
Numerical Methods
Real-Time and Embedded Systems Programming

. .

Featuring in-depth

coverage of:

l Fixed and
floating point
mathematical

techniques

without a
coprocessor

l Numerical I/O

for embedded
systems

l Data conversion
methods

Don Morgan

Numerical Methods
Real-Time and Embedded Systems Programming

Numerical Methods
Real-Time and Embedded Systems Programming

Featuring in-depth
coverage of:

l Fixed and

floating point
mathematical
techniques
without a
coprocessor

l Numerical I/O

for embedded
systems

l Data conversion

methods

Don Morgan

M&T Books
A Division of M&T Publishing, Inc.
411 BOREL AVE.
SAN MATEO, CA 94402

© 1992 by M&T Publishing, Inc.

Printed in the United States of America

All rights reserved. No part of this book or disk may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system, without prior written permission from the Publisher. Contact the Publisher for
information on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the
programs contained in it and on the diskette. These efforts include the development, research, and
testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The Author and Publisher shall not be liable in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data

Morgan, Don 1948-
Numerical Methods/Real-Time and Embedded Systems Programming
by Don Morgan
p. cm.
Includes Index
ISBN l-5585l-232-2 Book and Disk set
1. Electronic digital computers—Programming. 2. Real-time data processing.
3. Embedded computer systems—Programming. I. Title
QA76.6.M669 1992
513.2 ' 0285—dc20 91-47911

CIP

Project Editor: Sherri Morningstar Cover Design: Lauren Smith Design

95 94 93 92 4 3 2 1

Trademarks: The 80386, 80486 are registered trademarks and the 8051, 8048, 8086, 8088,
8OC196 and 80286 are products of Intel Corporation, Santa Clara, CA. The Z80 is a registered
trademark of Zilog Inc., Campbell, CA. The TMS34010 is a product of Texas Instruments, Dallas,
TX. Microsoft C is a product of Microsoft Corp. Redmond, WA.

Acknowledgment

Thank you Anita, Donald and Rachel

for your love and forbearance.

Contents

WHY THIS BOOK IS FOR YOU 1

INTRODUCTION . 3

CHAPTER 1: NUMBERS . 7

Systems of Representation . 8

Bases . 9

The Radix Point, Fixed and Floating .1 2

Types of Arithmetic . 1 5

Fixed Point . 15

Floating Point . 17

Positive and Negative Numbers . 18

Fundamental Arithmetic Principles . 2 1

Microprocessors . 21

Buswidth . 22

Data type . 24

Flags . 2 4

Rounding and the Sticky Bit . 25

Branching . 26

NUMERICAL METHODS

Instructions ... 26

Addition .. 26

Subtraction .. 27

Multiplication .. 27

Division .. 28

Negation and Signs ... 28

Shifts, Rotates and Normalization ... 29

Decimal and ASCII Instructions ... 30

CHAPTER 2: INTEGERS .. 33
Addition and Subtraction ... 33

Unsigned Addition and Subtraction .. 33

Multiprecision Arithmetic .. 35

add64: Algorithm ... 36

add64: Listing ... 36

sub64: Algorithm .. 37

sub64: Listing ... 37

Signed Addition and Subtraction .. 38

Decimal Addition and Subtraction .. 40

Multiplication and Division ... 42

Signed vs. Unsigned ... 43

signed-operation: Algorithm ... 44

signed-operation: Listing ... 45

Binary Multiplication .. 46

cmul: Algorithm .. 49

cmul: Listing .. 4 9

CONTENTS

A Faster Shift and Add ... 50
cmul2: Algorithm .. 51

cmul2: Listing .. 52

Skipping Ones and Zeros ... 53

booth: Algorithm .. 55

booth: Listing ... 55

bit-pair: Algorithm ... 57

bit-pair: Listing ... 58
Hardware Multiplication: Single and Multiprecision 61

mu132: Algorithm ... 62

mu132: Listing .. 63

Binary Division ... 64

Error Checking .. 64

Software Division .. 65

cdiv: Algorithm .. 67

cdiv: Listing. ... 68

Hardware Division .. 69

div32: Algorithm .. 74

div32: Listing .. 75

div64: Algorithm ... 79

div64: Listing ... 80

CHAPTER 3; REAL NUMBERS .. 85

Fixed Point ... 86

Significant Bits .. 87

The Radix Point ... 89

Rounding .. 89

Basic Fixed-Point Operations .. 92

NUMERICAL METHODS

A Routine for Drawing Circles... 95

circle: Algorithm .. 98

circle: Listing .. 98

Bresenham’s Line-Drawing Algorithm .. 100

line: Algorithm ... 101

line: Listing ... 102

Division by Inversion ... 105

divnewt: Algorithm.. 108

divnewt: Listing.. 109

Division by Multiplication.. 114

divmul: Algorithm.. 116

divmul: Listing... 117

CHAPTER 4: FLOATING-POINT ARITHMETIC........................ 123
What To Expect... 124

A Small Floating-Point Package.. 127

The Elements of a Floating-Point Number.. 128

Extended Precision.. 131

The External Routines... 132

fp_add: Algorithm ... 132

fp_add: Listing... 133

The Core Routines.. 134

Fitting These Routines to an Application.. 136

Addition and Subtraction: FLADD.. 136

FLADD: The Prologue. Algorithm.. 138

FLADD: The Prologue. Listing.. 138

The FLADD Routine Which Operand is Largest? Algorithm.............. 140

The FLADD Routine: Which Operand is Largest? Listing.................... 141

CONTENTS

The FLADD Routine: Aligning the Radix Points. Algorithm................. 142

The FLADD Routine: Aligning the Radix Point. Listing.................... 143

FLADD: The Epilogue. Algorithm... 144

FLADD: The Epilogue. Listing... 145

Multiplication and Division: FLMUL.. 147

flmul: Algorithm... 147

flmul: Listing .. 148

mu164a: Algorithm... 151

mu164a: Listing ... 152

FLDIV... 154

fldiv: Algorithm.. 154

fldiv: Listing.. 155

Rounding ... 159

Round: Algorithm... 159

Round: Listing ... 160

CHAPTER 5: INPUT, OUTPUT, AND CONVERSION.......163
Decimal Arithmetic .. 164

Radix Conversions .. 165

Integer Conversion by Division... 165

bn_dnt: Algorithm.. 166

bn_dnt: Listing ... 167

Integer Conversion by Multiplication... 169

dnt_bn: Algorithm.. 170

dnt_bn: Listing ... 170

Fraction Conversion by Multiplication .. 172

bfc_dc: Algorithm... 173

bfc_dc: Listing.. 173

NUMERICAL METHODS

Fraction Conversion by Division .. 175

Dfc_bn: Algorithm... 176

Dfc_bn: Listing.. 177

Table-Driven Conversions.. 179

Hex to ASCII.. 179

hexasc: Algorithm... 180

hexasc: Listing .. 180

Decimal to Binary.. 182

tb_dcbn: Algorithm .. 182

tb_dcbn: Listing .. 184

Binary to Decimal... 187

tb_bndc: Algorithm.. 188

tb_bndc: Listing.. 189

Floating-Point Conversions.. 192

ASCII to Single-Precision Float... 192

atf: Algorithm .. 193

atf: Listing... 195

Single-Precision Float to ASCII... 200

fta: Algorithm.. 200

Fta: Listing ... 202

Fixed Point to Single-Precision Floating Point... 206

ftf: Algorithm ... 207

ftf: Listing .. 208

Single-Precision Floating Point to Fixed Point... 211

ftfx Algorithm .. 212

ftfx: Listing ... 212

CONTENTS

CHAPTER 6: THE ELEMENTARY FUNCTIONS.................... 217

Fixed Point Algorithms.. 217

Lookup Tables and Linear Interpolation.. 217

lg 10: Algorithm... 219

lg 10: Listing.. 220

Dcsin: Algorithm.. 224

Dcsin: Listing .. 227

Computing With Tables... 233

Pwrb: Algorithm.. 234

Pwrb: Listing... 235

CORDIC Algorithms... 237

Circular: Algorithm.. 242

Circular: Listing.. 242

Polynomial Evaluations... 247

taylorsin: Algorithm... 249

taylorsin: Listing... 250

Polyeval: Algorithm... 251

Polyeval: Listing... 251

Calculating Fixed-Point Square Roots.. 253

fx_sqr: Algorithm... 254

fx_sqr: Listing .. 254

school_sqr: Algorithm .. 256

school_sqr: Listing.. 257

Floating-Point Approximations... 259

Floating-Point Utilities... 259

frxp: Algorithm.. 259

frxp: Listing .. 260

ldxp: Algorithm... 261

ldxp: Listing.. 261

NUMERICAL METHODS

flr: Algorithm ...263

flr: Listing ...263

flceil: Algorithm ..265

flceil: Listing..266

intmd: Algorithm..268

intmd: Listing...268

Square Roots..269

Flsqr: Algorithm...270

Flsqr: Listing ..271

Sines and Cosines...273

flsin: Algorithm..274

Flsin: Listing..275

APPENDIXES:

A: A PSEUDO-RANDOM NUMBER GENERATOR 2 8 1

B: TABLES AND EQUATES .. 2 9 5

C: FXMATH.ASM ... 297

D: FPMATH.ASM .. 337

E: IO.ASM . 373

CONTENTS

F: TRANS.ASM AND TABLE.ASM . 407

G: MATH.C..475

GLOSSARY .485

INDEX .. 493

Additional Disk

Just in case you need an additional disk, simply call the toll-free number listed
below. The disk contains all the routines in the book along with a simple C shell that
can be used to exercise them. This allows you to walk through the routines to see how

they work and test any changes you might make to them. Once you understand how

the routine works, you can port it to another processor. Only $10.00 postage-paid.
To order with your credit card, call Toll-Free l-800-533-4372 (in CA 1-800-

356-2002). Mention code 7137. Or mail your payment to M&T Books, 411 Bore1
Ave., Suite 100, San Mateo, CA 94402-3522. California residents please add

applicable sales tax.

Why This Book Is For You

The ability to write efficient, high-speed arithmetic routines ultimately depends

upon your knowledge of the elements of arithmetic as they exist on a computer. That

conclusion and this book are the result of a long and frustrating search for
information on writing arithmetic routines for real-time embedded systems.

With instruction cycle times coming down and clock rates going up, it would

seem that speed is not a problem in writing fast routines. In addition, math

coprocessors are becoming more popular and less expensive than ever before and are

readily available. These factors make arithmetic easier and faster to use and

implement. However, for many of you the systems that you are working on do not
include the latest chips or the faster processors. Some of the most widely used

microcontrollers used today are not Digital Signal Processors (DSP), but simple
eight-bit controllers such as the Intel 8051 or 8048 microprocessors.

Whether you are using one on the newer, faster machines or using a simple
eight-bit one, your familiarity with its foundation will influence the architecture of

the application and every program you write. Fast, efficient code requires an
understanding of the underlying nature of the machine you are writing for. Your
knowledge and understanding will help you in areas other than simply implementing

the operations of arithmetic and mathematics. For example, you may want the

ability to use decimal arithmetic directly to control peripherals such as displays and

thumbwheel switches. You may want to use fractional binary arithmetic for more
efficient handling of D/A converters or you may wish to create buffers and arrays that

wrap by themselves because they use the word size of your machine as a modulus.
The intention in writing this book is to present a broad approach to microproces-

sor arithmetic ranging from data on the positional number system to algorithms for

1

NUMERICAL METHODS

developing many elementary functions with examples in 8086 assembler and

pseudocode. The chapters cover positional number theory, the basic arithmetic
operations to numerical I/O, and advanced topics are examined in fixed and floating
point arithmetic. In each subject area, you will find many approaches to the same

problem; some are more appropriate for nonarithmetic, general purpose machines

such as the 8051 and 8048, and others for the more powerful processors like the

Tandy TMS34010 and the Intel 80386. Along the way, a package of fixed-point and
floating-point routines are developed and explained. Besides these basic numerical

algorithms, there are routines for converting into and out of any of the formats used,

as well as base conversions and table driven translations. By the end of the book,

readers will have code they can control and modify for their applications.
This book concentrates on the methods involved in the computational process,

not necessarily optimization or even speed, these come through an understanding of

numerical methods and the target processor and application. The goal is to move the

reader closer to an understanding of the microcomputer by presenting enough
explanation, pseudocode, and examples to make the concepts understandable. It is
an aid that will allow engineers, with their familiarity and understanding of the target,

to write the fastest, most efficient code they can for the application.

2

Introduction

If you work with microprocessors or microcontrollers, you work with numbers.
Whether it is a simple embedded machine-tool controller that does little more than

drive displays, or interpret thumbwheel settings, or is a DSP functioning in a real-

time system, you must deal with some form of numerics. Even an application that
lacks special requirements for code size or speed might need to perform an
occasional fractional multiply or divide for a D/A converter or another peripheral

accepting binary parameters. And though the real bit twiddling may hide under the
hood of a higher-level language, the individual responsible for that code must know
how that operation differs from other forms of arithmetic to perform it correctly.

Embedded systems work involves all kinds of microprocessors and

microcontrollers, and much of the programming is done in assembler because of the

speed benefits or the resulting smaller code size. Unfortunately, few references
are written to specifically address assembly language programming. One of the
major reasons for this might be that assembly-language routines are not easily
ported from one processor to another. As a result, most of the material devoted

to assembler programming is written by the companies that make the proces-
sors. The code and algorithms in these cases are then tailored to the particular

advantages (or to overcoming the particular disadvantages) of the product. The
documentation that does exist contains very little about writing floating-point
routines or elementary functions.

This book has two purposes. The first and primary aim is to present a spectrum

of topics involving numerics and provide the information necessary to understand
the fundamentals as well as write the routines themselves. Along with this informa-

tion are examples of their implementation in 8086 assembler and pseudocode
that show each algorithm in component steps, so you can port the operation to

another target. A secondary, but by no means minor, goal is to introduce you

3

NUMERICAL METHODS

to the benefits of binary arithmetic on a binary machine. The decimal numbering
system is so pervasive that it is often difficult to think of numbers in any other format,

but doing arithmetic in decimal on a binary machine can mean an enormous number
of wasted machine cycles, undue complexity, and bloated programs. As you proceed
through this book, you should become less dependent on blind libraries and more

able to write fast, efficient routines in the native base of your machine.
Each chapter of this book provides the foundation for the next chapter. At the

code level, each new routine builds on the preceeding algorithms and routines.

Algorithms are presented with an accompanying example showing one way to
implement them. There are, quite often, many ways that you could solve the

algorithm. Feel free to experiment and modify to fit your environment.
Chapter 1 covers positional number theory, bases, and signed arithmetic. The

information here provides the necessary foundation to understand both decimal and

binary arithmetic. That understanding can often mean faster more compact routines
using the elements of binary arithmetic- in other words, shifts, additions, and

subtractions rather than complex scaling and extensive routines.

Chapter 2 focuses on integer arithmetic, presenting algorithms for performing
addition, subtraction, multiplication, and division. These algorithms apply to ma-
chines that have hardware instructions and those capable of only shifts, additions,
and subtractions.

Real numbers (those with fractional extension) are often expressed in floating
point, but fixed point can also be used. Chapter 3 explores some of the qualities of
real numbers and explains how the radix point affects the four basic arithmetic

functions. Because the subject of fractions is covered, several rounding techniques
are also examined. Some interesting techniques for performing division, one using

multiplication and the other inversion, are also presented. These routines are
interesting because they involve division with very long operands as well as from a

purely conceptual viewpoint. At the end of the chapter, there is an example of an
algorithm that will draw a circle in a two dimensional space, such as a graphics

monitor, using only shifts, additions and subtractions.

Chapter 4 covers the basics of floating-point arithmetic and shows how scaling
is done. The four basic arithmetic functions are developed into floating-point

4

I N T R O D U C T I O N

routines using the fixed point methods given in earlier chapters.

Chapter 5 discusses input and output routines for numerics. These routines deal
with radix conversion, such as decimal to binary, and format conversions, such as

ASCII to floating point. The conversion methods presented use both computational
and table-driven techniques.

Finally, the elementary functions are discussed in Chapter 6. These include
table-driven techniques for fast lookup and routines that rely on the fundamental
binary nature of the machine to compute fast logarithms and powers. The CORDIC
functions which deliver very high-quality transcendentals with only a few shifts and
additions, are covered, as are the Taylor expansions and Horner’s Rule. The

chapter ends with an implementation of a floating-point sine/cosine algorithm

based upon a minimax approximation and a floating-point square root.
Following the chapters, the appendices comprise additional information and

reference materials. Appendix A presents and explains the pseudo-random number

generator developed to test many of the routines in the book and includes

SPECTRAL.C, a C program useful in testing the functions described in this book.
This program was originally created for the pseudo-random number generator and
incorporates a visual check and Chi-square statistical test on the function. Appendix

B offers a small set of constants commonly used.
The source code for all the arithmetic functions, along with many ancillary

routines and examples, is in appendices C through F.
Integer and fixed-point routines are in Appendix C. Here are the classical

routines for multiplication and division, handling signs, along with some of the more

complex fixed-point operations, such as the Newton Raphson iteration and linear

interpolation for division.

Appendix D consists of the basic floating-point routines for addition,
subtraction, multiplication, and division, Floor, ceiling, and absolute value
functions are included here, as well as many other functions important to the
more advanced math in Chapter 6.

The conversion routines are in Appendix E. These cover the format and
numerical conversions in Chapter 5

In Appendix F, there are two source files. TRANS.ASM contains the elementary

5

NUMERICAL METHODS

functions described in Chapter 6, and TABLE.ASM that holds the tables, equates
and constants used in TRANS.ASM and many of the other modules.

MATH.C in Appendix F is a C program useful in testing the functions described

in this book. It is a simple shell with the defines and prototypes necessary to perform
tests on the routines in the various modules.

Because processors and microcontrollers differ in architecture and instruction

set, algorithmic solutions to numeric problems are provided throughout the book for
machines with no hardware primitives for multiplication and division as well as for

those that have such primitives.
Assembly language by nature isn’t very portable, but the ideas involved in

numeric processing are. For that reason, each algorithm includes an explanation that

enables you to understand the ideas independently of the code. This explanation is

complemented by step-by-step pseudocode and at least one example in 8086
assembler. All the routines in this book are also available on a disk along with a

simple C shell that can be used to exercise them. This allows you to walk through the
routines to see how they work and test any changes you might make to them. Once

you understand how the routine works, you can port it to another processor. The

routines as presented in the book are formatted differently from the same routines on

the disk. This is done to accommodate the page size. Any last minute changes to the
source code are documented in the Readme file on the disk.

There is no single solution for all applications; there may not even be a single

solution for a particular application. The final decision is always left to the individual
programmer, whose skills and knowledge of the application are what make the

software work. I hope this book is of some help.

6

CHAPTER 1

Numbers

Numbers are pervasive; we use them in almost everything we do, from counting

the feet in a line of poetry to determining the component frequencies in the periods
of earthquakes. Religions and philosophies even use them to predict the future. The

wonderful abstraction of numbers makes them useful in any situation. Actually, what
we find so useful aren’t the numbers themselves (numbers being merely a represen-

tation), but the concept of numeration: counting, ordering, and grouping.

Our numbering system has humble beginnings, arising from the need to quantify
objects-five horses, ten people, two goats, and so on-the sort of calculations that

can be done with strokes of a sharp stone or root on another stone. These are natural
numbers-positive, whole numbers, each defined as having one and only one

immediate predecessor. These numbers make up the number ray, which stretches

from zero to infinity (see Figure 1- 1).

Figure 1-1. The number line.

7

NUMERICAL METHODS

The calculations performed with natural numbers consist primarily of addition

and subtraction, though natural numbers can also be used for multiplication (iterative
addition) and, to some degree, for division. Natural numbers don’t always suffice,
however; how can you divide three by two and get a natural number as the result?

What happens when you subtract 5 from 3? Without decimal fractions, the results of
many divisions have to remain symbolic. The expression "5 from 3" meant nothing

until the Hindus created a symbol to show that money was owed. The words positive

and negative are derived from the Hindu words for credit and debit’.
The number ray-all natural numbers-became part of a much greater schema

known as the number line, which comprises all numbers (positive, negative, and

fractional) and stretches from a negative infinity through zero to a positive infinity
with infinite resolution*. Numbers on this line can be positive or negative so that 3-

5 can exist as a representable value, and the line can be divided into smaller and

smaller parts, no part so small that it cannot be subdivided. This number line extends
the idea of numbers considerably, creating a continuous weave of ever-smaller

pieces (you would need something like this to describe a universe) that finally give

meaning to calculations such as 3/2 in the form of real numbers (those with decimal
fractional extensions).

This is undeniably a valuable and useful concept, but it doesn’t translate so
cleanly into the mechanics of a machine made of finite pieces.

Systems of Representation
The Romans used an additional system of representation, in which the symbols

are added or subtracted from one another based on their position. Nine becomes IX
in Roman numerals (a single count is subtracted from the group of 10, equaling nine;
if the stroke were on the other side of the symbol for 10, the number would be 11).

This meant that when the representation reached a new power of 10 or just became
too large, larger numbers could be created by concatenating symbols. The problem

here is that each time the numbers got larger, new symbols had to be invented.
Another form, known as positional representation, dates back to the Babylonians,

who used a sort of floating point with a base of 60.3 With this system, each
successively larger member of a group has a different symbol. These symbols are

8

NUMBERS

then arranged serially to grow more significant as they progress to the left. The

position of the symbol within this representation determines its value. This makes for

a very compact system that can be used to approximate any value without the need

to invent new symbols. Positional numbering systems also allow another freedom:

Numbers can be regrouped into coefficients and powers, as with polynomials, for
some alternate approaches to multiplication and division, as you will see in the
following chapters.

If b is our base and a an integer within that base, any positive integer may be
represented as:

or as:

ai * b
i + ai-1 * b

i-1 + ... + a0 * b0

As you can see, the value of each position is an integer multiplied by the base

taken to the power of that integer relative to the origin or zero. In base 10, that
polynomial looks like this:

ai * 10
i + ai-1 * 10

i-1 + ... + a0 * 10
0

and the value 329 takes the form:

3 * 10 + 2 * 10 + * 10

Of course, since the number line goes negative, so must our polynomial:

ai * bi + ai-1 * b
i-1 + ... + a0 * b

0 + a-1 * b
-1 + a-2 * b

-2 + ... + a-i *
b-i

Bases
Children, and often adults, count by simply making a mark on a piece of paper

for each item in the set they’re quantifying. There are obvious limits to the numbers

9

NUMERICAL METHODS

that can be conveniently represented this way, but the solution is simple: When the

numbers get too big to store easily as strokes, place them in groups of equal size and
count only the groups and those that are left over. This makes counting easier because
we are no longer concerned with individual strokes but with groups of strokes and

then groups of groups of strokes. Clearly, we must make the size of each group
greater than one or we are still counting strokes. This is the concept of base. (See

Figure l-2.) If we choose to group in l0s, we are adopting 10 as our base. In base 10,
they are gathered in groups of 10; each position can have between zero and nine

things in it. In base 2, each position can have either a one or a zero. Base 8 is zero
through seven. Base 16 uses zero through nine and a through f. Throughout this

book, unless the base is stated in the text, a B appended to the number indicates base

2, an O indicates base 8, a D indicates base 10, and an H indicates base 16.
Regardless of the base in which you are working, each successive position to the

left is a positive increase in the power of the position.

In base 2, 999 looks like:

lllll00lllB

If we add a subscript to note the position, it becomes:

1 1 1 1 1 0 0 1 1 1
9 8 7 6 5 4 3 2 1 0

This has the value:

1*29 +1*28 +1*27 +1*26 +1*25 +1*24 +1*23 +1*22 +1*21 +1*20

which is the same as:

1*512 + 1*256 + 1*128 + 1*64 + 1*32 + 0*16 + 0*8 + 1*4 + 1*2 + 1*1

Multiplying it out, we get:

512 + 256 + 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 999

10

NUMBERS

1*83 + 7*82 + 4*81 + 7*80

o r

1*512 + 7*64 + 4*8 + 7*1

Figure 1-2. The base of a number system defines the number of unique digits
available in each position.

Octal, as the name implies, is based on the count of eight. The number 999 is 1747

in octal representation, which is the same as writing:

When we work with bases larger than 10, the convention is to use the letters of
the alphabet to represent values equal to or greater than 10. In base 16 (hexadecimal),
therefore, the set of numbers is 0 1 2 3 4 5 6 7 8 9 a b c d e f, where a = 10 and

f = 15. If you wanted to represent the decimal number 999 in hexadecimal, it would
be 3e7H, which in decimal becomes:

3*162 + 14*161 + 7*160

Multiplying it out gives us:

3*256 + 14*16 + 7*1

11

NUMERICAL METHODS

Obviously, a larger base requires fewer digits to represent the same value.

Any number greater than one can be used as a base. It could be base 2, base 10,
or the number of bits in the data type you are working with. Base 60, which is used
for timekeeping and trigonometry, is attractive because numbers such as l/3 can be

expressed exactly. Bases 16, 8, and 2 are used everywhere in computing machines,

along with base 10. And one contingent believes that base 12 best meets our

mathematical needs.

The Radix Point, Fixed and Floating
Since the physical world cannot be described in simple whole numbers, we need

a way to express fractions. If all we wish to do is represent the truth, a symbol will
do. A number such as 2/3 in all its simplicity is a symbol-a perfect symbol, because

it can represent something unrepresentable in decimal notation. That number

translated to decimal fractional representation is irrational; that is, it becomes an
endless series of digits that can only approximate the original. The only way to
express an irrational number in finite terms is to truncate it, with a corresponding loss
of accuracy and precision from the actual value.

Given enough storage any number, no matter how large, can be expressed as
ones and zeros. The bigger the number, the more bits we need. Fractions present a

similar but not identical barrier. When we’re building an integer we start with unity,

the smallest possible building block we have, and add progressively greater powers
(and multiples thereof) of whatever base we’re in until that number is represented.
We represent it to the least significant bit (LSB), its smallest part.

The same isn’t true of fractions. Here, we’re starting at the other end of the
spectrum; we must express a value by adding successively smaller parts. The trouble
is, we don’t always have access to the smallest part. Depending on the amount of
storage available, we may be nowhere near the smallest part and have, instead of a
complete representation of a number, only an approximation. Many common values

can never be represented exactly in binary arithmetic. The decimal 0.1 or one 10th,

for example, becomes an infinite series of ones and zeros in binary
(1100110011001100 ... B). The difficulties in expressing fractional parts completely

can lead to unacceptable errors in the result if you’re not careful.

12

NUMBERS

The radix point (the point of origin for the base, like the decimal point) exists on
the number line at zero and separates whole numbers from fractional numbers. As

we move through the positions to the left of the radix point, according to the rules of

positional notation, we pass through successively greater positive powers of that

base; as we move to the right, we pass through successively greater negative powers
of the base.

In the decimal system, the number 999.999 in positional notation is

9 29 19 0. 9 - 19 - 29 - 3

And we know that base 10

102 = 100

101 = 10

100 = 1

It is also true that

10-1 = .1

10-2 = .01

10-3 = .001

We can rewrite the number as a polynomial

9*102 + 9*101 + 9*100 + 9*10-1 + 9*10-2 + 9*10-3

Multiplying it out, we get

900 +90 + 9 + .9 + .09 + .009

which equals exactly 999.999.

Suppose we wish to express the same value in base 2. According to the previous
example, 999 is represented in binary as 1111100111B. To represent 999.999, we

need to know the negative powers of two as well. The first few are as follows:

13

NUMERICAL METHODS

2-1 = .5D

2-2 = .25D

2-3 = .125D

2-4 = .0625D
2-5 = .03125D

2-6 = .015625D

2-7 = .0078125D
2-8 = .00390625D

2-9 = .001953125D

2-10 = .0009765625D

2-11 = .00048828125D
2-12 = .000244140625D

1111100111.1111111111 =
999.9990234375

Twelve binary digits are more than enough to approximate the decimal fraction
.999. Ten digits produce

which is accurate to three decimal places.
Representing 999.999 in other bases results in similar problems. In base 5, the

decimal number 999.999 is noted

12444.4444141414 =

1*54 + 2*53 + 4*52 + 4*51 + 4*50. + 4*5-1 + 4*5-2 + 4*5-3 + 4*5-4 + 1*5-5 +

4*5-6 + 1*5-7 + 4*5-8 + 1*5-9 + 4*5-10 =

1*625 + 2*125 + 4*25 + 4*5 + 4+ 4*.2 + 4*.04 + 4*.008 + 4*.0016
 + 1*.00032 + 4*.000065 + 1*.0000125 + 4*.00000256

+ 1*.000000512 + 4*.0000001024

or

625+ +250 + 100 + 20 + 4 + .8 + .16 + .032 + .0064 + .00032 + .000256 +
.0000128 + .00001024 + .000000512 + .00004096 =

999.9990045696

14

NUMBERS

800 + 180 + 19. + .95 + .0475 + .0015 =

999.999

But in base 20, which is a multiple of 10 and two, the expression is rational. (Note

that digits in bases that exceed 10 are usually denoted by alphabetical characters; for

example, the digits of base 20 would be 0 l 2 3 4 5 6 7 8 9 A B C D E F G H I J .)

2 9 J . J J C
2x202 + 9x201 + 19x200. + 19x20-1 + 19x20-2 + 12x20-3 =

2x400 + 9x20 + 19x1. + 19x.05 + 19x.0025 + 12x.000125

o r

As you can see, it isn’t always easy to approximate a fraction. Fractions are a sum
of the value of each position in the data type. A rational fraction is one whose sum

precisely matches the value you are trying to approximate. Unfortunately, the exact

combination of parts necessary to represent a fraction exactly may not be available
within the data type you choose. In cases such as these, you must settle for the

accuracy obtainable within the precision of the data type you are using.

Types of Arithmetic
This book covers three basic types of arithmetic: fixed point (including integer-

only arithmetic and modular) and floating point.

Fixed Point

Fixed-point implies that the radix point is in a fixed place within the represen-

tation. When we’re working exclusively with integers, the radix point is always to

the right of the rightmost digit or bit. When the radix point is to the left of the leftmost
digit, we’re dealing with fractional arithmetic. The radix point can rest anywhere

within the number without changing the mechanics of the operation. In fact, using

fixed-point arithmetic in place of floating point, where possible, can speed up any

arithmetic operation. Everything we have covered thus far applies to fixed-point
arithmetic and its representation.

15

NUMERICAL METHODS

Though fixed-point arithmetic can result in the shortest, fastest programs, it

shouldn’t be used in all cases. The larger or smaller a number gets, the more storage

is required to represent it. There are alternatives; modular arithmetic, for example,
can, with an increase in complexity, preserve much of an operation’s speed.

Modular arithmetic is what people use every day to tell time or to determine the
day of the week at some future point. Time is calculated either modulo 12 or 24—
that is, if it is 9:00 and six hours pass on a 12-hour clock, it is now 3:00, not 15:00:

9 + 6 = 3

This is true if all multiples of 12 are removed. In proper modular notation, this
would be written:

9 + 6 3, mod 12.

In this equation, the sign means congruence. In this way, we can make large
numbers congruent to smaller numbers by removing multiples of another number (in
the case of time, 12 or 24). These multiples are often removed by subtraction or
division, with the smaller number actually being the remainder.

If all operands in an arithmetic operation are divided by the same value, the result
of the operation is unaffected. This means that, with some care, arithmetic operations

performed on the remainders can have the same result as those performed on the

whole number. Sines and cosines are calculated mod 360 degrees (or mod 2

radians). Actually, the input argument is usually taken mod /2 or 90 degrees,
depending on whether you are using degrees or radians. Along with some method for
determining which quadrant the angle is in, the result is computed from the

congruence (see Chapter 6).
Random number generators based on the Linear Congruential Method use

modular arithmetic to develop the output number as one of the final steps.4

Assembly-language programmers can facilitate their work by choosing a modulus
that’s as large as the word size of the machine they are working on. It is then a simple

matter to calculate the congruence, keeping those lower bits that will fit within the

16

NUMBERS

word size of the computer. For example, assume we have a hexadecimal doubleword:

and the word size of our machine is 16 bits

For more information on random number generators, see Appendix A.
One final and valuable use for modular arithmetic is in the construction of self-

maintaining buffers and arrays. If a buffer containing 256 bytes is page aligned-the

last eight bits of the starting address are zero-and an 8-bit variable is declared to

count the number of entries, a pointer can be incremented through the buffer simply
by adding one to the counting variable, then adding that to the address of the base of

the buffer. When the pointer reaches 255, it will indicate the last byte in the buffer;
when it is incremented one more time, it will wrap to zero and point once again at

the initial byte in the buffer.

Floating Point

Floating point is a way of coding fixed-point numbers in which the number of

significant digits is constant per type but whose range is enormously increased
because an exponent and sign are embedded in the number. Floating-point arithmetic

is certainly no more accurate than fixed point-and it has a number of problems,
including those present in fixed point as well as some of its own-but it is convenient
and, used judiciously, will produce valid results.

The floating-point representations used most commonly today conform, to some
degree, to the IEEE 754 and 854 specifications. The two main forms, the long real
and the short real, differ in the range and amount of storage they require. Under the

IEEE specifications, a long real is an 8-byte entity consisting of a sign bit, an 11-bit
exponent, and a 53-bit significand, which mean the significant bits of the floating-

point number, including the fraction to the right of the radix point and the leading one

17

NUMERICAL METHODS

to the left. A short real is a 4-byte entity consisting of a sign bit, an 8-bit exponent,
and a 24-bit significand.

To form a binary floating-point number, shift the value to the left (multiply by
two) or to the right (divide by two) until the result is between 1.0 and 2.0. Concatenate

the sign, the number of shifts (exponent), and the mantissa to form the float.

Doing calculations in floating point is very convenient. A short real can express

a value in the range 1038 to 10-38 in a doubleword, while a long real can handle values
ranging from 10308 to 10-308 in a quadword. And most of the work of maintaining the

numbers is done by your floating-point package or library.
As noted earlier, some problems in the system of precision and exponentiation

result in a representation that is not truly "real"—namely, gaps in the number line and
loss of significance. Another problem is that each developer of numerical software

adheres to the standards in his or her own fashion, which means that an equation that

produced one result on one machine may not produce the same result on another
machine or the same machine running a different software package. This compatibil-

ity problem has been partially alleviated by the widespread use of coprocessors.

Positive and Negative Numbers
The most common methods of representing positive and negative numbers in a

positional number system are sign magnitude, diminished-radix complement, and

radix complement (see Table 1- 1).

With the sign-magnitude method, the most significant bit (MSB) is used to

indicate the sign of the number: zero for plus and one for minus. The number itself
is represented as usual—that is, the only difference between a positive and a negative
representation is the sign bit. For example, the positive value 4 might be expressed
as 0l00B in a 4-bit binary format using sign magnitude, while -4 would be

represented as 1100B.
This form of notation has two possible drawbacks. The first is something it has

in common with the diminished-radix complement method: It yields two forms of

zero, 0000B and 1000B (assuming three bits for the number and one for the sign).
Second, adding sign-magnitude values with opposite signs requires that the magni-

1 8

NUMBERS

tudes of the numbers be consulted to determine the sign of the result. An example of

sign magnitude can be found in the IEEE 754 specification for floating-point

representation.
The diminished-radix complement is also known as the one’s complement in

binary notation. The MSB contains the sign bit, as with sign magnitude, while the rest

of the number is either the absolute value of the number or its bit-by-bit complement.
The decimal number 4 would appear as 0100 and -4 as 1011. As in the foregoing
method, two forms of zero would result: 0000 and 1111.

The radix complement, or two’s complement, is the most widely used notation

in microprocessor arithmetic. It involves using the MSB to denote the sign, as in the
other two methods, with zero indicating a positive value and one meaning negative.

You derive it simply by adding one to the one’s-complement representation of the

same negative value. Using this method, 4 is still 0100, but -4 becomes 1100. Recall
that one’s complement is a bit-by-bit complement, so that all ones become zeros and
all zeros become ones. The two’s complement is obtained by adding a one to the

one’s complement.

This method eliminates the dual representation of zero-zero is only 0000
(represented as a three-bit signed binary number)-but one quirk is that the range of
values that can be represented is slightly more negative than positive (see the chart

below). That is not the case with the other two methods described. For example, the
largest positive value that can be represented as a signed 4-bit number is 0111B, or

7D, while the largest negative number is 1000B, or -8D.

19

NUMERICAL METHODS

One's complement Two's complement Sign complement

0111 7 7 7

0 1 1 0 6 6 6

0101 5 5 5

0 1 0 0 4 4 4

0 0 1 1 3 3 3

0010 2 2 2

0001 1 1 1

0000 0 0 0

1111 -0 -1 -7

1110 -1 - 2 -6

1101 -2 -3 -5

1100 -3 -4 -4

1011 -4 - 5 -3

1010 - 5 - 6 - 2

1001 -6 -7 - 1

1 0 0 0 -7 - 8 - 0

Table 1-1. Signed Numbers.

Decimal integers require more storage and are far more complicated to work
with than binary; however, numeric I/O commonly occurs in decimal, a more
familiar notation than binary. For the three forms of signed representation already

discussed, positive values are represented much the same as in binary (the leftmost

20

N U M B E R S

bit being zero). In sign-magnitude representation, however, the sign digit is nine
followed by the absolute value of the number. For nine’s complement, the sign digit

is nine and the value of the number is in nine’s complement. As you might expect,

10’s complement is the same as nine’s complement except that a one is added to the

low-order (rightmost) digit.

Fundamental Arithmetic Principles
So far we’ve covered the basics of positional notation and bases. While this book

is not about mathematics but about the implementation of basic arithmetic operations
on a computer, we should take a brief look at those operations.

1. Addition is defined as a + b = c and obeys the commutative rules described
below.

2. Subtraction is the inverse of addition and is defined as b = c - a.

3. Multiplication is defined as ab = c and conforms to the commutative,

associative, and distributive rules described below.

4. Division is the inverse of multiplication and is shown by b = c/a.

5. A power is ba=c.

6. A root is b =

7 . A logarithm is a = logbc.

Addition and subtraction must also satisfy the following rules:5

8. Commutative:

a + b = b + a

ab = ba
9 . Associative:

a = (b + c) = (a + b) + c

a(bc) = (ab)c

10. Distributive:

a(b + c) = ab + ac

From these rules, we can derive the following relations:6

11. (ab)c = acbc

21

NUMERICAL METHODS

12. abac = ac(b+c)

13. (ab)c = a(bc)

14. a + 0 = a

15. a x 1 = a

16. a1 = a

17. a/0 is undefined

These agreements form the basis for the arithmetic we will be using in upcoming
chapters.

Microprocessors
The key to an application’s success is the person who writes it. This statement

is no less true for arithmetic. But it’s also true that the functionality and power of the

underlying hardware can greatly affect the software development process.

Table l-2 is a short list of processors and microcontrollers currently in use, along
with some issues relevant to writing arithmetic code for them (such as the instruction
set, and bus width). Although any one of these devices, with some ingenuity and
effort, can be pushed through most common math functions, some are more capable

than others. These processors are only a sample of what is available. In the rest of this
text, we’ll be dealing primarily with 8086 code because of its broad familiarity.
Examples from other processors on the list will be included where appropriate.

Before we discuss the devices themselves, perhaps an explanation of the

categories would be helpful.

Buswidth
The wider bus generally results in a processor with a wider bandwidth because it can
access more data and instruction elements. Many popular microprocessors have a

wider internal bus than external, which puts a burden on the cache (storage internal
to the microprocessor where data and code are kept before execution) to keep up with
the processing. The 8088 is an example of this in operation, but improvements in the
80x86 family (including larger cache sizes and pipelining to allow some parallel

processing) have helped alleviate the problem.

22

NUMBERS

Table 1-2. Instructions and flags.

23

NUMERICAL METHODS

Data type

The larger the word size of your machine, the larger the numbers you can process
with single instructions. Adding two doubleword operands on an 8051 is a

multiprecision operation requiring several steps. It can be done with a single ADD
on a TMS34010 or 80386. In division, the word size often dictates the maximum size
of the quotient. A larger word size allows for larger quotients and dividends.

Flags

The effects of a processor’s operation on the flags can sometimes be subtle. The

following comments are generally true, but it is always wise to study the data sheets
closely for specific cases.

Zero. This flag is set to indicate that an operation has resulted in zero. This can

occur when two operands compare the same or when two equal values are

subtracted from one another. Simple move instructions generally do not affect
the state of the flag.

Carry. Whether this flag is set or reset after a certain operation varies from
processor to processor. On the 8086, the carry will be set if an addition overflows

or a subtraction underflows. On the 80C196, the carry will be set if that addition

overflows but cleared if the subtraction underflows. Be careful with this one.

Logical instructions will usually reset the flag and arithmetic instructions as well

as those that use arithmetic elements (such as compare) will set it or reset it based

on the results.

Sign. Sometimes known as the negative flag, it is set if the MSB of the data type
is set following an operation.

Overflow. If the result of an arithmetic operation exceeds the data type meant
to contain it, an overflow has occurred. This flag usually only works predictably

with addition and subtraction. The overflow flag is used to indicate that the result

of a signed arithmetic operation is too large for the destination operand. It will
be set if, after two numbers of like sign are added or subtracted, the sign of the
result changes or the carry into the MSB of an operand and the carry out don’t

match.

24

N U M B E R S

Overflow Trap. If an overflow occurred at any time during an arithmetic

operation, the overflow trap will be set if not already set. This flag bit must be
cleared explicitly. It allows you to check the validity of a series of operations.

Auxiliary Carry. The decimal-adjust instructions use this flag to correct the
accumulator after a decimal addition or subtraction. This flag allows the

processor to perform a limited amount of decimal arithmetic.

Parity. The parity flag is set or reset according to the number of bits in the lower
byte of the destination register after an operation. It is set if even and reset if odd.

Sticky Bit. This useful flag can obviate the need for guard digits on certain

arithmetic operations. Among the processors in Table l-2, it is found only on

the 80C196. It is set if, during a multiple right shift, more than one bit was shifted

into the carry with a one in the carry at the end of the shift.

Rounding and the Sticky Bit

A multiple shift to the right is a divide by some power of two. If the carry is set,

the result is equal to the integer result plus l/2, but should we round up or down? This
problem is encountered frequently in integer arithmetic and floating point. Most
floating-point routines have some form of extended precision so that rounding can
be performed. This requires storage, which usually defaults to some minimal data

type (the routines in Chapter 4 use a word). The sticky bit reduces the need for such
extended precision. It indicates that during a right shift, a one was shifted into the

carry flag and then shifted out.
Along with the carry flag, the sticky bit can be used for rounding. For example,

suppose we wish to divide the hex value 99H by 16D. We can do this easily with a

four-bit right shift. Before the shift, we have:

Operand Carry flag
10011001 0

Sticky bit
0

We shift the operand right four times with the following instruction:

shr ax, #4

25

NUMERICAL METHODS

During the shift, the Least Significant Bit (LSB) of the operand (a one) is shifted

into the carry and then out again, setting the sticky bit followed by two zeros and a
final one. The operand now has the following form:

Operand Carry flag Sticky bit
00001001 1 (from the last shift) 1 (because of the first one

shifted in and out of the carry)

To round the result, check the carry flag. If it’s clear, the bits shifted out were less
than half of the LSB, and rounding can be done by truncation. If the carry is set, the

bits shifted out were at least half of the LSB. Now, with the sticky bit, we can see if
any other bits shifted out during the divide were ones; if so, the sticky bit is set and

we can round up.

Rounding doesn’t have to be done as described here, but however you do it the

sticky bit can make your work easier. Too bad it’s not available on more machines.

Branching

Your ability to do combined jumps depends on the flags. All the processors listed
in the table have the ability to branch, but some implement that ability on more
sophisticated relationships. Instead of a simple “jump on carry,” you might find

“jump if greater,” “jump if less than or equal,” and signed and unsigned operations.
These extra instructions can cut the size and complexity of your programs.

Of the devices listed, the TMS34010, 80x86 and 80C196 have the richest set of

branching instructions. These include branches on signed and unsigned comparisons
as well as branches on the state of the flags alone.

Instructions

Addition

Add. Of course, to perform any useful arithmetic, the processor must be capable
of some form of addition. This instruction adds two operands, signaling any
overflow from the result by setting the carry.

26

NUMBERS

Add-with-Carry. The ability to add with a carry bit allows streamlined,

multiprecision additions. In multibyte or multiword additions, the add instruc-
tion is usually used first; the add-with-carry instruction is used in each succeed-

ing addition. In this way, overflows from each one addition can ripple through

to the next.

Subtraction

Subtract. All the devices in Table l-2 can subtract except the 8048 and 8051.
The 8051 uses the subtract-with-carry instruction to fill this need. On the 8048,

to subtract one quantity (the subtrahend) from another (the minuend), you must

complement the subtrahend and increment it, then add it to the minuend-in
other words, add the two’s complement to the minuend.

Subtract-with-Carry. Again, the 8048 does not support this instruction, while all
the others do. Since the 8051 has only the subtract-with-carry instruction, it is

important to see that the carry is clear before a subtraction is performed unless
it is a multiprecision operation. The subtract-with-carry is used in multiprecision
subtraction in the same manner as the add-with-carry is used in addition.

Compare. This instruction is useful for boundary, magnitude and equality

checks. Most implementations perform a comparison by subtracting one value

from another. This process affects neither operand, but sets the appropriate flags.

Many microprocessors allow either signed or unsigned comparisons.

Multiplication

Multiply. This instruction performs a standard unsigned multiply based on the
word size of the particular microprocessor or microcontroller. Hardware can

make life easier. On the 8088 and 8086, this instruction was embarrassingly slow
and not that much of a challenge to shift and add routines. On later members of

the 80x86 family, it takes a fraction of the number of cycles to perform, making
it very useful for multiprecision and single-precision work.

Signed Multiply. The signed multiply, like the signed divide (which we’ll

27

NUMERICAL METHODS

discuss in a moment), has limited use. It produces a signed product from two

signed operands on all data types up to and including the word size of the
machine. This is fine for tame applications, but makes the instruction unsuitable

for multiprecision work. Except for special jobs, it might be wise to employ a
generic routine for handling signed arithmetic. One is described in the next
chapter.

Division

Divide. A hardware divide simplifies much of the programmer’s work unless it

is very, very slow (as it is on the 8088 and 8086). A multiply canextend the useful

range of the divide considerably. The following chapter gives examples of how
to do this.

Signed Divide. Except in specialized and controlled circumstances, the signed
divide may not be of much benefit. It is often easier and more expeditious to

handle signed arithmetic yourself, as will be shown in Chapter 2.

Modulus. This handy instruction returns the remainder from the division of two

operands in the destination register. As the name implies, this instruction is very
useful when doing modular arithmetic. This and signed modulus are available on
the TMS34010.

Signed Modulus. This is the signed version of the

here the remainder bears the sign of the dividend.
earlier modulus instruction,

Negation and Signs

One’s Complement. The one’s complement is useful for logical operations and
diminished radix arithmetic (see Positive and Negative Numbers, earlier in this
chapter). This instruction performs a bit-by-bit complement of the input argu-

ment; that is, it makes each one a zero and each zero a one.

Two’s Complement. The argument is one’s complemented, then incremented by

28

N U M B E R S

one. This is how negative numbers are usually handled on microcomputers.

l Sign Extension. This instruction repeats the value of the MSB of the byte or word
through the next byte, word, or doubleword so the proper results can be obtained

from an arithmetic operation. This is useful for converting a small data type to

a larger data type of the same sign for such operations as multiplication and
division.

Shifts, Rotates and Normalization

Rotate. This simple operation can occur to the right or the left. In the case of a

ROTATE to the right, each bit of the data type is shifted to the right; the LSB is
deposited in the carry, while a zero is shifted in on the left. If the rotate is to the
left, each bit is moved to occupy the position of the next higher bit in the data type

until the last bit is shifted out into the carry flag (see figure l-3). On the Z80,
some shifts put the same bit into the carry and the LSB of the byte you are

shifting. Rotation is useful for multiplies and divides as well as normalization.

Rotate-through-Carry. This operation is similar to the ROTATE above, except

that the carry is shifted into the LSB (in the case of a left shift), or the MSB (in
the case of a right shift). Like the ROTATE, this instruction is useful for

multiplies and divides as well as normalization.

Arithmetic Shift. This shift is similar to a right shift. As each bit is shifted, the
value of the MSB remains the same, maintaining the value of the sign.

Normalization. This can be either a single instruction, as is the case on the

80C196, or a set of instructions, as on the TMS34010. NORML will cause the
80C196 to shift the contents of a doubleword register to the left until the MSB
is a one, “normalizing” the value and leaving the number of shifts required in a

register. On the TMS34010, LMO leaves the number of bits required to shift a

doubleword so that its MSB is one. A multibit shift can then be used to normalize
it. This mechanism is often used in floating point and as a setup for binary table

routines.

29

NUMERICAL METHODS

Figure 1-3. Shifts and rotates.

Decimal and ASCII Instructions

Decimal Adjust on Add. This instruction adjusts the results of the addition of two
decimal values to decimal. Decimal numbers cannot be added on a binary

computer with guaranteed results without taking care of any intrabyte carries
that occur when a digit in a position exceeds nine. On the 8086, this instruction
affects only the AL register. This and the next instruction can be very useful in

an embedded system that receives decimal data and must perform some simple

processing before displaying or returning it.

Decimal Adjust on Subtract. This instruction is similar to the preceeding one

except that it applies to subtraction.

ASCII Adjust. These instructions prepare either binary data for conversion to

ASCII or ASCII data for conversion to binary. Though Motorola processors also
implement these instructions, they are found only in the 80x86 series in our list.

Used correctly, they can also do a certain amount of arithmetic.

30

NUMBERS

Most of the earlier microprocessors-such as the 8080, 8085, Z80, and 8086—

as well as microcontrollers like the 8051 were designed with general applications in
mind. While the 8051 is billed as a Boolean processor, it’s general set of instructions

makes many functions possible and keeps it very popular today.

All these machines can do arithmetic at one level or another. The 8080, 8085, and
Z80 are bit-oriented and don’t have hardware multiplies and divides, making them

somewhat slower and more difficult to use than those that do. The 8086 and 8051
have hardware multiplies and divides but are terribly slow about it. (The timings for

the 8086 instructions were cleaned up considerably in subsequent generations of the
286, 386, and 486.) They added some speed to the floating-point routines and

decreased code size.
Until a few years ago, the kind of progress usually seen in these machines was

an increase in the size of the data types available and the addition of hardware

arithmetic. The 386 and 486 can do some 64-bit arithmetic and have nice shift

instructions, SHLD and SHRD, that will happily shift the bits of the second operand

into the first and put the number of bits shifted in a third operand. This is done in a
single stroke, with the bits of one operand shifted directly into the other, easing
normalization of long integers and making for fast binary multiplies and divides. In
recent years we’ve seen the introduction of microprocessors and microcontrollers

that are specially designed to handle floating-point as well as fixed-point arithmetic.
These processors have significantly enhanced real-time control applications and

digital signal processing in general. One such microprocessor is the TMS34010; a
microcontroller with a similar aptitude is the 80C196.

31

NUMERICAL METHODS

1

2

3

4

5

6

32

Kline, Morris. Mathematics for the Nonmathematician. New York, NY: Dover

Publications, Inc., 1967, Page 72.

Gellert, W., S. Gottwald, M. Helwich, H. Kastner, and H. Küstner (eds.). The

VNR Concise Encyclopedia of Mathematics. New York, NY: Van Nostrand
Reinhold, 1989, Page 20.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1980, Page 180.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1981, Pages 1-127.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-
Hill Book Co., 1984, Page 2.

Pearson, Carl E. (ed.) Handbook of Applied Mathematics. New York, NY: Van
Nostrand Reinhold, 1983, Page 1.

CHAPTER 2

Integers

Reducing a problem to the integer level wherever possible is certainly one of the

fastest and safest ways to solve it. But integer arithmetic is only a subset of fixed-

point arithmetic. Fixed-point arithmetic means that the radix point remains in the

same place during all calculations. Integer arithmetic is fixed point arithmetic with
the radix point consistently to the right of the LSB. Conversely, fractional arithmetic

is simply fixed point with the radix point to the left of the MSB. There are no specific

requirements regarding placement of the radix point; it depends entirely on the needs
of the operation. Sines and cosines may require no integer at all, while a power-series

calculation may require an integer portion. You may wish to use two guard digits
during multiplication and division for rounding purposes-it depends on you and the
application.

To present algorithms for the four basic operations of mathematics-addition,

subtraction, multiplication, and division-this chapter will concentrate on integer-
only arithmetic. The operations for fixed-point and integer-only arithmetic are

essentially the same; the former simply involves some attention to the placement of
the radix point.

This chapter begins with the basic operations and the classic algorithms for them,

followed by some more advanced algorithms. The classic algorithms aren’t neces-
sarily the fastest, but they are so elegant and reflect the character of the binary
numbering system and the nature of arithmetic itself so well that they are worth
knowing. Besides, on any binary machine, they’ll always work.

Addition and Subtraction
Unsigned Addition and Subtraction

Simply put, addition is the joining of two sets of numbers or quantities, into one

set. We could also say that when we add we’re really incrementing one value, the

33

NUMERICAL METHODS

augend, by another value, the addend. Subtraction is the inverse of addition, with one

number being reduced, or decremented, by another.
For example, the addition operation

+2
9

0111

or 0010
1001

might be accomplished on the 8086 with this instruction sequence:

mov al,7
add al,2

In positional arithmetic, each position is evaluated x <base, with x being the

digit in that position, and any excess is carried up to the next position. If the base is

10, no number greater than nine can exist in any position; if an operation results in

a value greater than nine, that value is divided by 10, the quotient is carried into the
next position, and the remainder is left in the current position.

The same is true of subtraction except that any underflow in an operation results
in a borrow from the next higher position, reducing the strength of that position by
one. For example:

17 1 0001

-9 or 1001
8 1000

In 8086 assembler, this would be:

mov al,llh
Sub al,9h

On a microprocessor, the carry and borrow use the carry flag. If adding any two
unsigned numbers results in a value that cannot be contained within the data type

we’re using, a carry results (the carry flag is set); otherwise, it is reset. To demonstrate

this, lets add two bytes, 7H and 9H:

34

I N T E G E R S

0111
+1001

1 0000 the result
¦ the carry

This addition was unsigned and produced a result that was too large for the data

type. In this case, the overflow was an error because the value represented in the

result was not the full result. This phenomenon is useful, however, when performing
multiprecision arithmetic (discussed in the next section).

Subtraction will produce a carry on an underflow (in this case, it’s known as a

borrow):

1 0001
-1001

0 1000 the result
¦ the borrow

Processors use the carry flag to reflect both conditions; the trick is to know how

they’re representing the borrow. On machines such as the 8086, the carry is set for
both overflow from addition and underflow from subtraction. On the 80C196, the

carry is set on overflow and reset (cleared) on underflow, so it’s important to know

what each setting means. Besides being set or reset as the result of an arithmetic
operation, the carry flag is usually reset by a logical operation and is unaffected by

a move.
Because not every problem can be solved with single precision arithmetic, these

flags are often used in multiprecision operations.

Multiprecision Arithmetic

Working with large numbers is much the same as working with small numbers.

As you saw in the earlier examples, whenever we ADDed a pair of numbers the carry
flag was set according to whether or not an overflow occurred. All we do to add a very
large number is ADD the least significant component and then ADD each subsequent

35

NUMERICAL METHODS

component with the carry resulting from the previous addition.
Let’s say we want to add two doubleword values, 99999999H and 15324567H.

The sequence looks like this:

mov dx,9999h
mov ax,9999h
add ax,4567h
adc dx,1532h

DX now contains the most significant word of the result, and AX contains the

least. A 64-bit addition is done as follows.

add64: Algorithm

1. A pointer is passed to the result of the addition.

2. The least significant words of addend0 are loaded into AX:DX.

3. The least significant words of addend1 are added to these registers,
least significant word first, using the ADD instruction. The next more
significant word uses the ADC instruction.

4. The result of this addition is written to result.

5. The upper words of addend0 are loaded into AX:DX.

6. The upper words of addend1 are added to the upper words of addend0 using
the ADC instruction. (Note that the MOV instructions don't change the
flags.)

7. The result of this addition is written to the upper words of result.

add64: Listing
; *****
;add64 - adds two fixed-point numbers
;the arguments are passed on the stack along with a pointer to storage for the
result
add64 proc uses ax dx es di, addendO:qword, addendl:qword, result:word

mov di, word ptr result
mov ax, word ptr addend0[0] ; ax = low word, addend0
mov dx, word ptr addend0[2] ; dx = high word, addend0
add ax, word ptr addendl[0] ; add low word, addend1
adc dx, word ptr addendl[2] ; add high word, addend1
mov word ptr [di], ax
mov word ptr [di][2], dx

36

INTEGERS

mov
mov
adc
adc
mov
mov
ret

add64 endp

ax, word ptr addend0[4]
dx, word ptr addend0[6]
ax, word ptr addendl[4]
dx, word ptr addendl[6]
word ptr [di][4], ax
word ptr [di] [6], dx

; ax = low word, addend0

; dx = high word, addend0
; add low word, addend1
; add high word, addend1

This example only covered 64 bits, but you can see how it might be expanded

to deal with operands of any size. Although the word size and mnemonics vary from

machine to machine, the concept remains the same.
You can perform multiprecision subtraction in a similar fashion. In fact, all you

need to do is duplicate the code above, changing only the add-with-carry (ADC)

instruction to subtract-with-borrow (SBB). Remember, not all processors (the 8048
and 8051, for instance) have a simple subtract instruction; in case of the 8051, you

must clear the carry before the first subtraction to simulate the SUB. With the 8048

you must have two’s complement the subtrahend and ADD.

sub64: Algorithm

1.

2.

3.

4.

5.

6.

A pointer is passed to the result of the subtraction.

The least significant words of sub0 are loaded into AX:DX.

The least significant words of sub1 are subtracted fromthese registers,
least significant word first, using the SUB instructions with the next
most significant word using the SBB instruction.

The result of this subtraction is written to result.

The upper words of sub0 are loaded into AX:DX

The upper words of sub1 are subtracted from the upper words of sub0 using
the SBB intruction. (Note that the MOV instructions don't change the
flags.)

7. The result of this subtraction is written to the upper words of result.

sub64: Listing
;*****

;sub64

;arguments passed on the stack, pointer returned to result

37

NUMERICAL METHODS

sub64

sub64

proc uses dx es di,
sub0:qword, sub1:qword,

mov di, word ptr result
mov ax, word ptr sub0[0]
mov dx, word ptr sub0[2]
sub ax, word ptr sub1[0]
sbb dx, word ptr subl[2]
mov word ptr [di] [0],ax
mov word ptr [di] [2],dx
mov ax, word ptr sub0[4]
mov dx, word ptr sub0[6]
sbb ax, word ptr subl[4]
sbb dx, word ptr subl[6]
mov word ptr [di][4],ax
mov word ptr [di][6],dx
ret
endp

result:word

; ax = low word, sub0
; dx = high word, sub0
; subtract low word, sub1

; subtract high word, sub1

; ax = low word, sub0
; dx = high word, sub0
; subtract low word, sub1
; subtract high word, sub1

For examples of multiprecision addition and subtraction using other processors,

see the SAMPLES. module included on the disk.

Signed Addition and Subtraction

We perform signed addition and subtraction on a microcomputer much as we
perform their unsigned equivalents. The primary difference (and complication)
arises from the MSB, which is the sign bit (zero for positive and one for negative).

Most processors perform signed arithmetic in two’s complement, the method we’ll
use in this discussion. The two operations of addition and subtraction are closely
related; each can be performed using the logic of the other. For example, subtraction

can be performed identically to addition if the subtrahend is two’s-complemented
before the operation. On the 8048, in fact, it must be done that way due to the absence

of a subtraction instruction.

15 - 7 = 15 + (-7) = 8

0fH - 7H = 0fh + 0f9H = 8H

These operations are accomplished on a microprocessor much as we performed
them in school using a pencil and paper.

38

INTEGERS

One aspect of using signed arithmetic is that the range of values that can be

expressed in each data type is limited. In two’s-complement representation, the

range is -2n-1 to 2n-1-1. Use signed arithmetic carefully; ordinary arithmetic processes

can result in a sign reversal that invalidates the operation.
Overflow occurs in signed arithmetic when the destination data type is too small

to hold the result of a signed operation-that is, a bit is carried into the MSB (the sign
bit) during addition and is not propagated through to the carry, or a borrow was made
from the MSB during subtraction and is not propagated through to the carry. If either
event occurs, the carry flag may not be set correctly because the carry that did occur

may not propagate through the sign bit into the carry flag.

Adding 60H and 50H in an eight-bit accumulator results in b0H, a negative

number in signed notation even though the original operands were positive. Guard
against such overflows when using signed arithmetic.

This is where the overflow flag comes in. Simply put, the overflow flag is used
to indicate that the result of a signed arithmetic operation is too large or too small for
the destination operand. It is set after two numbers of like sign are added or subtracted

if the sign of the result changes or if the carry into the MSB of an operand and the
carry out don’t match.

When we added 96D (60H) and 80D (50H), we got an overflow into the sign bit
but left the carry flag clear:

0l0l0000B (+50H)
+01100000B (+60H)
l0ll0000B (b0H, or -80D)

The result was a specious negative number. In this case, the overflow flag is set
for two reasons: because we’re adding two numbers of like sign with a subsequent

change in the sign of the result and because the carry into the sign bit and the carry

out don’t match.

To guard against accidental overflows in addition and subtraction, test the
overflow flag at the end of each operation.

Assume a 32-bit signed addition in 8086 assembler. The code might look like

this:

39

NUMERICAL METHODS

signed add:-
mov ax, word ptr summendl

mov dx, word ptr summendl[2]
add ax, word ptr summend
add dx, word ptr summend2[2]

jo bogus_result

good-result:

;first load one summend
;into dx:ax

;add the two, using the carry flag
;to propagate any carry
;out of the lower word;
;check for a valid result

When writing math routines, be sure to allocate enough storage for the largest

possible result; otherwise, overflows during signed operations are inevitable.

Decimal Addition and Subtraction

Four bits are needed to represent the decimal numbers zero through nine. If the
microcomputer we’re using has a base 10 architecture rather than one based on
binary, we could increment the value 1001 (9D) and get 0 (0D) or decrement 0 and
get 1001. We could then add and subtract decimal numbers on our machine and get

valid results. Unfortunately, most of the processors in use are base 2, so when we

increment 100l (9D) we get 1010 (0AH). This makes performing decimal arithmetic
directly on a microcomputer difficult and awkward.

In packed binary coded decimal, a digit is stored in each nibble of a byte (as
opposed to unpacked, in which a byte holds only one digit). Whenever addition or

subtraction on packed BCD results in a digit outside the range of normal decimal
arithmetic (that is, greater than nine or less than zero), a special flag known as the
auxiliary carry is set. This indicates that an overflow or underflow has resulted
during a particular operation that needs correction. This is analogous to the carry bit

being set whenever an overflow occurs. On the 80x86, this flag, in association with

the appropriate instruction—DAA for addition and DAS for subtraction-will

produce a decimally correct result on the lower byte of the AX register. Unfortu-

nately, these instructions only work eight bits at a time and even then in only one

register, with the operands moved into and out of AL to perform a calculation of any
length. As limited as this is, the instructions do allow you to perform a certain amount
of decimal arithmetic on a binary machine without converting to binary.

40

INTEGERS

When decimal addition is performed, each addition should be followed by a DAA

or its equivalent. This instruction forces the CPU to add six to a BCD digit if it is

outside the range, zero through nine, or if there has been a carry from the digit. It then
passes the resulting carry into the next higher position. This adjusts for decimal
overflows and allows normal decimal addition to be performed correctly in a packed

format.
As an example, if we add 57D and 25D on a binary machine without converting

to binary, we might first store the two values in registers in the following packed

format:

A =
B =

01010111B(57H)
00100101B(25H)

We follow this with an ADD instruction (note that the carry is ignored here):

add a,b

with the result placed in A:

A = 1111100B (7cH)

Because a decimal overflow occurred in the first nibble (1100B = 12D), the

auxiliary carry flag is set. Now when the DAA instruction is executed, a six is added

to this nibble and the carry propagated into the next higher nibble:

1100B
0ll0B
l00l0B

This leaves a two as the least significant digit with a carry into the next higher
position, which is the same as adding a one to that digit:

0111 (7H)
0001 (1H)
1000 (8H)

41

NUMERICAL METHODS

The final result is 10000010B (82H).
This mechanism is widely implemented on both microprocessors and

microcontrollers, such as the 8048, 8051, Z80, 80x86, and 80376. Unfortunately,

neither the decimal adjust nor the auxiliary carry flag exists on the 80C196 or the

TMS34010.
The DAA will work with decimal additions but not with decimal subtractions.

Machines such as the Z80 and 80x86 make up for this with additional hardware to

support subtraction. The Z80 uses the N and H flags along with DAA, while the 80x86

provides the DAS instruction.
The 8086 series and the 68000 series of microprocessors provide additional

support for ASCII strings. On the 8086, these instructions are AAM, AAS, AAA, and

AAD (see Chapter 5 for examples and greater detail). Since they do offer some
arithmetic help, let’s take a brief look at them now.1

AAA adjusts the result of an addition to a simple decimal digit (a value from zero
through nine). The sum must be in AL; if the result is greater than nine, AH is
incremented. This instruction is used primarily for creating ASCII strings.

AAD converts unpacked BCD digits in AH and AL to a binary number in AX.

This instruction is also used to convert ASCII strings.

AAM converts a number less than 100 in AL to an unpacked BCD number in AX,
the high byte in AH, and the low byte in AL.

AAS, similar to AAA, adjusts the result of a subtraction to a single decimal digit

(a value from zero through nine).

Multiplication and Division

This group comprises what are known as “arithmetic operations of the second

kind,” multiplication being iterative addition and division being iterative subtrac-
tion. In the sections that follow, you’ll see several algorithms for each operation,

starting with the classic methods for each.

The classic algorithms, which are based on iterative addition or subtraction, may
or may not be the fastest way to execute a particular operation on your target machine.

42

INTEGERS

Though error checking must always be done for correct results, the errors that occur
with these routines don’t have the same impact on the processor state as those

involving hardware instructions. What’s more, these algorithms work in any binary

environment because they deal with the most fundamental elements of the machine.
They often provide fast, economical solutions to specialized situations that might
prove awkward or slow with hardware instructions (see the multen routine in

FXMATH.ASM). Along with the classic algorithms, there will be examples of
enhancements to these routines and some algorithms that work best in silicon;
nonetheless, they’re based on arithmetic viewpoints that you may find interesting.

Signed vs. Unsigned

Without special handling, multiplication or division of signed numbers won’t

always result in correct answers, even if the operands themselves are sign-extended.
In multiplication, a problem arises in that the number of bits in the result of the

multiplication is equal to, at a minimum, the number of bits in the largest operand (if

neither operand is zero) and, at a maximum, the sum of bits in both operands (if each
operand is equal to or greater than 2n-1, where n is the size of the data type). It is usually

wise to provide a result data type equal in size to the number of bits in the multiplicand

plus the number of bits in the multiplier, or twice the number of bits in the largest
operand. For a signed operation, this can mean the result may not have the sign

required by the operands. For example, multiplying the two unsigned integers,
ffH(255D) and ffH(255D), produces fe0lH(65025D), which is correct. If, however,
two numbers are signed, ffH(-1D) and ffH(-1D), the correct result is 1H(1D), not

fe01H(-511D). Further, an ordinary integer multiply knows nothing about sign

extension, multiplying ffH(-1D) by 1H(1D) produces ffH(255D) in a 16-bit data

type.
Similar problems occur in division. Unlike multiplication, the results of a divide

require the difference in the number of bits in the operands. That means two 8-bit
operands could require as little as one bit to represent the result of the division, or as

many as eight. With division, it is wise to allot storage equal to the size of the dividend
to account for any solution. With this in mind, dividing the two signed 8-bit operands,

ffH(-1D) by 1H(1D), is no problem-in this case the result is ffH(-1D). But if the

43

NUMERICAL METHODS

divisor is any larger, the result is incorrect—FFH/5H = 33H, when the correct

answer is OH.

Many processors offer a signed version of their multiply and divide instructions.
On the 8086, those instructions are IMUL and IDIV. To use them on single-precision

operands, be sure both operands are signed and the (byte) word sizes are compatible
so the result won’t overflow. If you attempt to multiply a signed word operand by an
unsigned word operand greater than 7fffH, your result will be in error. Be careful;

this problem can go undetected for a long time.

In multiprecision multiplication, the use of IMUL and IDIV is often impractical,
because the operation treats the large numbers as polynomials, breaking them apart
into smaller units, or coefficients. These instructions handle all numbers as signed

with 2n-1 significant bits, where n is the size of the data type. This inevitably produces
an incorrect result because the instructions can only handle word operands in the

range -32,768 to 32,767 and byte operands ranging from -128 to 127, with the MSB
of each word or byte treated as a sign bit. Multiplying the numbers 1283H and 1234H
will result in one subproduct that is out of range and an incorrect product because any

of the submultiplies that involve 83H will incorrectly interpret it as a signed number.
A foolproof way to work with signed multiplies and divides, either single- or

multiprecision, is to check the operands for a sign before the multiply or divide. You
then handle the operation as unsigned by two’s-complementing any negative
operands. If necessary, the result can be two’s-complemented at the end of the
procedure. The algorithm is shown in pseudocode, and the code fragment is an

example of how it might be implemented.

sign_operation: Algorithm

1. Declare and clear a byte variable, sign.

2. Check the sign of the first operand to see if it's negative.

If not, go to step 3.

If so, complement sign, then complement the operand.

3. Check the sign of the second operand to see if it's negative.

If not, go to step 4.

If so, complement sign, then complement the operand.

44

INTEGERS

4. Perform the multiply or divide.

5. Check ign.

If it's zero, you're done.

If it's -1 (0ffH), two's-complement the result and go home.

signed-operation: Listing
.******

signed-operation
local
mov
or
jns
not
not

neg
jc
add

check-second:
mov
or
jns
not
not

neg
jc
add

done_with_check:

proc operand0:dword, operandl:dword, result:word
sign:byte
ax, word ptr operand0L21

=, ax
check-second ;if not sign, it is positive
byte ptr sign
word ptr operand0[2] ;two's complement of operand
word ptr operand0
check-second
word ptr operand0[2],1

ax, word ptr operand1[2]

ax, ax
done-with-check
byte ptr sign
word ptr operandl[2]
word ptr operand1
done_with_check
word ptr operandl[2],1

;perform operation here

on_the_way_out:
mov al, byte ptr sign
or al, al
jns all-done
mov si, word ptr result
not word ptr si[6]

45

NUMERICAL METHODS

not
not

neg
jc
add
adc
adc

all_done:

word ptr si[4]
word ptr si[2]
word ptr si[0]
all_done
word ptr si[2], 1
word ptr si[4], 0
word ptr si[6], 0

Adding this technique to one of those described below will make it a signed
process.

Binary Multiplication

Multiplication in a binary system may generally be represented as the multiplica-

tion of polynomials, with the algorithm handling each bit, byte, or word as a

coefficient of the power of the bits position or the least significant position within that
word or byte:

an * 2
n + . . . a1 * 2

l + a0 * 2
O

* bn * 2
n+ ... b1 * 2

l + b0 * 2
0

bn *(a) * 2
n + ...b1 *(a) * 2

l + b0*(a) * 2
0

where n = the bit position. It is the same for bytes and words except that n is then the

power of the least significant bit within the word or byte:

12345678H = 1234H * 164 + 5678H * 160 = 1234H * 216 + 5678H * 20

In the following example involving the multiplication of two 4-bit quantities,

you may recognize the pencil-and-paper method you learned in school:

Step 1:
*

a3x23 + a2x22 + a1x21 + a0x20
b3x23 + b2x22 + b1x21 + b0x20

b0 * a3 + b0 * a2 + b0 * a1 + b0 * a0

46

INTEGERS

Step 2:

Step 3:

a3x23 + a2x22 + a1x21 + a0x20
* b3x23 + b2x22 + b1x21 + b0x20

b0 * a3 + b0 * a2 + b0 * a1 + b0 * a0
b1 * a3 t b1 * a2 + b1 * a1 + b1 * a0

a3x23 + a2x22 + a1x21 + a0x20
* b3x23 + b2x22 + b1x21 + b0x20

b0 * a3 + b0 * a2 + b0 * a1 + b0 * a0
b1 * a3 + b1 * a2 + b1 * a1 + b1 * a0

b2 * a3 + b2 * a2 + b2 * a1 + b2 * a0

Step 4: a3x23 + a2x22 + a1x21 + a0x20
* b3x23 + b2x22 + b1x21 + b0x20

b0 * a3 + b0 * a2 + b0 * a1 + b0 * a0
b1 * a3 + b1 * a2 + b1 * a1 + b1 * a0

b2 * a3 + b2 * a2 + b2 * a1 + b2 * a0
b3 * a3 + b3 * a2 + b3 * a1 + b3 * a0

b3 * a3 + ((b2 * a3)+ (b3 * a2))((b0 * a1)+ (b0 * a1) + (b1 * a0))+ b0 * a0

An example of this in a four-bit multiply could be shown as:

1100=12D
* 1101=13D

1100
0000

1100
1100
10011100=156

This is also how the basic shift-and-add algorithm for microprocessors is

written. This procedure is taken directly from the positional number theory, which
simply states that the value of a bit or integer within a number depends on its position.

