition, two routines are included that use singular value decomposition
to solve certain least-squares problems.
EISPACK is primarily based on a collection of Algol procedures developed in the 1960s and

collected by J.H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the Handbook for
Automatic Computation [64] series. This volume was not designed to cover every possible method
of solution; rather, algorithms were chosen on the basis of their generality, elegance, accuracy, speed,
or economy of storage.
Since the release of EISPACK in 1972, over 10 000 copies of the collection have been distributed

worldwide.

502 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

4.4.2. LINPACK
LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and

linear least-squares problems. The package solves linear systems whose matrices are general, banded,
symmetric inde�nite, symmetric positive-de�nite, triangular, and tridiagonal square. In addition, the
package computes the QR and singular-value decompositions of rectangular matrices and applies
them to least-squares problems.
LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky

factorization, QR factorization, and singular value decomposition. The term LU factorization is used
here in a very general sense to mean the factorization of a square matrix into a lower triangular part
and an upper triangular part, perhaps with pivoting. Next, we describe the organization and factors
inuencing LINPACK’s e�ciency.
LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of ref-

erence. By column orientation we mean that the LINPACK codes always reference arrays down
columns, not across rows. This works because Fortran stores arrays in column major order. This
means that as one proceeds down a column of an array, the memory references proceed sequentially
in memory. Thus, if a program references an item in a particular block, the next reference is likely
to be in the same block. See further Section 3.1.1. LINPACK uses level 1 BLAS; see Section 4.3.
Since the release of LINPACK, over 20 000 copies of the collection have been distributed world-

wide.

4.4.3. LAPACK
LAPACK [14] provides routines for solving systems of simultaneous linear equations, least-squares

solutions of linear systems of equations, eigenvalue problems, and singular-value problems. The as-
sociated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-
vided, as are related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all
areas, similar functionality is provided for real and complex matrices, in both single and double
precision.
The original goal of the LAPACK project was to make the widely used EISPACK and LIN-

PACK libraries run e�ciently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are ine�cient because their memory access patterns disregard the multi-
layered memory hierarchies of the machines, thereby spending too much time moving data instead
of doing useful oating-point operations. LAPACK addresses this problem by reorganizing the algo-
rithms to use block matrix operations, such as matrix multiplication, in the innermost loops [2,14].
These block operations can be optimized for each architecture to account for the memory hierar-
chy [1], and so provide a transportable way to achieve high e�ciency on diverse modern machines.
Here, we use the term “transportable” instead of “portable” because, for fastest possible performance,
LAPACK requires that highly optimized block matrix operations be already implemented on each
machine. In other words, the correctness of the code is portable, but high performance is not – if
we limit ourselves to a single Fortran source code.
LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the

capabilities of these two packages and much more besides. LAPACK improves on LINPACK and
EISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACK

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 503

and EISPACK are based on the vector operation kernels of level 1 BLAS, LAPACK was designed
at the outset to exploit level 3 BLAS – a set of speci�cations for Fortran subprograms that do
various types of matrix multiplication and the solution of triangular systems with multiple right-hand
sides. Because of the coarse granularity of level 3 BLAS operations, their use tends to promote high
e�ciency on many high-performance computers, particularly if specially coded implementations are
provided by the manufacturer.
LAPACK is designed to give high e�ciency on vector processors, high-performance “superscalar”

workstations, and shared memory multiprocessors. LAPACK in its present form is less likely to
give good performance on other types of parallel architectures (for example, massively parallel
SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK project, described
in Section 4.4.4, is intended to adapt LAPACK to these new architectures. LAPACK can also be
used satisfactorily on all types of scalar machines (PCs, workstations, mainframes).
LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The LIN-

PACK algorithms can easily be restructured to use level 2 BLAS, though restructuring has little e�ect
on performance for matrices of very narrow bandwidth. It is also possible to use level 3 BLAS, at
the price of doing some extra work with zero elements outside the band [21]. This process becomes
worthwhile for large matrices and semi-bandwidth greater than 100 or so.

4.4.4. ScaLAPACK
The ScaLAPACK software library extends the LAPACK library to run scalably on MIMD, dis-

tributed memory, concurrent computers [10,11]. For such machines the memory hierarchy includes
the o�-processor memory of other processors, in addition to the hierarchy of registers, cache,
and local memory on each processor. Like LAPACK, the ScaLAPACK routines are based on
block-partitioned algorithms in order to minimize the frequency of data movement between dif-
ferent levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACK li-
brary are distributed memory versions of levels 2 and 3 BLAS, and a set of BLACS [16,23] for
communication tasks that arise frequently in parallel linear algebra computations. In the ScaLA-
PACK routines, all interprocessor communication occurs within the distributed BLAS and BLACS,
so the source code of the top software layer of ScaLAPACK looks very similar to that of
LAPACK.

5. Future research directions in dense algorithms

Traditionally, large, general-purpose mathematical software libraries have required users to write
their own programs that call library routines to solve speci�c subproblems that arise during a com-
putation. Adapted to a shared-memory parallel environment, this conventional interface still o�ers
some potential for hiding underlying complexity. For example, the LAPACK project incorporates
parallelism in level 3 BLAS, where it is not directly visible to the user.
But when going from shared-memory systems to the more readily scalable distributed memory

systems, the complexity of the distributed data structures required is more di�cult to hide from the
user. Not only must the problem decomposition and data layout be speci�ed, but di�erent phases of
the user’s problem may require transformations between di�erent distributed data structures.

504 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

These de�ciencies in the conventional user interface have prompted extensive discussion of alter-
native approaches for scalable parallel software libraries of the future. Possibilities include:

1. Traditional function library (i.e., minimum possible change to the status quo in going from serial
to parallel environment). This will allow one to protect the programming investment that has
been made.

2. Reactive servers on the network. A user would be able to send a computational problem to a
server that was specialized in dealing with the problem. This �ts well with the concepts of a
networked, heterogeneous computing environment with various specialized hardware resources (or
even the heterogeneous partitioning of a single homogeneous parallel machine).

3. General interactive environments like Matlab or Mathematica, perhaps with “expert” drivers (i.e.,
knowledge-based systems). With the growing popularity of the many integrated packages based on
this idea, this approach would provide an interactive, graphical interface for specifying and solving
scienti�c problems. Both the algorithms and data structures are hidden from the user, because the
package itself is responsible for storing and retrieving the problem data in an e�cient, distributed
manner. In a heterogeneous networked environment, such interfaces could provide seamless ac-
cess to computational engines that would be invoked selectively for di�erent parts of the user’s
computation according to which machine is most appropriate for a particular subproblem.

4. Domain-speci�c problem solving environments, such as those for structural analysis. Environments
like Matlab and Mathematica have proven to be especially attractive for rapid prototyping of new
algorithms and systems that may subsequently be implemented in a more customized manner for
higher performance.

5. Reusable templates (i.e., users adapt “source code” to their particular applications). A template
is a description of a general algorithm rather than the executable object code or the source code
more commonly found in a conventional software library. Nevertheless, although templates are
general descriptions of key data structures, they o�er whatever degree of customization the user
may desire.

Novel user interfaces that hide the complexity of scalable parallelism will require new concepts
and mechanisms for representing scienti�c computational problems and for specifying how those
problems relate to each other. Very high level languages and systems, perhaps graphically based,
not only would facilitate the use of mathematical software from the user’s point of view, but also
would help to automate the determination of e�ective partitioning, mapping, granularity, data struc-
tures, etc. However, new concepts in problem speci�cation and representation may also require
new mathematical research on the analytic, algebraic, and topological properties of problems (e.g.,
existence and uniqueness).
We have already begun work on developing such templates for sparse matrix computations. Future

work will focus on extending the use of templates to dense matrix computations.
We hope the insight we gained from our work will inuence future developers of hardware,

compilers and systems software so that they provide tools to facilitate development of high quality
portable numerical software.
The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain, and

are available from netlib. For example, for more information on how to obtain LAPACK, send the
following one-line email message to netlib@ornl.gov:

send index from lapack

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 505

or visit the web site at http:==www:netlib:org=lapack=. Information for EISPACK, LINPACK, and
ScaLAPACK can be similarly obtained.

6. Sparse linear algebra methods

6.1. Origin of sparse linear systems

The most common source of sparse linear systems is the numerical solution of partial di�erential
equations. Many physical problems, such as uid ow or elasticity, can be described by partial
di�erential equations. These are implicit descriptions of a physical model, describing some internal
relation such as stress forces. In order to arrive at an explicit description of the shape of the object
or the temperature distribution, we need to solve the PDE, and for this we need numerical methods.

6.1.1. Discretized partial di�erential equations
Several methods for the numerical solution of PDEs exist, the most common ones being the

methods of �nite elements, �nite di�erences, and �nite volumes. A common feature of these is that
they identify discrete points in the physical object, and give a set of equations relating these points.
Typically, only points that are physically close together are related to each other in this way.

This gives a matrix structure with very few nonzero elements per row, and the nonzeros are often
con�ned to a ‘band’ in the matrix.

6.1.2. Sparse matrix structure
Matrices from discretized partial di�erential equations contain so many zero elements that it pays

to �nd a storage structure that avoids storing these zeros. The resulting memory savings, however,
are o�set by an increase in programming complexity, and by decreased e�ciency of even simple
operations such as the matrix–vector product.
More complicated operations, such as solving a linear system, with such a sparse matrix present a

next level of complication, as both the inverse and the LU factorization of a sparse matrix are not as
sparse, thus needing considerably more storage. Speci�cally, the inverse of the type of sparse matrix
we are considering is a full matrix, and factoring such a sparse matrix �lls in the band completely.

Example. Central di�erences in d dimensions, n points per line, matrix size N = nd, bandwidth
q= nd−1 in natural ordering, number of nonzero ∼ nd, number of matrix elements N 2 = n2d, number
of elements in factorization N 1+(d−1)=d.

6.2. Basic elements in sparse linear algebra methods

Methods for sparse systems use, like those for dense systems, vector–vector, matrix–vector, and
matrix–matrix operations. However, there are some important di�erences.
For iterative methods, discussed in Section 8, there are almost no matrix–matrix operations. See

[43] for an exception. Since most modern architectures prefer these level 3 operations, the perfor-
mance of iterative methods will be limited from the outset.

506 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

An even more serious objection is that the sparsity of the matrix implies that indirect addressing
is used for retrieving elements. For example, in the popular row-compressed matrix storage format,
the matrix–vector multiplication looks like

for i = 1 : : : n
p← pointer to row i
for j = 1; ni
yi ← yi + a(p+ j)x(c(p+ j))

where ni is the number of nonzeros in row i, and p(·) is an array of column indices. A number of
such algorithms for several sparse data formats are given in [6].
Direct methods can have a BLAS 3 component if they are a type of dissection method. However,

in a given sparse problem, the more dense the matrices are, the smaller they are on average. They
are also not general full matrices, but only banded. Thus, we do not expect very high performance
on such methods either.