Thus, each pass through the algorithm shifts both the multiplier and the multiplicand

through their corresponding positions, adding the multiplicand to the result if the
multiplier has a one in the 0 th position. (The right shift is arithmetic; that is, a zero

is shifted into the MSB.) As with the pencil-and-paper method, the multiplicand is
rotated left and the multiplier is rotated right.

To demonstrate, let’s multiply two numbers, 1100 (12D) and 1101 (13D). We

47

NUMERICAL METHODS

must first designate one as the multiplicand and the other as the multiplier and set up
registers to hold them. We also need a loop counter to indicate when we have passed

through all the bit positions of the multiplier. We can call this variable cntr (counter)

and a variable to hold the product prdct. We’ll call 1100 (the multiplicand) mltpnd

and 1101 (the multiplier) mltpr. In the following example, the values in parentheses

are all decimal:

0. mltpnd = 1100 (12)
mltpr = 1101 (13)
cntr = 100 (4)
prdct = 0

Then, with each pass through the algorithm, the results are:
1. mltpnd = 11000 (24)

mltpr = 0110 (6)

cntr = 011 (3)
prdct = 1100 (12)

2. mltpnd = 110000 (48)

mltpr = 0011 (3)
cntr = 010 (2)

prdct = 1100 (12)
3. mltpnd = 1100000 (96)

mltpr = 0001 (1)
cntr = 1 (1)
prdct = 111100 (60)

4. mltpnd = 11000000 (192)

mltpr = 0000 (0)
cntr = 00 (0)
prdct = 10011100 (156)

48

INTEGERS

The following routine is based on this algorithm but expects 32-bit operands.

cmul: Algorithm

1. Allocate enough space to store multiplicand and allow for 32 left shifts,
set the variable numbits to 32, and see that the registers where product
is formed contain zeros. (Be certain to provide enough storage for the

output, at most Product_bits = Multiplicand_bits + Multiplier_bits.
Here, 4 Multiplicand_bits+ 4 Multiplier_bits = 8 Product bits.)

2. Shift multiplier right one position and check for a carry.

If there is not a carry, go to step 3.

If there is, add the current value in mltpcnd to the product registers.

3. Shift mltpcnd left one position and decrement the counter variable
numbits. Test numbits for zero.

If it's zero, go to step 4.

If not, return to step 2.

4. Write the product registers to product and go home.

cmul: Listing
; ******

; classic multiply

cmul proc uses bx cx dx si di, multiplicand:dword, multiplier:dword,
product:word

local numbits:byte, mltpcnd:qword
pushf
cld
sub ax, ax
lea s1, word ptr multiplicand
lea di, word ptr mltpcnd
mov cx, 2

rep movsw
stosw
stosw ;clear upper words
mov bx, ax ;clear register to be used to form product
mov cx, ax

dx, ax
byte ptr numbits, 32

49

NUMERICAL METHODS

test-multiplier:
shr
rcr
jnc
add
adc
adc
adc

decrement_counter:
shl
rcl
rcl
rcl
dec
jnz

exit:
mov
mov
mov
mov
mov

popf
ret

cmul endp

word ptr multiplier[2], 1
word ptr multiplier, 1
decrement counter-
ax, word ptr mltpcnd
bx, word ptr mltpcnd[2]
cx, word ptr mltpcnd[4]
dx, word ptr mltpcnd[6]

word ptr mltpcnd, 1
word ptr mltpcnd[2], 1
word ptr mltpcnd[4], 1
word ptr mltpcnd[6], 1
byte ptr numbits
test-multiplier

di, word ptr product
word ptr [di], ax
word ptr [di] [2], bx
word ptr [di][4], cx
word ptr [di][6], dx

One possible variation of this example is to employ the “early-out” method. This
technique doesn’t use a counter to track the multiply but checks the multiplier for

zero each time through the loop. If it’s zero, you’re done. For examples of early-out
termination, see the routines in the section “Skipping Ones and Zeros” and others in

FXMATH.ASM included on the accompanying disk.

A Faster Shift and Add

The same operation can be performed faster and in a smaller space. For one thing,
the shifts being done on the multiplicand and multiplier result in unnecessary double-

precision additions. Eliminating any unnecessary additions saves time and space.

Arranging any shifts so that they are all in the same direction, means fewer registers

or memory variables.
As you may recall, positional notation lends itself quite nicely to polynomial

50

INTEGERS

interpretation. Using a binary byte as an example, let’s say we have two numbers, a

and b:

a3*2
3 + a2*2

2 + a1*2
1+ a0*2

0 = a

and

b3*2
3+ b2*2

2+ b1*2
1+ b0*2

0= b

When we multiply them, we get:

b3*(a3*2
3+ a2*2

2+ a1*2
1+ a0*a

0)* 23+ b2* (a3*2 + a2*2
2+ a1*2

1+
a0* 2

0) * 22+ b1 * (a3* 2
3+ a2*2

2 + a1*2
1+ a0*2

0)* 21+ b0* (a3*2
3+ a2*2

2

Assuming an initial division by 24 produces a fraction:

a * b = [b3*(a*2
-1)+ b2 * (a*2

-2)+ b1* (a*2
-3) + b0 * (a*2

-4)] *

10000H

+ a1*2
1+ a0x*2

0)* 20= a * b

Now we can arrive at the same result as in the previous shift-and-add operation

using only right shifts.

In cmul2, we’ll be using the multiplicand as the product as well. Since the data
type is a quadword, the initial division must be by 24. Storing the multiplicand in the

product variable and concatenating this variable with the internal registers allows us

eight words, enough for the largest possible product of two quadwords. As the
multiplicand is shifted right and out, the lower bytes of the product are shifted in. This

way, we can use one less register (or memory location).

cmul2: Algorithm

1. Move the multiplicand into the lowest four words of the product and load
the shift counter (numbits) with 64. Clear registers AX, BX, CX, and DX
to hold the upper words of the product.

2. Check bit 0 of the multiplicand.

51

NUMERICAL METHODS

3.

If it's one, go to step 3.

Shift the product and multiplicand right one bit.

Decrement the counter.

If it's not zero, return to the beginning of step 2.

If it's zero, we're done.

Add the multiplier to the product.

Shift the product and the multiplicand right one bit.

Decrement the counter.

If it's not zero, return to step 2.

If it's zero, we're done.

cmul2: Listing
; ******

;
; A faster shift and add. Multiply one quadword by another,
; passed on the stack, pointers returned to the results.
; Composed of shift and add instructions.
cmul2 proc uses bx cx dx si di, multiplicand:qword, multiplier:qword,
product:word

local numbits:byte
pushf
cld
sub ax, ax
mov di, word ptr product
lea si, word ptr multiplicand ;write the multiplicand

;to the product
mov cx, 4

rep mov sw
sub di, 8 ;point to base of product
lea si, word ptr multiplier ;number of bits
mov byte ptr numbits, 40h
sub ax, ax
mov bx, ax
mov
mov

test_for_zero:
test

cx, ax
dx, ax

word ptr [di], 1

jne add multiplier

;test the multiplicand for a
;one in the LSB
;makes the jump if the

52

INTEGERS

;LSB is a one

jmp
add multiplier

add

adc
adc
adc

shift:
shr dx, 1

rcr
rcr
rcr
rcr
rcr
rcr
rcr
dec

jz
jmp

exit:
mov

mov
mov
mov

popf
ret

short shift

ax, word ptr [si]

bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

cx, 1
bx, 1
ax, 1
word ptr [di][6], 1
word ptr [d1][4], 1
word ptr [di][2], 1
word ptr [di][O], 1
byte ptr numbits
exit
short test_for_zero

word ptr [di][8], ax

word ptr [dil [10], bx
word ptr [di][12], cx
word ptr [di][14], dx

;add the multlplier to
;subproduct

;shift it
;bytes of

into the lower
the product

;move the upper byte of
;the product

cmul endp

For an example of a routine written for the Z80 and employing this technique,
see the SAMPLES. module on the accompanying disk.

Skipping Ones and Zeros

Anyone who has ever struggled with time-critical code on a bit-oriented machine
has probably tried to find a way to lump the groups of ones and zeros in multipliers
and multiplicands into one add or shift. A number of methods involve skipping over
series of ones and zeros; we’ll look at two such procedures. Their efficiency depends

on the hardware involved: On machines that provide a sticky bit, such as the 80C196,

53

NUMERICAL METHODS

these routines can provide the most improvement. Unfortunately, the processors that

provide that bit also normally have a hardware multiply.
The first technique we’ll look at is the Booth algorithm which finds its way

around ones and zeros by restating the multiplier.2 Suppose we want to multiply

1234H by 0fff0H. Studying the multiplier, we find that 0fff0H is equal to 10000H
-10H. A long series of rotates and additions can thus be replaced by one subtraction

and one addition-that is, subtract 10H x 1234H from the product, then add 10000H
x 1234H to the product. The drawback is that the time it takes to execute this

operation depends on the data. If the worst-case condition arises-a multiplier with
alternating ones and zeros-the procedure can take longer than a standard shift and

add.
The trick here is to scan the multiplier looking for changes from ones to zeros

and zeros to ones. The way this is done depends on the programmer and the MPU
selected. The following table presents the possible combinations of bits examined
and the actions taken.

Bit 0 Carry Action*
0 0 No action
0 1 Add the current state of the multiplicand
1 0 Subtract the current state of the multiplicand
1 1 No action

* This chart assumes that the multiplicand has been rotated along with the multiplier

as it is being scanned.

Remember that as the multiplier is scanned from position 0 through position n,

the multiplicand must also be shifted (multiplied) through these positions.

In its simplest form, the Booth algorithm may be implemented similarly to the
shift and add above except that bit 0 of the multiplier is checked along with the carry

to determine the appropriate action. As you can see from the table, if you’re in the
middle of a stream of zeros or ones, you do nothing but shift the multiplier and

multiplicand. Depending on the size of the operands involved and the instruction set,
it may be faster simply to increment a counter for a multibit shift when the time

comes.
The coding for this algorithm is heavily dependent on the device (instruction

54

INTEGERS

mov
clc

set), but one possible scheme is as follows.

booth: Algorithm

1. Allocate space for the multiplicand and 32 shifts. Clear the carry and
the registers used to form the product.

2. Jump to step 6 if the carry bit is set.

3. Test the 0th bit. If it's not set, jump to step 5.

4. Subtract mltpcnd from the registers used to form the product.

5. Shift mltpcnd left one position.

Check multiplier to see if it's zero. If so, go to step 8.

Shift multiplier right one position, shifting the LSB into the carry,
and jump to step 2.

6. Test the 0th bit. If it's set, jump to step 5.

7. Add mltpcnd to the product registers and jump to step 5.

8. Write the product registers to product and go home.

booth: Listing
; *****

; booth

; unsigned multiplication algorithm
; 16 X 16 multiply

booth proc uses bx cx dx, multiplicand:dword, multiplier:dword, product:word
local mltpcnd:qword
pushf
cld
sub ax, ax
lea si, word ptr multiplicand
lea di, word ptr mltpcnd
mov cx, 2

rep mov sw
stosw
stosw
mov bx, ax
mov cx, ax

;clear upper words

dx, ax

check_carry:

5 5

NUMERICAL METHODS

jc carry_set
test word ptr multiplier, 1

jz shift_multiplicand
sub_multiplicand:

sub ax, word ptr mltpcnd
sbb bx, word ptr mltpcnd[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpcnd[61

shift_multiplicand:
shl
rcl
rcl
rcl
or
jnz
or
jnz

jw
shift multiplier:

shr
rcr

jmp
exit:

mov
mov
mov
mov
mov

popf
ret

carry-set:
test
jnz

add multiplicand:
add
adc
adc
adc

jmp
booth endp

word ptr mltpcnd, 1
word ptr mltpcnd[2], 1
word ptr mltpcnd[4], 1
word ptr mltpcnd[6], 1
word ptr multiplier[2], 0
shift multiplier
word ptr multiplier, 0
shift multiplier
short exit

;test bit 0

;early-out mechanism

word ptr multiplier[2], 1
word ptr multiplier, 1
short check carry

;shift multiplier

di, word ptr product
word ptr [di], ax
word ptr [dil[2], bx
word ptr [di][4], cx
word ptr [di][6], dx

word ptr multiplier, 1
shift-multiplicand

ax, word ptr mltpcnd
bx, word ptr mltpcnd[2]
cx, word ptr mltpcnd[4]
dx, word ptr mltpcnd[6]
short shift_multiplicand

;test bit 0

A corollary to the Booth algorithm is bit pair encoding. The multiplier is
scanned, as in the Booth algorithm, but this time three bits are considered at once (see

56

INTEGERS

the following chart). This method is attractive because it guarantees that half as many

partial products will be required as with the shift and add to produce the result.

Bit n+l Bit n

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

Bit n-l

0

1

0

1

0

Action*

No action

Add the current state of the multiplicand

Add the current state of the multiplicand

Add twice the current state of the multiplicand

Subtract twice the current state of the
multiplicand

1 Subtract the current state of the multiplicand

0 Subtract the current state of the multiplicand

1 No action

* This chart assumes that the multiplicand has been shifted along with the multiplier
scanning.

The multiplier is examined two bits at a time relative to the high-order bit of the
next lower pair (bit n-l in the table). First, the multiplier is understood to have a
phantom zero to the right of bits 0 and 1; These bits are analyzed accordingly.

Second, a phantom zero can be assumed to the left of the multiplier for the purpose
of filling out the table. For example, the number 21H would be viewed as:

25 24 2 3 2 2 2 l 20

0 1 0 0 0 0 1 0

The basic approach to implementing this routine is similar to the Booth
algorithm.

bit_pair: Algorithm

1. Allocate space to hold the multiplicand plus 32 bits for shifting. Clear
the carry and the registers to be used to form the product.

2. If the carry bit is set, jump to step 8.

3. Test the 0th bit. If it's clear, jump to step 5.

57

NUMERICAL METHODS

4.

5.

6.

7.

8.

9.

Test bit 1.

If it's set, subtract mltpcnd from the product registers and continue
with step 7.

Otherwise, add mltpcnd to the product registers and go to step 7.

Test bit 1.

If it's set, jump to step 6.

Otherwise, continue from step 7.

Subtract twice mltpcnd from the product registers.

Shift mltpcnd left two positions.

Check multiplier to see if it's zero. If so, continue at step 13.

Shift multiplier two positions to the right and into the carry.

Jump to step 2.

Test the 0 th bit.

If it's set, jump to step 11.

Otherwise, go to step 12.

Add the current value of mltpcnd to the product registers.

10. Add the current value of mltpcnd to the product registers and continue
with step 7.

11. Test bit 1.

If it's set, jump to step 7.

Otherwise, add twice mltpcnd to the product registers and continue from
step 7.

12. Test bit 1.

If it's set, subtract mltpcnd from the product registers and continue
with step 7.

Otherwise, add mltpcnd to the product registers and go to step 7.

13. Write the product registers to product and go home.

bit_pair: Listing
; ******

; bit pair encoding

;
;
;
bit_pair proc uses bx cx dx, multiplicand:dword, multiplier:dword, product:word

58

INTEGERS

local
pushf
cld
sub
lea
lea
mov

rep movsw
stosw
stosw
mov
mov
mov
clc

check carry:

jc
test

jz
test
jnz

jmp
shiftorsub:

test

jz
subx2_multiplicand:

sub
sbb
sbb
sbb

mltpcnd:qword

ax, ax
si, word ptr multiplicand
di, word ptr mltpcnd
cx, 2

;clear upper words
bx, ax
cx, ax
dx, ax

carry set
word ptr multiplier, 1
shiftorsub

;test bit n-l
;test bit 0

word ptr multiplier, 2
sub multiplicand
add multiplicand

;test bit 1

word ptr multiplier, 2 ;test bit 1
shift multiplicand

ax, word ptr mltpcnd
bx, word ptr mltpcnd[2]
cx, word ptr mltpcnd[4]
dx, word ptr mltpcnd[6]

sub multiplicand:
sub ax, word ptr mltpcnd
sbb bx, word ptr mltpcnd[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpcnd[6]

shift multiplicand:
shl word ptr mltpcnd, 1
rcl word ptr mltpcnd[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1
shl word ptr mltpcnd, 1
rcl word ptr mltpcnd[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1

;cheap in-line multiply

or word ptr multlplier[2], 0 ;early out if multiplier is zero

59

NUMERICAL METHODS

jnz
or
jnz

jmp
shift multiplier:

shr
rcr
shr
rcr

jmp
exit:

mov
mov
mov
mov
mov

popf
ret

carry_set:
test
jnz

jmp

shift_multiplier
word ptr multiplier, 0
shift multiplier
short exit

word ptr multiplier[2], 1 ; shift multiplier right twice
word ptr multiplier, 1
word ptr multiplier[2], 1
word ptr multiplier, 1
short check_carry

di, word ptr product
word ptr [di], ax

;write product out beforeleaving

word ptr [di] [2], bx
word ptr [di][4], cx
word ptr [di][6], dx

word ptr multiplier, 1
addorsubx2
short addorsubx1

addx2_multiplicand:
add ax, word ptr mltpcnd ;cheap in-line multiplier
adc bx, word ptr mltpcnd[2]
adc cx, word ptr mltpcnd[4]
adc dx, word ptr mltpcnd[6]

add-multiplicand:
add ax, word ptr mltpcnd
adc bx, word ptr mltpcnd[2]
adc cx, word ptr mltpcnd[4]
adc dx, word ptr mltpcnd[6]

jmp short shift_multiplicand
addorsubx2:

test
jnz

jmp
addorsubx1:

word ptr multiplier, 2 ;test bit 1
shift-multiplicand
short addx2_multiplicand

test
jnz

jmp

word ptr multiplier, 2
sub_multiplicand
short add_multiplicand

;test bit 1

60

bit_pair

INTEGERS

endp

Hardware Multiplication: Single and Multiprecision

If the processor you’re using has a hardware multiply, you’re in luck. Depending

on the size of the operands, it’s almost always faster than any of the preceeding
techniques and can be extended to handle operands of virtually any size. There are
exceptions, however; for example, the MUL instruction on the 8086 was terribly

slow, making it a draw in certain situations. The 80286 was faster in both cycle time
and clock speed, and the 80386 was even faster; nevertheless, many examples show

that multiplication using the shift and add technique is highly competitive. This is

almost never true of multiprecision multiplication, although the double precision
shift available on the 80386 and up may be an exception.

In earlier examples involving multiplication, we saw numbers represented as

binary polynomials in which each position contained either a zero or a one times base
2 taken to a certain power. To perform that multiplication, we multiplied each bit of

the muliplicand by each bit of the multiplier, and summed the subproducts according
to their power to form the product (see the section Binary Multiplication). Working
with larger numbers is much the same except that the polynomials generally show
the operands broken into bytes or words. For example, suppose we needed to

multiply two 24-bit quantities, such as 123456H and 654321H. We would want to

restate these numbers in terms of a new base, that of our hardware multiply. In this
case, we’re using an 8086 with a 16-bit multiply, so our base is 216 (10000H). First,

123456H becomes three single-byte quantities:

12x10000H1 + 3456x10000H0

and 654321H becomes:

65x10000H1 + 4321x10000H0

To better understand this process, let’s relabel each byte. The quantity 123456H
can be seen as the sum of 120000H + 3456H, which becomes a + b. The quantity

61

NUMERICAL METHODS

654321H becomes 650000H + 4321H, which then becomes d + e. Now, multiply:

d+e

a+b
be

bd
ae

ad

With the original numbers, that calculation is:

650000H + 43218
*120000H + 34568

0db94116H
14a5ee0000H
4b8520000H

71a00000000H
7336bf94116H

The direction the multiply takes is not significant; that is, the most significant
words could have been multiplied first because the final additions align the results.

This technique can be extended as far as needed to produce a result. It’s also fast,
requiring only a few multiplies and divides.

In mul32, we multiply two doubleword numbers and arrive at a quadword result.

mul32: Algorithm

1. Use DI to hold the address of the result, a quadword.

2. Move the most significant word of the multiplicand into AX and multiply
by the most significant word of the multiplier. The product of this
multiplication is written to result.

3. The most significant word of the multiplicand is returned to AX and
multiplied by the least significant word of the multiplier. The least
significant word of this product is MOVed to the second word of result,
the most significant word of the product is ADDed to the third word of
result, and any carry is propagated to the most significant word by
adding-with-carry a zero.

4. The least significant word of the multiplicand is moved to AX and
multiplied by the most significant word of the multiplier. The product

62

INTEGERS

is added to the second word of result and added-with-carry to the third
word of result, with any carry propagated into the most significant word.

5. Finally, the least significant word of the multiplicand is moved into
AX and multiplied by the least significant word of the multiplier. The
least significant word of this product is moved to the least significant
word of result, the most significant word of the product is added to the
second word of result, and any carry is propagated into the third and
then the most significant word of result.

mu132: Listing
;*****

;mu132 - Multiplies two unsigned fixed-point values. The
;arguments and a pointer to the result are passed on the stack.
mu132 proc uses dx di,

smultiplicand:dword, smultiplier:dword, result:word
mov
mov
mul
mov
mov
mov
mul
mov
add
adc
mov
mul
add
adc
adc
mov
mul
mov
add
adc
adc
ret

mu132 endp

di, word ptr result
ax, word ptr smultiplicand[2]
word ptr smultiplier[2]
word ptr [di][4], ax
word ptr [di] [6], dx
ax, word ptr smultiplicand[2]
word ptr smultiplier[0]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], 0
ax, word ptr smultiplicand[0]
word ptr smultiplier[2]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], 0
ax, word ptr smultiplicand[0]
word ptr smultiplier[0]
word ptr [di] [0], ax
word ptr [di][2], dx
word ptr [di][4], 0
word ptr [di][6], 0

;small model pointer is near
;multiply multiplicand high
;word by multiplier high word

;multiply multiplicand high
;word by multiplier low word

;add any remnant carry
;multiply multiplicand low
;word by multiplier high word

;add any remnant carry
;multiply multiplicand low
;word by multiplier low word

;add any remnant carry

For additional examples of this technique, see the FXMATH.ASM module.

63

NUMERICAL METHODS

Binary Division

Error Checking

Division requires more error checking than any of the other basic arithmetic

operations. Depending on whether you’re using the hardware division instructions
or a brew of your own, you’ll need to know if a mistake has been made. The primary

difference between using a hardware instruction and using your own solution is that
an error made during the execution of a hardware instruction can blow up a program

quite unaesthetically by invoking an exception or trap.
Three basic errors can occur during division: overflow, division of zero, and an

attempt to divide by zero.

You can avoid overflow by checking the dividend and divisor to see whether

their quotient will fit in the space provided, or by always breaking the dividend into

coefficients of the same size data type as the dividend. An overflow (or underflow)
can happen quite easily when the dividend is very large and the divisor is small. If
you’re using a software algorithm to perform the divide, you may find that you lose
part of your data. If you’re using a hardware instruction, a hardware exception will

be invoked. On the 8086, the largest dividend allowed is 32-bits, the largest divisor

is 16 with a 16-bit quotient. In this case, dividing 12345678H by 01DEH results in

a quotient of 9bfe9H and a hardware exception (the result too large for the 16 bits the
8086 allows).

If you think such an overflow could occur in your code, it might be wise to

include a test before the divide to ascertain how much storage the quotient will

require and, therefore, which form of the divide to use. The largest dividend a divisor

can divide and store is equal to the size of the data type multiplied by the divisor. By
comparing the number obtained from such a multiplication with an arbitrary

dividend, you can determine whether the result of that operation will fit in the data
type specified.

With binary numbers, this is easy. The largest quotient an 8086 can produce
without overflow is 16 bits, which amounts to a left shift of the divisor of 16 bits or
a multiplication of 10000H. If the value obtained is greater than or equal to the
dividend, the result of the division will fit; if not, it won’t. In other words, if you’re
dividing a 32-bit quantity by a 16-bit quantity, simply comparing the divisor with the

64

INTEGERS

upper word of the dividend (dividend/l0000H) will tell you whether the quotient will

fit in 16 bits or not. If the upper 16 bits of the dividend are greater than your divisor,

the operation will overflow. This test can be extended to 16-bit dividends and eight-

bit divisors.

Suppose we wish to divide 12345678H by 1deH. Since this divisor is larger than
one byte, we must use 16-bit division. The 1deH need not be multiplied by 10000H

or shifted; we only need to compare the upper word of the dividend and the divisor
to see which is greater.

mov dx, dvdnd[2] ;1234H
mov ax, dvdnd[0] ;5678H
mov cx, dvsr ;1DEH

cmp dx, cx ;compare

ja not_big_enuf ;the quotient won't fit
div32:

Depending on the circumstances, the best method may be to begin any
multiprecision divide by clearing DX and loading AX with the most significant

word. An overflow is impossible with this technique as long as you have a divisor,

since 1H multiplied by 10000H is greater than any one-word dividend.
The other two errors, division of zero and an attempt to divide by zero, are easily

detected in the beginning of the routine. If either condition is true, the program can

branch to a predetermined error routine and return.
Finally, two conditions are worth checking if your arithmetic gets very big:

l Are the divisor and dividend equal?
l Is the divisor greater than the dividend?

If the two are equal, return a one; if the divisor is greater, return a zero with the
dividend in the remainder.

Examples of this kind of checking can be found in the FXMATH.ASM module
and later in this chapter in the section Hardware Division.

Software Division

The classic multiplication algorithm is based on the idea of multiplication as
iterative addition, so you shouldn’t be surprised to learn that the method for division

65

NUMERICAL METHODS

Figure 2-1. Division using shift and subtract.

66

INTEGERS

is based on shift and subtract. This procedure isn’t fast, but it’s friendly.
The procedure involves shifting the dividend left into a variable, the remainder,

and comparing this remainder with the divisor. If the remainder is equal to or larger
than the divisor, the divisor is subtracted from the remainder and a one is left-shifted

into a variable, called the quotient. This continues until the requisite number of bits
have been shifted. No early out is available here; the number of shifts necessary

depends on the size of the operands.

The following variables will be used for the division algorithms: dvsr, dvdnd,

qtnt, cntr, and rmndr. Note that during execution of the algorithm the quotient,
dividend, and remainder share memory locations (Figure 2- 1). Shifting the dividend

into the remainder leaves the lower bits free to become the quotient. At the end of the
routine the dividend is gone, leaving only the quotient and the remainder. For the

programmer, this means fewer shifts, some increase in speed, and a slightly smaller

routine. The integers these routines are meant to handle are unsigned; the method for

signed division is the same as for multiplication which was described earlier (see
Signed vs. Unsigned), and is demonstrated in FXMATH.ASM.

cdiv: Algorithm

1. Load the quotient (qtnt) with the dividend (dvdnd);
register, si, with the number of bits in the dividend
be the size of our quotient); and clear registers AX,

2. Left-shift the dividend into the quotient and remainder

3. Compare rmdr and dvsr.

set an onboard
(this will also
BX, CX, and DX.

simultaneously.

If dvsr > = rmndr, subtract dvsr from rmndr and increment qtnt.

Otherwise, fall through to the next step.

4. Decrement si and test it for zero. If si is not 0, return to step 2.

5. Write the remainder and leave.

This will work for any size data type and, as you can see, is basically an iterative

subtract.

67

NUMERICAL METHODS

cdiv: Listing
;*****

; classic divide

; one quadword by another, passed on the stack, pointers returned
; to the results

; composed of shift and sub instructions
; returns all zeros in remainder and quotient if attempt is made to divide
; zero. Returns all ffs in quotient and dividend in remainder if divide by

; zero is attempted.
cdiv proc uses bx cx dx si di, dvdnd:qword, dvsr:qword,

qtnt:word, rmndr:word

pushf
cld
mov
lea
mov

rep movsw

sub
mov
sub
mov
mov
mov

shift:
shl
rcl
rcl
rcl
rcl
rcl
rcl
rcl

compare:

cx, 4
si, word ptr dvdnd
di, word ptr qtnt

di, 8
si, 64
ax, ax
bx, ax
cx, ax

dx, ax

word ptr [dil, 1
word ptr [dil[2],
word ptr [dil[41,
word ptr [di] [6],

ax, 1
bx, 1
cx, 1

dx, 1

cmp dx, word ptr dvsr[6]

jb test-for-end

cmp cx, word ptr dvsr[4]

jb test-for-end

cmp bx, word ptr dvsr[2]

jb test-for-end

cmp ax, word ptr dvsr[0]

jb test-for-end

68

;upward

;move dividend to quotient
;dvdnd and qtnt share same
;memory space
;reset pointer
;nurrber of bits

;shift quotient/dividend left
;into registers (remainder)

;Compare the remainder and
;divisor

;if remainder divisor

INTEGERS

sub

sbb
sbb
sbb
add
adc
adc
adc

test_for_end:
dec
jnz
mov
mov
mov
mov
mov

exit:

popf
ret

cdiv endp

ax, word ptr dvsr

bx, word ptr dvsr[2]
cx, word ptr dvsr[4]
dx, word ptr dvsr[6]
word ptr [di], 1
word ptr [di][2], 0
word ptr [di][4], 0
word ptr [di][6], 0

;if it is greater than
;the divisor
;subtract the divisor and

;increment the quotient

si
shift
di, word ptr rmndr
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

;decrement the counter

;write remainder

;to take care of cld

Hardware Division

Many microprocessors and microcontrollers offer hardware divide instructions
that execute within a few microseconds and produce accurate quotients and remain-

ders. Except in special cases, from the 80286 on up, the divide instructions have an
advantage over the shift-and-subtract methods in both code size (degree of complex-
ity) and speed. Techniques that involve inversion and continued multiplication

(examples of both are shown in Chapter 3) don’t stand a chance when it comes to the

shorter divides these machine instructions were designed to handle.
The 8086 offers hardware division for both signed and unsigned types; the 286,

386, and 486 offer larger data types but with the same constraints. The DIV

instruction is an unsigned divide, in which an implied destination operand is divided
by a specific source operand. If the divisor is 16 bits wide, the dividend is assumed

to be in DX:AX. The results of the division are returned in the same register pair (the
quotient goes in AX and the remainder in DX). If the divisor is only eight bits wide,

the dividend is expected to be in AX; at the end of the operation, AL will contain the
quotient, while AH will hold the remainder.

69

NUMERICAL METHODS

As a result, you should make sure the implied operands are set correctly. For

example,

div cx

says that DX:AX is to be divided by the 16-bit quantity in CX. It also means that DX

will then be replaced by the remainder and AX by the quotient. This is important
because not all divisions turn out neatly. Suppose you need to divide a 16-bit quantity
by a 9-bit quantity. You’ll probably want to use the 16-bit form presented in the
example. Since your dividend is only a word wide, it will fit neatly in AX. Unless you

zero DX, you’ll get erroneous results. This instruction divides the entire DX:AX
register pair by the 16-bit value in CX. This can be a major annoyance and something
you need to be aware of.

As nice as it is to have these instructions available, they do have a limitation;

what if you want to perform a divide using operands larger than their largest data

type? The 8086 will allow only a 32-bit dividend and a 16-bit divisor. With the 386
and 486, the size of the dividends has grown to 64 bits with divisors of 32;

nevertheless, if you intend to do double-precision floating point, these formats are

still too small for a single divide.
Several techniques are available for working around these problems. Actually,

the hardware divide instructions can be made to work quite well on very large

numbers and with divisors that don’t fit so neatly in a package.
Division of very large numbers can be handled in much the same fashion as

hardware multiplication was on similarly large numbers. Begin by dividing the most
significant digits, using the remainders from these divisions as the upper words (or
bytes) in the division of the next most significant digits. Store each subquotient as

a less and less significant digit in the main quotient.

The number 987654321022H can be divided by a 2987H bit on the 8086 using

the 16-bit divide, as follows (also see Figure 2-2):

1. Allocate storage for intermediate results and for the final quotient. Assum-
ing 32 bits for the quotient (qtnt) and 16 bits for the remainder (rmndr), three
words will be required for the dividend (dvdnd) and only 16 bits for the divisor

70

INTEGERS

Figure 2-2. Multiprecision division

(dvsr). Actually, the number of bits in the QUOTIENT is equal to the

log, DIVIDEND - log2, DIVISOR, or 34 bits.

2. Clear DX, load the most significant word of the dividend into AX and the

divisor into CX, and divide:

sub, dx, dx
mov ax, word ptr dvdnd[4]
div cx

;9876
;divide

3 . At the completion of the operation, AX will hold 3 and DX will hold 1 be 1H.

4. Store AX in the upper word of the quotient:

mov word ptr qtnt[4], ax ;3H

5. With the remainder still in DX as the upper word of the “new” dividend, load

71

NUMERICAL METHODS

the next most significant word into AX and divide again:

mov ax, word ptr dvdnd[2]
div cx

;5432H
;recall that the divisor
;is still in CX

6. Now DX holds 2420H and AX holds 0abdeH as the remainder. Store AX in

the next most significant word of the quotient and put the least significant word
of the dividend into AX.

mov word ptr qtnt[2],ax ;OabdeH

7. Divide DX:AX one final time:

mov
div

ax, word ptr dvdnd[0]
cx

8. Store the result AX in the least significant word of the quotient and DX
in the remainder.

mov
mov

word ptr qtnt[0],ax
word ptr rmndr,dx

;0deb2H
;le44H

This technique can be used on arbitrarily large numbers; it’s simply a matter of
having enough storage available.

What if both the divisor and the dividend are too large for the hardware to handle

by itself? There are at least two ways to handle this. In the case below, the operands
are of nearly equal size and only need to be normalized; that is, each must be divided
or right-shifted by an amount great enough to bring the divisor into range for a

hardware divide (on an 8086, this would be a word). This normalization doesn’t

affect the integer result, since both operands experience the same number of shifts.

Because the divisor is truncated, however, there is a limitation to the accuracy and

precision of this method.

If we have good operands, right-shift the divisor, counting each shift, until it fits

72

INTEGERS

within the largest data type allowed by the hardware instruction with the MSB a one.

Right shift the dividend an equal number of shifts. Once this has been done, divide
the resulting values. This approximate quotient is then multiplied by the original

divisor and subtracted from the original dividend. If there is an underflow, the

quotient is decremented, the new quotient multiplied by the divisor with that result
subtracted from the original dividend to provide the remainder. When there is no

underflow, you have the correct quotient and remainder.

Figure 2-3. Multiword division. This process can continue as long as there is a remainder.

73

NUMERICAL METHODS

The normalization mentioned earlier is illustrated in Figure 2-3. It requires only
that the operands be shifted right until the 16 MSBs of the divisor reside within a word

and the MSB of that word is a one.

An example of this technique for 32 bit operands is shown in div32.

div32: Algorithm

1. Set aside a workspace of eight words. Load the dividend (dvdnd) into the
lowest two words and the divisor (dvsr) into the next two words. Use DI
to point to the quotient.

2. Check to see that the dividend is not zero.

If it is, clear the quotient, set the carry, and leave.

3. Check for divide by zero.

If division by zero has occurred, return -1 with the carry set.

If the divisor is greater than a word, go to step 4.

Use BX to point at the remainder (rmndr).

Bring the most significant word of the dividend into AX (DX is zero) and
divide by the normalized divisor.

Store the result in the upper word of the quotient.

Bring the least significant word of the dividend into AX (DX contains
the remainder from the last division) and divide again.

Store the result in the least significant word of the quotient.

Store DX and clear the upper word of the remainder.

4. Shift both the dividend and the divisor until the upper word of the
divisor is zero. This is the normalization.

5. Move the normalized dividend into DX:AX and divide by the normalized
divisor.

6. Point to the quotient with BX and the top of the workspace with DI.

7. Multiply the divisor by the approximate quotient and subtract the result
from a copy of the original dividend.

If there is no overflow, you have the correct quotient and remainder.

Otherwise, decrement the approximate quotient by one and go back to the
beginning of step 7. This is necessary to get the correct remainder.

8. Write the remainder, clear the carry for success, and go home.

74

INTEGERS

div32: Listing
; *****

;div32
;32-by-32-bit divide
;Arguments are passed on the stack along with pointers to the
;quotient and remainder.

div32 proc uses ax dx di si,

dvdnd:dword, dvsr:dword, qtnt:word, rmndr:word
workspace[8] :word
ax, ax

local
sub
mov
mov
lea
lea

rep movsw
mov
lea
lea

rep movsw
mov

cmP
jne

cmp
jne

jmp
do_divide:

cmp
jne

cmp
je

word ptr dvdnd[2], ax
do_divide
zero_div

mov
mov
div
mov
mov
div
mov
mov
xor
mov

jmp

dx, a
cx, 2
si, word ptr dvdnd
di, word ptr workspace

cx, 2
si, word ptr dvsr
di, word ptr workspace[4]

di, word ptr qtnt
word ptr dvdnd, ax
do-divide

word ptr dvsr[2],ax
shift
word ptr dvsr, ax
div_by_zero

bx, word ptr rmndr
ax, word ptr dvdnd[2]
word ptr dvsr
word ptr [di][2],ax
ax, word ptr dvdnd
word ptr dvsr
word ptr [di],ax
word ptr [bx],dx
ax,ax
word ptr [bx][2],ax
exit

;check for a
;zero dividend

;see if it is small enough
;check for divide by zero
;as long as dx is zero,
;no overflow is possible
;point at remainder
;first divide upper word

;and save it

;then the lower word
;and save it
;save remainder

75

NUMERICAL METHODS

shift:
shr

rcr
shr
rcr

cmp

jne
divide:

mov
mov
div
mov

get-remainder
mov
lea

reconstruct:
mov
mul
mov
mov
mov
mul
add
mov
mov
sub

sbb
jnc

mov
mov
sub
sbb

jmp
div_ex:

mov

mov
mov

word ptr dvdnd[2], 1

word ptr dvdnd[0], 1
word ptr dvsr[2], 1
word ptr dvsr[0], 1
word ptr dvsr[2],ax

shift

ax, word ptr dvdnd
dx, word ptr dvdnd[2]
word ptr dvsr
word ptr [di] [0], ax

bx, di
di, word ptr workspace[8]

ax, word ptr workspace[4]
word ptr [bx]
word ptr [di] [0], ax
word ptr [di][2], dx
ax, word ptr workspace[6]
word ptr [bx]
word ptr [di][2], ax
ax, word ptr workspace[0]
dx, word ptr workspace[2]
ax, word ptr [di] [0]

dx, word ptr [di][2]
div_ex

ax, word ptr [bx]
dx, word ptr [bx][2]
word ptr [bx], 1
word ptr [bx] [2], 0
short reconstruct

di, word ptr rmndr

;normalize both dvsr and
;dvdnd
;shift both the same number

;shift until last one
;leaves upper word

;since MSB of dvsr is a one, no
;overflow is possible here

;approximate quotient

;quotient
;test first approximation of
;quotient by multiplying it by
;dvsr and comparing it with dvdnd

;low word of multiplicand by
;low word of multiplier

;high word of multiplicand by
;low word of multiplier

;compare results of divide
;approximation

;good or overflows
;overflow, decrement approx
;quotient

;decrement the quotient

;the result is a
;and remainder

word ptr [di], ax
word ptr [di] [2], dx

good quotient

76

INTEGERS

clc

;division by zero

;division of zero

exit:
ret

div_by_zero:
not
mov
mov
stc

jmp
zero_div:

mov
mov
stc

jmp
div32 endp

ax
word ptr [di][0], ax
ord ptr [di] [2], ax

exit

word ptr [di][0], ax
word ptr [di][21, ax

exit

If very large operands are possible and the greatest possible precision and
accuracy is required, there is a very good method using a form of linear interpolation.

This is very useful on machines of limited word length. In this technique, the division
is performed twice, each time by only the Most Significant Word of the divisor, once
rounded down and once rounded up to get the two limits between which the actual

quotient exists. In order to better understand how this works, take the example,

98765432H/54321111H. The word size of the example machine will be 16 bits,
which means that the MSW of the divisor is 5432H * 216. The remaining divisor bits

should be imagined to be a fractional extension of the divisor, in this manner:

5432.1111H.
The first division is of the form:

987654328/54320000H

and produces the result:

1.cf910000H.

Next, increment the divisor, and perform the following division:

77

NUMERICAL METHODS

for the second quotient:
98765432H/54330000H

1.cf8c0000H.

Now, take the difference between these two values:
1cf9l0000H - 1cf8c0000H = 50000H.

This is the range within which the true quotient exists. To find it, multiply the

fraction part of the divisor described in the lines above by this range:

50000H * .1111H = 5555H,

and subtract this from the first quotient:

1cf910000H - 5555H = 1.cf90aaabH.

To prove this result is correct, convert this fixed point result to decimal, yielding:

1.810801188229D.

Convert the operands to decimal, as well:

98765432H/54321111H = 2557891634D/1412567313D = 1.81081043746D.

78

This divide does not produce a remainder in the same way the division above does;
its result is true fixed point with a fractional part reflecting the remainder. This

method can be very useful for reducing the time it takes to perform otherwise time
consuming multiple precision divisions. However, for maximum efficiency, it
requires that the position of the Most Significant Word of the divisor and dividend

be known in advance. If they are not known, the routine is responsible for locating
these bits, so that an attempt to divide zero, or divide by zero, does not occur.

The next routine, div64, was specially written for the floating point divide in

INTEGERS

Chapter Four. This method was chosen, because it can provide distinct advantages
in code size and speed in those instances in which the position of the upper bits of

each operand is known in advance. In the next chapter, two routines are presented

that perform highly accurate division without this need. They, however, have their
own complexities.

To begin with, the operands are broken into word sizes (machine dependent),
and an initial division on the entire dividend is performed using the MSW of the
divisor and saved. The MSW of the divisor is incremented and the same division is

performed again, this will, of course result in a quotient smaller than the first division.
The two quotients are then subtracted from one another, the second quotient from the
first, with the result of this sutraction multiplied by the remaining bits of the divisor
as a fractional multiply. This product is subtracted from the first quotient to yield a

highly accurate result. The final accuracy of this operation is not to the precision you

desire, it can be improved by introducing another different iteration.

div64: Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

Clear the result and temporary variables.

Divide the entire dividend by the Most Significant Word of the divisor.
(The remaining bits will be considered the fractional part.)

This is the first quotient, the larger of the two, save this result in
a temporary variable.

Increment the divisor.

If there is an overflow, the next divide is really by 216, therefore,
shift the dividend by 16 bits and save in a temporary variable.

Continue with step 5.

Divide the entire dividend by the incremented divisor.

This is the second quotient, the smaller of the two, save this result
in a temporary variable.

Subtract the second quotient from the first.

Multiply the result of this subtraction by the fractional part of the
divisor.

Subtract the integer portion of this result from the first quotient.

Write the result of step 7 to the output and return.

79

NUMERICAL METHODS

div64: Listing
; ******

;div64
;will divide a quad word operand by a divisor
;dividend occupies upper three words of a 6 word array
;divisor occupies lower three words of a 6 word array
;used by floating point division only
div64 proc uses es ds,

dvdnd:qword, dvsr:qword, qtnt:word

local result:tbyte, tmp0:qword,
tmpl:qword, opa:qword, opb:qword

pushf
cld

sub ax, ax
lea di, word ptr result
mov cx, 4

rep stosw
lea di, word ptr tmp0 ;quotient
mov cx, 4

rep stosw

setup:
mov bx, word ptr dvsr[3]

continue_setup:
lea si, word ptr dvdnd
lea di, word ptr tmp0
sub a, dx

mov ax, word ptr [si][3]
diV bx
mov word ptr [di][4], ax ;result goes into temporary varriable
mov ax, word ptr [si][1]
div bx
mov word ptr [di][2], ax
sub ax, ax
mov ah, byte ptr [si]
div bx
mov word ptr[di] [O], ax

;divisor no higher than
;receives stuff for quotient

;entire first approximation

80

INTEGERS

lea si, word ptr dvdnd
lea di, word ptr tmpl
sub dx, dx
add bx, 1
jnc as_before

mov ax, word ptr [si] [3]

mov word ptr [di][2], ax
mov ax, word ptr [si] [l]
mov word ptr [di][0], ax
jmp find-difference

;divisor no higher than
;receives stuff for quotient

;round divisor up
;if the increment results in
overflow
;there is no divide, only a
;shift by 216

as-before:
mov

div
mov
mov
div
mov
sub
mov
div
mov

ax, word ptr [si] [3] ;divide entire dividend by new
;divisor

bx
word ptr [di][4], ax
ax, word ptr [si] [l]
bx
word ptr [di][2], ax

a, ax
ah, byte ptr [si]
bx
word ptr [di] [0], ax

;result goes into quotient

;result goes into quotient

;result goes into quotient

find-difference:
invoke sub64, tmp0, tmp1, addr opa ;get the difference between the

;two extremes
lea si, word ptr dvsr
lea di, word ptr opb
mov cx, 3

rep movsb
sub ax, ax
stosb
stosw

invoke mu164a, opa, opb, addr result ;fractional multiply to get
;portion of

lea si, word ptr result[3] ;difference to subtract from
;initial quotient

81

NUMERICAL METHODS

lea di, word ptr opb
mov cx, 3

rep movsb
sub ax, ax
stosb
stosw

;(high quotient)

invoke sub64,tmp0, opb, addr tmp0 ;subtract and write out result
lea si, word ptr tmp0

div_exit:
mov di, word ptr qtnt
mov cx, 4

rep movsw

popf
ret

div64 endp

When writing arithmetic routines, keep the following in mind:

Addition can always result in the number of bits in the largest summend plus

one.

Subtraction requires at least the number of bits in the largest operand for the

result and possibly a sign.

The number of bits in the product of a multiplication is always equal to log,

multiplier + log, multiplicand. It is safest to allow 2n bits for an n-bit by n-
bit multiplication.

The size, in bits, of the quotient of a division is equal to the difference, log,

dividend - log2, divisor. Allow as many bits in the quotient as in the dividend.

82

INTEGERS

1

2

Microsoft Macro Assembler Reference. Version 6.0. Redmond, WA: Microsoft

Corp., 1991.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-

Hill Book Co., 1984, Page 148.

83

84

C H A P T E R 3

Real Numbers

There are two kinds of fractions. A symbolic fraction represents a division

operation, the numerator being the dividend and the denominator the divisor. Such
fractions are often used within the set of natural numbers to represent the result of
such an operation. Because this fraction is a symbol, it can represent any value, no
matter how irrational or abstruse.

A real number offers another kind of fraction, one that expands the number line

with negative powers of the base you’re working with. Base 10, involves a decimal
expansion such that a-1, * 10-l0 + a-2* 10-10+ a-3 * 10-10. Nearly all scientific,
mathematical, and everyday work is done with real numbers because of their

precision (number of representable digits) and ease of use.

The symbolic fraction 1/3 exactly represents the division of one by three, but a
fractional expansion in any particular base may not, For instance, the symbolic

fraction l/3 is irrational in bases 10 and 2 and can only be approximated by
.33333333D and .55555555H.

A value in any base can be irrational-that is, you may not be able to represent
it perfectly within the base you’re using. This is because the positional numbering

system we use is modular, which means that for a base to represent a symbolic

fraction rationally all the primes of the denominator must divide that base evenly.

It’s not the value that’s irrational; it’s just that the terms we wish to use cannot express
it exactly. The example given in the previous paragraph, l/3, is irrational in base 10
but is perfectly rational in base 60.

There have been disputes over which base is best for a number system. The

decimal system is the most common, and computers must deal with such numbers

at some level in any program that performs arithmetic calculations. Unfortunately,
most microprocessors are base 2 rather than base 10. We can easily represent decimal

85

NUMERICAL METHODS

integers, or whole numbers, by adding increasingly larger powers of two. Decimal
fractions, on the other hand, can only be approximated using increasingly larger
negative powers of two, which means smaller and smaller pieces. If a fraction isn’t
exactly equal to the sum of the negative powers of two in the word size or data type

available, your representation will only be approximate (and in error). Since we have
little choice but to deal with decimal reals in base 2, we need to know what that means
in terms of the word size required to do arithmetic and maintain accuracy.

The focus of this chapter is fixed-point arithmetic in general and fractional fixed
point in particular.

Fixed Point

Embedded systems programmers are often confronted with the task of writing

the fastest possible code for real-time operation while keeping code size as small as
possible for economy. In these and other situations, they turn to integer and fixed-

point arithmetic.
Fixed point is the easiest-to-use and most common form of arithmetic performed

on the microcomputer. It requires very little in the way of protocol and is therefore
fast-a great deal faster than floating point, which must use the same functions as
fixed point but with the added overhead involved in converting the fixed-point
number into the proper format. Floating point is fixed point, with an exponent for

placing the radix and a sign. In fact, within the data types defined for the two standard

forms of floating-point numbers, the long real and short real, fewer significant bits

are available than if the same data types were dedicated to fixed-point numbers. In

other words, no more precision is available in a floating-point number than in fixed

point.
In embedded applications, fixed point is often a must, especially if the system

can not afford or support a math coprocessor. Applications such as servo systems,
graphics, and measurement, where values are computed on the fly, simply can’t wait
for floating point to return a value when updating a Proportional-Integral-Derivative
(PID) control loop such as might be used in a servo system or with animated graphics.
So why not always use integer or fixed-point arithmetic?

Probably the most important reason is range. The short real has a decimal range
of approximately 1038 to 10-38 (this is a range, and does not reflect resolution or

86

REAL NUMBERS

accuracy; as you’ll see in the next chapter, floating-point numbers have a real

problem with granularity and significance). To perform fixed-point arithmetic with
this range, you would need 256 bits in your data type, or 32 bytes for each operand.

Another reason is convenience. Floating-point packages maintain the position

of the radix point, while in fixed point you must do it yourself.
Still another reason to use floating-point arithmetic is the coprocessor. Using a

coprocessor can make floating point as fast as or faster than fixed point in many
applications.

The list goes on and on. I know of projects in which the host computer

communicated with satellites using the IEEE 754 format, even though the satellite

had no coprocessor and did not use floating point. There will always be reasons to

use floating point and reasons to use fixed point.
Every application is different, but if you’re working on a numerically intensive

application that requires fast operation or whose code size is limited, and your system
doesn’t include or guarantee a math coprocessor, you may need to use some form of

fixed-point arithmetic.
What range and precision do you need? A 32-bit fixed-point number can

represent 232 separate values between zero and 4,294,967,296 for integer-only
arithmetic and between zero and 2.3283064365E-10 for fractional arithmetic or a
combination of the two. If you use a doubleword as your basic data type, with the
upper word for integers and the lower one for fractions, you have a range of

1.52587890625E-5 to 65,535 with a resolution of 4,294,967,296 numbers.

Many of the routines in FXMATH.ASM were written with 64-bit fixed-point

numbers in mind: 32 bits for integer and 32 bits for fraction. This allows a range of
2.3283064365E- 10 to 4,294,967,295 and a resolution of 1.84467440737E30 num-

bers, which is sufficient for most applications. If your project needs a wider range,
you can write specialized routines using the same basic operations for all of them;
only the placement of the radix point will differ.

Significant Bits

We normally express decimal values in the language of the processor-binary.

A 16-bit binary word holds 16 binary digits (one bit per digit) and can represent
65,536 binary numbers, but what does this mean in terms of decimal numbers? To

87

NUMERICAL METHODS

estimate the number of digits of one base that are representable in another, simply

find ceil(logaB
n), where a is the target base, B is the base you’re in, and n is the power

or word size. For example, we can represent a maximum of

decimal-digits = 5 = ceil((log10(2
16))

in a 16-bit binary word (a word on the 8086 is 16 bits, 216 = 65536, and log10 65536
= 4.8, or five decimal digits). Therefore, we can represent 50,000 as c350H, 99.222D

as 63.39H, and .87654D as .e065H.

Note: A reference to fixed-point or fractional arithmetic refers to binary fractions.
For the purposes of these examples, decimal fractions are converted to hexadecimal

by multiplying the decimal fraction by the data type. To represent .5D in a byte, or

256 bits, I multiply .5 by 256. The result is 128, or 80H. These are binary fractions
in hexadecimal format. Results will be more accurate if guard digits are used for

proper rounding. Conversion to and from fixed-point fractions is covered in Chapter

5.
We can express five decimal numbers in 16 bits, but how accurately are we doing

it? The Random House dictionary defines accuracy as the degree of correctness of
a quantity, so we could say that these five decimal digits are accurate to 16 bits. That

is, our representation is accurate because it’s correct given the 16 bits of precision
we’re using, though you still may not find it accurate enough for your purposes.

Clearly, if the fraction cannot be expressed directly in the available storage or is

irrational, the representation won’t be exact. In this case, the error will be in the LSB;
in fact, it will be equal to or less than this bit. As a result, the smallest value

representable (or the percent of error) is shown as 2-m, where m is the number of

fraction bits. For instance, 99.123D is 63.1fH accurate to 16 bits, while 63.1f7cH is
accurate to 24 bits. Actually, 63.lfH is 99.121D and 63.lf7cH is 99.12298, but each

is accurate within the constraints of its precision. Assuming that no extended
precision is available for rounding, no closer approximation is possible within 16 or

24 bits. The greater the precision, the better the approximation.

88

REAL NUMBERS

The Radix Point

The radix point can occur anywhere in a number. If our word size is 16 bits, we

can generally provide eight bits for the integer portion and eight bits for the fractional

portion though special situations might call for other forms. Floating point involves

fixed-point numbers between 1.0 and 2.0. In a 24-bit number, this leaves 23 bits for

the mantissa. The maximum value for a sine or cosine is 1, which may not even need
to be represented, leaving 16 bits of a 16-bit data type for fractions. Perhaps you only
need the fraction bits as guard digits to help in rounding; in such cases you might
choose to have only two bits, leaving the rest for the integer portion.

Depending on your application, you may want a complete set of fixed-point

routines for each data type you use frequently (such as 16- and 32-bit) and use other
routines to address specific needs. In any event, maintaining the radix point (scaling)

requires more from the programmer than does floating point, but the results, in terms

of both speed and code size, are worth the extra effort.

The nature of the arithmetic doesn’t change because of the radix point, but the
radix point does place more responsibility on the programmer. Your software must
know where the radix point is at all times.

Rounding

If all the calculations on a computer were done with symbolic fractions, the error
involved in approximating fractions in any particular base would cease to exist. The

arithmetic would revolve around multiplications, divisions, additions, and subtrac-

tions of numerators and denominators and would always produce rational results.
The problem with doing arithmetic this way is that it can be very awkward, time-

consuming, and difficult to interpret in symbolic form to any degree of precision.

On the other hand, real numbers involve error because we can’t always express
a fraction exactly in a target base. In addition, computing with an erroneous value

will propagate errors throughout the calculations in which it is used. If a single
computation contains several such values, errors can overwhelm the result and
render the result meaningless. For example, say you’re multipying two 8-bit words
and you know that the last two bits of each word are dubious. The result of this
operation will be 16 bits, with two error bits in one operand plus two error bits in the

8 9

NUMERICAL METHODS

other operand. That means the product will contain four erroneous bits.

For this reason, internal calculations are best done with greater precision than
you expect in the result. Perform the arithmetic in a precision greater than needed in

the result, then represent only the significant bits as the result. This helps eliminate

error in your arithmetic but presents another problem: What about the information
in the extra bits of precision? This brings us to the subject of rounding.

You can always ignore the extra bits. This is called truncation or chop, and it

simply means that they are left behind. This method is fast, but it actually contributes
to the overall error in the system because the representation can only approach the

true result at exact integer multiples of the LSB. For example, suppose we have a
decimal value, 12345D, with extended bits for greater precision. Since 5 is the least
significant digit, these extended bits are some fraction thereof and the whole number
can be viewed as:

12345.XXXXD
extended bits

Whenever the result of a computation produces extended bits other than zero, the

result, 12345D, is not quite correct. As long as the bits are always less than one-half
the LSB, it makes little difference. But what if they exceed one-half? A particular

calculation produces 12345.7543D. The true value is closer to 12346D than to
12345D, and if this number is truncated to 12345D the protection allowed by the

extended bits is lost. The error from truncation ranges from zero to almost one in the

LSB but is definitely biased below the true value.

Another technique, called jamming, provides a symmetrical error that causes the

true value or result to be approached with an almost equal bias from above and below.
It entails almost no loss in speed over truncation. With this technique, you simply set
the low-order bit of the significant bits to one. Using the numbers from the previous

example, 12345.0000D through 12345.9999D remain 12345.0000D.
And if the result is even, such as 123456.0000D, the LSB is set to make it

123457.0000D. The charm of this technique is that it is fast and is almost equally
biased in both directions. With this method, your results revolve symmetrically

90

REAL NUMBERS

about the ideal result as with jamming, but with a tighter tolerance (one half the LSB),
and, at worst, only contributes a small positive bias.

Perhaps the most common technique for rounding involves testing the extended

bits and, if they exceed one-half the value of the LSB, adding one to the LSB and
propagating the carry throughout the rest of the number. In this case, the fractional
portion of 12345.5678D is compared with .5D. Because it is greater, a one is added

to 12345D to make it 12346D.

If you choose this method of rounding to maintain the greatest possible accuracy,

you must make still more choices. What do you do if the extended bits are equal to

exactly one-half the LSB?
In your application, it may make no difference. Some floating-point techniques

for calculating the elementary functions call for a routine that returns an integer
closest to a given floating-point number, and it doesn’t matter whether that number

was rounded up or down on exactly one-half LSB. In this case the rounding technique

is unimportant.
If it is important, however, there are a number of options. One method commonly

taught in school is to round up and down alternately. This requires some sort of flag

to indicate whether it is a positive or negative toggle. This form of rounding

maintains the symmetry of the operation but does little for any bias.
Another method, one used as the default in most floating-point packages, is

known as round to nearest. Here, the extended bits are tested. If they are greater than

one-half the LSB, the significant bits are rounded up; if they are less, they are rounded
down; and if they are exactly one-half, they are rounded toward even. For example,

12345.5000D would become 12346.0000D and 12346.5000D would remain
12346.0000D. This technique for rounding is probably the most often chosen, by
users of software mathematical packages. Round to nearest provides an overall high
accuracy with the least bias.

Other rounding techniques involve always rounding up or always rounding
down. These are useful in interval arithmetic for assessing the influences of error
upon the calculations. Each calculation is performed twice, once rounded up and

once rounded down and the results compared to derive the direction and scope of any

error. This can be very important for calculations that might suddenly diverge.

91

NUMERICAL METHODS

At least one bit, aside from the significant bits of the result, is required for

rounding. On some machines, this might be the carry flag. This one bit can indicate
whether there is an excess of equal to or greater than one-half the LSB. For greater
precision, it’s better to have at least two bits: one to indicate whether or not the
operation resulted in an excess of one-half the LSB, and another, the sticky bit, that

registers whether or not the excess is actually greater than one-half. These bits are

known as guard bits. Greater precision provides greater reliability and accuracy.
This is especially true in floating point, where the extended bits are often shifted into

the significant bits when the radix points are aligned.

Basic Fixed-Point Operations

Fixed-point operations can be performed two ways. The first is used primarily

in applications that involve minimal number crunching. Here, scaled decimal values
are translated into binary (we’ll use hex notation) and handled as though they were

decimal, with the result converted from hex to decimal.
To illustrate, let’s look at a simple problem: finding the area of a circle

If the radius of the circle is 5 inches (and we use 3.14 to approximate it), the solution
is 3.14 * (5 * 5), or 78.5 square inches. If we were to code this for the 8086 using the

scaled decimal method, it might look like this:

mov ax, 5
mul al
mov dx, 13aH
mul dx

;the radius
;square the radius
;314 = 3.14D * 100D
;ax will now hold 1eaaH

The value leaaH converted to decimal is 7,850, which is 100D times the actual
answer because was multiplied by 100D to accommodate the fraction. If you only

need the integer portion, divide this number by 100D. If you also need the fractional
part, convert the remainder from this division to decimal.

The second technique is binary. The difference between purely binary and scaled
decimal arithmetic is that instead of multiplying a fraction by a constant to make it

an integer, perform the operation, then divide the result by the same constant for the
result. We express a binary fraction as the sum of negative powers of two, perform

92

REAL NUMBERS

the operation, and then adjust the radix point. Addition, subtraction, multiplication,

and division are done just as they are with the integer-only operation; the only
additional provision is that you pay attention to the placement of the radix point. If

the above solution to the area of a circle were written using binary fixed point, it
would look like this:

mov ax, 5
mul al
mov dx, 324H
mul dx

;the radius
;square the radius
;804D = 3.14D * 256D
;ax will now hold 4e84H

The value 4eH is 78D, and 84H is .515D (132D/256D).

Performing the process in base 10 is effective in the short term and easily

understood, but it has some drawbacks overall. Both methods require that the

program keep track of the radix point, but correcting the radix point in decimal
requires multiplies and divides by 10, while in binary these corrections are done by
shifts. An added benefit is that the output of a routine using fixed-point fractions can
be used to drive D/A converters, counters, and other peripherals directly because the

binary fraction and the peripheral have the same base. Using binary arithmetic can

lead to some very fast shortcuts; we’ll see several examples of these later in this
chapter.

Although generalized routines exist for fixed-point arithmetic, it is often
possible to replace them with task specific high-speed routines, when the exact

boundaries of the input variables are known. This is where thinking in base 2 (even

when hex notation is used) can help. Scaling by 1,024 or any binary data type instead

of 1,000 or any decimal power can mean the difference between a divide or multiply

routine and a shift. As you’ll see in a routine at the end of this chapter, dividing by
a negative power of two in establishing an increment results in a right shift. A
negative power of 10, on the other hand, is often irrational in binary and can result
in a complex, inaccurate divide.

Before looking at actual code, lets examine the basic arithmetic operations. The

conversions used in the following examples were prepared using the computational
techniques in Chapter 5.

93

NUMERICAL METHODS

Note: The “.” does not actually appear. They are assumed and added by the author
for clarification.

Say we want to add 55.33D to 128.67D. In hex, this is 37.54H + 80.acH,

assuming 16 bits of storage for both the integer and the mantissa:

37.54H (55.33D)
+ 80.acH (128.67D)

b8.00H (184.00D)

Subtraction is also performed without alteration:

80.acH
37.54H
49.58H

(128.67D)
(55.33D)
(73.34D)

37.54H (55.33D)
- 80.acH (128.67D)

b6.a8H (-73.34D)

Fixed-point multiplication is similar to its pencil-and-paper counterpart:

80.acH (128.67D)
x 37.548 (55.33D)

lbcf.2c70H (7119.3111D)

as is division:

80.acH (128.67D)
÷ 37.54H (55.33D)

2.53H (2.32D)

The error in the fractional part of the multiplication problem is due to the lack

of precision in the arguments. Perform the identical operation with 32-bit precision,
and the answer is more in line: 80.ab85H x 37.547bH = 1bcf.4fad0ce7H.

94

REAL NUMBERS

The division of 80acH by 3754H initially results in an integer quotient, 2H, and

a remainder. To derive the fraction from the remainder, continue dividing until you
reach the desired precision, as in the following code fragment:

sub
mov
mov
div

mov
sub
div

a, dx
ax, 80ach
cx, 37548
cx ;this divide leaves the quotient

;(2) in ax and the remainder
;remainder (1204H) in dx

byte ptr quotient[l], al
ax, ax
cx ;Divide the remainder multiplied

;by 10000H x to get the fraction
;bits Overflow is not a danger
;since a remainder may never be
;greater than or
;even equal to the divisor.

byte ptr quotient[0], ah
;the fraction bits are then 53H,
;making the answer constrained
;to a 16-bit word for this
;example, 2.53H

mov

* The 8086 thoughtfully placed the remainder from the previous division in the
DX register, effectively multiplying it by 10000H.

Of course, you could do the division once and arrive at both fraction bits and
integer bits if the dividend is first multiplied by 10000H (in other words, shifted 16

places to the left). However, the danger of overflow exists if this scaling produces

a dividend more than 10000H times greater than the divisor.

The following examples illustrate how fixed-point arithmetic can be used in
place of floating point.

A Routine for Drawing Circles

This first routine is credited to Ivan Sutherland, though many others have worked

with it.’ The algorithm draws a circle incrementally from a starting point on the circle

95

NUMERICAL METHODS

and without reference to sines and cosines, though it’s based on those relationships.

To understand how this algorithm works, recall the two trigonometric identities
(see Figure 3- 1):

sin = ordinate / radius vector

cos = abscissa / radius vector

(where is an angle)

Multiplying a fraction by the same value as in the denominator cancels that

denominator, leaving only the numerator. Knowing these two relationships, we can

derive both the vertical coordinate (ordinate) and horizontal coordinate (abscissa)

Figure 3-1. A circle drawn using small increments of t.

96

REAL NUMBERS

x(a) = r * cos a

y(a) = r * sin a

in a rectangular coordinate system by multiplying sin by the radius vector for the
ordinate and cos by the radius vector for the abscissa. This results in the following
polar equations:

Increasing values of from zero to radians, will rotate the radius vector

through a circle, and these equations will generate points along that circle. The
formula for the sine and cosine of the sum of two angles will produce those increasing

values of by summing the current angle with an increment:

Let a be the current angle and b the increment. Combining the polar equations

for deriving our points with the summing equations we get:

For small angles (much smaller than one), an approximation of the cosine is

about one, and the sine is equal to the angle itself. If the increment is small enough,

the summing equations become:

and then:

97

NUMERICAL METHODS

Using these formulae, you can roughly generate points along the circumference

of a circle. The difficulty is that the circle gradually spirals outward, so a small
adjustment is necessary-the one made by Ivan Sutherland:

When you select an increment that is a negative power of two, the following
routine generates a circle using only shifts and adds.

circle: Algorithm

1.

2.

3.

4.

5.

6.

Initialize local variables to the appropriate values, making a copy of
x and y and clearing x_point and y_point. Calculate the value for the
the loop counter, count.

Get_x and_y and round to get new values for pixels. Perform a de facto
divide by l000H by taking only the value of DX in each case for the points.

Call your routine for writing to the graphics screen.

Get _y, divide it by the increment, inc, and subtract the result from
_X.

Get _x, divide it by inc, and add the result to _y.

Decrement count.

If it isn't zero, return to step 2.

If it is, we're done.

circle: listing
; *****

;
;

circle proc uses bx cx dx si di, x_ coordinate:dword, y_ coordinate:dword,
increment:word

local x:dword, y:dword, x_point:word, y_point:word, count

mov
mov

ax, word ptr x_ coordinate
dx, word ptr x_coordinate[2]

98

REAL NUMBERS

mov word ptr x, ax
mov word ptr x[2], dx
mov ax, word ptr y_coordinate
mov dx, word ptr y_coordinate[2]
mov word ptr y, ax
mov word ptr y[2], dx

sub
mov
mov

mov
mov
mov

get_num_points:
shl
rcl
loop
mov

set_point:
mov
mov
add
jnc
adc

store_x:
mov

mov
mov
add
jnc
adc

store_y:
mov

ax, ax
x_point, ax
y__point, ax

ax, 4876h
dx, 6h

cx, word ptr increment

ax, 1
dx, 1
get_num_points
count, dx

ax, word ptr x
dx, word ptr x[2]
ax, 8000h
store_x
dx, 0h

x_point, dx

ax, word ptr y
dx, word ptr y[2]
ax, 8000h
store_y
dx, Oh

y_point, dx

;load local variables

;x coordinate
;y coordinate

;2 * pi
;make this a negative
;power of two

;2 * pi radians

;divide by 10000h

;add .5 to round up
;to integers

;add .5

;your routine for writing to the screen goes here and uses x-point and
;y_point as screen coordinates

mov
mov

ax, word ptr y
dx, word ptr y[2]

99

NUMERICAL METHODS

mov
update_x:

sar
sign

cx, word ptr increment

dx 1

rcr
loop
sub
sbb

ax, 1
update x
word ptr x, ax
word ptr x[2], dx

mov
mov
mov

update_y:
sar

sign
rcr
loop
add
adc
dec
jnz

ax, word ptr x
dx, word ptr x[2]

cx, word ptr increment

dx, 1 ;arithmetic shift to maintain

ax, 1
update_y
word ptr y, ax
word ptr y[2], dx
count
set_point

;arithmetic shift to maintain

;new x equals x - y * increment

;new y equals y + x * increment

ret
circle endp

Bresenham’s Line-Drawing Algorithm

This algorithm is credited to Jack Bresenham, who published a paper in 1965
describing a fast line-drawing routine that used only integer addition and subtrac-

tion.2

The idea is simple: A line is described by the equation f(x,y) = y’ * x-x’ * y for

a line from the origin to an arbitrary point (see Figure 3-2). Points not on the line are

either above or below the line. When the point is above the line, f(x,y) is negative;

when the point is below the line, f(x,y) is positive. Pixels that are closest to the line

described by the equation are chosen. If a pixel isn’t exactly on the line, the routine

decides between any two pixels by determining whether the point that lies exactly
between them is above or below the line. If above, the lower pixel is chosen; if below,
the upper pixel is chosen.

In addition to these points, the routine must determine which axis experiences

the greatest move and use that to program diagonal and nondiagonal steps. It

100

REAL NUMBERS

Figure 3-2. Bresenham’s line-drawing algorithm.

calculates a decision variable based on the formula 2 * b+a, where a is the longest
interval and b the shortest. Finally, it uses 2 * b for nondiagonal movement and 2 *

b - 2 * a for the diagonal step.

line: Algorithm

1. Set up appropriate variables for the routine. Move xstart to x and ystart
to y.

2. Subtract xstart from xend.

If the result is positive, make xstep_diag 1 and store the result in
x dif.

If the result is negative, make xstep_diag -1 and two's-complement the

101

NUMERICAL METHODS

result before storing it in x_dif.

3. Subtract ystart from yend.

If the result is positive, make ystep_diag 1 and store the result in
y_dif.

If the result is negative, make ystep_diag -1 and two's-complement the
result before storing it in y_dif.

4. Compare x_dif with y_dif.

If x_dif is smaller, swap x_dif and y_dif, clear xstep,
value of ystep_diag in ystep.

If x_dif is larger, clear ystep and store the value of
xstep.

5. Call your routine for putting a pixel on the screen.

6. Test decision.

and store the

xstep_diag in

If it's negative, add xstep to x, ystep to y, and inc to decision, then
continue at step 7.

If it's positive, add xstep_diag to x, ystep_diag to y, and diag_inc to
decision, then go to step 7.

7. Decrement x dif.

If it's not zero, go to step 5.

If it is, we're done.

line: Listing
;*****

line proc uses bx cx dx si di, xstart:word, ystart:word, xend:word, yend:word

local x:word, y:word, decision:word, x_dif:word, y_dif:word,
xstep_diag:word,

ystep_diag:word, xstep:word, ystep:word, diag_incr:word, incr:word

mov ax, word ptr xstart
mov word ptr x, ax
mov ax, word ptr ystart
mov word ptr y, ax

;initialize local variables

direction:
mov
sub
jns

ax, word ptr xend
ax, word ptr xstart
large_x

;total x distance
;which direction are we drawing?

102

REAL NUMBERS

neg
mov

jmp
large_x:

mov
store xdif:

mov

mov
sub
jns

neg
mov

jmp
large_y:

mov
store ydif:

mov

octant:
mov
mov

cmp
jg

mov

mov
sub
mov
mov
mov

jmp
bigger x:

mov

mov
sub
mov

setup inc:
mov
shl
mov

ax
word ptr xstep_diag, -1
short store xdif

word ptr xstep_diag, 1

x dif, ax

ax, word ptr yend
ax, word ptr ystart
large_y
ax
word ptr ystep_diag, -1
short store ydif

word ptr ystep_diag, 1

word ptr y_dif, ax

ax, word ptr x dif
bx, word ptr y-dif
ax, bx
bigger x

y_dif, ax

x dif, bx
ax, ax
word ptr xstep, ax
ax, word ptr ystep_diag
word ptr ystep, ax
setup inc

ax, word ptr xstep_diag

word ptr xstep, ax
ax, ax
word ptr ystep, ax

ax, word ptr y dif
ax, 1
word ptr incr, ax

;went negative

;y distance

;which direction?

;direction is determined by signs

;the axis with greater
;becomes our reference

difference

;we have a bigger y move
;than x
;x won't change on nondiagonal
;steps, y changes every step

;x changes every step
;y changes only
;on diagonal steps

;calculate decision variable

;nondiagonal increment
; = 2 * y_dif

103

NUMERICAL METHODS

;decision variable

; = 2 * y_dif - x_dif

sub ax, word ptr x_dif
mov word ptr decision, ax

sub ax, word ptr x_dif
mov

mov

mov
mov
mov

line loop:

word ptr diag incr, ax

ax, word ptr decision

bx, word ptr x

cx, word ptr x_dif
dx, word ptr y

;diagonal increment

; = 2 * y_dif - 2 * x_dif

;we will do it all in
;the registers

; Put your routine for turning on pixels here. Be sure to push ax, cx, dx,
; and bx before destroying them; they are used here. The value for the x
; coordinate is in bx, and the value for the y coordinate is in dx.

or ax, ax
jns dpositive

;calculate new position and
add bx, word ptr xstep ;update the decision variable

add dx, word ptr ystep
add ax, incr

jmp short chk loop
dpositive:

add bx, word ptr xstep_diag
add dx, word ptr ystep_diag
add ax, word ptr diag incr

chk_loop:
loop line loop
ret

line endp

When fixed-point operands become very large, it sometimes becomes necessary
to find alternate ways to perfom arithmetic. Multiplication isn’t such a problem; if
it exists as a hardware instruction on the processor you are using, it is usually faster
than division and is easily extended.