7. Direct solution methods

For the solution of a linear system one needs to factor the coe�cient matrix. Any direct method is a
variant of Gaussian elimination. As remarked above, for a sparse matrix, this �lls in the band in which
the nonzero elements are contained. In order to minimize the storage needed for the factorization,
research has focused on �nding suitable orderings of the matrix. Re-ordering the equations by a
symmetric permutation of the matrix does not change the numerical properties of the system in
many cases, and it can potentially give large savings in storage. In general, direct methods do not
make use of the numerical properties of the linear system, and thus their execution time is a�ected
in a major way by the structural properties of the input matrix.

7.1. Matrix graph theory

The most convenient way of talking about matrix orderings or permutations is to consider the
matrix ‘graph’ [55]. We introduce a node for every physical variable, and nodes i and j are connected
in the graph if the (i; j) element of the matrix is nonzero. A symmetric permutation of the matrix
then corresponds to a numbering of the nodes, while the connections stay the same. With these
permutations, one hopes to reduce the ‘bandwidth’ of the matrix, and thereby the amount of �ll
generated by the factorization.

7.2. Cuthill–McKee ordering

A popular ordering strategy is the Cuthill–McKee ordering, which �nds levels or wavefronts in
the matrix graph. This algorithm is easily described:

1. Take any node as starting point, and call that ‘level 0’.
2. Now successively take all nodes connected to the previous level, and group them into the next
level.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 507

3. Iterate this until all nodes are grouped into some level; the numbering inside each level is of
secondary importance.

This ordering strategy often gives a smaller bandwidth than the natural ordering and there are
further advantages to having a level structure, e.g., for out-of-core solution or for parallel processing.
Often, one uses the ‘reverse Cuthill–Mckee’ ordering [50].

7.3. Minimum degree

An explicit reduction of bandwidth is e�ected by the minimum degree ordering, which at any
point in the factorization chooses the variable with the smallest number of connections. Considering
the size of the resulting �ll-in is used as a tie breaker.

7.4. Nested dissection

Instead of trying to minimize �ll-in by reducing the bandwidth, one could try a direct approach.
The ‘nested dissection’ ordering recursively splits the matrix graph in two, thus separating it into
disjoint subgraphs. Somewhat more precisely, given a graph, this algorithm relies on the existence of
a ‘separator’: a set of nodes such that the other nodes fall into two mutually unconnected subgraphs.
The �ll from �rst factoring these subgraphs, followed by a factorization of the separator, is likely
to be lower than for other orderings.
It can be shown that for PDEs in two space dimensions this method has a storage requirement

that is within a log factor of that for the matrix itself, that is, very close to optimal [33]. This proof
is easy for PDEs on rectangular grids, but with enough graph theory it can be generalized [48,49].
However, for problems in three space dimensions, the nested dissection method is no longer optimal.
An advantage of dissection-type methods is that they lead to large numbers of uncoupled matrix

problems. Thus, to an extent, parallelization of such methods is easy. However, the higher levels
in the tree quickly have fewer nodes than the number of available processors. In addition to this,
they are also the larger subproblems in the algorithm, thereby complicating the parallelization of the
method.
Another practical issue is the choice of the separator set. In a model case this is trivial, but

in practice, and in particular in parallel, this is a serious problem, since the balancing of the two
resulting subgraphs depends on this choice. Recently, the so-called ‘second eigenvector methods’
have become popular for this [56].

8. Iterative solution methods

Direct methods, as sketched above, have some pleasant properties. Foremost is the fact that their
time to solution is predictable, either a priori, or after determining the matrix ordering. This is due
to the fact that the method does not rely on numerical properties of the coe�cient matrix, but only
on its structure. On the other hand, the amount of �ll can be substantial, and with it the execution
time. For large-scale applications, the storage requirements for a realistic size problem can simply
be prohibitive.

508 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

Iterative methods have far lower storage demands. Typically, the storage, and the cost per iteration
with it, is of the order of the matrix storage. However, the number of iterations strongly depends on
properties of the linear system, and is at best known up to an order estimate; for di�cult problems
the methods may not even converge due to accumulated round-o� errors.

8.1. Basic iteration procedure

In its most informal sense, an iterative method in each iteration locates an approximation to the
solution of the problem, measures the error between the approximation and the true solution, and
based on the error measurement improves on the approximation by constructing a next iterate. This
process repeats until the error measurement is deemed small enough.

8.2. Stationary iterative methods

The simplest iterative methods are the ‘stationary iterative methods’. They are based on �nding
a matrix M that is, in some sense, ‘close’ to the coe�cient matrix A. Instead of solving Ax = b,
which is deemed computationally infeasible, we solve Mx1 = b. The true measure of how well x1
approximates x is the error e1 = x1 − x, but, since we do not know the true solution x, this quantity
is not computable. Instead, we look at the ‘residual’: r1 = Ae1 = Ax1 − b, which is a computable
quantity. One easily sees that the true solution satis�es x = A−1b = x1 − A−1r1, so, replacing A−1

with M−1 in this relation, we de�ne x2 = x1 −M−1r1.
Stationary methods are easily analyzed: we �nd that ri → 0 if all eigenvalues � = �(I − AM−1)

satisfy |�|¡ 1. For certain classes of A and M this inequality is automatically satis�ed [36,61].

8.3. Krylov space methods

The most popular class of iterative methods nowadays is that of ‘Krylov space methods’. The
basic idea there is to construct the residuals such that nth residual rn is obtained from the �rst by
multiplication by some polynomial in the coe�cient matrix A, that is,

rn = Pn−1(A)r1:

The properties of the method then follow from the properties of the actual polynomial [3,7,9].
Most often, these iteration polynomials are chosen such that the residuals are orthogonal under

some inner product. From this, one usually obtains some minimization property, though not neces-
sarily a minimization of the error.
Since the iteration polynomials are of increasing degree, it is easy to see that the main operation

in each iteration is one matrix–vector multiplication. Additionally, some vector operations, including
inner products in the orthogonalization step, are needed.

8.3.1. The issue of symmetry
Krylov method residuals can be shown to satisfy the equation

rn ∈ span{Arn−1; rn−1; : : : ; r1}:

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 509

This brings up the question whether all rn−1; : : : ; r1 need to be stored in order to compute rn. The
answer is that this depends on the symmetry of the coe�cient matrix. For a symmetric problem, the
rn vectors satisfy a three-term recurrence. This was the original conjugate gradient method [40].
For nonsymmetric problems, on the other hand, no short recurrences can exist [29], and therefore,

all previous residuals need to be stored. Some of these methods are OrthoDir and OrthoRes [65].
If the requirement of orthogonality is relaxed, one can derive short-recurrence methods for non-

symmetric problems [31]. In the biconjugate gradient method, two sequences {rn} and {sn} are
derived that are mutually orthogonal, and that satisfy three-term recurrences.
A disadvantage of this latter method is that it needs application of the transpose of the coe�cient

matrix. In environments where the matrix is only operatively de�ned, this may exclude this method
from consideration. Recently developed methods, mostly based on the work of [59,60], obviate this
consideration.

8.3.2. True minimization
The methods mentioned so far minimize the error (over the subspace generated) in some matrix-

related norm, but not in the Euclidean norm. We can e�ect a true minimization by collecting the
residuals generated so far, and �nding a minimizing convex combination. This leads to one of the
most popular methods nowadays: GMRES [58]. It will always generate the optimal iterate, but for
this it requires storage of all previous residuals. In practice, truncated or restarted version of GMRES
are popular.

8.4. Preconditioners

The matrix M that appeared in the section on stationary iterative methods can play a role in
Krylov space methods too. There, it is called a ‘preconditioner’, and it acts to improve spectral
properties of the coe�cient matrix that determine the convergence speed of the method. In a slight
simpli�cation, one might say that we replace the system Ax = b by

(AM−1)(Mx) = b:

(Additionally, the inner product is typically changed.) It is generally recognized that a good precon-
ditioner is crucial to the performance of an iterative method.
The requirements on a preconditioner are that it should be easy to construct, a system Mx = b

should be simple to solve, and in some sense M should be an approximation to A. These requirements
need to be balanced: a more accurate preconditioner is usually harder to construct and more costly
to apply, so any decrease in the number iterations has to be set against a longer time per iteration,
plus an increased setup phase.
The holy grail of preconditioners is �nding an ‘optimal’ preconditioner: one for which the number

of operations for applying it is of the order of the number of variables, while the resulting number
of iterations is bounded in the problem size. There are very few optimal preconditioners.

8.4.1. Simple preconditioners
Some preconditioners need no construction at all. For instance, the Jacobi preconditioner consists

of simply the matrix diagonal DA. Since in PDE applications the largest elements are on the diagonal,
one expects some degree of accuracy from this. Using not just the diagonal, but the whole lower

510 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

triangular part DA + LA of the coe�cient matrix, an even more accurate method results. Since
this triangular matrix is nonsymmetric, it is usually balanced with the upper triangular part as
(DA + LA)D−1

A (DA + UA).

8.4.2. Incomplete factorizations
A successful strategy for preconditioners results from mimicking direct methods, but applying

some approximation process to them. Thus, the so-called ‘incomplete factorization’ methods ignore
�ll elements in the course of the Gaussian elimination process. Two strategies are to ignore elements
in �xed positions, or to drop elements that are deemed small enough to be negligible. The aim is
here to preserve at least some of the sparsity of the coe�cient matrix in the factorization, while
giving something that is close enough to the full factorization.
Incomplete factorizations can be very e�ective, but there are a few practical problems. For the

class of M -matrices, these methods are well de�ned [52], but for other, even fairly common classes
of matrices, there is a possibility that the algorithm breaks down [42,45,51].
Also, factorizations are inherently recursive, and coupled with the sparseness of the incomplete

factorization, this gives very limited parallelism in the algorithm using a natural ordering of the
unknowns. Di�erent orderings may be more parallel, but take more iterations [25,27,43].

8.4.3. Analytically inspired preconditioners
In recent years, a number of preconditioners have gained in popularity that are more directly

inspired by the continuous problem. First of all, for a matrix from an elliptic PDE, one can use a
so-called ‘fast solver’ as preconditioner [12,28,63].
A particularly popular class of preconditioners based on the continuous problem, is that of ‘domain

decomposition’ methods. If the continuous problem was elliptic, then decomposing the domain into
simply connected pieces leads to elliptic problems on these subdomains, tied together by internal
boundary conditions of some sort.
For instance, in the Schur complement domain decomposition method [8], thin strips of variables

are assigned a function as interface region, and the original problem reduces to fully independent
problems on the subdomains, connected by a system on the interface that is both smaller and better
conditioned, but more dense, than the original one. While the subdomains can trivially be executed
in parallel, the interface system poses considerable problems.
Choosing overlapping instead of separated subdomains leads to the class of Schwarz method [47].