Division is not so straightforward. When the divisors grow larger than the size
allowed by any hardware instructions available, the programmer must resort to other

104

REAL NUMBERS

methods of division, such as CDIV (described in Chapter 2), linear polation (used in

the floating-point routines), or one of the two routines presented in the following
pages involving Newton-Raphson approximation and iterative multiplication. The

first two will produce a quotient and a remainder, the last two return with a fixed point

real number. Choose the one that best fits the application.3, 4

Division by Inversion

A root of an equation exists whenever f(x)=0. Rewriting an equation so that
f(x)=0 makes it possible to find the value of an unknown by a process known as

Newton-Raphson Iteration. This isn’t the only method for finding roots of equations
and isn’t perfect, but, given a reasonably close estimate and a well behaved function,

the results are predictable and correct for a prescribed error.
Look at Figure 3-3. The concept is simple enough: Given an initial estimate of

a point on the x axis where a function crosses, you can arrive at a better estimate by

evaluating the function at that point, f(x,), and its first derivative of f(x0) for the slope
of the curve at that point. Following a line tangent to f(x0) to the x axis produces an
improved estimate. This process can be iterated until the estimate is within the
allowed error.

The slope of a line is determined by dividing the change in the y axis by the

corresponding change in the x axis: dy/dx. In the figure, dy is given by f(x0), the
distance from the x axis at x0 to the curve, and dx by (x1- x0), which results in

f´(x0) = f(x0)/(xl-x0)

Solving for x, gives

x1= x0 - f (x0)/f’(x0)

Substituting the new x, for x0 each time the equation is solved will cause the

estimate to close in on the root very quickly, doubling the number of correct
significant bits with each pass.

To using this method to find the inverse of a number, divisor, requires that the

105

NUMERICAL METHODS

Figure 3-3. Newton-Raphson iteration.

equation be formulated as a root. A simple equation for such a purpose is

f(x) = 1/x - divisor

From there, it’s a short step to

x = 1/divisor

Now the equation for finding the root becomes an equation for finding the
inverse of a number:

x1,=((1/x)- divisor)/(-1/divisor
2)

106

REAL NUMBERS

which simplifies to:

xnew = xold * (2 - divisor (x)old)

In his book Digital Computer Arithmetic, Joseph Cavanagh suggests that this
equation be simplified even further to eliminate the divisor from the iterative process

and use two equations instead of one. He makes the term divisor(x) equal to one

called unity (because it will close in on one) in this routine, which reduces the

equation to:

xnew= Xold * (2 - unity)

Multiplying both sides of this equation by the divisor, divisor, and substituting
again for his equality, divisor(x) = unity, he generates another equation to produce
new values for unity without referring to the original divisor:

(divisor (x))new = (divisor (x))old * (2 - unity)=

unity new= unity old* (2 - unity)

This breaks the process down to just two multiplies and a two’s complement.
When these two equations are used together in each iteration, the algorithm will

compute the inverse to an input argument very quickly.

To begin, there must be an initial estimate of the reciprocal. For speed, this can
be computed with a hardware instruction or derived from a table if no such

instruction exists on your processor. Multiply the initial estimate by the divisor to get
the first unity. Then, the two equations are evaluated as a unit, first generating a new
divisor and then a new unity, until the desired precision is reached.

The next routine expects the input divisor to be a value with the radix point
between the doublewords of a quadword, fixed-point number. The routine finds the

most significant word of the divisor, then computes and saves the number of shifts

required to normalize the divisor at that point-that is, position the divisor so that its
most significant one is the bit just to the right of the implied radix point: .1XXX...

107

NUMERICAL METHODS

For example, the number 5 is

101.000B

radix point

Normalized, it is:

000.101B

radix point

After that, the actual divisor is normalized within the divisor variable as if the

radix point were between the third and fourth words. Since the greatest number

proportion or divisor will see is two or less, there is no danger of losing significant

bits. Placing the radix point there also allows for greater precision.

Instead of subtracting the new proportion from two, as in the equation, we two’s

complementproportion and the most significant word is ANDed with 1H to simulate
a subtraction from two. This removes the sign bits generated by the two’s comple-

ment and leaves an integer value of one plus the fraction bits.

Finally, the reciprocal is realigned based on a radix point between the doublewords
as the fixed-point format dictates, and multiplied by the dividend.

divnewt: Algorithm

1. Set the loop counter,lp, for three passes. This is a reasonable number
since the first estimate is 16-bits. Check the dividend and the divisor
for zero.

If no such error conditions exist, continue with step 2,

Otherwise, go to step 10.

2. Find the most significant word of the divisor.

Determine whether it is above or below the fixed-point radix point.
In this case, the radix point is between the doublewords.

Test to see if it is already normalized.

If so, go to step 5.

3. Shift a copy of the most significant word of the divisor left or right
until it is normalized, counting the shifts as you proceed.

4. Shift the actual divisor until its most significant one is the MSB of

108

REAL NUMBERS

5.

6.

7.

8.

9.

the third word of the divisor. This is to provide maximum precision for
the operation.

Divide 10000000H by the most significant word of the divisor for a first
approximation of the reciprocal. The greater the precision of this first
estimate, the fewer passes will be required in the algorithm (the result
of this division will be between one and two.)

Shift the result of this division left one hex digit, four bits, to align
it as an integer with a three-word fraction part. This initial estimate
is stored in the divisor variable.

Divide this first estimate by two to obtain the proportionality variable,
proportion.

Perform a two's complement on proportion to simulate subtracting it from
two. Multiply proportion by divisor. Leave the result in divisor.

Multiply proportion by the estimate, storing the results in both
proportion and estimate. Decrement lp.

If it isn't zero, continue with step 6.

Otherwise, go to step 8.

Using the shift counter, shift, reposition divisor for the final
multiplication.

Multiply divisor, now the reciprocal of the input argument, by the
dividend to obtain the quotient. Write the proper number of words to the
ouput and exit.

10. An attempt was made to divide zero or divide by zero; exit with error.

divnewt: Listing
; *****

;divnewt- division by Raphson-Newton zeros approximation
;
;
;
divnewt proc uses bx cx dx di si, dividend:qword, divisor:qword,
quotient:word

local temp[8]:word, proportion:qword, shift:byte, qtnt_adjust:byte,
lp:byte, tmp:qword, unity:qword

cld ;upward

sub cx, cx

109

NUMERICAL METHODS

mov
mov
or
or
or
or

je

sub
or
or
or
or

je

sub
mov

find_msb:
lea
dec
dec
cmp

je

mov
mov
sub
cmp

jb
ja
test
jne

shift_left:
dec
shl
test
jne

jmp
normalize

shift_right:
inc
shr
or

110

byte ptr lp, 3
qtnt_adjust, cl
cx, word ptr dividend[O]
cx, word ptr dividend[2]
cx, word ptr dividend[4]
cx, word ptr dividend[6]
ovrflw

cx, cx

cxr word ptr divisor
cx, word ptr divisor
cx, word ptr divisor
cx, word ptr divisor
ovrflw

[O]
[2]
[4]
[6]

ax, ax
bx, 8

di, word ptr divisor
bx
bx
word ptr [di] [bx], ax
find_msb

byte ptr gtnt_adjust, bl
ax, word ptr [di][bx]
cx, cx
bx, 2h
shift_left
shift_right
word ptr [di][bx], 8000h
norm dvsr

cx
ax, 1
ah, 80h
save_shift
shift_ left

cx
ax, 1
ax, ax

;should only take three passes

;zero dividend

;zero divisor

;look for MSB of divisor

;di is pointing at divisor

;get most significant word
;save shifts here
;see if already normalized

;normalized?
;it's already there

;count the number of shifts to

REAL NUMBERS

je
jmp

save shift:
mov
sub

shift back:

cmp

je
shr
rcr
rcr
rcr

jmp

norm dvsr:
test
jne
shl
rcl
rcl

jmp

make first:
mov
sub
mov

div
sub
mov

correct dvsr:
shl

rcl
loop
mov
mov
sub
mov
mov
shr

save-shift
shift right

byte ptr shift, cl
ax, ax

word ptr [di][6], ax

norm_dvsr
wordptr [di][6], 1
word ptr [di][4], 1
word ptr [di][2], 1
word ptr [di] [0], 1
shift back

word ptr [di][4], 8000h
make_first
word ptr [di][O], 1
word ptr [di][2], 1
word ptr [di][4], 1
norm_dvsr

dx, l000h
ax, ax
bx, word ptr [di][4]

bx

dx, dx
cx, 4

ax, 1

dx, 1
correct_dvsr
word ptr divisor[4], ax
word ptr divisor[6], dx
cx, cx
word ptr divisor[2], cx
word ptr divisor[0], cx

dx 1

;count the number of shifts to
;normalize

;we will put radix point
;at word three

;the divisor
;truly normalized
;for maximum
;this should normalize divisor

;first approximation
;could come from a table

;keep only the four least bits

;don't want to waste time with
;a big shift

;don't want to waste time

111

NUMERICAL METHODS

rcr
mu1
shl

ax, 1
bx
ax, 1

;with a big shift

;reconstruct for first attempt
;don't want to waste time

;with a big shift
rcl
mov
sub
mov
mov
mov

dx, 1
word ptr unity[4], dx
cx, cx
word ptr unity[6], cx
word ptr unity[2], cx
word ptr unity, cx

makeproportion: ;this could be done with
;a table

mov word ptr proportion[4], dx
sub ax, ax
mov word ptr proportion[6], ax
mov word ptr proportion[2], ax
mov word ptr proportion, ax

invert_proportion:
not
not
not

neg

word ptr proportion[6]
word ptr proportion[4]
word ptr proportion[2]
word ptr proportion

jc mloop
add word ptr proportion[2], 1
adc word ptr proportion[4], 0
adc word ptr proportion[6], 0

mloop:
and word ptr proportion[6], 1

invoke mu164, proportion, divisor, addr temp

lea
lea
mov

rep movsw

invoke

si, word ptr temp[6]
di, word ptr divisor
cx, 4

mu164, proportion, unity, addr temp

lea si, word ptr temp[6]

112

;attempt to develop with
;2's complement

;make it look like it was
;subtracted from 2

REAL NUMBERS

lea
mov

rep movsw
lea
lea
mov

rep movsw

dec

je
jmp

ovrflw:
sub
not
mov
mov

rep stosw

jmp

divnewt_shift:
lea
mov
or

js
qtnt_right:

mov
sub
mov
sub

jmp

qtnt_left:

neg
sub
add

qtlft:
shl
rcl
rcl
rcl
loop

divnewt_mult:

di, word ptr unity
cx, 4

si, word ptr temp[6]
di, word ptr proportion
cx, 4

byte ptr lp
divnewt_shift
invert_proportion ;six passes for 64 bits

ax, ax
ax
cx, 4
di, word ptr quotient

;make infinite answer
divnewt_exit

di, word ptr divisor
cl, byte ptr shift
cl, cl
qtnt_left

ch, 10h
ch, cl
cl, ch
ch, ch
qtlft

Cl
ch, ch

cl, 10h

word ptr [dil[O], 1
word ptr [di][2], 1
word ptr [di1[4], 1
word ptr [di][6], 1
qtlft

;get shift count

;positive, shift left

;we Want to take it to the MSB

;multiply reciprocal by dividend

113

NUMERICAL METHODS

rep

rep

sub
mov
lea
stosw

invoke
mov
add
mov
lea
add

cmp
jae
mov
movsw

jmp

ax, ax
cx, 8
di, word ptr temp

;see that temp is clear

mul64, dividend, divisor, addr temp
bx, 4 ;adjust for magnitude of result
bl, byte ptr qtnt_adjust
di, word ptr quotient
si, word ptr temp
si, bx
bl, 0ah
write zero
cx, 4

divnewt exit

write_zero:
mov

rep movsw
sub
stosw

divnewt_exit:

popf
ret

divnewt endp

cx, 3

ax, ax

Division by Multiplication

If the denominator and numerator of a fraction are multiplied by the same factor,

the ratio does not change. If a factor could be found, such that multiplying it by the

denominator causes the denominator to approach one, then multiplying the numera-

tor by the same factor must cause that numerator to approach the quotient of the ratio

or simply the result of the division.

In this procedure, as in the last, you normalize the divisor, or numerator-that
is, shift it so that its most significant one is to the immediate right of the radix point,
creating a number-such that .5 number < 1. To keep the ratio between the

denominator and numerator equal to the original fraction, perform the same number
of shifts, in the same direction, on the dividend or numerator.

Next, express the divisor, which is equal to or greater than one half and less than
one, as one minus some offset:

114

REAL NUMBERS

divisor = l- offset

To bring this number, 1- offset, closer to one, choose another number by which

to multiply it which will retain its original value and increase it by the offset, such

as:

multiplier = 1 + offset.

To derive the first attempt, multiply this multiplier by the divisor:

multiplier * divisor = (1 - offset) * (1 + offset) = 1 - offset2

followed by

(1 + offset) * dividend

As you can see, the result of this single multiplication has brought the divisor

closer to one (and the dividend closer to the quotient). For the next iteration, 1 - offset2

is multiplied by 1 + offset2 (with a similar multiplication to the dividend). The result
is 1 - offset4, which is closer still to one. Each following iteration of 1 - offsetn is

multiplied by 1 + offsetn (with that same 1 + offsetn multiplying the dividend) until

the divisor is one, or almost one, which is .11111111...B to the word size of the

machine you’re working on. Since the same operation was performed on both the

dividend and the divisor, the ratio did not change and you need not realign the
quotient.

To illustrate, let’s look at how this procedure works on the decimal division
12345/1222. Remember that a bit is a digit in binary. Normalizing the denominator
in the discussion above required shifting it so that its most significant one was to the

immediate right of the radix point. The same thing must be done to the denominator
in the decimal fraction 12345/1222D; 1222D becomes .9776D, and performing the
same number of shifts (in the same direction) on the numerator, 12345, yields

9.8760D. Since the divisor (.9976D) is equal to 1 - .0224, make the first multiplier

115

NUMERICAL METHODS

equal to 1 + .0224 and multiply divisor * (1. + .0224) = .99949824D. You then take

9.8760D, the dividend, times (1. + .0224) to get 10.0972224D. On the next iteration,
the multiplier is (1 + .02242), or l.000501760D, which multiplied by the denomina-

tor is .999999748D and by the numerator is 10.10228878D. Finally, multiplying

.999999748D by (1 + .02244) produces a denominator of .999999999D, and (1 +

.02244) times 10.10228878D equals 10.10229133D, our quotient. The next routine
illustrates one implementation of this idea.

clivmul: Algorithm

1. Set pass counter, lp, for 6, enough for a 64-bit result. Check both
operands for zero,

2.

3.

4.

If either is zero, go to step 10.

Otherwise continue with step 2.

Find the most significant word of divisor, and see whether it is above
or below the radix point,

If it's below, normalization is to the left; go to step 3a.

If it's above, normalization is to the right; go to step 3b.

If it's right there, see whether it's already normalized.

if so, skip to step 4.

Otherwise, continue with step 3a.

a) Shift a copy of the most significant word of the divisor left until
the MSB is one, counting the shifts as you go. Continue with step 4.

b) Shift a copy of the most significant word of the divisor right until
it is zero, counting the shifts as you go. Continue with step 4.

Shift the actual divisor so that the MSB of the most significant word
is one.

5. Shift the dividend right or left the same number of bits as calculated
in step 3. This keeps the ratio between the dividend and the divisor the
same.

6.

7.

Offset = 1 - normalized divisor.

Multiply the offset by the divisor, saving the result in a temporary
register. Add the divisor to the temporary register to simulate the
multiplication of 1 + offset by the divisor. Write the temporary
register to the divisor.

8. Multiply the offset by the dividend, saving the result in a temporary

116

REAL NUMBERS

9.

simulate the multiplication of 1 + offset by the dividend. Write the
temporary register to the divisor.

Decrement 1p,

If it's not yet zero, go to step 6.

Otherwise, the current dividend is the quotient; exit.

10. Overflow exit, leave with an error condition.

divmul: Listing
; *****

;divmul-division by iterative multiplication
;Underflow and overflow are determined by shifting. If the dividend shifts out on
;any attempt to normalize, then we have "flowed" in whichever direction it
;shifted out.
;
divmul proc uses bx cx dx di si, dividend:qword, divisor:qword, guotient:word

local
divmsb:byte,

temp[8]:word, dvdnd:qword, dvsr:qword, delta:qword,

lp:byte, tmp:qword

cld ;upward

sub
mov
lea
mov
mov
or
or
mov
mov

mov
mov
mov
mov
or

cx, cx
byte ptr lp, 6
di, word ptr dvdnd
ax, word ptr dividend[O]
dx, word ptr dividend[2]
cx, ax
cx, dx
word ptr [di][0], ax
word ptr [di][2], dx
ax, word ptr dividend[4]
dx, word ptr dividend[6]
word ptr [di][4], ax
word ptr [di][6], dx
cx, ax

;should only take six passes
;check for zero

or

je

cx, dx
ovrflw

sub
lea
mov
mov

cx, cx
di, word ptr dvsr
ax, word ptr divisor[0]
dx, word ptr divisor[2]

;zero dividend

;check for zero

117

NUMERICAL METHODS

or
or
mov
mov
mov
mov
mov
mov
or
or

je

sub
mov

find_MSB:
dec
dec

cmp
je

mov
sub

cmp

jb
ja
test
jne

shift_left:
dec
shl
test
jne

jmp

shift_right:
inc
shr
or

je
jmp

cx, ax
cx, dx
word ptr [dil[0], ax
word ptr [di] [2], dx
ax, word ptr divisor[4]
dx, word ptr divisor[6]
word ptr [di][4], ax
word ptr [di][6], dx
cx, ax
cx, dx
ovrflw ;zero divisor

ax, ax
bx, 8

;look for MSB of divisor
bx
bx
word ptr [di] [bx], ax
find msb

ax, word ptr [di] [bx]
cx, cx
bx, 2h

shift left
shift right
word ptr [di][bxl, 8000h
norm dvsr

cx
ax, 1
ah, 80h
norm_dvsr
shift_left

cx
ax, 1
ax, ax
norm_dvsr
shift_right

;di is pointing at dvsr

;get MSW
;save shifts here
;see if already
;normalized

;normalized?
;it's already there

;count the number of
;shifts to normalize

;count the number of shifts
;to normalize

118

REAL NUMBERS

norm dvsr:
test
jne
shl
rcl
rcl
rcl

jmp

norm dvdnd:

cmp

jbe
add

jmp
chk_2:

cmp
jae
sub

ready_dvdnd:
lea
or

je
or
jns

neg
sub

jmp

word ptr [di][6], 8000h
norm dvdnd
word ptr [di][0], 1
word ptr [di] [2], 1
word ptr [di] [4], 1
word ptr [di] [6], 1
norm_dvsr

bl, 4h

chk 2
cl, 10h
ready_dvdnd

bl, 2h
ready_dvdnd
cl, 10h

di, word ptr dvdnd
cl, cl
makedelta
cl, cl
do_dvdnd_right
cl
ch, ch
do_dvdnd_left

do_dvdnd_right:
shr word ptr [di][6], 1
rcr word ptr [di][4], 1

useable information
rcr word ptr [di][2], 1
rcr word ptr [di] [0], 1
loop do_dvdnd_right
sub ax, ax
or ax, word ptr [di][6]
or ax, word ptr [di][4]
or ax, word ptr [di][2]
or ax, word ptr [di][0]

;we want to keep
;the divisor
;truly normalized
;for maximum
;precision
;this should normalize dvsr

;bx still contains pointer
;to dvsr

;adjust for word

;adjusting again for size
;of shift

;no adjustment necessary

;no error on underflow
;unless it becomes zero,
;there may still be some

;this should normalize dvsr

119

NUMERICAL METHODS

rep

jne
mov
mov
stosw

jmp

do_dvdnd_left
shl
rcl
rcl
rcl

jc

loop

setup:
mov
mov
mov

rep movsw

makedelta:

lea
lea
mov

rep movsw

not
not
not

neg

word ptr delta[6]
word ptr delta[4]
word ptr delta[2]
word ptr delta

jc mloop
add word ptr delta[2], 1
adc word ptr delta[4], 0
adc word ptr delta[6], 0

mloop:
invoke

setup
di, word ptr quotient
cx, 4

divmul exit

word ptr [di] [0], 1
word ptr [di][2], 1
word ptr [di][4], 1
word ptr [di][6], 1
ovrflw

do dvdnd_left

;if it is now a zero,
;that is the result

;significant bits
;shifted out
;data unusable
;this should normalize dvsr

si, di
di, word ptr quotient
cx, 4

;put shifted dividend
;into quotient

;this could be done with
;a table

si, word ptr dvsr
di, word ptr delta
cx, 4

;move normalized dvsr
;into delta

mu164, delta, dvsr, addr temp

;attempt to develop with
;2's complement

120

REAL NUMBERS

rep

rep

lea
lea
mov
movsw

si, word ptr temp[8]
di, word ptr tmp
cx, 4

invoke add64, tmp, dvsr, addr dvsr

lea
mov
mov
movsw
invoke

di, word ptr divisor
si, word ptr quotient
cx, 4

mu164, delta, divisor, addr temp

sub

cmp
jb
add
adc
adc
adc

ax, ax
word ptr temp[6], 8000h
no_round
word ptr temp[8], 1
word ptr temp[l0], ax
word ptr temp[l2], ax
word ptr temp[l4], ax

no_round:

lea
lea
mov

rep movsw
invoke

dec

je
jmp

ovrflw:
sub
not
mov
mov

rep stosw

jmp

divmul_exit:

popf
ret

divmul

;an attempt to round
;.5 or above rounds up

si, word ptr temp[8]
di, word ptr tmp
cx, 4

;double duty

add64, divisor, tmp, quotient

byte ptr lp
divmul_exit
makedelta ;six passes for 64 bits

ax, ax
ax
cx, 4
di, word ptr quotient

divmul exit
;make infinite answer

endp

121

NUMERICAL METHODS

1
Van Aken, Jerry, and Ray Simar. A Conic Spline Algorithm. Texas Instruments,

1988.
2

Van Aken, Jerry, and Carrel Killebrew Jr. The Bresenham Line Algorithm.

Texas Instruments, 1988.
3

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-

HillBook Co., 1984, Pages 278-284. Also see Knuth, D. E. Seminumerical

Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages.
295-297.

4
Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-

HillBook Co., 1984, Pages 284-289.

122

CHAPTER 4

Floating-Point Arithmetic

Floating-point libraries and packages offer the software engineer a number of
advantages. One of these is a complete set of transcendental functions, logarithms,

powers, and square-root and modular functions. These routines handle the decimal-

point placement and housekeeping associated with arithmetic and even provide

some rudimentary handles for numerical exceptions.
For the range of representable values, the IEEE 754 standard format is compact

and efficient. A single-precision real requires only 32 bits and will handle a decimal

range of 1038 to 10-38, while a double-precision float needs only 64 bits and has a range
of 10308 to 10- 308. Fixed-point representations of the same ranges can require a great

deal more storage.
This system of handling real numbers is compact yet has an extremely wide

dynamic range, and it’s standardized so that it can be used for interapplication

communication, storage, and calculation. It is slower than fixed point, but if a math

coprocessor is available or the application doesn’t demand speed, it can be the most
satisfactory answer to arithmetic problems.

The advantages of floating point do come with some problems. Floating-point
libraries handle so much for the programmer, quietly and automatically generating
8 to 15 decimal digits in response to input arguments, that it’s easy to forget that those

digits may be in error. After all, floating point is just fixed point wrapped up with an
exponent and a sign; it has all the proclivities of fixed point to produce erroneous

results due to rounding, loss of significance, or inexact representation. But that’s true
of any form of finite expression-precautions must always be taken to avoid errors.

Floating-point arithmetic is still a valuable tool, and you can use it safely if you
understand the limitations of arithmetic in general and of floating-point format, in

particular.

123

NUMERICAL METHODS

What To Expect

Do you know what kind of accuracy your application needs? What is the

accuracy of your input? Do you require only slide rule accuracy for fast plotting to

screen? Or do you need the greatest possible accuracy and precision for iterative or
nonlinear calculation?

These are important questions, and their answers can make the difference
between calculations that succeed and those that fail. Here are a few things to keep

in mind when using floating-point arithmetic.

No mathematical operation produces a result more accurate than its weakest

input. It’s fine to see a string of numbers following a decimal point, but if that’s
the result of multiplying pi by a number accurate to two decimal places, you have
two decimal places of accuracy at best.

Floating point suffers from some of the very conveniences it offers the devel-
oper. Though most floating-point libraries use some form of extended precision,

that’s still a finite number of significant bits and may not be enough to represent
the input to or result of a calculation. In an iterative loop, you can lose a bit more

precision each time through an operation, this is especially true of subtraction.

Floating point’s ability to cover a wide range of values also leads to inaccuracies.
Again, this is because the number of significant bits is finite: 24 for a short real

and 53 for a long real. That means a short real can only represent 223 possible
combinations for every power of two.

To get the greatest possible precision into the double- and quadword formats of
the short and long real, the integer 1 that must always exist in a number coerced

to a value between 1.0 and 2.0 is omitted. This is called the hidden bit, and using

its location for the LSB of the exponent byte allows an extra bit of precision. Both
single and double-precision formats include the hidden bit.

Between 21(2D) and 22 (4D), 223 individual numbers are available in a short real.
That leaves room for two cardinals (counting numbers, such as 1, 2, and 3) and
a host of fractions-not an infinite number, as the number line allows, but still

quite a few. These powers of two increase (1, 2, 4, 8...) and decrease (.5, .25,

.125...), but the number of significant bits remains the same (except for denormal

124

FLOATING-POINT ARITHMETIC

arithmetic); each power of two can only provide 223 individual numbers. This

means that between two consecutive powers of two, such as 232 and 233, on the
number line are 4,294,967,296 whole numbers and an infinite number of
fractions thereof. However, a single-precision float will only represent 223

unique values. So what happens if your result isn’t one of those numbers? It

becomes one of those that 23 bits can represent.

Around 0.0 is a band that floating-point packages and coprocessors handle
differently. The smallest legal short real has an exponent of 2-126. The significand
is zero, with only the implied one remaining (the hidden bit). That still leaves

8,388,607 numbers known as denormals to absolute zero. As the magnitude of

these numbers decreases from 2-126 to 2-149, the implied one is gone and a bit of
precision is lost for every power of two until the entire significand is zero. This

is described in the IEEE 854 specification as “gradual underflow” and isn’t

supported by all processors and packages. Use caution when using denormals;
multiplication with them can result in so little significance that it may not be

worth continuing, and division can blow up.

It’s easy to lose significance with floating-point arithmetic, and the biggest

offender is subtraction. Subtracting two numbers that are close in value can
remove most of the significance from your result, perhaps rendering your result

meaningless as well. The lost information can be estimated according to the

formula Significance_lost = -ln(1 -minuend/subtrahend)/ln(2), but this is of
little value after the loss.’

Assume for a moment that you’re using a floating-point format with seven

significant decimal digits (a short real). If you subtract. 1234567 from .1234000,
the result is -5.67E-5. You have lost four decimal digits of significance.
Instances of such loss are common in function calls involving transcendentals,

where the operands are between 0.0 and 1.0.

This loss of significance can occur in other settings as well, such as those that

involve modularity. Sines and cosines have a modularity based on or 90

degrees. Assuming a computation of harmonic displacement, x = L sin , if

gets very large, which can happen if we are dealing with a high enough frequency

125

NUMERICAL METHODS

or a long enough time, very little significance will be left for calculating the sine.

The equation x = L sin , with f being frequency and t being time, will

calculate the angular displacement of a reference on a sinusoid in a given period

of time. If the frequency of the sinusoid is 10 MHz and the time is 60 seconds,
the result is an of 3769911184.31. If this is expressed as a short real without

extended precision, however, we’ll have only enough bits to express the eight

most significant digits (3.769911lE9). The very information necessary to
compute the sine and quadrant is truncated. The sine of 3769911184.31 is

2.24811195116E-3, and the sine of 3.769911lE9 is -.492752198651. Comput-
ing with long reals will help, but it’s limited to 15 decimal digits.

The normal associative laws of addition and multiplication don’t always
function as expected with floating point. The associative law states:

(A+B)+C = A+(B+C)

Look at the following seven-digit example of floating point:

(7.654321 + (-1234567)) + 1234568 =

-1234559 + 1234568 =

9

while

7.654321 + (-1234567 + 1234568) =

7.654321 + 1 =

8.654321

Note that the results aren’t the same. Of course, using double-precision argu-
ments will minimize such problems, but it won’t eliminate them. The number of

significant bits available in each precision heavily affects the accuracy of what

you’re representing.

It is hard to find any true equalities in floating-point arithmetic. It’s nearly

impossible to find any exactitudes, without which there can be no equalities. D.

E. Knuth suggested a new set of symbols for floating point.2 These symbols were

126

FLOATING-POINT ARITHMETIC

“round” (because the arithmetic was only approximate) and included a round
plus, a round minus, a round multiply, and a round divide. Following from that
set was a floating-point compare that assessed the relative values of the numbers.

These operations included conditions in which one number was definitely less

than, approximately equal to, or definitely greater than another.

Most floating-point packages compare the arguments exactly. This usually

works in greater-than/less-than situations, depending on the amount of signifi-
cance left in the number, but almost never works in equal-to comparisons.

What this means is that the results of a computation depend on the precision and
range of the input and the kind of arithmetic performed. When you prepare

operations and operands, make sure the precision you choose is appropriate.

Though single-precision arguments will be used in this discussion, the same

problems exist in double precision.

A Small Floating-Point Package

The ability to perform floating-point arithmetic is a big advantage. Without a
coprocessor to accelerate the calculations it may never equal fixed points for speed,
but the automatic scaling, convenient storage, standardized format, and the math
routines are nice to have at your fingertips. Unfortunately, even in systems where

speed isn’t a problem, code size can make the inclusion of a complete floating-point
package impossible.

Your system may not require double-precision support-it might not need the

trigonometric or power functions—but could benefit from the ability to input and

process real-world numbers that fixed point can’t handle comfortably. Unfortu-

nately, most packages are like black boxes that require the entire library or nothing;
this is especially true of the more exotic processors that have little third-party

support. It’s hard to justify an entire package when only a few routines are necessary.

At times like this, you might consider developing your own.
The rest of this chapter introduces the four basic arithmetic operations in floating

point. The routines do not conform to IEEE 754 in all ways-most notably the
numeric exceptions, many of which are a bit dubious in an embedded application—

127

NUMERICAL METHODS

but they do deliver the necessary accuracy and resolution and show the inner

workings of floating point. With the routines presented later in the book, they’re also

the basis for a more complete library that can be tailored to the system designer’s
needs.

The following procedures are single-precision (short real) floating-point rou-

tines written in 80x86 assembler, small model, with step-by-step pseudocode so you
can adapt them to other processors.

Only the techniques of addition, subtraction, multiplication, and division will be
described in this chapter; refer to FPMATH.ASM for complementary and support

functions.

The Elements of a Floating-Point Number

To convert a standard fixed-point value to one of the two floating-point formats,
you must first normalize it; that is, force it through successive shifts to a number

between 1.0 and 2.0. (Note that this differs from the normalization described earlier
in the fixed-point routines, which involved coercing the number to a value greater
than or equal to one-half and less than one. This results in a representation that

consists of: a sign, a number in fixed-point notation between 1.0 and 2.0, and an

exponent representing the number of shifts required. Mathematically, this can be
expressed as3

for -125 exponent 128 in single precision and

for -1,021 exponent 1,024 in double precision.

128

FLOATING-POINT ARITHMETIC

Since the exponent is really the signed (int) log2 of the number you’re represent-

ing, only numbers greater than 2.0 or less than 1.0 have an exponent other than zero
and require any shifts at all. Very small numbers (less than one) must be normalized
using left shifts, while large numbers with or without fractional extensions require

right shifts. As the number is shifted to the right, the exponent is incremented; as the
number is shifted to the left, the exponent is decremented.

The IEEE 754 standard dictates that the exponent take a certain form for some

errors and for zero. For a Not a Number (NAN) and infinity, the exponent is all ones;
for zero, it is all zeros. For this to be the case, the exponent is biased—127 bits for
single precision, 1023 for double precision.

Figure 4-l shows the components of a floating-point number: a single bit
representing the sign of the number (signed magnitude), an exponent (8 bits for
single precision and 11 bits for double precision, and a mantissa (23 bits for single
precision, 52 bits for double).

Figure 4-1. Single and double-precision floating-point numbers.

129

NUMERICAL METHODS

Let’s look at an example of a single-precision float. The decimal number 14.92

has the following binary fixed-point representation (the decimal point is shown for
clarity):

1110.11101011100001010010

We need three right shifts to normalize it:

1.11011101011100001010010 x 23

We add 127D to the exponent to make it 130D (127 + 3):

10000010B

Because this is a positive number, the sign bit is 0 (the bit in parentheses is the hidden

b i t) :

0+10000010+(1)1101110l0lll0000l0l00l0B

or

416eb852H

The expression of the fractional part of the number depends on the precision

used. This example used 24 bits to conform to the number of bits in the single-
precision format. If the number had been converted from a 16-bit fixed-point word,
the single-precision version would be 416eb000H. Note the loss of significance.

Retrieving the fixed-point number from the float is simply a matter of extracting

the exponent, subtracting the bias, restoring the implied leading bit, and performing

the required number of shifts. The bandwidth of the single-precision float if fairly
high-approximately 3.8 db—so having a data type to handle this range would
require more than 256 bits. Therefore we need some restrictions on the size of the
fixed-point value to which we can legally convert. (For more information, refer to

Chapter 5 .)

130

FLOATING-POINT ARITHMETIC

Extended Precision

If all floating-point computations were carried out in the precision dictated by

the format, calculations such as those required by a square-root routine, a polynomial
evaluation, or an infinite series could quickly lose accuracy. In some cases, the

results would be rendered meaningless. Therefore, IEEE 754 also specifies an
extended format for use in intermediate calculations.3 This format increases both the
number of significant bits and the exponent size. Single-precision extended is
increased from 24 significant bits to at least 32, with the exponent increased to at least

11 bits. The number of significant bits for double precision can be greater than 79 and

the exponent equal to or greater than 15 bits.

This extended precision is invisible to users, who benefit from added accuracy

in their results. Those results are still in the standard single or double-precision
format, necessitating a set of core routines (using extended precision) that are

generally unavailable to the normal user. Another set of routines is needed to convert
standard format into extended format and back into standard format, with the results

rounded at the end of a calculation.
The routines described later in this chapter take two forms. Some were written,

for debugging purposes, to be called by a higher-level language (C); they expect
single-precision input and return single-precision output. They simply convert to and
from single precision to extended format, passing and receiving arguments from the

core routines. These external routines have names that begin with fp_, such as
fp_mul. The core routines operate only with extended precision and have names

beginning with fl, such as flmul; these routines cannot be called from C.4

The extended-precision level in these routines uses a quadword for simple
parameter passing and offers at least a 32-bit significand. This simplifies the

translation from extended to standard format, but it affords less immunity to loss of
significance at the extremes of the single precision floating range than would a

greater number of exponent bits. If your application requires a greater range, make
the exponent larger—15-bits is recommended-in the higher level routines before
passing the values to the core routines. This can actually simplify exponent handling
during intermediate calculations.

Use the core routines for as much of your work as you can; use the external

131

NUMERICAL METHODS

routines when the standard format is needed by a higher-level language or for
communications with another device. An example of a routine, cylinder, that uses

these core routines to compute the volume of a cylinder appears in the module
FPMATH.ASM, and many more appear in TRANS.ASM.

The External Routines

This group includes the basic arithmetic procedures—fp_mul, fp_div, fp_add,

and fp_sub. Written as an interface to C, they pass arguments and pointers on the

stack and write the return values to static variables.
In fp_add, two single-precision floating-point numbers and a pointer to the result

arrive on the stack. Local variables of the correct precision are created for each of the

floats, and memory is reserved for the extended result of the core routines. A
quadword is reserved for each of the extended variables, including the return; the
single-precision float is written starting at the second word, leaving the least

significant word for any extended bits that result from intermediate calculations.

After the variables are cleared, the doubleword floats are written to them and the
core routine, fladd, is called. Upon return from fladd, the routine extracts the single-

precision float (part of the extended internal float) from the result variable, rounds
it, and writes it out with the pointer passed from the calling routine.

fp_add: Algorithm

1.

2.

3.

4.

5.

Allocate and clear storage for three quadwords, one for each operand and
one for the extended-precision result.

Align the 32-bit operands within the extendedvariables so that the least
significant byte is at the boundary of the second word.

Invoke the core addition routine with both operands and a pointer to the
quadword result.

Invoke the rounding routine with the result of the previous operation
and a pointer to that storage.

Pull the 32-bit float out of the extended variable, write it to the static
variable, and return.

132

FLOATING-POINT ARITHMETIC

fp-add: Listing
; *****

fp_add proc uses bx cx dx si di,

local
pushf
cld
xor
lea
mov
stoswrep

rep

lea
mov
stosw

lea

rep
mov
stosw

rep

lea
lea
mov
movsw
lea
lea

rep
mov
movsw
invoke
invoke
lea

rep

mov
mov
movsw

popf
ret

fp_add endp

fp0:dword, fpl:dword, rptr:word
flp0:qword, flpl:qword, result:qword

ax,ax
di,word ptr result
cx,4

di,word ptr flp0
cx,4

di,word ptr flpl

cx,4

;clear variables for
;the core routine

si,word ptr fp0
di,word ptr flp0[2]
cx,2

si,word ptr fpl
di,word ptr flp1[2]

cx,2

;align the floats
;within the extended
;variables

fladd, flp0, flpl, addr result ;do the add
round, result, addr result ;round the result
si, word ptr result[2] ;make it a standard float

di,rptr
cx,2

133

NUMERICAL METHODS

This interface is consistent throughout the external routines. The prototypes for

these basic routines and fp_comp are:

fp_add proto c fp0:dword, fpl:dword, rptr:word

fp_sub proto c fp0:dword, fpl:dword, rptr:word
fp_mu1 proto c fp0:dword, fpl:dword, rptr:word

fp_div proto c fp0:dword, fpl:dword, rptr:word

fp_camp proto c fp:dword, fpl:dword

Fp_comp compares two floating-point values and returns a flag in AX specify-

ing whether fp0 is greater than fpl (1), equal to fpl (0), or less than fpl (-1). The
comparison assumes the number is rounded and does not include extended-precision

bits. (FPMATH.ASM contains the other support routines.)

The Core Routines

Because these routines must prepare the operands and pass their arguments to the
appropriate fixed-point functions, they’re a bit more complex and require more

explanation. They disassemble the floating-point number, extract the exponent, and
align the radix points to allow a fixed-point operation to take place. They then take
the results of these calculations and reconstruct the float.

The basic arithmetic routines in this group include:

fladd proto flp0:qword, flpl:qword, rptr:word

-flp0 is addend0; flpl is addend1

flsub proto flp0:qword, flpl:qword, rptr:word

-flp0 is the minuend; flpl is the subtrahend

flmul proto flp0:qword, flpl:qword, rptr:word

-flp0 is the multiplicand; flpl is the multiplier

fldiv proto flp0:qword, flpl:qword, rptr:word

-flp0 is the dividend; flpl is the divisor

134

FLOATING-POINT ARITHMETIC

For pedagogical and portability reasons, these routines are consistent in terms of

how they prepare the data passed to them.
Briefly, each floating-point routine must do the following:

1. Set up any variables required for the arguments that are passed and for the
results of the current computations.

2. Check for initial errors and unusual conditions.

Division:

divisor == zero: return divide by zero error

divisor == infinite: return zero

dividend == zero: return infinity error

dividend == infinite: return infinite

dividend == divisor: return one

Multiplication:

either operand == zero: return zero

either operand == infinite: return infinite

Subtraction:

minuend == zero: do two’s complement of subtrahend

subtrahend == zero: return minuend unchanged

operands cannot align: return largest with appropriate sign

Addition:

either addend == zero: return

operands cannot align: return

the other

largest

addend unchanged

3. Get the signs of the operands. These are especially useful in determining what

action to take during addition and subtraction.

4. Extract the exponents, subtracting the bias. Perform whatever handling is
required by that procedure. Calculate the approximate exponent of the result.

5. Get the mantissa.

6. Align radix points for fixed-point routines.

135

NUMERICAL METHODS

7. Perform fixed-point arithmetic.

8. Check for initial conditions upon return. If a zero is returned, this is a shortcut

exit from the routine.

9. Renormalize, handling any underflow or overflow.

10. Reassert the sign.

11. Write the result and return.

Fitting These Routines to an Application

One of the primary purposes of the floating-point routines in this book is to

illustrate the inner workings of floating-point arithmetic; they are not assumed to be
the best fit for your system. In addition, all the routines are written as near calls. This

is adequate for many systems, but you may require far calls (which would require far

pointers for the arguments). The functions write their return values to static variables,
an undesireable action in multithreaded systems because these values can be
overwritten by another thread. Though the core routines use extended precision, the
exponents are not extended; if you choose to extend them, 15 bits are recommended.

This way, the exponent and sign bit can fit neatly within one word, allowing as many

as 49 bits of precision in a quadword format. The exceptions are not fully imple-
mented. If your system needs to detect situations in which the mathematical

operation results in something that cannot be interpreted as a number, such as
Signaling or Quiet NANS, you will have to write that code. Many of the in-line utility

functions in the core and external routines may also be rewritten as stand alone

subroutines. Doing so can make handling of the numerics a bit more complex but will
reduce the size of the package.

These routines work well, but feel free to make any changes you wish to fit your
target. A program on the disk, MATH.C, may help you debug any modifications; I

used this technique to prepare the math routines for this book.

Addition and Subtraction: FLADD

Fladd, the core routine for addition and subtraction, is the longest and most

complex routine in FPMATH.ASM (and perhaps the most interesting). We’ll use it

136

FLOATING-POINT ARITHMETIC

as an example, dissecting it into the prologue, the addition, and the epilogue.

The routine for addition can be used without penalty for subtraction because the

sign in the IEEE 754 specification for floating point is signed magnitude. The MSB
of the short or long real is a 1 for negative and a 0 for positive. The higher-level

subtraction routine need only XOR the MSB of the subtrahend before passing the

parameters to fladd to make it a subtraction.
Addition differs from multiplication or division in at least two respects. First,

one operand may be so much smaller than the other that it will contribute no

significance to the result. It can save steps to detect this condition early in the
operation. Second, addition can occur anywhere in four quadrants: both operands

can be positive or both negative, the summend can be negative, or the addend can be
negative.

The first problem is resolved by comparing the difference in the exponents of the

two operands against the number of significant bits available. Since these routines
use 40 bits of precision, including extended precision, the difference between the

exponents can be no greater than 40. Otherwise no overlap will occur and the answer
will be the greater of the two operands no matter what. (Imagine adding .00000001
to 100.0 and expressing the result in eight decimal digits). Therefore, if the difference
between the exponents is greater than 40, the larger of the two numbers is the result

and the routine is exited at that point. If the difference is less than 40, the smaller

operand is shifted until the exponents of both operands are equal.
If the larger of the two numbers is known, the problem of signs becomes trivial.

Whatever the sign of the larger, the smaller operand can never change it through

subtraction or addition, and the sign of the larger number will be the sign of the result.
If the signs of both operands are the same, addition takes place normally; if they

differ, the smaller of the two is two’s complemented before the addition, making it
a subtraction.

The fladd routine is broken into four logical sections, so each part of the
operation can be explained more clearly. Each section comprises a pseudocode
description followed by the actual assembly code listing.

137

NUMERICAL METHODS

FLADD: The Prologue.

1.

2 .

3.

4.

Two quadword variables, opa and opb, are allocated and cleared for use later in
the routine. Byte variables for the sign of each operand and a general sign byte

are also cleared.

Each operand is checked for zero.

If either is zero, the routine exits with the other argument as its answer.

The upper word of each float is loaded into a register and shifted left once into

the sign byte assigned to that operand. The exponent is then moved to the
exponent byte of that operand, exp0 and expl. Finally, the exponent of the

second operand is subtracted from the exponent of the first and the difference

placed in a variable, diff.

The upper words of the floats are ANDed with 7fH to clear the sign and exponent
bits. They’re then ORed with 80H to restore the hidden bit.

We now have a fixed-point number in the form 1.xxx.

FLADD: The Prologue
; *****

fladd proc uses bx cx dx si di,

rep

rep

local
signb:byte,

pushf
std
xor
lea
mov
stosw
lea
mov
stosw
mov
mov

fp:qword, fpl:qword, rptr:word
opa:qword, opb:qword, signa:byte,
exponent:byte, sign:byte,
diff:byte, sign0:byte, sign1:byte,
exp0:byte, exp1:byte

ax,ax
di,word ptr opa[6]
cx,4
word ptr [di]
di,word ptr opb[6]
cx,4
word ptr [di]
byte ptr sign0, al
byte ptr sign1, al
byte ptr sign, al

;decrement
;clear appropriate variables
;larger operand

;smaller operand

;clear signmov

138

FLOATING-POINT ARITHMETIC

chk_fp0:
mov
lea
repe

nonzero
jnz
lea

jmp

cx, 3
di,word ptr fp0[4]
scasw

chk_fpl
si,word ptr fp1[4]
short leave with other

;check for zero

;di will point to the first

;return other addend

chk_fpl:
mov
lea

repe

cx, 3
di,word ptr fp1[4]
scasw

jnz do add
lea si,word ptr fp0[4]

; *****

leave with other:
mov di,word ptr rptr
add di,4
mov cx,3

rep movsw

jmp fp_addex

; *****

do_add:
lea
lea
mov
shl
rcl
mov
mov
shl
rcl
mov
sub
mov

si,word ptr fp0
bx,word ptr fpl
ax,word ptr [si][4]
ax,1
byte ptr sign0, 1
byte ptr exp0, ah
dx,word ptr [bx][4]

dx,l
byte ptr sign1, 1
byte ptr exp1, dh
ah, dh
byte ptr diff, ah

restore-missing-bit:
and word ptr fp0[4], 7fh
or word ptr fp0[4], 80h

;di will point to the
;first nonzero

;return other addend

;fpO
;dump the sign
;collect the sign
;get the exponent
;fpl
;get sign

;and the exponent

;and now the difference

;set up operands

139

NUMERICAL METHODS

mov ax, word ptr fpl

mov bx, word ptr fp1[2]
mov dx, word ptr fp1[4]
and dx,7fh
or dx,80h
mov word ptr fp1[4], dx

;load these into registers;
;we'll use them

The FLADD Routine:

5. Compare the difference between the exponents.

If they're equal, continue with step 6.

If the difference is negative, take the second operand as the largest
and continue with step 7.

If the difference is positive, assume that the first operand is largest
and continue with step 8.

6. Continue comparing the two operands, most significant words first.

If, on any compare except the last, the second operand proves the largest,
continue with step 7.

If, on any compare except the last, the first operand proves the largest,
continue with step 8.

If neither is larger to the last compare, continue with step 8 if the
second operand is larger and step 7 if the first is equal or larger.

7. Two's-complement the variable diff and compare it with 40D to determine
whether to go on.

If it's out of range, write the value of the second operand to the result
and leave.

If it's in range move the exponent of the second operand to exponent,,
move the sign of this operand to the variable holding the sign of the
largest operand and move the sign of the other operand to the variable,
holding the sign of the smaller operand.

Load this fixed-point operand into opa and continue with step 9.

8. Compare diff with 40D to determine whether it's in range.

If not, write the value of the first operand to the result and leave.

If so, move the exponent of the first operand to exponent, move the sign
of this operand to the variable holding the sign of the largest operand,
and move the sign of the other operand to the variable holding the sign
of the smaller operand. Load this fixed-point operand into opa and
continue with step 9.

140

FLOATING-POINT ARITHMETIC

The FLADD Routine: Which Operand is Largest?

find_largest:
cmp

je
test

je
jmp

cmp_rest:

cmp
ja
jb
cmp

ja
jb
cmp

jb

numb_bigger:
sub
mov

neg
mov

cmp
jna

; *****

lea

byte ptr diff,0
cmp_rest
byte ptr diff,80h
numa_bigger
short numb_bigger

dx, word ptr fp0[4]
numb_bigger
numa_bigger
bx, word ptr fp0[2]
numb_bigger
numa_bigger
ax, word ptr fp0[0]
numa_bigger

ax, ax
al,byte ptr diff
al
byte ptr diff,al
al,60
in range

si,word ptr fp1[6]
leave_with_largest:

mov
add

mov

rep movsw

jw
range_errora:

lea

jmp

di,word ptr rptr
di,6

cx,4

fp_addex

si,word ptr fp0[6]
short leave_with_largest

; *****

;test for negative

;if above
;if below

;defaults to numb

;save difference
;do range test

;this is an exit!!!!!
;this is a range error
;operands will not
;line up
;for a valid addition
;leave with largest
;operand
;that is where the
;significance is anyway

141

NUMERICAL METHODS

in range:
mov
mov

mov
mov
mov
mov
lea
lea
mov

rep movsw

al,byte ptr expl
byte ptr exponent,al

al, byte ptr sign1
signa, al
al, byte ptr sign0
byte ptr signb, al
si, word ptr fp1[6]
di,word ptr opa[6]
cx,4

;save exponent of largest
;value

;load opa with largest operand

signb_positive:
lea si, word ptr fp0[4] ;set to load opb

jmp shift_into_position

numa_bigger:
sub
mov

cmp
jae
mov
mov
mov
mov
mov
mov
lea

lea
mov

rep movsw
lea

ax, ax
al,byte ptr diff
al,60
range errora
al,byte ptr exp0
byte ptr exponent,al
al, byte ptr sign1
byte ptr signb, al
al, byte ptr sign0
byte ptr signa, al
si, word ptr fp0[6]

di,word ptr opa[6]
cx,4

;do range test

;save exponent of largest value

;load opa with largest
;operand

si, word ptr fp1[4] ;set to load opb

The FLADD Routine: Aligning the Radix Points.

9. Divide diff by eight to determine how many bytes to shift the smaller
operand so it aligns with the larger operand.

Adjust the remainder to reflect the number of bits yet to be shifted,
and store it in AL.

Subtract the number of bytes to be shifted from a maximum of four and

142

FLOATING-POINT ARITHMETIC

10.

11.

12.

13.

14.

add this to a pointer to opb. That gives us a starting place to write
the most significant word of the smaller operand (we're writing
downward).

Write as many bytes as will fit in the remaining bytes of opb. Move the
adjusted remainder from step 9 to CL and test for zero.

If the remainder is zero, no more shifting is required; continue with
step 12.

Otherwise, continue at step 11.

Shift the smaller operand bit by bit until it's in position.

Compare the signs of the larger and smaller operands.

If they're the same, continue with step 14.

If the larger operand is negative, continue with step 13.

Otherwise, subtract the smaller operand from the larger and continue with
step 15.

Two's-complement the larger operand.

Add the smaller operand to the larger and return a pointer to the result.

The FLADD Routine: Aligning the Radix Point
shift_into_position:

xor ax,ax
mov bx,4
mov cl,3
mov ah,byte ptr diff
shr ax,cl

mov cx,5h
shr al,cl
sub bl,ah

lea
add
mov
inc

load_operand:
movsb
loop
mov
xor
or

di,byte ptr opb
di,bx
cx,bx
cx

load_operand
cl,al
ch,ch
cx, cx

;align operands

;ah contains # of bytes,
;a1 # of bits

;reset pointer below initial
;zeros

143

NUMERICAL METHODS

je
shift_operand:

shr
rcr
rcr
rcr
loop

end_shift:
mov

cmp
je

opb_negative:
not
not
not

neg
jc
adc
adc
adc

end shift

word ptr opb[6],1
word ptr opb[4],1
word ptr opb[2],1
word ptr opb[0],l
shift_operand

al, byte ptr signa
al, byte ptr signb
just_add

word ptr opb[6]
word ptr opb[4]
word ptr opb[2]
word ptr opb[0]
just_add
word ptr opb[2],0
word ptr opb[41,0
word ptr opb[6],0

;signs alike, just add

;do two's complement

just_add:
invoke add64, opa, opb, rptr

FLADD: The Epilogue.

15. Test the result of the fixed-point addition for zero. If it's zero, leave
the routine and write a floating-point zero to output.

16. Determine whether normalization is necessary and, if so, whichdirection
to shift.

If the most significant word of the result is zero, continue with step
18.

If the MSB of the most significant word is zero, continue with step 17.

If the MSB of the second most significant byte of the result (the hidden
bit) isn't set, continue with step 18.

Otherwise, no shifting is necessary; continue with step 19.

17. Shift the result right, incrementing the exponent as you go, until the
second most significant byte of the most significant word is set. This
will be the hidden bit. Continue with step 19.

18. Shift the result left, decrementing the exponent as you go, until the
second most significant byte of the most significant word is set. This

144

FLOATING-POINT ARITHMETIC

will be the hidden bit. Continue with step 19.

19. Shift the most significant word left once to insert the exponent. Shift
it back when you're done, then or in the sign.

20. Write the result to the output and return.

FLADD: The Epilogue
handle_sign:

mov
mov
mov
mov

si, word ptr rptr
dx, word ptr [si][4]
bx, word ptr [si][2]
ax, word ptr [si][0]

norm:
sub

cmp
jne

cmp
jne

cmp
jne

jmp
not_zero:

cx,cx
ax, cx
not_zero
bx,cx
not_zero
dx,cx
not_zero
write_result

mov cx,64

cmp dx,0h

je rotate_result_left

cmp d h , 0 0 h
jne rotate_result_right
test d1,80h

je rotate_result_left

jmp short_done_rotate
rotate_result_right:

shr dx,1
rcr bx,l
rcr ax,1
inc byte ptr exponent

;exit with a zero

;decrement exponent with
;each shift

test dx,0ff00h

je done rotate
loop rotate result right

rotate_result_left:
shl ax,1
rcl bx,l

145

NUMERICAL METHODS

rcl dx,1
dec byte ptr exponent

test
jne
loop

done rotate:
and
shl
or
shr
mov

or

je
or

fix-sign:
mov
or

je
or

write result:
mov
mov
mov
mov
sub
mov

fp_addex:

popf
ret

fladd endp

;decrement exponent with
;each shift

dx,80h
done rotate
rotate result left

dx,7fh

dx 1
dh, byte ptr exponent

dx, 1
cl, byte ptr sign

cl, cl
fix sign
dx,8000h

;insert exponent

;sign of result of
;computation

cl, byte ptr signa
cl, cl
write result
dx,80;0h

;sign of larger operand

di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax

At the core of this routine is a fixed-point subroutine that actually does the
arithmetic. Everything else involves extracting the fixed-point numbers from the
floating-point format and aligning. Fladd calls add64 to perform the actual addition.

(This is the same routine described in Chapter 2 and contained in the FXMATH.ASM
listing in Appendix C and included on the accompanying disk). It adds two quadword

variables passed on the stack with multiprecision arithmetic and writes the output to

a static variable, result.

146

FLOATING-POINT ARITHMETIC

Multiplication and Division

One minor difference between the multiplication and division algorithms is the

error checking at the entry point. Not only are zero and infinity tested in the prologue

to division as they are in the prologue to multiplication, we also check to determine

whether the operands are the same. If they are identical, a one is automatically

returned, thereby avoiding an unnecessary operation.
Floating point treats multiplication and division in a manner similar to logarith-

mic operations. These are essentially the same algorithms taught in school for doing
multiplication and division with logarithms except that instead of log,,, these

routines use log2. (The exponent in these routines is the log, of the value being

represented.) To multiply, the exponents of the two operands are added, and to divide
the difference between the exponents is taken. Fixed point arithmetic performs the

multiplication or division, any overflow or underflow is handled by adjusting the
exponents, and the results are renormalized with the new exponents. Note that the
values added and subtracted as the biases aren’t exactly 127D. This is because of the

manner in which normalization is accomplished in these routines. Instead of
orienting the hidden bit at the MSB of the most significant word, it is at the MSB of
the penultimate byte (in this case DL). This shifts the number by 8 bits, so the bias
that is added or subtracted is 119D.

FLMUL

The pseudocode for floating point multiplication is as follows:

flmul: Algorithm

1. Check each operand for zero and infinity.

If one is found to be infinite, exit through step 9.

If one is found to be zero, exit through step 10.

2. Extract the exponent of each operand, subtract 77H (119D) from one of
them, and add to form the approximate exponent of the result.

3. Test each operand for sign and set the sign variable accordingly.

4. Restore the hiddenbit in eachoperand. Now each operand is a fixed-point
number in the form 1.XXXX...

147

NUMERICAL METHODS

5. Multiply the two numbers with the fixed-point routine mu164a.

6. Check the result for zero. If it is zero, exit through step 10.

7. Renormalize the result, incrementing or decrementing the exponent at the
same time. This accounts for any overflows in the result.

8. Replace the exponent, set the sign, and exit.

9. Infinity exit.

10. Zero exit.

flmul: Listing
; *****

flmul proc

local result[8]:word, sign:byte, exponent:byte

rep

pushf
std
sub
mov
lea
mov
stosw

;
lea
lea
mov
shl
and
jne

jmp
is_a_inf:

cmp
jne

jmp
is_b_zero:

mov
shl
and

c uses bx cx dx si di,
fpO:qword, fpl:qword, rptr:word

ax,ax
byte ptr sign,al
di,word ptr result[14]
cx,8

si,word ptr fp0
bx,word ptr fp1
ax,word ptr [si][4]
ax,1
ax,0ff00h
is_a_inf
make_zero

ax, 0ffOOh
is b zero
return_infinite

dx,word ptr [bx][4]

dx,1
dx,0ff00h

;clear sign variable

;and result variable

;name a pointer to each fp

;check for zero

;zero exponent

;multiplicand is infinite

;check for zero

148

FLOATING-POINT ARITHMETIC

is b inf
make_zero

jnz

jmp
is_b_inf:

cmp dx,0ff00h
jne

jmp
get_exp
return infinite

;
get_exp:

sub
add
mov

;
mov
or
jns
not

a_plus:
mov

ah, 77h
ah, dh
byte ptr exponent,ah

dx,word ptr [si][4]

dx, dx
a_plus
byte ptr sign

dx,word ptr [bx][4]

;zero exponent

;multiplicand is infinite

;add exponents
;save exponent

;set sign variable according
;to msb of float

;set sign according to msb
;of float

or
jns
not

dx, dx
restore missing bit
byte ptr sign

restore missing bit:
and word ptr fp0[4], 7fh
or word ptr fp0[4], 80h
and word ptr fp1[4], 7fh
or word ptr fp1[4], 80h

;remove the sign and exponent
;and restore the hidden bit

invoke mu164a, fp0, fpl, addr result ;multiply with fixed point
;routine

mov dx, word ptr result [10] ;check for zeros on return
mov bx, word, ptr result[8]
mov ax, word, ptr results[6]

cx, cx
ax,cx
not_zero
bx,cx
not_zero
dx,cx
not_zero
fix_sign

sub

cmp
jne

cmp
jne

cmp
jne

jmp ;exit with a zero

149

NUMERICAL METHODS

not_zero:
mov cx,64

cmp dx,0h

je rotate_result_left

cmp dh,00h
jne rotate_result_right
test d1,80h

je rotate_result_left

jmp short_done_rotate
rotate result right:

shr dx,l
rcr bx,l

rcr ax,1
test dx,0ff00h

je done_rotate
inc byte ptr exponent

loop rotate_result_right
rotate_result_left:

shl word ptr result[2],1
rcl word ptr result[4],1
rcl ax,1

rcl bx,l
rcl dx,l
test dx,80h
jne done rotate
dec byte ptr exponent

loop
done_rotate:

and

or

mov

rotate result left

dx,7fh
shl dx, 1
dh, byte ptr exponent
shr dx, 1
cl,byte ptr sign

or

je
or

fix_sign:
mov
mov
mov
mov

cl,cl
fix-sign
dx,8000h

di,word ptr rptr
word ptr [di], ax
word ptr [di][2],bx
word ptr [di][4],dx

150

;should never go to zero
;realign float

;decrement exponent with
;each shift

;decrement exponent with
;each shift

;clear sign bit

;insert exponent

;set sign of float based on
;sign flag

;write to the output

FLOATING-POINT ARITHMETIC

sub
mov

fp_mulex:

popf
ret

;
return infinite:

sub
mov
not
mov
and

jmp

make_zero:
xor

finish_error:
mov
add
mov

rep stos

jmp
flmul endp

ax,ax
word ptr [di][6],ax

ax, ax
bx, ax
ax
dx, ax
dx, 0f80h
short fix_sign

ax,ax

di,word ptr rptr
di,6
cx, 4
word ptr [di]
short fp_mulex

;infinity

The multiplication in this routine was performed by the fixed-point routine
mul64a. This is a specially-written form of mul64 which appears in FXMATH.ASM

on the included disk. It takes as operands, 5-byte integers, the size of the mantissa

plus extended bits in this format, and returns a 10-byte result. Knowing the size of
the operands, means the routine can be sized exactly for that result, making it faster

and smaller.

mul64a: Algorithm

1. Use DI to hold the address of the result, a quadword.

2. Move the most significant word of the multiplicand into AX and multiply
by the most significant word of the multiplier. The product of this
multiplication is written to the most significant word result.

3. The most significant word of the multiplicand is returned to AX and
multiplied by the second most significant word of the multiplier. The
least significant word of the product is MOVed to the second most
significant word of result, the most significant word of the product is

151

NUMERICAL METHODS

ADDed to the most significant word of result.

4. The most significant word of the multiplicand is returned to AX and
multiplied by the least significant word of the multiplier. The least
significant word of this product is MOVed to the third most significant
word of result, the most significant word of the product is ADDed to the
second most significant word of result, any carries are propagated
through with an ADC instruction.

5. The second most significant word of the multiplicand is MOVed to AX and
multiplied by the most significant word of the multiplier. The lower word
of the product is ADDed to the second most significant word of result
and the upper word is added-with-carry (ADC) to the second most
significant word of result.

6. The second most significant word of the multiplicand is again MOVed to
AX and multiplied by the secondmost significant word of the multiplier.
The lower word of the product is ADDed to the third most significant word
of result and the upper word is added-with-carry (ADC) to the secondmost
significant word of result with any carries propagated to the MSW with
an ADC.

7. The second most significant word of the multiplicand is again MOVed to
AX and multiplied by the least significant word of the multiplier. The
lower word of the product is MOVed to the fourth most significant word
of result and the upper word is added-with-carry (AX) to the thirdmost
significant word of result with any carries propagated through to the
MSW with an ADC.

8. The least significant word of the multiplicand is MOVed into AX and
multiplied by the MSW of the multiplier. The least significant word of
this product is ADDed to the third most significant word of result, the
MSW of the product is ADCed to the second most significant word of result,
and any carry is propagated into the most significant word of result with
an ADC.

mul64a: Listing
; *****

;* mu164a - Multiplies two unsigned 5-byte integers. The
;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
mu164a proc uses ax dx,

multiplicand:qword, multiplier:qword, result:word

mov di,word ptr result
sub cx, cx

152

FLOATING-POINT ARITHMETIC

mov
mul
mov

mov
mul

mov
add

mov

mul
mov
add
adc

mov
mul
add
adc

mov
mul
add
adc
adc

mov
mul
mov

add
adc
adc

mov
mul
add
adc
adc

mov

ax, word ptr multiplicand[4]
word ptr multiplier [4]
word ptr [di][8], ax

ax, word ptr multiplicand[4]
word ptr multiplier [2]

word ptr [di][6], ax
word ptr [di][8], dx

ax, word ptr multiplicand[4]

word ptr multiplier [0]
word ptr [di] [4], ax
word ptr [di][6], dx
word ptr [di][8], cx

ax, word ptr multiplicand[2]
word ptr multiplier [4]
word ptr [di][6], ax
word ptr [di][8], dx

ax, word ptr multiplicand[2]
word ptr multiplier[2]
word ptr [di][4], ax
word ptr [di][6], dx
word ptr [di][8], cx

ax, word ptr multiplicand[2]
word ptr multiplier[0]
word ptr [di][2], ax

word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx
word ptr [di] [8], cx

ax, word ptr multiplicand[0]

;multiply multiplicand high
;word by multiplier high word

;multiply multiplicand high
;word by second MSW
;of multiplier

;multiply multiplicand high
;word by third MSW
;of multiplier

;propagate carry

;multiply second MSW
;of multiplicand by MSW
;of multiplier

;multiply second MSW of
;multiplicand by second MSW
;of multiplier

;add any remnant carry

;multiply second MSW of
;multiplicand by least
;significant word of
;multiplier

;add any remnant carry

;multiply multiplicand low
;word by MSW of multiplier

;add any remnant carry

;multiply multiplicand low

153

NUMERICAL METHODS

mul

add
adc
adc
adc

mov
mul
mov
add
adc
adc
adc

word ptr multiplier[2]

word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[0]
word ptr [di][0], ax
word ptr [di][2], dx
word ptr [di][4], cx
word ptr [di][61, cx
word ptr [di][8], cx

;word by second MSW of
;multiplier

;add any remnant carry
;add any remnant carry

;multiply multiplicand low
;word by multiplier low word

;add any remnant carry
;add any remnant carry
;add any remnant carry

ret
mu164a endp

FLDIV

The divide is similar to the multiply except that the exponents are subtracted
instead of added and the alignment is adjusted just before the fixed-point divide. This
adjustment prevents an overflow in the divide that could cause the most significant

word to contain a one. If we divide by two and increment the exponent, div64 returns
a quotient that is properly aligned for the renormalization process that follows.

The division could have been left as it was and the renormalization changed, but

since it made little difference in code size or speed, it was left. This extra division

does not change the result.

fldiv: Algorithm

1. Check the operands for zero and infinity.

If one is found to be infinite, exit through step 11.

If one is found to be zero, exit through step 12.

2. Test the divisor and dividend to see whether they are equal. If they are,
exit now with a floating-point 1.0 as the result.

3. Get the exponents, find the difference and subtract 77H (119D). This is
the approximate exponent of the result.

154

FLOATING-POINT ARITHMETIC

4. Check the signs of the operands and set the sign variable accordingly.

5. Restore the hidden bit.

6. Check the dividend to see if the most significant word is less than the
divisor to align the quotient. If it's greater, divide it by two and
increment the difference between the exponents by one.

7. Use div64 to perform the division.

8. Check for a zero result upon return and exit with a floating-point 0.0
if so.

9. Renormalize the result.

10. Insert the exponent and sign and exit.

11. Infinite exit.

12. Zero exit.

fldiv: Listing
; *****

fldiv proc C uses bx cx dx si di,
fp0:gword, fpl:qword, rptr:word

local qtnt:qword, sign:byte, exponent:byte, rmndr:gword

pushf
std
xor ax,ax

mov byte ptr sign, al

lea
lea

si,word ptr fp0
bx,word ptr fpl

mov
shl
and
jne

jmp
chk_b:

mov
shl
and
jne

ax,word ptr [si][4]
ax,1
ax,0ff00h
chk_b
return infinite

dx,word ptr [bx][4]

a,1
dx,0ff00h
b_notz

;begin error and situation
;checking
;name a pointer to each fp

;check for zero

:infinity

155

NUMERICAL METHODS

jmp

b_notz:

jne

jmp
check_identity:

mov
add
add
mov

repe cmpsw
jne
mov
mov
mov
mov
mov
mov
mov
sub
mov

jmp

cmp

not same:
lea
lea

sub
add

mov

mov
or
jns
not

a_plus:
mov
or
jns
not

divide-by-zero

dx,0ff00h
check_identity
make_zero

di,bx
di,4
si,4
cx,3

not same
ax,word ptr dgt[8]
bx,word ptr dgt[10]
dx,word ptr dgt[12]
di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax
fldivex

si,word ptr fp0
bx,word ptr fp1

ah,dh
ah,77h

byte ptr exponent,ah

dx, word ptr [si][4]

h, dx
a_plus
byte ptr sign

restore_missing_bit:

dx,word ptr [bx][4]

dx, dx
restore_missing_bit
byte ptr sign

;infinity, divide by zero
;is undefined

;divisor is infinite

;will decrement selves

;these guys are the same
;return a one

;get exponents
;reset pointers

subtract exponents
;subtract bias minus two
;digits
;save exponent

;check sign

;line up operands for division

156

FLOATING-POINT ARITHMETIC

and word ptr fp0[4], 7fh
or word ptr fp0[4], 80h

mov
and
or
cmp

ja
inc
shl
rcl
rcl

store_dvsr:
mov

dx, word ptr fp1[4]
dx, 7fh
dx, 80h
dx,word ptr fp0[4]
store dvsr
byte ptr exponent
word ptr fp1[0], 1
word ptr fp1[2], 1
dx, 1

word ptr fp1[41, dx

divide:
invoke divmul, fp0, fpl, addr fp0 ;perform fixed point division

mov
mov
mov
sub
cmp

jne

cmp
jne

dx,word ptr fp0[4]
bx,word ptr fp0[2]
ax,word ptr fp0[0]
cx, cx
ax,cx
not zero
bx,cx

cmp

jne

jmp
not_zero:

mov

not zero
dx,cx
not zero
fix-sign

cmp

je
cmp
jne
test

je
jmp

cx,64
dx,0h
rotate_result_left
d h , 0 0 h
rotate_result_right
d1,80h
rotate_result_left
short done_rotate

;see if divisor is greater than
;dividend then divide by 2

;check for zeros on return

;exit with a zero

;should never go to zero

;realign float

rotate_result_right:
shr dx,1
rcr bx,1
rcr ax,1
test dx,0ff00h

je done_rotate

157

NUMERICAL METHODS

inc

loop
rotate_result_left:

shl
rcl
rcl
rcl
test
jne
dec

loop
done rotate:

and
shl
or
shr
mov

or

je
or

fix_sign:
mov
mov
mov
mov
sub
mov

fldivex:

popf
ret

return infinite:
sub
mov
not
mov
and

jmp
divide_by_zero:

sub
not

byte ptr exponent

rotate result right

word ptr qtnt,l
ax,1
bx,l

dx,l
dx,80h
done_rotate
byte ptr exponent

rotate_result_left

dx, 7fh

dx, 1
dh, byte ptr exponent

dx, 1
cl,byte ptr sign

cl,cl
fix_sign
dx,8000h

di,word ptr rptr
word ptr [di],ax

word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6l,ax

ax, ax
bx, ax
ax
dx, ax
dx, 0f80h
short fix_sign

ax,ax
ax

;decrement exponent with
;each shift

;decrement exponent with
;each shift

;insert exponent

;set sign flag according
;to variable

;infinity

158

FLOATING-POINT ARITHMETIC

jmp short finish error

make_zero:
xor

finish_error:
mov
add
mov

rep stos

jmp
fldiv endp

ax,ax

di,word ptr rptr
di,6
cx,4
word ptr [di]
short fldivex

;positive zero

In order to produce the accuracy required for this floating-point routine with the
greatest speed, use div64 from Chapter 2. This routine was specifically written to

perform the fixed-point divide.

Rounding

Rounding is included in this discussion on floating point because it’s used in the

external routines.

IEEE 754 says that the default rounding shall “round to nearest,” with the option

to choose one of three other forms: round toward positive infinity, round to zero, and
round toward negative infinity. Several methods are available in the rounding
routine, as you’ll see in the comments of this routine.

The default method in round is “round to nearest.” This involves checking the

extended bits of the floating-point number. If they’re less than half the LSB of the
actual float, clear them and exit. If the extended bits are greater than half the LSB,

add a one to the least significant word and propagate the carries through to the most
significant word. If the extended bits are equal to exactly one-half the LSB, then
round toward the nearest zero. If either of the last two cases results in an overflow,

increment the exponent. Clear AX (the extended bits) and exit round. If a fault

occurs, AX contains -1 on exit.

round: Algorithm

1. Load the complete float, including extended bits, into the microprocessor's

159

NUMERICAL METHODS

registers.

2. Compare the least significant word with one-half (8000H).

If the extended bits are less than one-half, exit through step 5.

If the extended bits aren't equal to one-half, continue with step 3.

If the extended bits are equal to one-half, test the LSB of the
representable portion of the float.

If it's zero, exit through step 5.

If it's one, continue with step 3.

3. Strip the sign and exponent from the most significant word of the float
and add one to the least significant word. Propagate the carry by adding
zero to the upper word and test what might have been the hidden bit for
a one.

A zero indicates that no overflow occurred; continue with step 4.

A one indicates overflow from the addition. Get the most significant word
of the float, extract the sign and exponent, and add one to the exponent.

If this addition resulted in an overflow, exit through step 5.

Insert the new exponent into the float and exit through step 5.

4. Load the MSW of the float. Get the exponent and sign and insert
them into the rounded fixed-point number; exit through step 5.

5. Clear AX to indicate success and write the rounded float to the output.

6. Return a -1 in AX to indicate failure. Make the float a Quiet NAN (positive
overflow) and exit through step 5.

Round: Listing
; *****

round proto flp0:qword, rptr:word

round proc uses bx dx di, fp:qword, rptr:word
mov ax,word ptr fp[0]
mov bx,word ptr fp[2]
mov dx,word ptr fp[4]

cmp ax,8000h

jb round ex
jne needs_rounding
test bx,l

;less than half

je round_ex

;put your rounding scheme
;here, as in the
;commented-out code below

160

FLOATING-POINT ARITHMETIC

jmp
; xor

; or

jmp
needs rounding:

and
add
adc
test

je
mov
and
and
add

jo
or

jmp
renorm:

mov
and
or

round_ex:
sub

round_exl:
mov
mov
mov
mov
sub
mov
ret

over_flow:
xor
mov
not
mov
xor

jmp
round endp

short needs rounding

x, 1

bx,1

round_ex

;round to even if odd
;and odd if even
;round down if odd and up if
;even (jam)

dx,7fh
bx,1h
dx,O
dx,80h
renorm
ax,word ptr fp[4]
dx, 7fh
ax,0ff80h
ax,80h
over flow
dx,ax
short round_ex

ax,word ptr fp[4]
ax,0ff80h
dx,ax

ax,ax

di,word ptr rptr
word ptr [di][0],ax
word ptr [di][Z],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax

ax,ax
bx,ax
ax
dx,ax
dx,7fH

short round ex1

;if this is a one, there will
;be an overflow

;get exponent and sign
;kick it up one

;get exponent and sign

;indicate overflow with an
;infinity

161

NUMERICAL METHODS

1
Ochs, Tom. “A Rotten Foundation,” Computer Language 8/2: Page 107.

Feb. 1991.
2

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-

lishing Co., 1981, Pages 213-223.
3 IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE

Std 754, 1985).
4

Plauger, P.J. “Floating-Point Arithmetic,” Embedded Systems Program-

ming 4/8: Pages 95-100. Aug. 1991.

162

CHAPTER 5

Input, Output,
and Conversion

To be useful, an embedded system must communicate with the outside world.

How that communication proceeds can strongly influence the system’s speed and
efficiency.

Often, the nature of the system and the applications program that drives it defines
the form of the commands that flow between an embedded system and the host. If

it’s a graphics card or servo controller embedded in a PC, the fastest way to
communicate is pure binary for both commands and data. Depending on the

availability of a math chip, the numerics are in either fixed or floating-point notation.
Even so, it’s quite common to find such systems using ASCII strings and decimal

arithmetic to interface with the user. That’s because binary communication can be
fast, even though it has its problems. The General Purpose Interface Bus (GPIB) has

some of the advantages and speed of the hardware interface, but the binary command

and data set can sometimes imitate its own bus-control commands and cause trouble.

Binary information on RS232, perhaps the most commonly used interface, has

similar problems with binary data aliasing commands and delimiters. Packet-based
communications schemes are available, however, they can be slow and clumsy. Any
problem can be solved on closed systems under controlled circumstances, but

rigorous, simple communication schemes often default to ASCII or EBCDIC for
ease of debugging and user familiarity.

Whatever choices you make for your system, it will almost always have to
communicate with the outside world. This often means accepting and working with

formats that are quite foreign to the binary on the microprocessor bus. What’s more,
the numerics will most likely be decimal and not binary or hex, since that’s how most

of us view the world.

163

NUMERICAL METHODS

Decimal Arithmetic

If your system does very little calculation or just drives a display, it may not be
worth converting the incoming decimal data to another format. The Z80, 8085, and

8051 allow limited addition and subtraction in the form of the DAA or DA instruction.

On the Intel parts, this instruction really only helps during addition; the Z80 can

handle decimal correction in both addition and subtraction. The 80x86 family offers

instructions aimed at packing and unpacking decimal data, along with adjustments
for a limited set of basic arithmetic operations. The data type is no greater than a byte,

however, making the operation long and cumbersome to implement. The 8096

family lacks any form of decimal instructions such as the DAA or auxiliary carry flag.

Binary-based microprocessors do not work easily with decimal numbers be-

cause base 2, which is one bit per digit, and even base 16, which is four bits per digit,
are incompatible with base 10; they have a different modulus. The DAA instruction

corrects for this by adding six to any result greater than nine (or on an auxiliary carry),
thereby producing a proper carry out to the next digit.

A few other instructions are available on the 80x86 for performing decimal

arithmetic and converting to and from ASCII:

AAA stands for ASCII Adjust After Addition. Add two unpacked (one decimal
digit per byte) 8-bit decimal values and put the sum in AL. If the sum is greater
than nine, this instruction will add six but propagate the carry into AH. That

leaves you with an unpacked decimal value perfectly suited for conversion to
ASCII.

AAD stands for ASCII Adjust before Division, takes an unpacked value in AX
and performs an automatic conversion to binary, placing the resulting value in
AL. This instruction can help convert ASCII BCD to binary by handling part of

the process for you.

The AAM instruction, which stands for ASCII Adjust After Multiply, unpacks

an 8-bit binary number less than 100 into AL, placing the most significant digit
in AH and the least significant in AL. This instruction allows for a fast, easy

conversion back to ASCII after a multiplication or division operation.

AAS stands for ASCII Adjust After Subtraction, corrects radix misalignment

164

INPUT, OUTPUT, AND CONVERSION

after a subtraction. If the result of the subtraction, which must be in AL, is greater

than nine, AH is decremented and six is subtracted from AL. If AH is zero, it
becomes -1 (0ffH).

The purpose of these functions is to allow a small amount of decimal arithmetic

in ASCII form for I/O. They may be sufficient to drive displays and do simple string
or keyboard handling, but if your application does enough number crunching-and

it doesn’t take much-you’ll probably want to do it in binary; it’s much faster and
easier to work with.

Radix Conversions

In his book Seminumerical Algorithms, Donald Knuth writes about a number of
methods for radix conversion1. Four of these involve fundamental principles and are

well worth examining.

These methods are divided into two groups: one for integers and one for

fractions. Note: properly implemented, the fractional conversions will work with
integers and the integer conversions with the fractions. In the descriptions that
follow, we’ll convert between base 10 and base 2. Base A will be the base we’re

converting from, and base B will be the base we’re converting to. The code in this
section uses binary arithmetic, often with hexadecimal notation, because that’s the

native radix of most computers and microprocessors. In addition, all conversions are

between ASCII BCD and binary, but you can use these algorithms with any radix.

Integer Conversion by Division

In this case, base A (2) is converted to base B (10) by division using binary
arithmetic. We divide the number to be converted by the base we’re converting to and
place it in a variable. This is a modular operation, and the remainder of the division

is the converted digit. The numbers are converted least significant digit first.

If we were to convert 0ffH (255D) to decimal, for example, we would first divide

by 0aH (10D). This operation would produce a quotient of 19H and a remainder of
5H (the 5 is our first converted digit). We would then divide 19H by 0aH, for a
resulting quotient of 2H and a remainder of 5H (the next converted digit). Finally,

165

NUMERICAL METHODS

we would divide 2H by 0aH, with a 0H result and a 2H remainder (the final digit).

1.

2.

3.

4.

Briefly, this method works as follows:

Shift the bits of the variable decimal_accumulator right four bits to make room

for the next digit.

Load an accumulator with the value to be converted and divide by 0aH (10D).

OR the least significant nibble of decimal_accumulator with the four-bit
remainder just produced.

Check the quotient to see that there is something left to divide.

If so, continue with step 1 above.

If not, return decimal_ accumulator as the result.

The routine bn_dnt converts a 32-bit binary number to an ASCII string. The
routine expects no more than eight digits of decimal data (you can change this, of

course).
This routine loads the number to be converted into AX, checks it for zero, and

if possible divides it by 10. Because the remainder from the first division is already
in DX, we don’t have to move it to prepare for the second division (on the LSW). The
remainder generated by these divisions is ORed with zero, resulting in an ASCII
character that’s placed in a string. The conversion is unsigned (we’ll see examples

of signed conversions later in this chapter).

bn_dnt: Algorithm

1. Point to the binary value, binary, to be converted and to the output
string, decptr. Load the loop counter for maximum string size.

2. Get the MSW of binary and check for zero.

If it's zero, continue with step 6.

If not, divide by 10.

Return the quotient to the MSW of binary.

Check the remainder for zero.

If it's zero, continue with step 6.

If not, go on to step 3.

3. Get the LSW of binary and check for zero.

166

INPUT, OUTPUT, AND CONVERSION

If it's zero, check the remainder from the last division. If it's also
zero, continue with step 5.

Otherwise, continue with step 4.

4. Divide by 10 and return the quotient to the LSW of binary.

5. Make the result ASCII by ORing zero (30H). Write it to the string,
increment the pointer,and decrement the loop pointer,

If the loop counter isn't zero, continue with step 2.

Otherwise, exit with an error.

6. Test the upper word of binary for zero.

If it's not zero, go to step 3.

If it's,check the LSW of the binary variable.

If it's not zero, go to step 4.

If it's, we're done; go to step 7.

7. Realign the string and return with the carry clear.

bn-dnt: Listing

; bn_dnt - a routine that converts binary data to decimal
;
;A doubleword is converted. Up to eight decimal digits are
;placed in the array pointed to by decptr. If more are required to
;convert this number, the attempt is aborted and an error flagged.
;
bn_dnt proc uses bx cx dx si di, binary:dword, decptr: word

lea

mov
mov
add

sub
mov
mov

si,word ptr binary

di,word ptr decptr
cx, 9
di,cx

bx,bx
dx,bx

;get pointer to MSB of
;decimal value
;string of decimal ASCII digits

;point to end of string
;this is for correct ordering

byte ptr [di],bl

di

;see that string is zero-
;terminated

binary_conversion:
sub dx, dx

dec

mov ax,word ptr [si][2] ;get upper word

167

NUMERICAL METHODS

or

je
div
mov
or

je

divide_lower:
mov

or ax,ax

jne
or

je
not_zero:

div
put_zero:

mov
or

iten

mov
dec
loop

bytr, [di], dl
di
binary_conversion

oops:
mov
stc
ret

chk_empty:
or

empty

je
jmp

still_nothing
mov

binary
or

je
jmp

empty:
inc
mov

ax,ax
chk_empty
iten
word ptr [si][2],ax

dx, dx
chk_empty

ax, word ptr [si]

not_zero
dx, ax
put_zero

word ptr [si],ax
dl,'O'

ax,-1

dx,ax

still_nothing
short divide_lower

ax, word ptr [si]

ax, ax

empty
short not_zero

di
si, di

;see if it is zero
;if so, check empty
;divide by 10

;check for zeros

;always checking the least
;significant word
;of the binary accumulator
;for zero

;divide lower word

;save quotient
;make the remainder an ASCII
;digit
;write it to a string

;too many characters; just leave

;we
;ls

are done if the variable

;check least significant word of

;variable for zero

;realign string
;trade pointers

168

INPUT, OUTPUT, AND CONVERSION

mov di, word ptr decptr
mov cx, 9

rep movsw

finished:
sub
clc

ax,ax ;success
;no carry = success!

ret
bn_dnt endp

Integer Conversion by Multiplication

In this case, base A (10) is converted to base B (2) by multiplication using binary
arithmetic. We convert the number by multiplying the result variable, called

binary-accumulator, by base A (10), before adding each new decimal digit.
To see how this is done, we can reverse the conversion we just completed. This

time, we wish to convert 255D to binary. First we create an accumulator, binvar, to

hold the result (which is initially set to 0) and a source variable, decvar, to hold the
decimal value. We then add decimal digits to binvar one at a time from decvar which

is set to 255D. The first iteration places 2D in binvar; we multiply this by 0aH (10D)
to make room for the next addition. (Recall that the arithmetic is binary.) Binvar is

now 14H. The next step is to add 5D. The result, 19H, is then multiplied by 0aH to

equal 0faH. To this value we add the final digit, 5D, to arrive at the result 0ffH
(255D). This is the last digit, so no further multiplications are necessary.

Assume a word variable, decvar, holds four packed decimal digits. The

following pseudocode illustrates how these digits are converted to binary and the

result placed in another word variable, binvar.

1. Assume binvar and decvar are word variables located somewhere in RAM.

2. Multiply binvar by base A (10), the routine is converting from base A to base B.

3. Shift a digit (starting with the most significant) from decvar into binvar.

4. Test decvar to see whether it is zero yet.

If it is, we are done and write binvar to memory or return it as the result.

If not, continue from step 2.

169

NUMERICAL METHODS

In the following code, a pointer to a string of ASCII decimal digits is passed to

a subroutine that, in turn, returns a pointer to a doubleword containing the binary
conversion. The routine checks each digit for integrity before processing it. If it

encounters a nondecimal character, it assumes that it has reached the end of the

string. Multiplication by 10 is performed in-line to save time.

dnt_bn: Algorithm

1. Point at the base of the BCD ASCII string (the most significant decimal
digit), clear the binary accumulator, and load the loop counter with the
maximum string length.

2. Get the ASCII digit and test to see whether it is between 0 and 9,

If not, we are done; exit through step 4.

If so, call step 5 to multiply the binary accumulator by 10. Coerce the
ASCII digit to binary, add that digit to the binary accumulator,
increment the string pointer, and decrement the loop counter.

If the loop counter is zero, go to step 3.

If not, continue with step 2

3. Exit with error.

4. Write the binary accumulator to output and leave with the carry clear.

5. Execute in-line code to multiply DX:BX by 10.

dnt_bn: Listing
; *****

; dnt_bn - decimal integer to binary conversion routine
;unsigned

;It is expected that decptr points at a string of ASCII decimal digits.
;Each digit is taken in turn and converted until eight have been converted
;or until a nondecimal number is encountered.
;This might be used to pull a number from a communications buffer.

;Returns with no carry if successful and carry set if not.

dnt bn proc uses bx cx dx si di, decptr:word, binary:word

mov si,word ptr decptr

sub ax,ax
mov bx,ax

;get pointer to beginning of
;BCD ASCII string
;clear some registers

170

INPUT, OUTPUT, AND CONVERSION

mov
mov

dx,bx
cx, 9

decimal_conversion:
mov al,byte ptr [si]

cmp al,'O'

jb work_done

cmp al, '9'
ja work_done

call near ptr times_ten
xor a1,'O'
add bx,ax
adc dx,0
inc si
loop decimal_conversion

oops:
stc
ret

work_done:
mov
mov
mov
clc
ret

di, word ptr binary
word ptr [di],bx
word ptr [dil[2],dx

times_ten:
push ax

push cx
shl bx,l

rcl dx,1
ax,bxmov

cx, dxmov

;check for decimal digit

;if it gets past here, it
;must be OK
;in-line multiply
;convert to number
;add next digit
;propagate any carries

;more than eight digits

;store result
;success

;save these, they contain
;information

;l0 = three left shifts and
;an add

;this is the multiply by two
;keep it

shl
rcl

bx,l

dx,l

shl
rcl

bx,l

dx,l

171

NUMERICAL METHODS

add

adc dx,cx

;this is the multiply by eight
;add the multiply by two to
;get 10

pop cx ;get it back

pop ax
retn

dnt_bn endp

Fraction Conversion by Multiplication

The next algorithm converts a fraction in base A (2) to base B (10) by successive
multiplications of the number to be converted by the base to which we’re converting.

First, let’s look at a simple example. Assume we need to convert 8cH to a decimal
fraction. The converted digit is produced as the overflow from the data type, in this

case a byte. We multiply 8cH by 0aH, again using binary arithmetic, to get 578H (the
five is the overflow). This conversion may actually occur between the low byte and

high byte of a word register, such as the AX register in the 8086. We remove the first
digit, 5, from the calculation and place it in an accumulator as the most significant

digit. Next, we multiply 78H by 0aH, for a result of 4b0H. Before placing this digit

in the accumulator, we shift the accumulator four bits to make room for it. This
procedure continues until the required precision is reached or until the initial binary
value is exhausted.

Round with care and only if you must. There are two ways to round a number.
One is to truncate the conversion at the desired precision plus one digit, n-k+1' where

n is a converted digit and k is positional notation. A one is then added to the least
significant digit plus one, n-k, if the least significant digit n-k+1, is greater than one-

half of n-k. This propagates any carries that might occur in the conversion. The other
method involves rounding the fraction in the source base and then converting, but

this can lead to error if the original fraction cannot be represented exactly.
To use this procedure, we must create certain registers or variables. First, we

create the working variable bfrac to hold the binary fraction to be converted. Because

multiplication requires a result register as wide as the sum of the bits of the
multiplicand and multiplier, we need a variable as wide as the original fraction plus
four bits. If the original fraction is a byte, as above, a word variable or register is more
than sufficient. Next, we create dfrac to accumulate the result starting with the most

172

INPUT, OUTPUT, AND CONVERSION

significant decimal digit (the one closest to the radix point). This variable needs to
be as large as the desired precision.

1.

2.

3.

4.

5.

Clear dfrac and load bfrac with the binary fraction we’re converting.

Check bfrac to see if it’s exhausted or if we’ve reached our desired precision.
If either is true, we’re done.

Multiply bfrac by the base to which we’re converting (in this case, 0aH).

Take the upper byte of bfrac as the result of the conversion and place it in

dfrac as the next less significant digit. Zero the upper byte of bfrac.

Continue from step 2.

The following routine accepts a pointer to a 32-bit binary fraction and a pointer
to a string. The converted decimal numbers will be placed in that string as ASCII

characters.

bfc_dc: Algorithm

1. Point to the output string, load the binary fraction in DX:BX, set the
loop counter to eight (the maximum length of the string), and initialize
the string with a period.

2. Check the binary fraction for zero.

If it's zero, exit through step 3.

If not, clear AX to receive the overflow. Multiply the binary fraction
by 10, using AX for overflow. Coerce AX to ASCII and write it to the
string. Decrement the loop counter.

If the counter is zero, leave through step 3.

Otherwise, clear the overflow variable and continue with step 2.

3. Exit with the carry clear.

bfc-dc: Listing
; *****

; bfc_dc - a conversion routine that converts a binary fraction
; (doubleword) to decimal ASCII representation pointed to by the string

173

NUMERICAL METHODS

;pointer decptr. Set for eight digits, but it could be longer.

bfc dc proc

local

uses bx cx dx si di bp, fraction:dword, decptr:word

sva:word, svb:word, svd:word

mov
mov
mov

di,word ptr decptr
bx,word ptr fraction
dx,word ptr fraction[2]

;point to ASCII output string

;get fractional part

mov cx, 8
sub ax,ax

mov byte ptr [di], '.'
inc di

decimal conversion:
or ax,dx
or ax,bx

jz work done
sub ax,ax

shl bx,1
rcl dx,1
rcl ax,1
mov
mov
mov

shl
rcl
rcl

shl
rcl
rcl

add
adc
adc

;to begin the ASCII fraction

word ptr svb,bx
word ptr svd,dx
word ptr sva,ax

bx,1
dx,1
ax,1

bx,1

dx,1
ax,1

;digit counter

bx,word ptr svb
dx,word ptr svd
ax,word ptr sva

;check for zero operand
;check for zero operand

;multiply fraction by 10

;times 2 multiple

;multiply by 10
;the converted value is
;placed in AL

174

INPUT, OUTPUT, AND CONVERSION

or
mov
inc
sub
loop

al,'0´
byte ptr [di],al
di
ax,ax
decimal conversion

work done:
mov byte ptr [di],al ;end string with a null

;this result is ASCIIized and
;placed in a string

clc
ret

bfc_dc endp

Fraction Conversion by Division
Like conversion of integers by multiplication, this procedure is performed as a

polynomial evaluation. With this method, base A (10) is converted to base B (2) by

successively dividing of the accumulated value by base A using the arithmetic of
base B. This is the reverse of the procedure we just discussed.

For example, lets convert .66D to binary. We use a word variable to perform the

conversion and place the decimal value into the upper byte, one digit at a time,
starting with the least significant. We then divide by the base from which we’re

converting. Starting with the least significant decimal digit, we divide 6.00H (the

radix point defines the division between the upper and lower bytes) by 0aH to get

.99H. This fraction is concatenated with the next most significant decimal digit,

yielding 6.99H. We divide this number by 0aH, for a result of .a8H. Both divisions
in this example resulted in remainders; the first was less than one-half the LSB and
could be forgotten, but the second was more than one-half the LSB and could have

been used for rounding.
Create a fixed-point representation large enough to contain the fraction, with an

integer portion large enough to hold a decimal digit. In the previous example, a byte

was large enough to contain the result of the conversion (log10 256 is approximately

2.4) with four bits for each decimal digit. Based on that, the variable bfrac should be

at least 12 bits wide. Next, a byte variable dfrac is necessary to hold the two decimal

digits. Finally, a counter (dcntr) is set to the number of decimal digits to be converted.

175

NUMERICAL METHODS

1 . Clear bfrac and load dcntr with the number of digits to be converted.

2. Check to see that dcntr is not yet zero and that there are digits yet to convert.

If not, the conversion is done.

3. Shift the least significant digit of dfrac into the position of the least

significant integer in the fixed-point fraction bfrac.

4. Divide bfrac by 0aH, clear the integer portion to zero, and continue with step 2.

The following example takes a string of ASCII decimal characters and converts

them to an equivalent binary fraction. An invisible radix point is assumed to exist
immediately preceding the start of the string.

Dfc_bn: Algorithm

1. Find least significant ASCII BCD digit. Point to the binary fraction
variable and clear it. Clear DX to act as the MSW of the dividend and
set the loop counter to eight (the maximum number of characters to
convert).

2. Put the MSW of the binary result variable in AX and the least significant
ASCII BCD digit in DL. Check to see if the latter is a decimal digit.

If not, exit through step 6.

If so, force it to binary. Decrement the string pointer and check the
dividend (32-bit) for zero.

If it's zero, go to step 3.

Otherwise, divide DX:AX by 10.

3. Put AX in the MSW of the binary result variable and get the LSW. Check
DX:AX for zero.

If it's zero, go to step 4.

Otherwise, divide DX:AX by 10.

4. Put AX in the LSW of the binary result variable. Clear DX for the next
conversion. Decrement the loop variable and check for zero.

If it's zero, go to step 5.

Otherwise, continue with step 2.

5. Exit with the carry clear.

6. Exit with the carry set.

176

INPUT, OUTPUT, AND CONVERSION

Dfc-bn: Listing
;*****

; dfc_bn - A conversion routine that converts an ASCII decimal fraction
;to binary representation. decptr points to the decimal string to be
;converted. The conversion will produce a doubleword result. The
;fraction is expected to be padded to the right if it does not fill eight
;digits.

dfc_bn proc uses bx cx dx si di, decptr:word, fraction:word

pushf
cld

mov di, word ptr decptr
sub ax,ax
mov cx, 9
repne scasb
dec di
dec di

mov si,di

mov
mov
mov

di, word ptr fraction
word ptr [di], ax
word ptr [di][2], ax

mov cx, 8

;point to decimal string

;find end of string

;point to least significant
;byte

;point of binary fraction

;maximum number of
;characters

sub dx, dx

binary_conversion:
mov ax, word ptr [di][2]

mov dl, byte ptr [si]

cmP
jb
cmp
ja

dl, '0'
oops
dl, '9'
oops

xor dl, '0'

;get high word of result
;variable
;concatenate ASCII input
;with binary fraction
;check for decimal digit

;if it gets past here,
;it must be OK
;deASCIIize

177

NUMERICAL METHODS

dec si

sub
or
or

jz
div

no_div0:
mov

bx,bx
bx,dx
bx,ax
no_div0
iten

word ptr [di][2],ax

mov
sub
or
or

jz
div

no_divl:
mov

ax,word ptr [di]
bx,bx
bx,dx
bx,ax
no_div1
iten

word ptr [di],ax

sub
loop

dx,dx
binary-conversion

work_done:
sub
clc
ret

ax,ax

oops:
mov
stc
ret

dfc_bn endp

ax,-1

;prevent a divide by zero
;divide by 10

;prevent a divide by zero

;loop will terminate
;automatically

;no carry =success!

;bad character

As you may have noticed from the fractional conversion techniques, truncating
or rounding your results may introduce errors. You can, however, continue the

conversion as long as you like. Given a third argument representing allowable error,
you could write an algorithm that would produce the exact number of digits required
to represent your fraction to within that error margin. This facility may or may not
be necessary in your application.

178

INPUT, OUTPUT, AND CONVERSION

Table-Driven Conversions

Tables are often used to convert from one type to another because they often offer
better speed and code size over computational methods. This chapter covers the

simpler lookup table conversions used to move between bases and formats, such as

ASCII to binary. These techniques are used for other conversions as well, such as

converting between English and metric units or between system-dependent factors
such as revolutions and frequency. Tables are also used for such things as facilitating

decimal arithmetic, multiplication, and division; on a binary machine, these opera-

tions suffer increased code size but make up for that in speed.
For all their positive attributes, table-driven conversions have a major drawback:

a table is finite and therefore has a finite resolution. Your results depend upon the

resolution of the table alone. For example, if you have a table-driven routine for
converting days to seconds using a table that has a resolution of one second, an input
argument such as 16.1795 days, which yields 1,397,908.8 seconds will only result

in only 1,397,908 seconds. In this case, your result is almost a full second off the
actual value.

Such problems can be overcome with a knowledge of what input the routine will

receive and a suitable resolution. Another solution, discussed in the next chapter, is

linear interpolation; however, even this won’t correct inexactitudes in the tables
themselves. Just as fractions that are rational in one base can be irrational in another,
any translation may involve inexact approximations that can compound the error in
whatever arithmetic the routine performs upon the table entry. The lesson is to

construct your tables with enough resolution to supply the accuracy you need with
the precision required.

The following covers conversion from hex to ASCII, decimal to binary, and

binary to decimal using tables.

Hex to ASCII

The first routine, hexasc, is a very simple example of a table-driven conversion:

from hex to ASCII.

The procedure is simple and straightforward. The table, hextab, contains the
ASCII representations of each of the hex digits from 0 through f in order. This is an

179

NUMERICAL METHODS

improvement over the ASCII convention, where the numbers and alphabet are not

contiguous. In the order we’re using, the hex number itself can be used as an index
to select the appropriate ASCII representation.

Because it uses XLAT, an 8086-specific instruction, this version of the routine

isn’t very portable, though it could conceivably be replaced with a move involving
an index register and an offset (the index itself). Before executing XLAT, the user
places the address of the table in BX and an index in AL. After XLAT is executed,
AL contains the item from the table pointed to by the index. This instruction is useful

but limited. In the radix conversion examples that follow, other ways of indexing
tables will be presented.

Hexasc takes the following steps to convert a binary quadword to ASCII hex.

hexasc: Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

SI points to the most significant byte of the binary quadword, DI points
to the output string, BX points to the base of hextab, and CX holds the
number of bytes to be converted.

The byte indicated by SI is pulled into AL and copied to AH.

Since each nibble contains a hex digit, AH is shifted right four times
to obtain the upper nibble. Mask AL to recover the lower nibble.

Exchange AH and AL so that the more significant digit is translated first.

Execute XLAT. AL now contains the ASCII equivalent of whatever hex digit
was in AL.

Write the ASCII character to the string and increment DI.

Exchange AH and AL again and execute XLAT.

Write the new character in AL to the string and increment DI.

Decrement SI to point to the next lesser significant byte of the hex
number.

10. Execute the loop. When CX is 0, it will automatically exit and return.

hexascs Listing
; ******

; hex-to-ASCII conversion using xlat
; simple and common table-driven routine to convert from hexadecimal
; notation to ASCII
; quadword argument is passed on the stack, with the result returned

180

INPUT, OUTPUT, AND CONVERSION

; in a string pointed to by sptr

.data

hextab byte

.code

hexasc proc

lea
mov
mov
mov

make ascii:
mov
mov
shr
shr
shr
shr
and
xchg

xlat
mov
inc
xchg
xlat
mov
inc
dec
loop

sub
mov

'O', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' ;table of ASCII

;characters

uses bx cx dx si di, hexval:qword, sptr:word

si, byte ptr hexval[7]
di, word ptr sptr
bx, offset byte ptr hextab
cx, 8

al, byte ptr [si]
ah, al
ah,1
ah,1
ah,1
ah,1
al, 0fh
al,ah

byte ptr [di],al
di
al, ah

byte ptr [di],al
di
si
make ascii

al, al
byte ptr [di],al

;point to MSB of hex value
;point to ASCII string
;offset of table
;number of bytes to be
;converted

;get hex byte
;copy to ah to unpack
;shift out lower nibble

;strip higher nibble
;high nibble first

;write ASCII byte to string

;now the lower nibble

;write to string
;increment string pointer
;decrement hex byte pointer

;NULL at the end of the
;string

181

NUMERICAL METHODS

ret

hexasc endp

Decimal to Binary

Clearly, the table is important in any table-driven routine. The next two

conversion routines use the same resource: a table of binary equivalents to the powers

of 10, from 109 to 10-10. The problem with table-driven radix conversion routines,
especially when they involve fractions, is that they can be inaccurate. Many of the
negative powers of base 10 are irrational in base 2 and make any attempt at
conversion merely an approximation. Nevertheless, tables are commonly used for
such conversions because they allow a direct translation without requiring the

processor to have a great deal of computational power.
The first example, tb_dcbn, uses the tables int_tab and frac_tab to convert an

input ASCII string to a quadword fixed-point number. It uses the string’s positional

data-the length of the integer portion, for instance— to create a pointer to the correct

power of 10 in the table. After the integer is converted to binary, it is multiplied by

the appropriate power of 10. The product of this multiplication is added to a

quadword accumulator. When the integer is processed, the product is added to the
most significant doubleword; when the fraction is processed, the product is added to
the least significant doubleword (the radix point is between the doublewords).

Before the actual conversion can begin, the routine must determine the power of
10 occupied by the most significant decimal digit. It does this by testing each digit

in turn and counting it until it finds a decimal point or the end of the string. It uses

the number of characters it counted to point to the correct power in the table. After

determining the pointer’s initial position, the routine can safely increment it in the

rest of the table by multiplying consecutive numbers by consecutive powers of 10.

tb-dcbn: Algorithm

1. Form a pointer to the fixed-point result (the ASCII string) and to the
base address of the integer portion of the table. Clear the variable to
hold the fixed-point result and the sign flag. Set the maximum number
of integers to nine.

2. Examine the first character.

182

INPUT, OUTPUT, AND CONVERSION

3.

4.

5.

6.

7.

8.

9.

If it's a hyphen, set the sign flag, increment the string pointer past
that point, and reset the pointer to this value. Get the next character
and continue with step 3.

If it's a "+," increment the string pointer past that point and reset
the pointer to this value. Get the next character and continue with step
3.

If it's a period save the current integer count, set a new count for the
fractional portion, and continue with step 2.

If it's the end of the string, continue with step 5.

If it's not a number, exit through step 10.

if it's a number, increment the number counter.

Test the counter to see how many integers have been processed.

If we have exceeded the maximum, exit through step 12.

If the count is equal to or less than the maximum, increment the string
pointer, get a new character and test to see whether we are counting
integers or fractions,

If we are counting integers, continue with step 3.

If we are counting fractional numbers, continue with step 4.

Get the integer count, convert it to hex, and multiply it by four (each
entry is four bytes long) to index into the table.

Get a character.

If it's a period continue with step 8.

If it's the end of the string, continue with step 10.

If it's a number, deASCIIize it, multiply it by the four-byte table entry,
and add the result to the integer portion of the fixed-point result
variable. Increment the string pointer and increment the table pointer
by the size of the data type.Continue with step 7.

Increment the string pointer past the period.

Get the next character.

If it's the end of the string, continue with step 10.

If not, deASCIIize it and multiply it by the next table entry, adding
the result to the fixed-point variable. Increment the string pointer and
increment the table pointer by the size of the data type. Continue with
step 9.

183

NUMERICAL METHODS

10. Check the sign flag.

If it's set, two's-complement the fixed-point result and exit with
success.

If it's clear, exit with success.

11. Not a number: set AX to -1 and continue with step 12.

12. Too big. Set the carry and exit.

tb-dcbn: Listing

; ******

; table-conversion routines

.data

int tab dword

frac_tab dword

tab_end dword

3b9aca00h, 05f5e100h, 00989680h, 000f4240h
000186a0h, 00002710h, 000003e8h, 00000064h
0000000ah, 0000000lh
1999999ah, 028f5c29h, 00418937h, 00068db9h
0000a7c5h, 0000l0c6h, 00000ladh, 0000002ah
00000004h
00000000h

;
.code

; converts ASCII decimal to fixed-point binary

;
tb_dcbn

local

proc

sign:byte

uses bx cx dx si di.
sptr:word, fxptr:word

mov di, word ptr sptr
si, word ptr fxptr
bx, word ptr frac_tab

mov
lea

mov
sub
sub

stoswrep

cx,4
ax,ax

dx,dx

mov di, word ptr sptr

;point to result
;point to ascii string
;point into table

;clear the target variable

;point to result

184

INPUT, OUTPUT, AND CONVERSION

mov
mov
mov

mov

cmp
je
cmp
je

cmp
je

chk_frac:

cmp
je
cmp
jb
cmp
ja

cntnu:
inc

cmp
ja
inc
mov
or

jne

jmp
fnd_dot:

mov
inc
mov
xchg

jmp
negative:

not
positive:

inc
mov
mov

cl,al
ch,9h
byte ptr sign, al

al, byte ptr [si]
al '-'
negative
al,'+'
positive

al,'.'
fnd_dot

al,0
gotnumber
a1,'0'
not_a_number
a1,'9'
not_a_number

cl
cl,ch
too_big
si
al, byte ptr [si]

dh,dh

chk_frac
short count

dh,cl
dh
d1,13h
ch,dl
short cntnu

sign

si
word ptr fxptr,si
al, byte ptr [si]

;to count integers
;max int digits
;assume positive

;get character
;check for sign

;count:

;count the number of
;characters in the string

;end of string?

;is it a number then?

;count
;check size

;next character
;get character
;are we counting int
;or frac?

;count characters in int

;switch to counting fractions
;can't be zero
;includes decimal point

;make it negative

;get a character

185

NUMERICAL METHODS

jmp

gotnumber:
sub
xchg
dec
shl
shl
sub
sub

mov
cnvrt_int:

mov

cmp
je
cmp
je
sub
mov
mul

add
adc
mov
mul

add
adc
add
inc

jmp

handle_fraction:
inc

cnvrt_frac:
mov

cmp
je
sub
mov

si

mul

short count

ch,ch
cl,dh
cl
word ptr cx,l
word ptr cx,l
bx,cx
cx, cx

si,word ptr fxptr

cl,byte ptr [si]
cl,'.'
handle_fraction
cl,0
do_sign
cl, '0'
ax,word ptr [bx][2]
cx

word ptr [di][4],ax
word
ax,word ptr [bx]
cx

word ptr [dil[4],ax
word ptr [di][6],dx
bx,4
si
short cnvrt_int

cl,byte ptr [si]
cl,0
do_sign
cl,'O'
ax,word ptr [bx][2]

;get int count

;multiply by four

;index into table
;don't need integer count
;anymore
;point at string again

;get first character

;go do fraction, if any

;end of string

;multiply by deASCIIized
-input

;multiply by deASCIIized
input

;drop table pointer

;skip decimal point

;get first character

;end of string

;this can never result
;in a carry
;multiply by deASCIIized
;input

cx

186

INPUT, OUTPUT, AND CONVERSION

add
mov
mul

add
adc
add
inc

jmp

do_sign:
mov
or

je
not
not
not

neg
jc
add
adc
adc

exit:
ret

;
not_a_number

sub
not

too_big:
stc

jmp
tb_dcbn

word ptr [di][2],ax
ax,word ptr [bx]
cx

word ptr [di][0],ax
word ptr [di][2],dx
bx,4
si
short cnvrt_frac

;multiply by deASCIIized
;input

;drop table pointer

al,byte ptr sign
al,al
exit
word ptr [di][6]
word ptr [di][4]
word ptr [di][2]
word ptr [di]
exit
word ptr [di] [2],1
word ptr [di] [4],0
word ptr [di] [61,0

ax,ax
ax

;check sign

;it is positive

;-1

;failure
short exit
endp

Binary to Decimal

The binary-to-decimal conversion, tb_bndc, could have been written in the same

manner as tb_dcbn—using a separate table with decimal equivalents to hex posi-

tional data. That would have required long and awkward decimal additions, how-
ever, and would hardly have been worth the effort.

The idea is to divide the input argument by successively smaller powers of 10,

converting the quotient of every division to ASCII and writing it to a string. This is

187

NUMERICAL METHODS

done until the routine reaches the end of the table. To use the same table and keep
the arithmetic binary, take the integer portion of the binary part of the fixed-point

variable to be converted and, beginning at the top of the table, compare each entry
until you find one that’s less than the integer you’re trying to convert. This is where

you start. Successively subtract that entry from the integer, counting as you go until
you get an underflow indicating you’ve gone too far. You then add the table entry

back into the number and decrease the counter. This is called restoring division; it

was chosen over other forms because some of the divisors would be two words long.
That would mean using a division routine that would take more time than the simple

subtraction here. The number of times the table entry could divide the input variable
is forced to ASCII and written to the next location in the string.

Tb-bndc is an example of how this might be done.

tb_bndc: Algorithm

1. Point to the fixed-point variable, the output ASCII string, and the top
of the table. Clear the leading-zeros flag.

2. Test the MSB of the fixed-point variable for sign. If it's negative, set
the sign flag and two's-complement the fixed-point variable.

3. Get the integer portion of the fixed-point variable. Compare the integer
portion to that of the current table entry.

If the integer is larger than the table entry, continue with step 5.

If the integer is less than the table entry, check the leading-zeros flag.

If it's nonzero, output a zero to the string and continue with step 4.

If it's zero, continue with step 4.

4. Increment the string pointer, increment the table pointer by the size
of the data type, and compare the table pointer with the offset of
fractab, l0o.

If the table pointer is greater than or equal to the offset of fractab,
continue with step 3.

If the table pointer is less than the offset of fractab, continue with
step 6.

5. Increment the leading-zeros flag, call step 10, and continue with step

188

INPUT, OUTPUT, AND CONVERSION

6.

7.

7a.

8.

4 upon return.

If the leading-zeros flag is clear, write a zero to the string, increment
the string pointer, issue a period, increment the string pointer again,
and get the fractional portion of the fixed-point variable.

Load the fractional portion into the DX:AX registers.

Compare the current table entry with DX:AX.

If the MSW of the fractional portion is greater, continue with step 9.

If the MSW of the fractional portion is less, continue with step 8.

Write a zero to the string.

8a. Increment the string and table pointers and test for the end of the table.

If it's the end, continue with step 11.

If it's not the end, continue with step 7a.

9. Call step 10 and continue with step 8a.

10. Subtract the table entry from the remaining fraction, counting each
subtraction. When an underflow occurs, add the table entry back in and
decrement the count. Convert the count to an ASCII character and write
it to the string. Return to the caller.

11. Write a NULL to the next location in the string and exit.

tb_bndc: Listing
;
; converts binary to ASCII decimal

tb_bndc proc uses bx cx dx si di
sptr:word, fxptr:word

local

mov

mov
lea

sub
mov

mov
or
jns

1eading_zeros:byte

si, word ptr fxptr

di, word ptr sptr
bx, word ptr int tab

ax,ax
byte ptr leading_zeros, al

ax, word ptr [si][6]
ax,ax
positive

;point to input fixed-point
;argument
;point to ASCII string
;point into table

;assume positive

;test for sign

189

NUMERICAL METHODS

mov byte ptr [di],'-'

inc di
not word ptr [si][6]
not word ptr [si][41
not word ptr [si] [2]

neg word ptr [si][0]

jc positive
add word ptr [si] [2],1
adc word ptr [si][4],0
adc word ptr [si][6],0

positive:
mov
mov
sub

walk_tab:

cmp

dx, word ptr [si][6]
ax, word ptr [si][4]
cx, cx

ja
jb
cmp
jae

pushptr:

cmp

dx, word ptr [bx] [2]

gotnumber
pushptr
ax, word ptr [bx]
gotnumber

byte ptr cl, leading_zeros ;have we written a number

je
mov

skip_zero
word ptr count : [di],'O' ;write a '0' to the string

cntnu:
inc

skip_zero:
inc
inc
inc
inc

cmp
jae

jmp

di

bx
bx
bx
bx
bx, offset word ptr frac_tab ;done with integers?
handle-fraction ;yes, do fractions
short walk_tab

gotnumber:
sub
inc

cx, cx
leading zeros

190

;write hyphen to output
;string

;two's complement

;get integer portion

;find table entry smaller
;than integer
;entry smaller
;integer smaller

;yet?

;next character

;next table entry

;shut off leading zeros bypass

INPUT, OUTPUT, AND CONVERSION

cnvrt_int:
call

jmp

handle_fraction:

cmp
jne
mov
inc

do_frac:
mov
inc

get_frac:
mov

sub
walk_tabl:

cmp
ja
jb
cmp
jae

pushptrl:
mov

skip_zero1:
inc
inc
inc
inc
inc

cmp
jae

jmp

small_enuf:
sub

small_enufl:
call

jmp

exit:
inc

near ptr index
short cntnu

;calculate and write to string

byte ptr leading_zeros,0
do frac
byte ptr [di],'O'
di

;written anything yet?

word ptr [di],'.'
di

dx, word ptr [si][2]
ax, word ptr [si][O]
cx, cx

dx, word ptr [bx] [2]
small_enuf
pushptr1
ax, word ptr [bx]
small_enuf

;put decimal point

;move fraction to registers

;find suitable table entry

byte ptr [di],'0' ;write '0'

di
bx
bx

;next character
;next entry

bx
bx
bx, offset word ptr tab_end
exit
short walk_tab1

cx, cx

near ptr index
short skip_zero1

di

;calculate and write

191

NUMERICAL METHODS

sub
mov
ret

cl,cl ;put NULL at
byte ptr [si],cl ;end of string

index:
inc
sub
sbb
jnc
dec
add
adc
or
mov
retn

tb_bndc

cx
ax, word ptr [bx]
dx, word ptr [bx] [2]
index
cx
ax, word ptr [bx]
dx, word ptr [bx][2]
cl,'0'
byte ptr [di],cl

;count subtractions

;subtract until a carry

;put it back

;make it ascii
;write to string

endp

Floating-Point Conversions

This next group of conversion routines involves converting ASCII and fixed

point to floating point and back again. These are specialized routines, but you’ll
notice that they employ many of the same techniques just covered, both table-driven

and computational.
The conversions discussed in this section are ASCII to single-precision float,

single-precision float to ASCII, fixed point to single-precision floating point, and
single-precision floating point to fixed point.

You can convert ASCII numbers to single-precision floating point by first
converting from ASCII to a fixed-point value, normalizing that number, and

computing the shifts for the exponent, or you can do the conversion in floating point.
This section gives examples of both; the next routine uses floating point to do the
conversion.

ASCII to Single-Precision Float

Simply put, each ASCII character is converted to hex and used as a pointer to a
table of extended-precision floating-point equivalents for the decimal digits 0
through 10. As each equivalent is retrieved, a floating point accumulator is multi-
plied by 10, and the equivalent is added, similar to the process described earlier for

integer conversion by multiplication.

192

INPUT, OUTPUT, AND CONVERSION

The core of the conversion is simple. We need three things: a place to put our

result flaccum, a flag indicating that we have passed a decimal point dpflag, and a
counter for the number of decimal places encountered dpcntr.

1. Clear flaccum and dpcntr.

2. Multiply flaccum by 10.0.

3. Fetch the next character.

If it‘s a decimal point, set dpflag and continue with step 3.

If dpflag is set, increment dpcntr.

If it's a number, convert it to binary and use it as an index into
a table of extended floats to get its appropriate equivalent.

4. Add the number retrieved from the table to flaccum.

5. See if any digits remain to be converted. If so, continue from step 2.

6. If dpflag is set, divide flaccum by 10.0 dpcntr times.

7. Exit with the result in flaccum.

The routine atf performs the conversion described in the pseudocode. It
will convert signed numbers complete with signed exponents.

atf: Algorithm

1. Clear the floating-point variable, point to the input ASCI1 string, clear
local variables associated with the conversion, and set the digit counter
to 8.

2. Get a character from the string and check for a hyphen.

If the character is a hyphen, complement numsin and get the next
character. Go to step 3.

If not, see if the character is "+."

If not, go to step 3.

If so, get the next character and go to step 3.

3. See if the next character is "."

If so, test dp, the decimal-point flag.

If it's negative, we have gone beyond the end; go to step 7.

If not, invert dp, get the next character, and go to to step 4.

If not, go to step 4.

193

NUMERICAL METHODS

4. See if the character is an ASCII decimal digit.

If it isn't, we may be done; go to step 5.

If it is, multiply the floating-point accumulator by 10 to make room for
the new digit.

Force the digit to binary.

Multiply the result by eight to form a pointer into a table of extended
floats.

Add this new floating-point digit to the accumulator.

Check dp_flag to determine whether we have passed a decimal point and
should be decrementing dp to count the fractional digits. If so,
decrement dp.

Decrement the digit counter, digits.

Get the next character.

Return to the beginning of step 3.

5. Get the next character and force it to lowercase.

Check to see whether it's an "e"; if not, go to step 7.

Otherwise, get the next character and check it to see whether it's a
hyphen.

If so, complement expsin, the exponent sign, and go to step 6.

Otherwise, check for a "+."

If it's not a "+," go to step 6a.

If it is, go to step 6.

6. Get

6a.

7. See

the next character.

See if the character is a decimal digit.

If not, go to step 7.

Otherwise, multiply the exponent by 10 and save the result.

Subtract 30H from the character to force it to binary and OR it
with the exponent.

Continue with step 6.

if expsin is negative.

If it is, subtract exponent from dp and leave the result in the CL
register.

If not, add exponent to dp and leave the result in CL.

8. If the sign of the number, numsin, is negative, force the extended float

194

INPUT, OUTPUT, AND CONVERSION

to negative.

If the sign of the number in CL is positive, go to step 10.

Otherwise, two's-complement CL and go to step 9.

9. Test CL for zero.

If it's zero, go to step 11.

If not, increment a loop counter. Test CL to see whether its LSB has a
zero.

If so, multiply the value of the loop counter by eight to point to the
proper power of 10. Divide the floating-point accumulator by that power
of 10 and shift CL right once. Continue with the beginning of step 9.
(These powers of 10 are located in a table labeled 10. For this scheme
to work, these powers of 10 follow the binary order 1, 2, 4, 8, as shown
in the table immediately preceding the code.)

If not, shift CL right once for next power of two and continue at the
beginning of step 9.

10. Test CL for zero.

If it's zero, go to step 11.

If not, increment a loop counter and test CL to see whether its LSB is
a zero.

If so, multiply the value of the loop counter by eight to point to the
properpower of 10. Multiply the floating-point accumulator by that power
of 10, shift CL right once, and continue with the beginning of step 10.
(These powers of 10 are located in a table labeled '10'. Again, for this
scheme to work, these powers of 10 must follow the binary order 1, 2,
4, 8, as shown in the table immediately preceding the code.)

If not, shift CL to the right once and continue with the beginning of
step 10.

11. Round the new float, write it to the output, and leave.

atf: Listing
;*****

.data

dst qword 000000000000h, 3f8000000000h, 400000000000h, 404000000000h,
408000000000h, 40a000000000h, 40c000000000h, 40e000000000h,
410000000000h, 411000000000h

one qword 3f8000000000h
ten qword 412000000000h, 42c800000000h,

195

NUMERICAL METHODS

.code

461c40000000h,
4cbebc200000h, 5a0elbc9bf00h, 749dc5ada82bh

;unsigned conversion from ASCII string to short real
atf proc uses si di, string:word, rptr:word ;one word for near pointer

local exponent:byte, fp:qword, numsin:byte, expsin:byte.
dp_flag:byte, digits:byte, dp:byte

pushf
std
xor ax,ax
lea di,word ptr fp[6] ;clear the floating

;variable
mov cx,8

rep stosw word ptr [di]

mov si,string ;pointer to string

do_numbers:
mov
mov
mov
mov
mov
mov

byte ptr [exponent],al
byte ptr dp_flag,al
byte ptr numsin,al
byte ptr expsin,al
byte ptr dp,al
byte ptr digits,8h

;initialize variables

;count of total digits rounding
;digit is eight

;begin by checking for a
;sign, a number, or a
;period

;
do_num:

mov

cmp
jne
not
inc
mov

jmp

bl, [si]
bl,'-'
not minus
[numsin]
si
bl,es:[si]
not sign

;get next char

;it is a negative number
;set negative flag

;get next char

not_minus:

cmp bl,'+' ;is it plus?

196

INPUT, OUTPUT, AND CONVERSION

jne
inc
mov

not_sign:

cmp
jne
test
jne
not
inc
mov

not_dot:

cmp
jb
cmp
ja
invoke
mov
sub
sub
shl

shl
shl
invoke

test

je
dec

no_dot_yet:
inc
dec

jc
mov

jmp

not_a_num:
mov
or

cmp
je

not_sign
si
al, [si]

bl,'.'
not_dot
byte ptr [dp],80h
end_o_cnvt

dp_flag
si
bl, [si]

bl,'0'
not_a_num
bl,'9'
not_a_num
flmul, fp, ten, addr fp
bl, [si]
bl,30h
bh,bh
bx,1

;get next char

;check for decimal point

;negative?
;end of conversion
;set decimal point flag

;get next char

;get legitimate number

;multiply floating-point
;accumulator by 10.0
;make it hex
;clear upper byte
;multiply index for
;proper offset

bx,1
bx,1
fladd, fp, dgt[bx], addr fp ;add to floating-point

;accumulator
byte ptr [dp_flag],0ffh ;have we encountered a
no_dot_yet

[dp]

;decimal point yet?
;count fractional digits

si
byte ptr digits
not_a_num
bl,es:[si]
not_sign

;increment pointer
;one less digit
;at our limit?
;next char

bl, [si]
bl,lower_case
bl,'e'
chk_exp

;next char

;check for exponent
;looks like we may have
;an exponent

197

NUMERICAL METHODS

jmp
chk_exp:

inc
mov

cmp
jne
not

jmp
chk_plus:

cmp
jne

chk_expl:
inc
mov

chk_exp2:

cmp
jb
cmp
ja
sub
mov
mul

mov

mov
sub
or

jmp

end_o_cnvt:
sub
mov
mov
or
jns
sub

jmp
pas_exp:

add

chk_numsin:

cmp

198

end_o_cnvt

si
bl, [si]
bl,'-'
chk_plus
[expsin]
short chk_expl

bl,'+'
short chk_exp2

si
bl, [si]

bl,'0'
end_o_cnvt
bl,'9'
end_o_cnvt
ax, ax
al, byte ptr [exponent]
iten

byte ptr [exponent],al

bl, [si]
bl,30h
byte ptr [exponent],bl
short chk_expl

cx, cx
al,byte ptr [expsin]
cl,byte ptr [dp]
al,al

Pos_exp
cl,byte ptr [exponent]

short chk_numsin

cl,byte ptr [exponent]

word ptr numsin,0ffh

;next char
;negative exponent

;set exponent sign

;maybe a plus?

;next char

;do conversion of
;exponent as in
;integer conversion
;by multiplication
;next char
;make hex
;or into accumulator

;calculate exponent

;is exponent negative?

; subtract exponent from
;fractional count

*exponent to fractional
;count

 ;test sign

INPUT, OUTPUT, AND CONVERSION

jne
or

chk_expsin:
xor
or
jns

neg
do_negpow:

or

je
inc
test

je
mov
push
shl
shl
shl
invoke

pop
do_negpowa:

shr

jmp

do_pospow:
or

je
inc
test

je
mov
push
shl
shl
shl
invoke

pop
do_pospowa:

shr

jmp
atf_ex:

invoke

chk_expsin
word ptr fp[4],8000h

ax,ax
cl,cl
do_pospow
cl

;if exponent negative,
;so is number

;make exponent positive

cl,cl ;is exponent zero yet?
atf_ex
ax
cx,1h ;check for one in LSB
do_negpowa
bx,ax
ax
bx,1 ;make pointer
bx,1
bx,1
fldiv, fp, powers[bx], addr fp

;divide by power of 10
ax

cx, 1
short do_negpow

cl,cl
atf ex
ax
cx,lh
do_pospowa
bx,ax

;is exponent zero yet?

;check for one in LSB

ax
bx,l
bx,l
bx,l ;make pointer
flmul, fp, powers[bx], addr fp

;multiply by power often
ax

cx,1
short do_pospow

round, fp, addr fp ;round the new float

199

NUMERICAL METHODS

mov di,word ptr rptr
mov ax,word ptr fp
mov bx,word ptr fp[2]
mov dx,word ptr fp[4]
mov word ptr [di],bx
mov word ptr [di][2],dx

popf
ret

atf endp

;write it out

Single-Precision Float to ASCII

This function is usually handled in C with fcvt() plus some ancillary routines that
format the resulting string. The function presented here goes a bit further; its purpose
is to convert the float from binary to an ASCII string expressed in decimal scientific
format.

Scientific notation requires its own form of normalization: a single leading

integer digit between 1.0 and 10.0. The float is compared to 1.0 and 10.0 upon entry
to the routine and successively multiplied by 10.0 or divided by 10.0 to bring it into
the proper range. Each time it is multiplied or divided, the exponent is adjusted to

reflect the correct value.
When this normalization is complete, the float is disassembled and converted to

fixed point. The sign, which was determined earlier in the algorithm, is positioned

as the first character in the string and is either a hyphen or a space. Each byte of the
fixed-point number is then converted to an ASCII character and placed in the string.
After converting the significand, the routine writes the value of the exponent to the
string.

In pseudocode, the procedure might look like this.

fta: Algorithm

1. Clear a variable, fixptr, large enough to hold the fixed-point
conversion. Allocate and clear a sign flag, sinptr. Do the same for a
flag to suppress leading zeros (leading zeros), a byte to hold the
exponent, and a byte to count the number of multiplies or divides it takes
to normalize the number, ndg.

2. Test the sign bit of the input float. If it's negative, set sinptr and
make the float positive.

200

INPUT, OUTPUT, AND CONVERSION

3. Compare the input float to 1.0.

If it's greater, go to step 4.

If it's less, multiply it by 10.0. Decrement ndg and check for underflow.

If underflow occurred, go to step 18.

If not, return to the beginning of step 3.

4. Compare the float resulting from step 3 to 10.0.

If it's less, go to step 5.

If it's greater, divide by 10.0. Increment ndg and check for overflow.

If overflow occurred, go to step 17.

If not, return to the beginning of step 4.

5. Round the result.

6. Extract the exponent, subtract the bias, and check for zero. If we
underflow here, we have an infinite result; go to step 17.

7. Restore the hidden bit. Using the value resulting from step 6, align the
significand and store it in the fixed-point field pointed to by fixptr.
We should now have a fixed-point value with the radix point aligned
correctly for scientific notation.

8. Start the process of writing out the ASCII string by checking the sign
and printing hyphen if sinptr is -1 and a space otherwise.

9. Convert the fixed-point value to ASCII with the help of AAM and call step
19 to write out the integer.

10. Write the radix point.

11. Write each decimal digit as it's converted from the binary fractional
portion of the fixed-point number until eight characters have been
printed.

12. Check ndg to see whether any multiplications or divisions were necessary
to force the number into scientific format.

If ndg is zero, we're done; terminate the string and exit through step
16.

If ndg is not zero, continue with step 13.

13. Print the "e."

14. Examine the exponent for the appropriate sign. If it's negative, print
hyphen and two's-complement ndg.

201

NUMERICAL METHODS

15. Convert the exponent to ASCII format, writing each digit to the output.

16. Put a NULL at the end of the string and exit.

17. Print "infinite" to the string and return with failure, AX = -1.

18. Print "zero" to the string and return with failure, AX = -1.

19. Test to see whether or not any zero is leading.

If so, don't print-just return.

If not, write it to the string.

Fta: Listing
; *****

; conversion of floating point to ASCII

fta proc uses bx cx dx si di, fp:qword, sptr:word
local

pushf
std

xor

lea
mov

rep stosw
mov
mov
mov
mov

ck_neg:
test

je
xor
not

;
; ***

gtr_0:
invoke

sinptr:byte, fixptr:qword, exponent:byte.
leading_zeros:byte, ndg:byte

ax,ax

di,word ptr fixptr[6]
cx,4

;clear fixed-point
;variable

byte ptr [sinptr],al ;clear the sign
byte ptr [leadin_zeros],al ;and other variables
byte ptr [ndg],al
byte ptr [exponent],al

word ptr fp[4],8000h

gtr_0
word ptr fp[4],8000h
byte ptr [sinptr]

;get the sign

;make float positive
;set sign
;negative

flcomp, fp, one
;compare input with 1.0
;still another kind of

202

INPUT, OUTPUT, AND CONVERSION

cmp
je
dec

cmp

jl
invoke

jmp

less_than_ten:
invoke

cmp
je
inc

cmp

jg
invoke

jmp

Rnd:
invoke

norm_fix:

mov
mov
mov
shl

get_exp:
mov
sub

mov
sub

js

lea
do_shift:

stc
rcr
sub

ax,1h
less_than_ten
byte ptr [ndg]
byte ptr [ndg],-37

zero_result
flmul, fp, ten, addr fp
short gtr_0

flcomp, fp, ten
ax,-1
norm fix
byte ptr [ndg]
byte ptr [ndg],37

infinite result
fldiv, fp, ten, addr fp
short less_than_ten

round, fp, addr fp

ax,word ptr fp[0]
bx,word ptr fp[2]
dx,word ptr fp[4]
dx, 1

byte ptr exponent, dh
byte ptr exponent, 7fh

cx,sh
cl,byte ptr exponent
infinite_result

di,word ptr fixptr

dl,1
cx, 1

;normalization
;argument reduction

;decimal counter
;range of single-
;precision float

;multiply by 10.0

;compare with 10.0

;decimal counter
;orange of single-
;precision float

;divide by 10.0

;fixup for translation

;this is for ASCII
;conversion
;dump the sign bit

;remove bias

;could come out zero
;but this is as far as I
;can go

;restore hidden bit

203

NUMERICAL METHODS

je
shift_fraction:

put_upper

shr
rcr
rcr
loop

dl,1
bx,1
ax,1
shift fraction

put_upper:
mov

mov
mov
mov
xchg

word ptr [di], ax

word ptr [di][2],bx
al,dl
byte ptr fixptr[4],dl
ah,al

sub
mov
cld

inc
mov

cmp
jne
mov

put_sign:
stosb

dx,dx
di,word ptr sptr

dx
al,' '
byte ptr sinptr,0ffh
put_sign
al,'-'

lea si, byte ptr fixptr[3]

write_integer:
xchg ah,al

aam
xchg al,ah

or
call
xchg
or
call
inc
dec

al,'0'
near ptr str wrt
al,ah
al,'0'
near ptr str_wrt
dx
si

do_decimal:

204

;shift significand into
;fractional part

;write to fixed-point
;variable

;write integer portion

;reverse direction of
;write

;is it a minus?

;AL contains integer
;portion

;use AAM to convert to
;decimal
;then ASCII
;then write to string
;and repeat

;max char count

mov
stosb

do_decimall:
invoke
or
call
inc

cmp

je
jw

do_exp:
sub

cmp
jne

jmp

write_exponent:
mov
stosb
mov
or
jns
xchg
mo
stosb

neg
xchg
sub

f inish exponent
cbw
aam
xchg
or
stosb
xchg
or
stosb

last_byte:
sub

stosb

popf
fta_ex:

al,'.'

INPUT, OUTPUT, AND CONVERSION

multen, addr fixptr
al,'0'
near ptr str wrt
dx
dx,maxchar

do_exp
short do_decimal1

ax,ax
al,byte ptr ndg
write exponent
short last_byte

al,'e'

al,byte ptr ndg
al,al
finish_exponent
al,ah
val,'-'

ah
al,ah
ah,ah

ah,al
al,'0'

ah,al
al,'0'

al,al

;decimal point

;convert binary fraction
;to decimal fraction
;write to string

;have we written our
;maximum?

;is there an exponent?

;put the 'e'

;with ndg calculate
;exponent

*negative exponent

;sign extension
;cheap conversion

;make ASCII

;write NULL to the end
;of the string

205

NUMERICAL METHODS

ret

infinite_result:
mov

mov
mov

rep movsb
mov

jmp

zero_result:
mov
mov
mov

rep movsb
mov

jmp

str_wrt:

cmp
jne

test

je
putt:

test
jne
not

prnt:
stosb

nope:
retn

fta endp

di,word ptr sptr

si,offset inf
cx, 9

ax,-1
short fta_ex

di,word ptr sptr
si,offset zro
cx, 9

;actually writes
;'infinite'

;actually writes 'zero'

ax,-1
short fta_ex

;subroutine for writing
;characters to output

al,'0' ;string
putt ;check whether leading

;zero or not
byte ptr leading_zeros,-1 ;don't want any leading

;zeros
nope

byte ptr leading_zeros,-1
prnt
leading_zeros

Fixed Point to Single-Precision Floating Point

For this conversion, assume a fixed-point format with a 32-bit integer and a 32-

206

INPUT, OUTPUT, AND CONVERSION

bit fraction. This allows the conversion of longs and ints as well as purely fractional

values; the number to be converted need only be aligned within the fixed-point field.
The extended-precision format these routines use requires three words for the

significand, exponent, and sign; therefore, if we shift the fixed-point number so that

its topmost one is in bit 7 of the fourth byte, we’re almost there. We simply need to
count the shifts, adding in an appropriate offset and sign. Here’s the procedure.

ftf: Algorithm

1.

2.

3.

4.

5.

The fixed-point value (binary) is on the stack along with a pointer (rptr)
to the float to be created. Flags for the exponent (exponent) and sign
(nmsin) are cleared.

Check the fixed-point number for sign. If it's negative, two's-
complement it.

Scan the fixed-point number to find out which byte contains the most
significant nonzero bit.

If the number is all zeros, return the appropriate float at step 9.

If the byte found is greater than the fourth, continue with step 5.

If the byte is the fourth, continue with step 6.

If the byte is less than the fourth, continue with step 4.

The most significant non zero bit is in the first, second, or third byte.

Subtract our current position within the number from four to find out
how many bytes away from the fourth we are.

Multiply this number by eight to get the number of bits in the shift and
put this value in the exponent.

Move as many bytes as are available up to the fourth position, zeroing
those lower values that have been moved and not replaced.

Continue with step 6.

The most significant nonzero bit is located in a byte position greater
than four.

Subtract four from our current position within the number to find how
many bytes away from the fourth we are.

Multiply this number by eight to get the number of bits in the shift and
put this value in the exponent.

Move these bytes back so that the most significant nonzero byte is in
the fourth position.

207

NUMERICAL METHODS

Continue with step 6.

6. Test the byte in the fourth position to see whether bit 7 contains a one.

If so, continue with step 7.

If not, shift the first three words left one bit and decrement the
exponent; continue at the start of step 6.

7. Clear bit 7 of the byte in the fourth position (this is the hidden bit).

Add 86H to exponent to get the correct offset for the number; place this
in byte 5.

Test numsin to see whether the number is positive or negative.

If it's positive, shift a zero into bit 7 of byte 5 and continue with
step 8.

If it's negative, shift a one into bit 7 of byte 5 and continue with
step 8.

8. Place bytes 4 and 5 in the floating-point variable, round it, and exit.

9. Write zeros to every word and exit.

ftf; Listing
; *****

;
;unsigned conversion from quadword fixed point to short real
;The intention is to accommodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer to the result.

ftf proc uses si di, binary:qword, rptr:word ;one word for near
;pointer

local exponent:byte, numsin:byte

pushf
xor ax, ax

mov di, word ptr rptr
add di, 6
lea si, byte ptr binary[0]
mov bx, 7

;point at future float

;point to quadword
;index

do_numbers:
mov byte ptr [exponent], al ;clear flags

208

INPUT, OUTPUT, AND CONVERSION

mov
mov

do_num:
mov
or
jns
not
not
not
not

neg
jc
add
adc
adc

find_top:

cmp
je

mov
or
jne
dec

jw

found_it:
mov

cmp
ja
je

shift_left
std
mov
sub
shl
shl
shl

neg
mov

lea
lea

byte ptr nurnsin, al
dx, ax

al, byte ptr [si] [bx]
al, al
find top
byte ptr numsin
word ptr binary[6]
word ptr binary[4]
word ptr binary[2]
word ptr binary[0]
find_top
word ptr binary[2], 1
word ptr binary[4], 0
word ptr binary[6], 0

bl, dl
make zero

al, byte ptr [si][bx]
al,al
found it
bx
short find_top

dl, 80h
bl, 4
shift right
final right

cx, 4
cx, bx
cx, 1
cx, 1
cx, 1
cx
byte ptr [exponent], cl

di, byte ptr binary[4]
si, byte ptr binary

;record sign

;this one is negative

;compare index with 0
;we traversed the entire
;number
;get next byte
;anything there?

;move index

;test for MSB
;radix point
;above
;equal

;or below?

;points to MSB
;target

;times 8

;calculate exponent

209

NUMERICAL METHODS

rep

rep

add
mov
inc
movsb

mov
sub
sub
stosb

jmp

shift_right:

cx

rep

rep

cld
mov
sub
lea
mov
sub

shl
shl
shl
mov

mov
sub
inc
movsb
sub
mov
sub
sub
lea
stosb

final_right:
lea

final_rightl:
mov
test
jne

si, bx
cx, bx
cx

;move number for nomalization

cx, 4
cx, bx
ax, ax

;clear unused bytes
short final_right

cx, bx
cx, 4
si, byte ptr binary[4]
di, si
di, cx

cl, 1
cl, 1
cl, 1
byte ptr [exponent], cl

cx, bx
cx, 4

;points to MSB
;target

;times 8
;calculate exponent

bx, 4
cx, 4
cx, bx
ax, ax
di, word ptr binary

;clear bytes

si, byte ptr binary[4]

al, byte ptr [si]
al, dl
aligned
byte ptr exponent

;get most significant one into
;MSB

;are we there yet?

dec

210

shl word ptr binary[0], 1
rcl word ptr binary[2], 1
rcl word ptr binary[41, 1

jmp short final_right1

aligned:
shl
mov

add

cmp
je
stc

jmp
positive:

clc

al, 1
ah, 86h

ah, byte ptr exponent
numsin, dh
positive

short get_ready_to_go

INPUT, OUTPUT, AND CONVERSION

;clear bit
;offset so that exponent will be
;right after addition

get_ready_to_go:
rcr ax, 1

mov word ptr binary[4], ax
ftf_ex:

invoke round, binary, rptr

;shift carry into MSB
;put it all back the way it
;should be

;round the float

exit:

popf
ret

;
make_zero:

std
sub
mov

rep stosw

jmp
ftf endp

ax, ax
cx, 4

short exit

;nothing but zeros

;zero it all out

Single-Precision Floating Point to Fixed Point

Ftfx simply extracts the fixed-point number from the IEEE 754 floating-point

211

NUMERICAL METHODS

format and places it, if possible, in a fixed-point field composed of a 32-bit integer

and a 32-bit fraction. The only problem is that the exponent might put the significand
outside our fixed-point field. Of course, the field can always be changed; for this
routine, it’s the quadword format with the radix point between the doublewords.

fttx Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

Clear the sign flag, sinptr, and the fixed-point field it points to.

Round the incoming floating-point number.

Set the sign flag through sinptr by testing the MSB of the float.

Extract the exponent and subtract the bias. Restore the hidden bit.

Test the exponent to see whether it's positive or negative.

If it's negative, two's complement the exponent and test the range to
see if it's within 28H.

If it's greater, go to step 9.

If it's not greater, continue with step 7.

If positive, test the range to see if it's within 18H.

If it's less, go to step 10.

If not, continue with step 6.

Shift the integer into position and go to step 8.

Shift the fraction into position and continue with step 8.

See if the sign flag is set.

If not, exit with success.

If it is, two's-complement the fixed-point number and exit.

Error. Write zeros to all words and exit.

10. Write a 0ffH to the exponent and exit.

fftx: Listing
;*****
; conversion of floating point to fixed point
; Float enters as quadword.
; Pointer, sptr, points to result.
; This could use an external routine as well. When the float
; enters here, it is in extended format.

212

INPUT, OUTPUT, AND CONVERSION

ftfx proc uses bx cx dx si di, fp:qword, sptr:word

local sinptr:byte, exponent:byte

pushf
std

;
xor
mov
mov
mov

;
;***
;
do_rnd:

invoke
;
set_sign:

mov
mov
mov
or
jns
not

;
get_exponent:

sub
shl
sub
mov
mov
and
stc
rcr

;
which_way:

or
jns

neg

ax,ax
byte ptr [sinptr],al
byte ptr [exponent],al
di,word ptr sptr

round, fp, addr fp

ax,word ptr fp[0]
bx,word ptr fp[2]
dx,word ptr fp[41
dx,dx
get_exponent
byte ptr [sinptr]

cx,cx

dx,1
dh,86h
byte ptr exponent, dh
cl,dh
dx,0ffh

dl,l

cl,cl
shift_left
cl

shift_right:

cmp
ja

make_fraction

cl,28h
make_zero

;clear the sign

;point to result

;fixup for translation

;get float

;test exponent for sign

;it is negative

;dump sign
;remove bias from exponent
;store exponent

;save number portion

;restore hidden bit

;test for sign of exponent

;two's complement if negative

;range of fixed-point number
;no significance too small

213

NUMERICAL METHODS

shr
fixed

rcr
rcr
loop
mov
mov
mov

imp

shift_left:

cmP

ja
make_integer

shr
rcr
rcr
loop
mov
mov
mov

print_result
test

ie
not
not
not

neg
ic
add
adc
adc

exit:

popf
ret

;
make_zero:

sub
mov

rep stosw

imp
;

214

dx,1

bx,1
ax,1
make fraction
word ptr [di] [0],ax
word ptr [di] [2],bx
word ptr [di][4],dx
short print_result

cl,18h

make_max

bx,1

dx,1
ax,1
make_integer
word ptr [di][6],ax
word ptr [di][4],dx
word ptr [di][2],bx

byte ptr
exit
word ptr
word ptr
word ptr
word ptr
exit
word ptr
word ptr
word ptr

[sinptr], 0ffh

[di] [6]
[di][4]
[di] [2]
[di] [0]

[di] [2],1
[di] [4],0
[di] [6],0

;shift
;point

fraction
variable

into

;and write result

;range of fixed point
;(with significand)
;failed significance

;shift into position

;write out

;check for proper sign

position in

too big

;two's complement

;error make zero
ax,ax
cx,4

short exit

INPUT, OUTPUT, AND CONVERSION

make_max:
sub
mov

rep stosw
not
stosw
and
not
stosw

jmp

ax,ax
cx,2

ax

word ptr [di][4], 7f80h
ax

short exit

;error too big

;infinite

ftfx endp

215

NUMERICAL METHODS

1 Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-

Wesley Publishing Co., 1981, Pages 300-312.

216

CHAPTER 6

The Elementary Functions

According to the American Heritage Dictionary, elementary means essential,

fundamental, or irreducible, but not necessarily simple. The elementary functions

comprise algebraic, trigonometric, and transcendental functions basic to many
embedded applications. This chapter will focus on three ways of dealing with these
functions: simple table-driven techniques that use linear interpolation; computa-

tional fixed-point, including the use of tables, CORDIC functions, and the Taylor

Series; and finally floating-point approximations. We’ll cover sines and cosines
along with higher arithmetic processes, such as logarithms and powers.

We’ll begin with a fundamental technique of fixed-point arithmetic—table
lookup—and examine different computational methods, ending with the more
complex floating-point approximations of the elementary functions.

Fixed Point Algorithms

Lookup Tables and Linear Interpolation

In one way or another, many of the techniques in this chapter employ tables. The
algorithms in this section derive their results almost exclusively through table

lookup. In fact, you could rewrite these routines to do only table lookup, if that is all

you require.
Some of the fastest techniques for deriving values involve look-up tables. As

mentioned in Chapter 5, the main disadvantage to table-driven routines is that the
tables are finite. Therefore, the results of any table-driven routine depends upon the

table’s resolution. The routines in this section involve an additional step to help
alleviate these problems: linear interpolation.

The idea behind interpolation is to approximate unknown data points based upon
information provided by known data points. Linear interpolation attempts to do this

217

NUMERICAL METHODS

by bridging two known points with a straight line as shown in Figure 6-1. Using this

technique, we replace the actual value with the function y=f(x), where y = y0+(x-
x0)(y1-y0)/(x1-x0). This formula represents the slope of the line between the two
known data points, with [f(x1)-f(x0)]/(x1-x0) representing an approximation of the

first derivative (the finite divided difference approximation). As you can see from
Figure 6-1, a straight line is not likely to represent the shape of a function well and
can result in a very loose approximation if too great a distance lies between each point
of known data.

Figure 6-1. Linear interpolation produces an approximate value based on a straight line
drawn between known data. The closer the data points, the better the approximation.

Consider the problem of estimating log10(2.22) based on a table of common logs

for integers only. The table indicates that log10(2) = 0.3010299957 and log10(3) =
0.4771212547. Plugging these values into the formula above, we get:

3010299957) / (3-2y=0.3010299957+(2.22-2.0)(0.4771212547-0.
y=0.3010299957 + (.22) (0.1760182552)/(l)
y=0.3397540118.

218

THE ELEMENTARY FUNCTIONS

The true value is 0.3463529745, and the error is almost 2%. For more accuracy,
we would need more data points on a finer grid.

An example of this type of table-driven approximation using linear interpolation

is the function lg10, presented later in this section.1 The derivation of the table used
in this routine was suggested by Ira Harden. This function produces log10(X) of a

value based on a table of common logarithms for X/128 and a table of common
logarithms for the powers of two. Before looking the numbers up in the table, it
normalizes each input argument (in other words, shifts it left until the most
significant one of the number is the MSB of the most significant word) to calculate

which power of two the number represents. The MSB is then shifted off, leaving an

index that is then used to point into the table.
If any fraction bits need to be resolved, linear interpolation is used to calculate

a closer approximation of our target value. The log of the power of two is then added

in, and the process is complete.

The function lg10 approximates log10(X) using a logarithm table and fixed-point

arithmetic, as shown in the following pseudocode:

lg10: Algorithm

1. Clear the output variable. Check the input argument for 0.

If zero, exit

If not, check for a negative argument.

If so, exit

If all OK, continue with step 2.

2 . Determine the number of shifts required to normalize the input
argument, that is so that the MSB is a one. Perform that shift first
by moves and then individual shifts.

3 . Perform linear interpolation.

First get the nominal value for the function according to the table.
This is the f(x0) from the equation above. It must be guaranteed to
be equal to or less than the value sought.

Get the next greater value from the table, f(x1). This isguaranteed
to be greater than the desired point.