The original Schwarz method on two domains proposed solving one subdomain, deriving interface
conditions from it for the other subdomain, and solving the system there. Repetition of this process
can be shown to converge. In a more parallel variant of this method, all subdomains solve their
system simultaneously, and the solutions on the overlap regions are added together.
Multilevel methods do not operate by decomposing the domain. Rather, they work on a sequence

of nested discretization, solving the coarser ones as a starting point for solving the �ner levels.
Under certain conditions such methods can be shown to be close to optimal [4,35]. However, they
require explicit knowledge of the operator and boundary conditions. For this reason, people have
investigated algebraic variants [5,57]. In both cases, these methods can be parallelised by distributing
each level over the processors, but this may not be trivial.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 511

9. Libraries and standards in sparse methods

Unlike in dense methods, there are few standards for iterative methods. Most of this is due to
the fact that sparse storage is more complicated, admitting of more variation, and therefore less
standardised. Whereas the (dense) BLAS has been accepted for a long time, sparse BLAS is not
more than a proposal under research.

9.1. Storage formats

As is apparent from the matrix–vector example in Section 6.2, storage formats for sparse matrices
include not just the matrix elements, but pointer information describing where the nonzero elements
are placed in the matrix. A few storage formats are in common use (for more details see [6]):
Aij format: In the ‘Aij’ format, three arrays of the same length are allocated: one containing

the matrix elements, and the other two containing the i and j coordinates of these elements. No
particular ordering of the elements is implied.
Row=column-compressed: In the row-compressed format one array of integers is allocated in ad-

dition to the matrix element, giving the column indices of the nonzero elements. Since all elements
in the same row are stored contiguously, a second, smaller, array is needed giving the start points
of the rows in the two larger arrays.
Compressed diagonal: If the nonzero elements of the matrix are located, roughly or exactly,

along subdiagonals, one could use contiguous storage for these diagonals. There are several diagonal
storage formats. In the simplest, describing a contiguous block of subdiagonals, only the array of
matrix elements is needed; two integers are su�cient to describe which diagonals have been stored.
There exist blocked versions of these formats, for matrices that can be partitioned into small

square subblocks.

9.2. Sparse libraries

Since sparse formats are more complicated than dense matrix storage, sparse libraries have an
added level of complexity. This holds even more so in the parallel case, where additional indexing
information is needed to specify which matrix elements are on which processor.
There are two fundamentally di�erent approaches for handling this complexity. Some sparse li-

braries require the user to set up the matrix and supply it to the library, while all handling is
performed by the library. This requires the user to store data in a format dictated by the library,
which might involve considerable work.
On the other hand, the library might do even the matrix setup internally, hiding all data from

the user. This gives total freedom to the user, but it requires the library to supply su�cient access
functions so that the user can perform certain matrix operations, even while not having access to
the object itself.

References

[1] E. Anderson, J. Dongarra, Results from the initial release of LAPACK, Technical Report LAPACK
Working Note 16, Computer Science Department, University of Tennessee, Knoxville, TN, 1989.
http:==www.netlib.org=lapack=lawns=lawn16.ps.

512 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

[2] E. Anderson, J. Dongarra, Evaluating block algorithm variants in LAPACK, Technical Report LAPACK
Working Note 19, Computer Science Department, University of Tennessee, Knoxville, TN, 1990.
http:==www.netlib.org=lapack=lawns=lawn19.ps.

[3] O. Axelsson, A.V. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic
Press, Orlando, FL, 1984.

[4] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, I, Numer. Math. 56 (1989) 157–177.
[5] O. Axelsson, V. Eijkhout, The nested recursive two-level factorization method for nine-point di�erence matrices,

SIAM J. Sci. Statist. Comput. 12 (1991) 1373–1400.
[6] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der

Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 1994. http:==www.netlib.org=templates=templates.ps.

[7] G. Birkho�, R.E. Lynch, Numerical Solution of Elliptic Problems, SIAM, Philadelphia, PA, 1984.
[8] P. BjHrstad, O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into

substructures, SIAM J. Numer. Anal. 23 (1986) 1097–1120.
[9] T. Chan, Henk van der Vorst, Linear system solvers: sparse iterative methods, in: D. Keyes et al (Eds.), Parallel

Numerical Algorithms, Proceedings of the ICASW=LaRC Workshop on Parallel Numerical Algorithms, May 23–25,
1994, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 91–118.

[10] J. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, Scalapack: a scalable linear algebra library for distributed memory
concurrent computers, Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation,
IEEE Computer Society Press, Silver Spring, MD, 1992, pp. 120–127.

[11] J. Choi, J.J. Dongarra, D.W. Walker, The design of scalable software libraries for distributed memory concurrent
computers, in: J.J. Dongarra, B. Tourancheau (Eds.), Environments and Tools for Parallel Scienti�c Computing,
Elsevier Science Publishers, Amsterdam, 1993.

[12] P. Concus, Gene H. Golub, Use of fast direct methods for the e�cient numerical solution of nonseparable elliptic
equations, SIAM J. Numer. Anal. 10 (1973) 1103–1120.

[13] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, K. Yelick, Introduction to
Split-C: Version 0.9, Technical Report, Computer Science Division – EECS, University of California, Berkeley, CA
94720, February 1993.

[14] J. Demmel, LAPACK: a portable linear algebra library for supercomputers, Proceedings of the 1989 IEEE Control
Systems Society Workshop on Computer-Aided Control System Design, December 1989.

[15] J.J. Dongarra, Increasing the performance of mathematical software through high-level modularity, Proceedings
of the Sixth International Symposium Comp. Methods in Engineering & Applied Sciences, Versailles, France,
North-Holland, Amsterdam, 1984, pp. 239–248.

[16] J.J. Dongarra, LAPACK Working Note 34: Workshop on the BLACS, Computer Science Department, Technical
Report CS-91-134, University of Tennessee, Knoxville, TN, May 1991. http:==www.netlib.org=lapack=lawns=
lawn16.ps.

[17] J.J. Dongarra, J. Du Croz, S. Hammarling, I. Du�, A set of level 3 basic linear algebra subprograms, ACM Trans.
Math. Software 16 (1) (1990) 1–17.

[18] J.J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, An extended set of Fortran basic linear algebra subroutines,
ACM Trans. Math. Software 14 (1) (1988) 1–17.

[19] J.J. Dongarra, E. Grosse, Distribution of mathematical software via electronic mail, Comm. ACM 30 (5) (1987)
403–407.

[20] J.J. Dongarra, F.C. Gustavson, A. Karp, Implementing linear algebra algorithms for dense matrices on a vector
pipeline machine, SIAM Rev. 26 (1984) 91–112.

[21] J.J. Dongarra, P. Mayes, Giuseppe Radicati di Brozolo, The IBM RISC System=6000 and linear algebra operations,
Supercomputer 44 (VIII-4) (1991) 15–30.

[22] J.J. Dongarra, R. Pozo, D.W. Walker, An object oriented design for high performance linear algebra on distributed
memory architectures, Proceedings of the Object Oriented Numerics Conference, 1993.

[23] J.J. Dongarra, R.A. van de Geijn, Two-dimensional basic linear algebra communication subprograms, Technical
Report LAPACK Working Note 37, Computer Science Department, University of Tennessee, Knoxville, TN, October
1991.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 513

[24] J. Du Croz, M. Pont, The development of a oating-point validation package, in: M.J. Irwin, R. Stefanelli (Eds.),
Proceedings of the Eighth Symposium on Computer Arithmetic, Como, Italy, May 19–21, 1987, IEEE Computer
Society Press, Silver Spring, MD, 1987.

[25] I.S. Du�, G.A. Meurant, The e�ect of ordering on preconditioned conjugate gradients, BIT 29 (1989) 635–657.
[26] A. Edelman, Large dense numerical linear algebra in 1993: the parallel computing inuence, Int. J. Supercomput.

Appl. 7 (1993) 113–128.
[27] V. Eijkhout, Analysis of parallel incomplete point factorizations, Linear Algebra Appl. 154–156 (1991) 723–740.
[28] H.C. Elman, M.H. Schultz, Preconditioning by fast direct methods for non self-adjoint nonseparable elliptic equations,

SIAM J. Numer. Anal. 23 (1986) 44–57.
[29] V. Faber, T. Manteu�el, Orthogonal error methods, SIAM J. Numer. Anal. 24 (1987) 170–187.
[30] E.W. Felten, S.W. Otto, Coherent parallel C, in: G.C. Fox (Ed.), Proceedings of the Third Conference on Hypercube

Concurrent Computers and Applications, ACM Press, New York, 1988, pp. 440–450.
[31] R. Fletcher, Conjugate gradient methods for inde�nite systems, in: G.A. Watson (Ed.), Numerical Analysis Dundee,

1975, Springer, New York, 1976, pp. 73–89.
[32] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon, D.W. Walker, Solving Problems on Concurrent

Processors, Vol. 1, Prentice-Hall, Englewood Cli�s, NJ, 1988.
[33] A. George, H.-W. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood

Cli�s, NJ, 1981.
[34] A. Gupta, V. Kumar, On the scalability of FFT on parallel computers, Proceedings of the Frontiers 90 Conference

on Massively Parallel Computation, IEEE Computer Society Press, 1990. Also available as Technical Report TR
90-20 from the Computer Science Department, University of Minnesota, Minneapolis, MN 55455.

[35] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[36] L.A. Hageman, D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981.
[37] W. Croswell, Origin and development of the method of moments for �eld computation, IEEE Antennas Propagation

Mag. 32 (1990) 31–34.
[38] J.L. Hess, Panel methods in computational uid dynamics, Annu. Rev. Fluid Mech. 22 (1990) 255–274.
[39] J.L. Hess, M.O. Smith, Calculation of potential ows about arbitrary bodies, in: D. K�uchemann (Ed.), Progress in

Aeronautical Sciences, Vol. 8, Pergamon Press, Oxford, 1967.
[40] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Nat. Bur. Stand. J. Res. 49

(1952) 409–436.
[41] R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger, Bristol, UK, 1981.
[42] A. Jennings, G.M. Malik, Partial elimination, J. Inst. Math. Appl. 20 (1977) 307–316.
[43] M.T. Jones, P.E. Plassmann, Parallel solution of unstructured, sparse systems of linear equations, in: R.F. Sincovec,

D.E. Keyes, M.R. Leuze, L.R. Petzold, D.A. Reed (Eds.), Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scienti�c Computing, SIAM, Philadelphia, PA, pp. 471–475.

[44] W. Kahan, Paranoia, Available from netlib [19]: http:==www.netlib.org=paranoia.
[45] D.S. Kershaw, The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear

equations, J. Comput. Phys. 26 (1978) 43–65.
[46] C. Lawson, R. Hanson, D. Kincaid, F. Krogh, Basic linear algebra subprograms for Fortran usage, ACM Trans.