Now multiply by the fraction bits associated with the number we using
to point into the table. These fraction bits represent the difference

219

NUMERICAL METHODS

between the nominal data point, x0, and the desired point.

Add the interpolated value to the nominal value and continue with
step 4.

4. Point into another table containing powers of logarithms using the
number of shifts required to normalize the number in step 2. Add the
logarithm of the power of two required to normalize the number.

5. Exit with the result in quadword fixed-point format.

lg10: Listing
; *****

.data

; log (x/128) ;To create binary tables from decimal, multiply the decimal
;value you wish to use by one in the data type of your
;fixed-point system. For example, we are using a 64-bit fixed
;point format, a 32-bit fraction and a 32-bit integer. In
;this system, one is 232, or 4294967296 (decimal), convert
;the result of that multiplication to hexadecimal and you are
;done. To convert p to our format we would multiply 3.14 by
;4294967296 with the result 13493037704 (decimal), which we
;then convert to the hexadecimal value 3243f6a89H.

log10 tbl word 00000h, 000ddh, 001b9h, 00293h,

0036bh, 00442h, 00517h, 005ebh, 00Gbdh, 0078eh,
0085dh, 0092ah, 009f6h, 00ac1h, 00b8ah, 00c51h,

00d18h, 00dddh, 00ea0h, 00f63h, 01024h, 0l0e3h,
011a2h, 0125fh, 0131bh, 013dSh, 0148fh, 01547h,
015feh, 016b4h, 01769h, 0181ch, 018cfh, 01980h

word 01a30h, 01adfh, 01b8dh, 01c3ah, 01ceGh, 01dg1h,
01e3bh, 01ee4h, 01f8ch, 02033h, 020d9h, 0217eh,
02222h, 022c5h, 02367h, 02409h, 024a9h, 02548h,
025e7h, 02685h, 02721h, 027bdh, 02858h, 028f3h

word 0298ch, 02a25h, 02abdh, 02b54h, 02beah, 02c7fh,
02d14h, 02da8h, 02e3bh, 02ecdh, 02f5fh, 02ff0h,

03080h, 0310fh, 0319eh, 0322ch, 032b9h, 03345h,
033d1h, 0345ch, 034e7h, 03571h, 035fah, 03682h,

0370ah, 03792h, 03818h, 0389eh, 03923h, 039a8h

word 03a2ch, 03abOh, 03b32h, 03bb5h, 03c36h, 03cb7h,
03d38h, 03db8h, 03e37h, 03eb6h, 03f34h, 03fb2h,

220

THE ELEMENTARY FUNCTIONS

word

0402fh, 040ach, 04128h, 041a3h, 0421eh, 04298h,
04312h, 0438ch, 04405h, 0447dh, 044f5h, 0456ch,
045e3h, 04659h, 046cfh, 04744h, 047b9h, 0482eh
048a2h, 04915h, 04988h, 049fbh, 04a6dh, 04adeh,
04b50h, 04bc0h, 04c31h, 04ca0h. 04d10h

;log(2**x)
log10_power dword 000000h, 004d1Oh, 009a20h, 00e730h, 013441h, 018151h,

01ce61h, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h,
039cc3h, 03e9d3h, 0436e4h, 0483f4h, 04d104h, 051e15h,

056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h,
073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h. 08bad8h,
0907e9h, 0954f9h

.code
;
;Logarithms using a table and linear interpolation.
;Logarithms of negative numbers require imaginary numbers.
;Natural logarithms can be derived by multiplying result by 2.3025.
;Logarithms to any other base are obtained by dividing (or multiplying by the
;inverse of) the log10. of the argument by the log10 of the target base.
lgl0 proc uses bx cx si di, argument:word, 1ogptr:word

local powers_of_two:byte

pushf
std ;increment down for zero

;check to come

rep

sub
mov
mov
add
stosw

mov si, word ptr logptr

add si, 6
mov di, word ptr argument
add di, 6
mov ax, word ptr [di]
or ax, ax

js exit
sub ax, ax

ax, ax
cx, 4
di, word ptr logptr
di, 6

;clear log output

;point at output which is
;zero
;most significant word
;point at input
;most significant word

;we don't do negatives

221

NUMERICAL METHODS

mov cx, 4
repe cmpsw

je exit

reposition_argument:
mov
add
mov
inc
mov
sub

si, word ptr argument
si, 6
di, si
cx
ax, 4
ax, cx

shl
sub
shl
shl
shl
mov

rep movsw

mov
mov

keep_shifting:
or

js
shl
rcl
rcl
rcl
inc

jmp

done_with_shift
mov
mov
sub
mov

shl

add

ax, 1
si, ax
ax, 1
ax, 1
ax, 1
bl, al

;find the first nonzero,
;or return
;zero

;shift so MSB is a one
;point at input
;most significant word
;shift the one eight times
;make this a one

;determinenumberof
;emptywords
;words to bytes
;point to first nonnero word

;multiply by eight

;shift

si, word ptr argument
ax, word ptr [si][6]

ax, ax
done_with_shift
word ptr [si][0], 1
word ptr [si][2], 1
word ptr [si][4], 1
ax, 1
bl

short keep_shifting

word ptr [si][6],ax
byte ptr powers_of_two, bl
bx, bx
bl, ah

bl, 1

bx, offset word ptr log10_tbl

;shift until MSB is a one

;count shifts as powers
;of two
;normalize

;ax will be a pointer

;will point into 127-entry
;table
;get rid of top bit to form
;actual pointer

222

mov

inc
inc
mov

bx
bx
bx, word ptr [bx]

sub bx, ax
xchg ax, bx

mul
mov
Sub
add

byte ptr [si][6]
al, ah
ah, ah
ax, bx

get_power:
mov bl, 31

sub
sub
shl
shl
lea
add
sub
add
adc
mov
mov

mov
sub
mov
mov

exit:

popf
ret

bl, byte ptr powers_of_two
bh, bh
bx,1
bx,1
si, word ptr log10_power
si, bx
dx, dx
ax, word ptr [si]
dx, word ptr [si][2]
di, word ptr logptr
word ptr [di] [2],ax

word ptr [di][4],dx
cx, cx
word ptr [di],cx
word ptr [di] [6],cx

lg10 endp

ax, word ptr [bx]

THE ELEMENTARY FUNCTIONS

;linear interpolation
;get first approximation
;(floor)

;and following approximation
;(ceil)
;find difference

;multiply by fraction bits
;drop fractional places

;add interpolated value to
;original

;need to correct for power
;of two

;point into this table

;add log of power

;write result to qword
;fixed point

An example of linear interpolation appears in the TRANS.ASM module
called sqrtt.

223

NUMERICAL METHODS

Another example using a table and linear interpolation involves sines and
cosines. Here we have a table that describes a quarter of a circle, or 90 degrees, which
the routine uses to find both sines and cosines. Since the only difference is that one

is 90 degrees out of phase with the other, we can define one in terms of the other (see
Figure 6-2). Using the logic illustrated by this figure, it is possible to calculate sines
and cosines using a table for a single quadrant.

To use this method, however, we must have a way to differentiate between the

values sought, sine or cosine. We also need a way to determine the quadrant the

function is in that fixes the sign (see Figure 6-3).
Dcsin will produce either a sine or cosine depending upon a switch, cs_flag.

Dcsin: Algorithm

1. Clear sign, clear the output variable, and check the input argument
for zero.

Figure 6-2. Sine and cosine are the same function 90 degrees out of phase.

224

THE ELEMENTARY FUNCTIONS

If it is zero, set the output to 0 for sines and 1 for cosines.

Otherwise, continue with step 2.

2. Reduce the input argument by dividing by 360 (we are dealing in
degrees) and take the remainder as our angle.

If the result is negative, add 360 to make it positive.

3. Save a copy of the angle in a register, divide the original again by
90 to identify which quadrant it is in. The quotient of this division
remains in AX.

4. Check cs-flag to see whether a sine or cosine is desired.

A0h requests sine; continue with step 9.

Anything else means a cosine; continue with step 5.

5. Compare AX with zero.

If greater, go to step 6.

Otherwise, continue with step 13.

6. Compare AX with one.

Figure 6-3. Quadrants for sine/cosine approximations.

225

NUMERICAL METHODS

If greater, go to step 7.

Otherwise, set sign.

7.

8.

9.

10.

11.

12.

Two's complement the angle.

Add 180 to make it positive again.

Continue with step 14.

Compare AX with two.

If greater, go to step 8.

Otherwise, set sign.

Subtract 180 from the angle to bring it back within 90 degrees.

Continue with step 13.

Two's complement the angle.

Add 360 to point it back into the table.

Continue with step 14.

Compare AX with zero.

If greater, go to step 10.

Otherwise, 2's complement the angle.

Add 90 to point it into the table.

Continue with step 14.

Compare AX with one.

If greater, go to step ll.

Otherwise, subtract 90 from the angle to bring it back onto the
table.

Continue with step 13.

Compare AX with two.

If greater, go to step 12.

Otherwise, two's complement the angle,

Add 270, so that the angle points at table.

Set sign.

Continue with step 14.

Set sign.

Subtract 270 from the angle.

13. Use the angle to point into the table.

226

THE ELEMENTARY FUNCTIONS

Get f(x0)from the table in the form of the nominal estimation of the
sine.

Check to see if any fraction bits require linear interpolation.

If not, continue with step 15.

Get f(x1) from the table in the form of the next greater approxima-
tion.

Subtract f(x0) from f(x1) and multiply by the fraction bits.

Add the result of this multiplication to f(x0).

Continue with step 15.

14. Use the angle to point into the table.

Get f(x0) from the table in the form of the nominal estimation of the
sine.

Check to see if any fraction bits requiring linear interpolation.

If not, continue with step 15.

Get f(x1) from the table in the form of the next smaller approxima-
tion.

Subtract f(x0) from f(x1) and multiply by the fraction bits.

Add the result of this multiplication to f(x0).

Continue with step 15.

15. Write the data to the output and check sign.

If it's set, two's complement the output and exit.

Otherwise, exit.

Dcsin: Listing
; *****

.data

;sines(degrees)
sine_tblword 0ffffh, 0fff6h, 0ffd8h, 0ffa6h, 0ff60h, 0ff06h,

0fe98h, 0fe17h, 0fd82h, 0fcdgh, 0fclch, 0fb4bh,
0fa67h, 0f970h, 0f865h, 0f746h, 0f615h, 0f4d0h,
0f378h, 0f20dh, 0f08fh, 0eeffh, 0ed5bh, 0eba6h,
0egdeh, 0e803h, 0e617h, 0e419h, 0e208h, 0dfe7h,
0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1b3h,
0cf1bh, 0cc73h, 0cgbbh, 0c6f3h, 0c4lbh, 0c134h,
0be3eh, 0bb39h, 0b826h, 0b504h, 0bld5h, 0ae73h

227

NUMERICAL METHODS

word

.code

0ab4ch, 0a7f3h, 0a48dh, 0a11bh, 09d9bh, 09a10h,
09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083d9h,
08000h, 07c1ch, 0782fh, 07438h, 07039h, 06c30h,
0681fh, 06406h, 05fe6h, 05bbeh, 0578eh, 05358h,
04flbh, 04ad8h, 04690h, 04241h, 03deeh, 03996h,
03539h, 030d8h, 02c74h, 0280ch, 023aOh, 01f32h,
01ac2h, 0164fh, 011dbh, 00d65h, 008efh, 00477h,
Oh

;sines and
;(degrees)

cosines using a table and linear interpolation

dscin proc uses bx cx si di, argument:word, cs_ptr:word, cs_flag:byte

local powers_of_two:byte, sign:byte

pushf
std

rep

sub
mov
mov
mov
add
stosw

ax, ax
byte ptr sign, al
cx, 4
di, wordptr cs_ptr
di, 6

add di, 8
mov si, di
mov di, word ptr argument
add di, 6
mov cx, 4

repe cmpsw

je
jmp

zero_exit
prepare_arguments

zero_exit:

cmp
jne

jmp
cos_0:

byte ptr cs_flag, al
cos_0
exit

228

;increment down

;clear sign flag

;clear sin/cos output

;first check arguments
;for zero
;reset pointer

;find the first nonzero,or
;retum

;ax is zero
;sin(0) = 0

THE ELEMENTARY FUNCTIONS

inc ax
inc ax

add si,ax
dec ax
mov word ptr [si][4],ax

jmp exit

prepare-arguments:
mov
mov

sub
mov
idiv

or
jns
add

quadrant:
mov

mov
sub
mov
div ;and this to compute

;the sign ax holds

switch:

cmp

je

cos_range:

cmp
jg
jmp

si, word ptr argument
ax, word ptr [si][4]

dx, dx
cx, 360
cx

dx, dx
quadrant
dx, 360

bx, dx

ax, dx
dx, dx
cx, 90
cx

byte ptr cs_flag, 0

do_sin

ax, 0
cchk_l80
walk_up

;point di at base of
;output
;make ax a one
;cos(0)= 1
;one

;get integerportion
;of angle

;modulararithmeticto
;reduceangle
;we want the remainder

;angle has to be
;positive for this
;to work

;we will use this to
;compute the value
;of the function
;put angle in ax

;an index to the quadrant

;what do we want?
;a zero=sine
;anything else=cosine

;use incrementing method

229

NUMERICAL METHODS

cchk_180:

cmp
jg
not

neg
add

jmp

cchk_270:

cmp
jg
not
sub

jmp

clast_90:

neg
add

jmp
;
;
;
do_sin:

cmp
jg
neg
add

jmp

schk_180:

cmp
jg
sub

jmp

schk_270:

cmp
jg
not

neg
add

jmp

ax, 1
cchk_270
byte ptr sign
bx
bx, 180
walk_back

ax, 2
clast_90
byte ptr sign
bx, 180
walk_up

;set sign flag

;use decrementing method

;set sign flag

bx
bx, 360
walk_back

;find the range of the
;argument

ax, 0
schk_180
bx
bx, 90
walk_back

ax, 1
schk_270
bx, 90
walk_up

ax, 2
slast_90
byte ptr sign
bx
bx, 270
walk_back

;use decrementing method

;use incrementing method

;set sign flag

230

slast_90:
not
sub

jmp
;

byte ptr sign
bx, 270
walk_up

THE ELEMENTARY FUNCTIONS

;set sign flag

;
walk_up:

shl

add bx, offset word ptr sine_tbl
mov dx, word ptr [bx]
mov ax, word ptr [si][2]
or ax, ax

je write_result

inc
inc
mov
mov
sub
jnc

neg
mul
not

neg
jc
inc

jmp
pos_res0:

mul
leave_walk_up:

add

jmp

walk_back:
shl
add
mov
mov
or

bx, 1

bx
bx
cx, dx
ax, word ptr [bx]
ax, dx
pos_res0
ax
word ptr [si][2]
dx
ax
leave_walk_up
dx
leave_walk_up

word ptr [si] [2]

dx, cx

write-result

;use angle to point into
;the table

;get cos/sine of angle
;get fraction bits

;linear interpolation
;get next approximation

;find difference

;multiply by fractionbits

;multiply by fraction bits
;and add in angle

bx, 1
bx, offset word ptr sine_tbl
dx, word ptr [bx]
ax, word ptr [si][2]
ax, ax

;point into table

;get cos/sine of angle
;get fraction bits

231

NUMERICAL METHODS

je

dec
dec
mov
mov

sub
jnc

neg
mul
not

neg
jc
inc

jmp
pos_resl:

mul
leave_walk_back:

add

write_result:
mov
mov
mov

sub

mov
mov

cmp
je
not
not
not

neg
jc
add
adc
adc

exit:

popf
ret

dcsin endp

232

write_result

bx
bx
cx, dx
ax, word ptr [bx]

ax, dx
pas_resl
ax
word ptr [si][2]
dx
ax
leave_walk_back
dx
leave_walk_back

word ptr [si][2]

dx, cx

di, word ptr cs_ptr
word ptr [di], ax
word ptr [di][2], dx

ax, ax

word ptr [di][4], ax
word ptr [di][6], ax
byte ptr sign, al
exit
word ptr [di] [6]
word ptr [di][4]
word ptr [di][2]
word ptr [di][0]
exit
word ptr [di][2],1
word ptr [di][4],ax
word ptr [di][6],ax

;get next incremental
;cos/sine
;get difference

;multiply by fraction bits

;multiply by fraction bits

;multiply by fraction bits
;and add in angle

;stuff result into variable
;setup output for qword
;fixed point
;radix point between the
;double words

THE ELEMENTARY FUNCTIONS

Computing With Tables

Algebra is one of a series of fascinating lectures by the physicist Richard
Feynman2. In it, he discusses the development of algebra and its connection to
geometry. He also develops the basis for a number of very interesting and useful
algorithms for logarithms and powers, as well as the algebraic basis for sines and
cosines using imaginary numbers.

In algebra, Feynman describes a method of calculating logarithms, and therefore

powers, based on 10 successive square roots of 10. The square root of 10 (10.5) is
3.16228, which is the same as saying log10(3.16228) = .5. Since log10(a*c) = log10(a)
+ log10(c), we can approximate any power by adding the appropriate logarithms, or

multiplying by the powers they represent. For example, 10.875 = 10(.5+.25+.125) =

3.16228 * 1.77828 * 1.33352 = 7.49894207613.
As shown in Table 6-1, that taking successive roots of any number is the same

as taking that number through successively more negative powers of two.

The following algorithm is based on these ideas and was suggested by Donald
Knuth3. The purpose of pwrb is to raise a given base to a power x, 0 x < 1. This
is accomplished in a manner similar to division. We do this by testing the input

argument against successively more negative powers of b, and subtracting those that
do not drive the input argument negative. Each power whose logarithm is less than
the input is added to the output multiplied by that power. If a logarithm of a certain

power can not be subtracted, the power is increased and the algorithm continues. The

process continues until x = 0.

2 3 3

NUMERICAL METHODS

number power of 10 power of 2

10.0 1

3.16228 l/2

1.77828 l/4

1.33352 l/8

1.15478 l/16

1.074607 l/32

1.036633 l/64

1.018152 l/128

1.0090350 l/256

1.0045073 l/512

1.0022511 1/1024

2 0

2 - l

2 - 2

2 - 3

2 - 4

2 - 5

2 - 6

2 - 7

2 - 8

2 - 9

2 - 1 0

Table 6-1. Computing with Tables

In pseudocode:

Pwrb: Algorithm

1. Set the output, y, equal to 1, clear the exponent counter, K.

2. Test our argument, x, to see if it is zero.

If so, continue at step 6.

If not, go to step 3.

3. Use k to point into a table of logarithms of the chosen base to
successively more negative powers of two. Test x < logb(1+2

-k).

If so, continue with step 5.

Else, go to step 4.

4. Subtract the value pointed to in the table from x.

Multiply a copy of the output by the current negative power of two
through a series of right shifts.

Add the result to the output.

Go to step 2.

234

THE ELEMENTARY FUNCTIONS

5. Bump our exponent counter, k, by one,

Go to step 2.

6. There is nothing left to do, the output is our result,

Exit.

Pwrb: Listing
; *****

.data

power10

.code

qword 4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh,
6bd7e4bh, 36bd211h, 1b9476ah,
0dd7ea4h, 6ef67ah, 378915h, 1bc802h, 0de4dfh,
6f2a7h, 37961h, 1bcb4h, 0de5bh,
6f2eh, 3797h, 1bcbh, 0de6h, 6f3h, 379h, 1bdh,
0deh, 6fh, 38h, 1ch, 0eh, 7h, 3h, 2h, 1h

;
; ******

;pwrb - power to base 2
;input argument must be be 1 <= x < 2
pwrb

rep
ax

a x

x0:

proc

local

mov
sub
mov
stosw
inc
stosw
dec
stosw
mov

uses bx cx dx di si, argument:qword, result:word

k:byte, z:qword

di, word ptr result
ax, ax
cx, 2

;Y

;make y = 1

byte ptr k, al ;make k = 0

mov
mov
mov

ax, word ptr argument
cx ptr argument [2]
dx ptr argument

sub bx, bx

;argument 0 <= x < 1

235

NUMERICAL METHODS

cmp ax, bx
jne not_done_yet

cmp cx, bx
jne not_doneyet

cmp dx, bx
jne not_doneyet

jmp pwrb_exit

not_done_yet
sub
mov
cmp

ja

bx, bx
bl, byte ptr k
bl, 20h
pwrb_exit

shl
shl
shl

lea

bx, 1
bx, 1
bx, 1

si, word ptr power2

cmp

jb
ja
cmp

jb
ja
cmp
jb

dx, word ptr [si] [bx] [4]

increase
reduce
cx, word ptr [si][bx][2]
increase
reduce
ax, word ptr [si] [bx]
increase

reduce:
sub
sbb
sbb
mov
mov
mov

ax, word ptr [si] [bx]
cx, word ptr [si] [bx] [2]
dx, word ptr [si][bx][4]
word ptr argument, ax
word ptr argument [2], cx
word ptr argument[4], dx

sub
mov

cx, cx
cl, byte ptr k

mov
mov

si, word ptr result
ax, word ptr [si]

;test for 0.0

;our pointer and exponent
;are we done?

;point in to table of qwords

;is this log greater than,
;equal or less than
;x?

;x<-x-z

236

mov
mov

cmp
je

shiftk:
shr
rcr
rcr
loop

no_shiftk:
add
adc
adc

jmp

bx, word ptr [si][2]
dx, word ptr [si][4]
cl, 0
no_shiftk

dx, 1
bx, 1
ax, 1
shiftk

word ptr [si], ax
word ptr [si] [2], bx
word ptr [si][4], dx

x 0

THE ELEMENTARY FUNCTIONS

;is this shfit necessary?

;z<-argument>>k

increase:

inc

jmp
pwrb_exit:

ret
pwrb endp

byte ptr k

x0

;bump the counter to the
;next level
;and continue

There is another, similar, routine in the TRANS.ASM module dealing with

logarithms.

CORDIC Algorithms

Cordic is an acronym meaning COordinate, Rotation Digital Computer4. It was
devised as a way to derive transcendental functions for real-time airborne navigation
and has since been used in Intel math coprocessors and Hewlett-Packard calculators.
The CORDIC functions are a group of algorithms capable of computing high—

quality approximations of the transcendental functions and require very little

arithmetic power from the processor. Any functions listed in Table 6-2 can be

calculated using only shifts, adds, and subtractions. These functions make very good

candidates for the core of a floating-point library for processors with or without

hardware multiplication and division.

237

NUMERICAL METHODS

input: output:

circular functions

x = x rectangular units l/k(xcos(z)-ysin(z))

y = y rectangular units l/k(ycos(z)+xsin(z))

z = z angle 0

x = 1 cos(a) multiplier

y = 0 0

z = 0 0

x = circulark(constant) cos(a)

y = 0 sin(a)

z = a 0

inverse circular functions

x = x rectangular units l/k(÷(x2+y2)
y = y rectangular units 0
z = z angle

hyperbolic functions

x = x rectangular units

y = y rectangular units
z = z angle

inverse hyperbolic functions

comments:

in general case

to compute

the constant

circulark

obtain sine

and cosine of

a

in general case

z+atan-1(y/x)

l/k(xcosh(z)+ysinh(z))
in general case
l/k(ycosh(z)+xsinh(z))
0

x = x

y = y
z = z

rectangular units

rectangular units
angle

l/k(÷(x2+y2))
in general case
0
z+tanh-1(y/x)

Table 6-2. CORDIC Functions

238

THE ELEMENTARY FUNCTIONS

The CORDIC functions makeup a unified core that can derive many other
functions, including circular and hyperbolic, as well as powers and roots (see Table
6-2). This discussion will focus on the circular functions; routines for the hyperbolic
functions and inverses for both circular and hyperbolic are in the module

TRANS.ASM.
Before getting into the specifics of the routine, let’s take some time to understand

how the CORDIC functions work. Notice that this algorithm has some things in

common with the circle algorithm presented earlier in a Chapter 3. That routine used
a modified rotation matrix:

Ra[x,y] = [cos(a)-sin(a),sin(a)+cos(a)]

and very small values for sine and cosine to draw a circle with only shifts, additions,

and subtractions. A similar idea is at work here, but it goes a step farther.
See why the rotation matrix might help derive the functions listed above, look

at Figure 6-4. In a Cartesian coordinate system (x,y), you can specify a point on a
plane by measuring its position relative to the (x,y) axis. In the figure, point P is at
x=20, y=l0. If you draw a line from the origin of the axis to that point, it will form
a vector of a certain length offset from the x axis by an angle a. To move this vector
about the origin by some amount, in this case π/10 radians, you can use the rotation
matrix as shown in Figure 6-4. First solving for x = x*cos(α)-y*sin(α), then y =
x*sin(α)+y*cos(α), you will develop a new set of coordinates for point P. In this

way, you can move around the origin simply by supplying an angle of rotation and

the current coordinates. With a few small changes, this same mechanism can deliver

the sine and cosine of a desired angle and a number of other functions as well.
To make this work, x and y are needed plus a new argument, z, which will

represent the angle or rotation. Next, simplify the equation by factoring out the cosine
using the fundamental identity tan(a) = sin(α)/cos(α). This leaves

R=a[x,y] =cos(α)[l-tan(α), tan(a)+1]

239

NUMERICAL METHODS

Writing this out long hand, you have

and

x=cos(α)[x-x(tan(α))]

Y = cos(α)[y(tan(α))+y]

One more step can ease the computing burden even more: replacing the two
multiplications, y(tan(α)) and x(tan(α)), with right shifts if a is made the sum of a

series of smaller a’s and each tan(α) is chosen to be a negative power of two. If every
tan(a) is to become a negative power of two, then the small piece of the angle each
represents becomes atan(2-i). This means that we will be breaking the input angle, a,

Figure 6-4. Rotation Matrix

240

THE ELEMENTARY FUNCTIONS

into smaller angles equal to atan(2-i) and subtracting each atan(2-i) from the input a

after each evaluation of the rotation matrix in an effort to close on zero. This

subtraction may involve positive and negative signs depending upon the quadrant we
are in as we hover around zero; as the tangent changes sign, so then must the atan.
See Figure 6-3 in the previous section for the progression of signs. Now, the formulae

become

x = cos (α) [x-x (2-l)]

and

y = cos (α) [y(2-l)+y]

The cos(α) remains, but it is a constant (circulark) that has been precomputed
and is factored in when needed. Because we are using negative powers of two, each
iteration of the algorithm is responsible for a power of two; the result is 32 iterations

for 32 fraction bits.

For the routine, circular, the table of arctangents was precomputed and stored
in the table atan_array, as was the constant cos(α), circulark. The same was done
for the hyperbolic functions with the table atanh_array and the constant hyperk. To

solve for particular functions, see Table 6-2 for the correct inputs and the expected

outputs.
As with so many of the functions covered in this chapter, the input argument for

the angle must be confined to the first quadrant. Circular will solve for both sine and
cosine, given X = circulark (the constant), Y = 0, and Z = a, if 0 a < π/2. Reducing

the argument for these routines can be done in the same manner as in the table driven
routine, dcsin in an earlier section. Divide the input angle by 2π, to remove unwanted

components of π, then divide by π/2. Take the remainder as your input argument and
the quotient as an index to the quadrant the angle is in. See Figure 6-3 for the logic.

241

NUMERICAL METHODS

Circular: Algorithm

1.

2.

3.

4.

5.

6.

7.

The variables X, Y, and Z serve as both input and output variables.

Load x, y, and z into local variables smal lx, smal ly, and smal lz.

Set the exponent counter, i, to 0.

Multiply x and y by 2-i and store in smal lx and smal ly,
respectively. (The multiplication is accomplished by shifting (arith-
metically) x and y to the right by the current count in i.)

Load z with table entry pointed at by atan_array+i.

Test z

If true, go to step 5.

Else, continue with step 4.

Add smal ly to x.

Subtract smal lx from y.

Add smal lz to z.

Continue with step 6.

Subtract smal ly from x.

Add smal lx to y.

Subtract smal lz from z.

Continuewith step 6.

Bump the exponent counter, i.

Test i

If yes, got to step 7.

Otherwise, go to step 2.

Since we have been using the output variables for intermediate
storage of our results, the output is current and we may exit.

Circular: Listing
; ******

.data
atan_array dword 0c90fdaa2h, 76b19c16h, 3eb6ebf2h, 1fd5ba9bh,

0ffaaddch, 7ff556fh, 3ffeaabh, 1fffd55h,
0ffffabh, 800000h, 3fffffh, 200000h, 100000h,
80000h, 40000h, 20000h, l0000h, 8000h, 4000h,
2000h, 1000h, 800h, 400h, 200h, 100h, 80h,
40h, 20h, 10h, 8h, 4h, 2h, 1h

.code

242

THE ELEMENTARY FUNCTIONS

;
; circular-implementation of the circular routine, a subset of the CORDIC devices

circular proc uses bx cx dx di si, x:word, y:word, z:word

di, word ptr smallx

si, word ptr x

cx, 4

;load input x, y, and z

rep

di, word ptr smally

si, word ptr y

cx, 4
rep

di, word ptr smallz
si, word ptr z

cx, 4

rep

twist:

local

lea
mov
mov
movsw

lea
mov
mov
movsw

lea
mov
mov
movsw

sub
mov
mov
mov

sub
mov
mov

mov si, word ptr x
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]

c m p

je

smallx:qword, smally:qword, smallz:qword, i:byte,
shifter:word

ax, ax
byte ptr i, al
bx, ax
cx, ax

ax, ax
al, i
word ptr shifter, ax

;i=O

;multiply by 2ˆ-i

word ptr shifter, 0
load_smallx

243

NUMERICAL METHODS

shiftx:
sar
rcr
rcr

rcr
dec
jnz

load_smallx:
mov
mov
mov
mov

sub
mov
mov
mov
mov
mov
mov
mov

cmp
je

shifty:
sar
rcr
rcr
rcr
dec
jnz

load_smally:
mov
mov
mov
mov

get_atan:
sub
mov
shl
shl

dx, 1
cx, 1
bx, 1

ax, 1
word ptr shifter
shiftx

word ptr smallx, ax
word ptr smallx [2], bx
word ptr smallx [4], cx
word ptr smallx [6], dx

ax, ax
al, i
word ptr shifter, ax
si, word ptry
ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

word ptr shifter, 0
load_smally

dx, 1
cx, 1
bx, 1
ax, 1
word ptr shifter
shifty

word ptr smally, ax
word ptr smally[2], bx
word ptr smally[4], cx
word ptr smally[6], dx

bx, bx
bl, i
bx, 1
bx, 1

;note the arithmetic shift
;for sign extension
;negative powers of two
;require right shifts

;return x to smallx

;get y

;multiply by 2^-i

;note the arithmetic shift
;for sign extension
;take to a negative power

;return to smally

;have to point into a dword
;table

244

THE ELEMENTARY FUNCTIONS

lea
mov

si, word ptr atan_array
ax, word ptr [si] [bx] ;use the negative power

;of two as a pointer
;to get proper atanmov dx, word ptr [si] [bx][2]

word ptr smallz, ax
word ptr smallz [2],
ax, ax
word ptr smallz [4],
word ptr smallz [6],

mov
mov
sub
mov
mov

dx ;z=atan[i]

ax
ax

test_Z:
mov
mov

si, word ptr z
ax, word ptr [si][6] ;the sign of z determines

;whether the arguments
;are summed or subtractedor

jns
ax, ax
positive

negative:
mov
mov
mov
mov

ax, word ptr smally
bx, word ptr smally[2]
cx, word ptr smally[4]
dx, word ptr smally[6]

mov
add
adc
adc
adc

di, word ptr x
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][41, cx
word ptr [di][6], dx ;smally is added x

ax, word ptr smallx
bx, word ptr smallx[2]
cx, word ptr smallx[4]
dx, word ptr smallx[6]

mov
mov
mov
mov

di, word ptr y
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

mov
sub
sbb
sbb
sbb ;smallx is added toy

ax, word ptr
ptr

small
small

Z

z[2]
mov

mov bx, word

245

NUMERICAL METHODS

mov

mov

mov
add
adc
adc
adc

jmp

positive:
mov
mov
mov
mov
mov
sub

sbb
sbb
sbb

mov
mov
mov
mov
mov
add
adc
adc
adc

mov
mov
mov
mov
mov

sub
sbb
sbb

cx, word ptr smallz [4]
dx, word ptr smallz [6]

di, word ptr z
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

for_next

ax, word ptr smally
bx, word ptr smally[2]
cx, word ptr smally[4]
dx, word ptr smally[6]
di, word ptr x
word ptr [di], ax

word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

ax, word ptr smallx
bx, word ptr smallx[2]
cx, word ptr smallx[4]
dx, word ptr smallx[6]
di, word ptry
word ptr [di], ax
word ptr [di] [2], bx
word ptr [di][4], cx
word ptr [di][6], dx

ax, word ptr smallz
bx, word ptr smallz[2]
cx, word ptr smallz[4]
dx, word ptr smallz[6]
di, word ptr z

word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx

;and smallz is added to z

;z was positive, so

;smally is subtracted
;from y

;smallx is added to y

;and smallz is subtracted
;fromz

246

THE ELEMENTARY FUNCTIONS

sbb word ptr [di][6], dx

for_next:
inc

cmp
ja
jmp

byte ptr i
byte ptr i, 32
circular_exit
twist

;bump exponent on each pass

circular_exit:

ret
circular endp

Polynomial Evaluations

One of the most popular and most accurate ways to develop the transcendentals
is evaluation of a power series. These series are often expressed in the following

forms:5

sin x = x - x3/3! + x5/5! - x7/7! + x9/9! . . . +(-l)n+1x2n-1/(2n-l)!

cos x= 1 - x2/2! + x4/4! - x6/6! + x8/8! . . . +(-l)n+1x2n-2/(2n-2)!

tan x = x + x3/3 + 2x5/15 + 17x7/315 + . . .

ex = 1 + x = x2/2! + . . . + xn/n! + . . .

ln(1 + x) = x - x2/2 + x3/3 - . . . + (-l)n+1+xn/n + . . .

A power-series polynomial of infinite degree could theoretically accommodate
every wrinkle in the shape of a given function within a given domain. But it isn’t

reasonable to attempt a calculation of a series of infinite degree; instead, some

method is used to determine when to truncate the series. Usually this is at the point
in the series where the terms fail to contribute significantly to the result. Your
application may only require accuracy to 16 bits, such as might be needed for

247

NUMERICAL METHODS

graphics. It may be error limited, which means that the result is calculated using

enough precision and to a great enough degree to account for any spikes that might
occasionally occur in the more distant terms.

Since the power series are computed in truncated form, they are prone to an error

from that truncation as well as any introduced by the arithmetic. A great deal of effort
has gone into finding the source of those errors and limiting it.6 For most embedded
applications (such as graphics subsystems, digital filtering and feedback control

loops), the truncated Taylor Series provides adequate results.

The quadword fixed-point format used in this section has 32 fraction bits to work
with. The terms contributing to bits outside that range (aside from guard digits, if you

wish) are not computed even if an occasional spike might influence the rest of the
computation. The 13th term of the sine expansion above rounds up to set the least
significant of our fraction bits.

An alternative to the doubleword integer and doubleword fraction format could
be implemented for each of the functions. At most, sine and cosine functions need
a l-bit integer, leaving 63 bits for at least 18 decimal digits. On the other hand, the

exponential, ex, will quickly lose any mantissa bits unless x is less than one. You

could rewrite these routines to maximize the precision of the data types you’re using
and provide greater accuracy; the results could be rounded and realigned for the rest
of the fixed-point routines. You can do this without disturbing any de facto format
you may have in place by doing the conversions and alignment within the calling

function, as taylorsin below. Such handling is often the case anyway, since a

particular series may require the arguments in a certain format to guarantee
convergence. The sine and cosine functions presented here are examples of this:
Their arguments should be constrained to π/2 for the series to function most

efficiently and accurately.
Power-series computations are not necessarily table driven, but the execution

time of the evaluation is so much faster when you precompute the coefficients that

you need a good reason not to. If you wish to compute the coefficients at runtime,

it’s most efficient if you maintain a copy of the previous powers and factorials and
compute each new one based upon that.

Homer’s Rule7 allows us to evaluate an N-degree polynomial with only N-l
multiplications and N additions. To use it, we store the coefficients of the polynomial

248

THE ELEMENTARY FUNCTIONS

in an array. If a degree or series of degrees is missing from the polynomials, their

coefficients automatically become zero. To illustrate, assume a polynomial such as

f(x) = 5x4 + 3x3 - 4x2 + 2x + 1

We put the coefficients in an array:

Poly_array word 1, 2, -4, 3, 5

In the following pseudocode, as in the example, the coefficients of the series (or

polynomial) are assumed to be computed in advance, incorporating the sign of the
term with the value. They’re stored in a table in reverse order of the polynomial

expression; that is, the first element in the array is the degree zero term. Evaluation
is then simply a matter of processing the polynomial. Upon entry to the algorithm,

we make the result variable equal to the coefficient of the highest power (here it’s 5).

We take a pointer into the array, which is the degree of the polynomial, and use it to
select each succeeding coefficient to add to the result variable after multiplying it by
the value of x.

taylorsin: Algorithm

1. Set an index to the degree of the polynomial (in this case 4).

Use this to retrieve the coefficient of the highest power and set the
result variable equal to that.

2. Multiply the value of x by the result variable,

Decrement the index.

If it goes negative, exit through step 3

Retrieve the next coefficient and add it to the result variable,

Continue at the beginning of step 2.

3. Horner's Method is complete. Exit.

In taylorsin, the sine approximation given above truncated at the 11th degree for our

example:

249

NUMERICAL METHODS

sin x = x - x3/3! + x5/5! - x7/7! + x9/9! - x11/11!

To process this expansion with Homer’s Rule, we need a table of coefficients
with 11 terms in it and zeros for those powers not represented in the expansion

indecimal:

1, 0, -.16666667, 0, .00833333, 0, -.00019841, 0, .00000275, 0,
-.00000003

Even this can be avoided if we evaluate the expression x3/3! + x5/5! - x7/7! + x9/
9! - x1l/l1! separately with x2 instead of x. This eliminates the necessity of processing
all the zero coefficients.

With these terms stored in a table, the only thing left to do is evaluate the

polynomial.

Actually, two routines are involved: polyeval can be made to work with any
polynomial, while taylorsin is only an entry point. It tells the subroutine polyeval

which table to use depending on the function to evaluate, the degree of the
polynomial, and where to put the results and passes the argument. Each function
requiring polynomial evaluation will require a routine such as taylorsin; this is where

any other fixed-point manipulation-such as scaling, altering the placement of the
radix point, or rounding-would be done.

taylorsin: Listing
;*****

;taylorsin - Derives a sin by using a infinite series. This is in radians.
;Expects argument in quadword format; expects to returnthe same.
;Input must be /2.
taylorsin proc uses bx cx dx di si, argument:qword, sine:word

invoke

ret
taylorsin endp

polyeval, argument, sine, addr polysin, 10

Polyeval does the work and can be made to evaluate any polynomial, given the
proper coefficients. Here is how it works:

250

THE ELEMENTARY FUNCTIONS

Polyeval: Algorithm

1.

2.

3.

4.

5.

Clear an accumulator and see that the output is clear.

Set an index equal to the degree of the polynomial.

Using the index, point into the table of coefficients.

Add the value pointed at to the accumulator.

Multiply the accumulator by the argument, x.

Decrement the table pointer.

If it goes negative, exit through step 5.

Otherwise, continue with step 2.

Write the accumulator to the output and leave.

Polyeval: Listing
; *****

.data
polysin qword 100000000h, 0, 0ffffffffd5555555h, 0, 2222222h, 0,

0fffffffffff2ff30h, 0, 2e3ch, 0, 0ffffffffffffff94h

.code

;
; *****

;polyeval- Evaluates polynomials according to Horner's rule.
;Expects to be passed a pointer to a table of coefficients,
;a number to evaluate, and the degree of the polynomial.
;The argument conforms to the quadword fixed-point format.

polyeval

local cf:qword, result[8]:word

rep

pushf
cld
sub
mov
mov
lea
stosw

procuses bx cx dx di si, argument:qword, output:word,
coeff:word, n:byte

ax, ax
byte ptr sign, al
cx, 4
di, word ptr cf

;clear the accumulator

251

NUMERICAL METHODS

rep

lea
mov
stosw

eval:
mov
sub
mov

shl bx, 1
shl bx, 1
shl bx, 1

add
mov
mov
mov
mov
lea
add
adc

adc
adc

x_by_y:

invoke

lea
lea
mov

rep movsw

chk_done:
dec
jns

polyeval_exit:
mov
lea
mov

rep movsw

di, word ptr result
cx, 8

si, word ptr coeff
bx, bx
bl, byte ptr n

;point at table

;point at coefficient of
;n-degree
;this is the beginning of
;our approximation

;multiply by eight for the
;quadword

;add new coefficient to
;accumulator

si, bx
ax, word ptr [si]
bx, word ptr [si] [2]
cx, word ptr [si] [4]
dx, word ptr [si] [6]
di, word ptr cf
word ptr [di], ax
word ptr [di] [2], bx

word ptr [di] [4], cx
word ptr [di] [6], dx

;perform a signed multiply
smul64, argument, cf, addr result

si, word ptr result [4]
di, word ptr cf
cx, 4

byte ptr n
eval

;decrement pointer

di, word ptr output
si, word ptr cf
cx, 4

;write to the output

252

THE ELEMENTARY FUNCTIONS

popf
ret

polyeval endp

Calculating Fixed-Point Square Roots

Finding square roots can be an art. This section presents two techniques. The

first, and perhaps the most traditional, is Newton’s Method. The other is the

technique you learned in school adapted, to binary arithmetic. In this section, we’ll
examine the square-root approximation in its simplest and most elemental form.

Later, in the floating-point section, we’ll combine these with other techniques to

improve the first estimate and speed the overall convergence of the algorithm. There
is no reason those techniques couldn’t also be made to fit a fixed-point application.

Newton’s Method for finding square roots is a favorite among programmers

because of its speed. It’s given by the equation r´= (x/r +r)/2, with x being our
radicand and r the estimate. If you are interested, cube roots may be calculated r´=
(r +(3 *x)/2)/(r *r +x/(2 *r))/2. It is an iterative approach that eventually finds the
root. There is no guarantee how many iterations it might take-that depends upon

the quality of the initial guess—but it should about double the number of correct bits
on each iteration.

Formulating that initial best guess is the problem. Resolving the routine can
require an inordinate number of iterations if the first estimate is very far off. This

routine is simple; it only knows that it has a 32-bit input and that the greatest possible

root of such an input is 16 bits. To improve first estimate, therefore, the routine shifts
the radicand right until it fits within a 16-bit word. Still, there is no way of telling how
many iterations will be required. A loop counter with a large enough count would

suffice but could easily require more iterations than would otherwise be necessary.
Instead, a copy of the last estimate is saved and compared with the current estimate
after each iteration. If everything proceeds smoothly, the routine exits when the

estimates stop changing.

In some circumstances, however, the routine will hang, toggling between two

possible roots. Another escape is provided for that contingency. A counter, cntr, is
loaded with the maximum number of iterations. If that number is exceeded, the
routine leaves with the last best estimate, which is probably close enough. An

253

NUMERICAL METHODS

alternative would be to use another variable to define an error band and compare it

with the difference between each new estimate and the last; exiting when the
difference is less than the error (this-estimate -last_estimate<error).

fx_sqr: Algorithm

1. Establish a limiton the number of iterations possible in cntr.

Check for negative or zero input.

If true, exit through step 3.

leave radicand in the register to be justified and make our first
estimate.

2. Decrement the limit counter, cntr.

If there is a carry, exit with current estimate and the carry set
through step 3.

If there is no carry, continue.

Test the estimate to see that it fits within sixteen bits.

If not, shift right until it does.

Store the estimate.

Divide the radicand by the estimate.

Add the result to the estimate.

Divide that by two.

Compare last estimate with current estimate.

If is different continue with the beginning of step 2.

Otherwise, go to step 3.

3. Write the result to the output and leave.

fx_sqr: Listing
; *****
; accepts integers
; Remember that the powers follow the powers of two (the root of a double word
; is a word, the root of a word is a byte, the root of a byte is a nibble, etc.).
; new_estimate = (radicand/last_estimate+last_estimate)/2, last-estimate=
new-estimate.

fx_sqr proc uses bx cx dx di si, radicand:dword, root:word

254

THE ELEMENTARY FUNCTIONS

local estimate:word, cntr:byte

mov
sub
mov
mov
o r

js
je
jmp

zero_exit:
or
jne

sigr_exit:

stc
sub
mov

jmp

find_root:
sub

jc

find_root1:
or

je
shr
rcr

jmp

fits:
mov
sub
mov
div
mov

mov
div

byte ptr cntr, 16
bx, bx
ax, word ptr radicand
dx, word ptr radicand [2]
dx, dx
sign_exit
zero_exit
find_root

ax, ax
find_root

ax, ax
dx, ax
root_exit

;to test radicand

;not zero

;no negatives or zeros

;indicate error in the
;operation

byte ptr cntr, 1
root_exit ;will exit with carry

;set and an approximate
;root

dx, dx
fits
dx, 1
ax, 1
find_root1

;must be zero
;some kind of estimate

;cannot have a root
;greater than 16 bits
;for a 32-bit radicand!

word ptr estimate, ax
dx, dx
ax, word ptr radicand [2]
word ptr estimate
bx, ax

;store first estimate of root

;save quotient from division
;of upper word

ax, word ptr radicand
word ptr estimate
dx, bx

;divide lower word
;concatenate quotientsmov

255

NUMERICAL METHODS

add ax, word ptr estimate

adc
shr
rcr

dx, 0
dx, 1
ax, 1

or
jne
cmp

jne
clc

dx, dx
find_root
ax, word ptr estimate
find_root

;(radicand/estimate +
;estimate)/2

;to prevent any modular aliasing

;is the estimate still changing?

;clear the carry to indicate
;success

root_exit:
mov
mov
mov
ret

fx_sqr endp

di, word ptr root
word ptr [di], ax
word ptr [di][2], dx

The next approach is based on the technique taught in school for doing square
roots by hand. This method turns out to be much simpler in binary than in decimal

because of its modulus of 2.8It may not be faster than Newton’s Method, but it’s a
good alternative for those processors without hardware division instructions.

school_sqr: Algorithm

1. Determine that the radicand is positive and not zero.

If so, continue with step 2.

If not, signal the error and exit through step 5.

2. Set bit counter for 16.

Set buffer to hold radicand and allow for shifts.

Clear space for root.

3. Shift buffer left twice.

Shift root left once.

Subtract 2*root+l from root.

If there is an underflow, restore the subtraction by means of
addition and continue with step 4.

Otherwise, increment the root and continue with step 4.

256

THE ELEMENTARY FUNCTIONS

4. Decrement bit counter.

If zero, exit through step 5.

Otherwise, continue with step 3.

5. Write root to output and leave.

school_sqr: Listing
; ******

;school_sqr
;accepts integers
school_sqr proc uses bx cx dx di si, radicand:dword, root:word

local

sub
mov
mov
or

js
je
jmp

zero_exit:
or
jne

sign_exit:

sub

stc

jmp

setup:
mov
mov
mov
sub
mov
mov
mov
mov
mov

estimate:qword, bits:byte

bx, bx
ax, word ptr radicand
dx, word ptr radicand [2]
dx, dx
sign-exit
zero-exit
setup

ax, ax
setup

ax, ax

root_exit

byte ptr bits, 16
word ptr estimate, ax
word ptr estimate [2], dx
ax, ax
word ptr estimate [4], ax
word ptr estimate [6], ax
bx, ax
cx, ax
dx, ax

;notzero

;no negatives or zeros

;indicate error in the
;operation; can't do
;negatives
;zero for fail

;root

;intermediate

findroot:

257

NUMERICAL METHODS

shl word ptr estimate, 1
rcl word ptr estimate[2], 1
rcl word ptr estimate[4], 1
rcl word ptr estimate[6], 1

shl
rcl
rcl
rcl

word ptr estimate, 1
word ptr estimate[2], 1
word ptr estimate[4], 1
word ptr estimate[6], 1

shl
rcl

ax, 1
bx, 1

mov
mov
shl
rcl
add
adc

cx, ax
dx, bx
cx, 1
dx, 1
cx, 1
dx, 0

subtract_root:
sub
sbb
jnc
add
adc

jmp
r_plus_one:

add
adc

continue_loop:
dec
jne
clc

word ptr estimate[4], cx
word ptr estimate[6], dx
r_plus_one
word ptr estimate[4], cx
word ptr estimate[6], dx
continue_loop

ax, 1
bx, 0

byte ptr bits
findroot

root-exit:
mov
mov
mov

di, word ptr root
word ptr [di], ax
word ptr [di][2], bx

ret
school_sqr endp

;double-shift radicand

;shift root

;root*2

;+l

;accumulator-2*root+l

;r+=l

258

THE ELEMENTARY FUNCTIONS

Floating-Point Approximations

All the techniques explored so far in fixed point apply to floating-point
arithmetic as well. Floating-point arithmetic is similar to fixed point except that it

deals with real numbers with far greater range. And because of its extensive use in

scientific and engineering applications, greater emphasis is placed on its ability to
approximate the real world.

This section presents some concepts that can also be used in fixed-point routines,
but they’re most valuable in floating point because of its attention to accuracy. Two

approximations will also be described- a sine function and square root-based on

materials from Software Manual for the Elementary Functions by William J. Cody,
Jr. and William Waite, published by Prentice-Hall, Inc. This small book is full of
valuable information for those writing numerical software. The sine/cosine approxi-

mation uses a minimax polynomial approximation, and the square root uses

Newton’s Method with a much improved initial estimate.

Floating-Point Utilities

The functions in this section use similar techniques to the fixed-point routines;
that is, they use tables or arrays of coefficients and Homer’s rule for evaluating
polynomial approximations to the functions. The floating-point format also has
some new tools and requires some new handling.

Many of the manipulations require argument reduction, which takes the floating
point word apart and puts it back together again in a different fashion. Some new

functions will be presented here for doing that. One is frxp, which, when passed a
float (x) returns its exponent (n) and the float (f) constrained to a value between .5
 f < 1, where f* 2n = x. Because it is the power to which the fixed-point mantissa must

be raised to represent that number, the exponent is useful in finding the square root

of a number, as you’ll see in flsqr.

frxp: Algorithm

1. Point to the variable for the exponent.

2. Test the number to see if it's zero.

If so, return zero as both the exponent and the mantissa.

259

NUMERICAL METHODS

If not, continue with step 3.

3. Discard the sign bit and subtract 126D to get the exponent, write it
to exptr, and replace the exponent in the number with 126D.

4. Realign the float and write it to fraction.

5. Return.

frxp: Listing
; *****

;Frxp performs an operation similar to the C function frexp. Used
;for floating-point math routines.
;Returns the exponent-bias of a floating-point number.
;does not convert to floating point first, but expects a single
;precision number on the stack.

;
;
frxp proc

pushf
cld
mov
mov
mov
sub
or
o r

je
shl
sub

mov
mov
shr
mov
mov
lea
mov

rep movsw
frxp_exit:

popf
ret

make_it_zero
sub

uses di, float:qword, fraction:word, exptr:word

di, word ptr exptr
ax, word ptr float[4]
dx, word ptr float[2]
cx, cx
cx, ax
cx, dx
make_it_zero
ax, 1
ah, 7eh

;assign pointer to exponent
;get upper word of float

;the sign means zero
;subtract bias to place
;float .5<=x<l

byte ptr [di],ah
ah, 7eh
ax, 1
word ptr float[4], ax
di, word ptr fraction
si, word ptr float
cx, 4

ax, ax

;replace sign

;write out new float

260

THE ELEMENTARY FUNCTIONS

mov byte ptr [di], al
mov di, word ptr fraction

rep stosw

jmp frxp_exit

frxp endp

Ldxp performs essentially the inverse of frxp. This routine takes a floating-point
number as an argument and replaces the exponent, that is, it raises the mantissa to a

new power. It computes input_float * 2new-exponent Its operation is simple:

Idxp: Algorithm

1. Test the input floating point argument for zero.

If it's zero, exit with zero as the result through step 6.

2. Save the sign and replace the current exponent with 126D.

3. Add the new exponent and test for overflow.

If there is an overflow, exit through the overflow error exit, step 7.

4. Shift the sign back into place along with the exponent.

5. Write the new float to the output and leave.

6. Zero error exit; write zero out.

7. Overflow-error exit; write infinite out.

Idxp: Listing
; *****

;Ldxp is similar to ldexp in C, it is used for math functions.
;Takes from the stack passed with it an input float (extended) and returns a
;pointer to a value to the power of two.

1dxp proc uses di, float:qword, power:word, exp:byte

mov ax, word ptr float [4]
mov dx, word ptr float [2]

;get upper word of float
;extended bits are not
;checked

sub cx, cx

261

NUMERICAL METHODS

or
or

je
shl
rcl
mov
add

jc

shr
rcr
mov

ldxp_exit:
mov
mov
lea

rep movsw
ret

ld_overflow:
mov
sub
mov
mov

j w

return_zero:
sub
mov
mov

rep stosw

jmp
ldxp endp

cx, ax
cx, dx
return_zero
ax, 1
cl, 1
ah, 7eh
ah, byte ptr exp
ld_overflow

cl, 1
word ptr ax, 1
word ptr float[4], ax

cx, 4
di, word ptr power
si, word ptr float

word ptr float[4], 7f80h
ax, ax
word ptr float[2], ax
word ptr float[0], ax
ldxp_exit

ax, ax
di, word ptr power
cx, 4

ldxp_exit

;save the sign

;add new exponent

;return the sign
;position exponent

;write the result out

The next three functions are all related. The first, flr, implements the C function

floor() and returns the largest floating-point mathematical integer not greater than

the input.

262

THE ELEMENTARY FUNCTIONS

flr: Algorithm

1. Get the float, extract the exponent, and subtract 126D.

If there is an underflow, the number must be less than .5; exit
through step 5.

2. Subtract the reduced exponent from 40D. This the mantissa portion
plus extendedprecision.

If the result is less than the reduced exponent, we already have the
floor (it's all integer); exit through step 3.

Otherwise, save the number of shifts in shift.

Shift the float right, shifting off the fraction bits, until the
exponent is exhausted. What remains are integer bits.

3. Get the exponent back from shift.

Shift the float back into its proper position, this time without the
fractionbits. This is the floor of the argument.

4. Leave, writing the result to the output.

5. Exit with a result of zero.

flr: Listing
; ******

;floor greatest integer less than or equal to x
;single precision

flr proc uses bx dx di si, fp:qword, rptr:word

local shift :byte

mov
mov

di, word ptr rptr
bx, word ptr fp[0]

mov
mov
mov
and

ax, word ptr fp[2]
dx, word ptr fp[4]
cx, dx
cx, 7f80h

shl
mov
sub
sub

cx, 1
cl, ch
ch, ch
cl, 7eh

;get float with extended
;precision

;get rid of sign and
;mantissa portion

;subtract bias (-1)from
;exponent

263

NUMERICAL METHODS

jbe
mov
sub

jb

mov
mov
sub

fix:
shr

rcr
rcr
loop

mov
re_position:

shl
rcl
rcl
loop

already-floor:
mov
mov
mov
sub
mov

flr_exit:
ret

leave_with_one:
lea
mov
mov

rep movsw

jmp

leave_with_zero:
sub
mov

leave_with_zero
ch, 40
ch, cl

already_floor

byte ptr shift, ch
cl, ch
ch, ch

dx, 1

ax, 1
bx, 1
fix

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
reposition

word ptr [di][4], dx
word ptr [di][2], ax
word ptr [di][0], bx
ax, ax
wordptr [di][6], ax

si, word ptr one
di, word ptr rptr
cx, 4

flr_exit

ax, ax
cx, 4

;is it greater than the
;mantissa portion?
;there is no fractional
;part

;shift the number the
;number of times indicated
;in the exponent

;position as fixed point

;realign float

;write to output

;floating-point one

-floating-point zero

264

THE ELEMENTARY FUNCTIONS

mov di, word ptr rptr

rep stosw

jmp short flr_exit

flr endp

The complement to flr is flceil. This routine is similar to the C function ceil() that
returns the smallest floating-point mathematical integer not less than the input

argument.

flceil: Algorithm

1. Get the float and check for zero.

If the input argument is zero, exit through step 6.

If the input is not zero, continue.

Extract the exponent and subtract 126D. If there is anunderflow,
then the number must be less than .5; exit through step 5.

2. Subtract the reduced exponent from 40D. This is the mantissa portion
plus extended precision.

If the result is less than the reduced exponent, we already have the
ceiling (it's all integer); exit through step 3.

Otherwise, save the number of shifts in shift.

Shift the float right, shifting the fractionbits into the MSW of the
floating-point data type until the exponent is exhausted. What
remains are integer bits.

Test the MSW of the floating-point data type.

If it's zero, go to step 3.

If it's anything else, round the integer portion up and
continue with step 3.

3. Get the exponent back from shift.

Shift the float back into its proper position, this time without the
fraction bits. This is the floor of the argument.

4. Leave, writing the result to the output.

5. Exit with a result of one.

6. Exit with a result of zero.

265

NUMERICAL METHODS

flceil: Listing
; *****

;flceil least integer greater than or equal to x
;single precision

;
flceil proc

local
uses bx dx di si, fp:qword, rptr:word
shift:byte

mov
mov

mov
mov
sub
or
or
or

je
mov
and

shl
mov
sub
sub

di, word ptr rptr
bx, word ptr fp[0]

ax, word ptr fp[2]
dx, word ptr fp[4]
cx, cx
cx, bx
cx, ax
cx, dx
leave_with_zero
cx, dx
cx, 7f80h

cx, 1
cl, ch
ch, ch
cl, 7eh

j b
mov
sub

jb

mov
mov
sub

fix:
shr

leave-with-one
ch, 40
ch, cl

already_ceil

byte ptr shift, ch
cl, ch
ch, ch

dx, 1

rcr ax, 1
rcr bx, 1
rcr word ptr [di] [6], 1

;get float with extended
;precision

;this is a zero

;get rid of sign and
;mantissa portion

;subtract bias (-1) from
;exponent

;is it greater than the
;mantissa portion?
;there is no fractional
;part

;shift the number the
;number of times indicated
;in the exponent

;put guard digits in MSW of
;data type

266

THE ELEMENTARY FUNCTIONS

loop fix ;position as fixed point

cmp word ptr [di][6],0h

je not_quite_enough
add bx, 1 ;roundup
adc ax, 0
adc dx, 0

not_quite_enough:
mov

reposition:
shl
rcl
rcl
loop

already_ceil:
mov
mov
mov
sub
mov

ceil-exit:
ret

leave-with-one:
lea
mov
mov

rep movsw

jmp

leave_with_zero:
sub
mov
mov

rep stosw

jmp

flceil endp

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
re_position

word ptr [di][4], dx
word ptr [di][2], ax
word ptr [di][0], bx
ax, ax
word ptr [di][6], ax

si, word ptr one
di, word ptr rptr
cx, 4

ceil-exit

ax, ax
cx, 4
di, word ptr rptr

short ceil_exit

;realign float

;write to output

;a floating-point one

;a floating-point zero

267

NUMERICAL METHODS

Finally, intrnd rounds the input argument to its closest integer. As used by Cody

and Waite,9 this function returns an integer representing the mathematical integer
closest to the input float. It employs no rounding logic; if the mantissa portion of the
input float is greater than .5, the next higher whole integer is returned. In this

implementation, however, it returns a floating-point number representing the math-
ematical integer closest to the input. It was written that way to accommodate other

routines in the floating-point package.

intrnd: Algorithm

1. Subtract the value returned by flr from the input and take the
absolute value of the result.

2. Compare the result with .5.

If it's greater, get the flceil of the input.

If it's equal to or less than, go to step 3.

3. Write the result to the output and return.

intrnd: Listing
; ******
;intrnd is useful for the transcendental functions
;it rounds to the nearest integer according to the logic
;intrnd(x) =if((x-floor(x)) <.5) floor(x);

; else ceil(x);
intrnd proc uses bx dx di si, fp:qword, rptr:word

local temp0:qword, temp1:qword,

pushf
cld
sub
mov
lea

ax, ax
cx, 4
di, word ptr temp0

rep stosw
mov cx, 4
lea di, word ptr temp1

rep stosw
mov di, word ptr rptr

;prepare intermediate
;registers

;clear the output

268

THE ELEMENTARY FUNCTIONS

mov

rep stosw

invoke
invoke
and
invoke

cmp
jne

do_ceil:
invoke

intrnd_exit:
mov
mov
mov
mov
mov

popf
ret

intmd endp

cx, 4

flr, fp, addr temp0
flsub, fp, tempo, addr templ
word ptr temp1[4], 7fffh
flcomp, temp1, one-half

ax, 1
intrnd_exit

flceil, p, addr temp0

ax, word ptr temp0[2]
dx, word ptr temp0[4]
di, word ptr rptr
word ptr [di][2], ax
word ptr [di][4], dx

;cheap fabs

;greater than .5?

;get the ceiling of the
;input

Dealing with real numbers in a finite machine means we must deal with

limitations. Two such limitations are Ymax and Eps. Ymax is the maximum allowable

argument for the function that will produce accurate results with minimum error, and
Eps is the smallest allowable argument. The values for these are chosen based on the

size of the data types and the functions being approximated. They’re important in the
calculation of a number of elementary functions, notably flsin (discussed later).

Square Roots

The first function presented here, flsqr, computes the square roots of floating-

point numbers. Simply, this function finds the square root of the mantissa portion of

the float and then the root of 2exponent. It then reconstructs the float and returns.
To begin with, the function frxp is called to constrain the radicand to a small,

relatively linear region, .5 x < 1 (this represents an exponent of -1). Within this

269

NUMERICAL METHODS

region, all square roots adhere to the relationship, nput_raidcand < root < 1,

precisely, all roots must exist from about .7071067 to 1.0. This makes it much easier
to come up with an initial estimate that is very close. Just taking the mid-range value
for the first estimate would improve it considerably. Recall that Newton’s Method

delivers about about twice the number of accurate bits for each iteration; that is, if
the initial estimate is accurate to x bits, after the first iteration, will have about 2*x +1

accurate bits. But even this can require an unknown number of iterations to converge,

so the estimate must be improved.

The most popular solution is the formula for a straight line, y = m*x+b.
Calculating the values for m and b that provide the best fit to the square-root curve

yields slightly different values depending on the approach you take. Cody and Waite
use the values .59016 for m and .41731 for b, which will always produce an initial
estimate that’s less than one percent in error. Solving for y in the equation for a
straight line yields the first estimate, and only two passes through Newton’s Method
produces a result for a 24-bit mantissa.

Finding the root of 2exponent is simple if the exponent is even: divide by 2, just as

with logarithms. If the exponent is odd, however, it cannot be divided evenly by two,
so it must first be incremented by one. To compensate for this adjustment, we divide

the root of the input mantissa by sqrt(2). In other words, the exponent represents log,
of the input number; to find its root, simply divide by two. If the exponent must be

incremented before the division, the root of that additional power must be removed

from the mantissa to keep the result correct.
It’s then a simple matter of reassembling the float using the new mantissa and

exponent.

Flsqr: Algorithm

1. Test input to see whether it is greater than zero.

If it's equal to zero, or less, exit with error through step 7.

2. Use frxp to get the exponent from the input float, and to set its

exponent to zero, constraining it to .5 1. Multiply this
number, f, by .59016 and add .41731 for our first approximation.

3. Make two passes through r=(x/r+r)/2.

270

4.

5.

6.

7.

THE ELEMENTARY FUNCTIONS

Inspect the exponent, n, derived earlier with frxp.

If it's odd, multiply our best estimate from Heron's formula by the
square root of .5 and increment n by 1.

Even or odd, divide n by two.

Add n back into the exponent of the float.

Write the root to the output.

Leave.

Flsqr: Listing
; ******

; flsqr

flsqr proc uses bx cx dx si di, fp0:qword, fp1:word

local

pushf
cld

rep

lea
sub
mov
stosw

invoke flcomp, fp0, zero ;error, entry value too

cmp ax, 1

je ok
cmp ax, 0

je got-result
mov di, word ptr fpl
sub ax, ax
mov cx, 4

rep stosw
not
and
mov

jmp
got-result:

ax
ax, 7f80h
word ptr result[4], ax
flsqr_exit

result:qword, temp0:qword, temp1:qword, exp:byte,
xn:qword, f:qword, y0:qword,m:byte

di, word ptr xn
ax, ax
cx, 4

;large

;make it plus infinity

271

NUMERICAL METHODS

mov

rep

sub
mov
stosw

jmp

ok:
invoke

invoke
invoke

heron:
invoke
invoke
mov
shl
sub
shr
mov

invoke fldiv, f, temp0, addr temp1
invoke fladd, temp0, temp1, addr temp0
mov ax, word ptr temp0[4]
shl ax, 1
sub ah, 1
shr ax, 1
mov word ptr y0[4], ax
mov ax, word ptr temp0[2]

mov
mov
mov
sub
mov

chk_n:
mov
mov
sar
jnc

di, word ptr fpl
ax, ax
cx, 4

flsqr_exit

frxp, fp0, addr f, addr exp

flmul, f, y0b, addr temp0
fladd, temp0, y0a, addr y0

fldiv, f, y0, addr temp0
fladd, y0, temp0, addr temp0
ax, word ptr temp0[4]
ax, 1
ah, 1
ax, 1
word ptr temp0[4], ax

word ptr y0[2], ax
ax, word ptr temp0
word ptr y0, ax
ax, ax
word ptr y0[6], ax

al, byte ptr exp
cl, al
al, 1
evn

;get exponent

;two passes through
;(x/r+r)/2 is all we need

;should always be safe

;subtracts one half
;by decrementing the
;exponent one

;should always be safe

;subtracts one half
;by decrementing the
;exponent one

;arithmetic shift, please

272

THE ELEMENTARY FUNCTIONS

odd:
invoke flmul, y0, sqrt_half, addr y0 ;adjustment for uneven

;exponent

mov al, cl
inc al ;bump exponent on odd
sar al, 1 ;divide by two

evn:
mov cl, al ;n/2->m

power:
mov
shl
add

write_result:
shr
mov
lea
mov
mov

rep movsw

ax, word ptr y0[4]
ax, 1
ah, cl

ax, 1
word ptr y0[4], ax
si, word ptr y0
di, word ptr fpl
cx, 4

flsqr_exit:

popf
ret

flsqr endp

Sines and Cosines

The final routine implements the sine function using a minimax polynomial

approximation. A minimax approximation seeks to minimize the maximum error

instead of the average square of the error, which can allow isolated error spikes. The

minimax method keeps the extreme errors low but can result in a higher average
square error. Ultimately, what this means is that the function is resolved using a

power series whose coefficients have been specially derived to keep the maximum
error to a minimum value.

This routine defines the input argument as some integer times π plus a fraction

equal to or less than π/2. It expects to reduce the argument to the fraction f, by
removing any multiplies of π It then approximates the sine (f) based on the

273

NUMERICAL METHODS

evaluation of a small interval symmetric about the origin, f, and puts the number

back together as our result. It solves for the cosine by adding π /2 to the argument and
proceeds as with the sine (see Figure 6-3).

In this function we again encounter Ymax and Eps. These limitations depend on
the precision available to the arithmetic in the particular machine and help guarantee
the accuracy of your results. According to Cody and Waite, Ymax should be no
greater than π*2(t/2) and Eps, no less than 2(-t/2), where t is the number of bits available
to present the significand9. In this example, t is 11 bits, but that doesn’t take the

extended precision into account.

The algorithm is a fairly straightforward implementation. If the input argument

is in range, this function initially reduced it to xn initially by multiplying by l/π
(floating-point multiplication is generally faster than division) and calling intrnd to
get the closest integer. Multiplying xn by π and subtracting the result from the
absolute value of the input argument extracts a fraction, f, which is the actual angle
to be evaluated with Cody and Waite’s minimax approximation.

The polynomial R(g) is evaluated using a table of precomputed coefficients and

Horner’s rule, except that in this implementation, the usual loop (see Polyeval in the
last section) was unrolled.

R(g) = (((r4*g+r3)*g+r2)*g+rl)*g

where g = f*f. The values r4 through r1 are coefficients stored in the table sincos.

After the evaluation, R(g) is multiplied by f and f is added to it. The only thing
left to do is adjust the sign of the result according to the quadrant. The pseudocode
for this implementation of flsin is as follows.

flsin: Algorithm

1. See that the input argument is no greater than Ymax.

If it is, exit with error through step 8.

2. Take the absolute value of the input argument.

Multiply by 1/π to remove multiple components of π
Use intrnd to round to the closest integer, xn.

274

THE ELEMENTARY FUNCTIONS

Test xn to see whether it's odd or even. If it's odd, there is a sign
reversal; complement sign.

3. Reduce the argument to f through (|x|-xn*c1)-xn*c2 (in other words,
subtract the rounded value xn multiplied by p from the input argu-
ment).

4. Compare f with Eps.

If it is less, we have our result, exit through step 8.

5. Square f, (f*f->g) and evaluate r(g)

6. Multiply f by R(g), then add f.

7. Correct for sign; if sign is set, negate result.

8. Write the result to the output and leave.

Flsin: Listing

 ; *****

.data
sincos qword

.code

404900000000h, 3a7daa20968bh, 0be2aaaa8fdbeh, 3c088739cb85h,
0b94fb2227f1ah, 362e9c5a91d8h

;
; ******

; flsin

flsin proc uses bx cx dx si di, fp0:qword, fp1:word, sign:byte

local result:qword, temp0:qword, temp1:qword,
y:qword, u:qword

pushf
cld

invoke flcomp, fp0, ymax ;error, entry value too
;large

cmp
jl

ax, 1
absx

error-exit:

275

NUMERICAL METHODS

lea di, word ptr result

rep

sub
mov
stosw

jmp

ax, ax
cx, 4

writeout

absx :
mov ax, word ptr fp0
or ax, ax

[4]

jns
and
mov

deconstruct_exponent
ax, 7fffh
word ptr fp0[4], ax

deconstruct_exponent:
invoke

invoke

mov

mov
mov
and

shl
mov
sub
sub

exponent

js
inc
or

je
extract_int:

shl
rcl
rcl
loop
test

je
not

not_odd:

;make absolute

flmul, fp0, one_over_pi, addr result
;(x/pi)

intrnd, result, addr temp0
;intrnd(x/pi)

ax, word ptr temp0[2]

dx, word ptr temp0[4]
cx, dx
cx, 7f80h

cx, 1
cl, ch
ch, ch
cl, 7fh

;determine if integer
;has odd or even
;number of bits

;get rid of sign and
;mantissa portion

;subtract bias (-1) from

not-odd
cl
cl, cl
not-odd

ax, 1
dx, 1
word ptr bx, 1
extract_int
dh, 1
not_odd
byte ptr sign

;position as fixed point

276

THE ELEMENTARY FUNCTIONS

xpi:

invoke

invoke

invoke

invoke

chk_eps:
invoke

rep

invoke
or
jns
lea
sub
mov
stosw

jmp

r_g

invoke

invoke
invoke

invoke flmul, u, result, addr result
invoke fladd, sincos[8*3], result, addr result

invoke
invoke

invoke

;extended-precision
;multiply by pi

flmul, sincos[8*0], temp0, addr result
;intrnd(x/pi)*c1

flsub, fp0, result, addr result
;|x|-intrnd(x/pi)

flmul, temp0, sincos[8*1], addr temp1
;intrnd(x/pi)*c2

flsub, result, temp1, addr y

;Y

flabs, y, addr temp0

flcomp, temp0, eps
ax, ax

;is the argument less
;than eps?

r_g
di, word ptr result
ax, ax
cx, 4

writeout

flmul, y, y, addr u
;evaluate r(g)

;((r4*g+r3)*g+r2)*g+rl)*g
flmul, u, sincos[8*5], addr result
fladd, sincos[8*4], result, addr result

flmul, u, result, addr result
fladd, sincos[8*2], result, addr result

flmul, u, result, addr result

277

NUMERICAL METHODS

;result== z

fxr:
invoke flmul, result, y, addr result

invoke fladd, result, y, addr result
:r*r+f

handle_sign:

cmp
jne
xor

writeout:

byte ptr sign, -1
writeout
word ptr result[4], 8000h

;result * sign

mov di, word ptr fpl
lea si, word ptr result
m o v cx, 4

rep movsw

flsin_exit:

popf
ret

flsin endp

Deriving the elementary functions is both a science and an art. The techniques
are given in books, but the art comes from experience with the arithmetic itself.

Combining knowledge of how it behaves with science produces the best results.

278

THE ELEMENTARY FUNCTIONS

1 Horden, Ira. An FFT Algorithm For MCS-96 Products Including Supporting

Routines and Examples. Mt. Prospect, IL:Intel Corp., 1991, AP-275.

2 Feynman, Richard P. The Feynman Lectures On Physics. Reading, MA:
Addison-Wesley Publishing Co., 1963, Volume I, Chapter 22.

3 Knuth, D. E. Fundamental Algorithms. Reading, MA: Addison-Wesley Pub-

lishing Co., 1973, Page 26, Exercise 28.

4 Jarvis, Pitts. Implementing CORDIC Algorithms. Dr. Dobb’s Journal, October

1990, Pages 152-156.

5 Nielsen, Kaj L. Modern Trigonometry. New York, NY: Barnes & Noble, 1966,

Page 169

6 Acton, Forman S. Numerical Methods That Usually Work. Washington D.C.:

Mathematical Association of America, 1990.

Hamming, R. W. Numerical Methods for Scientists and Engineers. New York,
NY: Dover Publications, 1973.

7 Sedgewick, Robert. Algorithms in C. New York, NY: Addison-Welsley Publish-

ing Co., 1990, Page 525.

8 Crenshaw, Jack W. Square Roots are Simple? Embedded Systems Program-

ming, Nov. 1991, 4/11, Pages 30-52.

9 Cody, William J. and William Waite. Software Manual for the Elementary

Functions. Englewood, NJ: Prentice-Hall, Inc., 1980.

279

280

APPENDIX A

A Pseudo-Random
Number Generator

To test the floating-point routines in this book, I needed something that would

generate an unpredictable and fairly uniform series of numbers. These routines are
complex enough that a forgotten carry, incorrect two’s complement, or occasional

overflow could easily hide from an ordinary “peek and poke” test. Even with a
random number generator, it took many hours and tests with a number of data ranges
to find some of the ugliest bugs.

Of course, the standard C library has a random number generator, rand(), but the
code for it was unavailable and there were no guarantees as to how it worked. Some
random number generators have such a high serial correlation (sequential depen-

dence) that if a sequence of numbers was mapped to x/y locations on a monitor,
patterns would appear. With others, users were warned that although each number
generated was guaranteed to be random individually, no sequence was guaranteed

to be random.
Generating random numbers isn’t as easy as it might sound. Random numbers

and arbitrary numbers are very different; if you asked a friend for a random number,
you would really receive an arbitrarily chosen number. To be truly random, a number
must have an equal chance of being chosen out of some known range and precision.

Games of dice, cards, and the lottery all depend on a sequence of random

numbers, and most use a means other than computers to generate them. People don’t

trust machines to generate random numbers because machines can become predict-
able and repetitive. But with the kind of simulations and testing needed to test the

floating-point routines in this book, drawing each number from a pot would take far

too long. Some other method had to be devised.

281

NUMERICAL METHODS

One of the first techniques for generating random numbers was originated by
John Von Neumann and called the middle-square method. 1 It consisted of taking the
seed, or previous random number, squaring it, and taking the middle digits.

Unfortunately, this method had serious disadvantages that prevented it from being
widely used. It didn’t take much for it to get into a rut; if a zero found its way into

these middle digits, for instance, there it would stay.

A number of pseudo-random number generators are in general use, though not

all of them are well tested and not all of them are good. A good random number
generator is difficult to define exactly. The one quality that these generators must
possess is randomness. An instance of this is given in the chi-square test, presented

later. Given a uniformly distributed, pseudo-random sequence of a certain length, n,
of numbers, all between 0 and some limit, l, divided among l bins, an equal number
of numbers in each bin would be highly suspicious.

The most popular pseudo-random number generator in use, and the one chosen

for this book, is the multiplicative congruential method. This technique was first

proposed by D. H. Lehmer1 in 1949. It is based on the formula

Xn+l = (aXn + c) mod m

Each new number is produced from a number, Xn, which is either the seed or the
previous number, through multiplication and modular division. It requires a multi-

plier, a, that must be equal to or greater than zero and less than the modulus, an

additive or increment, c, that must also be equal to or greater than zero and less than
the modulus, and a modulus, m, that is greater than zero. Simply supplying numbers

for these variables won’t result in a good random number generator; the two “bad”
generators described earlier were linear congruential generators.

Here are a few guidelines, summarized from the materials of Donald Knuth:

l The seed, Xn, may be arbitrary and may, in fact, be the previously generated
number in a pseudo-random sequence. Irandom, the pseudo-random number
generator created for this book expects a double as the seed; in the demonstration

routine spectral.c, the DOS timer tick is used.

282

A PSEUDO-RANDOM NUMBER GENERATOR

The modulus, m, should be at least 230. Very often it is the word size (or a multiple
thereof) of the computer, making division and extraction of the remainder trivial.
The subroutine that actually produces the random number uses a modulus of 232.
This means that after the seed is multiplied by a, the least significant doubleword

is the new random number. The result would be the same if the product of a*X
were divided by l00000000H.

If you intend to run the random number generator on a binary computer, the
multiplier, a, should be chosen; a mod 8=5. If the target machine is decimal, then

a mod 200 = 21. The multiplier and increment determine the period, or the length

of the sequence before it starts again, and potency, or randomness, of the random
number generator. The multiplier, a, in irandom (presented later in this chapter)
is 69069D, which is congruent to 5 mod 8.

The multiplier should be between .0lm and .99m and should not involve a regular
pattern. The multiplier in irand is actually less than .0lm, but so was the
multiplier in the original psuedo-random number generator proposed by Lehmer.

In truth, it was chosen partly because of its size; the arithmetic was easier and
faster. In tests described later in this appendix, this multiplier performed as well
as those of two other generators.

If you have a good multiplier, the value of c, the increment, is not important. It

may be equal to one or even a. In irandom, c = 0.

Beware of the least significant digits. They are not very random and should not

be used for decisions. Avoid methods of scaling random numbers that involve
modular operations, such as those found in the Microsoft C getrandom macro; the

modular function will return the least random part of the number. Instead, treat
the value returned by the random number generator as a fraction and use it to scale
a user-determined maximum.

The technique chosen for the random number generator here is a combination of

linear congruential and shuffling. In this sense, shuffling means that the random
numbers are somehow moved around, or shuffled, before they’re generated. This
breaks up any serial correlation the sequence might have and provides a much longer,
possibly infinite, period.

283

NUMERICAL METHODS

The pseudo-random number generator here comprises three routines. The first
is an initialization, rinit, in which an array of 256 doublewords is filled with numbers
created using the routine congruent and a seed value.

The actual generation is done by irand. First, this routine creates a new random
number based on the current seed, which is nothing more than the last number
generated. It then uses the lower byte of the upper word of this new random number

as an index into the array of 256 numbers created at initialization. A new random
number is created to replace the one selected and the routine exits, returning the

number from the array. The initialization routine, rinit, must be called before
irandom if the user wishes to select their own seeds; otherwise, the value 1 is chosen.

Pseudocode for each of the routines is as follows

rinit: Algorithm
1. Point to the double word array in RAM. This will be the initial list of

random numbers.

2. Place the input seed in the seed variable. In these routines, the timer

tick is used as the seed.

3. Call the routine congruent 256 times to fill the array.

4. Exit.

; ******

;rinit - initializes random number generator based upon input seed

.data

a dword 69069

IMAX equ 32767

rantop word IMAX

ran1 dword 256 dup (0)

xsubi dword lh ;global iterative seed for

;random number generator, change

;this value to change default

284

A PSEUDO-RANDOM NUMBER GENERATOR

init byte Oh

.code

rinit proc uses bx cx dx si di, seed:dword

;global variable signaling

;whether the generator has been

;initialized or not

lea di, word ptr ran1

mov

mov

mov

mov

ax, word ptr seed[2]

word ptr xsubi[2], ax

ax, word ptr seed
word ptr xsubi, ax

mov cx, 256

fill_array:

invoke

mov

mov
add

loop

congruent

word ptr [di], ax

word ptr [di][2], dx
di, 4

fill_array

rinit_exit:

sub

not

mov

ret

ax, ax

ax

byte ptr init, al

rinit endp

;put in seed variable

;get seed

congruent: Algorithm

1. Move the lower word of the seed, xsubi, into AX and multiply by the lower
word of the multiplier, a. This will produce a result in DX:AX, with the
upperword of the product in DX. (This routine performs a multiple-
precisionmultiply. This is a standard polynomial multiply; it is a bit
simpler and more direct because the multiplier is known.)

2. Save the lower word of this product in BX and the upper word in CX.

285

NUMERICAL METHODS

3. Place the upper word of the seed, xsubi, in AX and multiply by the lower

word of the multiplier, a.

4. Add the lower word of the product of this last multiplication to the upper

word of the product from the first multiplication, and propagate any

carries.

5. Add to AX the lower word of xsubi, and to DX the upper word of xsubi.

6.

7.

8.

The multiplier used in this routine is 69069D, or 10dcdH. The

multiplications performed prior to this step all involved the lower word,

0dcdH. To multiply by 10000H, you need only shift the multiplicand 16

places to the left and add it to the previous subproduct.

Replace DX with BX, the LSW of the multiple-precision product. The MSW

is discarded because it is purely overflow from any carries that have

propagated forward. Instead, the lesser words are used. They might be

regarded as the fractional extension of any integer in the MSW.

Write BX to the LSW of the seed and AX to the MSW.

Return.

; ******

;congruent -performs simple congruential algorithm

congruent proc uses bx cx

mov ax, word ptr xsubi

mul word ptr a

mov bx, ax

mov cx, dx
mov ax, word ptr xsubi[2]

;a*seed (mod2ˆ32)

;lower word of result

;upper word

mul

add

adc

add

adc

mov
mov

word ptr a

ax, cx

dx, 0

ax, word ptr xsubi

dx, word ptr xsubi [2]

dx, bx
word ptr xsubi, bx

;a multiplication by one is just

;an add, right?

286

A PSEUDO-RANDOM NUMBER GENERATOR

word ptr xsubi [2], axmov

ret

congruent endp

irandom: Algorithm

1. Point to the array of random numbers.

2. Call congruent for a new number based upon the last seed.

3. Use the lower byte of the MSW of that number as an index into that array.

4. Get a new random number.

5. Replace the previously selected number with this new number.

6. Replace the seed with the previously selected number.

7. Scale the random number with rantop, a variable defining the maximum

random number output by the routine.

;
; ******

;irandom- generates random floats using the linear congruential method

irandom proc uses bx cx dx si di

lea si, word ptr ran1
mov al, byte ptr init

or al, al

jne already_initialized

invoke rinit, xsubi

already_initialized:

invoke congruent

and ax, 0ffh

shl ax, 1

shl ax, 1

add si, ax

mov di, si

invoke congruent

mov bx, word ptr [si]

;check for initialization

;default to 1

;get a random number

;every fourth byte, right?

;multiply by four

;point to number in array

;so we can put one there too

287

NUMERICAL METHODS

mov cx, word ptr [si][2]

mov word ptr [di], ax
mov word ptr [di] [2], dx

mov word ptr xsubi, bx
mov word ptr xsubi[2], cx

;get number from array

;replace it with another

;seed for next random

mov

mul

mov

ret

ax, bx

word ptr rantop

ax, dx

;scale output by rantop, the

;maximum size of the

;random number

;if rantop were made 0ffffH,

;the value could be used

;directly as a fraction

irandom endp

The danger with a pseudo-random number generator is that it will look quite

acceptable on paper but may fail to produce good numbers. Spectra1.c provides two
ways to test irandom or any pseudo-random number generator. One is quite simple,
allowing examination of the output in graphic format so that the numbers produced

by irandom can be checked visually for any patterns or concentrations. Any serial
correlations that might arise can be detected using this method, but it is no proof of
k-space, or multidimensional, randomness.

The other test is the traditional Chi-square statistic. The output of this formula

can give a probabilistic indication as to whether your random number generator is

truly random. The actual formula is stated:

v= (Y s - n p S)
2 / n p S

1 k

but for the purposes of this algorithm is stated:

v= l/n (yS
2/ps)-n

288

A PSEUDO-RANDOM NUMBER GENERATOR

This formula merely evaluates a sequence and produces a value indicating how
much the sequence diverged from a probable or expected distribution.

Say you generate 1,000 numbers, a, all of them less than 100, b. You then divide
a among 100 bins, c, based on the value of the number; in other words, a random

number of 55 would go into bin 55, and a number such as 32 would go in bin 32. You
would probably expect 10 numbers in each bin. Of course, a random number
generator will seldom have an absolutely even distribution; it wouldn’t be random

if it did.
In fact, this statistic is only an indicator and can vary from sampling to sampling

on the same generator. Tables can be used to interpret the numbers output by this

formula. A good rule of thumb is that the statistic should be close, but not too close,

to the number of bins-probably within 2* (b) . 2

This statistic can vary. While you could roll 10 sevens in a row, it simply won’t
happen very often. A statistic that varies widely from 2* (b), consistently produces

the same value, or is extremely close to b might be suspect. I tested Irandom —along
with rand(), a “portable” pseudo-random number generator written in C and a third-
party routine found little difference in this statistic. It always remained relatively
close to b, only occasionally straying outside 2* (b).

Both the visual and the Chi-square test are incorporated into a program called
spectral.c (no relation to Knuth’s spectral test; it is so called merely because of its

visual aspect). The program is simple: Pairs of random numbers are scaled and used
as x and y coordinates for pixels on a graphics screen; 10,000 pixels are generated
this way. Serial correlations can show up as a sawtooth pattern or other concentra-
tions in the display. Otherwise, the display should show a fairly uniform array of

white dots similar to a starry night.

After painting the screen, program retrieves the seed to generate a sequence of
numbers for the Chi-square statistic. The result is then displayed.

spectral: Algorithm
1. Prepare the screen, turn the cursor off, put the video in EGA graphics

mode, and retrieve a structure containing the current video configura-
tion.

289

NUMERICAL METHODS

2. a) Use the timer tick as a seed and generate 20,000 pseudo-random numbers,

using pairs as x/y locations on the graphics screen to turn pixels on.

b) Use the same seed to generate the sequence for Chi-square analysis;
output the result to the screen.

c) Print a message asking for a keystroke to continue, "q" to quit.

3. Return the screen to its previous state and exit to DOS.

#include<conio.h>

#include<stdio.h>

#include<graph.h>

#include<stdlib.h>

#include<time.h>

short modes[] = { _TEXTBW40, _TBXTC40, _TEXTBW80,
_TBXTC80, _MRBS4COLOR,

_MRESNOCOLOR,

_HRESBW, _TEXTMONO, _HERCMONO,

_MRES16COLOR, _HRESlGCOLOR,

_ERESNOCOLOR,

_ERESCOLOR, _VRES2COLOR,

_VRES16COLOR,

_MRES256COLOR, _ORESCOLOR

};

extern int irandom (void);
extern void rinit (int);

extern uraninit (long);

extern double urand (void);

/*this routine scales a random number to a maximum without using a modular

operation*/

int get random (int max)

unsigned long a, b;

a=irandom();

b = max*a;

return(b/32768);

290

A PSEUDO-RANDOM NUMBER GENERATOR

void main ()

short j, ch, x, Y, row, num = sizeof(modes) /

size of (modes[0]);

unsigned int i, e;

long g, c:
double rnum;

double result;

int n = 20000;

int r = 100;

insigned int f[l000];

unsigned int a, b, d;

int seed;

float chi;

float pi=22.0/7.0;

struct videoconfig vc;

_displaycursor(_GCURSOROFF);

_setvideomode(_ERESNOCOLOR);

_getvideoconfig(&vc); /*get the video configuration*/

/*set up screen*/

/*EGA mode; change this

if you have something

else. The table is above*/

do{

do{
seed=(unsigned)time(NULL);

rinit(seed);

/*use the timer tick as the

seed*/

_clearscreen(_GCLEARSCREEN);

for(i=0;i<l0000;i++) { /*draw a starry

night on the screen*/

x=getrandom(vc.numxpixels);

y=getrandom(vc.numypixels);

_setpixel(x,y);

291

NUMERICAL METHODS

rinit(seed);

for (a = 0; a < r; a++) f[a] = 0;

for (a = 0; a < n; a++) {
f[getrandom(r)]++;

/*calculate x-square based

upon same seed as display*/

for (a = 0, c = 0; a < r; a++)

c += f[a] * f[a];

chi= ((float)r * (float)c/(float)n)-(float)n;

printf("\n(irandom) chi-square statistic for this set of
of random numbers is %f", chi);

printf("\npress a key to continue...");

)while((ch=getch()) != 'q');

}while(ch != 'q');

_displaycursor(_GCURSORON);

_setvideomode(_DEFAULTMODE);

292

A PSEUDO-RANDOM NUMBER GENERATOR

l Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-

lishing Co., 1981, Pages 1-178.

2 Sedgewick, Robert. Algorithms in C. Reading, MA: Addison-Wesley Publish-

ing Co., 1990, Page 517.

293

294

APPENDIX B

Tables and Equates

Extended Precision Values Used in Elementary Functions
zero qword 000000000000h
one_half qword 3f0000000000h
one_over_pi qword 3ea2f9836e4eh
two_over_si qword 3f22f9836e4eh
half_pi qword 3fc90fdaa221h

one_over_ln2 qword 3fb8aa3b295ch
ln2 qword 3f317217f7dlh

sqrt_half qword 3f3504f30000h

expeps qword 338000000001h

eps qword 39fffff70000h

qword 45c90fdb0000h

big-x qword 42a000000000h
littlex qword 0c2a000000000h

Y0a qword 3ed5a9a80000h

Y0b qword 3f1714ba0000h

quarter qword 3e8000000000h

ymax

Constants for Cordic Functions
circulark qword 9b74eda7h

hyperk qword 1351e8755h

Common Values Written for Quadword Fixed Point

1/p

p 2

÷p
e

1/e

= 0.318309886 = 517cc1b7h
= 9.869604401 = 9de9e64dfh
= 1.772453851 = 1c5bf891bh
= 2.718281828 = 2b7e15163h
= 0.367879441 = 5e2d58d9h

295

NUMERICAL METHODS

e2 = 7.389056099 = 763992e35h

p/180 = 0.017453293 = 477dla9h
÷2 = 1.414213562 = 16a09e668h

ln(p) = 1.144729886 = 1250d048eh
÷3 = 1.732050808 = lbb67ae86h

p = 3.141592654 = 3243f6a89h

Negative Powers of Two in Decimal
2 - 1 = .5D

2 - 2 = .25D

2 - 3 = .125D

2 - 4 = .0625D
2 - 5 = .03125D

2-6 = .015625D

2 - 7 = .0078125D

2 - 8 = .00390625D
2 - 9

= .001953125D
2 - 1 0

= .0009765625D
2 - l 1

= .00048828125D
2 - 1 2

= .000244140625D

Negative Powers of Ten in 32 bit Hex Format
10-l = .1999999aH

10-2 = .028f5c29H

10-3 = .00418037H
10-4 = .00068db9H

10-5 = .0000a7c5H

10-6 = .000010c6H

10-7 = .00000ladH

l0-8 = .0000002aH

10-9 = .00000004H

296

APPENDIX C

FXMATH.ASM

.dosseg

.model small, c, os-dos

include math.inc

;
.code

; ******

; add64 -Adds two f
;word 2 and word 3.

ixed-point numbers. The radix point lies between

;the arguments are passed on the stack along with a pointer to
;storage for the result
add64 proc uses ax dx es di, addend0:qword, addendl:qword, result:word

mov di,word ptr result

mov
mov
add
adc
mov
mov

ax, word ptr addend0[0]
dx, word ptr addend0[2]
ax, word ptr addend1[0]
dx, word ptr addendl[2]
word ptr [di], ax
word ptr [di][2], dx

;ax = low word, addend0
;dx = highword, addend0
;add low word, addend1
;add high word, addend1

mov
mov
adc
adc
mov
mov

ret
add64 endp

ax, word ptr addend0[4]
dx, word ptr addend0[6]
ax, word ptr addend1[4]
dx, word ptr addend1[6]
word ptr [di][4], ax
word ptr [di][6], dx

;ax = low word, addend0
;dx = high word, addend0
;add low word, addend1
;add high word, addend1

297

NUMERICAL METHODS

;

; * sub64
;arguments passed on the stack; pointer returned to result
sub64 proc uses dx es di,

sub0:qword, sub1:qword, result:word

mov di,word ptr result

mov ax, word ptr sub0 [0]
mov dx, word ptr sub0 [2]
sub ax, word ptr sub1 [0]
sbb dx, word ptr sub1 [2]
mov word ptr [di][0],ax
mov word ptr [di] [2],dx

;ax = low word, sub0
;dx = high word, sub0
;subtract low word, ;sub1
;subtract high word, ;sub1

mov
mov
sbb
sbb
mov
mov

ax, word ptr sub0 [4]
dx, word ptr sub0 [6]
ax, word ptr sub1 [4]
dx, word ptr sub1 [6]
word ptr [di][4],ax
word ptr [di][6],dx

;ax = low word, sub0
;dx = high word, sub0
;subtract low word,;sub1
;subtract high word, sub1

mov
jnc
not

no-flag:

a,0
no-flag
ax

ret
sub64 endp

;result returned as dx:ax

;
;* sub128
;arguments passed on the stack; pointer returned to result
sub128 proc uses ax dx es di,

sub0:word, sub1:word, result:word

mov
mov

di,word ptr sub0
si,word ptr sub1

mov
mov
sub

ax, word ptr [di] [0]
dx, word ptr [di][2]
ax, word ptr [si] [0]

;ax = low word, [di]
;dx = high word, [di]
;subtract low word, [si]

298

sbb dx, word ptr [si][2]
mov word ptr [di],ax
mov word ptr [di][2],dx

mov
mov
sbb
sbb
mov
mov

ax, word ptr [di][4]
dx, word ptr [di][6]
ax, word ptr [si][4]
dx, word ptr [si] [6]
word ptr [di][4],ax
word ptr [di][6],dx

mov
mov
sbb
sbb
mov
mov

ax, word ptr [di][8]
dx, word ptr [di][10]
ax, word ptr [si][8]
dx, word ptr [si] [10]
word ptr [di][8],ax
word ptr [di][10],dx

mov
mov
sbb
sbb
mov
mov

ax, word ptr [di][12]
dx, word ptr [di][14]
ax, word ptr [si][12]
dx, word ptr [si][14]
word ptr [di] [12],ax
word ptr [di][14],dx

mov
mov
mov

rep movsw
ret

sub128 endp

si,di
di,word ptr result
cx,8

FXMATH.ASM

;subtract high word, [si]

;ax = low word, [di]
;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;ax = low word, [di]
;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;ax = low word, [di]
;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;result returned as dx:ax

;*mullong - Multiplies two unsigned fixed point values. The
;arguments and a pointer to the result are passed on the stack.
mullong proc uses ax dx es di,

smultiplicand:dword, smultiplier:dword, result:word

mov di,word ptr result ;small model pointer is
;near

mov ax, word ptr smultiplicand[2] ;multiply multiplicand
;high word

299

NUMERICAL METHODS

mul word ptr smultiplier[2]
mov word ptr [di][4], ax
mov word ptr [di] [6], dx

mov ax, word ptr smultiplicand[2]

mul word ptr smultiplier[0]
mov word ptr [dil[2], ax
add word ptr [di][4], dx
adc word ptr [di][6], 0

mov ax, word ptr smultiplicand[0]

mul
add
adc
adc

word ptr smultiplier[2]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], 0

mov ax, word ptr smultiplicand[0]

mul
mov
add
adc
adc
ret

word ptr smultiplier[0]
word ptr [di][0], ax
word ptr [di][2], dx
word ptr [di][4], 0
word ptr [di][6], 0

;by multiplier high word

;multiply multiplicand
;high word
;by multiplier low word

;add any remnant carry

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry

;multiply multiplicand
;low word
;by multiplier low word

;add any remnant carry

mullong endp

; ******
;* Mu164 - Multiplies two unsigned quadword integers. The
;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
mu164 proc uses ax dx,

multiplicand:qword, multiplier:qword, result:word

mov

mov

mul

di,word ptr result

ax, word ptr multiplicand[6]

word ptr multiplier[6]

;multiply multiplicand
;highword
;by multiplier high word

300

F X M A T H . A S M

mov
mov

mov

mov
mov
add
adc

mov

mov
mov
add
adc
adc

mov

mov
mov
add
jnc
adc
adc
adc

@@:
m o v

mul
add
adc
a d c

mov

mul
add
adc
adc

ax, word ptr multiplicand [6]

word ptr [di][12], ax
word ptr [di][14], dx

word ptr multiplier[4]
word ptr [di] [10], ax
word ptr [di][12], dx
word ptr [di][14], 0

ax, word ptr multiplicand[6]

word ptr multiplier[2]
word ptr [di][8], ax
word ptr [di][10], dx
word ptr [di][12], 0
word ptr [di] [14], 0

ax, word ptr multiplicand[6]

word ptr multiplier[0]
word ptr [di][6], ax
word ptr [di][8], dx
@f
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

ax, word ptr multiplicand[4]

word ptr multiplier[6]
word ptr [di][10], ax
word ptr [di][12], dx
word ptr [di][14], 0

ax, word ptr multiplicand[4]

word ptr multiplier[4]
word ptr [di][8], ax
word ptr [di] [10], dx
word ptr [di] [12], 0

;multiply multiplicand
;high word
;by multiplier low word

;add any remnant carry

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry
;add any remnant carry

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry

;multiply multiplicand
;low word
;by multiplier low word

;multiply multiplicand
;high word
;by multiplier high word

301

NUMERICAL METHODS

adc

mov

mul
add
adc
jnc
adc
adc
adc

@@:
mov

mul
mov
add
jnc
adc
adc
adc
adc

@@:
mov

m u l
add
adc
adc
adc

mov

mul
add
adc
jnc
adc
adc
adc

302

word ptr [di] [14], 0

ax, word ptr multiplicand[4]

word ptr multiplier[2]
word ptr [di][6], ax
word ptr [di][8], dx
@f
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

ax, word ptr multiplicand[4]

word ptr multiplier[0]
word ptr [di][4], ax
word ptr [di][6], dx
@f
word ptr [di][8], 0
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

ax, word ptr multiplicand[2]

word ptr multiplier[6]
word ptr [di][8], ax
word ptr [di][10], dx
word ptr [di][12], 0
word ptr [di][14], 0

ax, word ptr multiplicand[2]

word ptr multiplier[4]
word ptr [di][6], ax
word ptr [di][8], dx
@ f
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

;multiply multiplicand
;high word
;by multiplier low word

;add any remnant carry

;multiply multiplicand
;high word
;by multiplier low word

;add any remnant carry

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry
;add any remnant carry

;multiply multiplicand
;low word
;by multiplier low word

;add any remnant carry
;add any remnant carry
;add any remnant carry

FXMATH.ASM

@@:
mov

mul
add
adc
jnc
adc
adc
adc
adc

@@:
mov

mul word ptr multiplier[0]
mov word ptr [di][2], ax
add word ptr [di][4], dx
jnc @f
adc word ptr [di][6], 0
adc word ptr [di][8], 0
adc word ptr [di][10], 0
adc word ptr [di][12], 0
adc word ptr [di][14], 0

@@:
mov

mul
add
adc
jnc
adc
adc
adc

@@:
mov

mul
add
adc
jnc
adc

ax, word ptr multiplicand[2]

word ptr multiplier[2]
word ptr [di][4], ax
word ptr [di][6], dx
@f
word ptr [di][8], 0
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

ax, word ptr multiplicand[2]

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry

;multiply multiplicand
;low word
;by multiplier low word

;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry

ax, word ptr multiplicand[0]

word ptr multiplier[6]
word ptr [di][6], ax
word ptr [di][8], dx
@f
word ptr [di][10], 0
word ptr [di] [12], 0
word ptr [di] [14], 0

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry
;add any remnant carry
;add any remnant carry

ax, word ptr multiplicand[0]

word ptr multiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx
@f
word ptr [di][8], 0

;multiply multiplicand
;low word
;by multiplier low word

;add any remnant carry

303

NUMERICAL METHODS

adc word ptr [di][10], 0
adc word ptr [di][12], 0
adc word ptr [di][l4], 0

@@:
mov ax, word ptr multiplicand[0]

mul
add
adc
jnc
adc
adc
adc
adc
adc

word ptr multiplier[2]
word ptr [di][2], ax
word ptr [di][4], dx
@ f
word ptr [di][6], 0
word ptr [di][8], 0
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

@@:
mov ax, word ptr multiplicand[0]

mul
mov
add
jnc
adc
adc
adc
adc
adc
adc

word ptr multiplier[0]
word ptr [di][0], ax
word ptr [di][2], dx
@f
word ptr [di][4], 0
word ptr [di][6], 0
word ptr [di][8], 0
word ptr [di][10], 0
word ptr [di][12], 0
word ptr [di][14], 0

@@:
ret

mu164 endp

;******

;add any remnant carry
;add any remnant carry
;add any remnant carry

;multiply multiplicand
;low word
;by multiplier high word

;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry

;multiply multiplicand
;low word
;by multiplier low word

;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry
;add any remnant carry

; classic multiply

cmul proc uses bx cx dx si di, multiplicand:dword, multiplier:dword,
product:word

local numbits:byte,mltpcnd:qword

304

FXMATH.ASM

pushf
cld
sub
lea
lea
mov

rep movsw
stosw
stosw
mov
mov
mov
mov

ax, ax
si, word ptr multiplicand
di, word ptr mltpcnd
cx, 2

bx, ax
cx, ax
dx, ax
byte ptr numbits, 32

test_multiplier:
shr
rcr

word ptr multiplier[2], 1
word ptr multiplier,1

jnc decrement_counter

add
adc
adc
adc

ax, word ptr mltpcnd
bx, word ptr mltpcnd[2]
cx, word ptr mltpcnd[4]
dx, word ptr mltpcnd[6]

;clear upper words

decrement_counter:
shl word ptr mltpcnd, 1
rcl word ptr mltpcnd[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6],1

dec
jnz

byte ptr numbits
test_multiplier

exit:
mov di, word ptr product
mov word ptr [di], ax
mov word ptr [di][2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx

popf
ret

cmul endp

305

NUMERICAL METHODS

; ******
; classic multiply (slightly faster)
; one quad word by another, passed on the stack, pointers returned
; to the results.

: composed of shift and add instructions
fast_cmul proc uses bx cx dx si di, multiplicand:qword,
multiplier:qword, product:word

local numbits:byte

pushf
cld
sub
mov
lea
mov

rep movsw

sub
lea
mov

ax, ax
di, word ptr product
si, word ptr multiplicand
cx, 4

di, 8
si, word ptr multiplier
byte ptr numbits, 40h

sub ax, ax
mov bx, ax
mov cx, ax
mov dx. ax

test_for_zero:
test
jne

jmp

word ptr [di], 1
add-multiplier
short shift

add_multiplier:
add
adc
adc
adc

ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

shift:
shr
rcr
rcr
rcr

dx, 1
cx, 1
bx, 1
ax, 1

;clear the product

;point to base of product
;number of bits

306

FXMATH.ASM

; ******
; booth

; unsigned multiplication technique based upon the booth method

;

rcr word ptr [di][6], 1
rcr word ptr [di][4], 1
rcr word ptr [di][2], 1
rcr word ptr [di] [0], 1

dec byte ptr numbits

jz exit
jmp short test_for_zero

exit:
mov word ptr [di][8], ax
mov word ptr [di][10], bx
mov word ptr [di][12], cx
mov word ptr [di][14], dx

popf
ret

fast_cmul endp

;
booth proc
product:word

uses bx cx dx, multiplicand:dword, multiplier:dword,

local mltpcnd:qword

pushf
cld

sub ax, ax
lea si, word ptr multiplicand
lea di, word ptr mltpcnd
mov cx, 2

rep movsw
stosw
stosw ;clear upper words

mov
mov
mov
clc

bx, ax
cx, ax
dx, ax

307

NUMERICAL METHODS

check_carry:

jc
test

jz

carry_set
word ptr multiplier, 1
shift_multiplicand

sub_multiplicand:
sub ax, word ptr mltpcnd
sbb bx, word ptr mltpcnd[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpcnd[6]

shift_multiplicand:
shl
rcl
rcl
rcl

word ptr mltpcnd, 1
word ptr mltpcnd[2], 1
word ptr mltpcnd[4], 1
word ptr mltpcnd[6], 1

or word ptr multiplier[2], 0
jnz shift_multiplier
or word ptr multiplier, 0
jnz shift_multiplier

jmp short exit

shift_multiplier
shr
rcr

jmp

word ptr multiplier[2], 1
word ptr multiplier, 1
short check_carry

exit:
mov
mov
mov
mov
mov

di, word ptr product
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

popf
ret

carry_set:
test
jnz

word ptr multiplier, 1
shift-multiplicand

;test bit 0

;early-out mechanism

;test bit 0

add_multiplicand:

308

FXMATH.ASM

add
adc
adc
adc

jmp

ax, word ptr mltpcnd
bx, word ptr mltpcnd[2]
cx, word ptr mltpcnd[4]
dx, word ptr mltpcnd[6]
short shift-multiplicand

booth endp

; ******

; bit pair encoding
; unsigned corollary to the booth method

bit_pair proc
product:word

local

pushf
cld

sub
lea
lea
mov

rep movsw
stosw
stosw

mov
mov
mov
clc

check_carry:

jc
test

j z

test
jnz

jmp

uses bx cx dx, multiplicand:dword, multiplier:dword,

mltpcnd:qword

ax, ax
si, word ptr multiplicand
di, word ptr mltpcnd
cx, 2

;clear upper words

bx, ax
cx, ax
dx, ax

carry_set
word ptr multiplier, 1
shiftorsub

word ptr multiplier, 2
sub_multiplicand
add_multiplicand

;test bit n-1
;test bit 0

;test bit 1

309

NUMERICAL METHODS

shiftorsub:
test

jz

word ptr multiplier, 2
shift_multiplicand

subx2_multiplicand:
sub ax, word ptr mltpcnd
sbb bx, word ptr mltpcnd[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpcnd[6]

sub_multiplicand:
sub ax, word ptr mltpcnd
sbb bx, word ptr mltpcnd[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpcnd[6]

shift_multiplicand:
shl word ptr mltpcnd, 1
rcl word ptr mltpcnd[2],1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1

shl word ptr mltpcnd, 1
rcl word ptr mltpcnd[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1

or
jnz
or
jnz

jmp

word ptr multiplier[2], 0
shift_multiplier
word ptr multiplier, 0
shift_multiplier
short exit

shift_multiplier:
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
shr word ptr multiplier[2],1
rcr word ptr multiplier, 1

jmp short check_carry

;test bit 1

;cheap-inline multiply

exit:
mov di, word ptr product
mov wordptr [di], ax

310

F X M A T H . A S M

mov word ptr [di][2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx

popf
ret

carry_set:
test
jnz

jmp

word ptr multiplier, 1
addorsubx2
short addor subxl

addx2_multiplicand:
add ax, word ptr mltpcnd
adc bx, word ptr mltpcnd[2]
adc cx, word ptr mltpcnd[4]
adc dx, word ptr mltpcnd[6]

add_multiplicand:
add ax, word ptr mltpcnd
adc bx, word ptr mltpcnd[2]
adc cx, word ptr mltpcnd[4]
adc dx, word ptr mltpcnd[6]

jmp short shift_multiplicand

addorsubx2:
test
jnz

jmp

word ptr multiplier, 2
shift_multiplicand
short addx2_multiplicand

addorsubx1:
test
jnz

jmp

word ptr multiplier, 2
sub_multiplicand
short add_multiplicand

bit_pair endp

; ******

;cheap in_line multiply

;test bit 1

;test bit 1

; classic divide
; One quadword by another, passed on the stack, pointers returned
; to the results.

; Composed of shift and sub instructions.
; Returns all zeros in remainder and quotient if attempt is made to divide
; zero. Returns all ff's inquotient and dividend in remainder if divide by

311

NUMERICAL METHODS

;zero is attempted.
cdiv

rep

rep

proc

pushf
cld
sub
mov
mov
stosw

mov
lea
mov
movsw

sub
mov
sub
mov
mov
mov

shift:
shl
rcl
rcl
rcl

rcl
rcl
rcl
rcl

compare:

cmp
jb
cmp
jb
cmp
jb
cmp
jb

312

uses bx cx dx si di, dvdnd:qword, dvsr:qword,
qtnt:word, rmndr:word

ax, ax
di, word ptr qtnt
cx, 4

;clear the quotient

cx, 4
si, word ptr dvdnd
di, word ptr qtnt

di, 8
si, 64
ax, ax
bx, ax
cx, ax
dx, ax

word ptr [di], 1
word ptr [di][2], 1
word ptr [di][4], 1
word ptr [di][6], 1

ax, 1
bx, 1
cx, 1
dx, 1

dx, word ptr dvsr[6]
test_for_end
cx, word ptr dvsr[4]
test_for_end
bx, word ptr dvsr[2]
test_for_end
ax, word ptr dvsr[0]
test_for_end

;dvdnd and qtnt share same
;memory space

;number of bits

;shift dividend into
;the remainder

F X M A T H . A S M

sub ax, word ptr dvsr
sbb bx, word ptr dvsr[2]
sbb cx, word ptr dvsr[4]
sbb dx, word ptr dvsr[6]
add word ptr [di], 1
adc word ptr [di][2], 0
adc word ptr [di][4], 0
adc word ptr [di][6], 0

test_for_end:
dec
jnz

si
shift

mov
mov
mov
mov
mov

di, word ptr rmndr
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

exit:

popf
ret

cdiv endp

;******

;div32
;32 by 32 bit divide
;arguments are passed on the stack along with pointers to the
;quotient and remainder

div32 proc uses ax dx di si,
dvdnd:dword, dvsr:dword, qtnt:word, rmndr:word

local workspace[8]:word

sub ax, ax
mov dx, ax
mov cx, 2
lea si, word ptr dvdnd
lea di, word ptr workspace

rep movsw
mov cx, 2

313

NUMERICAL METHODS

lea
lea

rep movsw
mov

cmp
jne
cmp

jne

jmp

do_divide:
cmp

jne

cmp
je

mov

mov

div
mov
mov
div
mov
mov
xor
mov

jmp

shift:
shr

rcr
shr
rcr

cmp
jne

divide:
mov

mov

314

si, word ptr dvsr
di, word ptr workspace[4]

di, word ptr qtnt

word ptr dvdnd, ax
do_divide
word ptr dvdnd[2],ax
do_divide
zero_div

word ptr dvsr[2],ax
shift
word ptr dvsr, ax
div_by_zero

bx, word ptr rmndr

ax, word ptr dvdnd[2]

word ptr dvsr
word ptr [di][2],ax
ax, word ptr dvdnd
word ptr dvsr
word ptr [di],ax
word ptr [bx],dx
ax,ax
word ptr [bx] [2],ax
exit

word ptr dvdnd[2], 1

word ptr dvdnd[0], 1
word ptr dvsr[2], 1
word ptr dvsr[0], 1
word ptr dvsr[2],ax
shift

ax, word ptr dvdnd

dx, word ptr dvdnd[2]

;zero dividend

;see if it is small enough
;check for divide by zero

;as long as dx is zero,
;there is
;no overflow possible in
;this division

;normalize both dvsr and
;dvdnd

;since MSB of dvsr is a
;one, there
;is no overflow possible

FXMATH.ASM

here
div
mov

get_remainder:
mov
lea

reconstruct:

mov
mul
mov
mov
mov
mul
add

mov ax, word ptr workspace[0]
mov dx, word ptr workspace[2]
sub ax, word ptr [di] [0]
sbb dx, word ptr [di] [2]

jnc div_ex

mov
mov
sub
sbb

jmp
div_ex:

mov

mov
mov
clc

exit:
ret

word ptr dvsr
word ptr [di] [0], ax ;approximate quotient

bx, di
di, word ptr workspace[8]

ax, word ptr workspace[4]
word ptr [bx]
word ptr [di][0], ax
word ptr [di][2], dx
ax, word ptr workspace[6]
word ptr [bx]
word ptr [di][2], ax

;quotient
;test first approximation
;of quotient by multiplying
;multiplying it by the dvsr
;and comparing it with the
;dvdnd

;low word of multiplicand
;by low word of multiplier

;high word of multiplicand
;by

;good or overflows
;overflow, decrement approx
;quotient

ax, word ptr [bx]
dx, word ptr [bx][2]
word ptr [bx], 1
word ptr [bx][2], 0

short reconstruct

di, word ptr rmndr

word ptr [di], ax
word ptr [di][2], dx

;the result is a good
;quotient and remainder

div_by_zero:

315

NUMERICAL METHODS

not
mov
mov
stc

jmp
zero_div:

mov
mov
stc

jmp
div32 endp

ax
word ptr [di][0], ax
word ptr [di][2], ax

exit

word ptr [di][0], ax
word ptr [di][2], ax

exit

; ******

;The dividend and divisor are passed on the stack;the doubleword fixed-
;point result is returned in DX:AX. DX contains the integer portion, AX the
;fractional portion.

.data
roundup db 3fH, 0fH, 1H, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

.code

newt proc uses si di,
dividend:word, divisor:word

local shifted_bits:byte, pass_count:byte

sub
mov
mov

mov
mov

normalize:
or

js
shl
inc

cmp
jg

ax,ax
byte ptr shifted_bits, al
byte ptr pass_count, 4

cx, ax
ax, word ptr divisor

ax, ax
top_end
ax, 1
cl
cl, 0fh
divide_by_zero ;the divisor must be

;zero

jmp

316

short normalize

FXMATH.ASM

top_end:
mov
mov

byte ptr shifted_bits, cl
es, ax

mov ax, word ptr divisor
test ax, 0f8h
jnz shift_right
test al, 7h
jz divide_by_zero
jmp short shift_left

shift_right:
shr
test
je
jmp

word ptr ax, 1
ax, 0f8h
divisor-justified
short shift_right

shift-left:
test
jne
shl
je
jmp

ax, 4h
divisor_justified
word ptr ax, 1
divisor_justified
short shift_left

divisor_justified:
mov si, offset roundup
sub bx, bx
mov cx, ax
mov ax, 32
div cl
sub ah, ah
mov cl, 4
div cl
mov ch, al
sub al, al
div cl
mov ah, ch
mov cx, es
mov bx, ax

;v

pass:
mul ax
mov al, ah

;store normalized
;divisor

;save z

;z squared
;adjust for 16-bit
;fixed point

317

mov

mul
mov

shl

sub
add
adc

mov
inc
dec
jnz

prepare_shift:
mov
mul

sub
mov
sub
jns

neg
adjust_right:

shr
rcr
loop

jmp

adjust_left:
shl
rcl
loop

exit:
ret

oops:
divide_by_zero:

NUMERICAL METHODS

ah, dl

cx
ax, dx

bx, 1

bx, ax
bl, byte ptr [si]
bh, 0

ax, bx
si
byte ptr pass_count
pass

ax, word ptr dividend
bx

cx, cx
cl, byte ptr shifted_bits
cl, 8
adjust_left

cl

dx, 1
ax, 1
adjust_right
short exit

ax, 1
dx, 1
adjust_left

318

;vkz2
;adjust again

;2*z

;2z - vkz2
;add rounding bits

;save z

FXMATH.ASM

sub
not

jmp

ax, ax
ax
short exit

newt endp

; ******

circle proc uses bx cx dx si di, x-coordinate:dword, y-coordinate:dword,
increment:word

;error of some sort

local x:dword, y:dword, x_point:word, y_point:word, count

mov
mov
mov
mov
mov
mov
mov
mov

sub
mov
mov

mov
mov
mov

get_num_points:
shl
rcl
loop
mov

set_point:
mov
mov
add
jnc

ax, word ptr x-coordinate
dx, word ptr x_coordinate[2]
word ptr x, ax
word ptr x[2], dx
ax, word ptr y-coordinate
dx, word ptr y-coordinate[2]
word ptr y, ax
word ptr y[2], dx ;load local variables

ax, ax
x_point, ax
y_point, ax

;x coordinate
;y coordinate

ax, 4876h
dx, 6h
cx, word ptr increment

;2*pi
;make this a negative
;power of two

ax, 1
dx, 1
get_num_points
count, dx

ax, word ptr x
dx, word ptr x[2]
ax, 8000h
store_x

;2*pi radians

;divide by l0000h

;add .5 to round up
;to integers

319

NUMERICAL METHODS

adc
store_x:

mov

dx, 0h

x_point, dx

mov
mov
add
jnc
adc

store_y:
mov

ax, word ptr y
dx, word ptr y[2]
ax, 8000h
store_y
dx, 0h

y_point, dx

mov
mov
mov

update_x:
sar
rcr

loop

sub

sbb

mov
mov
mov

update_y:
sar
rcr
loop
add

adc word ptry [2], dx
dec count
jnz set_point

ax, word ptr y
dx, word ptr y [2]
cx, word ptr increment

dx, 1
ax, 1

update_x

word ptr x, ax

word ptr x [2], dx

ax, word ptr x
dx, word ptr x [2]
cx, word ptr increment

dx, 1
ax, 1
update_y
word ptr y, ax

;add.5

;your routine for writing
;to the screen goes here
;and uses x_point and
;y_point as screen coordi
;nates

;please note the arithmetic
;shifts
;to preserve the correct
;quadrant
;new x equals x - y *
;increment

;new y equals y + x *
;increment

320

FXMATH.ASM

ret
circle endp

; ******

line proc

local

mov
mov
mov
mov

direction:
mov
sub
jns

neg
mov

jmp
large_x:

mov
store_xdif:

mov

mov
sub
jns

neg
mov

uses bx cx dx si di, xstart:word, ystart:word, xend:word,
yend:word

x:word, y:word, decision:word, x_dif:word, y_dif:word,
xstep_diag:word,
ystep_diag:word, xstep:word, ystep:word, diag_incr:word,
incr:word

ax, word ptr xstart
word ptr x, ax
ax, word ptr ystart
word ptry, ax

ax, word ptr xend
ax, word ptr xstart
large_x

ax
word ptr xstep_diag, -1
short store_xdif

word ptr xstep_diag, 1

x_dif, ax

ax, word ptr yend
ax, word ptr ystart
large_y
ax
word ptr ystep_diag, -1

;initialize local variables

;total x distance
;which direction are we
;drawing?
;went negative

;y distance

;which direction?

321

NUMERICAL METHODS

jmp
large_y:

mov
store_ydif:

mov
signs

short store_ydif

word ptr ystep_diag, 1

word ptr y_dif, ax

octant:
mov

mov

cmp
jg

mov

mov

sub
mov
mov
mov

jmp
bigger_x:

mov

mov
sub
mov

setup_inc:
mov

shl ax, 1
mov word ptr incr, ax
sub ax, word ptr x_dif
mov word ptr decision, ax
sub ax, word ptr x-dif
mov word ptr diag_incr, ax

mov

mov
mov

ax, word ptr x_dif

bx, word ptr y_dif
ax, bx
bigger_x

y_dif, ax

x_dif, bx

ax, ax
word ptr xstep, ax
ax, word ptr ystep_diag
word ptr ystep, ax
setup_inc

ax, word ptr xstep_diag

word ptr xstep, ax
ax, ax
word ptr ystep, ax

ax, word ptr y_dif

ax, word ptr decision

bx, word ptr x
cx, word ptr x_dif

;direction is determinedby

;the axis with greater
;difference
;becomes our reference

;we have a bigger y move
;than x
;x won't change on
;nondiagonal steps,
;y changes every step

;x changes every step, y
;changes only
;on diagonal steps

;calculate decision
;variable

;we will do it all in the
;registers

322

FXMATH.ASM

mov dx, word ptr y

line_loop:

;Put your routine for turning pixels on here. Be sure to push ax, cx, dx, and bx
;before destroying them, they are used here. The value for the x coordinate is in
;bx and the value for they coordinate is in dx.

or
jns

ax, ax
dpositive

add bx, word ptr xstep
;calculate new position and
;update the decision
;variable

add
add

jmp
dpositive:

add
add
add

dx, word ptr ystep
ax, incr
short chk_loop

bx, word ptr xstep_diag
dx, word ptr ystep_diag
ax, word ptr diag_incr

chk_loop:
loop
ret

line endp

;

line_loop

;
; ******

;smul64- signed mul64

smul64 proc uses bx cx dx di si, operand0:qword, operand1:qword, result:word

local sign:byte

sub
mov

ax, ax
byte ptr sign, al

mov
or
jns
not

ax, word ptr operand0[6]
ax, ax
chk_second
byte ptr sign

323

NUMERICAL METHODS

not word ptr operand0[6]
not word ptr operand0[4]
not word ptr operand0[2]

neg word ptr operand0[0]
jc chk_second
add word ptr operand0[2], 1
adc word ptr operand0[4], 0
adc word ptr operand0[6], 0

chk_second:
mov
or
jns
not
not
not
not

neg
jc
add
adc
adc

ax, word ptr operand1[6]
ax, ax
multiply_already
byte ptr sign
word ptr operand1[6]
word ptr operand1[4]
word ptr operand1[2]
word ptr operand1[0]
chk_second
word ptr operand1[2]
word ptr operand1[4],0
word ptr operand1[6],0

multiply_already
invoke mu164, operand0, operand1, result

test byte ptr sign, -1
je leave-already
mov di, word ptr result
not word ptr [di][14]
not word ptr [di][12]
not word ptr [di][10]
not word ptr [di][8]
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]

neg word ptr [di][0]
jc leave_already
add word ptr [di][2], 1
adc word ptr [di][4], 0
adc word ptr [di][6], 0
adc word ptr [di][8], 0

324

FXMATH.ASM

adc word ptr [di][10], 0
adc word ptr [di][12], 0
adc word ptr [di][14], 0

leave_already:
ret

smul64 endp

;
; ******

;divmul- division by iterative multiplication
;Underflow and overflow are determined by shifting. if the dividend shifts
;out on any attempt to normalize then we have 'flowed' in which ever
;direction it shifted out.

divmul procuses bx cx dx di si, dividend:qword, divisor:qword, quotient:word

local temp[8]:word, dvdnd:qword, dvsr:qword, delta:qword,
divmsb:byte, lp:byte, tmp:qword

cld ;upward

sub
mov

lea
mov
mov
or
or
mov
mov
mov
mov
mOV
mov
or
or

je

sub
lea

cx, cx
byte ptr lp, 6

di, word ptr dvdnd
ax, word ptr dividend[0]
dx, word ptr dividend[2]
cx, ax
cx, dx
word ptr [di][0], ax
word ptr [di][2], dx
ax, word ptr dividend[4]
dx, word ptr dividend[6]
word ptr [di][4], ax
word ptr [di][6], dx
cx, ax
cx, dx
ovrflw

;should only take six
;passes

;zero dividend

cx, cx
di, word ptr dvsr

325

NUMERICAL METHODS

mov ax, word ptr divisor[0]
mov dx, word ptr divisor[2]
or cx, ax
or cx, dx
mov word ptr [di][0], ax
mov word ptr [di][2], dx
mov ax, word ptr divisor[4]
mov dx, word ptr divisor[6]
mov word ptr [di][4], ax
mov word ptr [di][6], dx
or cx, ax
or cx, dx
je ovrflw

sub
mov

find_msb:
dec
dec

cmp
je

ax, ax
bx, 8

bx
bx
word ptr [di][bx], ax
find_msb

mov
sub
cmp

jb
ja
test
jne

ax, word ptr [di][bx]
cx, cx
bx, 2h
shift_left
shift_right
word ptr. [di][bx], 8000h
norm_dvsr

shift_left:
dec
shl
test
jne

jmp

cx
ax, 1
ah, 80h
norm_dvsr
shift-left

:shift_right
inc
shr
or

je
jmp

cx
ax, 1
ax, ax
norm_dvsr
shift-right

;zero divisor

;look for MSB of divisor

;di is pointing at dvsr

;get MSW
;save shifts here
;see if already normalized

;normalized?
;its already there

;count the number of shifts
;to normalize

;count the number of shifts

326

FXMATH.ASM

;to normalize

norm_dvsr:
test
jne
shl
rcl
rcl
rcl

jmp

norm_dvdnd:

cmp

jbe
add

jmp
chk_2:

cmp
jae
sub

of shift

ready_dvdnd:
lea
or

je
or
jns

neg
sub

jmp

do_dvdnd_right:
shr
rcr

rcr
rcr
loop
sub
or
or

word ptr [di][6], 8000h
norm_dvdnd
word ptr [di][0], 1
word ptr [di][2], 1
word ptr [di][4], 1
word ptr [di][6], 1
norm_dvsr

bl, 4h

chk_2
cl, 10h
ready_dvdnd

bl, 2h
ready_dvdnd
cl, 10h

di, word ptr dvdnd
cl, cl
makedelta
cl, cl
do_dvdnd_right
cl
ch, ch
do_dvdnd_left

word ptr [di][6], 1
word ptr [di][4], 1

word ptr [di][2], 1
word ptr [di][0], 1
do_dvdnd_right
ax, ax
ax, word ptr [di][6]
ax, word ptr [di][4]

;we want to keep
;the divisor
;truly normalized
;for maximum
;precision
;this should normalize dvsr

;bx still contains pointer
;to dvsr

;adjust for word

;adjusting again for size

;no adjustment necessary

;no error on underflow
;unless it becomes zero,
;there may still be some
;usable infonnation

;this should normalize dvsr

327

NUMERICAL METHODS

or
or
jne
mov
mov

rep stosw

jmp

do_dvdnd_left
shl
rcl
rcl
rcl
jc

loop

setup:
mov
mov
mov

rep movsw

makedelta:

lea
lea
mov

rep movsw

not
not
not

neg

jc
add
adc
adc

ax, word ptr [di][2]
ax, word ptr [di][0]
setup
di, word ptr quotient
cx, 4

divmul_exit

word ptr [di][0], 1
word ptr [di][2], 1
word ptr [di][4], 1
word ptr [di][6], 1
ovrflw

do_dvdnd_left

;if it is now a zero, that
;is the result

;significant bits shifted
;out, data unusable
;this should normalize dvsr

si, di
di, word ptr quotient
cx, 4

;put shifted dividend into
;quotient

;this could be done with
;a table

si, word ptr dvsr
di, word ptr delta
cx, 4

;move normalized dvsr
;into delta

word ptr delta[6]
word ptr delta[4]
word ptr delta[2]
word ptr delta

mloop
word ptr delta[2], 1
word ptr delta[4], 0
word ptr delta[6], 0

;attempt to develop with
;2's comp

mloop:

328

FXMATH.ASM

rep

rep

invoke

lea
lea
mov
movsw

invoke

lea
mov
mov
movsw
invoke

sub

cmp

jb
add
adc
adc
adc

no_round:

lea
lea
mov

rep movsw
invoke

dec

je
jmp

ovrflw:
sub
not
mov
mov

rep stosw

jmp

divmul_exit:

mul64, delta, dvsr, addr temp

si, word ptr temp[8]
di, word ptr tmp
cx, 4

add64, tmp, dvsr, addr dvsr

di, word ptr divisor
si, word ptr quotient
cx, 4

mul64, delta, divisor, addr temp

ax, ax
word ptr temp[6], 8000h

no_round
word ptr temp[8], 1
word ptr temp[10], ax
word ptr temp[12], ax
word ptr temp[14], ax

si, word ptr temp[8]
di, word ptr tmp
cx, 4

add64, divisor, tmp, quotient

byte ptr lp
divmul_exit
makedelta

;an attempt to round;
;please bear with me
;.5 or above rounds up

;double duty

;six passes for 64 bits

ax, ax
ax
cx, 4
di, word ptr quotient

;make infinite answer
divmul_exit

3 2 9

NUMERICAL METHODS

popf
ret

divmul endp

; ******

;divnewt- division by raphson-newton zero's approximation

divnewt
quotient:word

local

cld ;upward

sub
mov

mov
or
or
or
or

je

sub
or
or
or
or

je

sub
mov

find_msb:
lea
dec
dec

cmp
je

proc uses bx cx dx di si, dividend:qword, divisor:qword,

temp[8]:word, proportion:qword, shift:byte, qtnt_adjust:byte,
lp:byte, tmp:qword, unity:qword

cx, cx
byte ptr lp, 3

qtnt_adjust, cl
cx, word ptr dividend[0]
cx, word ptr dividend[2]
cx, word ptr dividend[4]
cx, word ptr dividend[6]
ovrflw

;should only take three
;passes

;zero dividend

cx, cx
cx, word ptr divisor[0]
cx, word ptr divisor [2]
cx, word ptr divisor[4]
cx, word ptr divisor[6]
ovrflw

ax, ax
bx, 8

di, word ptr divisor
bx
bx
word ptr [di][bx], ax
find_msb

;zero divisor

;look for MSB of divisor

;di is pointing at divisor

330

FXMATH.ASM

mov
mov
sub
cmp

jb
ja
test
jne

shift_left:
dec
shl
test
jne

jmp

shift_right:
inc
shr
or

je
jmp

save_shift:
mov
sub

shift_back:

cmp

je
shr
rcr
rcr
rcr

jmp

norm_dvsr:
test
jne
shl
rcl

byte ptr qtnt_adjust, bl
ax, word ptr [di][bx]
cx, cx
bx, 2h
shift_left
shift_right
word ptr [di][bx], 8000h
norm_dvsr

cx
ax, 1
ah, 80h
save_shift
shift_left

cx
ax, 1
ax, ax
save_shift
shift_right

byte ptr shift, cl
ax, ax

word ptr [di][6], ax

norm_dvsr
word ptr [di][6], 1
word ptr [di][4], 1
word ptr [di][2], 1
word ptr [di][0], 1
shift_back

word ptr [di][4], 8000h
make_first
word ptr [di][0], 1
word ptr [di][2], 1

;get MSW
;save shifts here
;see if already normalized

;normalized?
;it's already there

;count the number of shifts
;to normalize

;count the number of shifts
;to normalize

;we will put radix point at
;word three

;the divisor
;truly normalized

331

NUMERICAL METHODS

rcl

jmp

make_first:
mov
sub
mov

div
sub

mov
correct_dvsr:

shl

rcl
loop
mov
mov
sub
mov
mov
shr

rcr
mul

shl

rcl
mov
sub
mov
mov
mov

makeproportion:

mov
sub

332

word ptr [di][4], 1
norm_dvsr

dx, 1000h
ax, ax
bx, word ptr [di][4]

bx
dx, dx

cx, 4

ax, 1

dx, 1
correct_dvsr
word ptr divisor[4], ax
word ptr divisor[6], dx
cx, cx
word ptr divisor[2], cx
word ptr divisor[0], cx
dx, 1

ax, 1
bx

ax, 1

dx, 1
word ptr unity[4], dx
cx, cx
word ptr unity[6], cx
word ptr unity[2], cx
word ptr unity, cx

;for maximum
;this should normalize
;divisor

;first approximation;
;could come from a table

;keep only the four
;least bits

;don't want to waste time
;with a big shift when a
;little one will suffice

;don't want to waste time
;with a big shift when a
;little one will suffice

;reconstruct for first
;attempt
;don't want to waste time
;with a big shift when a
;little one will suffice

;this cou
;a table

word ptr proportion[4], dx
ax, ax

ld be done with

FXMATH.ASM

mov word ptr proportion[6], ax
mov word ptr proportion[2], ax
mov word ptr proportion, ax

invert_proportion:
not
not
not

neg

word ptr proportion[6]
word ptr proportion[4]
word ptr proportion[2]
word ptr proportion

jc
add
adc
adc

mloop:
and
invoke

lea
lea
mov
movsw

invoke

lea
lea
mOV
movsw
lea
lea
mov
movsw

dec

je
jmp

ovrflw:
sub
not
mov

mloop
word ptr proportion[2], 1
word ptr proportion[4], 0
word ptr proportion[6], 0

word ptr proportion[6], 1
mul64, proportion, divisor, addr temp

si, word ptr temp[6]
di, word ptr divisor
cx, 4

mul64, proportion, unity, addr temp

si, word ptr temp[6]
di, word ptr unity
cx, 4

si, word ptr temp[6]
di, word ptr proportion

cx, 4

;attempt to develop with
;two's complement

byte ptr lp
div_newt_shift
invert_proportion

ax, ax
ax
cx, 4

;six passes for 64 bits

333

NUMERICAL METHODS

mov

rep stosw

jmp

divnewt_shift:
lea
mov
or

js
qtnt_right:

mov
sub
mov
sub

jmp

qtnt_left:

neg
sub
add

qtlft:
shl
rcl
rcl
rcl
loop

divnewt_mult:
times dividend

sub
mov
lea

rep stosw

invoke
mov

add
mOV
lea
add

di, word ptr quotient

divnewt_exit

di, word ptr divisor
cl, byte ptr shift
cl, cl
qtnt_left

ch, 10h
ch, cl
cl, ch
ch, ch
qtlft

cl
ch, ch
cl, 10h

;make infinite answer

;get shift count

;positive, shift left

;we want to take it to
;the msb

word ptr [di][0], 1
word ptr [di][2], 1
word ptr [di][4], 1
word ptr [di][6], 1
qtlft

;multiply reciprocal

ax, ax
cx, 8
di, word ptr temp

;see that temp is clear

mul64, dividend, divisor, addrtemp
bx, 4 ;adjust for magnitude of

;result
bl, byte ptr qtnt_adjust
di, word ptr quotient
si, word ptr temp
si, bx

334

FXMATH.ASM

cmp bl, 0ah
jae write_zero
mov cx, 4

rep movsw

jmp divnewt_exit

write_zero:
mov

rep movsw
sub
stosw

divnewt_exit:

popf
ret

divnewt

cx, 3

ax, ax

endp

end

335

336

A P P E N D I X D

FPMATH.ASM

.DOSSEG

.MODEL small, c, os_dos

include math.inc

;
.data

;
.code

;
; ******

;does a single-precision fabs

;
fp_intrnd proc uses si di, fp0:dword, fpl:word

rep

rep

local

pushf
cld
xor
lea
mov
stosw

lea
lea
mov
movsw

invoke

flp0:qword, result:qword

ax,ax
di,word ptr flp0
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

intrnd, flp0, addr result

mov ax, word ptr result[2]

337

NUMERICAL METHODS

mov
mov
mov
mov

dx, word ptr result[4]
di, word ptr fpl
word ptr [di], ax
word ptr [di][2], dx

popf
ret

fp_intrnd endp

; ******

;intrnd is useful for the transcendental functions
; it rounds to the nearest integer according to the following logic:
; intrnd(x) = if((x-floor(x)) <.5) floor(x);
; else ceil(x);
intrnd proc uses bx dx di si, fp:qword, rptr:word

rep

rep

rep

local temp0:qword, templ:qword, sign:byte

pushf
cld
sub
mov
lea
stosw
mov
lea
stosw
mov
mov
stosw

ax, ax
cx, 4
di, word ptr temp0

cx, 4
di, word ptr temp1

di, word ptr rptr
cx, 4

invoke flr, fp, addr temp0
invoke flsub, fp, temp0, addr temp1
and word ptr temp1[4], 7fffh;cheap fabs
invoke flcomp,temp1, one_half

cmp
jne

ax, 1
intrnd_exit

do_ceil:
invoke flceil, fp, addr temp0

338

FPMATH.ASM

intrnd_exit:
mov ax, word ptr temp0[2]
mov dx, word ptr temp0[4]
mov di, word ptr rptr
mov word ptr [di][2], ax
mov word ptr [di][4], dx
popf
ret

intrnd endp

;implements floor function
;by calling flr

;
fp_floor proc

rep

rep

local

pushf
cld
xor
lea
mov
stosw

lea
lea
mov
movsw

invoke

mov
mov
mov
mov
mov

popf
ret

uses si di, fp0:dword, fpl:word

flp0:qword, result:qword

ax,ax
di,word ptr flp0
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

flr, flP0, addr result

ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fpl
word ptr [di], ax
word ptr [di][2], dx

339

NUMERICAL METHODS

fp_floor endp

; ******

;implements ceil function
;by calling flceil

;
fp_ceil proc

rep

rep

local

pushf
cld
xor
lea
mov
stosw

lea
lea
mov
movsw

invoke

mov
mov
mov
mov
mov

popf
ret

uses si di, fp0:dword, fp1:word

flp0:qword, result:qword

ax,ax
di,word ptr flp0
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

flceil, flp0, addr result

ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fp1
word ptr [di], ax
word ptr [di][2], dx

fp_ceil endp

;
; ******

;floor greatest integer less than or equal to x
;single precision

flr proc uses bx dx di si, fp:qword, rptr:word

340

FPMATH.ASM

local shift:byte

mov
mov

di, word ptr rptr
bx, wordptr fp[0]

mov
mov
mov
and

ax, word ptr fp[2]
dx, word ptr fp[4]
cx, dx
cx, 7f80h

shl
mov
sub
sub

cx, 1
cl, ch
ch, ch
cl, 7eh

jbe
mov
sub

leave_with_zero
ch, 40
ch, cl

jb already-floor
mov byte ptr shift, ch
mov cl, ch
sub ch, ch

fix:
shr dx, 1

rcr
rcr
loop

ax, 1
bx, 1
fix

mov
re_position:

shl
rcl
rcl
loop

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
re_position

;get float with extended
;precision

;get rid of sign and mantissa
;portion

;subtract bias (-1) from
;exponent

;is it greater than the
;mantissa portion?
;there is no fractional part

;shift the number the amount
;of times
;indicated in the exponent

;position as fixed point

already_floor:
mov word ptr [di][4], dx
mov word ptr [di][2], ax
mov word ptr [di][0], bx
sub ax, ax

341

NUMERICAL METHODS

mov word ptr [di][6], ax

fir_exit:
ret

leave_with_one:
lea si, word ptr one
mov di, word ptr rptr
mov cx, 4

rep movsw

jmp fir_exit

leave_with_zero:
sub ax, ax
mov cx, 4
mov di, word ptr rptr

rep stosw

jmp short fir_exit

flr endp

;
; ******

;flceil least integer greater than or equal to x
;single precision

;
;
flceil proc uses bx dx di si, fp:qword, rptr:word

local shift:byte

mov
mov

di, word ptr rptr
bx, word ptr fp[0] ;get float with extended

;precision

mOV
mov
sub
or
or
or

je
mov
and

shl
mov

ax, word ptr fp[2]
dx, word ptr fp[4]
cx, cx
cx, bx
cx, ax
cx, dx
leave_with_zero;this is a zero
cx, dx
cx, 7f80hq ;get rid of sign and mantissa

;portion

cx, 1

cl, ch

342

FPMATH.ASM

sub
sub

jbe
mov
sub

jb
mov
mov
sub

fix:
shr

rcr
rcr
rcr

loop

cmp
je
add
adc
adc

ch, ch
cl, 7eh

leave_with_one
ch, 40
ch, cl

already_ceil
byte ptr shift, ch
cl, ch
ch, ch

dx, 1

ax, 1
bx, 1
word ptr [di][6], 1

fix

word ptr [di][6],0h
not_quite_enough
bx, 1
ax, 0
dx, 0

not_quite_enough:
mov cl, byte ptr shift

re_position:
shl bx, 1
rcl ax, 1
rcl dx, 1
loop re_position

already_ceil:
mov word ptr [di][4], dx
mov word ptr [di][2], ax
mov word ptr [di][0], bx
sub ax, ax
mov word ptr [di][6], ax

ceil-exit:
ret

;subtract bias (-1) from
;exponent

;is it greater than the
;mantissa portion?
;there is no fractional part

;shift the number the amount
;of times indicated in the
;exponent

;put guard digits in MSW of
;data type
;position as fixedpoint

;roundup

343

NUMERICAL METHODS

ret

leave_with_one:
lea si, word ptr one
mov di, word ptr rptr
mov cx, 4

rep movsw

jmp ceil_exit

leave_with_zero:
sub ax, ax
mov cx, 4
mov di, word ptr rptr

rep stosw

jmp short ceil_exit

; ******

round proc uses bx dx di, fp:qword, rptr:word

mov
mov
mov

cmp
jb
jne
test

je
jmp

ax,word ptr fp[0]
bx,word ptr fp[2]
dx,word ptr fp[4]
ax,8000h
round_ex
needs_rounding
bx,l
round_ex
short needs_rounding

xor bx,l

; or bx,l

jmp round_ex
needs_rounding:

and dx,7fh
add bx,lh
adc dx,0
test dx,80h

je
mov

renorm
ax, word ptr fp[4]

;less than half

;round to even if odd
;and odd if even
;round down if odd and up if
;even

;if this is a one, there will
;be an
;overflow

344

and
add

jo
or

jmp
renorm:

mov
and
or

round_ex:
sub

round_exl:
mov
mov
mov
mov
sub
mov
ret

ax, ax

over_flow:
xor
mov

not
mov
xor

jmp
round endp

;
; ******

ax,0ff80h
ax,80h
over_flow
dx,ax
short round_ex

ax,word ptr fp[4]
ax,0ff80h
dx,ax

di,word ptr rptr
word ptr [di][0],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax, ax
word ptr [di][6], ax

ax,ax
bx,ax

ax
dx,ax
dx, 7fH
short round_exl

;does a single-precision fabs

;

fp_abs proc uses si di, fp0:dword, fpl:word

local flp0:qword, result:qword

xor ax,ax
lea di,word ptr flp0
mov cx,4

rep stosw

FPMATH.ASM

;get exponent and
;kick it up one

sign

;get exponent and sign

;return a
;overflow

quiet NAN if

345

NUMERICAL METHODS

lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2

rep movsw

invoke flabs, flp0, addr result

mov
mov
mov
mov
mov

ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fp1
word ptr [di], ax
word ptr [di][2], dx

ret
fp_absendp

; ******

; extended-precision absolute value (fabs)

;

flabs proc uses bx cx dx si di, fp0:qword, result:word

mov
mov
mov
mov
mov
mov
and
mov
ret

flabs endp

di, word ptr result
ax, word ptr fp0
word ptr [di], ax
ax, word ptr fp0[2]
word ptr [di][2], ax
ax, word ptr fp0[4]
ax, 7fffh ;strip
word ptr [di] [4] , ax

sign, make positive

;
. ******,
;does a floating-point compare
;returns with answer in ax

fp_comp proc uses si di,
fp0:dword, fpl:dword

local flp0:qword, flp1:qword

346

FPMATH.ASM

xor
lea
mov
stoswrep

rep

rep

rep

lea
mov
stosw

lea
lea
mov
movsw

lea
lea
mov
movsw

invoke

ret
fp_camp

;
: ***

ax,ax
di,word ptr flp0
cx,4

di,word ptr flpl
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

si,word ptr fp1
di,word ptr flp1[2]
cx,2

flcomp, flp0, flp1

endp

;internal routine for comparison of floating-point values

;
flcomp proc uses cx si di,

fp0:qword, fpl:qword

pushf
std

lea
lea
test
je
test
je

xchg

si,word ptr fp0[4]
di,word ptr fp1[4]
word ptr fp0[4],8000h
plus_l
word ptr fpl[4],8000h
second_gtr

di,si

;is the first positive.
;yes

;second not negative, there
;fore greater

347

NUMERICAL METHODS

compare:
mov cx,3

repe cmpsw
ja first_gtr

jb second_gtr

jmp short both-same
;
plus_l:

test

je
jmp

word ptr fp1[4],8000h
compare
first_gtr

;
second_gtr:

mov

jmp
first_gtr:

mov

jmp
both-same:

sub
fpcmp_ex:

popf
ret

flcompendp

ax,-1
short fpcmp_ex

ax,1
short fpcmp_ex

ax,ax

;
; ******

;
fp_sub proc uses si di,

fp0:dword, fp1:dword, rptr:word

local flp0:qword, flp1:qword, result:qword

pushf
cld
xor ax,ax
lea di,word ptr result
mov cx,4

rep stosw

lea di,word ptr flp0
mov cx,4

rep stosw

348

FPMATH.ASM

lea
mov
stosw

di,word ptr flp1
cx,4

r e p

rep

rep

lea
lea
mov
movsw

si,word ptr fp0
di,word ptr flp0[2]
cx,2

lea
lea
mov
movsw

si,word ptr fp1
di,wordptr flp1[2]
cx,2

invoke flsub, flp0, flp1, addr result

invoke round, result, addr result

;pass pointer to called
;routine

lea
mov
mov
movsw

popf
ret

si,word ptr result[2]
di,rptr
cx,2

fp_sub endp

;
; ***

;internal
;
;
flsub proc

xor

invoke

ret
flsub endp

uses bx cx dx si di,
fp0:qword, fp1:qword, rptr:word

word ptr fp1[4],8000h

fladd, fp0, fp1, rptr

;complement sign bit

;pass pointer to called
;routine

349

NUMERICAL METHODS

;
;******

fp_add proc uses bx cx dx si di,

local

pushf
cld
xor
lea
mov
stoswrep

rep

rep

rep

rep

lea
mov
stosw

lea
mov
stosw

lea
lea
mov
movsw

lea
lea
mov
movsw

invoke

invoke

lea
mov
mov
movsw

popf
ret

fp0:dword, fpl:dword, rptr:word

flp0:qword, flpl:qword, result:qword

ax,ax
di,word ptr result
cx,4

di,word ptr flp0
cx,4

di,word ptr flp1
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

si,word ptr fp1
di,word ptr flp1[2]
cx,2

fladd, flp0, flp1, addr result

round, result, addr result

si,word ptr result [2]
di,rptr
cx,2

fp_addendp

350

FPMATH.ASM

; ***

;internal

fladd proc uses bx cx dx si di,
fp0:qword, fp1:qword, rptr:word

local opa:qword, opb:qword, signa:byte,
signb:byte, exponent:byte, sign:byte,
flag:byte, diff:byte, sign0:byte, sign1:byte,
exp0:byte, exp1:byte

pushf
std

;decrement

xor ax,ax
;clear appropriate variables

lea di,word ptr opa[6]
mov cx, 4

rep stosw word ptr [di]
lea di,word ptr opb[6]
mov cx,4

rep stosw word ptr [di]
mov byte ptr sign0, al
mov byte ptr sign1, al
mov byte ptr flag,al
mov byte ptr sign,al

chk_fp0:
sub
mov
and

cmp
jne
mov

cmp
jne
mov

cmp
jne

bx, bx
ax, word ptr fp0[4]

ax, 7fffh
ax, bx
chk_fpl
ax, word ptr fp0[2}
ax, bx
chk_fpl
ax, word ptr fp0
ax, bx
chk_fpl

;larger operand

;smaller operand

;clear sign

;check for zero

351

NUMERICAL METHODS

lea

jmp

chk_fp1:
mov
and

cmp
jne
mov

cmp
jne
mov
cmp
jne
lea

si,word ptr fp1[6]
short leave_with_other

;return other addend

;check for zero

;return other addend

ax, word ptr fp1[4]
ax, 7fffh
ax, bx
do_add
ax, word ptr fp1[2]
ax, bx
do_add

ax, word ptr fp1
ax, bx
do_add
si,word ptr fp0[6]