Math. Software 5 (1979) 308–323.
[47] P.L. Lions, On the Schwarz alternating method. i., in: R. Glowinski, G.H. Golub, G. Meurant, J. Periaux (Eds.),

Domain Decomposition Methods for Partial Di�erential Equations, Proceedings of the First Internation Symposium,
Paris, January 7–9, 1987, SIAM, Philadelphia, PA, 1988, pp. 1–42.

[48] R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (1979) 346–358.
[49] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177–189.
[50] J.W-H. Liu, A.H. Sherman, Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering

algorithms for sparse matrices, SIAM J. Numer. Anal. 13 (1973) 198–213.
[51] T.A. Manteu�el, An incomplete factorization technique for positive de�nite linear systems, Math. Comp. 34 (1980)

473–497.
[52] J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coe�cient matrix

is a symmetric m-matrix, Math. Comp. 31 (1977) 148–162.
[53] J.M. Ortega, The ijk forms of factorization methods I, Vector computers, Parallel Comput. 7 (1988) 135–147.

514 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

[54] J.M. Ortega, C.H. Romine, The ijk forms of factorization methods II, Parallel systems, Parallel Comput. 7 (1988)
149–162.

[55] S.V. Parter, The use of linear graphs in Gaussian elimination, SIAM Rev. 3 (1961) 119–130.
[56] A. Pothen, H.D. Simon, Kang-Pu Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix

Anal. Appl. 11 (3) (1990) 430–452.
[57] J.W. Ruge, K. St�uben, Algebraic multigrid, in: S.F. McCormick (Ed.), Multigrid Methods, SIAM, Philadelphia, PA,

1987, (Chapter 4).
[58] Y. Saad, M.H. Schultz, GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
[59] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10

(1989) 36–52.
[60] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.
[61] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.
[62] J.J.H. Wang, Generalized Moment Methods in Electromagnetics, Wiley, New York, 1991.
[63] O. Widlund, On the use of fast methods for separable �nite di�erence equations for the solution of general elliptic

problems, in: D.J. Rose, R.A. Willoughby (Eds.), Sparse Matrices and their Applications, Plenum Press, New York,
1972, pp. 121–134.

[64] J. Wilkinson, C. Reinsch, Handbook for Automatic Computation: Vol. II – Linear Algebra, Springer, New York,
1971.

[65] D.M. Young, K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear
Algebra Appl. 34 (1980) 159–194.

Journal of Computational and Applied Mathematics 123 (2000) 515–530
www.elsevier.nl/locate/cam

The impact of high-performance computing in the solution of
linear systems: trends and problems(

Iain S. Du� ∗

Atlas Centre, Rutherford Appleton Laboratory, Computating & Information System Department, Oxon OX11 0QX,
UK

Received 29 August 1999; received in revised form 25 October 1999

Abstract

We review the inuence of the advent of high-performance computing on the solution of linear equations. We will
concentrate on direct methods of solution and consider both the case when the coe�cient matrix is dense and when it
is sparse. We will examine the current performance of software in this area and speculate on what advances we might
expect in the early years of the next century. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 65F05; 65F50

Keywords: Sparse matrices; Direct methods; Parallelism; Matrix factorization; Multifrontal methods

1. Introduction

In view of the other papers appearing in this volume, we will study only the solution of linear
equations

Ax = b (1.1)

using direct methods based on a factorization of the coe�cient matrix A. We will consider both the
case when A is dense and when it is sparse although we will concentrate more on the latter.
Although there are several ways to factorize a matrix, we will use the LU factorization

PAQ = LU; (1.2)

(Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub=reports. This report is in �le
du�RAL99072.ps.gz. Report also available through URL http:==www.numerical.rl.ac.uk=reports=reports.html.

∗ Tel.: +44-1235-445803; fax: +44-1235-446626.
E-mail address: i.s.du�@rl.ac.uk (I.S. Du�).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00401-5

516 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

where P and Q are permutation matrices, L is a unit lower triangular matrix, and U is an upper
triangular matrix. When A is a symmetric matrix, we use the analogous factorization

PAPT = LDLT; (1.3)

where D is a diagonal matrix, or possibly block diagonal (with blocks of order 1 and 2) if we want
a stable factorization of an inde�nite matrix [21].
We discuss the building blocks for both sparse and dense factorization in Section 2 and illustrate

their use in dense factorization in Section 3. We then show how such building blocks can be used
in sparse factorization in Section 4 indicating how this has revolutionized the performance of sparse
codes. We discuss recent attempts to harness the power of parallel computers in Section 5 before
examining the current power and limitations of direct methods in Section 6. We conclude with some
remarks on the future in Section 7.
A wide range of iterative, direct, and preconditioning techniques with an emphasis on the ex-

ploitation of parallelism is considered at length in the recent book by Dongarra et al. [34]. A more
recent bibliographic tour is presented by Du� and van der Vorst [44].

2. Building blocks

A common feature of current high-performance machines is that the main obstacle to obtaining
high performance is the bottleneck in getting data from the main memory to the functional units.
This is true whether they are built from custom-made silicon or commodity chips and whether they
are RISC processor workstations, pentium-based PCs, vector processors, or shared or distributed
memory parallel computers. Most machines use a high-speed cache as a staging post. Data in this
cache (many machines have multiple caches usually organized hierarchically but here we talk about
the highest level cache) can be transferred at low latency and high bandwidth to the functional
units but the amount of data that can be stored in the cache is quite small (often less than one
Mbyte).
This means that if we want to obtain high performance relative to the peak of the machine,

it is necessary to reuse data in the cache as much as possible to amortize the cost of getting
it to the cache from main memory. The most suitable and widely used kernels for doing this
are the Level 3 BLAS for O(n3) operations involving matrices of order n. There are nine Level
3 BLAS kernels but the two that are most used in routines based on LU factorization are the
matrix–matrix multiplication routine GEMM and the solution of a block of right-hand sides by a
triangular system, TRSM, although the symmetric update routine, SYRK, can be used in a symmetric
factorization.
We show, in Table 1, the performance of the Level 3 BLAS kernel GEMM on a range of computers

with various oating-point chips and memory organizations. In many cases, this kernel attains about
90% or more of the peak performance of the chip and in every case more than 66% of the peak is
achieved.
These building blocks have been discussed in detail in the paper by Dongarra and Eijkhout [32]

so we do not discuss them further here other than to say that they can be used in factorization
algorithms so that asymptotically the oating-point operations are all performed using these kernels.

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 517

Table 1
Performance of GEMM kernel in Mop=s on a range of machines (single processor perfor-
mance). Matrices of order 500

Machine Peak GEMM

Meiko CS2-HA 100 88
IBM SP2 266 232
Intel PARAGON 75 68
DEC Turbo Laser 600 450
CRAY C90 952 900
CRAY T3D 150 102

3. Factorization of dense matrices

To some extent, the algorithm and code development for numerical linear algebra have always
been driven by developments in computer architectures. The �rst real library of subroutines for
linear algebra on dense matrices was developed in Algol by Wilkinson and Reinsch [87]. These
were used as the basis for the LINPACK project where a wide range of software for solving dense
systems of equations was developed in Fortran and is described in the LINPACK book [30]. The LU
factorization code has been used as a basis for the benchmarking of computers with the latest results
being available on the World Wide Web [29]. The codes in the LINPACK package used Level 1
BLAS [68] and were portable over a wide range of machines. Although the Level 1 BLAS were
ostensibly for vector operations, the LINPACK codes performed poorly on vector or cache-based
machines. This was addressed in the development of the LAPACK package for linear algebra [14].
Codes in this package incorporated Level 2 and Level 3 BLAS ([31,33] respectively) and had a much
improved performance on modern architectures. Many vendors of shared memory computers o�er
parallel versions of the BLAS and so, at this level, parallelization is trivial. However, LAPACK was
not designed for parallel machines and, in particular, not for machines with distributed memory that
use message passing to communicate data. This last class of machines is targeted by the ongoing
ScaLAPACK project [19] that supports distributed computation using tools like the Basic Linear
Algebra Communications Routines (BLACS) [86].
If we view the LU factorization in a blocked or partitioned way, it becomes relatively simple to

show how Level 3 BLAS can be used. We show a schematic of block LU factorization in Fig. 1.
These diagrams represent a single block stage of the factorization using three di�erent approaches.
Factorization operations are performed on the hatched regions and access is required to the other
regions shaded in the matrix. For example, in the block right-looking LU factorization, the hatched
block column is �rst factorized using the Level 2 BLAS algorithm described in Fig. 2, the hatched
block row of U is computed using the Level 3 BLAS kernel TRSM and the shaded portion of the
matrix updated using the GEMM kernel to multiply the hatched part of the block column beneath the
diagonal block with this newly computed block row of U . Algorithms of this kind are the bases
for the factorization routines within the LAPACK suite that are discussed in the article by Dongarra
and Eijkhout [32].
Recently, Gustavson and his collaborators [13,58,59] have developed a recursive way of looking at

the factorizations which has the e�ect of increasing the proportion of Level 3 operations and avoids

518 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

Fig. 1. Block variants of LU decomposition.

Fig. 2. Level 2 factorization of rectangular block.

the necessity for choosing block sizes as in the abovementioned block algorithms. The recursive
approach can be thought of by looking at the factorization at the halfway point so that the matrix
can be partitioned as

A=

[
A11 A12

A21 A22

]
;

where matrices A11 and A21 are factorized. At this stage, a Level-3-type algorithm can be used to
update the blocks A12 and A22, and A22 can then be factorized using a similar recursive algorithm. Of
course, the �rst block columns were also factorized recursively in similar fashion. An added bonus
of the recursive algorithm is that access to the blocks for Level 3 computations can be organized on
contiguous data. For the earlier algorithms, the leading dimension of the arrays corresponding to the
blocks is not equal to the block size. This is more noticeable in the recursive form of the Cholesky
factorization.