;*******************

leave_with_other:
mov di,word ptr rptr;one of the operands was zero
add di,6 ;the other operand is the

;only
mov cx,4 ;answer

rep movsw

jmp fp_addex
;*******************

do_add:
lea
lea

si,word ptr fp0
bx,word ptr fp1

mov ax,word ptr [si][4]
shl ax,:
rcl byte ptr sign0, 1
mov byte ptr exp0, ah

mov
shl
rcl
mov
sub

dx,word ptr [bx][4]
dx,1
byte ptr sign1, 1
byte ptr exp1, dh
ah, dh

mov byte ptr diff, ah

;fp0
;dump the sign
;collect the sign
;get the exponent

;fPl
;get sign

;and the exponent

;and now the difference

restore-missing-bit: ;set up operands

352

FPMATH.ASM

and
or

mov
mov
mov
and
or
mov

find_largest:

cmp
je
test

je
jmp

cmp_rest:

cmp
ja
jb

cmp
ja
jb

cmp
jb

numb_bigger:
sub
mov

neg
mov

cmp
jna

word ptr fp0[4], 7fh
word ptr fp0[4], 80h

ax, word ptr fp1
bx, word ptr fp1[2]
dx, word ptr fp1[4]
dx,7fh
dx,80h
word ptr fp1[4], dx

byte ptr diff,0
cmp_rest
byte ptr diff,80h
numa_bigger
short numb_bigger

dx, word ptr fp0[4]
numb_bigger
numa_bigger

bx, word ptr fp0[2]
numb_bigger
numa_bigger

ax, word ptr fp0[0]
numa_bigger

ax, ax
al,byte ptr diff
al
byte ptr diff,al
al,40
in_range

;*******************
lea si, word ptr fp1[6]

leave-with-largest:
mov di, word ptr rptr
add di,6
mov cx,4

;test fornegative

;save difference
;do range test

;this is an exit!!!!!
;this is a range error
;operands will not line up
;for a valid addition
;leave with largest operand
;that is where the signifi

353

NUMERICAL METHODS

;cance
rep movsw

jmp fp_addex
range_errora:

lea si,word ptr fp0[6]

jmp short leave_with_largest

;*******************

in_range:
mov
mov

al,byte ptr exp1
byte ptr exponent,al

mov al, byte ptr sign0
mov byte ptr signb, al
mov al, byte ptr sign1
mov signa, al

lea si, word ptr fp1[6]

lea di, word, ptr opa [6]
mov cx, 4

rep movsw

signb_positive:
lea si, word ptr fp0[4]

jmp shift_into_position

numa_bigger:
sub
mov

cmp
jae

mov
mOV

mOV
mov
mov
mov

ax, ax
al,byte ptr diff
al,40
range_errora

al,byte ptr exp0
byte ptr exponent,al

al, byte ptr sign1
byte ptr signb, al
al, byte ptr sign0
byte ptr signa, al

;is anyway

;save exponent of largest
;value

;load opa with largest
;operand

;set to load opb

;do range test

;save exponent of largest
;value

lea si, word ptr fp0[6] ;1oad opa with largest

354

FPMATH.ASM

;operand
lea di, word ptr opa[6]
mov cx,4

rep movsw

lea si, word ptr fp1[4] ;set to load opb

shift_into_position: ;align operands
xor
mov
mov
mov
shr

mov
shr

sub

lea
add

mov
inc

load_operand:
movsb
loop

mov
xor
or

je
shift_operand:

shr
rcr
rcr
rcr
loop

end_shift:
mov

cmp
je

ax,ax
bx,4
cl,3
ah,byte ptr diff
ax,cl

cx,5h
al,cl

;ah contains # of bytes, al #
;of bits

bl,ah

di,byte ptr opb
di,bx

;reset pointer below initial
;zeros

cx,bx
cx

load_operand

cl,al
ch,ch
cx,cx
end_shift

word ptr opb[6],1
word ptr opb[4],1
word ptr opb[2],1
word ptr opb[0],l
shift_operand

al, byte ptr signa
al, byte ptr signb
just_add

355

NUMERICAL METHODS

;signs alike

opb_negative:

not
not
not

neg
jc
add
adc
adc

jmp

just_add:
invoke

handle_sign:
mov
mov
mov
mov

norm:
sub

cmp
jne

cmp
jne

cmp
jne

jmp
not_zero:

mov

cmp
je
cmp
jne
test

je
jmp

;signs disagree
word ptr opb[6];do2's complement
word ptr opb[4]
word ptr opb[2]
word ptr opb[0]
just_add
word ptr opb[2],1
word ptr opb[4],0
word ptr opb[6],0
just_add

add64, opa, opb, rptr

si, word ptr rptr
dx, word ptr [si][4]
bx, word ptr [si][2]
ax, word ptr [si][0]

cx, cx
ax,cx
not_zero
bx,cx
not-zero
dx,cx
not_zero
write_result

cx,64
dx,0h
rotate_result_left
dh,00h
rotate_result_right
dl,80h
rotate_result_left
short done_rotate

;exit with a zero

rotate_result_right:

356

FPMATH.ASM

shr
rcr
rcr
inc

dX,l
bx,l
ax,1
byte ptr exponent

test dx,0ff00h

je done_rotate
loop rotate_result_right

rotate_result_left:
shl ax,1
rcl bx,l
rcl dx,l
dec byte ptr exponent

test
jne
loop

done_rotate:
and
shl
or
shr
mov

dx,80h
done_rotate
rotate_result_left

or

je
or

fix_sign:
mov
or

je
or

write_result:
mov
mov
mov
mov
sub
mov

fp_addex:

popf
ret

fladd endp

dx,7fh
dx, 1
dh, byte ptr exponent
dx, 1
cl, byte ptr sign

cl, cl
fix_sign
dx,8000h

cl,byte ptr signa
cl, cl
write-result
dx,8000h

di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax

;decrement exponent with each
;shift

;decrement exponent with each
;shift

;insert exponent

;sign of the result of the
;operation

;sign of the larger operand

;negative

357

NUMERICAL METHODS

;******

;
fp_div proc c uses si di,

local

pushf
cld
xor
lea
mov
stoswrep

rep

rep

rep

rep

lea
mov
stosw

lea
mov
stosw

lea
lea
mov
movsw

lea
lea
mov
movsw

invoke

invoke

lea
mov
mov
movsw

fp0:dword, fp1:dword, rptr:word

flp0:qword, flp1:qword, result:qword

ax,ax
di,word ptr result
cx,4

di,word ptr flp0
cx,4

di,word ptr flp1
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

si,word ptr fp1
di,word ptr flp1[2]
cx,2

fldiv, flp0, flp1, addr result ;pass pointer to called
;routine

round, result, addr result

si,word ptr result[2]
di,rptr
cx,2

358

FPMATH.ASM

popf
ret

fp_div endp

; ***

;
fldiv proc

local

pushf
std
xor

mov ;begin error and situation
;checking
;name a pointer to each fplea

lea

mov
shl
and
jne

jmp
chk_b:

mov
sh1
and
jne

jmp

b_notz:

cmp
jne

jmp
check-identity:

mov
add

C uses bx cx dx si di,
fpO:qword, fp1:qword, rptr:word

qtnt:qword, sign:byte, exponent:byte, rmndr:qword

ax,ax

byte ptr sign, al

si,word ptr fp0
bx,word ptr fp1

ax,word ptr [si][4]
ax,1
ax,0ff00h
chk_b
return_infinite;infinity

dx,word ptr [bx][4]
dx,l
dx,0ff00h
b_notz
divide_b_zero

dx,0ff00h
check_identity
make_zero

di,bx
di,4

;check for zero

;infinity, divide by zero is
;undefined

;divisor is infinite

;will decrement selves

359

NUMERICAL METHODS

add
mov

repe cmpsw
jne
mov
mov
mov
mov
mov
mov
mov
sub
mov

jmp
not_same:

lea
lea

sub
add

mov
mov
or
jns
not

a_plus:
mov
or
jns
not

si,4
cx,3

not-same ;these guys are the same
ax,word ptr dgt[8];return a one
bx,word ptr dgt[10]
dx,word ptr dgt[12]
di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax
fldivex

;get exponents
si,word ptr fp0 ;reset pointers
bx,word ptr fp1

ah,dh
ah,77h

byte ptr exponent,ah
dx, word ptr [si][4]
dx, dx
a_plus
byte ptr sign

;add exponents
;subtract bias minus two
;digits
;save exponent
;check sign

dx,word ptr [bx][4]
dx, dx
restore_missing_bit
byte ptr sign

restore-missing-bit:

and word ptr fp0[4], 7fh
or word ptr fp0[4],80h

mov dx, word ptr fp1[4]
and dx, 7fh
or dx, 80h

cmp dx, word ptr fp0[4]

ja store_dvsr
inc byte ptr exponent
shr word ptr fp0[4], 1

;line up operands for divi
;sion

;see if divisor is greater
;than

360

FPMATH.ASM

rcr
rcr

store_dvsr:
mov

divide:
invoke
mov
mov
sub

sub

cmp
jne

cmp
jne

cmp
jne

jmp
not_zero:

mov

cmp
je
cmp
jne
test

je
jmp

word ptr fp0[2], 1
word ptr fp0[0], 1

word ptr fp1[4], dx

div64, fp0, fp1, addr fp0
dx, word ptr fp0[2]
bx, word ptr fp0[0]
ax, ax

cx,cx
ax,cx
not_zero
bx,cx
not-zero
dx,cx
not_zero
fix_sign

cx,64
dx,0h
rotate_result_left
dh,00h
rotate_result_right
dl,80h
rotate_result_left
short done_rotate

rotate_result_right:
shr dx,l
rcr bx,l
rcr ax,1
test dx,0ff00h

je done_rotate
inc byte ptr exponent

loop rotate_result_right
rotate_result_left:

shl word ptr qtnt,1
rcl ax,1
rcl bx,l
rcl dx,l
test dx,80h

;exit with a zero

;decrement exponent with each
;shift

361

NUMERICAL METHODS

jne done_rotate
dec byte ptr exponent

loop
done_rotate:

and
shl
or
shr
mov
or

je
or

fix-sign:
mov
mov
mov
mov
sub
mov

fldivex:

popf
ret

rotate_result_left

dx,7fh
dx,1
dh, byte ptr exponent
dx, 1
cl,byte ptr sign
cl,cl
fix_sign
dx,8000h

di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax,ax
word ptr [di][6],ax

return_infinite:
sub ax, ax
mov bx, ax
not ax
mov dx, ax
and dx, 0f80h

jmp short fix_sign
divide_by_zero:

sub ax,ax
not ax

jmp short finish-error

;decrement exponent with each

;shift

;insert exponent

;infinity

make_zero:
xor ax,ax

;positive zero

finish-error:
mov
add
mov

rep stos

di,word ptr rptr
di,6
cx,4
word ptr [di]

362

FPMATH.ASM

jmp
fldiv endp

:
; ******
;
:
fp_mul

rep

rep

rep

proc c

local

pushf
cld
xor
lea
mov
stosw

lea
mov
stosw

lea
mov
stosw

short fldivex

uses si di,
fp0:dword, fp1:dword, rptr:word

flp0:qword, flp1:qword, result:qword

ax,ax
di,word ptr result
cx,4

di,word ptr flp0
cx, 4

di,word
cx, 4

ptr flp1

lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx, 2

rep movsw

lea si,word ptr fp1
lea di,word ptr flp1[2]
mov cx,2

rep movsw

invoke flmul, flp0, flp1, addr result ;pass pointer to called
;routine

invoke round, result, addr result

lea si,word ptr result [2]
mov di,rptr

363

NUMERICAL METHODS

mov cx,2
rep movsw

popf
ret

fp_mul endp

;

flmul proc C uses bx cx dx si di,
fp0:gword, fp1:gword, rptr:word

local result[6]:word,sign:byte, exponent:byte

pushf
std
sub ax,ax
mov byte ptr sign,al
lea di,word ptr result[10]
mov cx,6

rep stosw

lea
lea
mov
shl
and
jne

jmp
is_a_inf:

cmp
jne

jmp
is_b_zero:

mov
shl
and
jnz

jmp
is_b_inf:

cmp
jne

si,word ptr fp0
bx,word ptr fp1
ax,word ptr [si][4]
ax,1
ax,0ff00h
is_a_inf
make_zero

ax,0ff00h
is_b_zero
return_infinite

dx,word ptr [bx][4]
dx,l
dx,0ff00h
is_b_inf
make_zero

dx,0ff00h

get_exp

;name a pointer to each fp

;check for zero

;zero exponent

;multiplicand is infinite

;check for zero

;zero exponent

364

FPMATH.ASM

jmp
;
get_exp:

sub
add
mov

return-infinite

ah, 77h
ah, dh
byte ptr exponent,ah

;multiplicand is infinite

mov
or
jns
not

a_plus:
mov
or
jns
not

dx,word ptr [si][4]
dx, dx
a_plus
byte ptr sign

dx,word ptr [bx][4]
dx, dx
restore_missing_bit
byte ptr sign

restore_missing_bit:
and
or
and
or

word ptr fp0[4], 7fh
word ptr fp0[4], 80h
word ptr fp1[4], 7fh
word ptr fp1[4], 80h

;remove the sign and exponent
;and restore the hidden bit

invoke mu164a, fp0, fp1, addr result ;multiply

mov
mov
mov

dx,word ptr result [10]
bx,word ptr result[8]
ax,word ptr result[6]

sub

cmp
jne

cmp
jne

cmp
jne

cne
jne

jmp
not_zero:

mov

cmp
je
cmp

cx,cx
word ptr result[4], cx
not_zero
ax,cx
not_zero
bx,cx
not_zero
dx,cx
not_zero
fix_sign ;exit with a zero

cx,64
dx,0h
rotate_result_left
dh,00h

;add exponents
;save exponent

365

NUMERICAL METHODS

jne
test

je
jmp

rotate_result_right
dl,80h
rotate_result_left
short done_rotate

rotate_result_right:
shr dx,l
rcr bx,l
rcr ax,1
test dx,0ff00h

je done_rotate
inc byte ptr exponent

loop rotate_result_right
rotate_result_left:

shl
rcl
rcl
rcl
rcl
test
jne
dec

loop
done_rotate:

and
shl
or
shr
mov
or

je
or

fix_sign:
mov
mov
mov
mov
sub
mov

fp_mulex:

popf
ret

:

366

word ptr result[2], 1
word ptr result[4], 1
ax,1
bx,l
dx,l
dx,80h
done_rotate
byte ptr exponent

rotate_result_left

dx,7fh
dx, 1
dh, byte ptr exponent
dx, 1
cl,byte ptr sign
cl,cl
fix_sign
dx,8000h

di,word ptr rptr
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], dx
ax, ax
word ptr [di][6], ax

;decrement exponent with each
;shift

;decrement exponent with each
;shift

;insert exponent

FPMATH.ASM

return_infinite:
sub ax, ax
mov bx, ax
not ax
mov dx, ax
and fix,0f80h

jmp short fix_sign
;infinity

make_zero:
xor ax,ax

finish_error:
mov di, word ptr rptr
add di, 6
mov cx, 4

rep stos word ptr [di]

jmp short fp_mulex
flmul endp

;******

; cylinder- finds the volume of a cylinder using the floatingpoint rou-

;tines in this module.
; volume = pi * r * r h

.data

pi qword 404956c10000H
.code

;
cylinder proc uses bx cx dx si di,

radius:dword, height:dword, area:word

local result:qword, r:qword, h:qword

sub ax, ax ;clear space for intermediate
;variables

mov cx, 4
lea di,word ptr r

rep stosw

mov cx, 4
lea di, word ptr h

rep stosw

mov ax, word ptr radius[0] ;move IEEE format to extended
;format

367

NUMERICAL METHODS

mov dx, word ptr radius[2]
mov word ptr r[2], ax
mov word ptr r[4], dx
mov ax, word ptr height[0]
mov dx, word ptr height[2]
mov word ptr h[2], ax
mov word ptr h[4], dx

invoke

invoke

invoke

invoke

mov
mov

mov
mov
mov

flmul, r, r, addr result
;do r squared

flmul, pi, result, addr result
;multiply result by pi

flmul, h, result, addr result
;multiply by height

round, result, addr result
;round the result

di, word ptr area
ax, word ptr result[2]

dx, word ptr result[4]
word ptr [di],ax
word ptr [di][2],dx

;move result back to IEEE
;format

ret
cylinder endp

; ******

; fixed-point support for floating-point routines

; ******

;Multiplies operands by ten, returning result in multiplicand
;and overflow byte in ax. Used for binary-to-decimal conversions
;multiplicand is a pointer to a double.

multen proc uses bx cx dx di si, multiplicand:word

mov
mov
mov
sub

di,word ptr multiplicand
dx,word ptr [di]
cx,word ptr [di][2]
ax,ax

shl
rcl

dx,1
cx, 1

;multiply by two

368

FPMATH.ASM

rcl ax, 1

mov word ptr [di],dx
mov word ptr [di][2],cx
mov word ptr [di][4],ax

shl
rcl

dx,l
cx, 1

rcl ax,1

shl
rcl
rcl

dx,l
cx, 1
ax,1

add
adc
adc

dx,word ptr [di]
cx,word ptr [di][2]
ax,word ptr [di][4]

;save result

;multiply by four

;now make it eight

;add back the two to make ten

mov word ptr [di],dx;go home
mov word ptr [di][2],cx
ret

multen endp

; ******

;div64
;will divide a quadword operand by adivisor using linear interpolation.
;dividend occupies upper three words of a 6-word array
;divisor occupies lower three words of a 6-word array
;used by floating-point division only
div64 proc uses es ds,

dvdnd:qword, dvsr:qword, qtnt:word

local result:tbyte, tmp0:qword,
tmp1:qword, opa:qword, opb:qword

pushf
cld

sub
lea
mov

ax, ax
di, word ptr result
cx, 4

369

NUMERICAL METHODS

rep stosw
lea di, word ptr tmp0;quotient
mov cx, 4

rep stosw

setup:
mov bx, word ptr dvsr[3]

continue_setup:
lea
lea
sub

mov ax, word ptr [si][3]
div bx
mov word ptr [di][4], ax
mov ax, word ptr [si][l]
div bx
mov word ptr [di][2], ax
sub ax, ax
mov ah, byte ptr [si]
div bx
mov word ptr [di][0], ax

chk_estimate:
invoke

lea
mov

cmp
jle

sub
sub
sbb
sbb
mov

div_exit:
mov
mov
inc
inc
mov

si, word ptr dvdnd
di, word ptr tmpo
dx, dx

;divisor no higher than
;receives stuff for quotient

;result goes into quotient

;result goes into quotient

;result goes into quotient

mu164a, tmp0, dvsr, addr result

di, word ptr tmp0
ax, word ptr result[7]
ax, word ptr dvdnd[3]
div_exit

ax, ax
word ptr [di], 1
word ptr [di][2],ax
word ptr [di][4],ax
word ptr [di][6],ax

si, di
di, word ptr qtnt
di
di
cx, 4

;don't need a remainder for
;this divide

370

FPMATH.ASM

rep movsw

popf
ret

div64 endp

; ******

;*Mu164a -Multiplies two unsigned 5-byte integers. The
;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
mu164a proc uses ax dx,

multiplicand:qword, multiplier:qword, result:word

mov
sub

;
mov
mul
mov

mov
mul
mov
add

mov

mul
mov
add
adc

;

mov
mul
add
adc

mov
mul
add
adc

di,word ptr result
cx, cx

ax, word ptr multiplicand[4] ;multiply multiplicand MSW
word ptr multiplier[4] ;by multiplier high word
word ptr [dil[8], ax

ax, word ptr multiplicand[4] ;multiply multiplicand MSW
word ptr multiplier[2] ;by second MSW
word ptr [di][6], ax ;of multiplier
word ptr [di][8], dx

ax, word ptr multiplicand[4] ;multiply multiplicand high
;word

word ptr multiplier[0] ;by third MSW
word ptr [di][4], ax ;of multiplier
word ptr [di][6], dx
word ptr [di][8], cx ;propagate carry

ax, word ptr multiplicand[2] ;multiply second MSW
word ptr multiplier[4] ;of multiplicand by MSW
word ptr [di][6], ax ;of multiplier
word ptr [di][8], dx

ax, word ptr multiplicand[2] ;multiply second MSW of
word ptr multiplier[2] ;multiplicand by second MSW
word ptr [di][4], ax ;of multiplier
word ptr [di][6], dx

371

NUMERICAL METHODS

adc

mov
mul
mov
add
adc
adc

mov
mul
add
adc
adc

mov
mul
add
adc
adc
adc

mov
mul
mov
add
adc
adc
adc

ret
mul64a endp

word ptr [di][8], cx

ax, word ptr multiplicand[2]
word ptr multiplier[0]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[2]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[0]
word ptr [di][0], ax
word ptr [di][2], dx
word ptr [di][4], cx
word ptr [di][6], cx
word ptr [di][8], cx

;add any remnant carry

;multiply second MSW
;of multiplicand by LSW
;of multiplier

;add any remnant carry

;multiply multiplicand LSW
;by MSW of multiplier

;add any remnant carry

;multiply multiplicand LSW
;by second MSW
;of multiplier

;add any remnant carry
;add any remnant carry

;multiply multiplicand LSW
;by multiplier low word

;add any remnant carry
;add any remnant carry
;add any remnant carry

372

APPENDIX E

IO.ASM

.dosseg

.model small, c, os_dos

include math.inc

.data

;
inf byte
zro byte
hundred

iten word

powers equ

maxchar

"infinite", 0

"O.O",O

byte 64h
0ah

one

equ 8

.code

; ******
;dectohex

;pointer to a packed BCD is used to convert to binary

;
dectohex proc uses ax bx cx si di, dntgr:word

local

xor

double:dword

ax,ax

mov si,word ptr dntgr

mov cx,4

cnvt_int:

mov

aam

al,byte ptr [si]

;expand to unpacked form

373

NUMERICAL METHODS

push ax

xchg ah,al

sub ah,ah

add bx,ax

call

pop

near ptr mten

ax

sub

add
ah,ah
bx,ax

call near ptr mten

;get high nibble

;multiply by ten

loop

ret

cnvt_int

mten:

shl bx,1

rcl dx,1
mov word ptr double,bx

mov word ptr double[2],dx

shl bx,l

rcl dx,l
shl bx,l

rcl dx,l
add bx,word ptr double

adc dx,word ptr double[2]

retn

dectohex endp
; ******

;converts single-precision floating point to an ASCII string

; caller is responsible for array bounds of ASCII string
; callable from C
ftoasc proc uses si di, fp:dword, rptr:word

local flp:qword

;multiply by ten

cld

xor ax,ax

374

IO .ASM

lea di,word ptr flp

mov cx,4

rep stosw

lea si,word ptr fp

lea di,word ptr flp[2]

mov cx,2

rep movsw

invoke fta, flp, rptr

ret

ftoasc endp

; ***
; conversion of floating point to ASCII

;
fta proc uses bx cx dx si di, fp:qword, sptr:word

local sinptr:byte, fixptr:qword, exponent:byte,
leading_zeros:byte, ndg:byte

pushf

std

xor ax,ax
lea di,wordptr fixptr[6]

mOV cx,4

rep stosw

mov byte ptr [sinptr],al

mov byteptr [leading_zeros],al

mOV byte ptr [ndg],al

mov byte ptr [exponent],al

ck_neg:

test

je
xor

not

word ptr fp[4],8000h

gtr_0
word ptr fp[4],8000h

byte ptr [sinptr]

;clear the sign

:get the sign

;make positive

;it is negative

375

NUMERICAL METHODS

; ***

gtr_0:

invoke

cmp

je
dec
cmp

jl
invoke

jmp

less_than_ten

invoke

cmp

je
inc

cmp

53
invoke

jmp

Rnd:

invoke

norm_fix:

mov

mov

mov

shl

get_exp:

mov

sub

mov

sub

js

lea

do_shift:

376

flcomp, fp, one

ax,1h

less_than_ten

byte ptr [ndg]

byte ptr [ndg],-37

zero_result

flmul, fp, ten, addr fp
short gtr_0

flcomp, fp, ten
ax, -1

norm_fix

byte ptr [ndg]

byte ptr [ndg],37

infinite_result

fldiv, fp, ten, addr fp
short less_than_ten

round, fp, addr fp

ax,word ptr fp[0]

bx,word ptr fp[2]

dx,word ptr fp[4]

dx,l

byte ptr exponent, dh

byte ptr exponent, 7fh

cx,8h

cl,byte ptr exponent
infinite_result

di,word ptr fixptr

;another kind of normalization

;fixup for translation

;this is for ASCII conversion

;dump the sign bit

;remove bias

;could come out zero

;but this is as far as I

;can go

IO .ASM

stc

rcr

sub

je
shift_fraction:

shr

rcr

rcr

loop

put-upper:

mov

mov

mov

mov

xchg

sub
mov

cld

inc

mov

cmp
jne

mov

put_sign:

stosb

lea

write_integer:

xchg

aam

xchg

or

call

xchg

or

call

;restore hidden bit
dl,1

cx,1

put_upper

dl,1

bx,1

ax, 1
shift_fraction

word ptr [di], ax

word ptr [di][2],bx

al,dl

byte ptr fixptr[4],dl
ah,al

;shift significand into

;fractional part

;write integer portion

dx,dx
di,word ptr sptr

;reverse direction of write

dx

al,' '

byte ptr sinptr,0ffh

put_sign

al,'-'

si, byte ptr fixptr[3]

ah,al

al,ah

al,'0'

near ptr str_wrt

al,ah

al,'0'

near ptr str_wrt

;is it a minus?

;al contains integer

;portion

377

NUMERICAL METHODS

inc

dec

do_decimal:

mov

stosb
do_decimal1:

invoke

or

call
inc

cmp

je

jmp

do_exp:

sub

cmp
jne

jmp

write_exponent:

mov

stosb

mov

or

jns

xchg

mov

stosb

neg
xchg

sub

finish_exponent:

cbw

aam

xchg

or

stosb

xchg

378

dx

si

al,'.'

multen, addr fixptr

al,'O'

nearptr str_wrt

dx

dx,maxchar

do_em
short do_decimal1

;max char count

;convert binary fraction

;to decimal fraction

ax,ax
al,byte ptr ndg

write_exponent

short last_byte

al,'e'

al,byte ptr ndg

al,al

finish_exponent

al,ah

al,'-'

ah

al,ah

ah,ah

;cheap conversion

ah,al

al,'O'

ah,al

IO .ASM

or

stosb

last_byte:

sub

stosb

popf
fta_ex:

ret

al,'O'

al,al

infinite_result:

mov

mov
mov

rep movsb

mov

jmp

zero_result:
mov

mov

mov

rep movsb

mov

jmp

strwrt:

cmp
jne

test

je
putt:

test

jne
not

pmt:

stosb

nope:

retn

fta endp

;

di,word ptr sptr

si,offset inf

cx, 9

ax, -1

short fta_ex

di,word ptr sptr

si,offset zro

cx, 9

ax,-1

short fta_ex

al,'O'
putt

byte ptr leading_zeros,-1

nope

byte ptr leading_zeros,-1

pmt
leading_zeros

379

NUMERICAL METHODS

;
; ******

;Unsigned conversion from floating-point notation to integer (long).

;This is in fixed-point format; the upper two words are the integer

;and the lower two are the fraction.

;
ftofx

rep

rep

proc uses si di, fp:dword, fixptr:word

local

cld

xor

lea

mov

stosw

lea

lea

mov

movsw

invoke

ret

ftofx endp

flp:qword

ax,ax
di,word ptr flp

cx,4

si,word ptr fp

di,word ptr flp[2]

cx,2

ftfx, flp, fixptr

;unsigned conversion from ascii string to short real

atf proc uses si di, string:word, rptr:word ;one word for near pointer

local exponent:byte, fp:qword, numsin:byte, expsin:byte,

dp_flag:byte, digits:byte, dp:byte

pushf

std

xor

lea
ax,ax
di,word ptr fp[6] ;clear the floating

;variable

380

IO .ASM

mov cx,8

rep stosw word ptr [di]

mov si,string

do_numbers:

mov

mov

mov

mov

mov

mov

byte ptr [exponent],al

byte ptr dp_flag,al

byte ptr numsin,al

byte ptr expsin,al

byte ptr dp,al

byte ptr digits,8h

;
;begin by checking for a sign or a number or a '.'

do_num:

mov

cmp
jne
not

inc

mov

jmp

bl, [si]

bl,'-'

not_minus
[numsin]

si

bl,es:[si]

not_sign

not_minus:

cmp
jne

inc

mov

bl,'+'

not_sign

si

al, [si]

not_sign:

cmp
jne

test

jne

not
inc

mov

bl,'.'

not_dot

byte ptr [dp],80h

end_o_cnvt

dp_flag
si

bl,[si]

;count of total digits;

;rounding digit is eight

;it is a negative number

;check for decimal point

381

NUMERICAL METHODS

not_dot:

cmp

jb

cmp

ja
invoke

mov

sub

sub

shl

shl

shl

invoke

test

je
dec

no_dot_yet:

inc

dec

jc
mov

jmp

not_a_num:

mov

or
cmp

je

jmp end_o_cnvt

chk_exp:

inc

mov

jne

bl,'O'

not_a_num

bl,'9'

not_a_num

flmul, fp, ten, addr fp

bl, [si]

bl,30h

bh,bh

bx,l

;get legitimate number

;multiply floating point

;accumulator by l0.0

;clear upper byte

;multiply index for proper

;offset
bx,1

bx,1

fladd, fp, dgt[bx], addr fp
byte ptr [dp_flag],0ffh

no_dot_yet

[dp]

;have we encountered a

;decimal point yet?

si

byte ptr digits

not_a_num

bl,es:[si]

not-sign

bl, [si]

bl,lower_case

bl,'e'

chk_exp

si

bl, [si]

bl,'-'

chk_plus

;check for decimal point
;looks like we may have an

;exponent

cmp

382

IO .ASM

not

jmp
chk_plus:

cmp
jne

chk_exp1:

inc

mov

chk_exp2:
cmp

jb
cmp

ja
sub

mov

mul

mov

mov

sub

or

jmp

end_o_cnvt:

sub
mov

mov

or

jns

sub

jmp
pos_exp:

add

chk_numsin:

cmp
jne

or

[expsin]
short chk_expl

bl,'+'

short chk_exp2

si

bl, [si]

bl,'0'

end_o_cnvt

bl,'9'

end_o_cnvt

ax,ax
al, byte ptr [exponent]

iten

byte ptr [exponent],al

bl, [si]

bl,30h

byte ptr [exponent],bl

short chk_exp1

cx,cx

al,byte ptr [expsin]

cl,byte ptr [dp]

al,al

pos_exp
cl,byte ptr [exponent]

short chk_numsin

cl,byte ptr [exponent] ;exponent

word ptr numsin,0ffh

chk_expsin

word ptr fp[4],8000h

chk_expsin:

xor

or
ax,ax
cl,cl

;if exponent negative,

;so is number

383

NUMERICAL METHODS

jns

neg

do_negpow:

or

je
inc
test

je
mov

push

shl

shl

shl

invoke

pop
do_negpowa:

shr

jmp

do_pospow:

or

je
inc

test

je
mov

push

shl

shl

invoke

pop
do_pospowa:

shr

jmp
atf_ex:

invoke

mov

mov

do_pospow
cl

;make exponent positive

;is exponent zero yet?

;check for one in lsb

cl,cl

atf_ex

ax

cx,1h

do_negpowa
bx,ax

ax

bx,1

bx,1

bx,1

fldiv, fp, powers[bx], addr fp
ax

;divide by power of two

cx,1

short do_negpow

cl,cl ;is exponent zero yet?
atf_ex

ax

cx,lh ;check for one in lsb
do_pospowa

bx,ax

ax

bx,1

bx,1

flmul, fp, powers[bx], addr fp ;multiply by power of two
ax

cx,1

shortdo_pospow

round, fp, addr fp

di,word ptr rptr

ax,word ptr fp

384

IO .ASM

mov bx,word ptr fp[2]
mov dx,word ptr fp[4]
mov word ptr [di],bx
mov word ptr [di][2],dx
popf
ret

atf endp

; ******

;Unsigned conversion from quadword fixed-point to short real.
;The intention is to accommodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer
;to the result.

ftf proc uses si di, binary:qword, rptr:word ;one word for near
;pointer

local exponent:byte, numsin:byte

pushf
xor

;
mov
add
lea
mov

;
do_numbers:

mOV
mov
mov

;
do_num:

mov
or

;record sign
jns
not
not

ax, ax

di, word ptr rptr
di, 6
si, byte ptr binary[0]
bx, 7 ;index

byte ptr [exponent], al
byte ptr numsin, al
dx, ax

al, byte ptr [si][bx]
al, al

find_top
byte ptr numsin
word ptr binary[6]

;point at future float

;point to quadword

;this one is negative

385

NUMERICAL METHODS

not

not

neg

jc
add

adc

adc

find_top:

cmp

je

mov

or

jne

dec

jmp

found_it:

mov

cmp

cmp

je

shift_left

std
mov

sub

shl

shl

shl

neg
mov

lea

lea

add

mov

inc

word ptr binary[4]

word ptr binary[2]

word ptr binary[0]

find_top

word ptr binary[2], 1

word ptr binary[4], 0

word ptr binary[6], 0

bl, dl

make_zero

al, byte ptr [si][bx]

al,al

found_it

bx
short find_top

dl, 80h

bl, 4

shift_right

final_right

cx, 4

cx, bx

cx, 1

cx, 1

cx, 1

cx

byte ptr [exponent], cl

di, byte ptr binary[4]
si, byte ptr binary

si, bx

cx, bx

cx

;we traversed the entire

;number

;move index

;test for MSB

;points to MSB

;target

;times 8

386

IO .ASM

rep movsb

mov

sub

sub

rep stosb

jmp

shift_right:

cld

mov

sub

lea

mov

sub

shl

shl

shl

mov

mov

sub

inc

rep movsb

sub

mov

sub

sub

lea

rep stosb

final_right:

lea

final_right1:
mov

test

jne

dec

cx, 4

cx, bx
ax, ax

short final_right

cx, bx

cx, 4

si, byte ptr binary[4]

di, si

di, cx

cl, 1

cl, 1

cl, 1

;points to MSB

;target

;times 8

byte ptr [exponent], cl

cx, bx

cx, 4

cx

bx, 4

cx, 4

cx, bx

ax, ax

di, word ptr binary

si, byte ptr binary[4]

al, byte ptr [si]

al, dl

aligned

byte ptr exponent

387

NUMERICAL METHODS

388

shl

rcl

rcl

jmp

aligned:
shl

mov

add

cmp

je
stc

jmp
positive:

clc

get-ready_to_go:

rcr

mov word ptr binary[4], ax

ftf_ex:

invoke

exit:

popf
ret

make_zero:

std

sub

mov

rep

ftf

stosw

jmp
endp

word ptr binary[0], 1

word ptr binary[2], 1

word ptr binary[4], 1
short final_right1

al, 1

ah, 86h

ah, byte ptr exponent

numsin,dh

positive

short get_ready_to_go

ax, 1

round, binary, rptr

ax, ax

cx, 4

short exit

;clearbit

;put it all back the way it

;should be

;zero it all out

;
; ***

IO .ASM

;Conversion of floating point to fixed point

;float enters as quadword
;pointer, sptr, points to result

;This could use an external routine as well. When the float

;enters here, it is in extended format

ftfx proc uses bx cx dx si di, fp:qword, sptr:word

;
; ***

local

pushf

std

xor

mov

mov

mov

;
do_rnd:

invoke

;
set_sign:

mov

mov

mov
or

jns

not

get_exponent:

sub

shl

sub

mov

mov

and

stc

rcr

sinptr:byte, exponent:byte

ax,ax
byte ptr [sinptr],al

byte ptr [exponent],al

di,word ptr sptr

round, fp, addr fp

ax,word ptr fp[0]

bx,word ptr fp[2]

dx,word ptr fp[4]

dx,dx

get_exponent

byte ptr [sinptr]

cx,cx

dx,l
dh,86h

byte ptr exponent, dh

cl,dh

dx,0ffh

dl,1

;clear the sign

;point to result

;fixup for translation

;it is negative

;remove bias from exponent

;save number portion

;restore hidden bit

389

NUMERICAL METHODS

;
which_way:

or

jns

neg

shift_right:
cmp

ja
make_fraction:

shr

rcr

rcr

loop

mov

mOV

mov

jmp

shift_left:

cmp

ja
big

make_integer:

shl

rcl

rcl

loop

mov

mov

mov

print_result:

test

je
not

not

not

neg

jc

cl,cl

shift_left
cl

cl,28h

make_zero

dx,1
bx,1

ax,1
make_fraction

word ptr [di][0],ax

word ptr [di][2],bx

word ptr [di][4],dx

short print_result

cl,18h

make_max

bx,1

dx,1

ax,1
make_integer

word ptr [di][6],ax

word ptr [di][4],dx

word ptr [di][2],bx

byte ptr [sinptr], 0ffh
exit

word ptr [di][6]

word ptr [di][4]

word ptr [di][2]

word ptr [di][0]

exit

;no significance, too small

;failed significance, too

;two's complement

390

IO .ASM

add

adc

adc

exit:

popf
ret

make_zero:

sub

mov

rep stosw

jmp

make_max:

sub

mov

rep stosw

not

stosw

and

not

ax

stosw

jmp

word ptr [di][2],1

word ptr [di][4],0

word ptr [di][6],0

ax,ax
cx,4

short exit

ax,ax
cx,2

word ptr [di][4], 7f80h

ax

short exit

ftfx endp

;
;***

; dnt_bn - decimal integer to binary conversion routine
;unsigned

;It is expected that decptr points at a string of ASCII decimal digits.

;Each digit is taken in turn and converted until eight have been converted

;or until a nondecimal number is encountered.

;This might be used to pull a number from a communications buffer.

;Returns with no carry if successful and carry set if not.

dnt_bn proc uses bx cx dx si di, decptr:word, binary:word

391

NUMERICAL METHODS

mov si,word ptr decptr ;get pointer to the MSB of the

;decimal

;value

sub ax,ax
mov bx,ax

mov dx,bx

mov cx, 9

decimal_conversion:
mov al,byte ptr [si]

cmp

jb

cmp

ja

call

xor

add

adc

inc

loop

oops:

stc

al,'O'

work_done

al,'9'

work_done

near ptr times-ten

al,'O'

bx,ax

dx,O
si

decimal_conversion

;check for decimal digit

;if it gets past here, it must

;be OK

;convert to number

;propagate any carries

ret

work-done:

mov

mov

mov

clc

ret

times_ten:

push

push

shl

rcl

;more than eight digits or

;something

di, word ptr binary

word ptr [di],bx

word ptr [di][2],dx ;store result

ax

cx

bx,l

dx,l

mov

392

ax,bx

IO .ASM

mov cx,dx

shl

rcl
bx,l

dx,l

shl

rcl

bx,l

dx,l

add

adc

bx,ax

dx,cx

pop
pop
retn

dnt_bn endp

cx

ax

;multiply by ten

;***

;bn-dnt - a conversion routine that converts binary data to decimal
;A double word is converted. Up to eight decimal digits are

;placed in the array pointed at by decptr. If more are required to adequately

;convert this number, the attempt is aborted and an error flagged.

bn_dnt proc uses bx cx dx si di, binary:dword, decptr:word

lea si,word ptr binary ;get pointer to the MSBb of

;the decimal

;value

mov di,word ptr decptr ;string of decimal ASCII

;digits

mov

add

cx, 9

di,cx ;point to the end of the

;string

;this is for correct

ordering

sub bx,bx

mov dx,bx

mov byte ptr [di],bl

di

;see that string is

;zero-terminated
dec

393

NUMERICAL METHODS

binary_conversion:

sub

mov
or

je
div

mov

or

je

dx,dx
ax,word ptr [si][2]

ax,ax
chk_empty

iten

word ptr [si][2],ax

dx,dx
chk_empty

divide_lower:

mov

or

jne
or

je
not_zero:

div

put_zero:

mov

or

mov

dec

loop

oops:

mov

stc

ret

chk_empty:

or

je

jmp
still_nothing:

mov

or

je

jmp

ax, word ptr [si]

ax,ax
not_zero

dx, ax

put_zero

iten

word ptr [si],ax

dl,'O'

byte ptr [di],dl

di

binary_conversion

ax,-1

dx,dx
still_nothing

short divide_lower

ax,word ptr [si]

ax,ax

empty
short not_zero

;divide by ten

394

IO .ASM

empty:
inc di

mov si,di
mov di, word ptr decptr

mov cx,9

rep movsw

finished:

sub

clc

ret

bn_dnt endp

ax,ax

;***

;bfc_dc -A conversion routine that converts a binary fraction (doubleword)

;To decimal ASCII representation pointed to by the string pointer, decptr.

;Set for eight digits; it could be longer.

bfc_dc proc uses bx cx dx si di bp, fraction:dword, decptr:word

local sva:word, svb:word, svd:word

mov di,word ptr decptr

mov

mov

bx,word ptr fraction

dx,word ptr fraction[2]

mov cx,8

sub ax,ax

mov byte ptr [di],'.'

inc di

decimal_conversion:

or ax,dx
or ax,bx

jz work_done

;point to ASCII output

;string

;get fractional part

;digit counter

;to begin the ASCII

;fraction

;check for zero operand

;check for zero operand

395

NUMERICAL METHODS

sub ax,ax

shl

rcl

rcl

mov

mov

mov

shl

rcl

rcl

shl

rcl

rcl

add

adc

adc

or

mov

inc

sub

loop

work_done:

mov

clc

ret

bfc_dc endp

;

;

bx,1

dx,1

ax,1

;multiply fraction by ten

;times 2 multiple

word ptr svb,bx

word ptr svd,dx

word ptr sva,ax

bx,1

dx,1
ax,1

bx,1

dx,1
ax,1

bx,word ptr svb

dx,word ptr svd

ax,word ptr sva

al,'O'

byte ptr [di],al

di

ax,ax
decimal_conversion

byte ptr [di],al

;multiply by ten

;***

;end string with a null

;dfc_bn - A conversion routine that converts an ASCII decimal fraction

;to binary representation. Decptr points to the decimal string to be converted.

;The conversion will produce a double word result.

396

IO .ASM

;The fraction is expected to be padded to the right if it does not

;fill eight digits.

;
dfcbn proc uses bx cx dx si di, decptr:word, fraction:word

pushf

cld

mov

sub

di, word ptr decptr

ax,ax
mov cx, 9

repne scasb

dec di
dec di ;point to least

;significant byte
mov si,di

mov

mov

mov

di, word ptr fraction

word ptr [di],ax

word ptr [di][2], ax

mov cx,8

sub dx,dx

binary_conversion:

mov ax, word ptr [di][2]

mov

cmp

jb
cmp

ja

dl, byte ptr [si]

dl, '0'

oops

dl, '9'

oops

xor dl, '0' ;deASCIIize

;get high word of result

;variable

;check for decimal digit

;if it gets past here, it

;must be o.k.

dec si

sub

397

NUMERICAL METHODS

or

or

jz
div

no_div0:

mov

mov

sub

or

or

jz
div

no_divl:

mov

sub

loop

work_done:

popf
sub

clc

ret

ax,ax

oops:

popf
mov

stc

ret

dfc_bn endp

:

;

; ******

bx,dx

bx,ax

no_div0

iten

word ptr [di][2],ax

ax,word ptr [di]

bx,bx

bx,dx

bx,ax

no_div1

iten

word ptr [di],ax

dx,dx
binary_conversion

ax,-1

;prevent a divide by zero

;divide by ten

;prevent a divide by zero

;table conversion routines

398

IO .ASM

.data

int_tab

frac_tab

tab_end

dword 3b9aca00h, 05f5e100h, 00989680h, 000f4240h,

000186a0h, 00002710h, 000003e8h, 00000064h,

0000000ah, 00000001h

dword 1999999ah, 028f5c29h, 00418937h, 00068db9h,
0000a7c5h, 000010c6h, 000001adh, 0000002ah,

00000004h

dword 00000000h

;
.code

;convert ASCII decimal to fixed-point binary

;
tb_dcbn

local

mov

mOV

lea

mov

sub

sub

rep stosw

mov

mov

mov

mov

mov

cmp

je

cmp

je

proc uses bx cx dx si di,

sptr:word, fxptr:word

sign:byte

di, word ptr sptr ;point to result

si, word ptr fxptr ;point to ASCII string

bx, word ptr frac_tab ;point into table

cx,4

ax,ax

dx,dx

di, word ptr sptr

cl,al

ch,9h

byte ptr sign, al

al, byte ptr [si]

al,'-'

negative
al,'+'

positive

;clear the target variable

;point to result

;to count integers

;max int digits

;assume positive

;get character

;check for sign

399

NUMERICAL METHODS

count:

cmp

je
chk_frac:

cmp

je
cmp

jb
cmp

ja
cntnu:

inc

cmp

ja
inc

mov

or

jne

jmp

fnd_dot:

mov

inc

mov

xchg

jmp
negative:

not

positive:

inc

mov

mov

jmp

gotnumber:

sub

xchg

dec

shl

al,'.'

fnd_dot

al,0

gotnumber

al,'0'

not_a_number

al,'9'

not_a_number

cl

cl,ch

too_big

si

al, byte ptr [si]

dh,dh
chk_frac

short count

dh,cl

dh

dl,13h

ch,dl

short cntnu

sign

si

word ptr fxptr,si

al, byte ptr [si]

short count

ch,ch

cl,dh

cl
word ptr cx,1

;end of string?

;is it a number then?

;count

;check size

;next character

;get character

;int or frac

;count characters in int

;can't be zero

;includes decimal point

;get int count

;multiply by four

400

IO .ASM

shl

sub
sub

mov
cnvrt_int:

mov

cmp

je

cmp

je
sub

mov

mul

add

adc

mov

mul

add

adc

add

inc

jmp

handle_fraction:

inc

cnvrt_frac:

mov

cmp

je
sub

mov

mul

add

mov

mul

add

adc

add

inc

word ptr cx,l

bx,cx
cx,cx

si,word ptr fxptr

cl,byte ptr [si]

cl,'.'

handle_fraction

cl,0

do_sign

cl,'O'

ax,word ptr [bx][2]

cx

word ptr [di][4l,ax

word ptr [di][6],dx

ax,word ptr [bx]

cx

word ptr [di][4],ax

word ptr [di][6],dx

bx,4

si

short cnvrt_int

si

cl,byte ptr [si]
cl,0

do_sign

cl,'0'

ax,word ptr [bx][2]

cx

word ptr [di][2],ax

ax,word ptr [bx]

cx

word ptr [di][0],ax

word ptr [di][2],dx

bx,4

si

;index into able

;point at string again

;get first character

;go do fraction, if any

;end of string

;drop table pointer

;skip decimal point

;get first character

;end of string

;this can never result in

;a carry

;drop table pointer

401

NUMERICAL METHODS

jmp

do_sign:

mov

or

je
not

not

not

neg

jc
add

adc
adc

exit:
ret

short cnvrt_frac

al,byte ptr sign

al,al

exit

word ptr [di][6]

word ptr [dil[4]

word ptr [di][2]

word ptr [di]

exit

word ptr [di][2],1

word ptr [di][4],0
word ptr [di][6],0

;it is positive

not_a_number:

sub

not

too_big:

stc

jmp
tb_dcbn

ax,ax
ax

short exit

endp

;converts binary to ASCII decimal

tb_bndc proc uses bx cx dx si di,

sptr:word, fxptr:word

local leading_zeros:byte

mov
mov

lea

si, word ptr fxptr

di, word ptr sptr

bx, word ptr int_tab

;point to input fix point

;point to ascii string

;point into table

sub

mov
ax,ax
byte ptr leading_zeros, al ;assume positive

402

IO .ASM

mov

or
jns

mov

inc

not

not

not

neg
jc
add

adc

adc

positive:
mov

mov

sub

walk_tab:

cmp

ja

jb

jae

pushptr:

cmp

je
mov

cntnu:

inc

skip_zero:

inc

inc

inc

inc

cmp
jae

jmp

ax, word ptr [si][6]

ax,ax
positive

byte ptr [di],'-'

di

word ptr [si][6]

word ptr [si][4]

word ptr [si][2]

word ptr [si][0]

positive

word ptr [si][2],1

word ptr [si][4],0

word ptr [si][6],0

dx, word ptr [si][6]

ax, word ptr [si][4]
cx,cx

dx, word ptr [bx][2]

gotnumber

pushptr

ax, word ptr [bx]
gotnumber

byte ptr cl, leading_zeros

skip_zero

word ptr [di],'0'

di

bx

bx

bx

bx

bx, offset word ptr frac_tab

handle_fraction

shortwalk_tab

;complement

;get integerportion

cmp

403

NUMERICAL METHODS

gotnumber:
sub

inc

cnvrt_int:

call

jmp

handle_fraction:

cmp
jne

mov

inc

do_frac:

mov

inc

get_frac:

mov

mov

sub

walk_tabl:

cmp

ja

jb

cmp
jae

pushptr1:

mov

skip_zero1:

inc

inc

inc

inc

inc

cmp
jae

jmp

small_enuf:

sub
small_enuf1:

cx,cx

leading_zeros

near ptr index

short cntnu

byte ptr leading_zeros,0

do_frac

byte ptr [di], '0'

di

word ptr [di],'.'

di

dx, word ptr [si][2]

ax, word ptr [si][0]

cx,cx

dx, word ptr [bx][2]

small_enuf

pushptr1

ax, word ptr [bx]

small_enuf

byte ptr [di],'0'

di

bx

bx

bx

bx

bx, offset word ptr tab_end

exit

short walk_tab1

cx,cx

;put decimal point

404

IO .ASM

call

jmp

exit:

inc

sub

mov

ret

index:

inc

sub

sbb

jnc

dec

add

adc

or

mov

retn

tb_bndc

near ptr index

short skip_zero1

di

cl,cl

byte ptr [si],cl

cx

ax, word ptr [bx]

dx, word ptr [bx][2]
index

cx

ax, word ptr [bx]

dx, word ptr [bx][2]

cl,'0'

byte ptr [di],cl

endp

;end of string

;subtract until a carry

;put it back

;make it ASCII

; ******

;hex to ascii conversion using xlat

;simple and common table driven routine to convert from hexidecimal

;notation to ascii

;quadword argument is passed on the stack, with the result returned

;in a string pointed to by sptr

.data

hextab byte

.code

hexasc proc

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a',

'b', 'c', 'd', 'e', 'f'

uses bx cx dx si di, hexval:qword, sptr:word

405

NUMERICAL METHODS

lea

mov

mov

mov

si, byte ptr hexval[7]

di, word ptr sptr

bx, offset byte ptr hextab

cx,8

make_ascii:

mov

mov

shr

shr

shr

shr

and

xchg

al, byte ptr [si]

ah, al

ah,1

ah,1

ah,1

ah,1
al, 0fh

al,ah

xlat

mov

inc

xchg

xlat

mov

inc

byte ptr[di],al

di

al,ah

byte ptr [di],al

di

dec si

loop make_ascii

sub

mov

al, al

byte ptr [di],al

ret

hexasc endp

;
end

;number of bytes to be

;converted

;unpack byte

;high nibble first

;now the lower nibble

406

APPENDIX F

TRANS.ASM
and TABLE.ASM

TRANS.ASM
.model small, c, os_dos

include math.inc

;
.data

inf

zro

zero

one_over_pi

two_over_pi

half_pi

one_over_ln2

ln2

sqrt_half

expeps

eps

big_x

littlex

y0a

y0b
quarter

circulark

hyperk

byte

byte

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

qword

"infinite", 0

"0.0",0

000000000000h

3ea2f9836e4eh

3f22f9836e4eh

3fc90fdaa221h

3fb8aa3b295ch

3f317217f7d1h

3f3504f30000h

338000000001h

39fffff70000h

45c90fdb0000h

42a000000000h

0c2a000000000h

3ed5a9a80000h

3f1714ba0000h

3e8000000000h

9b74eda7h

1351e8755h

ymax

407

NUMERICAL METHODS

plus
minus

qword 3f800000000h

qword 0bf800000000h

hundred

iten

maxchar

;

byte 64h

word 0ah

equ 8

.code

;taylorsin - derives a sin by using a infinite series. this is in radians.

;expects argument in quadword format, expects to return the same

;input must be x^2<1

;
taylorsin proc uses bx cx dx di si, argument:qword, sine:word

invoke polyeval, argument, sine, addr polysin, 10

ret

taylorsin endp

; ******

;polyeval- evaluates polynomials according to Horner's rule

;expects to be passed a pointer to a table of coefficients,

;a number to evaluate, and the degree of the polynomial

;the argument conforms to the quadword fixedpoint format

polyeval proc uses bx cx dx di si, argument

coeff:word, n:byte

:qword, output :word,

local

pushf

cld

sub

cf:qword, result[8]:word

ax, ax

408

TRANS.ASM AND TABLE.ASM

mov

lea

rep stosw

lea

mov

rep stosw

eval:

mov

sub

mov

shl
shl

shl

add

mov

mov

mov

mov

lea

add

adc

adc

adc

invoke

lea

lea

mov

rep movsw

si, word ptr result [4]

di, word ptr cf

cx,4

dec

jns

cx, 4

di, word ptr cf

;clear the accumulator
di, word ptr result

cx,8

si, word ptr coeff

bx, bx

bl, byte ptr n

bx, 1
bx, 1

bx, 1

si, bx

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

di, word ptr cf

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

;point at table

;point at coefficient of n-

;degree

;this is the beginning of our

;approximation

;multiply by eight for the

;quadword

;add new coefficient to
;accumulator

smul64, argument, cf, addr result

byte ptr n

eval

;decrement pointer

409

NUMERICAL METHODS

polyeval_exit:

mov

lea
mov

rep movsw

popf
ret

polyeval endp

di, word ptr output

si, word ptr cf

cx,4

;write to the output

;
;log using a table and linear interpolation

;logarithms of negative numbers require imaginary numbers

;natural logs can be derived by multiplying result by 2.3025

;
lgl0 proc uses bx cx si di, argument:word, logptr:word

local

pushf

std

rep

sub

mov

mov

add

stosw

mov si, word ptr logptr

add si, 6

mov di, word ptr argument

add di, 6

mov ax, word ptr [di]

or ax, ax

js exit

sub

mov

repe cmpsw

powers_of_two:byte

ax,ax

cx, 4
di, word ptr logptr

di, 6

ax, ax

cx, 4

;increment down for zero check

;to come

;clear log output

;point at output which is zero

;most significant word

;point at input

;most significant word

;we don't do negatives

;find the first nonzero, or

;return

410

TRANS.ASM AND TABLE.ASM

;zero

je exit

reposition_argument:

mov

add

mov

inc

mov

sub

shl

sub

shl

shl

shl

mov

rep movsw

si, word ptr argument

si, 6

di, si

cx

ax, 4

ax, cx

ax, 1

si, ax

ax, 1

ax, 1

ax, 1

bl, al

mov

mov

keep_shifting:
or

js
shl

rcl

rcl

rcl

inc

jmp

done_with_shift

mov

mov

sub

mov

shl

add

mov

si, word ptr argument

ax, word ptr [si][6]

ax, ax

done_with_shift

word ptr [si][0], 1

word ptr [si][2], 1

word ptr [si][4], 1

ax, 1

bl

short keep-shifting

word ptr [si][6],ax

byte ptr powers_of_two, bl

bx, bx

bl, ah

bl, 1

;shift so msb is a one

;point at input

;most significant word
;shift the one eight times

;make this a one

;determine number of emptywords

;words to bytes

;point to first nonzero word

;multiply by eight

;shift

;shift until msb is a one

;count shifts as powers of two

;normalize

;ax will be a pointer

;will point into 127 entry table

;get rid of top bit to form

;actual pointer

bx, offset word ptr logl0_tbl
;linear interpolation

ax, word ptr [bx] ;get first approximation (floor)

411

NUMERICAL METHODS

inc

inc

mov

sub

xchg

mul

mov

sub

add

get_power:

mov

sub

sub

shl

shl

lea

add

sub

add

adc

mov

mov

mov

sub

mov

mov

exit:

popf
ret

lgl0 endp

412

bx

bx

bx, word ptr [bx]

bx, ax
ax, bx

byte ptr [si][6]

al, ah

ah, ah

ax, bx

bl, 31

bl, byte ptr powers_of_two

bh, bh

bx,1

bx,1

si, word ptr logl0_power

si, bx

dx, dx

ax, word ptr [si]

dx, word ptr [si][2]

di, word ptr logptr

word ptr [di][2],ax

word ptr [di][4],dx

cx,cx

word ptr [di],cx

word ptr [di][6],cx

;and following approximation

;(ceil)

;find difference

;multiply by fraction bits

;drop fractional places

;add interpolated value to

;original

;need to correct for power

;of two

;point into this table

;add log of power

;write result to qword fixed

;point

TRANS.ASM AND TABLE.ASM

;sqrt using a table and linear interpolation

;this method has real problems as the powers increase

sqrtt proc uses bx cx si di, argument:word, sqrptr:word

local powers-of_two:byte

pushf
std ;increment up

sub ax, ax

mov cx, 4

mov di, word ptr sqrptr ;clear sqrt output

add di, 6

rep stosw

mov

add

mov

add

mov

or

js

si, word ptr sqrptr

si, 6

di, word ptr argument

di, 6

ax, word ptr [di]

ax, ax

exit

;clear sqrt output

;pointer to input

;we don't do negatives

sub

mov

ax, ax

cx, 4

repe cmpsw

je

;find the first nonzero, or

;return

;zero

exit

reposition_argument:

mov si, word ptr argument

add si, 6

mov di, si

inc cx

mov ax, 4

sub ax, cx

shl ax, 1

sub si, ax

shl ax, 1

;shift the one eight times

;this was a zero

;determine number of emptywords

;bytes to words

;point to first nonzero word

413

NUMERICAL METHODS

shl

shl

mov

rep movsw

mov

mov
keep_shifting:

or

js
shl

rcl

rcl

rcl

inc

jmp

done_with_shift

mov

mov

sub

mov

shl

add

mov ax, word ptr [bx]
inc bx

inc bx
mov bx, word ptr [bx]

sub bx, ax

xchg ax, bx

mul

mov

sub

add

mov

sub

shl

ax, 1

ax, 1 ;multiply by eight
bl, al

si, word ptr argument

ax, word ptr [si][6]

;shift

ax, ax

done_with_shift

word ptr [si][0], 1

word ptr [si][2], 1

word ptr [si][4], 1
ax, 1

bl

short keep_shifting

word ptr [si][6],ax

byte ptr powers_of_two, bl

bx, bx

bl, ah

bl, 1

bx, offset word ptr sqr_tbl

byte ptr [si][6]
al, ah
ah, ah

ax, bx

bl, byte ptr powers_of_two

bh, bh

bx,1

;normalize

linear interpolation

;multiply by fraction bits

;factor out fractional places

;add interpolated value to

;original

414

TRANS.ASM AND TABLE.ASM

lea

add

sub

mul

mov

mov

mov

sub

mov

mov

exit:

popf
ret

si, word ptr sqr_power

si, bx

dx, dx

word ptr [si]

di, word ptr sqrptr

word ptr [di][2],ax

word ptr [di][4],dx
cx,cx

word ptr [di],cx

word ptr [di][6],cx

;multiply by inverse of root

sqrtt endp

;
;sines and cosines using a table and linear interpolation

;(degrees)

dcsin proc uses bx cx si di, argument:word, cs_ptr:word, cs_flag:byte

local powers_of_two:byte, sign:byte

pushf

std ;increment down

sub

mov

mov

mov

add

rep stosw

add

mov

mov

add

mov

ax, ax

byte ptr sign, al

cx,4

di, word ptr cs_ptr

di,6

;clear sign flag

;clear sin/cos output

di, 8

si, di

di, word ptr argument

di, 6

cx, 4

;first check arguments for zero

;reset pointer

415

NUMERICAL METHODS

repe cmpsw

je

jmp

zero-exit

prepare-arguments

zero_exit:

cmp
jne

jmp
cos_0:

inc

inc

add

dec

mov

jmp

byte ptr cs_flag, al
cos_0

exit

ax

ax

si,ax

ax

word ptr [si][4],ax
exit

prepare_arguments:

mov si, word ptr argument
mov ax, word ptr [si][4]

sub dx, dx

mov cx, 360
idiv cx

or dx, dx

jns quadrant

add dx, 360

quadrant:

mov

mov

sub

mov

div

switch:

cmp

bx, dx

ax, dx

dx, dx

cx, 90

cx

byte ptr cs_flag, 0

;find the first nonzero, or
;return

;ax is zero

;sin(0) = 0

;point di at base of output

;make ax a one

;cos(0) = 1

;one

;get integer portion of angle

;modular arithmetic to reduce

;angle
;we want the remainder

;angle has gotta be positive for

;this

;to work

;we will use this to compute the

;value of the function

;put angle in ax

;and this to compute the sign

;ax holds an index to the

;quadrant

;what do we want

416

je

cos_range:

cmp

jg

jmp

cchk_180:

cmp

jg
not

neg
add

jmp

cchk_270:

cmp

jg
not

sub

jmp

clast_90:

neg
add

jmp

do_sin:

cmp

jg

neg
add

jmp

schk_180:

cmp

jg

do-sin

ax, 0

cchk_180

walk_up

ax, 1

cchk_270

byte ptr sign

bx

bx, 180

walk_back

ax, 2

clast_90

byte ptr sign

bx, 180

walk-up

bx

bx, 360

walk_back

ax, 0

schk_180

bx

bx, 90

walk_back

ax, 1

schk_270

TRANS.ASM AND TABLE.ASM

;use incrementing method

;set sign flag

;use decrementing method

;set sign flag

;find the range of the argument

;use decrementing method

417

NUMERICAL METHODS

sub

jmp

bx, 90

walk_up

schk_270:

cmp

jg
not

neg
add

jmp

ax, 2

slast_90

byte ptr sign

bx

bx, 270

walk_back

slast_90:

not

sub

jmp
:

;

;
walk_up:

shl

byte ptr sign

bx, 270

walk_up

bx, 1

add

mov

mov

or

je

bx, offset word ptr sine_tbl

dx, word ptr [bx]

ax, word ptr [si][2]

ax, ax

write_result

inc bx

inc bx

mov cx, dx

mov ax, word ptr [bx]

sub ax, dx

jnc pos_res0

neg ax

mul word ptr [si][2]

not dx

neg ax

jc leave_walk_up

inc dx

;use incrementing method

;set sign flag

;set sign flag

;use angle to point into the

;table

;get cos/sine of angle

;get fraction bits

;linear interpolation

;get next approximation

;find difference

;multiply by fraction bits

418

TRANS.ASM AND TABLE.ASM

jmp
pos_res0:

mul

leave_walk_up:

add

leave-walk-up

word ptr [si][2]

dx, cx ;by fraction bits and addin

;angle

jmp write_result

walk_back:

shl

add

mov

mov

or

je

bx, 1 ;point into table

bx, offset word ptr sine_tbl

dx, word ptr [bx] ;get cos/sine of angle

ax, word ptr [si][2] ;get fraction bits

ax, ax

write_result

dec

dec

mov

mov

sub

jnc

neg
mul

not

neg

jc
inc

jmp
pos_res1:

mul

leave_walk_back:

add

write_result:

mov

bx

bx

cx, dx

ax, word ptr [bx]

ax, dx

pos_res1

ax

word ptr [si][2]

dx

ax

leave-walk-back

dx

leave-walk-back

word ptr [si][2]

dx, cx ;by fraction bits and add in

;get next incremental cos/sine

;get difference

;multiply by fraction bits

;multiply by fraction bits

;angle

mov

mov

di, word ptr cs_ptr

word ptr [di], ax

word ptr [di][2], dx

;stuff result into variable

;setup output for qword fixed

;point

419

NUMERICAL METHODS

sub ax, ax

mov

mov

cmp
je
not

not

not

neg

jc
add

adc

adc

exit:

popf
ret

word ptr [di][4], ax

word ptr [di][6], ax

byte ptr sign, al
exit

word ptr [di][6]

word ptr [di][4]

word ptr [di][2]

word ptr [di][0]

exit

word ptr [di][2],1

word ptr [di][4],ax

word ptr [di][6],ax

;radix point between the double

;words

dcsin endp

;
; ******

;gets exponent of floating point word

;
fr_xp proc uses si di, fp0:dword, fp1:word, exptr:word

local flp0:qword, flp1:qword

pushf

cld

xor ax,ax
lea di,word ptr flp0
mov cx,4

rep stosw

lea si,word ptr fp0

420

TRANS.ASM AND TABLE.ASM

rep

rep

lea
mov

movsw

di,word ptr flp0[2]

cx,2

invoke

lea

mov

mov

movsw

frxp, flp0, addr flp1, exptr

si,word ptr flp1[2]

di,word ptr fp1

cx,2

popf
ret

fr_xp endp

;frxp performs an operation similar to the c function frexp. used

;for floating point math routines.

;returns the exponent -bias of a floating point number.

;it does not convert to floating point first, but expects a single

;precision number on the stack.

frxp proc uses di, float:qword, fraction:word, exptr:word

pushf

cld
mov

mov

mov

sub

or

or

je
shl

rcl

sub

di, word ptr exptr

ax, word ptr float[4]

dx, word ptr float[2]

cx, cx

cx, ax

cx, dx

make_it_zero

ax, 1

cl, 1

ah, 7eh

;assign pointer to exponent

;get upper word of float

;it is a zero

;save the sign

;subtract bias to place float

;.5<=x<1

mov byte ptr [di],ah

421

NUMERICAL METHODS

mov
shr
rcr
mov
mov
lea
mov

rep movsw
frxp_exit:

popf
ret

make_it_zero:
sub
mov
mov

rep stosw
jmp

frxp endp

ah, 7eh
cl, 1
ax, 1
word ptr float[4], ax
di, word ptr fraction
si, word ptr float
cx, 4

ax, ax
byte ptr [di], al
di, word ptr fraction

frxp_exit

;replace the sign

; ******

;creates float from fraction and exponent
;
ld_xp proc uses si di, fp0:dword, power:word, exp:byte

local flp0:qword, result:qword

pushf
cld

xor ax,ax

lea di,word ptr flp0
mov cx,4

rep stosw

lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2

rep movsw

422

TRANS.ASM AND TABLE.ASM

invoke

lea

ldxp, flp0, addr result, exp

mov

mov

si,word ptr result[2]

di,word ptr power

cx,2

rep movsw

popf
ret

ld_xp endp

;ldxp is similar to ldexp in c, it is used for math functions

;takes from the stack, an input float(extended and returns a pointer to

;a value to

;the power of two

;passed with it.

ldxp proc

mov ax, word ptr float[4]

mov dx, word ptr float[2]

sub cx, cx

or cx, ax
or cx, dx

je return_zero

shl ax, 1

rcl cl, 1

mov ah, 7eh

add ah, byte ptr exp

jc ld_overflow

shr

rcr

mov

uses di, float:qword, power:word, exp:byte

;get upper word of float

;extended bits are not checked

;save the sign

cl, 1

word ptr ax, 1

word ptr float[4], ax

;return the sign

;position exponent

ldxp_exit:

423

NUMERICAL METHODS

mov

mov
lea

rep movsw

ret

ret

ld_overflow:

mov

sub

mov

mov

jmp

return_zero:

sub

mov

mov

rep stosw

jmp

ldxp endp

cx, 4

di, word ptr power

si, word ptr float

word ptr float[4], 7f80h

ax, ax

word ptr float[2], ax

word ptr float[0], ax
ldxp_exit

ax, ax

di, word ptr power

cx, 4

ldxp_exit

;
; ******

; FX_SQR

;accepts integers.

;Remember that the powers follow the powers of two, i.e., the root of a double
word

;is a word, the root of a word is a byte, the root of a byte is a nibble, etc.

;new_estimate = (radicand/last_estimate+last_estimate)/2,last_estimate=
new_estimate.

fx_sqr proc uses bx cx dx di si, radicand:dword, root:word

local estimate:word, cntr:byte

byte ptr cntr, 16

bx, bx ;to test radicand

424

TRANS.ASM AND TABLE.ASM

mov

mov

or

js

je

jmp
zero_exit:

or

jne

sign_exit:

stc

sub

mov

jmp

find_root:

sub

jc

find_root1:

or

je
shr

rcr

jmp

fits:

mov

sub
mov

div

mov

mov

div

mov

add

ax, word ptr radicand

dx, word ptr radicand[2]

dx, dx

sign_exit

zero_exit

find_root

ax, ax

find_root

ax, ax

dx, ax

root_exit

byte ptr cntr, 1

root-exit

dx, dx
fits

dx, 1

ax, 1

find_root1

word ptr estimate, ax

dx, dx
ax, word ptr radicand[2]

word ptr estimate

bx, ax

ax, word ptr radicand

word ptr estimate

dx, bx

ax, word ptr estimate

;not zero

;no negatives or zeros

;indicate error in the operation

;will exit with carry set and an

;approximate root

;must be zero
;some kind of estimate

;cannot have a root greater

;than 16 bits foe

;a 32 bit radicand!

;store first estimate of root

;save quotient from division of

;upperword

;divide lower word

;concatenate quotients

;(radicand/estimate+estimate)/

;2

425

NUMERICAL METHODS

adc dx, 0

shr dx, 1

rcr ax, 1

or

jne

cmp
jne

clc

dx, dx

find_root

ax, word ptr estimate

find_root

;to prevent any modular aliasing

;is the estimate still changing?

;clear the carry to indicate

;success

root_exit:

mov

mov

mov

ret

fx_sqr endp

di, word ptr root

word ptr [di], ax

word ptr [di][2], dx

;
; ******

school_sqr

;accepts integers
school_sqr proc uses bx cx dx di si, radicand:dword, root:word

local

sub

mov

mov

or

js

je

jmp
zero_exit:

or

jne

sign_exit:

sub

estimate:qword, bits:byte

bx, bx

ax, word ptr radicand

dx, word ptr radicand[2]

dx, dx

sign_exit

zero_exit

setup

ax, ax

setup

ax, ax

;not zero

;no negatives or zeros

;indicate error in the operation

;can't do negatives

426

TRANS.ASM AND TABLE.ASM

mov

stc

jmp

setup:

mov
mov

mov

sub

mov

mov

mov

mov

mov

findroot:

shl

rcl

rcl

rcl

shl

rcl

rcl

rcl

shl

rcl

mov

mov

shl

rcl

add

adc

subtract_root:

sub

sbb

jnc

dx, ax

root_exit

byte ptr bits, 16

word ptr estimate, ax

word ptr estimate[2], dx

ax, ax

word ptr estimate[4], ax

word ptr estimate[6], ax

bx, ax

cx, ax

dx, ax

word ptr estimate, 1

word ptr estimate[2], 1

word ptr estimate[4], 1

word ptr estimate[6], 1

word ptr estimate, 1

word ptr estimate[2], 1

word ptr estimate[4], 1

word ptr estimate[6], 1

ax, 1

bx, 1

cx, ax

dx, bx

cx, 1

dx, 1

cx, 1

dx, 0

word ptr estimate[4], cx

word ptr estimate[6], dx

r_plus_one

;zero for fail

;root

;intermediate

;double shift radicand

;shift root

;root*2

;+l

;accumulator-2*root+l

427

NUMERICAL METHODS

add word ptr estimate[4], cx

adc word ptr estimate[6], dx

jmp continue_loop

r-plus-one:

add ax, 1

adc bx, 0

continue_loop:

dec byte ptr bits

jne findroot

clc

root_exit:

mov di, word ptr root

mov word ptr [di], ax

mov word ptr [di][2], bx

ret

school_sqr endp

; ******

;fp-cos

fp_cos proc uses si di, fp0:dword, fp1:word

local flp0:qword, result:qword, sign:byte

pushf

cld

xor

lea

mov

ax,ax
di,word ptr flp0

cx,4

rep stosw

;r+=l

lea

lea

mov

rep movsw

si,word ptr fp0

di,word ptr flp0[2]

cx,2

428

TRANS.ASM AND TABLE.ASM

sub

mov

al, al

byte ptr sign, al

invoke

mov

or

jns

not

fladd, flp0, half_pi, addr flp0

ax, word ptr flp0[4]

ax, ax

positive

byte ptr sign

invoke flsin, flp0, addr result, sign

mov

mov

mov

mov

mov

ax, word ptr result[2]

dx, word ptr result[4]

di, word ptr fp1

word ptr [di], ax

word ptr [di][2], dx

popf
ret

fp_cos endp

;
;******

;fp_sin

;

;
fp_sin proc uses si di, fp0:dword, fp1:word

local

pushf

cld

xor

lea

mov

rep stosw

flp0:qword, result:qword, sign:byte

ax,ax
di,word ptr flp0

cx,4

;is it less than zero?

;positive:

429

NUMERICAL METHODS

lea

lea
mov

rep movsw

sub al, al
mov byte ptr sign, al

mov ax, word ptr flp0[4]
or ax, ax

jns positive

not byte ptr sign

invoke

invoke

mov

mov

mov

mov

mov

popf
ret

fp_sinendp

;
;******

;flsin

;

flsin proc

local

si,word ptr fp0

di,word ptr flp0[2]
cx,2

;is it less than zero?