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 519

4. Factorization of sparse matrices

The two main books discussing the direct solution of sparse linear equations are those by George
and Liu [50] and by Du� et al. [39]. The former restricts its discussion to symmetric positive-de�nite
systems and emphasizes graph theoretic aspects, while the latter considers both symmetric and unsym-
metric systems and includes a discussion of some of the algorithms used in the Harwell subroutine
library (HSL) [64]. The HSL has arguably the largest number of direct sparse codes in a single
library and has a few codes for iterative solution also. Information on this Library can be found in
the Web pages http://www.cse.clrc.ac.uk/Activity/HSL. A subset of HSL is marketed by
NAG as the Harwell Sparse Matrix Library (HSML). Other sparse direct software can be found
through the netlib repository http://www.netlib.org.
When factorizing sparse matrices, it is crucial that the permutation matrices of (1.2) and (1.3) are

chosen to preserve sparsity in the factors as well as to maintain stability and many algorithms have
been developed to achieve this. In the general unsymmetric case, this leads to a need to compromise
the numerical pivoting strategy in order to choose pivots to limit the �ll-in. A common strategy for
limiting �ll-in, due to Markowitz [72], chooses entries so that the product of the number of other
entries in the row and column of the candidate pivot is minimized. An entry is accepted as a pivot
only if it is within a threshold of the largest in its column. The threshold is often an input parameter
and a typical value for it is 0.1. This Markowitz-threshold strategy and a range of other similar
possibilities are discussed in detail in [39]. Data structures are designed so that only the nonzero
entries of the matrix and of the factors need to be held. This, coupled with the fact that it is often
nontrivial to determine what part of the matrix is updated at each pivot step, has led to complicated
algorithms and codes that are hard to implement e�ciently on modern architectures [39].
In the symmetric case, the Markowitz analogue is minimum degree where one chooses as pivot a

diagonal entry with the least number of entries in its row. This criterion was �rst proposed in 1967
[84] and has stood the test of time well. George [48] proposed a di�erent class of orderings based on a
nonlocal strategy of dissection. In his nested dissection approach, a set of nodes is selected to partition
the graph, and this set is placed at the end of the pivotal sequence. The subgraphs corresponding
to the partitions are themselves similarly partitioned and this process is nested with pivots being
identi�ed in reverse order. Minimum degree, nested dissection and several other symmetric orderings
were included in the SPARSPAK package [49,51]. Many experiments were performed using the
orderings in SPARSPAK and elsewhere, and the empirical experience at the beginning of the 1990s
indicated that minimum degree was the best ordering method for general symmetric problems. We
will return to this issue of ordering when we consider parallelism in Section 5.
It is not immediately or intuitively apparent that the kernels discussed in Section 2 can be used

in the factorization of sparse matrices and indeed much of the work and heuristics developed in the
1970s attempted to do just the opposite, namely to perform the basic elimination operations on as
sparse vectors as possible.
The most obvious way of using dense kernels in sparse factorization is to order the sparse matrix

so that its nonzero entries are clustered near the diagonal (called bandwidth minimization) and then
regard the matrix as banded, since zeros within the band soon �ll-in. However, this is normally too
wasteful as even the high computational rate of the Level 3 BLAS does not compensate for the
extra work. A variable band format is used to extend the range of applicability of this technique. A
related, but more exible scheme, is the frontal method (for example, [36]) which owes its origin

520 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

to computations using �nite elements. However, all these techniques require that the matrix can
be ordered to obtain a narrow band or frontwidth. Du� [35] gives several instances of how dense
techniques can be used in sparse factorizations including the then newly developed multifrontal
techniques. The principal advantage of multifrontal techniques over a (uni)frontal approach is that
they can be used in conjunction with any ordering scheme so that sparsity can be preserved.
A fundamental concept in sparse matrix factorization is an elimination tree. The elimination tree

is de�ned for any sparse matrix whose sparsity pattern is symmetric. For a sparse matrix of order n,
the elimination tree is a tree on n nodes such that node j is the father of node i if entry (i; j); j ¿ i
is the �rst entry below the diagonal in column i of the lower triangular factor. An analogous graph
for an unsymmetric patterned sparse matrix is the directed acyclic graph [24,54].
Sparse Cholesky factorization by columns can be represented by an elimination tree. This can

either be a left-looking (or fan-in) algorithm, where updates are performed on each column in
turn by all the previous columns that contribute to it, then the pivot is chosen in that column and
the multipliers calculated; or a right-looking (or fan-out) algorithm where, as soon as the pivot is
selected and multipliers calculated, that column is immediately used to update all future columns that
it modi�es. The terms left-looking and right-looking are discussed in detail in the book [34]. Either
way, the dependency of which columns update which columns is determined by the elimination tree.
If each node of the tree is associated with a column, a column can only be modi�ed by columns
corresponding to nodes that are descendants of the corresponding node in the elimination tree.
One approach to using higher level BLAS in sparse direct solvers is a generalization of a sparse

column factorization. Higher level BLAS can be used if columns with a common sparsity pattern
are considered together as a single block or supernode and algorithms are termed column–supernode,
supernode–column, and supernode–supernode depending on whether target, source, or both are su-
pernodes (for example, [27]).
An alternative to the supernodal approach for utilizing Level 3 BLAS within a sparse direct code

is a multifrontal technique [43]. In this approach, the nonzero entries of the pivot row and column
are held in the �rst row and column of a dense array and the outer-product computation at that pivot
step is computed within that dense submatrix. The dense submatrix is called a frontal matrix. Now,
if a second pivot can be chosen from within this dense matrix (that is there are no nonzero entries
in its row and column in the sparse matrix that lie outside this frontal matrix), then the operations
for this pivot can again be performed within the frontal matrix. In order to facilitate this multiple
elimination within a frontal matrix, an assembly tree is preferred to an elimination tree where, for
example, chains of nodes are collapsed into a single node so that each node can represent several
eliminations. Indeed sometimes we arti�cially enlarge the frontal matrices so that more pivots are
chosen at each node and the Level 3 BLAS component is higher. Thus, the kernel of the multifrontal
scheme can be represented by the computations

F11 = L1U1 (4.4)

and

F ′
22 ← F22 − F21U−1

1 L−11 F12 (4.5)

performed within the dense frontal matrix[
F11 F12

F21 F22

]
:

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 521

Table 2
Performance in Mop=s of multifrontal code MA41 on matrix BCSSTK15, from the Rutherford–
Boeing Collection [40], on a single processor of a range of RISC processors. For comparison,
the performance of DGEMM on a matrix of order 500 is given

Computer Peak DGEMM MA41

DEC 3000=400 AXP 133 49 34
HP 715=64 128 55 30
IBM RS6000=750 125 101 64
IBM SP2 (Thin node) 266 213 122
MEIKO CS2-HA 100 43 31

The Schur complement, F ′
22 (4.5), is then sent to the parent node in the tree where it is summed

with contributions from the original matrix and the other children to form another dense submatrix
on which similar operations are performed at the father node. The e�ectiveness of this approach on
RISC-based machines can be seen from the results in Table 2 where the code MA41 is a multifrontal
code in the HSL [8]. Here the overall performance of the sparse code is always more than half that
of the DGEMM kernel.
Several authors have experimented with these di�erent algorithms (right-looking, left-looking, and

multifrontal) and di�erent blockings. Ng and Peyton [74] favour the left-looking approach and
Amestoy and Du� [8] show the bene�ts of Level 3 BLAS within a multifrontal code on vector
processors. Rothberg and Gupta [81] �nd that, on cache-based machines, it is the blocking that
a�ects the e�ciency (by a factor of 2–3) and the algorithm that is used has a much less signi�cant
e�ect. Demmel et al. [27] have extended the supernodal concept to unsymmetric systems although,
for general unstructured matrices, they cannot use regular supernodes for the target columns and so
they resort to Level 2.5 BLAS, which is de�ned as the multiplication of a set of vectors by a matrix
where the vectors cannot be stored in a two-dimensional array. By doing this, the source supernode
can be held in cache and applied to the target columns or blocks of columns of the “irregular”
supernode, thus getting a high degree of reuse of data and a performance similar to the Level 3
BLAS.
It is very common to solve sparse least-squares problems by forming the normal equations

ATAx = ATb (4.6)

and to use a sparse solution scheme for symmetric positive-de�nite systems on these resulting equa-
tions. There are, however, other methods for solving the least-squares problem. The most robust
uses a QR factorization of the coe�cient matrix. This factorization can also be implemented as a
multifrontal method and codes have been developed by [1,12,73].

5. Parallel computation

In contrast to the situation with iterative methods where, in addition to vector operations, often
only matrix–vector products are required, the kernel computations for sparse direct methods are far
more complicated. Nevertheless, the bene�ts that can be obtained from successful parallelization
can be much greater. Indeed, Du� and van der Vorst [44] claim that the ratio of this bene�t is in

522 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

proportion to 1 : 5 : 10 for iterative methods, direct sparse factorizations, and direct dense factorizations
respectively. That is, we might expect gains �ve times as great due to the parallelization of a direct
sparse code than an iterative one. The reason for this is similar to the reason why direct methods,
when properly formulated, can be so e�cient on RISC-based or vector machines. This is due to the
kernel (as we discussed in the last three sections) being a dense matrix – dense matrix multiply. We
saw the bene�t of using Level 3 BLAS in sparse factorization for RISC-based machines in Section
4. It is also of bene�t in a parallel setting to combine pivot steps and to work not with rows and
columns but with block rows and columns. Clearly, the use of such block techniques and higher
level BLAS allow us to obtain parallelism at the level of the elimination operations themselves.
There is also a very coarse level at which parallelism can be exploited. At this coarsest level,

which is similar to the subdivision of a problem by domain decomposition, we use techniques for
partitioning the matrix. These are often designed for parallel computing and are particularly appro-
priate for distributed memory computers. Indeed, partitioning methods are often only competitive
when parallelism is considered. The PARASPAR package [88] uses a preordering to partition the
original problem. The MCSPARSE package [47,53] similarly uses a coarse matrix decomposition to
obtain an ordering to bordered block triangular form.
However, the main level of parallelism that we wish to discuss here is at a level intermediate

between these two and is due to the sparsity of the matrix being factorized. Clearly, there can be
substantial independence between pivot steps in sparse elimination. For example, if the matrix were
a permutation of a diagonal matrix all operations could be performed in parallel. Two matrix entries
aij and ars can be used as pivots simultaneously if ais and arj are zero. These pivots are termed
compatible. This observation [22] has been the basis for several algorithms and parallel codes for
general matrices. When a pivot is chosen all rows with entries in the pivot column and all columns
with entries in the pivot row are marked as ineligible and a subsequent pivot can only be chosen
from the eligible rows and columns. In this way, a set of say k independent pivots is chosen. If
the pivots were permuted to the beginning of the matrix, this k × k pivot block would be diagonal.
The resulting elimination operations are performed in parallel using a rank k update. The procedure
is repeated on the reduced matrix. The algorithms di�er in how the pivots are selected (clearly one
must compromise criteria for reducing �ll-in in order to get a large compatible pivot set) and in
how the update is performed.
Alaghband [2] uses compatibility tables to assist in the pivot search. She uses a two-stage imple-

mentation where �rst pivots are chosen in parallel from the diagonal and then o�-diagonal pivots
are chosen sequentially for stability reasons. She sets thresholds for both sparsity and stability when
choosing pivots. Davis and Yew [25] perform their pivot selection in parallel, which results in
the nondeterministic nature of their algorithm because the compatible set will be determined by
the order in which potential compatible pivots are found. Their algorithm, D2, was designed for
shared-memory machines and was tested extensively on an Alliant FX=8.
The Y12M algorithm [89] extends the notion of compatible pivots by permitting the pivot block

to be upper triangular rather than diagonal, which allows them to obtain a larger number of pivots,
although the update is more complicated. For distributed memory architectures, van der Stappen
et al. [85] distribute the matrix over the processors in a grid fashion, perform a parallel search for
compatible pivots, choosing entries of low Markowitz cost that satisfy a pivot threshold, and perform
a parallel rank-k update of the reduced matrix, where k is the number of compatible pivots chosen.
They show high speedups (about 100 on 400 processors of a PARSYTEC SuperCluster FT-400)

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 523

although the slow processor speed masks the communication costs on this machine. Their code was
originally written in OCCAM, but they have since developed a version using PVM [67].
In the context of reduced stability of the factorization due to the need to preserve sparsity and

exploit parallelism, it is important that sparse codes o�er the possibility of iterative re�nement
both to obtain a more accurate answer and to provide a measure of the backward error. Demmel
and Li [69] try to avoid the dynamic data structures required by numerical pivoting by using the
algorithm of Du� and Koster [41,42] to permute large entries to the diagonal prior to starting the
factorization. They also suggest computing in increased precision to avoid some of the problems
from this compromise to stability pivoting.
An important aspect of these approaches is that the parallelism is obtained directly because of

the sparsity in the system. In general, we exhibit this form of parallelism through the assembly
tree of Section 4 where operations at nodes which are not on the same (unique) path to the root
(that is none is a descendant of another) are independent and can be executed in parallel (see,
for example, [37,70]). The set of pivots discussed above could correspond to leaf nodes of such
a tree. The tree can be used to schedule parallel tasks. For shared memory machines, this can
be accomplished through a shared pool of work with fairly simple synchronizations that can be
controlled using locks protecting critical sections of the code [6,37,38]. One of the main issues for
an e�cient implementation on shared memory machines concerns the management of data, which
must be organized so that book-keeping operations such as garbage collection do not cause too much
interference with the parallel processing.
A problem with the minimum degree ordering is that it tends to give elimination trees that are

not well balanced and so not ideal for use as a computational graph for driving a parallel algorithm.
The elimination tree can be massaged [71] so that it is more suitable for parallel computation but
the e�ect of this is fairly limited for general matrices. The beauty of dissection orderings is that they
take a global view of the problem; their di�culty until recently has been the problem of extending
them to unstructured problems. Recently, there have been several tools and approaches that make
this extension more realistic [76]. The essence of a dissection technique is a bisection algorithm
that divides the graph of the matrix into two partitions. If node separators are used, a third set will
correspond to the node separators. Recently, there has been much work on obtaining better bisections
even for irregular graphs. Perhaps the bisection technique that has achieved the most fame has been
spectral bisection [76]. In this approach, use is made of the Laplacian matrix that is de�ned as a
symmetric matrix whose diagonal entries are the degrees of the nodes and whose o�-diagonals are
−1 if and only if the corresponding entry in the matrix is nonzero. This matrix is singular because its
row sums are all zero but, if the matrix is irreducible, it is positive semide�nite with only one zero
eigenvalue. Often the same software is used for the dissection orderings as for graph partitioning.
Two of the major software e�orts in this area are CHACO [62] and METIS [66].
A currently favoured approach is for the dissection technique to be used only for the top levels

and the resulting subgraphs to be ordered by a minimum degree scheme. This hybrid technique
was described some time ago [52] but was discredited because of the poor performance of nested
dissection techniques on irregular graphs at that time. However, because of the much better imple-
mentations of dissection orderings as discussed above, this hybrid technique is included in many
current implementations (for example, [17,63]).
Current empirical evidence would suggest that these schemes are at least competitive with mini-

mum degree on some large problems from structural analysis [17,79] and from �nancial modelling

524 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

Table 3
E�ect of ordering on Problem BMWCRA 1 from the PARASOL test set. Matrix of order 148,770
with 5,396,386 entries in the lower triangle. Elapsed times in seconds on an ORIGIN 2000.
Speedups in parentheses

Analysis phase
entries in factors Operations

AMD 1:13× 108 1:28× 1011
HYBRID 8:53× 107 6:72× 1010

Factorization Solve

No. procs AMD HYBRID AMD HYBRID

1 687 307 12.0 10.1
2 408(1.7) 178(1.7) 7.5(1.6) 5.4(1.9)
4 236(2.9) 82(3.7) 6.7(1.8) 4.2(2.4)
8 143(4.8) 58(5.3) 4.2(2.9) 2.6(3.9)
16 112(6.1) 36(8.5) 2.9(4.1) 1.9(5.3)

[18]. In these studies, dissection techniques outperform minimum degree by on average about 15%
in terms of oating-point operations for Cholesky factorization using the resulting ordering, although
the cost of these orderings can be several times that of minimum degree and may be a signi�cant
proportion of the total solution time [17]. We show, in Table 3 the e�ect of the hybrid ordering
within the MUMPS code (see Section 6) on one of the PARASOL test examples. AMD is an order-
ing produced by the approximate minimum degree code of Amestoy et al. [7], and HYBRID is an
ordering from METIS that combines nested dissection and minimum degree. We see that the gains
from the HYBRID ordering are even more dramatic than those mentioned above with about half
the number of operations required for factorization with the HYBRID ordering than with AMD. We
also note, from the results in Table 3, that the parallelism is better for the HYBRID ordering.
In recent years, the performance of sparse direct codes has increased considerably. The im-

provement is not from the approach used (fan-in, fan-out, multifrontal) but rather because of
the use of blocking techniques and two-dimensional mappings. The bene�t of using higher level
BLAS kernels, coupled with increases in local memory and the communication speed of paral-
lel processors, have at last made the solution of large sparse systems feasible on such architec-
tures. We now review some of the recent performance �gures from several di�erent implemen-
tations. Dumitrescu et al. [45] record a performance of over 360 Mop=s on 32 nodes of an
IBM SP1 using a two-dimensional block fan-in algorithm. Rothberg [80] has implemented a block
fan-out algorithm using two-dimensional blocking and obtains a performance of over 1:7 Gop=s
on 128 nodes of an Intel Paragon, which is about 40% of the performance of the GEMM kernel on
that machine. A 2-D block fan-out algorithm has been coupled with some block mapping heuristics
to obtain a performance of over 3 Gop=s for a 3-D grid problem on a 196-node Intel Paragon
[82]. A similar type of two-dimensional mapping is used [56] in an implementation of a multi-
frontal method, where much of the high performance is obtained through balancing the tree near its
root and using a highly tuned mapping of the dense matrices near the root to allow a high level
of parallelism to be maintained. Although the headline �gure of nearly 20 Gop=s on the CRAY

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 525

T3D was obtained on a fairly arti�cial and essentially dense problem, large sparse problems from
structural analysis were factorized at between 8 and 15 Gop=s on the same machine for which a
tuned GEMM code will execute at around 50 Gop=s. This code is available in compiled form on an
IBM SP2 [55] and source code versions of a portable implementation are available from the authors
[57]. More recently, Li and Demmel [69] have been developing a version of the SuperLU code [26]
for distributed memory machines and the MUMPS multifrontal code [10], developed within the EU
PARASOL Project, also targets message passing architectures.
Partly because of the success of fast and parallel methods for performing the numerical factor-

ization, other phases of the solution are now becoming more critical on parallel computers. The
package [61] executes all phases in parallel, and there has been much recent work in �nding parallel
methods for performing the reordering. This has been another reason for the growth in dissection
approaches (for example, see [65,78]). Parallelism in the triangular solve can be obtained either
using the identical tree to the numerical factorization [12] or by generating a tree from the sparsity
pattern of the triangular factor [15]. However, in order to avoid the intrinsically sequential nature
of a sparse triangular solve, it is possible to hold the denser but still sparse L−1, or better a parti-
tioned form of this to avoid some of the �ll-in that would be associated with forming L−1 explicitly
[5]. Various schemes for this partitioning have been proposed to balance the parallelism (limited
by the number of partitions) with the �ll-in (for example, [3,4,75]) and, more recently, the selec-
tive inversion of submatrices produced by a multifrontal factorization algorithm has been proposed
[77].

6. Current situation

There is no question that direct sparse matrix algorithms and codes based on them have “come
of age”. Gone are the days when the only sparse codes that were generally available could be
found in the HSL. We have already remarked on the PSPASES code for symmetric positive-de�nite
systems by Gupta and others [55,57] and the SuperLU code for general unsymmetric sparse sys-
tems by Demmel and Li [27,69]. Both these projects have developed code for distributed memory
computers.
The MUMPS code [9,11] implements a parallel multifrontal technique for distributed memory

computers and is part of the EU PARASOL Project 1 whose goal was to build and test a portable
library for solving large sparse systems of equations on distributed memory systems. The PARA-
SOL software is written in Fortran 90, uses MPI for message passing, and is available from teh
Web page http:==www.pallas.de=parasol=. The solvers developed in this Project are two do-
main decomposition codes by Bergen and ONERA, a multigrid code by GMD, and the MUMPS
code.
Dobrian et al. [28] have studied the use of an object-oriented approach to design sparse direct

solvers and O-O is used by Ashcraft in his SPOOLES package [16]. Yang and his co-workers have
developed a sparse direct package S∗ for distributed memory computers [46] and there are a number
of commercial o�erings that can be found through Web searches.

1 For more information on the PARASOL project, see the web site at http:==www.genias.de=projects
=parasol=index.html.

526 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

7. Future trends

There seems a never ending demand for the solution of larger and larger problems. For example,
some problems from the ASCI program in the United States have dimensions of several million and
animal breeders are now solving systems of 20–30 million degrees of freedom.
Clearly, the size of problem that can be solved by a direct method is very dependent on the ma-

trix structure. For example, a diagonal or tridiagonal system pose no problems when the dimension
increases and indeed, if �ll-in can be kept low, it is usually possible to solve very large problems
by sparse direct factorization. However, for the discretization of three-dimensional partial di�eren-
tial equations, the limitations of direct methods become all too apparent. Although problems from
�nite-element discretizations of order nearly one million have been solved by MUMPS [11], in my
opinion, the most promising set of techniques for the solution of really large problems are those that
combine both direct and iterative methods. This can be viewed as a sophisticated preconditioning
for an iterative method and is discussed in greater length in the article by Saad and van der Vorst
[83].
One of the most promising techniques uses graph partitioning to subdivide the problem, solves

the local subproblems by direct methods and uses an iterative method to couple the blocks in
the partitioning. This approach is very similar to methods used in the solution of problems from
discretizations of PDEs using domain decomposition which can be viewed as permuting the matrix
to bordered block diagonal form. However, additional preconditioners are used both for the Schur
complement and also a coarse preconditioner for the overall problem. A good discussion of these
preconditioners can be found in the thesis of Luiz Carvalho [23].
It is interesting to surmise what the trends will be. Personally, I feel that languages like Fortran

90 combine su�cient object orientation with clarity and e�ciency although there is certainly an
increasing population who �nd the lure of novel object-oriented languages irresistible. Old tech-
niques continue to be rediscovered as in the revamping of interpretative code approaches, originally
developed in the 1970s [60], by Grund [20] who has had some success in solving problems from
chemical engineering. The exploitation of sparsity on the right-hand side, for some time pursued in
the context of electronic circuit applications and power systems, is now becoming a very powerful
tool in the rehabilitation of simplex methods for linear programming.

Acknowledgements

I would like to thank my colleagues Patrick Amestoy, Jacko Koster, Xiaoye Li, John Reid, and
Jennifer Scott for some helpful remarks on a draft of this paper.

References

[1] M. Adlers, Computing sparse orthogonal factors in MATLAB, Technical Report LiTH-MAT-R-1998-19, Link�oping
University, 1999.

[2] G. Alaghband, Parallel sparse matrix solution and performance, Parallel Comput. 21 (9) (1995) 1407–1430.
[3] F.L. Alvarado, A. Pothen, R. Schreiber, Highly parallel sparse triangular solution, in: A. George, J.R. Gilbert, J.W.H.

Liu (Eds.), Graph Theory and Sparse Matrix Computation, Springer, Berlin, 1993.

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 527

[4] F.L. Alvarado, R. Schreiber, Optimal parallel solution of sparse triangular systems, SIAM J. Sci. Comput. 14 (1993)
446–460.

[5] F.L. Alvarado, D.C. Yu, R. Betancourt, Partitioned sparse A−1 methods, IEEE Trans. Power Systems 3 (1990)
452–459.

[6] P.R. Amestoy, Factorization of large sparse matrices based on a multifrontal approach in a multiprocessor
environment, INPT Ph.D. Thesis TH=PA=91=2, CERFACS, Toulouse, France, 1991.

[7] P.R. Amestoy, T.A. Davis, I.S. Du�, An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal.
Appl. 17 (4) (1996) 886–905.

[8] P.R. Amestoy, I.S. Du�, Vectorization of a multiprocessor multifrontal code, Internat. J. SuperComput. Appl.
3 (1989) 41–59.

[9] P.R. Amestoy, I.S. Du�, J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers,
Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520.

[10] P.R. Amestoy, I.S. Du�, J.-Y. L’Excellent, Multifrontal solvers within the PARASOL environment, in: B. Kagstrom,
J. Dongarra, E. Elmroth, J. Wasniewski (Eds.), Applied Parallel Computing, PARA’98, Lecture Notes in Computer
Science, Vol. 1541, Springer, Berlin, 1998, pp. 7–11.

[11] P.R. Amestoy, I.S. Du�, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed
dynamic scheduling, Technical Report RAL-TR-1999-059, Rutherford Appleton Laboratory, 1999.

[12] P.R. Amestoy, I.S. Du�, C. Puglisi, Multifrontal QR factorization in a multiprocessor environment, Numer. Linear
Algebra Appl. 3 (4) (1996) 275–300.

[13] B.S. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski, P.Y. Yalamov, LAWRA — Linear Algebra With
Recursive Algorithms, Technical Report UNIC-99-01, UNI-C, Lyngby, Denmark, 1999.

[14] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide, 2nd Edition, SIAM Press, Philadelphia, PA, 1995.

[15] E.C. Anderson, Y. Saad, Solving sparse triangular systems on parallel computers, Internat. J. High Speed Comput.
1 (1989) 73–95.

[16] C. Ashcraft, R. Grimes, SPOOLES: An object-oriented sparse matrix library. Proceedings of the Ninth SIAM
Conference on Parallel Processing, 1999. See http:==www.netlib.org=linalg=spooles.

[17] C. Ashcraft, J.W.H. Liu, Robust ordering of sparse matrices using multisection, SIAM J. Matrix Anal. Appl.
19 (1998) 816–832.

[18] A. Berger, J. Mulvey, E. Rothberg, R. Vanderbei, Solving multistage stochastic programs using tree dissection,
Technical Report SOR-97-07, Programs in Statistics and Operations Research, Princeton University, Princeton, NJ,
1995.

[19] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK Users’ Guide, SIAM Press, Philadelphia, PA, 1997.

[20] J. Borchardt, F. Grund, D. Horn, Parallel numerical methods for large systems of di�erential-algebraic equations in
industrial applications, Technical Report 382, Weierstra�-Institut f�ur Angewandte Analysis und Stochastik, Berlin,
1997.

[21] J.R. Bunch, L. Kaufman, B.N. Parlett, Decomposition of a symmetric matrix, Numer. Math. 27 (1976) 95–110.
[22] D.A. Calahan, Parallel solution of sparse simultaneous linear equations, Proceedings 11th Annual Allerton Conference

on Circuits and System Theory, University of Illinois, 1973, pp. 729–735.
[23] L.M. Carvalho, Preconditioned Schur complement methods in distributed memory environments, INPT Ph.D. Thesis

TH=PA=97=41, CERFACS, Toulouse, France, 1997.
[24] T.A. Davis, I.S. Du�, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix

Anal. Appl. 18 (1) (1997) 140–158.
[25] T.A. Davis, P.C. Yew, A nondeterministic parallel algorithm for general unsymmetric sparse LU factorization, SIAM

J. Matrix Anal. Appl. 11 (1990) 383–402.
[26] J.W. Demmel, J.R. Gilbert, X.S. Li, SuperLU users’ guide, Technical Report, Computer Science Division, U.C.

Berkeley, Berkeley, California, February 1995. (available from netlib).
[27] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, W.H. Liu, A supernodal approach to sparse partial pivoting,

SIAM J. Matrix Anal. Appl. 20 (1999) 720–755.

528 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

[28] F. Dobrian, G. Kumfert, A. Pothen, Object-oriented design for sparse direct solvers, Technical Report 99-2, Institute
for Computer Applications in Science and Engineering (ICASE), MS 132C, NASA Langley Research Center,
Hampton, VA 23681-0001, USA, 1999.

[29] J.J. Dongarra, Performance of various computers using standard linear algebra software, Technical
Report CS-89-85, University of Tennessee, Knoxville, Tennessee, 1999. Updated version at Web address
http:==www.netlib.org=benchmark=performance.ps.

[30] J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart, LINPACK User’s Guide, SIAM Press, Philadelphia, PA, 1979.
[31] J.J. Dongarra, J.J. Du Croz, S. Hammarling, R.J. Hanson, An extented set of Fortran Basic Linear Algebra

Subprograms, ACM Trans. Math. Software 14 (1988) 1–17.
[32] J.J. Dongarra, V. Eijkhout, Numerical linear algebra algorithms and software, this issue, J. Comput. Appl. Math. 123

(2000) 489–514.
[33] J.J. Dongarra, J. Du Croz, I.S. Du�, S. Hammarling, A set of Level 3 basic linear algebra subprograms, ACM Trans.

Math. Software 16 (1990) 1–17.
[34] J.J. Dongarra, I.S. Du�, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for High-Performance

Computers, SIAM Press, Philadelphia, PA, 1998.
[35] I.S. Du�, Full matrix techniques in sparse Gaussian elimination, in: G.A. Watson (Ed.), Numerical Analysis

Proceedings, Dundee 1981, Lecture Notes in Mathematics, Vol. 912, Springer, Berlin, 1981, pp. 71–84.
[36] I.S. Du�, Design features of a frontal code for solving sparse unsymmetric linear systems out-of-core, SIAM

J. Sci. Statist. Comput. 5 (1984) 270–280.
[37] I.S. Du�, Parallel implementation of multifrontal schemes, Parallel Comput. 3 (1986) 193–204.
[38] I.S. Du�, Multiprocessing a sparse matrix code on the Alliant FX=8, J. Comput. Appl. Math. 27 (1989) 229–239.
[39] I.S. Du�, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, Oxford, England,

1986.
[40] I.S. Du�, R.G. Grimes, J.G. Lewis, The Rutherford–Boeing sparse matrix collection, Technical Report

RAL-TR-97-031, Rutherford Appleton Laboratory, 1997. Also Technical Report ISSTECH-97-017 from Boeing
Information & Support Services, Seattle and Report TR=PA=97=36 from CERFACS, Toulouse.

[41] I.S. Du�, J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices,
SIAM J. Matrix Anal. Appl. 20 (4) (1999) 889–901.

[42] I.S. Du�, J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, Technical Report
RAL-TR-1999-030, Rutherford Appleton Laboratory, 1999. Also appeared as Report TR=PA=99=13, CERFACS,
Toulouse, France.

[43] I.S. Du�, J.K. Reid, The multifrontal solution of inde�nite sparse symmetric linear systems, ACM Trans. Math.
Software 9 (1983) 302–325.

[44] I.S. Du�, H.A. van der Vorst, Developments and trends in the parallel solution of linear systems, Parallel Comput.
25 (1999) 1931–1970.

[45] B. Dumitrescu, M. Doreille, J.-L. Roch, D. Trystram, Two-dimensional block partitionings for the parallel sparse
Cholesky factorization, Numer. Algorithms 16 (1) (1997) 17–38.

[46] C. Fu, X. Jiao, T. Yang, E�cient sparse LU factorization with partial pivoting on distributed memory architectures,
Technical report, University of California at Santa Barbara, 1997; IEEE Trans. Parallel Distrib. Systems, submitted
for publication.

[47] K.A. Gallivan, B.A. Marsolf, H.A.G. Wijsho�, Solving large nonsymmetric sparse linear systems using MCSPARSE,
Parallel Comput. 22 (1996) 1291–1333.

[48] A. George, Nested dissection of a regular �nite element mesh, SIAM J. Numer. Anal. 10 (1973) 345–363.
[49] A. George, J.W.H. Liu, The design of a user interface for a sparse matrix package, ACM Trans. Math. Software 5

(2) (1979) 139–162.
[50] A. George, J.W.H. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood

Cli�s, NJ, 1981.
[51] A. George, J.W.H. Liu, E.G. Ng, User’s guide for SPARSPAK: Waterloo sparse linear equations package, Technical

Report CS-78-30 (Revised), University of Waterloo, Canada, 1980.
[52] A. George, J.W. Poole, R. Voigt, Incomplete nested dissection for solving n × n grid problems, SIAM J. Numer.

Anal. 15 (1978) 663–673.

I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530 529

[53] J.P. Geschiere, H.A.G. Wijsho�, Exploiting large grain parallelism in a sparse direct linear system solver, Parallel
Comput. 21 (8) (1995) 1339–1364.

[54] J.R. Gilbert, J. W.H. Liu, Elimination structures for unsymmetric sparse LU factors, SIAM J. Matrix Anal. Appl.
14 (1993) 334–354.

[55] A. Gupta, M. Joshi, V. Kumar, WSSMP: Watson Symmetric Sparse Matrix Package. Users Manual: Version 2:0�,
Technical Report RC 20923 (92669); IBM T. J. Watson Research Centre, P.O. Box 218, Yorktown Heights, NY
10598, July 1997.

[56] A. Gupta, G. Karypis, V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, Technical Report
TR-94-63, Department of Computer Science, University of Minnesota, 1994.

[57] A. Gupta, G. Karypis, V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, IEEE Trans.
Parallel Distrib. Systems 8 (1997) 502–520.

[58] F.G. Gustavson, Recursion leads to automatic variable blocking for dense linear algebra algorithms, IBM J. Res.
Develop. 41 (1997) 737–755.

[59] F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, P. Ling, Recursive blocked data formats and BLASs for
dense linear algebra algorithms, in: B. K�agstrom, J. Dongarra, E. Elmroth, J. Wasniewski (Eds.), Applied Parallel
Computing, Fourth International Workshop, PARA’98, Springer, Berlin, 1998, pp. 195–206.

[60] F.G. Gustavson, W.M. Liniger, R.A. Willoughby, Symbolic generation of an optimal Crout algorithm for sparse
systems of linear equations, J. ACM 17 (1) (1970) 87–109.

[61] M.T. Heath, P. Raghavan, Performance of a fully parallel sparse solver, Proceedings of SHPCC ’94, Scalable
High-Performance Computing Conference, May 23–25, 1994, Knoxville, Tennessee, Los Alamitos, California, IEEE
Computer Society Press, Silver Spring, MD, 1994, pp. 334–341.

[62] B. Hendrickson, R. Leland, The CHACO User’s Guide, Version 2.0, Technical Report SAND94-2692, Sandia
National Laboratories, Albuquerque, October 1994.

[63] B. Hendrickson, E. Rothberg, Improving the runtime and quality of nested dissection ordering, SIAM J. Sci. Comput.
20 (1998) 468–489.

[64] HSL, Harwell Subroutine Library, A Catalogue of Subroutines (Release 12). AEA Technology, Harwell Laboratory,
Oxfordshire, England, 1996. For information concerning HSL contact: Dr Nick Brealey, HSL Manager, AEA
Technology Products & Systems, Culham Science Centre, Oxon OX14 3ED, England (tel: +44-1235-463404, fax:
+44-1235-463480, email: hsl@aeat.co.uk).

[65] G. Karypis, V. Kumar, Parallel multilevel graph partitioning, Technical Report TR-95-036, Department of Computer
Science, University of Minnesota, May 1995.

[66] G. Karypis, V. Kumar, METIS: Unstructured graph partitioning and sparse matrix ordering system, Technical Report
TR 97-061, Department of Computer Science, University of Minnesota, Minnesota, 1997.

[67] J. Koster, On the parallel solution and the reordering of unsymmetric sparse linear systems. INPT Ph.D. Thesis
TH=PA=97=51, CERFACS, Toulouse, France, 1997.

[68] C.L. Lawson, R.J. Hanson, D.R. Kincaid, F.T. Krogh, Basic linear algebra subprograms for Fortran usage, ACM
Trans. Math. Software 5 (1979) 308–323.

[69] X.S. Li, J.W. Demmel, Making sparse Gaussian elimination scalable by static pivoting. Proceedings of
Supercomputing, Orlando, Florida, November 1998.

[70] J.W.H. Liu, On the storage requirement in the out-of-core multifrontal method for sparse factorization, ACM Trans.
Math. Software 12 (1987) 249–264.

[71] J.W.H. Liu, Reordering sparse matrices for parallel elimination, Parallel Comput. 11 (1989) 73–91.
[72] H.M. Markowitz, The elimination form of the inverse and its application to linear programming, Management Sci.

3 (1957) 255–269.
[73] P. Matstoms, Parallel sparse QR factorization on shared memory architectures, Parallel Comput. 21 (1995) 473–486.
[74] E.G. Ng, B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor computers, SIAM J. Sci. Comput.

14 (1993) 1034–1056.
[75] B.W. Peyton, A. Pothen, X. Yuan, Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular

solution, Technical Report ORNL=TM-12270, Engineering Physics and Mathematics Division, Oak Ridge National
Laboratory, Tennessee, December 1992.

[76] A. Pothen, H.D. Simon, K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal.
Appl. 11 (3) (1990) 430–452.

530 I.S. Du� / Journal of Computational and Applied Mathematics 123 (2000) 515–530

[77] P. Raghavan, E�cient parallel sparse triangular solution using selective inversion, Technical Report CS-95-314,
Department of Computer Science, University of Tennessee, Knoxville, Tennessee, 1995.

[78] P. Raghavan, Parallel ordering using edge contraction, Parallel Comput. 23 (8) (1997) 1045–1067.
[79] E. Rothberg, Exploring the tradeo� between imbalance and separator size in nested dissection ordering, Technical

Report Unnumbered, Silicon Graphics Inc, 1996.
[80] E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization on the iPSC=860 and

Paragon multicomputers, SIAM J. Sci. Comput. 17 (3) (1996) 699–713.
[81] E. Rothberg, A. Gupta. An evaluation of left-looking, right-looking and multifrontal approaches to sparse Cholesky

factorization on hierarchical-memory machines, Technical Report STAN-CS-91-1377, Department of Computer
Science, Stanford University, 1991.

[82] E. Rothberg, R. Schreiber, Improved load distribution in parallel sparse Cholesky factorization, Technical Report
94-13, Research Institute for Advanced Computer Science, 1994.

[83] Y. Saad, H.A. van der Vorst, Iterative solution of linear systems in the 20th century, this issue, J. Comput. Appl.
Math. 123 (2000) 1–33.

[84] W.F. Tinney, J.W. Walker, Direct solutions of sparse network equations by optimally ordered triangular factorization,
Proc. IEEE 55 (1967) 1801–1809.

[85] A.F. van der Stappen, R.H. Bisseling, J.G.G. van de Vorst, Parallel sparse LIU decomposition on a mesh network
of transputers, SIAM J. Matrix Anal. Appl. 14 (1993) 853–879.

[86] R.C. Whaley, LAPACK Working Note 73: Basic Linear Algebra Communication Subprograms: analysis and
implementation across multiple parallel architectures, Technical Report CS-94-234, Computer Science Department,
University of Tennessee, Knoxville, Tennessee, May 1994.

[87] J.H. Wilkinson, C. Reinsch, Handbook for Automatic Computation, Volume II Linear Algebra, Springer, Berlin,
1971.

[88] Z. Zlatev, J. Wa�sniewski, P.C. Hansen, Tz. Ostromsky, PARASPAR: a package for the solution of large linear
algebraic equations on parallel computers with shared memory, Technical Report 95-10, Technical University of
Denmark, Lyngby, 1995.

[89] Z. Zlatev, J. Wa�sniewski, K. Schaumburg. Introduction to PARASPAR, Solution of large and sparse systems of
linear algebraic equations, specialised for parallel computers with shared memory, Technical Report 93-02, Technical
University of Denmark, Lyngby, 1993.

Journal of Computational and Applied Mathematics 123 (2000) 531
www.elsevier.nl/locate/cam

Author Index Volume 123 (2000)

Brezinski, C., M. Redivo-Zaglia and H. Sadok, The
matrix and polynomial approaches to Lanczos-
type algorithms 241}260

Bridson, R. and W.-P. Tang, Re"ning an approximate
inverse 293}306

Calvetti, D. and L. Reichel, Iterative methods for
large continuation problems 217}240

Calvetti, D., S. Morigi, L. Reichel and F. Sgallari,
Tikhonov regularization and the L-curve for large
discrete ill-posed problems 423}446

Chan, T.F. and W.L. Wan, Robust multigrid methods
for nonsmooth coe$cient elliptic linear systems 323}352

Dongarra, J.J. and V. Eijkhout, Numerical linear
algebra algorithms and software 489}514

Du4, I.S., The impact of high-performance comput-
ing in the solution of linear systems: trends and
problems 515}530

Eiermann, M., O.G. Ernst and O. Schneider, Analysis
of acceleration strategies for restarted minimal
residual methods 261}292

Eijkhout, V., see Dongarra, J.J. 489}514
Ernst, O.G., see Eiermann, M. 261}292

Freund, R.W., Krylov-subspace methods for reduced-
order modeling in circuit simulation 395}421

Frommer, A. and D.B. Szyld, On asynchronous iter-
ations 201}216

Golub, G.H. and H.A. van der Vorst, Eigenvalue
computation in the 20th century 35} 65

Hadjidimos, A., Successive overrelaxation (SOR) and
related methods 177}199

Ipsen, I.C.F., An overview of relative sinH theorems
for invariant subspaces of complex matrices 131}153

Koning, J., G. Rodrigue and D. White, Scalable pre-
conditioned conjugate gradient inversion of vec-
tor "nite element mass matrices 307}321

Mehrmann, V. and H. Xu, Numerical methods in
control 371}394

Morgan, R.B., Preconditioning eigenvalues and some
comparison of solvers 101}115

Morigi, S., see Calvetti, D. 423}446

Neal, L., see Poole, G. 353}369

O:Leary, D.P., Symbiosis between linear algebra and
optimization 447}465

Parlett, B.N., For tridiagonals¹ replace ¹ with ¸D¸5 117}130
Pauca, V.P., see Plemmons, R.J. 467}487
Plemmons, R.J. and V.P. Pauca, Some computa-

tional problems arising in adaptive optics imaging
systems 467}487

Poole, G. and L. Neal, The Rook's pivoting strategy 353}369

Redivo-Zaglia, M., see Brezinski, C. 241}260
Reichel, L., see Calvetti, D. 217}240
Reichel, L., see Calvetti, D. 423}446
Rodrigue, G., see Koning, J. 307}321

Saad, Y. and H.A. van der Vorst, Iterative solution of
linear systems in the 20th century 1} 33

Sadok, H., see Brezinski, C. 241}260
Sameh, A. and Z. Tong, The trace minimization

method for the symmetric generalized eigenvalue
problem 155}175

Schneider, O., see Eiermann, M. 261}292
Sgallari, F., see Calvetti, D. 423}446
Szyld, D.B., see Frommer, A. 201}216

Tang, W.-P., see Bridson, R. 293}306
Tong, Z., see Sameh, A. 155}175

van der Vorst, H.A., see Saad, Y. 1} 33
van der Vorst, H.A., see Golub, G.H. 35} 65
van Loan, C.F., The ubiquitous Kronecker product 85}100

Wan, W.L., see Chan, T.F. 323}352
Watkins, D.S., QR-like algorithms for eigenvalue

problems 67} 83
White, D., see Koning, J. 307}321

Xu, H., see Mehrmann, V. 371}394

0377-0427/00/$ - see front matter (2000 Elsevier Science B.V. All rights reserved.
PII: S 0 3 7 7 - 0 4 2 7 (0 0) 0 0 5 6 8 - 9