;positive:

flsin, flp0, addr result, sign

round, result, addr result

ax, word ptr result[2]

dx, word ptr result[4]

di, word ptr fp1

word ptr [di], ax

word ptr [di][2], dx

uses bx cx dx si di, fp0:qword, fp1:word, sign:byte

result:qword, temp0:qword, temp1:qword,

y:qword, u:qword

pushf

cld

430

TRANS.ASM AND TABLE.ASM

invoke flcomp, fp0, ymax

cmp

jl

ax, 1

absx

error_exit:

lea

sub

mov

rep stosw

jmp

di, word ptr result

ax, ax

cx, 4

writeout

absx:

mov ax, word ptr fp0[4]

or ax, ax

jns deconstruct_exponent

and ax, 7fffh

mov word ptr fp0[4], ax

;error, entry value too

;large

;make absolute

deconstruct_exponent:

invoke flmul, fp0, one_over_pi, addr result
;x/pi

invoke intrnd, result, addr temp0
;intrnd(x/pi)

mov

mov

mov

and

shl

mov

sub

sub

ax, word ptr temp0[2]

dx,word ptr temp0[4]

cx, dx

cx, 7f80h

cx, 1

cl, ch

ch, ch

cl, 7fh

;determine if integerhas

;odd or even

;number of bits

;get rid of sign and

;mantissa portion

;subtract bias (-1) from
;exponent

js not-odd

431

NUMERICAL METHODS

inc

or

je
extract_int:

shl

rcl
rcl

loop

test

je
not

not_odd:

xpi:

invoke

invoke

invoke flmul, temp0, sincos[8*1], addr temp1

invoke

chk_eps:
invoke

invoke

or

jns

lea

sub

mov

rep stosw

jmp

cl

cl, cl

xpi

ax, 1

dx, 1
word ptr bx, 1

extract_int

dh, 1

xpi
byte ptr sign

;position as fixedpoint

;extended precision multiply

;by pi
flmul, sincos[8*0], temp0, addr result

;intrnd(x/pi)*c1

flsub, fp0, result, addr result

;|x|-intrnd(x/pi)

;intrnd(x/pi)*c2

flsub, result, temp1, addry

;y

flabs, y, addr temp0

flcomp, temp0, eps

ax, ax

r_g
di, word ptr result

ax, ax

cx, 4

;is the argument less than eps?

writeout

432

TRANS.ASM AND TABLE.ASM

r_g:

invoke

invoke

invoke

invoke

invoke

invoke

invoke

invoke

fxr:

invoke

invoke

handle_sign:
cmp

jne

xor

writeout:

mov

lea

mov

rep movsw

flsin_exit:

flmul, y, y, addr u

;evaluater(g)

;((r4*g+r3)*g+r2)*g+rl)*g

flmul, u, sincos[8*5], addr result

fladd, sincos[8*4], result, addr result

flmul, u, result, addr result

fladd, sincos[8*3], result, addr result

flmul, u, result, addr result

fladd, sincos[8*2], result, addr result

flmul, u, result, addr result

;result == z

flmul, result, y, addr result

fladd, result, y, addr result

;r*r+f

byte ptr sign, -1

writeout

word ptr result[4], 8000h

;result * sign

di, word ptr fp1

si, word ptr result

cx, 4

popf
ret

flsin endp

433

NUMERICAL METHODS

;
; ******
; fp_tan

;
fp_tan proc

local

pushf
cld
xor
lea
mov

rep stosw

lea
lea
mov

rep movsw

invoke

mov
mov
mov
mov
mov

popf
ret

fp_tanendp
;
;******

;fltancot

uses si di, fp0:dword, fp1:word

flp0:qword, result:qword

ax,ax
di,word ptr flp0
cx,4

si,word ptr fp0
di,word ptr flp0[2]
cx,2

fltancot, flp0, addr result

ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fp1
word ptr [di], ax
word ptr [di][2], dx

434

TRANS.ASM AND TABLE.ASM

fltancot proc uses bx cx dx si di, fp0:qword, fp1:word

local

pushf

cld

sub

mov

lea

mov

rep stosw

lea

mov

rep stosw

shl
rcl

shr

invoke
cmp

rep

jl
lea

sub

mov

stosw

jmp

continue:

shl

shr

rcr

flp0:qword, result:qword, temp0:qword, temp1:qword,

sign:byte, xnum:qword, xden:qword, xn:qword, f:qword,

g:qword, fxpg:qword, qg:qword

ax, ax

byte ptr sign, al

di, word ptr g

cx, 4

;clear the sign flag

;place input argument in

;variable

di, word ptr f

cx, 4

;place input argument in

;variable

word ptr fp0[4], 1

byte ptr sign, 1

word ptr fp0[4], 1

flcomp, fp0, ymax

ax, 1

continue

di, word ptr result

ax, ax

cx, 4

fltancot_exit

word ptr fp0[4], 1

byte ptr sign, 1

word ptr fp0[4], 1

;absolute value for comparison

;error,entry value too large

;restore sign

435

NUMERICAL METHODS

invoke

invoke intrnd, result, addr xn

mov

mov

mov

and

shl

mov

sub

or

je
sub

js
inc

or

je
and

or

extract_int:

shl

rcl

rcl

loop

test

je
mov

not_odd:

invoke

invoke

flmul, fp0, two-over-pi, addr result

;x*2/pi

;intmd(x*2/pi)

ax, word ptr xn[2]

dx, word ptr xn[4]

cx, dx

cx, 7f80h

cx, 1

cl, ch

ch, ch

cl, cl

not-odd

cl, 7fh

;determine if integer has odd

;or even

;number of bits

;get rid of sign and

;mantissa portion

;subtract bias (-1) from
;exponent

not-odd
cl

cl, cl

not-odd

dx, 7fh

dx, 80h

ax, 1

dx, 1

word ptr bx, 1

extract_int

dh, 1

not_odd

byte ptr sign, -1

;restore hidden bit

;position as fixedpoint

flmul, xn, tancot[8*0], addr temp0

flsub, fp0, temp0, addr temp0
;(x-xn*c1)

invoke flmul, xn, tancot[8*1], addr temp1

436

TRANS.ASM AND TABLE.ASM

;xn*c2

invoke flsub, temp0, temp1, addr f

;(x-xn*c1)-xn*c2

invoke

invoke

or

jns

lea

lea

mov

rep movsw

lea

lea

mov

rep movsw

jmp

compute:

invoke

invoke

invoke

invoke

invoke flmul, g, tancot[8*6], addr temp0
invoke fladd, temp0, tancot[8*5], addr temp0

invoke flmul, g, temp0, addr temp0

invoke fladd,temp0,tancot[8*4], addr qg

lea
lea

mov

rep movsw

lea

flabs, f, addr temp1

flcomp, temp1, eps

ax, ax

compute

si, word ptr f

di, word ptr xnum

cx, 4

si, word ptr one

di, word ptr xden

cx, 4

compute-result

;|f|<eps?

;f->xnum

;1.0->xden

flmul, f, f, addr g ;f*f->g

flmul, g, tancot[8*3], addr temp0

flmul, f, temp0, addr temp0

fladd, temp0, f, addr fxpg

;fxpg=(p2*g+pl)*g*f

;+ f

;qg = (q2 * g + q1) * g +q0

si, word ptr fxpg
di, word ptr xnum

cx, 4

si, word ptr qg

437

NUMERICAL METHODS

lea
mov

rep movsw

compute_result:

mov

or

je
xor

jmp

xden_xnum:

invoke

jmp

xnum_xden:

invoke

fltancot_exit:

popf
ret

fltancot endp

di, word ptr xden

cx, 4

al, byte ptr sign

al, al

xnum_xden

word ptr xnum[4],8000h
short xden_xnum

;even or odd

;make it negative

fldiv, xden, xnum, fp1

fltancot_exit

fldiv, xnum, xden, fpl

;
;******

;fp_sqr

fp_sqr proc uses si di, fp0:dword, fp1:word

local flp0:qword, result:qword

pushf

cld

xor

lea
ax,ax
di,word ptr flp0

438

mov

stosw

lea

lea

mov

movsw

invoke

invoke

mov

mov

mov

mov

mov

popf
ret

fp_sqr endp

;

; ******

; flsqr

flsqr proc

local

pushf

cld

lea

TRANS.ASM AND TABLE.ASM

cx,4

si,word ptr fp0

di,word ptr flp0[2]

cx,2

flsqr, flp0, addr result

round, result, addr result

ax, word ptr result[2]

dx, word ptr result[4]
di, word ptr fp1

word ptr [di], ax

word ptr [di][2], dx

uses bx cx dx si di, fp0:qword, fp1:word

result:qword, temp0:qword, temp1:qword, exp:byte,

xn:qword, f:qword, yO:qword, m:byte

di, word ptr xn

439

NUMERICAL METHODS

s u b

mov

rep stosw

invoke

cmp

je

cmp

je
mov

sub

mov

rep stosw

not

and
mov

jmp

got_result:

mov

sub

mov

rep stosw

jmp

ok:

invoke

invoke
invoke

heron:

invoke

invoke
mov

shl

sub

shr

ax, ax

cx, 4

flcomp, fp0, zero

ax, 1

ok

ax, 0

got-result

di, word ptr fp1

ax, ax

cx, 4

ax

ax, 7f80h
word ptr result[4],ax

flsqr_exit

;make it plus infinity

di, word ptr fp1

ax, ax

cx, 4

flsqr_exit

;error, entry value too large

frxp, fp0, addr f, addr exp ;get exponent

flmul, f, y0b, addr temp0

fladd, temp0, y0a, addry

;two passes through

fldiv, f, y0, addr temp0 ;(x/r+r)/2 is all we need

fladd, y0, temp0, addr temp0
ax, word ptr temp0[4]

ax, 1

ah, 1 ;should always be safe

ax, 1

word ptr temp0[4], ax ;subtracts one half bymov

440

TRANS.ASM AND TABLE.ASM

;decrementing the exponent

;one
invoke fldiv, f, temp0, addr temp1

invoke fladd, temp0, temp1, addr temp0
mov ax, word ptr temp0[4]

shl ax, 1

sub ah, 1

shr ax, 1

mov word ptr y0[4], ax

mov ax, word ptr temp0[2]

;should always be safe

;subtracts one half by

;decrementing the exponent

;one
mov word ptr y0[2], ax

mov ax, word ptr temp0

mov word ptr y0, ax

sub ax, ax

mov word ptr y0[6], ax

chk_n:

mov al, byte ptr exp
mov cl, al

sar al, 1 ;arithmetic shift
jnc evn

odd:

invoke flmul, y0, sqrt_half, addr y0 ;adjustment for uneven

;exponent

mov al, cl

inc al

sar al, 1

evn:

mov cl, al

power:

mov ax, word ptr y0[4]

shl ax, 1

add ah, cl

;n/2->m

write_result:

shr

mov

ax, 1

word ptr y0[4], ax

441

NUMERICAL METHODS

lea si, word ptr y0
mov di, word ptr fp1

mov cx, 4

rep movsw

flsqr_exit:

popf
ret

flsqr endp

;
;******

;lgb - log to base 2
;input argument must be be l<= x < 2

;multiply the result by .301029995664 (4d104d42h) to convert to base 10

;higher powers of 2 can be derivedby counting the number of shifts required

;to bring the number between 1 and 2, calculating that lgb then adding, as the

;integer portion, the number of shifts as that is the power of the number.

lgb proc

local

di,word ptr result
ax,ax

c x , 4

rep

mov

sub

mov

stosw
inc

mov

mov
mov

mov

shr

rcr

rcr

uses bx cx dx di si, argument:qword, result:word

k:byte, z:qword

;make y zero

al

byte ptr k, al ;make k == 1

ax, word ptr argument

bx, word ptr argument[2]

dx, word ptr argument[4]

dx, 1

bx, 1

ax, 1

;z=argument/2

;scale argument for z

442

TRANS.ASM AND TABLE.ASM

lea di, word ptr z

mov word ptr [di], ax

mov word ptr [di][2], bx

mov word ptr [di][4], dx

xl:

mov
mov
mov

sub
cmp

jne
cmp

jne

inc

cmp
jne

jmp

not_done_yet:

sub

sbb

jc

reduce:

mov

mov

mov

sub

mov

shiftk:

shr

rcr

rcr

loop

ax, word ptr argument

bx, word ptr argument[2]

dx, word ptr argument [4] ;argument between 1.0 and 2.0

cx, cx

ax, cx

not_done_yet

bx, ax

not_done_yet

cx

dx, ax

not_done_yet

;test for 1.0

logb_exit

ax, word ptr z

bx, word ptr z[2]

shift

;x-z<l?

word ptr argument, ax :x<-x-z

word ptr argument[2], bx

word ptr argument[4], dx

cx, cx

cl, byte ptr k

dx, 1

bx, 1
ax, 1

shiftk

word ptr z, axmov ;z<-argument<<k

443

NUMERICAL METHODS

mov

mov
word ptr z[2], bx

word ptr z[4], dx

sub

mov

cmp

ja

bx, bx

bl, byte ptr k

bl, 20

logb_exit

dec bl
shl bx, 1

shl bx, 1
shl bx, 1

lea

mov
mov

mov

mov

add

adc

adc

jmp

si, word ptr log2

ax, word ptr [si][bx]

cx, word ptr [si][bx][2]

dx, word ptr [si][bx][4]

di, word ptr result

word ptr [di], ax

word ptr [di][2], cx

word ptr [di][4], dx
xl

shift:

shr

rcr
rcr

word ptr z[4], 1

word ptr z[2], 1
word ptr z, 1

inc byte ptr k

jmp xl

logb_exit:

ret

lgb endp

;
; ******

;point into table of qwords

;get log of power

;pwrb - base 10 to power

444

TRANS.ASM AND TABLE.ASM

;input argument must be be l<= x <2

pwrb proc uses bx cx dx di si, argument:qword, result:word

local k:byte, z:qword

mov

sub

mov

rep stosw

inc

stosw

dec

stosw

mov

x0:

mov
mov

mov

di, word ptr result

ax, ax

cx, 2

ax

ax

byte ptr k, al

ax, word ptr argument

cx, word ptr argument[2]

dx, word ptr argument[4] ;argument 0<= x < 1

sub

cmp
jne

cmp
jne

cmp
jne

bx, bx

ax, bx

not_done_yet

cx, bx

not_done_yet

dx, bx

not_done_yet

jmp pwrb_exit

not_done_yet

sub

mov
cmp

ja

bx, bx

bl, byte ptr k

bl, 20h

pwrb_exit

shl bx, 1

shl bx, 1

shl bx, 1

lea si, word ptr power10

;y

;make y one

;make k = 0

;testfor 0.0

;point into table of qwords

445

NUMERICAL METHODS

cmp

jb

ja
cmp

jb

ja

cmp

jb

reduce:

sub

sbb

sbb

mov

mov

mov

sub

mov

mov

mov

mov

mov
cmp

je
shiftk:

shr

rcr
rcr

loop

no_shiftk:

add

adc

adc

dx, word ptr [si][bx][4]

increase

reduce

cx, word ptr [si][bx][2]

increase

reduce

ax, word ptr [si][bx]

increase

ax, word ptr [si][bx]

cx, word ptr [si][bx][2]

dx, word ptr [si][bx][4]

word ptr argument, ax

word ptr argument[2], cx

word ptr argument[4], dx

cx, cx

cl, byte ptr k

si, word ptr result

ax, word ptr [si]

bx, word ptr [si][2]

dx, word ptr [si][4]

cl, 0

no_shiftk

dx, 1

bx, 1
ax, 1

shiftk

word ptr [si], ax

word ptr [si][2], bx

word ptr [si][4], dx

;x<-x-z

;z<-argument<<k

jmp x0

increase:

446

inc

jmp

TRANS.ASM AND TABLE.ASM

byte ptr k

x0

pwrb_exit:

ret

pwb endp

;******

;circular- implementation of the circular routine, a subset of the CORDIC devices

;

;
circular

rep

rep

rep

local

lea

mov
mov

movsw

lea

mov

mov

movsw

lea

mov

mov

movsw

sub
mov

proc uses bx cx dx di si, x:word, y:word, z:word

smallx:qword, smally:qword, smallz:qword, i:byte,

shifter:word

di, word ptr smallx

si, word ptr x

cx, 4

di, word ptr smally

si, word ptry

cx, 4

di, word ptr smallz

si, word ptr z

cx, 4

ax, ax

byte ptr i, al ;i=0

447

NUMERICAL METHODS

mov

mov
bx, ax

cx, ax

twist:

sub

mov

mov

ax, ax

al, i

word ptr shifter, ax

mov si, word ptr x

mov ax, word ptr [si]
mov bx, word ptr [si][2]

mov cx, word ptr [si][4]
mov dx, word ptr [si][6]

cmp

je
shiftx:

sar

rcr

rcr
rcr

dec

jnz

load_smallx:
mov

mov

mov

mov

word ptr shifter, 0

load_smallx

dx, 1
cx, 1

bx, 1

ax, 1

word ptr shifter

shiftx

sub

mov

mov

mov

mov

mov

mov

mov

cmp

word ptr smallx, ax

word ptr smallx[2], bx

word ptr smallx[4], cx

word ptr smallx[6], dx

ax, ax

al, i
word ptr shifter, ax

si, word ptr y

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

word ptr shifter, 0

;multiply by 2ˆ-i

;note the arithmetic shift

;for sign extension

;x=x>>i

;multiply by 2^-i

448

je
shifty:

sar

rcr

rcr

rcr

dec

jnz

load_smally:

mov

mov

mov

mov

load_smally

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shifty

word ptr smally, ax

word ptr smally[2], bx

word ptr smally[4], cx

word ptr smally[6], dx

get_atan:

sub

mov

shl

shl

lea

mov
mov

bx, bx

bl, i

bx, 1

bx, 1

si, word ptr atan_array

ax, word ptr [si][bx]

dx, word ptr [si][bx] [2]

mov word ptr smallz, ax

mov word ptr smallz[2], dx

sub ax, ax

mov word ptr smallz[4], ax

mov word ptr smallz[6], ax

TRANS.ASM AND TABLE.ASM

test_Z:

mov

mov

or

jns

si, word ptr z

ax, word ptr [si][6]

ax, ax
positive

;note the arithmetic shift

;for sign extension

;y=Y>>i

;got to point into a dword table

;z=atan[i]

negative:

mov

mov

mov

mov

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

449

NUMERICAL METHODS

mov

add

adc

adc

adc

mov

mov

mov

mov

mov

sub

sbb

sbb

sbb

mov

mov

mov

mov

mov

add

adc

adc

adc

jmp

positive:

mov

mov

mov

mov

mov

sub

sbb

di, word ptr x
word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, word ptr z

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

for_next

ax, word ptr smally

bx, word ptr smally [2]

cx, word ptr smally[4]

dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

;x += y

;Y -= x

;x += y

450

sbb

sbb

mov

mov

mov

mov

mov

add

adc

adc

adc

mov

mov

mov

mov

mov

sub

sbb

sbb

sbb

for_next:

inc

cmp

ja

jmp

circular-exit

ret

circular endp

;
;******

word ptr [di][4], cx
word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [dil[6], dx

TRANS.ASM AND TABLE.ASM

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, word ptr z
word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

byte ptr i

byte ptr i, 32

circular-exit

twist

;x -= y

;Y += x

;x -= y

;bump exponent

;icirc- implementation of the inverse circular routine, a subset of the cordic
;devices

;

451

NUMERICAL METHODS

icirc proc uses bx cx dx di si, x:word, y:word, z:word

rep

rep

rep

local

lea

mov

mov

movsw

lea

mov

mov

movsw

lea

mov

mov

movsw

sub

mov

mov

mov

twist:

sub

mov

mov

mov

mov

mov

mov

mov

452

smallx:qword, smally:qword, smallz:qword, i:byte,

shifter:word

di, word ptr smallx

si, word ptr x

cx, 4

di, word ptr smally

si, word ptry

cx, 4

di, word ptr smallz

si, word ptr z

cx, 4

ax, ax

byte ptr i, al ;i=0

bx, ax

cx, ax

ax, ax

al, i

word ptr shifter, ax

si, word ptr x

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

word ptr shifter, 0

;multiply by2ˆ-i

cmp

TRANS.ASM AND TABLE.ASM

je
shiftx:

sar

rcr

rcr

rcr

dec

jnz

load_smallx:

mov

mov

mov
mov

sub

mov

mov

mov

mov
mov
mov

mov

cmp

je
shifty:

sar

rcr

rcr

rcr
dec

jnz

load_smally:

mov

mov

load_smallx

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shiftx

word ptr smallx, ax

word ptr smallx[2], bx

word ptr smallx[4], cx
word ptr smallx[6], dx

ax, ax

al, i

word ptr shifter, ax

si, word ptry

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

word ptr shifter, 0

load_smally

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shifty

mov

mov

word ptr smally, ax

word ptr smally[2], bx

word ptr smally[4], cx

word ptr smally[6], dx

;x=X>>i

;y=Y>>i

get_atan:

453

NUMERICAL METHODS

sub
mov

shl

shl

lea

mov

mov

mov

mov

sub

mov

mov

test_Y:

mov

mov

or

js

negative:

mov

mov

mov

mov

mov

add

adc

adc

adc

mov

mov

mov

mov

mov

sub
sbb

bx, bx
bl, i

bx, 1

bx, 1 ;got to point into a dword table

si, word ptr atan_array

ax, word ptr [si][bx]

dx, word ptr [si][bx][2]

word ptr smallz, ax

word ptr smallz[2], dx

ax, ax

word ptr smallz[4], ax
word ptr smallz[6], ax

si, word ptr y

ax, word ptr [si][6]

ax, ax
positive

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

;z=atan[i]

;x += y

454

TRANS.ASM AND TABLE.ASM

sbb word ptr [di][4], cx

sbb word ptr [di][6], dx

mov

mov

mov

mov

mov

add

adc

adc

adc

jmp

positive:

mov

mov

mov
mov

mov

sub

sbb

sbb

sbb

mov

mov

mov

mov
mov

add

adc

adc

adc

;Y -= x

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, word ptr z

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx -x += y

for_next

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]
dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [dil[2], bx

word ptr [di][4], cx

word ptr [di][6], dx ;x -= y

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx ;Y += x

mov

mov
ax, word ptr smallz

bx, word ptr smallz[2]

455

NUMERICAL METHODS

mov cx, word ptr smallz[4]
mov dx, word ptr smallz[6]

mov di, word ptr z
sub word ptr [di], ax

sbb word ptr [di][2], bx
sbb word ptr [di][4], cx

sbb word ptr [di][6], dx ;x -= y

for_next:

inc

ja

jmp

cmp
byte ptr i

byte ptr i, 32

icircular_exit

twist

icircular_exit:

ret

icirc endp

; ******

;hyper- implementation of the hyperbolic routine, a subset of the cordic devices

;
hyper proc uses bx cx dx di si, x:word, y:word, z:word

local smallx:qword, smally:qword, smallz:qword, i:byte,

shifter:word

lea di, word ptr smallx

mov si, word ptr x

mov cx, 4

rep movsw

lea di, word ptr smally

mov si, word ptr y

mov cx, 4

456

TRANS.ASM AND TABLE.ASM

rep movsw

lea

mov

mov

rep movsw

sub

inc

mov

twister:

call

for_next:

cmp
jne

call

chk_13:

cmp
jne

call

chk_max:

inc

cmp

ja

jmp

hyper_exit:

ret

twist:

sub

mov

mov

mov

mov

mov

di, word ptr smallz

si, word ptr z

cx, 4

al, al

al

byte ptr i, al ;i=1

near ptr twist

byte ptr i, 4

chk_13

near ptr twist

byte ptr i, 13

chk_max

near ptr twist

byte ptr i

byte ptr i, 32

hyper_exit

twister

ax, ax

al, i

word ptr shifter, ax

si, word ptr x

ax, word ptr [si]

bx, word ptr [si][2]

;add in repeating term

457

NUMERICAL METHODS

mov
mov

shiftx:

sar

rcr
rcr

rcr

dec

jnz

load_smallx:

mov

mov

mov
mov

sub

mov

mov

mov
mov

mov
mov
mov

shifty:
sar

rcr

rcr

rcr

dec

jnz

load_smally:

mov

mov

mov

mov

cx, word ptr [si][4]

dx, word ptr [si][6]

dx, 1

cx, 1
bx, 1

ax, 1

word ptr shifter

shiftx

word ptr smallx, ax

word ptr smallx[2], bx

word ptr smallx[4], cx

word ptr smallx[6], dx

ax, ax

al, i

word ptr shifter, ax

si, word ptry

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shifty

word ptr smally, ax

word ptr smally[2], bx

word ptr smally[4], cx

word ptr smally[6], dx

;x=X>>i

;y=Y>>i

get_atan:

458

TRANS.ASM AND TABLE.ASM

sub bx, bx

mov bl, i

shl bx, 1

shl bx, 1

lea si, word ptr atanh_array

mov ax, word ptr [si][bx]

mov dx, word ptr [si][bx][2]

mov

mov

sub

mov

mov

word ptr smallz, ax
word ptr smallz[2], dx

ax, ax

word ptr smallz[4], ax

word ptr smallz[6], ax

test_Z:

mov

mov

or

jns

si, word ptr z

ax, word ptr [si][6]

ax, ax

positive

negative:

mov

mov

mov

mov

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

mov

sub

sbb

sbb

sbb

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

mov

mov

mov

mov

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

mov

sub

sbb

sbb

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

;got to point into a dword table

;z=atanh[i]

;x -= y

459

NUMERICAL METHODS

sbb

mov

mov

mov

mov

mov

add

adc

adc

adc

jmp

positive:

mov

mov

mov

mov

mov

add
adc

adc

adc

mov

mov

mov

mov

mov

add

adc

adc

adc

mov

mov

mov

mov

mov

460

word ptr [di][6], dx

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, word ptr z

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

twist_exit

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx [2]

cx, word ptr smallx [4]

dx, word ptr smallx [6]

di, word ptry

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallz
bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, wordptr z

;Y -= x

;x += y

;x += y

;Y += x

TRANS.ASM AND TABLE.ASM

sub

sbb

sbb
sbb

twist_exit:

retn

word ptr [di], ax
word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx ;x -= y

hyper endp

;
;******

;ihyper- implementation of the inverse hyperbolic routine, a subset of the

;CORDIC devices.

;

ihyper proc uses bx cx dx di si, x:word, y:word, z:word

rep

di, word ptr smally

si, word ptr y

c x , 4
rep

rep

local

lea

mov

mov

movsw

lea

mov

mov

movsw

lea

mov

mov

movsw

sub

inc

smallx:qword, smally:qword, smallz:qword, i:byte,

shifter:word

di, word ptr smallx

si, word ptr x

cx, 4

di, word ptr smallz

si, word ptr z

cx, 4

al, al

al

461

NUMERICAL METHODS

mov

twister:

call

for_next:
c m p

jne

call

chk_13:

cmp

jne

call

chk_max:

inc

ja

jmp

ihyper_exit:

ret

;

twist:

sub

mov

mov

mov

mov

mov

mov

mov

shiftx:

sar

rcr

rcr

rcr

dec

jnz

462

byte ptr i, al ;i=0

near ptr twist

byte ptr i, 4

chk_13

near ptr twist

byte ptr i, 13

chk_max

near ptr twist

byte ptr i

byte ptr i, 32

ihyper_exit

twister

ax, ax

al, i

word ptr shifter, ax

si, word ptr x

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shiftx

;add in repeating term

cmp

TRANS.ASM AND TABLE.ASM

load_smallx:

mov

mov

mov

mov

sub

mov

mov

mov

mov

mov

mov

mov

shifty:

sar

rcr

rcr

rcr

dec

jnz

load_smally:
mov

mov

mov

mov

get_atan:

sub

mov

shl

shl

lea

mov

mov

word ptr smallx, ax

word ptr smallx[2], bx

word ptr smallx[4], cx

word ptr smallx[6], dx ;x=X>>i

ax, ax

al, i

word ptr shifter, ax

si, word ptr y

ax, word ptr [si]

bx, word ptr [si][2]

cx, word ptr [si][4]

dx, word ptr [si][6]

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter

shifty

word ptr smally, ax

word ptr smally[2], bx

word ptr smally[4], cx

word ptr smally[6], dx ;y=Y>>i

bx, bx

bl, i

bx, 1

bx, 1 ;got to point into a dword table

si, word ptr atanh_array

ax, word ptr [si][bx]

dx, word ptr [si][bx][2]

mov word ptr smallz, ax

mov word ptr smallz[2], dx ;z=atanh[i]

463

NUMERICAL METHODS

sub

mov

mov

test_Y:

mov

mov

or

js

negative:

mov

mov

mov

mov

mov

sub

sbb

sbb

sbb

mov

mov

mov

mov

mov

sub

sbb

sbb

sbb

mov

mov

mov

mov

mov

add

ax, ax

word ptr smallz[4], ax

word ptr smallz[6], ax

si, word ptr y

ax, word ptr [si][6]

ax, ax

positive

ax, word ptr smally

bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]

di, word ptr z

word ptr [di], ax

;x -= y

;Y -= x

464

adc word ptr [di][2], bx

adc word ptr [di][4], cx

adc word ptr [di][6], dx

jmp twist-exit

positive:

mov

mov

mov

mov

mov

add

adc

adc

adc

mov

mov

mov

mov

mov

add

adc

adc

adc

mov

mov

mov

mov
mov

sub

sbb

sbb

sbb

TRANS.ASM AND TABLE.ASM

;z += z

ax, word ptr smally
bx, word ptr smally[2]

cx, word ptr smally[4]

dx, word ptr smally[6]

di, word ptr x

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallx

bx, word ptr smallx[2]

cx, word ptr smallx[4]

dx, word ptr smallx[6]

di, word ptr y

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

ax, word ptr smallz

bx, word ptr smallz[2]

cx, word ptr smallz[4]

dx, word ptr smallz[6]
di, word ptr z

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx

;x += y

;Y += x

;z -= z

twist_exit:

retn

ihyper endp

465

NUMERICAL METHODS

; ******
;rinit - initializes random number generator based upon

.data

a dword

IMAX equ
rantop word

ran1 dword
xsubi dword

init byte

69069

32767

IMAX

256 dup (0)
lh

0h

.code

rinit proc uses bx cx dx si di, seed:dword

lea

mov

mov
mov

mov

mov

fill-array:

invoke

mov

mov

add

loop

rinit_exit:

di, word ptr ran1

ax, word ptr seed[2]

word ptr xsubi[2], ax
ax, word ptr seed

word ptr xsubi, ax

cx, 256

congruent

word ptr [di], ax

word ptr [di][2], dx

di, 4

fill-array

input seed

;global iterative seed for

;random number generator, change
;this value to change default

;global variable signalling

;whether the generator has be

;initialized or not

;put in seed variable

;get seed

466

TRANS.ASM AND TABLE.ASM

sub

not

mov

ret

ax, ax

ax

byte ptr init, al

rinit endp

;
; ******;
;congruent -performs simple congruential algorithm

;
congruent proc uses bx cx

mov ax, word ptr xsubi
mul word ptr a

mov bx, ax

mov cx, dx

mov ax, word ptr xsubi[2]

mul word ptr a

add ax, cx

adc dx, 0

add ax, word ptr xsubi

;a*seed (mod2^32)

;lower word of result

;upper word

;a multiplication by one is just

;an add, right?

adc dx, word ptr xsubi[2]

mov dx, bx

mov word ptr xsubi, bx

mov word ptr xsubi[2], ax

ret

congruent endp

;******;
;irandom- generates random floats using the linear congruential method

irandom proc uses bx cx dx si di

467

NUMERICAL METHODS

lea si, word ptr ran1

mov al, byte ptr init

or al, al

jne already-initialized

invoke rinit, xsubi

already_initialized:

invoke
and

shl

shl

add

mov

invoke

mov

mov
mov

mov

mov

mov

mov

mul

congruent
ax, 0ffh

ax, 1

ax, 1

si, ax

di, si

congruent

bx, word ptr [si]

cx, word ptr [si][2]
word ptr [di], ax

word ptr [di][2], dx
word ptr xsubi, bx

word ptr xsubi[2], cx

ax, bx

word ptr rantop

mov ax, dx

;check for initialization

;default to 1

;get a random number

;every fourth byte, right?

;multiply by four

;point to number in array

;so we can put one there too

;get number from array

;replace it with another

;seed for next random

;scale output by rantop, the

;maximum size of the random

;number if rantop were made

;0ffffH, the value could be used

;directly as a fraction

ret

irandom endp

;
end

468

TRANS.ASM AND TABLE.ASM

TABLE.ASM
.dosseg

.model small, c, os_dos

include math.inc

;
.data

;
;sines(degrees)

sine_tbl word 0ffffh, 0fff6h, 0ffd8h, 0ffa6h, 0ff60h, 0ff06h,

0fe98h, 0fe17h, 0fd82h, 0fcdgh, 0fc1ch, 0fb4bh,

0fa67h, 0f970h, 0f865h, 0f746h, 0f615h, 0f4dOh,

0f378h, 0f20dh, 0f08fh, 0eeffh, 0ed5bh, 0eba6h,

0egdeh, 0e803h, 0e617h, 0e419h, 0e208h, 0dfe7h,

0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1b3h,

0cf1bh, 0cc73h, 0cgbbh, 0c6f3h, 0c41bh, 0c134h,

0be3eh, 0bb39h, 0b826h, 0b504h, 0b1d5h, 0ae73h

word 0ab4ch, 0a7f3h, 0a48dh, 0a1lbh, 09d9bh, 09a10h,

09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083d9h,

08000h, 07c1ch, 0782fh, 07438h, 07039h, 06c30h,

0681fh, 06406h, 05fe6h, 05bbeh, 0578eh, 05358h,

04f1bh, 04ad8h, 04690h, 04241h, 03deeh, 03996h,

03539h, 030d8h, 02c74h, 0280ch, 023aOh, 01f32h,

01acah, 0164fh, 011dbh, 00d65h, 008efh, 00477h,

Oh

;
;log(x/128)

log10_tbl word 00000h, 000ddh, 001b9h, 00293h,

0036bh, 00442h, 00517h, 005ebh, 006bdh, 0078eh,

0085dh, 0092ah, 009f6h, 00ac1h, 00b8ah, 00c51h,

00d18h, 00dddh, 00ea0h, 00f63h, 01024h, 010e3h,

011a2h, 0125fh, 0131bh, 013d5h, 0148fh, 01547h,

015feh, 016b4h, 01769h, 0181ch, 018cfh, 01980h

word 01a30h, 01adfh, 01b8dh, 01c3ah, 01ce6h, 01dg1h,

469

NUMERICAL METHODS

01e3bh, 01ee4h, 01f8ch, 02033h, 020d9h, 0217eh,
02222h, 022c5h, 02367h, 02409h, 024a9h, 02548h,

025e7h, 02685h, 02721h, 027bdh, 02858h, 028f3h

word 0298ch, 02a25h, 02abdh, 02b54h, 02beah, 02c7fh,

02d14h, 02da8h, 02e3bh, 02ecdh, 02f5fh, 02ff0h,

03080h, 0310fh, 0319eh, 0322ch, 032b9h, 03345h,

033d1h, 0345ch, 034e7h, 03571h, 035fah, 03682h,

0370ah, 03792h, 03818h, 0389eh, 03923h, 039a8h

word 03a2ch, 03ab0h, 03b32h, 03bb5h, 03c36h, 03cb7h,

03d38h, 03db8h, 03e37h, 03eb6h, 03f34h, 03fb2h,

0402fh, 040ach, 04128h, 041a3h, 0421eh, 04298h,

04312h, 0438ch, 04405h, 0447dh, 044f5h, 0456ch,

045e3h, 04659h, 046cfh, 04744h, 047b9h, 0482eh

word 048a2h, 04915h, 04988h, 049fbh, 04a6dh, 04adeh,

04b50h, 04bc0h, 04c31h, 04ca0h, 04d10h

;log(2**x)

log10_power dword 000000h, 004d10h, 009a20h, 00e730h, 013441h, 018151h,

01ce61h, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h,

039cc3h, 03e9d3h, 0436e4h, 0483f4h, 04d104h, 051e15h,

056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h,

073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h, 08bad8h,

0907e9h, 0954f9h

;
;sqrt(x+128)*2**24

;these are terribly rough, perhaps combined with Euclid's method

;they would produce high quality numbers

sqr_tbl word0b504h, 0b5b9h, 0b66dh, 0b720h, 0b7d3h, 0b885h,

0b936h, 0b9e7h, 0ba97h, 0bb46h, 0bbfSh, 0bca3h,

0bd50h, 0bdfdh, 0beagh, 0bf55h, 0c000h, 0c0aah,

0c154h, 0c1fdh, 0c2a5h, 0c34eh, 0c3f5h, 0c49ch,

0c542h, 0c5e8h, 0c68eh, 0c732h, 0c7d7h, 0c87ah

word 0cg1dh, 0c9c0h, 0ca62h, 0cb04h, 0cba5h, 0cc46h,
0cce6h, 0cd86h, 0ce25h, 0cec3h, 0cf62h, 0d000h,

470

TRANS.ASM AND TABLE.ASM

word

word

word

;sqrt(2**x)

sqr_power word

0d09dh, 0d13ah. 0d1d6h, 0d272h, 0d30dh, 0d3a8h,

0d443h, 0d4ddh, 0d577h, 0d610h, 0d6a9h, 0d742h,

0d7dah, 0d871h, 0d908h, 0d99fh, 0da35h, 0dacbh

0dbG1h, 0dbf6h, 0dc8bh, 0dd1fh, 0ddb3h, 0de47h,

0dedah, 0df6dh, 0e000h, 0e092h, 0e123h, 0e1b5h,

0e246h, 0e2d6h, 0e367h, 0e3f7h, 0e486h, 0e515h,

0e5a4h, 0e633h, 0e6c1h, 0e74fh, 0e7dch, 0e869h,

0e8f6h, 0e983h, 0ea0fh, 0eagbh, 0eb26h, 0ebb1h

0ec3ch, 0ecc7h, 0ed51h, 0eddbh, 0ee65h, 0eeeeh,

0ef77h, 0f000h, 0f088h, 0f11Oh, 0f198h, 0f21fh,

0f2a6h, 0f32dh, 0f3b4h, 0f43ah, 0f4cOh, 0f546h,

0f5cbh, 0f651h, 0f6d6h, 0f75ah, 0f7deh, 0f863h,

0f8e6h, 0f96ah, 0fgedh, 0fa7Oh, 0faf3h, 0fb75h

0fbf7h, 0fc79h, 0fcfbh, 0fd7ch, 0fdfdh, 0fe7eh,

0feffh, 0ff7fh, 00000h

00ffffh, 00b504h, 008000h, 005a82h, 004000h, 002d41h,

002000h, 0016aOh, 001000h, 000b50h, 000800h, 0005a8h,

000400h, 0002d4h, 000200h, 00016ah, 000100h, 0000b5h,

000080h, 00005ah, 000040h, 00002dh, 000020h, 000016h,

000010h, 00000bh, 000008h, 000006h, 000004h, 000002h,

000002h, 000001h, 000001h

atanh_array dword 0h, 8c9f53d5h, 4162bbeah, 202b1239h, 1005588ah,

800aac4h, 4001556h, 20002aah, 1000055h,

80000ah, 400001h, 200000h, 100000h, 80000h, 40000h,

20000h, 10000h, 8000h, 3fffh, 1fffh,

0fffh, 7ffh, 3ffh, 1ffh, 0ffh, 7fh, 3fh, 1fh, 0fh, 7h,

3h, 1h, 0h

471

NUMERICAL METHODS

atan_array dword 0c90fdaa2h, 76b19c16h, 3eb6ebf2h, 1fd5ba9bh, 0ffaaddch,

7ff556fh, 3ffeaabh, 1fffd55h,

0ffffabh, 7ffff5h, 3fffffh, 200000h, 100000h, 80000h,

40000h, 20000h, 10000h, 8000h,

4000h, 2000h, 1000h, 800h, 400h, 200h, 100h, 80h, 40h,

20h, 10h, 8h, 4h, 2h, 1h

power2

log2

power10

qword 100000000h, 95c01a3ah, 5269e12fh, 2b803473h, 1663f6fah,

0b5d69bah, 5b9e5a1h, 2dfca16h, 1709c46h,

5c60aah, 2e2d71h, 171600h, 0b8adlh, 5c55dh, 2e2abh,

17155h, 0b8aah, 5c55h, 2e2ah, 1715h, 0b8ah,

5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, 0bh, 5h, 2h, 1h

qword 100000000h, 6a3fe5c6h, 31513015h, 17d60496h, 0bb9ca64h,

5d0fba1h, 2e58f74h, 1720d9ch, 0b8d875h,

5c60aah, 2e2d71h, 171600h, 0b8ad1h, 5c55dh, 2e2abh,

17155h, 0b8aah, 5c55h, 2e2ah, 1715h, 0b8ah,

5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, 0bh, 5h, 2h, 1h

qword 4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh, 6bd7e4bh,

36bd211h, 1b9476ah,
0dd7ea4h, 6ef67ah, 378915h, 1bc802h, 0de4dfh, 6f2a7h,

37961h, 1bcb4h, 0de5bh,
6f2eh, 3797h, 1bcbh, 0de6h, 6f3h, 379h, 1bdh, 0deh, 6fh,

38h, 1ch, 0eh, 7h, 3h, 2h, 1h

alg qword 3f3180000000h, 0b95e8082e308h, 3ede5bd8a937h,

0beee08307e16h, 3c5ed689e495h, 0c0b286223e39h,

3f8000000000h

xp qword 3f3000000000h, 3bb90bfbe8efh, 3e8000000000h,

3b885307cc09h, 3f0000000000h,

3d4cbf5b2122h

sincos qword 404900000000h, 3a7daa20968bh, 0be2aaaa8fdbeh,

3c088739cb85h, 0b94fb2227f1ah,

362e9c5a91d8h

tancot qword 3fc900000000h, 39fdaa22168ch, 3f8000000000h,

472

polytan

polysin

dgt

one

ten

one-half

TRANS.ASM AND TABLE.ASM

0bdc433b8376bh, 3f8000000000h, 0bedbb7af3f84h,

3c1f33753551h

qword 100000000h, 0, 0aaaaaaabh, 0, 33333333h, 0, 0db6db6dbh,

0, 1c71c71ch, 0, 0e8ba2e8ch, 0, 13b13b14h, 0,

0eeeeeeefh, 0, 0f0f0f0fh, 0, 0f286bca2h, 0, 0c30c30ch,

0, 0f4de9bd3h, 0, 0a3d70a4h, 0, 0f684bda1h, 0, 8d3dcb1h,

0, 0f7bdef7ch, 0

qword 100000000h, 0, 0ffffffffd5555555h, 0, 222222221, 0,

0fffffffffff2ff30h, 0, 2e3ch, 0, 0ffffffffffffff94h

qword 000000000000h, 3f8000000000h, 400000000000h,

404000000000h, 408000000000h, 40a000000000h,

40c000000000h, 40e000000000h, 410000000000h,

411000000000h

qword 3f8000000000h

qword 412000000000h, 42c800000000h, 461c40000000h,

4cbebc200000h, 5a0e1bc9bf00h, 749dc5ada82bh

qword 3f0000000000h

end

473

474

APPENDIX G

Math.C

#include<io.h>

#include<conio.h>

#include<stdio.h>

#include <fcntl.h> /* O_constant definitions */

#include<sys\types.h>

#include <sys\stat.h> /* S_constant definitions */
#include<malloc.h>

#include<errno.h>

#include<math.h>

#include<float.h>

#include<stdlib.h>

#include<time.h>

#include<string.h>

#define TRUE 1

#define FALSE 0

union{

float realsmall;

double realbig;

int smallint;

long bigint;

char bytes[16];

int words[8];

long dwords[4];

}operand0;

union{

float realsmall;

double realbig;

int smallint;

475

NUMERICAL METHODS

long bigint;

char bytes[16];

int words[8];
long dwords[4];

}operand1;

union{

float realsmall;

double realbig;

int smallint;

long bigint;

char bytes[16];

int words[8];

long dwords[4];

}operand2;

union{
float realsmall;

double realbig;

int smallint;

long bigint;

char bytes[16];

int words[8];

long dwords[4];

}answer0;

union{

float realsmall;

double realbig;

int smallint;
long bigint;

char bytes[16];

int words[8];

long dwords[4];

}answer1;

/*doubles are used to indicate to C to push a quadword parameter, please see*/

/*the unions above for more information on how to manipulate these parameters*/

extern void lgb(union answr, double *);

extern void pwrb(double, double *);

476

MATH.C

extern int irandom(void);

extern void rinit(int);
extern void divnewt(double, double, double*);

extern void divmul(double, double, double*);

extern void ftf(double, double*);

extern void ftfx(double, double*);

extern void taylorsin(double, double*);

extern void ihyper(double *, double *, double *);

extern void hyper(double *, double *, double *);

extern void icirc(double *, double *, double *);

extern void circular(double *, double *, double *);

extern void fp_sqr(float, float*);

extern void fp_tan(float, float*);

extern void fp_cos(float, float*);

extern void fp_sin(float, float*);

extern void fp_mul(float, float, float *);

extern void fp_div(float, float, float *);

extern void fp_add(float, float, float *);

extern void fp_sub(float, float, float *);

extern void fp_abs(float, float*);

extern void lg10(double *, double *);

extern void sqrtt(double *, double *);

extern void dcsin(double *, double *, unsigned char);

extern atf(char*string, float *asm_val);

extern ftofx(float, long*);

extern ftoasc(float, char*);

extern fr_xp(float, float *, char *);

extern ld_xp(float, float*, char);

extern fx_sqr(long, long*);

extern school_sqr(long, long*);

extern dnt_bn(char *, int *);

extern dfc_bn(char *, int *);

extern bn_dnt(unsigned long int, char *);

extern bfc_dc(unsigned long int, char *);

extern fp_intrnd(float, float*);

extern fp_ceil(float, float*);
extern fp_floor(float, float*);

477

NUMERICAL METHODS

int binary_integer;

char decimal_string0[20];

char decimal_string1[20];

char string0[25], string1[25];

long radicand;

long root;

char exponent;

float temp;

float value;

float mantissa;

float asm_val0, asm_val1;

float floor_test;

float ceil_test;

float intrnd_test;

float asm_mul;

float tst_asm_mul;

float asm_div;

float asm_add;

float asm_sub;

float mul_tst;

float asm_mul_tst;
float div_tst;

float add_tst;

float sub_tst;

float fpsin;

float fpsqr;

float fplog;

float fplog10;

/*this routine scales a random number to a maximum without using a modular

operation*/

int get random(int max)
{

unsigned long a, b;

a = irandom();

b = max*a;

return(b/32768);

}

478

MATH.C

main()

float fp_numa;

float fp_numb;

float fp_numc;

float fp_numd;

long numa, numb, numc, numd;

double dwrd;

double test;

float nt;

char *buf;

int ad_buf, ch, j;

double error;

unsigned long temporary;

unsigned count = 0x1000, cnt = 0, errcnt,

passes, maxpass, cycle_cnt;

dwrd=4294967296.0; /*2^32*/

nt = 65536; /*2^16*/

ad_buf = open("tstdata", O_TEXT | O_WRONLY | O_CREAT |

O_TRUNC, S_IREAD | S_IWRITE);

if(ad_buf == -1) {

perror("\nopen failed");

exit(-1);

}

/* allocate a file buffer.*/

If((buf = (char*)malloc((size_t)count)) ==NULL) {

perror("\nnot enuf memory");

exit(-1);

cycle_cnt = 0;

do{
rinit((unsigned int)time(NULL));

479

NUMERICAL METHODS

maxpass=1000;

error= 0.00001; /*a zero error can result in errors of +0.0 or -0.0

reported*/

errcnt = 0; /*smaller errors sometimes exceedthe

precisionof a single real*/

passes = 0;

do{

getrandom(irandom());

while((numa=getrandom(irandom())) == 0);

if((irandom() * .001) >15) fp_numa = (float)numa * -1.0;

else fp_numa = (float)numa;

while((numb = getrandom(irandom())) == 0);

if((irandom0 * .001) >15) fp_numb = (float)numb * -1.0;

else fp_numb = (float)numb;

while((numc = irandom()) == 0);

fp_sqr((float)numc, &fp_numc);

fp_numa *= fp_numc;
while((numd = irandom()) == 0);

fp_sqr((float)numd, &fp_numd);

fp_numb *= fp_numd;

sprintf(buf,"\ntwo random floats are fp_numa %f and

fp_numb %f", fp_numa, fp_numb);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

test=(double)fp_numa;

gcvt((double)fp_numa, 8, string0); /*needed to test asm

conversions*/

gcvt((double)fp_numb, 8, string1);

sprintf(buf,"\nstring0 (fp_numa): %s, string1 (fp_numb): %s",

string0, string1);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

atf(string0, &asm_va10); /*convert string to float*/

480

MATH.C

atf(string1, &asm_val1);

sprintf(buf,"\nasm_val0(string0):%fandasm-val1(stringl): %f",

fp_numa, fp_numb);
if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

mul_tst=fp_numa*fp_numb;

asm_mul_tst = asm_val0*asm_val1;

div_tst = fp_numa/fp_numb;

add_tst = fp_numa+fp_numb;

sub_tst = fp_numa-fp_numb;

fp_mul(asm_val0, asm_vail, &asm_mul);

fp_mul(fp3uma, fp_numb, &tst_asm_mul);
fp_div(asm_val0, asm_val1, &asm_div);

fp_add(asm_val0, asm_val1, &asm_add);

fp_sub(asm_val0, asm_vall, &asm_sub);

sprintf(buf,"\nfp_numa*fp_numb, msc = %f, asm = %f,

difference = %f", mul_tst, asm_mul, mul_tst-asm_mul);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");

sprintf(buf,"\nfp_numa/fp_numb, msc = %f, asm = %f,

difference = %f", div_tst, asm_div, div_tst-asm_div);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

sprintf(buf,"\nfp_numa+fp_numb, msc = %f, asm = %f,

difference = %f", add_tst, asm_add, add_tst-asm_add);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");

sprintf(buf,"\nfp_numa-fp_numb, msc = %f, asm = %f,

difference = %f", sub_tst, asm_sub, sub_tst-asm_sub);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

temp = (float)getrandom(100);

fp_sqr(temp, &fpsqr);
sprintf(buf,"\nsqrt(%f),msc = %f, asm = %f", temp,

(float)sqrt((double)temp),fpsqr) ;

481

NUMERICAL METHODS

if(count=write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

fp_sin(temp, &fpsin);

sprintf(buf,"\nfp_sin(%f), msc = %f, asm = %f", temp,

(float)sin((double)temp), fpsin);

if(count = write(ad_buf, buf, strlen(buf) 1 == - 1)

perror("couldn't write");

/*error reporting*/

sprintf(buf,"\niteration: %x", cnt++);

if(count = write(ad_buf, buf, strlen(buf) 1 == - 1)

perror("couldn't write");

sprintf(buf,"\nfp-numais %f and fp_numb is %f", fp_numa, fp_numb);

if(count = write(ad_buf, buf, strlen(buf) 1 == - 1)

perror("couldn't write");

sprintf(buf,"\nstring0 is %s and string1 is %s", string0, string1);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

if((fabs((double)mul_tst-(double)asm_mul)) >error) {

errcnt++;
sprintf(buf,"\nmsc multiplication says %f, I say %f, error= %f",

mul_tst, asm_mul, mul_tst-asm_mull;
if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

if((fabs((double)div_tst-(double)asm_div)) >error) {

errcnt++;

sprintf(buf,"\nmsc division says %f, I say %f, error= %f",

div_tst, asm_div, div_tst-asm_div);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

482

MATH.C

if((fabs((double)sub_tst-(double)asm_sub)) >error) {

errcnt++;

sprintf(buf,"\nmsc subtraction says %f, I say %f, error= %f",

sub_tst, asm_sub, sub_tst-asm_sub);

if(count = write(ad_buf, buf, strlen(buf)) == - 1)

perror("couldn't write");

if((fabs((double)add_tst-(double)asm_add)) >error) {

errcnt++;

sprintf(buf,"\nmsc addition says %f, I say %f, error= %f",

add_tst, asm_add, add_tst-asm_add);

if(count = write(ad_buf, buf, strlen(buf)) == - 1

perror("couldn't write");

printf(".");

sprintf(buf,"\n");

if(count = write(ad_buf, buf, strlen(buf)) == - 1

perror("couldn't write");

passes++;

}while(!kbhit() && ! (passes == maxpass));

cycle_cnt++;

}while(!errcnt && !kbhit());

printf("\nerrors: %d cycles: %d pass: %d", errcnt, cycle_cnt,

passes);

close(ad_buf);

free(buf);

483

484

Glossary

abscissa
On the Cartesian Axes, it is the distance
from a point to the y axis.

algorithm
A set of guidelines or rules for solving
a problem in a finite number of steps.

accumulator
A general purpose register on many
microprocessors. It may be the target or
destination operand for an instruction,
and will often have specific instruc-
tions that affect it only.

accuracy

arithmetic
Operations involving addition, subtrac-
tion, multiplication, division, powers
and roots.

The degree of correctness of a quantity ASCII
or expression.

add-with-carry
To add a value to a destination variable
with the current state of the carry flag.

addend
A number or quantity added to another.

addition
The process of incrementing by a value,
or joining one set with another.

additional numbering systems
Numbering systems in which the sym-
bols combine to form the next higher
group. An example of this is the Roman
system. See Chapter 1.

align
To arrange in memory or a register to
produce a proper relationship.

The American Standard Code for In-
formation Interchange. A seven bit code
used for the interpretation of a byte of
data as a character.

associative law
An arithmetic law which states that the
order of combination or operation of
the operands has no influence on the
result. The associative law of multipli-

cation is (a*b)*c=a*(b*c).

atan
Arctangent. This is the angle for which
we have the tangent.

atanh
The Inverse Hyperbolic Tangent. This

485

NUMERICAL METHODS

is the angle for which we have the
hyperbolic tangent.

augend
A number or quantity to which another
is added.

base
A grouping of counting units that is
raised to various powers to produce the
principal counting units of a number-
ing system.

binary
A system of numeration using base 2.
bit— Binary digI T.

Boolean
A form of algebra proposed by George
Boole in 1847. This is a combinatorial
system allowing the processing of op-
erands with operators such as AND,
OR, NOT, IF, THEN, and EXCEPT.

byte
A grouping of bits the computer or CPU
operates upon as a unit. Generally, a
byte comprises 8 bits.

cardinal
A counting number, or natural number
indicating quantity but not order.

carry flag
A bit in the status register of many
microprocessors and micro controllers
indicating whether the result of an op-
eration was to large for the destination
data type. An overflow from an un-

signed addition or a borrow from an
unsigned subtraction might cause a carry.

ceil
The least integer greater than or equal
to a value.

coefficient
A numerical factor, such as 5 in 5x .
complement- An inversion or a kind of
negation. A one’s complement results
in each zero of an operand becoming a
one and each one becoming a zero. To
perform a two’s complement, first one’s
complement the operand, then incre-
ment by one.

commutative law
An arithmetic law which states that the
order of the operands has no influence
on the result of the operation. The com-
mutative law of addtition is

a + b = b + a .

congruence
Two numbers or quantities are congru-
ent, if, after division by the same value,
their remainders are equal.

coordinates
A set of two or more numbers determin-
ing the position of a point in a space of
a given dimension.

CORDIC
COrdinate Rotation Digital Computer.
The CORDIC functions are a group of
algorithms that are capable of comput-
ing high quality approximations of the

486

transcendental functions and require
very little in the way of arithmetic power
from the processor.

cosine
In the triangle, the ratio x/r is a function

of the angle θ known as the cosine.

Y

Figure 1. A Right Triangle.

decimal
having to do with base 10.

decimal-point
Radix point for base 10.

denominator
The divisor in a fraction.

denormal
A fraction with a minimum exponent
and leading bit of the significand zero.

derivative
The instantaneous rate of change of a
function with respect to a variable.

GLOSSARY

distributive law
An arithmetic law that describes
a connection between operations.
This distributive law is as follows:

a*(b+c)=a*b+a*c. Note that
the multiplication is distributed over
the addition.

dividend
The number to be divided.

division
Iterative subtraction of one operand
from another.

divisor
The number used to divide another,
such as the dividend.

double-precision
For IEEE floating point numbers, it is
twice the single precision format length
or 64 bits.

doubleword (dword)
Twice the number of bits in a word. On
the 8086, it is 32 bits.

exception
In IEEE floating point specification,
an exception is a special case that
may require attention. There are five
exceptions and each has a trap that
may be enabled or disabled. The ex-
ceptions are:

l Invalid operation, including addi-
tion or subtraction with as an
operand, multiplication using as
an operand, or 0/0, division

487

NUMERICAL METHODS

with invalid operands, a remainder
operation where the divisor is zero
or unnormalized or the dividend is
infinite.

Division by zero.

Overflow. The rounded result pro-
duced a legal number but an expo-
nent too large for the floating point
format.
Underflow. The result is too small

for the f loa t ing point format .
Inexact result without an invalid opera-
tion exception. The rounded result is
not exact.

far
A function or pointer is defined as far if
it employs more than a word to identify
it. This usually means that it is not
within the same 64K segment with the
function or routine referencing it.

fixed-point
A form of arithmetic in which the radix
point is always assumed to be in the
same place.

floating-point
A method of numerical expression, in
which the number is represented by a
fraction, a scaling factor (exponent),
and a sign.

floor
The greatest integer less than or equal
to a value.

fraction
The symbolic (or otherwise) quotient
of two quantities.

guard digits
Digits to the right of the significand or
significant bits to provide added
precision to the results of arithmetic
computations.

hidden bit
The most significant bit of the floating
point significand. It exists, but is not
represented, just to the left of the radix
point and is always a one (except in the
case of the denormal).

integer (int)
A whole number. A word on a personal
computer, 16 bits.

interpolate
To determine a value between two
known values.

irrational number
A number that can not be represented
exactly in a particular base.

K-space
K-spaces are multi-dimensional or k-
dimensional where K is an integer.

linear congruential
A method of producing pseudo-ran-
dom numbers using modular arithmetic.

linear interpolation
The process of approximating f(x) by
fitting a straight line to a function at the

488

GLOSSARY

desired point and using proportion to
estimate theposition of the unknown on
that line. See Chapter 6.

logarithm (log)

In any base, x, where xn = b, n is the
logarithm of b to the base x. Another

notation is n = log,x b .

long
A double word. On a personal com-

puter, 32 bits.

example, 4 A.M. plus 16 hours is 8 P.M.
((4 + 16) mod 12 = 8).

MPU
Micro-Processor- Unit.

MSB
Most Significant Bit.

MSW
Most significant Word.

multiplicand
The number you are multiplying.

long real
The long real is defined by IEEE 754 as
a double precision floating-point num-
ber.

LSB
Least Significant Bit.

LSW
Least Significant Word.

mantissa
The fractional part of a floating point
number.

minimax
A mathematical technique that produces
a polynomial approximation optimized
for the least maximum error.

multiplication
Iterative addition of one operand with
another.

multiplier
The number you are multiplying by.

multiprecision
Methods of performing arithmetic that
use a greater number of bits that pro-
vided in the word size of the computer.

NAN
These can be either Signaling or Quiet
according to the IEEE 754 specifica-
tion. A NAN (Not A Number) is the
result of an operation that has not math-

ematical interpretation, such as 0 ÷ 0.

natural numbers
All positive integers beginning with
zero.

near
A function or pointer is defined as near
if it is within a 64K segment with the

minuend
The number you are subtracting from.

modulus
The range of values of a particular sys-
tern. This is the basis of modular arith-
metic, such as used in telling time. For

489

NUMERICAL METHODS

function or routine referencing it. Thus,
it requires only a single 16 bit word to
identify it.

negative
A negative quantity, minus. Beginning
at zero, the number line stretches in two
directions. In one direction, there are
the natural numbers, which are positive
integers. In the other direction, there
are the negative numbers. The opposite
of a positive number.

nibble
Half a byte, typically four bits.

normalization
The process of producing a number
whose left most significant digit is a
one.

number ray
An illustration of the basic concepts
associated with natural numbers. Any
two natural numbers may have only
one of the following relationships: n1 <

n2,n1 = n2, n1 > n2 See Chapter 1.

numeration
System for counting or numbering.

numerator
l The dividend in a fraction.

l Octal

l Base 8.

l One’s-complement

l A bit by bit inversion of a number.
All ones are made zeros and zeros
are made ones.

490

operand
A number or value with which or upon
which an operation is performed.

ordinal
A number that indicates position, such
as first or second.

ordinate
On the Cartesian Axes, it is the distance
from a point to the x axis.

overflow
When a number grows to great through
rounding or another arithmetic process
for its data type, it overflows.

packed decimal
Method for storage of decimal numbers
in which each of the two nibbles in a
hexadecimal byte are used to hold deci-
mal digits.

polynomial
An algebraic function of summed
terms, where each term consists of a
constant multiplier (factor) and at
least one variable raised to an integer
power. It is of the form:

f(x) = anx
n + an-1x

n-1 + . . . + a1x + a0

positional numbering systems
A numbering system in which the value
of a number is based upon its position,
the value of any position is equal to the
number multiplied by the base of the
system taken to the power of the posi-
tion. See Chapter 1.

positive
Plus. Those numbers to the right of zero
on the number line. The opposite of a
negative number.

power
Multiplying a value, x, by itself n num-
ber of times raises it the the power n.
The notation is xn.

precision
Number of digits used to represent
a value.

product
The result of a multiplication.

quadword (qword)
Four words. On an 8086, this would be
64 bits.

quotient
The result of a division.

radicand
The quantity under the radical. Three is

the radicand in the expression
which represents the square root of
three.

radix
The base of a numbering system.

radix point
The division in a number between
its integer portion and fractional por-
tion. In the decimal system, it is the
decimal point.

GLOSSARY

rational number
A number capable of being represented
exactly in a particular base.

real number
A number possessing a fractional ex-
tension.

remainder
The difference between the dividend
and the product of the divisor and the
quotient.

resolution
The constituent parts of a system. This
has to do with the precision the arith-
metic uses to represent values, the greater
the precision, the more resolution.

restoring division
A form of division in which the divisor
is subtracted from the dividend until an
underflow occurs. At this point, the
divisor is added back into the dividend.
The number of times the divisor could
be subtracted without underflow is re-
turned as the quotient and the last minu-
end is returned as the remainder.

root
The nth root of a number, x, (written:

is that number when raised to
the nth power is equal to the original

number (x = an).

491

NUMERICAL METHODS

rounding sine
A specified method of reducing the num- In Figure one, it is the ratio y/r.
ber of digits in a number while adjusting
the remaining digits accordingly.

s i n g l e - p r e c i s i o n

In accordance with the IEEE format, it is
scaling a floating point comprising 32 bits, with
A technique that brings a number within a 24 bit significand, eight bit exponent,
certain bounds by multiplication or divi- and sign bit.
sion by a factor. In a floating point num-
ber, the significand is always between

subtraction

1.0 and 2.0 and the exponent is the scal-
The process opposite to addition. Deduc-

ing factor.
tion or taking away.

seed subtrahend

The initial input to the linear congruential
A number you subtract from another.

psuedo-random number generator.

short real

sum
The result of an addition.

The short real is defined by IEEE 754 as tangent (tan)
a single precision floating point number. In figure one, the ratio y/x denotes the

sign-extension tangent.

The sign of the number-one for nega- two’s complement
tive, zero for positive-fills any unused A one’s complement plus one.
bits from the MSB of the actual number

under flow
to the MSB of the data type. For ex-

This occurs when the result of an opera-ample, -9H, in two’s complement nota-
tion is f7H expressed in eight bits and

tion requires a borrow.

fff7H in sixteen. Note that the sign bit whole number
fills out the data type to the MSB. An integer.

significant digits word
The principal digits in a number. The basic precision offered by a com-

significand
puter. On an 8086, it is 16 bits.

In a floating point number, it is the lead-
ing bit (implicit or explicit) to the imme-
diate left of the radix point and the fraction
to the right.

492

Index

Symbols
32-bit operands 49
3x256 + 14x16 + 7x1 11
4-bit quantities 46

A
accuracy 88, 124
add64 36
addition 21, 33, 136, 164
additional system 8
arbitrary numbers 281
ASCII 164, 179, 182, 187, 192, 200
ASCII Adjust 30
ASCII Adjust After Addition 164
ASCII Adjust After Multiply 164
ASCII Adjust After Subtraction 164
ASCII Adjust before Division 164
ASCII to Single-Precision Float 192
associative laws 126
atf 195, 193
auxiliary carry 25, 40
auxiliary carry flag 42, 164

B
base 10, 85, 88
bfc_dc 173
binary arithmetic 12
binary byte 51
binary division 63
binary multiplication 46
binary-to-decimal 187
bit pair encoding 56
bit-pair 57, 58
bn_dnt 166
Booth 54, 55
branching 26
B r e s e n h a m 1 0 0

C
C 200
carry 24
carry flag 34, 92
Cartesian coordinate system 239
cdiv 67
ceil 265
Chi-square 288
chop 90
circle 95
circle: 98
circular 239, 242
circular functions 239
close 289
cmul 49
cmul2 51
coefficients 9
congruence 16
congruent 284, 285
conversion 163
CORDIC 237
core routines 134

errors
multiplication 135
subtraction 135
addition 135
division 135

cosine 16, 89, 96, 125, 224, 241, 274

D
daa 164
dcsin 225
decimal 164
decimal addition and subtraction 40
decimal adjust 42
decimal and ASCII instructions 30
decimal arithmetic 164
decimal integers 85
denormal arithmetic 124
denormals 125
dfc_bn 176
diminished-radix complement 18
div32 74
div64 78, 80
divide 154
division 21, 63, 114, 165, 175, 43, 85, 147

493

NUMERICAL METHODS

division by inversion 105
division by multiplication 114
divisor 108
divmul 116, 117
divnewt 108, 109
dnt_bn 170
drawing circles 95

E
elementary functions 217
error 88, 89, 94, 178
error checking 63, 147
errors 64
exponent 129
extended precision 131
external routines 132

F
faster shift and add 50
finite divided difference approximation 218
fixed point 15, 17, 33, 86, 206
floating point 8, 15, 17, 86, 206
FLADD 136
FLADD Routine 140
FLADD: The Epilogue 144
FLADD: The Prologue 138
flceil 265
FLDIV 154
FLMUL 147
floating-point arithmetic 123
floating-point conversions 192
floating point divide 79
floor 262
flr 263
flsin 274
flsqr 270
four-bit multiply 47
fp_add 132
fraction 95
fractional arithmetic 15, 33, 87, 88
fractional conversions 165
fractional multiply 80
frxp 259
Fta 202
fta 200
ftf 207

494

ftfx 212
fx_sqr 254

G
General Purpose Interface Bus 163
guard bits 92
guard digits 89, 248

H
hardware division 69
hardware multiply 61
hex 179
hexasc: 180
hidden bit 124, 125
Homers rule 248, 259, 274
hyperbolic functions 239

I

IEEE754 17, 19, 87, 123, 127, 129, 131,
137, 159, 211

IEEE 854 125
input 163
Instructions 26

addition 26
add 26
add-with-carry 27

division 28
divide 28
modulus 28
signed divide 28
signed modulus 28

multiplication 27
multiply 27
signed multiply 27

negation and signs 28
one’s complement 28
sign extension 29
two’s complement 28

shifts, rotates and normalization 29
arithmetic shift. 29
normalization 29
rotate 29
rotate-through-carry 29

subtraction 27
compare 27
subtract 27

subtract-with-carry 27
integer conversions 165
integers 33
ints 206
irand 284
irandom 287
irrational 12

J

jamming 90

K

k-space 288

L

laccum 193
Least Significant Bit 12, 26
ldxp 261
lgl0 219
line 101
line-Drawing 100
linear congruential method 16
linear interpolation 77, 217, 224
logarithm 21
logarithms 219
Long real 17
long real 86
longs 206
look-up tables 217
loop counter 48

M

mantissa 129
memory location 51
Microprocesors 22

Buswidth 22
Data type 24
flags 24

auxiliary carry 25
carry 24
overflow 24
overflow trap 25
Parity 25
sign 24
sticky bit 25

INDEX

zero 24
middle-square method 282
minimax 274
minimax polynomial 259
modular 85
modular arithmetic 16
modularity 125
Most Significant Bit (MSB) 18
mu132 62, 63
mu164a 151
multiplication 21, 27, 43, 61, 147, 169, 172
multiplication and division 42
multiprecision arithmetic 35
multiprecision division 71
multiprecision subtraction 37
multiword division 73

N

natural numbers 7, 8
negation and signs 28
Newton-Raphson Iteration 105
Newton’s Method 253, 270
normalization 72, 147, 200
normalize 114, 128
normalizing 192
Not a Number 129
number line 7, 9, 18
number ray 7
numeration 7

0

One’s complement 19, 20, 28
original dividend 73
original divisor 72
output 163
overflow 24, 39, 64, 65, 95
overflow flag 39
o v e r f l o w t r a p 2 5

P

packed binary 40
Polyeval 251
Polynomial 247
polynomial 131, 175, 248
polynomial interpretation 50

495

NUMERICAL METHODS

polynomials 9, 46
positional arithmetic 34
positional notation 50
positional number theory 47
positional numbering system 85
positional representation 8
potency 283
power 21
power series 247, 274
powers 9, 12, 13, 233, 239
proportion 108
Pseudo-Random Number Generator 281
Pwrb 234

Q
quantities 33
quotient 67

R

radix complement 18, 19
radix conversions 165
radix point 12

irrational 12
random numbers 281
range 86
real number 85
resolution 179
restoring division 188
rinit 284
root 21, 239
rotation matrix 239
round 160, 172
round to nearest 91, 159
rounding 25, 89, 90, 159

S
scaling 93
school_sqr 256
seed 282
shift-and-add algorithm 47
shifts, rotates and normalization 29
short real 17, 86
shuffling 283
sign 18, 24
sign digit 21
sign-magnitude 18, 21, 32

signed 20, 44
signed addition and subtraction 38
signed arithmetic 28, 38
signed magnitude 129
signed numbers 43
signed-operation 44
significant bits 87
sine 89, 241, 259
sines 16, 96, 125, 224, 273
single-precision 206
single-precision float to ASCII 200
skipping ones and zeros 53
software division 65
spectral 289
spectral.c 282, 288, 289
square root 131, 233, 253, 259, 269
sticky bit 25
sub64 37
subtraction 21, 34, 125, 136, 137, 164
Sutherland, Ivan 95
symbolic fraction 85

T

table-driven conversions 179
tables 179, 233
tan 239, 240
taylorsin 249
tb_bndc 188
tb_dcbn 182
The Radix Point 89
the sticky bit 92
time-critical code 53
truncation 90
two’s complement 19, 27, 28

V
Von Neumann, John 282

W

whole numbers 86

Z

zero 24

496

Numerical Methods
. .

Numerical Methods brings together techniques and useful 8086 and pseudo-code

in one source, the mathematical techniques examples. These include algorithms for

professional assembly-language programmers drawing circles and lines without resorting to

need to write arithmetic

routines for real-time embed-

ded systems.

This book presents

a broad approach to micropro-

cessor arithmetic, covering

everything from data on the

positional number system to

algorithms for developing

elementary functions. Fixed

point and floating point

routines are developed and

thoroughly discussed, teaching

you how to customize the rou-

tines or write your own, even

if you are using a compiler.

Other topics include:

● Positional number theory, bases,
and signed arithmetic.

● Algorithms for performing integer
arithmetic.

● Fixed point and floating point
mathematical techniques without
a coprocessor.

● Taylor expansions, Homers
Method, and pseudo-random
numbers.

● Input, Output, and Conversion
methods.

● Elementary functions including
fixed-point algorithms, computing
with tables, cordic algorithms, and
polynomial evaluations.

trigonometry or floating point,

making the algorithms very fast

and efficient, In addition,

there are examples highlighting

various techniques for perform-

ing division on large operands

such as linear interpolation,

the Newton-Raphson iteration,

and iterative multiplication.

The companion disk

(in MS/PC-DOS format)

contains the routines presented

in the book plus a simple C

shell that can be used to

exercise them.

Don Morgan is a professional programmer

Many of the explanations in this and consultant with more than 20 years of programming

book are complemented with interesting
experience. He is also a contributor to Dr. Dobb's Journal
and resides in Simi Valley, CA.

Why this book is for you—See page 1

M&T Books

411 Borel Avenue
San Mate., CA 94402

ISBN 1-55851-232-2
>$36.95

	Numerical Methods - Real-Time & Embedded Systems Prog., Foreword
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 1. Numbers
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 2. Integers
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 3 Real Numbers
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 4 Floating-Point Arithmetic
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 5. Input, Output, and Conversion
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54

	Numerical Methods - Real Time & Embedded Systems Prog., Ch. 6. The Elementary Functions
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64

	Numerical Methods - Real Time & Embedded Systems Prog., App. A. A Pseudo-Random Number Generator
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

	Numerical Methods - Real Time & Embedded Systems Prog., App. B. Tables and Equates
	page 2

	Numerical Methods - Real Time & Embedded Systems Prog., App. C. FXMATH.ASM
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40

	Numerical Methods - Real Time & Embedded Systems Prog., App. D. FPMATH.ASM
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36

	Numerical Methods - Real Time & Embedded Systems Prog., App. E. IO.ASM
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Numerical Methods - Real Time & Embedded Systems Prog., App. F. TRANS.ASM and TABLE.ASM
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68

	Numerical Methods - Real Time & Embedded Systems Prog., App. Math.C
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

	Numerical Methods - Real-Time & Embedded Systems Prog., Glossary
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	Numerical Methods - Real-Time & Embedded Systems Prog., Index
	page 2
	page 3
	page 4
	page 5

	next:
	home:
	previous:

