Kalman Filtering: Theory and Practice Using MATLAB, Second Edition,
Mohinder S. Grewal, Angus P. Andrews

Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-39254-5 (Hardback); 0-471-26638-8 (Electronic)

Kalman Filtering



Kalman Filtering:
Theory and Practice

Using MATLAB

Second Edition

MOHINDER S. GREWAL

California State University at Fullerton

ANGUS P. ANDREWS

Rockwell Science Center

A Wiley-Interscience Publication
John Wiley & Sons, Inc.
NEW YORK ¢ CHICHESTER ¢ WEINHEIM ¢ BRISBANE ¢ SINGAPORE ¢« TORONTO



Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008,

E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional
services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.

ISBN 0-471-26638-8.

This title is also available in print as ISBN 0-471-39254-5.

For more information about Wiley products, visit our web site at www.Wiley.com.



Contents

PREFACE
ACKNOWLEDGMENTS

1 General Information

1.1
1.2
1.3
1.4

On Kalman Filtering

On Estimation Methods

On the Notation Used in This Book
Summary

Problems

2 Linear Dynamic Systems

2.1
2.2
23
24
2.5
2.6
2.7

Chapter Focus

Dynamic Systems

Continuous Linear Systems and Their Solutions
Discrete Linear Systems and Their Solutions
Observability of Linear Dynamic System Models
Procedures for Computing Matrix Exponentials
Summary

Problems

3 Random Processes and Stochastic Systems

3.1
3.2
33

Chapter Focus
Probability and Random Variables
Statistical Properties of Random Variables

ix
xiii

20
22
23

25

25
26
30
41
42
48
50
53

56

56
58
66



vi

CONTENTS

3.4 Statistical Properties of Random Processes 68
3.5 Linear System Models of Random Processes and Sequences 76
3.6 Shaping Filters and State Augmentation 84
3.7 Covariance Propagation Equations 88
3.8 Orthogonality Principle 97
3.9 Summary 102
Problems 104
Linear Optimal Filters and Predictors 114
4.1 Chapter Focus 114
4.2 Kalman Filter 116
4.3 Kalman—Bucy Filter 126
4.4 Optimal Linear Predictors 128
4.5 Correlated Noise Sources 129
4.6 Relationships between Kalman and Wiener Filters 130
4.7 Quadratic Loss Functions 131
4.8 Matrix Riccati Differential Equation 133
4.9 Matrix Riccati Equation in Discrete Time 148
4.10 Relationships between Continuous and Discrete Riccati Equations 153
4.11 Model Equations for Transformed State Variables 154
4.12  Application of Kalman Filters 155
4.13  Smoothers 160
4.14 Summary 164
Problems 165
Nonlinear Applications 169
5.1 Chapter Focus 169
5.2 Problem Statement 170
5.3 Linearization Methods 171
5.4 Linearization about a Nominal Trajectory 171
5.5 Linearization about the Estimated Trajectory 175
5.6 Discrete Linearized and Extended Filtering 176
5.7 Discrete Extended Kalman Filter 178
5.8 Continuous Linearized and Extended Filters 181
5.9 Biased Errors in Quadratic Measurements 182
5.10 Application of Nonlinear Filters 184
5.11 Summary 198
Problems 200
Implementation Methods 202
6.1 Chapter Focus 202
6.2 Computer Roundoff 204
6.3 Effects of Roundoff Errors on Kalman Filters 209

6.4 Factorization Methods for Kalman Filtering 216



CONTENTS

6.5 Square-Root and UD Filters

6.6 Other Alternative Implementation Methods

6.7 Summary

Problems

7 Practical Considerations

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Chapter Focus

Detecting and Correcting Anomalous Behavior

Prefiltering and Data Rejection Methods
Stability of Kalman Filters

Suboptimal and Reduced-Order Filters
Schmidt—Kalman Filtering

Memory, Throughput, and Wordlength Requirements
Ways to Reduce Computational Requirements

Error Budgets and Sensitivity Analysis

Optimizing Measurement Selection Policies

Application to Aided Inertial Navigation
Summary
Problems

Appendix A MATLAB Software

Al
A2
A3
A4
A5
A6
AT
A8
A9

Notice

General System Requirements
Diskette Directory Structure
MATLAB Software for Chapter 2
MATLAB Software for Chapter 4
MATLAB Software for Chapter 5
MATLAB Software for Chapter 6
MATLAB Software for Chapter 7
Other Sources of Software

Appendix B A Matrix Refresher

B.1
B.2
B3
B.4
B.5
B.6
B.7
B.8
B.9

Matrix Forms

Matrix Operations

Block Matrix Formulas

Functions of Square Matrices

Norms

Cholesky Decomposition

Orthogonal Decompositions of Matrices
Quadratic Forms

Derivatives of Matrices

REFERENCES

INDEX

vii

238
252
265
266

270

270
271
294
298
299
309
316
326
332
336
342
346
347

350

350
350
351
351
351
352
352
353
353

355

355
359
363
366
370
373
375
377
379

381

395



Preface

The first edition of this book was published by Prentice-Hall in 1993. With this
second edition, as with the first, our primary objective is to provide our readers a
working familiarity with both the theoretical and practical aspects of Kalman
filtering by including “real-world” problems in practice as illustrative examples.
We are pleased to have this opportunity to incorporate the many helpful corrections
and suggestions from our colleagues and students over the last several years for the
overall improvement of the textbook. The book covers the historical background of
Kalman filtering and the more practical aspects of implementation: how to represent
the problem in a mathematical model, analyze the performance of the estimator as a
function of model parameters, implement the mechanization equations in numeri-
cally stable algorithms, assess its computational requirements, test the validity of
results, and monitor the filter performance in operation. These are important
attributes of the subject that are often overlooked in theoretical treatments but are
necessary for application of the theory to real-world problems.

We have converted all algorithm listings and all software to MATLAB®', so that
users can take advantage of its excellent graphing capabilities and a programming
interface that is very close to the mathematical equations used for defining Kalman
filtering and its applications. See Appendix A, Section A.2, for more information on
MATLAB.

The inclusion of the software is practically a matter of necessity, because Kalman
filtering would not be very useful without computers to implement it. It is a better
learning experience for the student to discover how the Kalman filter works by
observing it in action.

The implementation of Kalman filtering on computers also illuminates some of
the practical considerations of finite-wordlength arithmetic and the need for alter-

'MATLAB is a registered trademark of The Mathworks, Inc.

ix



X PREFACE

native algorithms to preserve the accuracy of the results. If the student wishes to
apply what she or he learns, then it is essential that she or he experience its workings
and failings—and learn to recognize the difference.

The book is organized for use as a text for an introductory course in stochastic
processes at the senior level and as a first-year graduate-level course in Kalman
filtering theory and application. It could also be used for self-instruction or for
purposes of review by practicing engineers and scientists who are not intimately
familiar with the subject. The organization of the material is illustrated by the
following chapter-level dependency graph, which shows how the subject of each
chapter depends upon material in other chapters. The arrows in the figure indicate
the recommended order of study. Boxes above another box and connected by arrows
indicate that the material represented by the upper boxes is background material for
the subject in the lower box.

Chapter 1 provides an informal introduction to the general subject matter by way
of its history of development and application. Chapters 2 and 3 and Appendix B
cover the essential background material on linear systems, probability, stochastic
processes, and modeling. These chapters could be covered in a senior-level course in
electrical, computer, and systems engineering.

Chapter 4 covers linear optimal filters and predictors, with detailed examples of
applications. Chapter 5 is devoted to nonlinear estimation by “extended” Kalman

1. GENERAL 2. LINEAR DYNAMIC SYSTEMS l
INFORMATION l

3. RANDOM PROCESSES
& STOCHASTIC SYSTEMS

| }

4. OPTIMAL LINEAR FILTERS AND PREDICTORS ‘

- A
[ 5. NONLINEAR APPLICATIONS ]

[ 6. IMPLEMENTATION METHODS I

A

r 7. PRACTICAL CONSIDERATIONS I

I APPENDIX A: MATLAB SOFTWARE I
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filters. Applications of these techniques to the identification of unknown parameters
of systems are given as examples. Chapter 6 covers the more modern implementa-
tion techniques, with algorithms provided for computer implementation.

Chapter 7 deals with more practical matters of implementation and use beyond
the numerical methods of Chapter 6. These matters include memory and throughput
requirements (and methods to reduce them), divergence problems (and effective
remedies), and practical approaches to suboptimal filtering and measurement
selection.

Chapters 4—7 cover the essential material for a first-year graduate class in Kalman
filtering theory and application or as a basic course in digital estimation theory and
application. A solutions manual for each chapter’s problems is available.

PROF. MOHINDER S. GREWAL, PHD, PE

California State University at Fullerton

ANGUS P. ANDREWS, PHD
Rockwell Science Center, Thousand Oaks, California
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General Information

. the things of this world cannot be made known without mathematics.
—Roger Bacon (1220-1292), Opus Majus, transl. R. Burke, 1928

1.1 ON KALMAN FILTERING

1.1.1 First of All: What Is a Kalman Filter?

Theoretically the Kalman Filter is an estimator for what is called the linear-quadratic
problem, which is the problem of estimating the instantaneous “state” (a concept
that will be made more precise in the next chapter) of a linear dynamic system
perturbed by white noise—by using measurements linearly related to the state but
corrupted by white noise. The resulting estimator is statistically optimal with respect
to any quadratic function of estimation error.

Practically, it is certainly one of the greater discoveries in the history of statistical
estimation theory and possibly the greatest discovery in the twentieth century. It has
enabled humankind to do many things that could not have been done without it, and
it has become as indispensable as silicon in the makeup of many electronic systems.
Its most immediate applications have been for the control of complex dynamic
systems such as continuous manufacturing processes, aircraft, ships, or spacecraft.
To control a dynamic system, you must first know what it is doing. For these
applications, it is not always possible or desirable to measure every variable that you
want to control, and the Kalman filter provides a means for inferring the missing
information from indirect (and noisy) measurements. The Kalman filter is also used
for predicting the likely future courses of dynamic systems that people are not likely
to control, such as the flow of rivers during flood, the trajectories of celestial bodies,
or the prices of traded commodities.

From a practical standpoint, these are the perspectives that this book will
present:



2 GENERAL INFORMATION

e [t is only a tool. It does not solve any problem all by itself, although it can
make it easier for you to do it. It is not a physical tool, but a mathematical one.
It is made from mathematical models, which are essentially tools for the mind.
They make mental work more efficient, just as mechanical tools make physical
work more efficient. As with any tool, it is important to understand its use and
function before you can apply it effectively. The purpose of this book is to
make you sufficiently familiar with and proficient in the use of the Kalman
filter that you can apply it correctly and efficiently.

e [t is a computer program. It has been called “ideally suited to digital computer
implementation” [21], in part because it uses a finite representation of the
estimation problem—by a finite number of variables. It does, however, assume
that these variables are real numbers—with infinite precision. Some of the
problems encountered in its use arise from the distinction between finite
dimension and finite information, and the distinction between “finite” and
“manageable” problem sizes. These are all issues on the practical side of
Kalman filtering that must be considered along with the theory.

e [tis a complete statistical characterization of an estimation problem. It is much
more than an estimator, because it propagates the entire probability distribution
of the variables it is tasked to estimate. This is a complete characterization of
the current state of knowledge of the dynamic system, including the influence
of all past measurements. These probability distributions are also useful for
statistical analysis and the predictive design of sensor systems.

e [n a limited context, it is a learning method. It uses a model of the estimation
problem that distinguishes between phenomena (what one is able to observe),
noumena (what is really going on), and the state of knowledge about the
noumena that one can deduce from the phenomena. That state of knowledge is
represented by probability distributions. To the extent that those probability
distributions represent knowledge of the real world and the cumulative
processing of knowledge is learning, this is a learning process. It is a fairly
simple one, but quite effective in many applications.

If these answers provide the level of understanding that you were seeking, then there
is no need for you to read the rest of the book. If you need to understand Kalman
filters well enough to use them, then read on!

1.1.2 How It Came to Be Called a Filter

It might seem strange that the term “filter” would apply to an estimator. More
commonly, a filter is a physical device for removing unwanted fractions of mixtures.
(The word felt comes from the same medieval Latin stem, for the material was used
as a filter for liquids.) Originally, a filter solved the problem of separating unwanted
components of gas—liquid—solid mixtures. In the era of crystal radios and vacuum
tubes, the term was applied to analog circuits that “filter” electronic signals. These



1.1 ON KALMAN FILTERING 3
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Mathematical foundations
Fig. 1.1 Foundational concepts in Kalman filtering.

signals are mixtures of different frequency components, and these physical devices
preferentially attenuate unwanted frequencies.

This concept was extended in the 1930s and 1940s to the separation of “signals”
from “noise,” both of which were characterized by their power spectral densities.
Kolmogorov and Wiener used this statistical characterization of their probability
distributions in forming an optimal estimate of the signal, given the sum of the signal
and noise.

With Kalman filtering the term assumed a meaning that is well beyond the
original idea of separation of the components of a mixture. It has also come to
include the solution of an inversion problem, in which one knows how to represent
the measurable variables as functions of the variables of principal interest. In
essence, it inverts this functional relationship and estimates the independent
variables as inverted functions of the dependent (measurable) variables. These
variables of interest are also allowed to be dynamic, with dynamics that are only
partially predictable.

1.1.3 Its Mathematical Foundations

Figure 1.1 depicts the essential subjects forming the foundations for Kalman filtering
theory. Although this shows Kalman filtering as the apex of a pyramid, it is itself but
part of the foundations of another discipline—“modern” control theory—and a
proper subset of statistical decision theory.

We will examine only the top three layers of the pyramid in this book, and a little
of the underlying mathematics' (matrix theory) in Appendix B.

1.1.4 What It Is Used For

The applications of Kalman filtering encompass many fields, but its use as a tool is
almost exclusively for two purposes: estimation and performance analysis of
estimators.

"It is best that one not examine the bottommost layers of these mathematical foundations too carefully,
anyway. They eventually rest on human intellect, the foundations of which are not as well understood.
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Role 1: Estimating the State of Dynamic Systems What is a dynamic system?
Almost everything, if you are picky about it. Except for a few fundamental
physical constants, there is hardly anything in the universe that is truly
constant. The orbital parameters of the asteroid Ceres are not constant, and
even the “fixed” stars and continents are moving. Nearly all physical systems
are dynamic to some degree. If one wants very precise estimates of their
characteristics over time, then one has to take their dynamics into considera-
tion.

The problem is that one does not always know their dynamics very precisely
either. Given this state of partial ignorance, the best one can do is express our
ignorance more precisely—using probabilities. The Kalman filter allows us to
estimate the state of dynamic systems with certain types of random behavior
by using such statistical information. A few examples of such systems are
listed in the second column of Table 1.1.

Role 2: The Analysis of Estimation Systems. The third column of Table 1.1 lists
some possible sensor types that might be used in estimating the state of the
corresponding dynamic systems. The objective of design analysis is to
determine how best to use these sensor types for a given set of design criteria.
These criteria are typically related to estimation accuracy and system cost.

The Kalman filter uses a complete description of the probability distribution of its
estimation errors in determining the optimal filtering gains, and this probability
distribution may be used in assessing its performance as a function of the “design
parameters” of an estimation system, such as

o the types of sensors to be used,

e the locations and orientations of the various sensor types with respect to the
system to be estimated,

TABLE 1.1 Examples of Estimation Problems

Application Dynamic System Sensor Types

Process control Chemical plant Pressure
Temperature
Flow rate
Gas analyzer
Flood prediction River system Water level
Rain gauge
Weather radar
Tracking Spacecraft Radar
Imaging system
Navigation Ship Sextant
Log
Gyroscope
Accelerometer
Global Positioning System (GPS) receiver
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the allowable noise characteristics of the sensors,

the prefiltering methods for smoothing sensor noise,
o the data sampling rates for the various sensor types, and
the level of model simplification to reduce implementation requirements.

The analytical capability of the Kalman filter formalism also allows a system
designer to assign an “error budget” to subsystems of an estimation system and to
trade off the budget allocations to optimize cost or other measures of performance
while achieving a required level of estimation accuracy.

1.2 ON ESTIMATION METHODS

We consider here just a few of the sources of intellectual material presented in the
remaining chapters and principally those contributors® whose lifelines are shown in
Figure 1.2. These cover only 500 years, and the study and development of
mathematical concepts goes back beyond history. Readers interested in more
detailed histories of the subject are referred to the survey articles by Kailath [25,
176], Lainiotis [192], Mendel and Geiseking [203], and Sorenson [47, 224] and the
personal accounts of Battin [135] and Schmidt [216].

1.2.1 Beginnings of Estimation Theory

The first method for forming an optimal estimate from noisy data is the method
of least squares. Its discovery is generally attributed to Carl Friedrich Gauss
(1777-1855) in 1795. The inevitability of measurement errors had been recognized
since the time of Galileo Galilei (1564—1642) , but this was the first formal method
for dealing with them. Although it is more commonly used for linear estimation
problems, Gauss first used it for a nonlinear estimation problem in mathematical
astronomy, which was part of a dramatic moment in the history of astronomy. The
following narrative was gleaned from many sources, with the majority of the
material from the account by Baker and Makemson [97]:

On January 1, 1801, the first day of the nineteenth century, the Italian astronomer
Giuseppe Piazzi was checking an entry in a star catalog. Unbeknown to Piazzi, the
entry had been added erroneously by the printer. While searching for the “missing”
star, Piazzi discovered, instead, a new planet. It was Ceres—the largest of the minor
planets and the first to be discovered—but Piazzi did not know that yet. He was able to
track and measure its apparent motion against the “fixed” star background during 41
nights of viewing from Palermo before his work was interrupted. When he returned to
his work, however, he was unable to find Ceres again.

2The only contributor after R. E. Kalman on this list is Gerald J. Bierman, an early and persistent advocate
of numerically stable estimation methods. Other recent contributors are acknowledged in Chapter 6.
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Fig. 1.2 Lifelines of referenced historical figures and R. E. Kalman.

On January 24, Piazzi had written of his discovery to Johann Bode. Bode is best
known for Bode's law, which states that the distances of the planets from the sun, in
astronomical units, are given by the sequence

dn:%(4+3><2”) forn = —00,0,1,2,7,4,5,.... (1.1)

Actually, it was not Bode, but Johann Tietz who first proposed this formula, in 1772. At
that time there were only six known planets. In 1781, Friedrich Herschel discovered
Uranus, which fit nicely into this formula for » = 6. No planet had been discovered for
n=3. Spurred on by Bode, an association of European astronomers had been
searching for the “missing” eighth planet for nearly 30 years. Piazzi was not part of
this association, but he did inform Bode of his unintended discovery.

Piazzi’s letter did not reach Bode until March 20. (Electronic mail was discovered
much later.) Bode suspected that Piazzi’s discovery might be the missing planet, but
there was insufficient data for determining its orbital elements by the methods then
available. It is a problem in nonlinear equations that Newton, himself, had declared as
being among the most difficult in mathematical astronomy. Nobody had solved it and,
as a result, Ceres was lost in space again.

Piazzi’s discoveries were not published until the autumn of 1801. The possible
discovery—and subsequent loss—of a new planet, coinciding with the beginning of a
new century, was exciting news. It contradicted a philosophical justification for there
being only seven planets—the number known before Ceres and a number defended by
the respected philosopher Georg Hegel, among others. Hegel had recently published a
book in which he chastised the astronomers for wasting their time in searching for an
eighth planet when there was a sound philosophical justification for there being only
seven. The new planet became a subject of conversation in intellectual circles nearly
everywhere. Fortunately, the problem caught the attention of a 24-year-old mathema-
tician at Gottingen named Carl Friedrich Gauss.
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Gauss had toyed with the orbit determination problem a few weeks earlier but had
set it aside for other interests. He now devoted most of his time to the problem,
produced an estimate of the orbit of Ceres in December, and sent his results to Piazzi.
The new planet, which had been sighted on the first day of the year, was found again—
by its discoverer—on the last day of the year.

Gauss did not publish his orbit determination methods until 1809.° In this
publication, he also described the method of least squares that he had discovered in
1795, at the age of 18, and had used it in refining his estimates of the orbit of Ceres.

Although Ceres played a significant role in the history of discovery and it still
reappears regularly in the nighttime sky, it has faded into obscurity as an object of
intellectual interest. The method of least squares, on the other hand, has been an
object of continuing interest and benefit to generations of scientists and technol-
ogists ever since its introduction. It has had a profound effect on the history of
science. It was the first optimal estimation method, and it provided an important
connection between the experimental and theoretical sciences: It gave experimen-
talists a practical method for estimating the unknown parameters of theoretical
models.

1.2.2 Method of Least Squares

The following example of a least-squares problem is the one most often seen,
although the method of least squares may be applied to a much greater range of
problems.

EXAMPLE 1.1: Least-Squares Solution for Overdetermined Linear Systems
Gauss discovered that if he wrote a system of equations in matrix form, as

hiy hy hs o hy, X1 Z1
hyy hyy hyy e by, 29) 2
hyy hyy hyz oo s, (| X3 = | 7 (1.2)
hy  hp o hy -y, Xn Zm
or
Hx =z, (1.3)

3In the meantime, the method of least squares had been discovered independently and published by
Andrien-Marie Legendre (1752—1833) in France and Robert Adrian (1775-1855) in the United States
[176]. [It had also been discovered and used before Gauss was born by the German-Swiss physicist Johann
Heinrich Lambert (1728—1777).] Such Jungian synchronicity (i.e., the phenomenon of multiple, near-
simultaneous discovery) was to be repeated for other breakthroughs in estimation theory, as well—for the
Wiener filter and the Kalman filter.
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then he could consider the problem of solving for that value of an estimate x
(pronounced “x-hat”) that minimizes the “estimated measurement error” HX — z.
He could characterize that estimation error in terms of its Euclidean vector norm
|Hx — z|, or, equivalently, its square:

&(®) = |Hx — z|? (1.4)

2
= ; [Eh,-ij,- - Zi] ; (1.5)

Jj=

~

which is a continuously differentiable function of the n unknowns X, x,, X3, .. ., X,,.
This function &?(¥) — oo as any component %, — £oo. Consequently, it will
achieve its minimum value where all its derivatives with respect to the X, are

zero. There are n such equations of the form

3'2
0=1 (1.6)
8Xk
=2) hy |:Zhij5‘j - Z[:| (1.7)
=1 |j=1
for k =1,2,3,...,n Note that in this last equation the expression
> hyX; — z; = {HX — z};, (1.8)

j=1

the ith row of HX — z, and the outermost summation is equivalent to the dot product
of the kth column of H with Hx — z. Therefore Equation 1.7 can be written as

0 =2H'[Hx —z] (1.9)
=2H"Hx —2H'z (1.10)
or
H'Hx = H'z,

where the matrix transpose A" is defined as

ml
hyy hy hs Py
HY = | his s hy 3 (1.11)
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The normal equation of the linear least squares problem. The equation
H'Hx =H"z (1.12)

is called the normal equation or the normal form of the equation for the linear least-
squares problem. It has precisely as many equivalent scalar equations as unknowns.

The Gramian of the linear least squares problem. The normal equation has the
solution

=H'H)'H"z,
provided that the matrix
9 =HH (1.13)

is nonsingular (i.e., invertible). The matrix product % = H'H in this equation is
called the Gramian matrix.* The determinant of the Gramian matrix characterizes
whether or not the column vectors of H are linearly independent. If its determinant is
zero, the column vectors of H are linearly dependent, and X cannot be determined
uniquely. If its determinant is nonzero, then the solution x is uniquely determined.

Least-squares solution. In the case that the Gramian matrix is invertible (i.e.,
nonsingular), the solution x is called the least-squares solution of the overdetermined
linear inversion problem. It is an estimate that makes no assumptions about the
nature of the unknown measurement errors, although Gauss alluded to that
possibility in his description of the method. The formal treatment of uncertainty
in estimation would come later.

This form of the Gramian matrix will be used in Chapter 2 to define the
observability matrix of a linear dynamic system model in discrete time.

Least Squares in Continuous Time. The following example illustrates how
the principle of least squares can be applied to fitting a vector-valued parametric
model to data in continuous time. It also illustrates how the issue of determinacy
(i.e., whether there is a unique solution to the problem) is characterized by the
Gramian matrix in this context.

“Named for the Danish mathematician Jorgen Pedersen Gram (1850-1916). This matrix is also related to
what is called the unscaled Fisher information matrix, named after the English statistician Ronald Aylmer
Fisher (1890-1962). Although information matrices and Gramian matrices have different definitions and
uses, they can amount to almost the same thing in this particular instance. The formal statistical definition
of the term information matrix represents the information obtained from a sample of values from a known
probability distribution. It corresponds to a scaled version of the Gramian matrix when the measurement
errors in z have a joint Gaussian distribution, with the scaling related to the uncertainty of the measured
data. The information matrix is a quantitative statistical characterization of the “information” (in some
sense) that is in the data z used for estimating x. The Gramian, on the other hand, is used as an qualitative
algebraic characterization of the uniqueness of the solution.
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EXAMPLE 1.2: Least-Squares Fitting of Vector-Valued Data in Continuous
Time Suppose that, for each value of time ¢ on an interval #, < ¢ < i, z(¢) is an £-
dimensional signal vector that is modeled as a function of an unknown n-vector x by
the equation

z(t) = H(t)x,

where H(f) is a known £ x n matrix. The squared error in this relation at each time ¢
will be

£2(1) = |2(1) — H(x]?
= x"[HY(OH(0)x — 2xTHT (0)z(f) + |z(1)]?.

The squared integrated error over the interval will then be the integral

Iy
Mﬁzjémm

fo

=xT U "n T(OH(1) dt}x — 2" U 'n T(0)=(1) df} + r l2(0)1? dt,

) fy )

which has exactly the same array structure with respect to x as the algebraic least-
squares problem. The least-squares solution for x can be found, as before, by taking
the derivatives of ||¢||> with respect to the components of x and equating them to
zero. The resulting equations have the solution

” -1 "
X= U HT(t)H(t)dti| [J HT(t)Z(t)dt:|,

provided that the corresponding Gramian matrix

G = th HY(O)H(t)dt

f

is nonsingular.
This form of the Gramian matrix will be used in Chapter 2 to define the
observability matrix of a linear dynamic system model in continuous time.

1.2.3 Gramian Matrix and Observability

For the examples considered above, observability does not depend upon the
measurable data (z). It depends only on the nonsingularity of the Gramian matrix
(%), which depends only on the linear constraint matrix (H) between the unknowns
and knowns.
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Observability of a set of unknown variables is the issue of whether or not their
values are uniquely determinable from a given set of constraints, expressed as
equations involving functions of the unknown variables. The unknown variables are
said to be observable if their values are uniquely determinable from the given
constraints, and they are said to be unobservable if they are not uniquely determin-
able from the given constraints.

The condition of nonsingularity (or “full rank”) of the Gramian matrix is an
algebraic characterization of observability when the constraining equations are
linear in the unknown variables. It also applies to the case that the constraining
equations are not exact, due to errors in the values of the allegedly known parameters
of the equations.

The Gramian matrix will be used in Chapter 2 to define observability of the states
of dynamic systems in continuous time and discrete time.

1.2.4 Introduction of Probability Theory

Beginnings of Probability Theory. Probabilities represent the state of knowl-
edge about physical phenomena by providing something more useful than “I don’t
know” to questions involving uncertainty. One of the mysteries in the history of
science is why it took so long for mathematicians to formalize a subject of such
practical importance. The Romans were selling insurance and annuities long before
expectancy and risk were concepts of serious mathematical interest. Much later, the
Italians were issuing insurance policies against business risks in the early Renais-
sance, and the first known attempts at a theory of probabilities—for games of
chance—occurred in that period. The Italian Girolamo Cardano® (1501-1576)
performed an accurate analysis of probabilities for games involving dice. He
assumed that successive tosses of the dice were statistically independent events.
He and the contemporary Indian writer Brahmagupta stated without proof that the
accuracies of empirical statistics tend to improve with the number of trials. This
would later be formalized as a law of large numbers.

More general treatments of probabilities were developed by Blaise Pascal (1623—
1662), Pierre de Fermat (1601-1655), and Christiaan Huygens (1629-1695).
Fermat’s work on combinations was taken up by Jakob (or James) Bernoulli
(1654-1705), who is considered by some historians to be the founder of probability
theory. He gave the first rigorous proof of the law of large numbers for repeated
independent trials (now called Bernoulli trials). Thomas Bayes (1702—1761) derived
his famous rule for statistical inference sometime after Bernoulli. Abraham de
Moivre (1667-1754), Pierre Simon Marquis de Laplace (1749-1827), Adrien Marie
Legendre (1752-1833), and Carl Friedrich Gauss (1777-1855) continued this
development into the nineteenth century.

SCardano was a practicing physician in Milan who also wrote books on mathematics. His book De Ludo
Hleae, on the mathematical analysis of games of chance (principally dice games), was published nearly a
century after his death. Cardano was also the inventor of the most common type of universal joint found in
automobiles, sometimes called the Cardan joint or Cardan shafft.
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Between the early nineteenth century and the mid-twentieth century, the prob-
abilities themselves began to take on more meaning as physically significant
attributes. The idea that the laws of nature embrace random phenomena, and that
these are treatable by probabilistic models began to emerge in the nineteenth century.
The development and application of probabilistic models for the physical world
expanded rapidly in that period. It even became an important part of sociology. The
work of James Clerk Maxwell (1831-1879) in statistical mechanics established the
probabilistic treatment of natural phenomena as a scientific (and successful)
discipline.

An important figure in probability theory and the theory of random processes in
the twentieth century was the Russian academician Andrei Nikolacovich Kolmo-
gorov (1903—1987). Starting around 1925, working with H. Ya. Khinchin and others,
he reestablished the foundations of probability theory on measurement theory, which
became the accepted mathematical basis of probability and random processes. Along
with Norbert Wiener (1894—-1964), he is credited with founding much of the theory
of prediction, smoothing and filtering of Markov processes, and the general theory of
ergodic processes. His was the first formal theory of optimal estimation for systems
involving random processes.

1.2.5 Wiener Filter

Norbert Wiener (1894-1964) is one of the more famous prodigies of the early
twentieth century. He was taught by his father until the age of 9, when he entered
high school. He finished high school at the age of 11 and completed his under-
graduate degree in mathematics in three years at Tufts University. He then entered
graduate school at Harvard University at the age of 14 and completed his doctorate
degree in the philosophy of mathematics when he was 18. He studied abroad and
tried his hand at several jobs for six more years. Then, in 1919, he obtained a
teaching appointment at the Massachusetts Institute of Technology (MIT). He
remained on the faculty at MIT for the rest of his life.

In the popular scientific press, Wiener is probably more famous for naming and
promoting cybernetics than for developing the Wiener filter. Some of his greatest
mathematical achievements were in generalized harmonic analysis, in which he
extended the Fourier transform to functions of finite power. Previous results were
restricted to functions of finite emergy, which is an unreasonable constraint for
signals on the real line. Another of his many achievements involving the generalized
Fourier transform was proving that the transform of white noise is also white noise.®

Wiener Filter Development. In the early years of the World War II, Wiener was
involved in a military project to design an automatic controller for directing
antiaircraft fire with radar information. Because the speed of the airplane is a

He is also credited with the discovery that the power spectral density of a signal equals the Fourier
transform of its autocorrelation function, although it was later discovered that Einstein had known it
before him.
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nonnegligible fraction of the speed of bullets, this system was required to “shoot into
the future.” That is, the controller had to predict the future course of its target using
noisy radar tracking data.

Wiener derived the solution for the least-mean-squared prediction error in terms
of the autocorrelation functions of the signal and the noise. The solution is in the
form of an integral operator that can be synthesized with analog circuits, given
certain constraints on the regularity of the autocorrelation functions or, equivalently,
their Fourier transforms. His approach represents the probabilistic nature of random
phenomena in terms of power spectral densities.

An analogous derivation of the optimal linear predictor for discrete-time systems
was published by A. N. Kolmogorov in 1941, when Wiener was just completing his
work on the continuous-time predictor.

Wiener’s work was not declassified until the late 1940s, in a report titled
“Extrapolation, interpolation, and smoothing of stationary time series.” The title
was subsequently shortened to “Time series.” An early edition of the report had a
yellow cover, and it came to be called “the yellow peril.” It was loaded with
mathematical details beyond the grasp of most engineering undergraduates, but it
was absorbed and used by a generation of dedicated graduate students in electrical
engineering.

1.2.6 Kalman Filter

Rudolf Emil Kalman was born on May 19, 1930, in Budapest, the son of Otto and
Ursula Kalman. The family emigrated from Hungary to the United States during
World War II. In 1943, when the war in the Mediterranean was essentially over, they
traveled through Turkey and Africa on an exodus that eventually brought them to
Youngstown, Ohio, in 1944. Rudolf attended Youngstown College there for three
years before entering MIT.

Kalman received his bachelor’s and master’s degrees in electrical engineering at
MIT in 1953 and 1954, respectively. His graduate advisor was Ernst Adolph
Guillemin, and his thesis topic was the behavior of solutions of second-order
difference equations [114]. When he undertook the investigation, it was suspected
that second-order difference equations might be modeled by something analogous to
the describing functions used for second-order differential equations. Kalman
discovered that their solutions were not at all like the solutions of differential
equations. In fact, they were found to exhibit chaotic behavior.

In the fall of 1955, after a year building a large analog control system for the E. I.
DuPont Company, Kalman obtained an appointment as lecturer and graduate student
at Columbia University. At that time, Columbia was well known for the work in
control theory by John R. Ragazzini, Lotfi A. Zadeh,” and others. Kalman taught at
Columbia until he completed the Doctor of Science degree there in 1957.

For the next year, Kalman worked at the research laboratory of the International
Business Machines Corporation in Poughkeepsie and for six years after that at the

7Zadeh is perhaps more famous as the “father” of fuzzy systems theory and interpolative reasoning.
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research center of the Glenn L. Martin company in Baltimore, the Research Institute
for Advanced Studies (RIAS).

Early Research Interests. The algebraic nature of systems theory first became
of interest to Kalman in 1953, when he read a paper by Ragazzini published the
previous year. It was on the subject of sampled-data systems, for which the time
variable is discrete valued. When Kalman realized that linear discrete-time systems
could be solved by transform methods, just like linear continuous-time systems, the
idea occurred to him that there is no fundamental difference between continuous and
discrete linear systems. The two must be equivalent in some sense, even though the
solutions of linear differential equations cannot go to zero (and stay there) in finite
time and those of discrete-time systems can. That started his interest in the
connections between systems theory and algebra.

In 1954 Kalman began studying the issue of controllability, which is the question
of whether there exists an input (control) function to a dynamic system that will
drive the state of that system to zero. He was encouraged and aided by the work of
Robert W. Bass during this period. The issue of eventual interest to Kalman was
whether there is an algebraic condition for controllability. That condition was
eventually found as the rank of a matrix.® This implied a connection between algebra
and systems theory.

Discovery of the Kalman Filter. In late November of 1958, not long after
coming to RIAS, Kalman was returning by train to Baltimore from a visit to
Princeton. At around 11 PM, the train was halted for about an hour just outside
Baltimore. It was late, he was tired, and he had a headache. While he was trapped
there on the train for that hour, an idea occurred to him: Why not apply the notion of
state variables’ to the Wiener filtering problem? He was too tired to think much
more about it that evening, but it marked the beginning of a great exercise to do just
that. He read through Loéve’s book on probability theory [68] and equated
expectation with projection. That proved to be pivotal in the derivation of the
Kalman filter. With the additional assumption of finite dimensionality, he was able to
derive the Wiener filter as what we now call the Kalman filter. With the change to
state-space form, the mathematical background needed for the derivation became
much simpler, and the proofs were within the mathematical reach of many under-
graduates.

Introduction of the Kalman Filter. Kalman presented his new results in talks at
several universities and research laboratories before it appeared in print.'® His ideas
were met with some skepticism among his peers, and he chose a mechanical

8The controllability matrix, a concept defined in Chapter 2.

°Although function-space methods were then the preferred approach to the filtering problem, the use of
state-space models for time-varying systems had already been introduced (e.g., by Laning and Battin [67]
in 1956).

1%n the meantime, some of the seminal ideas in the Kalman filter had been published by Swerling [227] in
1959 and Stratonovich [25, 226] in 1960.
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engineering journal (rather than an electrical engineering journal) for publication,
because “When you fear stepping on hallowed ground with entrenched interests, it is
best to go sideways.” '! His second paper, on the continuous-time case, was once
rejected because—as one referee put it—one step in the proof “cannot possibly be
true.” (It was true.) He persisted in presenting his filter, and there was more
immediate acceptance elsewhere. It soon became the basis for research topics at
many universities and the subject of dozens of doctoral theses in electrical
engineering over the next several years.

Early Applications. Kalman found a receptive audience for his filter in the fall of
1960 in a visit to Stanley F. Schmidt at the Ames Research Center of NASA in
Mountain View, California [118]. Kalman described his recent result and Schmidt
recognized its potential applicability to a problem then being studied at Ames—the
trajectory estimation and control problem for the Apollo project, a planned manned
mission to the moon and back. Schmidt began work immediately on what was
probably the first full implementation of the Kalman filter. He soon discovered what
is now called “extended Kalman filtering,” which has been used ever since for most
real-time nonlinear applications of Kalman filtering. Enthused over his own success
with the Kalman filter, he set about proselytizing others involved in similar work. In
the early part of 1961, Schmidt described his results to Richard H. Battin from the
MIT Instrumentation Laboratory (later renamed the Charles Stark Draper Labora-
tory). Battin was already using state space methods for the design and implementa-
tion of astronautical guidance systems, and he made the Kalman filter part of the
Apollo onboard guidance,'? which was designed and developed at the Instrumenta-
tion Laboratory. In the mid-1960s, through the influence of Schmidt, the Kalman
filter became part of the Northrup-built navigation system for the C5A air transport,
then being designed by Lockheed Aircraft Company. The Kalman filter solved the
data fusion problem associated with combining radar data with inertial sensor data to
arrive at an overall estimate of the aircraft trajectory and the data rejection problem
associated with detecting exogenous errors in measurement data. It has been an
integral part of nearly every onboard trajectory estimation and control system
designed since that time.

Other Research Interests. Around 1960, Kalman showed that the related notion
of observability for dynamic systems had an algebraic dual relationship with
controllability. That is, by the proper exchange of system parameters, one problem
could be transformed into the other, and vice versa.

Richard S. Bucy was also at RIAS in that period, and it was he who suggested to
Kalman that the Wiener—Hopf equation is equivalent to the matrix Riccati equa-

"'The two quoted segments in this paragraph are from a talk on System Theory: Past and Present given by
Kalman at the University of California at Los Angeles (UCLA) on April 17, 1991, in a symposium
organized and hosted by A. V. Balakrishnan at UCLA and sponsored jointly by UCLA and the National
Aeronautics and Space Administration (NASA) Dryden Laboratory.

12 Another fundamental improvement in Kalman filter implementation methods was made soon after by
James E. Potter at the MIT Instrumentation Laboratory. This will be discussed in the next subsection.
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tion—if one assumes a finite-dimensional state-space model. The general nature of
this relationship between integral equations and differential equations first became
apparent around that time. One of the more remarkable achievements of Kalman and
Bucy in that period was proving that the Riccati equation can have a stable (steady-
state) solution even if the dynamic system is unstable—provided that the system is
observable and controllable.

Kalman also played a leading role in the development of realization theory, which
also began to take shape around 1962. This theory addresses the problem of finding
a system model to explain the observed input—output behavior of a system. This line
of investigation led to a uniqueness principle for the mapping of exact (i.c.,
noiseless) data to linear system models.

In 1985, Kalman was awarded the Kyoto Prize, considered by some to be the
Japanese equivalent of the Nobel Prize. On his visit to Japan to accept the Kyoto
Prize, he related to the press an epigram that he had first seen in a pub in Colorado
Springs in 1962, and it had made an impression on him. It said:

Little people discuss other people.
Average people discuss events.
Big people discuss ideas.

His own work, he felt, had been concerned with ideas.

In 1990, on the occasion of Kalman’s sixtieth birthday, a special international
symposium was convened for the purpose of honoring his pioneering achievements
in what has come to be called mathematical system theory, and a Festschrift with that
title was published soon after [3].

Impact of Kalman Filtering on Technology. From the standpoint of those
involved in estimation and control problems, at least, this has to be considered the
greatest achievement in estimation theory of the twentieth century. Many of the
achievements since its introduction would not have been possible without it. It was
one of the enabling technologies for the Space Age, in particular. The precise and
efficient navigation of spacecraft through the solar system could not have been done
without it.

The principal uses of Kalman filtering have been in “modern™ control systems, in
the tracking and navigation of all sorts of vehicles, and in predictive design of
estimation and control systems. These technical activities were made possible by the
introduction of the Kalman filter. (If you need a demonstration of its impact on
technology, enter the keyword “Kalman filter” in a technical literature search. You
will be overwhelmed by the sheer number of references it will generate.)

Relative Advantages of Kalman and Wiener Filtering
1. The Wiener filter implementation in analog electronics can operate at much
higher effective throughput than the (digital) Kalman filter.
2. The Kalman filter is implementable in the form of an algorithm for a digital
computer, which was replacing analog circuitry for estimation and control at
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the time that the Kalman filter was introduced. This implementation may be
slower, but it is capable of much greater accuracy than had been achievable
with analog filters.

3. The Wiener filter does not require finite-dimensional stochastic process
models for the signal and noise.

4. The Kalman filter does not require that the deterministic dynamics or the
random processes have stationary properties, and many applications of
importance include nonstationary stochastic processes.

5. The Kalman filter is compatible with the state-space formulation of optimal
controllers for dynamic systems, and Kalman was able to prove useful dual
properties of estimation and control for these systems.

6. For the modern controls engineering student, the Kalman filter requires less
additional mathematical preparation to learn and use than the Wiener filter. As
a result, the Kalman filter can be taught at the undergraduate level in
engineering curricula.

7. The Kalman filter provides the necessary information for mathematically
sound, statistically-based decision methods for detecting and rejecting anom-
alous measurements.

1.2.7 Square-Root Methods and All That

Numerical Stability Problems. The great success of Kalman filtering was not
without its problems, not the least of which was marginal stability of the numerical
solution of the associated Riccati equation. In some applications, small roundoff
errors tended to accumulate and eventually degrade the performance of the filter. In
the decades immediately following the introduction of the Kalman filter, there
appeared several better numerical implementations of the original formulas. Many of
these were adaptations of methods previously derived for the least squares problem.

Early ad hoc Fixes. It was discovered early on'’ that forcing symmetry on the
solution of the matrix Riccati equation improved its apparent numerical stability—a
phenomenon that was later given a more theoretical basis by Verhaegen and Van
Dooren [232]. It was also found that the influence of roundoff errors could be
ameliorated by artificially increasing the covariance of process noise in the Riccati
equation. A symmetrized form of the discrete-time Riccati equation was developed
by Joseph [15] and used by R. C. K. Lee at Honeywell in 1964. This “structural”
reformulation of the Kalman filter equations improved robustness against roundoff
errors in some applications, although later methods have performed better on some
problems [125].

BThese fixes were apparently discovered independently by several people. Schmidt [118] and his
colleagues at NASA had discovered the use of forced symmetry and “pseudonoise” to counter roundoff
effects and cite R. C. K. Lee at Honeywell with the independent discovery of the symmetry effect.
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Square-Root Filtering. These methods can also be considered as “structural”
reformulations of the Riccati equation, and they predate the Bucy—Joseph form. The
first of these was the “square-root” implementation by Potter and Stern [208], first
published in 1963 and successfully implemented for space navigation on the Apollo
manned lunar exploration program. Potter and Stern introduced the idea of factoring
the covariance matrix into Cholesky factors,'* in the format

P=CCT, (1.14)

and expressing the observational update equations in terms of the Cholesky factor C,
rather than P. The result was better numerical stability of the filter implementation at
the expense of added computational complexity. A generalization of the Potter and
Stern method to handle vector-valued measurements was published by one of the
authors [130] in 1968, but a more efficient implementation—in terms of triangular
Cholesky factors—was published by Bennet in 1967 [138].

Square-Root and UD Filters. There was a rather rapid development of faster
algorithmic methods for square-root filtering in the 1970s, following the work at
NASA/JPL (then called the Jet Propulsion Laboratory, at the California Institute of
Technology) in the late 1960s by Dyer and McReynolds [156] on temporal update
methods for Cholesky factors. Extensions of square-root covariance and information
filters were introduced in Kaminski’s 1971 thesis [115] at Stanford University. The
first of the triangular factoring algorithms for the observational update was due to
Agee and Turner [106], in a 1972 report of rather limited circulation. These
algorithms have roughly the same computational complexity as the conventional
Kalman filter, but with better numerical stability. The “fast triangular” algorithm of
Carlson was published in 1973 [149], followed by the “square-root-free” algorithm
of Bierman in 1974 [7] and the associated temporal update method introduced by
Thornton [124]. The computational complexity of the square-root filter for time-
invariant systems was greatly simplified by Morf and Kailath [204] soon after that.
Specialized parallel processing architectures for fast solution of the square-root filter
equations were developed by Jover and Kailath [175] and others over the next
decade, and much simpler derivations of these and earlier square-root implementa-
tions were discovered by Kailath [26].

Factorization Methods. The square-root methods make use of matrix decom-
position' methods that were originally derived for the least-squares problem. These

A square root S of a matrix P satisfies the equation P = SS (i.e., without the transpose on the second
factor). Potter and Stern’s derivation used a special type of symmetric matrix called an elementary matrix.
They factored an elementary matrix as a square of another elementary matrix. In this case, the factors were
truly square roots of the factored matrix. This square-root appellation has stuck with extensions of Potter
and Stern’s approach, even though the factors involved are Cholesky factors, not matrix square roots.
">The term “decomposition” refers to the representation of a matrix (in this case, a covariance matrix) as a
product of matrices having more useful computational properties, such as sparseness (for triangular
factors) or good numerical stability (for orthogonal factors). The term “factorization” was used by
Bierman [7] for such representations.
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include the so-called QR decomposition of a matrix as the product of an orthogonal
matrix (Q) and a “triangular”'® matrix (R). The matrix R results from the application
of orthogonal transformations of the original matrix. These orthogonal transforma-
tions tend to be well conditioned numerically. The operation of applying these
transformations is called the “triangularization” of the original matrix, and trian-
gularization methods derived by Givens [164], Householder [172], and Gentleman
[163] are used to make Kalman filtering more robust against roundoff errors.

1.2.8 Beyond Kalman Filtering

Extended Kalman Filtering and the Kalman—Schmidt Filter. Although it
was originally derived for a linear problem, the Kalman filter is habitually applied
with impunity—and considerable success—to many nonlinear problems. These
extensions generally use partial derivatives as linear approximations of nonlinear
relations. Schmidt [118] introduced the idea of evaluating these partial derivatives at
the estimated value of the state variables. This approach is generally called the
extended Kalman filter, but it was called the Kalman—Schmidt filter in some early
publications. This and other methods for approximate linear solutions to nonlinear
problems are discussed in Chapter 5, where it is noted that these will not be adequate
for all nonlinear problems. Mentioned here are some investigations that have
addressed estimation problems from a more general perspective, although they are
not covered in the rest of the book.

Nonlinear Filtering Using Higher Order Approximations. Approaches
using higher order expansions of the filter equations (i.e., beyond the linear terms)
have been derived by Stratonovich [78], Kushner [191], Bucy [147], Bass et al.
[134], and others for quadratic nonlinearities and by Wiberg and Campbell [235] for
terms through third order.

Nonlinear Stochastic Differential Equations. Problems involving nonlinear
and random dynamic systems have been studied for some time in statistical
mechanics. The propagation over time of the probability distribution of the state
of a nonlinear dynamic system is described by a nonlinear partial differential
equation called the Fokker—Planck equation. It has been studied by Einstein
[157], Fokker [160], Planck [207], Kolmogorov [187], Stratonovich [78], Baras
and Mirelli [52], and others. Stratonovich modeled the effect on the probability
distribution of information obtained through noisy measurements of the dynamic
system, an effect called conditioning. The partial differential equation that includes
these effects is called the conditioned Fokker—Planck equation. It has also been
studied by Kushner [191], Bucy [147], and others using the stochastic calculus of
Kiyosi Ito—also called the “Itd calculus.” It is a non-Riemannian calculus devel-
oped specifically for stochastic differential systems with noise of infinite bandwidth.
This general approach results in a stochastic partial differential equation describing

16See Chapter 6 and Appendix B for discussions of triangular forms.
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the evolution over time of the probability distribution over a “state space” of the
dynamic system under study. The resulting model does not enjoy the finite
representational characteristics of the Kalman filter, however. The computational
complexity of obtaining a solution far exceeds the already considerable burden of
the conventional Kalman filter. These methods are of significant interest and utility
but are beyond the scope of this book.

Point Processes and the Detection Problem. A point process is a type of
random process for modeling events or objects that are distributed over time or
space, such as the arrivals of messages at a communications switching center or the
locations of stars in the sky. It is also a model for the initial states of systems in many
estimation problems, such as the locations of aircraft or spacecraft under surveillance
by a radar installation or the locations of submarines in the ocean. The defection
problem for these surveillance applications must usually be solved before the
estimation problem (i.e., tracking of the objects with a Kalman filter) can begin.
The Kalman filter requires an initial state for each object, and that initial state
estimate must be obtained by detecting it. Those initial states are distributed
according to some point process, but there are no technically mature methods
(comparable to the Kalman filter) for estimating the state of a point process. A
unified approach combining detection and tracking into one optimal estimation
method was derived by Richardson [214] and specialized to several applications.
The detection and tracking problem for a single object is represented by the
conditioned Fokker—Planck equation. Richardson derived from this one-object
model an infinite hierarchy of partial differential equations representing object
densities and truncated this hierarchy with a simple closure assumption about the
relationships between orders of densities. The result is a single partial differential
equation approximating the evolution of the density of objects. It can be solved
numerically. It provides a solution to the difficult problem of detecting dynamic
objects whose initial states are represented by a point process.

1.3 ON THE NOTATION USED IN THIS BOOK

1.3.1 Symbolic Notation

The fundamental problem of symbolic notation, in almost any context, is that there
are never enough symbols to go around. There are not enough letters in the Roman
alphabet to represent the sounds of standard English, let alone all the variables in
Kalman filtering and its applications. As a result, some symbols must play multiple
roles. In such cases, their roles will be defined as they are introduced. It is sometimes
confusing, but unavoidable.

“Dot”’ Notation for Derivatives. Newton’s notation using f(¢), /() for the first
two derivatives of f* with respect to ¢ is used where convenient to save ink.



1.3 ON THE NOTATION USED IN THIS BOOK 21

TABLE 1.2 Standard Symbols of Kalman Filtering

Symbols
Symbol

12 e e Definition

F F A Dynamic coefficient matrix of continuous linear differential
equation defining dynamic system

G / B Coupling matrix between random process noise and state of
linear dynamic system

H M C Measurement sensitivity matrix, defining linear relationship
between state of the dynamic system and measurements
that can be made

K A K Kalman gain matrix

P P Covariance matrix of state estimation uncertainty

Q Q Covariance matrix of process noise in the system state
dynamics

R 0 Covariance matrix of observational (measurement)
uncertainty

X X State vector of a linear dynamic system

z y Vector (or scalar) of measured values

) ) State transition matrix of a discrete linear dynamic system

2 This book [1, 13, 16, 21]. ® Kalman [23, 179]. ¢ Other sources [4, 10, 18, 65].

Standard Symbols for Kalman Filter Variables. There appear to be two
“standard” conventions in technical publications for the symbols used in Kalman
filtering. The one used in this book is similar to the original notation of Kalman
[179]. The other standard notation is sometimes associated with applications of
Kalman filtering in control theory. It uses the first few letters of the alphabet in place
of the Kalman notation. Both sets of symbol usages are presented in Table 1.2, along
with the original (Kalman) notation.

State Vector Notation for Kalman Filtering. The state vector x has been
adorned with all sorts of other appendages in the usage of Kalman filtering. Table
1.3 lists the notation used in this book (left column) along with notations found in
some other sources (second column). The state vector wears a “hat” as the estimated
value, X, and subscripting to denote the sequence of values that the estimate assumes
over time. The problem is that it has two values at the same time: the a priori'” value
(before the measurement at the current time has been used in refining the estimate)
and the a posteriori value (after the current measurement has been used in refining
the estimate). These distinctions are indicated by the signum. The negative sign (—)
indicates the a priori value, and the positive sign (4) indicates the a posteriori value.

""This use of the full Latin phrases as adjectives for the prior and posterior statistics is an unfortunate
choice of standard notation, because there is no easy way to shorten it. (Even their initial abbreviations are
the same.) If those who initiated this notation had known how commonplace it would become, they might
have named them otherwise.
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TABLE 1.3 Special State-Space Notation

This Other
book sources Definition of Notational Usage
X X Vector
X
X
X The kth component of the vector x
X X[K] The kth element of the sequence
ooy Xk—1» Xk» Xkq1, - - - Of vectors
b's E(x) An estimate of the value of x
X
X (=) Xkjk—1 A priori estimate of x,, conditioned on all prior
X measurements except the one at time t,
X (+) Kk A posteriori estimate of x, conditioned
SN on all available measurements at time f,
X X; Derivative of x with respect to t (time)
dx/dt

TABLE 1.4 Common Notation for Array Dimensions

Dimensions
Symbol Vector Name Dimensions Symbol Matrix Name Row Column
X System state n D State transition n n
w Process noise r G Process noise coupling n r
u Control input s Q Process noise covariance r r
z Measurement 14 H Measurement sensitivity 14 n
v Measurement noise 14 R Measurement noise 14 14

covariance

Common Notation for Array Dimensions. Symbols used for the dimensions
of the “standard” arrays in Kalman filtering will also be standardized, using the
notation of Gelb et al. [21] shown in Table 1.4. These symbols are not used
exclusively for these purposes. (Otherwise, one would soon run out of alphabet.)
However, whenever one of these arrays is used in the discussion, these symbols will
be used for their dimensions.

1.4 SUMMARY

The Kalman filter is an estimator used to estimate the state of a linear dynamic
system perturbed by Gaussian white noise using measurements that are linear
functions of the system state but corrupted by additive Gaussian white noise. The
mathematical model used in the derivation of the Kalman filter is a reasonable
representation for many problems of practical interest, including control problems as



1.4 SUMMARY 23

well as estimation problems. The Kalman filter model is also used for the analysis of
measurement and estimation problems.

The method of least squares was the first “optimal” estimation method. It was
discovered by Gauss (and others) around the end of the eighteenth century, and it is
still much in use today. If the associated Gramian matrix is nonsingular, the method
of least squares determines the unique values of a set of unknown variables such that
the squared deviation from a set of constraining equations is minimized.

Observability of a set of unknown variables is the issue of whether or not they are
uniquely determinable from a given set of constraining equations. If the constraints
are linear functions of the unknown variables, then those variables are observable if
and only if the associated Gramian matrix is nonsingular. If the Gramian matrix is
singular, then the unknown variables are unobservable.

The Wiener—Kolmogorov filter was derived in the 1940s by Norbert Wiener
(using a model in continuous time) and Andrei Kolmogorov (using a model in
discrete time) working independently. It is a statistical estimation method. 1t
estimates the state of a dynamic process so as to minimize the mean-squared
estimation error. It can take advantage of statistical knowledge about random
processes in terms of their power spectral densities in the frequency domain.

The “state-space” model of a dynamic process uses differential equations (or
difference equations) to represent both deterministic and random phenomena. The
state variables of this model are the variables of interest and their derivatives of
interest. Random processes are characterized in terms of their statistical properties in
the time domain, rather than the frequency domain. The Kalman filter was derived as
the solution to the Wiener filtering problem using the state-space model for dynamic
and random processes. The result is easier to derive (and to use) than the Wiener—
Kolmogorov filter.

Square-root filtering is a reformulation of the Kalman filter for better numerical
stability in finite-precision arithmetic. It is based on the same mathematical model,
but it uses an equivalent statistical parameter that is less sensitive to roundoff errors
in the computation of optimal filter gains. It incorporates many of the more
numerically stable computation methods that were originally derived for solving
the least-squares problem.

PROBLEMS
1.1 Jean Baptiste Fourier (1768—1830) was studying the problem of approximating

a function f(0) on the circle 0 < 6 < 27 by a linear combination of trigono-
metric functions:

£(0)~ ag + 3. [a; cos(j0) + b, sin( jO)]. (1.15)
=1
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See if you can help him on this problem. Use the method of least squares to
demonstrate that the values

o = - J £(0) do,

a —lJ f(0)cos(j0)do,

J f(0)sin( jO)dO

of the coefficients a; and b; for 1 <j < n give the least integrated squared

approximation error
£@b) =11/ —f@ b,
2m 2
= | [for-r@] ao

2n n 2
= J {ao + Y [a; cos(j0) + b; sin(j@)]} do

0 j=1

21 n
-2 J {ao + >_ tla; cos( jO) + b; sin( jO)] }f(@) do
0 j=1

27
+ J 72(0)do.
0

You may assume the equalities

21
J di =2n
0
21 0’ . k
J cos( jO) cos(k0)dO = { ] 7
0 . J=k,
27 0’ : k
J sin( j0) sin(k0) d0 = { /7
0 , j=k

2n
J cos(jO)sin(k®)d0 =0, O0<j<n, 1<k<n
0

as given.
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Linear Dynamic Systems

What we experience of nature is in models, and all of nature’s models are so beautiful.'
R. Buckminster Fuller (1895-1983)

2.1 CHAPTER FOCUS

Models for Dynamic Systems. Since their introduction by Isaac Newton in the
seventeenth century, differential equations have provided concise mathematical
models for many dynamic systems of importance to humans. By this device,
Newton was able to model the motions of the planets in our solar system with a
small number of variables and parameters. Given a finite number of initial conditions
(the initial positions and velocities of the sun and planets will do) and these
equations, one can uniquely determine the positions and velocities of the planets
for all time. The finite-dimensional representation of a problem (in this example, the
problem of predicting the future course of the planets) is the basis for the so-called
state-space approach to the representation of differential equations and their
solutions, which is the focus of this chapter. The dependent variables of the
differential equations become state variables of the dynamic system. They explicitly
represent all the important characteristics of the dynamic system at any time.

The whole of dynamic system theory is a subject of considerably more scope than
one needs for the present undertaking (Kalman filtering). This chapter will stick to just
those concepts that are essential for that purpose, which is the development of the state-
space representation for dynamic systems described by systems of linear differential
equations. These are given a somewhat heuristic treatment, without the mathematical
rigor often accorded the subject, omitting the development and use of the transform
methods of functional analysis for solving differential equations when they serve no
purpose in the derivation of the Kalman filter. The interested reader will find a more
formal and thorough presentation in most upper-level and graduate-level textbooks on

"From an interview quoted by Calvin Tomkins in “From in the outlaw area,” The New Yorker, January 8,

1966. 25
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ordinary differential equations. The objective of the more engineering-oriented
treatments of dynamic systems is usually to solve the controls problem, which is the
problem of defining the inputs (i.e., control settings) that will bring the state of the
dynamic system to a desirable condition. That is not the objective here, however.

2.1.1 Main Points to Be Covered

The objective in this chapter is to characterize the measurable outputs of dynamic
systems as functions of the internal states and inputs of the system. (The italicized
terms will be defined more precisely further along.) The treatment here is determi-
nistic, in order to define functional relationships between inputs and outputs. In the
next chapter, the inputs are allowed to be nondeterministic (i.e., random), and the
objective of the following chapter will be to estimate the states of the dynamic
system in this context.

Dynamic Systems and Differential Equations. In the context of Kalman
filtering, a dynamic system has come to be synonymous with a system of ordinary
differential equations describing the evolution over time of the state of a physical
system. This mathematical model is used to derive its solution, which specifies the
functional dependence of the state variables on their initial values and the system
inputs. This solution defines the functional dependence of the measurable outputs on
the inputs and the coefficients of the model.

Mathematical Models for Continuous and Discrete Time. The principal
dynamic system models are summarized in Table 2.1.* For implementation in digital
computers, the problem representation is transformed from an analog model (func-
tions of continuous time) to a digital model (functions defined at discrete times).

Observability characterizes the feasibility of uniquely determining the state of a
given dynamic system if its outputs are known. This characteristic of a dynamic
system is determinable from the parameters of its mathematical model.

2.2 DYNAMIC SYSTEMS

2.2.1 Dynamic Systems Represented by Differential Equations

A system is an assemblage of interrelated entities that can be considered as a whole.
If the attributes of interest of a system are changing with time, then it is called a
dynamic system. A process is the evolution over time of a dynamic system.

Our solar system, consisting of the sun and its planets, is a physical example of a
dynamic system. The motions of these bodies are governed by laws of motion that
depend only upon their current relative positions and velocities. Sir Isaac Newton
(1642—1727) discovered these laws and expressed them as a system of differential equa-
tions—another of his discoveries. From the time of Newton, engineers and scientists
have learned to define dynamic systems in terms of the differential equations that
govern their behavior. They have also learned how to solve many of these differential
equations to obtain formulas for predicting the future behavior of dynamic systems.

’These include nonlinear models, which are discussed in Chapter 5. The primary interest in this chapter
will be in linear models.
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TABLE 2.1 Mathematical Models of Dynamic Systems

Continuous Discrete
Time invariant
Linear X(t) = Fx(t) + Cu(t) X = Oxy_q + Tuy_4
General x(t) = f(x(1), u(t) X = F(Xj_1, Ug_1)
Time varying
Linear Xx(t) = F(t)x(t) + C(Hu(t) Xk = Pp_1 X1 + T_qUp_1
General x(t) = f(t, x(b), u(t)) X = (K, X,_1, Ug_1)

EXAMPLE 2.1 (below, left): Newton’s Model for a Dynamic System of n
Massive Bodies For a planetary system with n bodies (idealized as point
masses), the acceleration of the ith body in any inertial (i.e., non-rotating and
non-accelerating) Cartesian coordinate system is given by Newton’s third law as the
second-order differential equation

d27'~ n m{r,—r‘]
2’=Cg2%vl <i<n,
dt =1 Iy = ril
J/Ee

where r; is the position coordinate vector of the jth body, m; is the mass of the jth
body, and C, is the gravitational constant. This set of n differential equations, plus
the associated initial conditions of the bodies (i.e., their initial positions and
velocities) theoretically determines the future history of the planetary system.

my

y

Example 2.1 Example 2.2

EXAMPLE 2.2 (above, right): The Harmonic Resonator with Linear
Damping Consider the accompanying diagram of an idealized apparatus with a
mass m attached through a spring to an immovable base and its frictional contact to
its support base represented by a dashpot. Let o be the displacement of the mass
from its position at rest, dd/dt be the velocity of the mass, and a(t) = d*5/d¢* its
acceleration. The force F acting on the mass can be represented by Newton’s second
law as

F(t) = ma(t)
d*s
=n|0)
do

= —ko(t) — kg —- (),
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where k; is the spring constant and k, is the drag coefficient of the dashpot. This
relationship can be written as a differential equation

d*s dé
magE = ko = ki

in which time (¢) is the differential variable and displacement (J) is the dependent
variable. This equation constrains the dynamical behavior of the damped harmonic
resonator. The order of a differential equation is the order of the highest derivative,
which is 2 in this example. This one is called a /inear differential equation, because
both sides of the equation are linear combinations of ¢ and its derivatives. (That of
Example 2.1 is a nonlinear differential equation.)

Not All Dynamic Systems Can Be Modeled by Differential Equations.
There are other types of dynamic systems, such as those modeled by Petri nets or
inference nets. However, the only types of dynamic systems considered in this book
will be modeled by differential equations or by discrete-time linear state dynamic
equations derived from linear differential or difference equations.

2.2.2 State Variables and State Equations

The second-order differential equation of the previous example can be transformed
to a system of two first-order differential equations in the two dependent variables
x, = 6 and x, = dd/dt. In this way, one can reduce the form of any system of higher
order differential equations to an equivalent system of first-order differential
equations. These systems are generally classified into the types shown in Table
2.1, with the most general type being a time-varying differential equation for
representing a dynamic system with time-varying dynamic characteristics. This is
represented in vector form as

(1) = f (&, x(2), u(?)), 2.1

where Newton’s “dot” notation is used as a shorthand for the derivative with respect
to time, and a vector-valued function f to represent a system of n equations

xl :fl(tvxlyxz,xy--~,X,,,M1,I/I2,M3,...,ur,t),
)‘Cz :‘fé(t,xl,xZ,xS,...,xn,ul,uz,u3,...,ur,t),
X3 =38, X1, X0, X3,y ooy Xy, Uy, Uy, Uz ooy Uy, ), 22)
Xy =Lt X1, X, X5y oo Xy Uy, Uny Uz, ooy Uy, )

in the independent variable ¢ (time), » dependent variables {x;|1 <i < n}, and r
known inputs {u;|1 < i <r}. These are called the state equations of the dynamic
system.
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State Variables Represent the Degrees of Freedom of Dynamic
Systems. The variables x,, ..., x, are called the state variables of the dynamic
system defined by Equation 2.2. They are collected into a single n-vector

X =0 0 x50 - x0OF (23)

called the state vector of the dynamic system. The n-dimensional domain of the state
vector is called the state space of the dynamic system. Subject to certain continuity
conditions on the functions f; and u;, the values x;(¢,) at some initial time #, will
uniquely determine the values of the solutions x;(f) on some closed time interval
t € [t, t;] with initial time 7, and final time 7, [57]. In that sense, the initial value of
each state variable represents an independent degree of freedom of the dynamic
system. The # values x,(#y), x,(¢), x3(%)), - - . , X,,(#;) can be varied independently, and
they uniquely determine the state of the dynamic system over the time interval

1 € [ty 1.

EXAMPLE 2.3: State Space Model of the Harmonic Resonator For the
second-order differential equation introduced in Example 2.2, let the state variables
x; = 0 and x, = J. The first state variable represents the displacement of the mass
from static equilibrium, and the second state variable represents the instantaneous
velocity of the mass. The system of first-order differential equations for this dynamic
system can be expressed in matrix form as

d[x1(f)] _F [Jﬁ(f)]
dt| 0] " Lono]

0 1
Fc:|: ks kd:|1
m m

where F. is called the coefficient matrix of the system of first-order linear differential
equations. This is an example of what is called the companion form for higher order
linear differential equations expressed as a system of first-order differential equa-
tions.

2.2.3 Continuous Time and Discrete Time

The dynamic system defined by Equation 2.2 is an example of a continuous system,
so called because it is defined with respect to an independent variable ¢ that varies
continuously over some real interval 7 € [f),#;]. For many practical problems,
however, one is only interested in knowing the state of a system at a discrete set
of times ¢ € {t, t,, t5, . ..}. These discrete times may, for example, correspond to the
times at which the outputs of a system are sampled (such as the times at which Piazzi
recorded the direction to Ceres). For problems of this type, it is convenient to order
the times ¢, according to their integer subscripts:

hy<h<b<- -l <l <lgp <---.
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That is, the time sequence is ordered according to the subscripts, and the subscripts
take on all successive values in some range of integers. For problems of this type, it
suffices to define the state of the dynamic system as a recursive relation,

x(tk+1) Zf(x(tk)» I tk+1)» (2.4)

by means of which the state is represented as a function of its previous state. This is
a definition of a discrete dynamic system. For systems with uniform time intervals At

t, = kAt.

Shorthand Notation for Discrete-Time Systems. It uses up a lot of ink if
one writes x(#,) when all one cares about is the sequence of values of the state
variable x. It is more efficient to shorten this to x;, so long as it is understood that it
stands for x(#;), and not the kth component of x. If one must talk about a particular
component at a particular time, one can always resort to writing x;(#;) to remove any
ambiguity. Otherwise, let us drop ¢ as a symbol whenever it is clear from the context
that we are talking about discrete-time systems.

2.2.4 Time-Varying Systems and Time-Invariant Systems

The term “physical plant” or “plant” is sometimes used in place of “dynamic
system,” especially for applications in manufacturing. In many such applications, the
dynamic system under consideration is literally a physical plant—a fixed facility
used in the manufacture of materials. Although the input u(f) may be a function of
time, the functional dependence of the state dynamics on u and x does not depend
upon time. Such systems are called time invariant or autonomous. Their solutions
are generally easier to obtain than those of time-varying systems.

2.3 CONTINUOUS LINEAR SYSTEMS AND THEIR SOLUTIONS

2.3.1 Input—Output Models of Linear Dynamic Systems

The block diagram in Figure 2.1 represents a linear continuous system with three
types of variables:

e Inputs, which are under our control, and therefore known to us, or at least
measurable by us. (In the next chapter, however, they will be assumed to be
known only statistically. That is, individual samples of u are random but with
known statistical properties.)

e State variables, which were described in the previous section. In most
applications, these are “hidden variables,” in the sense that they cannot
generally be measured directly but must be somehow inferred from what can
be measured.

e Outputs, which are those things that can be known through measurements.

These concepts are discussed in greater detail in the following subsections.
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INPUTS DYNAMICS OUTPUTS

I/tl — —.Zl
Uy — — 2

M3—— F— 23

X =Fx+ Cu

Hx + Du

IS
1]

Uy — ——— Zl

Fig. 2.1 Block diagram of a linear dynamic system.

2.3.2 Dynamic Coefficient Matrices and Input Coupling Matrices

The dynamics of linear systems are represented by a set of n first-order linear
differential equations expressible in vector form as

d
x(t) = Ex(t)
= F(H)x(t) + C(Hu(t), (2.5)

where the elements and components of the matrices and vectors can be functions of
time:

(/@) [ fiz(®) -0 [l
@) oD fo3(0) - (D)
F(t) = S0 () fi35(0 - [0

LS (@) S fus(@) - fu(®)

() ep(®) et - e ()]

(1) () c(t) - ()

ct)=| 1) ) @) - ()
_cnl(t) CnZ(t) Cn3(t) e Cnr(t) a

w(t) =[u, (1) u() wuz(®) - “r(t)]T-

The matrix F(¢) is called the dynamic coefficient matrix, or simply the dynamic
matrix. Its elements are called the dynamic coefficients. The matrix C(¥) is called the
input coupling matrix, and its elements are called input coupling coefficients. The
r-vector u is called the input vector.
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EXAMPLE 2.4: Dynamic Equation for a Heating/Cooling System Consider
the temperature 7 in a heated enclosed room or building as the state variable of a
dynamic system. A simplified plant model for this dynamic system is the linear
equation

T(6) = =k IT(t) = T, (0] + kyu(2),

where the constant “cooling coefficient” &, depends on the quality of thermal
insulation from the outside, 7, is the temperature outside, k;, is the heating/cooling
rate coefficient of the heater or cooler, and u is an input function that is either u = 0
(off) or u = 1 (on) and can be defined as a function of any measurable quantities.
The outside temperature 7, on the other hand, is an example of an input function
which may be directly measurable at any time but is not predictable in the future. It is
effectively a random process.

2.3.3 Companion Form for Higher Order Derivatives

In general, the nth-order linear differential equation

d” am! d
20 h0 2002 o = @6)

can be rewritten as a system of » first-order differential equations. Although the state
variable representation as a first-order system is not unique [56], there is a unique
way of representing it called the companion form.

Companion Form of the State Vector. For the nth-order linear dynamic
system shown above, the companion form of the state vector is

d & a1
x(r)z[ya), IO DN Wy(r)]. @.7)

Companion Form of the Differential Equation. The nth-order linear differ-
ential equation can be rewritten in terms of the above state vector x(¢) as the vector
differential equation

x;(t) 0 1 0 o0 x1 () 0
x,(1) 0 0 1 0 x(0) 0

il : = : : : : 5O 4| u).
x,_, (1) 0 0 0 e 1 :
x,(2) () SO —fa® - =AO T x,(0) 1

2.8)
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When Equation 2.8 is compared with Equation 2.5, the matrices F(¢) and C(?) are
easily identified.

The Companion Form is lll-conditioned. Although it simplifies the relation-
ship between higher order linear differential equations and first-order systems of
differential equations, the companion matrix is not recommended for implementa-
tion. Studies by Kenney and Liepnik [185] have shown that it is poorly conditioned
for solving differential equations.

2.3.4 Outputs and Measurement Sensitivity Matrices

Measurable Outputs and Measurement Sensitivities. Only the inputs and
outputs of the system can be measured, and it is usual practice to consider the
variables z; as the measured values. For linear problems, they are related to the state
variables and the inputs by a system of linear equations that can be represented in
vector form as

2(t) = HOx(t) + D(Ou(?), 2.9)

where

)=l 20 z0) - zOl,

[ 7 (1) () k() o Ry ()]
hyy () hop()  hyps(t) -+ ho,(0)
H@) = | 11O b)) hss(t) -+ by, (0) |
Lha (D) hpp(0) hes(@®) - by (D)
[dy (1) dip() diz() - di ()]
dy (1) dyp(t) dp(t) -+ do()
D(t) = | G dp() dy(0) - dy, (1)
L dn(0) dp(t) dp() - dy (D) |

The {-vector z(f) is called the measurement vector, or the output vector of the
system. The coefficient 4;(#) represents the sensitivity (measurement sensor scale
factor) of the ith measured output to the jth internal state. The matrix H(f) of these
values is called the measurement sensitivity matrix, and D(¢) is called the input—
output coupling matrix. The measurement sensitivities hy(f) and input/output
coupling coefficients d,»j(t), 1 <i<¥,1<j<r, are known functions of time. The
state equation 2.5 and the output equation 2.9 together form the dynamic equations
of the system shown in Figure 2.1.
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2.3.5 Difference Equations and State Transition Matrices (STMs)

Difference equations are the discrete-time versions of differential equations. They
are usually written in terms of forward differences x(t; ) — x(t;) of the state variable
(the dependent variable), expressed as a function i of all independent variables or of
the forward value x(f, ;) as a function ¢ of all independent variables (including the
previous value as an independent variable):

Xty 1) — x(t) = Wty x(8), u(ty)),
or

X(te1) = Pty x(tp), u(ty)), (2.10)
Gt x(t), u(ty)) = x(8) + Yy, x(t), u(ty)).

The second of these (Equation 2.10) has the same general form of the recursive
relation shown in Equation 2.4, which is the one that is usually implemented for
discrete-time systems.

For linear dynamic systems, the functional dependence of x(#;,;) on x(#;) and
u(t,) can be represented by matrices:

X(tpy1) — x(8) = P(t)x(t) + C(t)ulty),
xk_H :@kxk+Ckuk, (211)
O = 1+ ¥(t),

where the matrices W and ® replace the functions ¥ and ¢, respectively. The matrix
® is called the state transition matrix (STM). The matrix c is called the discrete-time
input coupling matrix, or simply the input coupling matrix—if the discrete-time
context is already established.

2.3.6 Solving Differential Equations for STMs

A state transition matrix is a solution of what is called the “homogeneous™ matrix
equation associated with a given linear dynamic system. Let us define first what
homogeneous equations are, and then show how their solutions are related to the
solutions of a given linear dynamic system.

Homogeneous Systems. The equation x(¢) = F(f)x(¢) is called the homoge-
neous part of the linear differential equation x(¢) = F(¢)x(f) + C(t)u(t). The solution
of the homogeneous part can be obtained more easily than that of the full equation,
and its solution is used to define the solution to the general (nonhomogeneous) linear
equation.

3This terminology comes from the notion that every term in the expression so labeled contains the
dependent variable. That is, the expression is homogeneous with respect to the dependent variable.
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Fundamental Solutions of Homogeneous Equations. An n x n matrix-
valued function ®(¢) is called a findamental solution of the homogeneous equation
x(f) = F(t)x(f) on the interval 7 € [0, T] if () = F(£)®(¢) and ®(0) = I,then xn
identity matrix. Note that, for any possible initial vector x(0), the vector
x(t) = ©(¢)x(0) satisfies the equation

d

x(1) = o [D(1)x(0)] (2.12)
d

- [dt (I)(t)]x(O) (2.13)

= [F(O)®(1)]x(0) (2.14)

= F(O)[P(1)x(0)] (2.15)

= F(O)x(b). (2.16)

That is, x(¢) = ®(¢)x(0) is the solution of the homogeneous equation x = Fx with
initial value x(0).

EXAMPLE 2.5 The unit upper triangular Toeplitz matrix

B 1 1 1 .
1t A £ !
2 1-2-3 (n— 1)
1.2 1 n—2
1 ¢ >t ¢
0 2 (n—2)!
1 n—3
on=|0 0 1 N P T
1
00 0 1 —
(n—4)!
L0 0 O 0 1 _

is the fundamental solution of x = Fx for the strictly upper triangular Toeplitz
dynamic coefficient matrix

01 0 0
0 o0 1 - 0
2 .
00 0 - 1
000 -+ 0

which can be verified by showing that ®(0) =/ and ® = F®. This dynamic
coefficient matrix, in turn, is the companion matrix for the nth-order linear
homogeneous differential equation (d/dt)"y(r) = 0.
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Fig. 2.2 The STM as a composition of fundamental solution matrices.

Existence and Nonsingularity of Fundamental Solutions. If the elements
of the matrix F'(¢) are continuous functions on some interval 0 < ¢ < T, then the
fundamental solution matrix @(¢) is guaranteed to exist and to be nonsingular on an
interval 0 < ¢ < 7 for some 7 > 0. These conditions also guarantee that ®(¢) will be
nonsingular on some interval of nonzero length, as a consequence of the continuous
dependence of the solution ®(#) of the matrix equation on its (nonsingular) initial
conditions [®(0) = I] [57].

State Transition Matrices. Note that the fundamental solution matrix ®(¢)
transforms any initial state x(0) of the dynamic system to the corresponding state
x(t) at time f. If ®(f) is nonsingular, then the products ®~'(£)x(f) = x(0) and
®(7)® ! (£)x(f) = x(t). That is, the matrix product

(1, 1) = O(t)D(7) (2.17)

transforms a solution from time ¢ to the corresponding solution at time 7, as
diagrammed in Figure 2.2. Such a matrix is called the state transition matrix* for the
associated linear homogeneous differential equation. The state transition matrix
®(t, t) represents the transition to the state at time 7 from the state at time ¢.

Properties of STMs and Fundamental Solution Matrices. The same
symbol (®) has been used for fundamental solution matrices and for state transition
matrices, the distinction being made by the number of arguments. By convention,
then,

(7, 0) = O(7).
Other useful properties of ® include the following:

I. O(t,7) =D(0) =1,

2. @7 (z, 1) = D, 1),

3. ®(z, 0)D(0, 1) = O(x, 1),

4. (9/00)D(t, t) = F(1)D(x, 1),

“*Formally, an operator ®(z, t,, x(t,)) such that x(r) = ®(t, t,, x(ty)) is called an evolution operator for a
dynamic system with state x. A state transition matrix is a linear evolution operator.
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and
5. (8/9)D(x, t) = —D(z, )F(2).

EXAMPLE 2.6: Fundamental Solution Matrix for the Underdamped Harmo-
nic Resonator The general solution of the differential equation. In Examples 2.2
and 2.3, the displacement ¢ of the damped harmonic resonator was modeled by the
state equation

x = Fx,
0 1
F= ks kd
L m m

The characteristic values of the dynamic coefficient matrix F are the roots of its
characteristic polynomial

k

s
)
m

k
det(\l — F) = /2 +£i +

which is a quadratic polynomial with roots
1 ky k3 4k
== --2 a4 _ =]
) < m + m2  m

i _1 ky k§ 4k,
272 m m2 m)

The general solution for the displacement J can then be written in the form
8(t) = e’ + B!,
where o and f§ are (possibly complex) free variables.

The underdamped solution. The resonator is considered underdamped if the
discriminant

2
k—d—%<0,
m2  m
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in which case the roots are a conjugate pair of nonreal complex numbers and the
general solution can be rewritten in “real form™ as

5(t) = ae™"!" cos(wt) + be™"/" sin(wr),

2m
ky’

[
=N

where a and b are now real variables, 7 is the decay time constant, and o is the
resonator resonant frequency. This solution can be expressed in state-space form in
terms of the real variables a and b:

5() cos(wt) sin(wt) a
[ : ] =e " cos(wr) sin(wr) |: :|
- .

o(t) — wsin(wt) cos(wt) — b

T =

Initial value constraints. The initial values
- a
0(0) = a, 0(0) = ——+ wb
T

can be solved for ¢ and b as

1 0
a 5(0)
[b]: L1 [Sm)}'

wt W

This can then be combined with the solution for x(¢) in terms of @ and b to yield the
fundamental solution

x(1) = ()x(0),

() = et |:r[w7: cos(wt) + sin(w?)] 2 sin(w?) :|

wt? —(1 + w?1)sin(wt) —[7 cos(wt) + sin(wt)]

in terms of the damping time constant and the resonant frequency.
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2.3.7 Solution of Nonhomogeneous Equations

The solution of the nonhomogeneous state equation 2.5 is given by

x(t) = @(¢, ty)x(ty) + JI ®(t, 1)C(t)u(t) dt (2.18)

= O(1)D ! (1,)x(1y) + q)(r)J O (0)C()u(r) d, (2.19)

)

where x(#,) is the initial value and ®(t,#,) is the state transition matrix of the
dynamic system defined by F(7). (This can be verified by taking derivatives and
using the properties of STMs given above.)

2.3.8 Closed-Form Solutions of Time-Invariant Systems

In this case, the coefficient matrix F'is a constant function of time. The solution will
still be a function of time, but the associated state transition matrices ®(¢, t) will only
depend on the differences ¢ — 7. In fact, one can show that

O(t, 1) = 9 (2.20)
X(t—1 P
= ;)( 3 ) F', (2.21)

where F° = I, by definition. The solution of the nonhomogeneous equation in this
case will be

x(f) = ' Ix(7) + Jl =9 Cu(o) do (2.22)

t
= eIx(7) + & J e "7Cu(o) do. (2.23)

T

The following methods have been used for computing matrix exponentials:

1. The approximation of e’ by a truncated power series expansion is not a
recommended general-purpose method, but it is useful if the characteristic
values of Ft are well inside the unit circle in the complex plane.

2. () =" = % N (sI —F)"',t> 0, where [ is an n x n identity matrix, &
is the inverse Laplacian operator, and s is the Laplace transform variable.

3. The “scaling and squaring” method combined with a Padé approximation is
the recommended general-purpose method. This method is discussed in
greater detail in Section 2.6.
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4. Numerical integration of the homogeneous part of the differential equation,
d
%(I)(t) = F®(1), (2.24)

with initial value ®(0) =/. (This method also works for time-varying
systems.)

There are many other methods,” but these are the most important.
EXAMPLE 2.7: Solution of the Damped Harmonic Resonator Problem with
Constant Driving Function Consider again the damped resonator model of

Examples 2.2, 2.3, and 2.6. The model can be written in the form of a second-
order differential equation

S(0) + 20w, 8(1) + w2d(1) = u(t),

where

cods . d 3 k,
=", =7 e /5
0= O=Gz ¢ 2k,

The parameter { is a unitless damping coefficient and w, the “natural” (i.e.,
undamped) frequency of the resonator.

This second-order linear differential equation can be rewritten in a state-space
form, with states x; = é and x, = 0 = x; and parameters { and w,, as

d xl(t) _ 0 1 X](t) 0
ar [xz(t):| - [—wﬁ —2cW,,sz(r>} * [1}“(’)

with initial conditions
|:x 1(t) :|
x,(%)

u(t) = 1, w, =1, (=0.5,

[0 1]

3See, for example, Brockett [56], DeRusso et al. [59], or Kreindler and Sarachik [189].

As a numerical example, let

so that the coefficient matrix
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Therefore,

o
(sI —F) = ,
1 s+1

I 1 s+1 1
(sf = F) T 24541

-1 =
D(r) = e
= Y sI—F)"
s+ 1 1
_ g s24+s+1 s2+s+1
—1 )
S+s+1 s24+s5+1
1x/§cos 1«/§t +1sin ]«/gt sin 1«/§t
2012 | 2 2 27\2 2
V3 /(1 1 1 1. (1
—s1n(§\/§t> 7 3cos(§x/§t)—§sm<5x/§t)

2.3.9 Time-Varying Systems

If F(¢) is not constant, the dynamic system is called time-varying. If F(¢) is a
piecewise smooth function of ¢, the n x » homogeneous matrix differential equation
2.24 can be solved numerically by the fourth-order Runge—Kutta method.®

2.4 DISCRETE LINEAR SYSTEMS AND THEIR SOLUTIONS

2.4.1 Discretized Linear Systems
If one is only interested in the system state at discrete times, then one can use the
formula

Tk

k

3(10) = Oy bty ) + J Oty 0)C(o (o) do (2.25)

Tk

to propagate the state vector between the times of interest.

®Named after the German mathematicians Karl David Tolme Runge (1856—1927) and Wilhelm Martin
Kutta (1867-1944).
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Simplification for Constant u. If u is constant over the interval [¢,_,, ], then
the above integral can be simplified to the form

x(t) = O, tr_)x(te—y) + Dt Dulty_y) (2.26)
Ty )) = r O(t,, 6)C(0) do. (2.27)

T

Shorthand Discrete-Time Notation. For discrete-time systems, the indices & in
the time sequence {#,} characterize the times of interest. One can save some ink by
using the shorthand notation:

def def def def
Xy = x(ty), z = 2(ty), up = u(ty), H, = H(t).

def def def
Dy = D(1y), O, = O, 1), I ST

for discrete-time systems, eliminating ¢ entirely. Using this notation, one can
represent the discrete-time state equations in the more compact form

X = O yxpy + Dy, (2.28)
Zy = Hkxk + Dk”k (229)

2.4.2 Time-Invariant Systems

For continuous time-invariant systems that have been discretized using fixed time
intervals, the matrices @, I', H, and D are independent of the discrete-time index as
well. In that case, the solution can be written in closed form as

=1
xp = Ohxy + SO T, (2.30)
i=0
where @ is the kth power of ®. The matrix ®* can also be computed as

O = 77 V[(zl — ®) 4], (2.31)

where z is the z-transform variable and 2! is the inverse z-transform.

2.5 OBSERVABILITY OF LINEAR DYNAMIC SYSTEM MODELS

Observability is the issue of whether the state of a dynamic system is uniquely
determinable from its inputs and outputs, given a model for the dynamic system. It is
essentially a property of the given system model. A given linear dynamic system
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model with a given linear input/output model is considered observable if and only if
its state is uniquely determinable from the model definition, its inputs, and its
outputs. If the system state is not uniquely determinable from the system inputs and
outputs, then the system model is considered unobservable.

How to Determine Whether a Given Dynamic System Model Is Obser-
vable. 1If the measurement sensitivity matrix is invertible at any (continuous or
discrete) time, then the system state can be uniquely determined (by inverting it) as
x = H!z. In this case, the system model is considered to be completely observable
at that time. However, the system can still be observable over a time interval even if
H is not invertible at any time. In the latter case, the unique solution for the system
state can be defined by using the least-squares methods of Chapter 1, including those
of Sections 1.2.2 and 1.2.3. These use the so-called Gramian matrix to characterize
whether or not a vector variable is determinable from a given linear model. When
applied to the problem of the determinacy of the state of a linear dynamic system,
the Gramian matrix is called the observability matrix of the given system model.

The observability matrix for dynamic system models in continuous time has the
form

O(H, F, ty, 1) = r OT(NH " ()H(H)D(7) dt (2.32)

lo

for a linear dynamic system with fundamental solution matrix ®(f) and measurement
sensitivity matrix H(z), defined over the continuous-time interval ¢, < ¢ < t,. Note
that this depends on the interval over which the inputs and outputs are observed but
not on the inputs and outputs per se. In fact, the observability matrix of a dynamic
system model does not depend on the inputs u, the input coupling matrix C, or the
input—output coupling matrix D—even though the outputs and the state vector
depend on them. Because the fundamental solution matrix ® depends only on the
dynamic coefficient matrix F, the observability matrix depends only on H and F.

The observability matrix of a linear dynamic system model over a discrete-time
interval #, <t < tk/ has the general form

b rk—1 T k=1
OH, O, 1 <k < k) = {Z[l’[fbk_l} HI;FHk|:nq)k—i:| } (2.33)
i=0

k=1Li=0

where H, is the observability matrix at time #, and @, is the state transition matrix
from time ¢, to time 7, for 0 < k < k;. Therefore, the observability of discrete-time
system models depends only on the values of H) and ®, over this interval. As in the
continuous-time case, observability does not depend on the system inputs.

The derivations of these formulas are left as exercises for the reader.
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2.5.1 Observability of Time-Invariant Systems

The formulas defining observability are simpler when the dynamic coefficient
matrices or state transition matrices of the dynamic system model are time invariant.
In that case, observability can be characterized by the rank of the matrices

M=[H" O'H" (@")’H' ... @) 'H" (2.34)
for discrete-time systems and
M=[H" F'H" (F'YH' ... F"Y'HT (2.35)

for continuous-time systems. The systems are observable if these have rank n, the
dimension of the system state vector. The first of these matrices can be obtained by
representing the initial state of the linear dynamic system as a function of the system
inputs and outputs. The initial state can then be shown to be uniquely determinable if
and only if the rank condition is met. The derivation of the latter matrix is not as
straightforward. Ogata [38] presents a derivation obtained by using properties of the
characteristic polynomial of F.

Practicality of the Formal Definition of Observability. Singularity of the
observability matrix is a concise mathematical characterization of observability. This
can be too fine a distinction for practical application—especially in finite-precision
arithmetic—because arbitrarily small changes in the elements of a singular matrix
can render it nonsingular. The following practical considerations should be kept in
mind when applying the formal definition of observability:

e It is important to remember that the model is only an approximation to a real
system, and we are primarily interested in the properties of the real system, not
the model. Differences between the real system and the model are called model
truncation errors. The art of system modeling depends on knowing where to
truncate, but there will almost surely be some truncation error in any model.

e Computation of the observability matrix is subject to model truncation errors
and roundoff errors, which could make the difference between singularity and
nonsingularity of the result. Even if the computed observability matrix is close
to being singular, it is cause for concern. One should consider a system as
poorly observable if its observability matrix is close to being singular. For that
purpose, one can use the singular-value decomposition or the condition
number of the observability matrix to define a more quantitative measure of
unobservability. The reciprocal of its condition number measures how close the
system is to being unobservable.

e Real systems tend to have some amount of unpredictability in their behavior,
due to unknown or neglected exogenous inputs. Although such effects cannot
be modeled deterministically, they are not always negligible. Furthermore, the
process of measuring the outputs with physical sensors introduces some
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amount of sensor noise, which will cause errors in the estimated state. It would
be better to have a quantitative characterization of observability that takes these
types of uncertainties into account. An approach to these issues (pursued in
Chapter 4) uses a statistical characterization of observability, based on a
statistical model of the uncertainties in the measured system outputs and the
system dynamics. The degree of uncertainty in the estimated values of the
system states can be characterized by an information matrix, which is a
statistical generalization of the observability matrix.

EXAMPLE 2.8 Consider the following continuous system:
) 0 1 0
x(t) = x(1) + u(?),
0 0 1
z(t)=[1 O]x(®).

The observability matrix, using Equation 2.35, is

M=|:(1) (1)], rank of M = 2.

Here, M has rank equal to the dimension of x(¢). Therefore, the system is observable.

EXAMPLE 2.9 Consider the following continuous system:

0 1 0
x(t) = |: :|x(t) + |: :|u(t),
0 0 1

) =10 1.

The observability matrix, using Equation 2.35, is

M:|:(1) (1)], rank of M = 1.

Here, M has rank less than the dimension of x(#). Therefore, the system is not
observable.
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EXAMPLE 2.10 Consider the following discrete system:

0 00 1
=10 0 0 |x_;+ |1 |u_,
1 10 0

z=[0 0 I1lx.

The observability matrix, using Equation 2.34, is

<
I
— o O

1 0
1 0|, rankof M =2.
0 0

The rank is less than the dimension of x;. Therefore, the system is not observable.

EXAMPLE 2.11 Consider the following discrete system:

1 -1 2
X = |:1 1:|xk1+|:1:|uk19
1 0
RN

The observability matrix, using Equation 2.34, is

1 -1
M_|:0 1i|, rank of M =2

The system is observable.

2.5.2 Controllability of Time-Invariant Linear Systems

Controllability in Continuous Time. The concept of observability in estima-
tion theory has algebraic relationships to the concept of controllability in control
theory. These concepts and their relationships were discovered by R. E. Kalman as
what he called the duality and separability of the estimation and control problems for
linear dynamic systems. Kalman’s’ dual concepts are presented here and in the next
subsection, although they are not issues for the estimation problem.

"The dual relationships between estimation and control given here are those originally defined by Kalman.
These concepts have been refined and extended by later investigators to include concepts of reachability
and reconstructibility as well. The interested reader is referred to the more recent textbooks on “modern”
control theory for further exposition of these other “-ilities.”
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A dynamic system defined on the finite interval £, < ¢ < #, by the linear model

x(t) = Fx(t) + Cu(t), z(t) = Hx(t) + Du(t) (2.36)

and with initial state vector x(z,) is said to be controllable at time t = ¢, if, for any

desired final state x(7,), there exists a piecewise continuous input function u(7) that

drives to state x(#;). If every initial state of the system is controllable in some finite
time interval, then the system is said to be controllable.

The system given in Equation 2.36 is controllable if and only if matrix S has »
linearly independent columns,

S=[C FC F*C ... F"'(]. (2.37)

Controllability in Discrete Time. Consider the time-invariant system model
given by the equations

xk = (D)Ck71 + Fuk*l’ (238)
Zk = ka + Duk. (2.39)

This system model is considered controllable® if there exists a set of control signals
u,, defined over the discrete interval 0 < k < N that bring the system from an initial
state x,, to a given final state x); in N sampling instants, where N is a finite positive
integer. This condition can be shown to be equivalent to the matrix

S=[C oI &T ... V1] (2.40)

having rank 7.

EXAMPLE 2.12 Determine the controllability of Example 2.8. The controllabil-
ity matrix, using Equation 2.37, is

0 1
S_|:1 0], rank of § = 2.

Here, S has rank equal to the dimension of x(¢). Therefore, the system is controllable.

EXAMPLE 2.13 Determine the controllability of Example 2.10. The controll-
ability matrix, using Equation 2.40, is

1 00
S=(1 0 0], rankofS=2.
0 2 0

The system is not controllable.

8This condition is also called reachability, with controllability restricted to x, = 0.
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2.6 PROCEDURES FOR COMPUTING MATRIX EXPONENTIALS

In a 1978 journal article titled “Nineteen dubious ways to compute the exponential
of a matrix” [205], Moler and Van Loan reported their evaluations of methods for
computing matrix exponentials. Many of the methods tested had serious short-
comings, and no method was considered universally superior. The one presented
here was recommended as being more reliable than most. It combines several ideas
due to Ward [233], including setting the algorithm parameters to meet a prespecified
error bound. It combines Padé approximation with a technique called “scaling and
squaring” to maintain approximation errors within prespecified bounds.

2.6.1 Padé Approximation of the Matrix Exponential

Padé approximations. These approximations of functions by rational functions
(ratios of polynomials) date from a 1892 publication [206] by H. Padé.’ They have
been used in deriving solutions of differential equations, including Riccati equa-
tions'® [69]. They can also be applied to functions of matrices, including the matrix
exponential. In the matrix case, the power series is approximated as a “matrix
fraction” of the form Z~'.4", with the numerator matrix (/") and denominator
matrix (%) represented as polynomials with matrix arguments. The “order” of the
Padé approximation is two dimensional. It depends on the orders of the polynomials
in the numerator and denominator of the rational function. The Taylor series is the
special case in which the order of the denominator polynomial of the Padé
approximation is zero. Like the Taylor series approximation, the Padé approximation
tends to work best for small values of its argument. For matrix arguments, it will be
some matrix norm of the argument that will be required to be small.

Padeé approximation of exponential function. The exponential function with
argument z has the power series expansion

& =
0

M2
| —
N;N\‘

k

The polynomials ./,(z) and & (z) such that

C ok
Np(@) = ) @,

=0

d k
D,(2) =) bz,

fe=0

€D,(2) = N(2)= Y o2t
k=p+q+1

Pronounced pah-DAY..
9The order of the numerator and denominator of the matrix fraction are reversed here from the order used
in linearizing the Riccati equation in Chapter 4.
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are the numerator and denominator polynomials, respectively, of the Padé approx-
imation of €. The key feature of the last equation is that there are no terms of order
<p -+ g on the right-hand side. This constraint is sufficient to determine the
coefficients @, and b, of the polynomial approximants, except for a common
constant factor. The solution (within a common constant factor) will be [69]

L _Peta—R (Dl +g— k)
T T k(g — k)!

Application to Matrix Exponential. The above formulas may be applied to
polynomials with scalar coefficients and square matrix arguments. For any n x n
matrix X,

(p+q—10)! i p+q—10)
ﬁ?q(X):<'27),( X)> < ,Z(:) il(p — i) X)
~ er

is the Padé approximation of e* of order (p, q).

Bounding Relative Approximation Error. The bound given here is from
Moler and Van Loan [205]. It uses the oco-norm of a matrix, which can be

computed'' as
n
Xl = m
X le = max (31,

for any n x n matrix X with elements x;;. The relative approximation error is defined
as the ratio of the matrix co-norm of the approximation error to the matrix co-norm
of the right answer. The relative Padé approximation error is derived as an analytical
function of X in Moler and Van Loan [205]. It is shown in Golub and Van Loan [89]
that it satisfies the inequality bound

X)— e
W—”m < &(p, q, X)e P,
lle* oo
plgl23—ra
e(p.q. X) = XNl

(p+p+qg+1)

Note that this bound depends only on the sum p + ¢. In that case, the computational
complexity of the Padé approximation for a given error tolerance is minimized when
p = q, that is, if the numerator and denominator polynomials have the same order.

"!'This formula is not the definition of the co-norm of a matrix, which is defined in Appendix B. However,
it is a consequence of the definition, and it can be used for computing it.
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Bounding the Argument. The problem with the Padé approximation is that the
error bound grows exponentially with the norm |X| .. Ward [233] combined
scaling (to reduce | X||,, and the Padé approximation error) with squaring (to
rescale the answer) to obtain an approximation with a predetermined error bound. In
essence, one chooses the polynomial order to achieve the given bound.

2.6.2 Scaling and Squaring

Note that, for any nonnegative integer N,

&= eZ’NX)}’V
={[(--- & )R,
N squarings

Consequently, X can be “downscaled” by 27 to obtain a good Padé approximation
of ¢ "X, then “upscaled” again (by N squarings) to obtain a good approximation

to e¥.

2.6.3 MATLAB Implementations

The built-in MATLAB function expm(M) is essentially the one recommended by
Moler and Van Loan [205], as implemented by Golub and Van Loan [89, Algorithm
11.3.1, page 558]. It combines scaling and squaring with a Padé approximation for
the exponential of the scaled matrix, and it is designed to achieve a specified
tolerance of the approximation error. The MATLAB m-file expm1.m (Section A.4)
is a script implementation of expm.

MATLAB also includes the functions expm2 (Taylor series approximation) and
expm3 (alternative implementation using eigenvalue—eigenvector decompositions),
which can be used to test the relative accuracies and speeds relative to expm of these
alternative implementations of the matrix exponential function.

2.7 SUMMARY

Systems and Processes. A system is a collection of interrelated objects treated
as a whole for the purpose of modeling its behavior. It is called dynamic if attributes
of interest are changing with time. A process is the evolution over time of a system.

Continuous and Discrete Time. Although it is sometimes convenient to model
time as a continuum, it is often more practical to consider it as taking on discrete
values. (Most clocks, for example, advance in discrete time steps.)

State Variables and Vectors. The state of a dynamic system at a given instant
of time is characterized by the instantaneous values of its attributes of interest. For
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the problems of interest in this book, the attributes of interest can be characterized
by real numbers, such as the electric potentials, temperatures, or positions of its
component parts—in appropriate units. A state variable of a system is the associated
real number. The state vector of a system has state variables as its component
elements. The system is considered closed if the future state of the system for all
time is uniquely determined by its current state. For example, neglecting the gravity
fields from other massive bodies in the universe, the solar system could be
considered as a closed system. If a dynamic system is not closed, then the exogenous
causes are called “inputs” to the system. This state vector of a system must be
complete in the sense that the future state of the system is uniquely determined by its
current state and its future inputs.'* In order to obtain a complete state vector for a
system, one can extend the state variable components to include derivatives of other
state variables. This allows one to use velocity (the derivative of position) or
acceleration (the derivative of velocity) as state variables, for example.

State-Space Models for Dynamic Systems. In order that the future state of a
system may be determinable from its current state and future inputs, the dynamical
behavior of each state variable of the system must be a known function of the
instantaneous values of other state variables and the system inputs. In the canonical
example of our solar system, for instance, the acceleration of each body is a known
function of the relative positions of the other bodies. The state-space model for a
dynamic system represents these functional dependencies in terms of first-order
differential equations (in continuous time) or difference equations (in discrete time).
The differential or difference equations representing the behavior of a dynamic
system are called its state equations. If these can be represented by linear functions,
then it is called a linear dynamic system.

Linear Dynamic System Models. The model for a linear dynamic system in
continuous time can be expressed in general form as a first-order vector differential
equation

%x(t) = F(Ox(1) + Cu(r),

where x(¢) is the n-dimensional system state vector at time t, F(f) is its n X n
dynamic coefficient matrix, u(t) is the r-dimensional system input vector, and C(f) is
the n x r input coupling matrix. The corresponding model for a linear dynamic
system in discrete time can be expressed in the general form

X =@y x5y + Dy,

"2This concept in the state-space approach will be generalized in the next chapter to the “state of
knowledge” about a system, characterized by the probability distribution of its state variables. That is, the
future probability distribution of the system state variables will be uniquely determined by their present
probability distribution and the probability distributions of future inputs.
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where x;,_, is the n-dimensional system state vector at time #,_,, x; is its value a time
ty > t_y1, Oy is the n x n state transition matrix for the system at time #;, u; is the
input vector to the system a time #;,, and I'; is the corresponding input coupling
matrix.

Time-Varying and Time-Invariant Dynamic Systems. If F and C (or ® and
C) do not depend upon ¢ (or k), then the continuous (or discrete) model is called time

invariant. Otherwise, the model is time-varying.

Homogeneous Systems and Fundamental Solution Matrices. The equa-
tion

d
Salt) = F(ox(0)
is called the homogeneous part of the model equation
d
ax(t) = F(t)x(t) + C(t)u(t).

A solution ®(¢) to the corresponding n X n matrix equation

d
7 O(t) = F()D(r)

on an interval starting at time ¢ = ¢, and with initial condition
®(t)) =1 (the identity matrix)
is called a fundamental solution matrix to the homogeneous equation on that

interval. It has the property that, if the elements of F(f) are bounded, then ®(7)
cannot become singular on a finite interval. Furthermore, for any initial value x(z,),

x(1) = D(1)x(1)
is the solution to the corresponding homogeneous equation.
Fundamental Solution Matrices and State Transition Matrices. For a
homogenous system, the state transition matrix ®,_,; from time #,_; to time #, can be
expressed in terms of the fundamental solution ®(¢) as

Oy = D(t)D ' (t_y)

for times #, > #,_; > .
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Transforming Continuous-Time Models to Discrete Time. The model for
a dynamic system in continuous time can be transformed into a model in discrete
time using the above formula for the state transition matrix and the following
formula for the equivalent discrete-time inputs:

R [ O (1) C(u(x) d.

Tk—1

Linear System Output Models and Observability. An output of a dynamic
system is something we can measure directly, such as directions of the lines of sight
to the planets (viewing conditions permitting) or the temperature at thermocouple. A
dynamic system model is said to be observable from a given set of outputs if it is
feasible to determine the state of the system from those outputs. If the dependence of
an output z on the system state x is linear, it can be expressed in the form

z = Hx,

where H is called the measurement sensitivity matrix. It can be a function of
continuous time [H(#)] or discrete time (H,). Observability can be characterized by
the rank of an observability matrix associated with a given system model. The
observability matrix is defined as

t
J O (0)HT (0)H (1)D(1) dt for continuous-time models,

)

m [ ri=1 i-1 _\T
3 |:< (DZ)HiTHi < I1 (DZ> :| for discrete-time models.
0 =0

i=0 k=

The system is observable if and only if its observability matrix has full rank (n) for
some integer m > 0 or time ¢ > #,. (The test for observability can be simplified for
time-invariant systems.) Note that the determination of observability depends on the
(continuous or discrete) interval over which the observability matrix is determined.

Reliable Numerical Approximation of Matrix Exponential. The closed-
form solution of a system of first-order differential equations with constant
coefficients can be expressed symbolically in terms of the exponential function of
a matrix, but the problem of numerical approximation of the exponential function of
a matrix is notoriously ill-conditioned.

PROBLEMS

. . . dy(t
2.1 What is a state vector model for the linear dynamic system % = u(t),
expressed in terms of y? (Assume the companion form of the dynamic
coefficient matrix.)
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2.2

2.3
24

2.5

2.6

2.7

2.8

29

LINEAR DYNAMIC SYSTEMS

What is the companion matrix for the nth-order differential equation
(d/dt)"y(t) = 0? What are its dimensions?

What is the companion matrix of the above problem when n = 1? For n = 2?

What is the fundamental solution matrix of Exercise 2.2 when » = 1? When
n=27

What is the state transition matrix of the above problem when n = 1? For
n=27

Find the fundamental solution matrix ®(¢) for the system

d|:x1(t)i|_|: 0 0:||:x1(t):|+|:1]
dt| x| [-1 —=2]0x0) 1
and also the solution x(¢) for the initial conditions

x(0)=1 and x,(0)=2.

Find the total solution and state transition matrix for the system

dx@®] [-1 07 x,(®) 5
i) =L o 1llo) * L1
with initial conditions x;(0) = 1 and x,(0) = 2.

The reverse problem: from a discrete-time model to a continuous-time model.
For the discrete-time dynamic system model

0 1 0
[ e 1)

find the state transition matrix for continuous time and the solution for the
continuous-time system with initial conditions

x(O):[é].

Find conditions on ¢y, c,, 4}, h, such that the following system is completely
observable and controllable:

dx@®] [1 1[x@®) C
E[xz(f)] B [0 1][x2(t)] " |:Czi|u(t)’
(1) = [y hz][’”(”]

x,(1)
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2.10 Determine the controllability and observability of the dynamic system model
given below:

dix()] [1 0][x() 1 0 1w
E[xz(r)]‘[l O:|[X2(t)]+|:0 —J[uz]’
x1(f):|.

x,(1)

2.11 Derive the state transition matrix of the time-varying system

2() =10 1][

() = [ : ﬂx(z).

2.12 Find the state transition matrix for

0 1
=01
2.13 For the system of three first-order differential equations

.).C] :xZ, )‘Cz ZX3, X3:0

(a) What is the companion matrix F?
(b) What is the fundamental solution matrix ®(¢) such that (d/df)®(t) =
F®(t) and ®(0) = I?

2.14 Show that the matrix exponential of an antisymmetric matrix is an orthogonal
matrix.

2.15 Derive the formula of Equation 2.32 for the observability matrix of a linear
dynamic system model in continuous time. (Hint: Use the approach of
Example 1.2 for estimating the initial state of a system and Equation 2.19
for the state of a system as a linear function of its initial state and its inputs.)

2.16 Derive the formula of Equation 2.33 for the observability matrix of a dynamic
system in discrete time. (Hint: Use the method of least squares of Example
1.1 for estimating the initial state of a system, and compare the resulting
Gramian matrix to the observability matrix of Equation 2.33.)
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Random Processes and
Stochastic Systems

A completely satisfactory definition of random sequence is yet to be discovered.
G. James and R. C. James, Mathematics Dictionary,
D. Van Nostrand Co., Princeton, New Jersey, 1959

3.1 CHAPTER FOCUS

The previous chapter presents methods for representing a class of dynamic systems
with relatively small numbers of components, such as a harmonic resonator with one
mass and spring. The results are models for deterministic mechanics, in which the
state of every component of the system is represented and propagated explicitly.

Another approach has been developed for extremely large dynamic systems, such
as the ensemble of gas molecules in a reaction chamber. The state-space approach
for such large systems would be impractical. Consequently, this other approach
focuses on the ensemble statistical properties of the system and treats the underlying
dynamics as a random process. The results are models for statistical mechanics, in
which only the ensemble statistical properties of the system are represented and
propagated explicitly.

In this chapter, some of the basic notions and mathematical models of statistical
and deterministic mechanics are combined into a stochastic system model, which
represents the state of knowledge about a dynamic system. These models represent
what we know about a dynamic system, including a quantitative model for our
uncertainty about what we know.

In the next chapter, methods will be derived for modifying the state of knowl-
edge, based on observations related to the state of the dynamic system.
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3.1.1 Discovery and Modeling of Random Processes

Brownian Motion and Stochastic Differential Equations. The British
botanist Robert Brown (1773-1858) reported in 1827 a phenomenon he had
observed while studying pollen grains of the herb Clarkia pulchella suspended in
water and similar observations by earlier investigators. The particles appeared to
move about erratically, as though propelled by some unknown force. This phenom-
enon came to be called Brownian movement or Brownian motion. It has been studied
extensively—both empirically and theoretically—by many eminent scientists
(including Albert Einstein [157]) for the past century. Empirical studies demon-
strated that no biological forces were involved and eventually established that
individual collisions with molecules of the surrounding fluid were causing the
motion observed. The empirical results quantified how some statistical properties of
the random motion were influenced by such physical properties as the size and mass
of the particles and the temperature and viscosity of the surrounding fluid.
Mathematical models with these statistical properties were derived in terms of
what has come to be called stochastic differential equations. P. Langevin (1872—
1946) modeled the velocity v of a particle in terms of a differential equation of the
form

%: —po + a(t), G.1

where [ is a damping coefficient (due to the viscosity of the suspending medium)
and a(¢) is called a “random force.” This is now called the Langevin equation.

Idealized Stochastic Processes. The random forcing function a(z) of the
Langevin equation has been idealized in two ways from the physically motivated
example of Brownian motion: (1) the velocity changes imparted to the particle have
been assumed to be statistically independent from one collision to another and (2)
the effective time between collisions has been allowed to shrink to zero, with the
magnitude of the imparted velocity change shrinking accordingly. This model
transcends the ordinary (Riemann) calculus, because a “white-noise” process is
not integrable in the ordinary calculus. A special calculus was developed by Kiyosi
1t6 (called the It6 calculus or the stochastic calculus) to handle such functions.

White-Noise Processes and Wiener Processes. A more precise mathema-
tical characterization of white noise was provided by Norbert Weiner, using his
generalized harmonic analysis, with a result that is difficult to square with intuition.
It has a power spectral density that is uniform over an infinite bandwidth, implying
that the noise power is proportional to bandwidth and that the total power is infinite.
(If “white light” had this property, would we be able to see?) Wiener preferred to
focus on the mathematical properties of v(¢), which is now called a Wiener process.
Its mathematical properties are more benign than those of white-noise processes.
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3.1.2 Main Points to Be Covered

The theory of random processes and stochastic systems represents the evolution over
time of the uncertainty of our knowledge about physical systems. This representation
includes the effects of any measurements (or observations) that we make of the
physical process and the effects of uncertainties about the measurement processes
and dynamic processes involved. The uncertainties in the measurement and dynamic
processes are modeled by random processes and stochastic systems.

Properties of uncertain dynamic systems are characterized by statistical param-
eters such as means, correlations, and covariances. By using only these numerical
parameters, one can obtain a finite representation of the problem, which is important
for implementing the solution on digital computers. This representation depends
upon such statistical properties as orthogonality, stationarity, ergodicity, and Marko-
vianness of the random processes involved and the Gaussianity of probability
distributions. Gaussian, Markov, and uncorrelated (white-noise) processes will be
used extensively in the following chapters. The autocorrelation functions and power
spectral densities (PSDs) of such processes are also used. These are important in the
development of frequency-domain and time-domain models. The time-domain
models may be either continuous or discrete.

Shaping filters (continuous and discrete) are developed for random-constant,
random-walk, and ramp, sinusoidally correlated and exponentially correlated
processes. We derive the linear covariance equations for continuous and discrete
systems to be used in Chapter 4. The orthogonality principle is developed and
explained with scalar examples. This principle will be used in Chapter 4 to derive the
Kalman filter equations.

3.1.3 Topics Not Covered

It is assumed that the reader is already familiar with the mathematical foundations of
probability theory, as covered by Papoulis [39] or Billingsley [53], for example. The
treatment of these concepts in this chapter is heuristic and very brief. The reader is
referred to textbooks of this type for more detailed background material.

The Itd calculus for the integration of otherwise nonintegrable functions (white
noise, in particular) is not defined, although it is used. The interested reader is
referred to books on the mathematics of stochastic differential equations (e.g., those
by Arnold [51], Baras and Mirelli [52], It6 and McKean [64], Sobczyk [77], or
Stratonovich [78]).

3.2 PROBABILITY AND RANDOM VARIABLES

The relationships between unknown physical processes, probability spaces, and
random variables are illustrated in Figure 3.1. The behavior of the physical processes
is investigated by what is called a statistical experiment, which helps to define a
model for the physical process as a probability space. Strictly speaking, this is not a
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Fig. 3.1 Conceptual model for a random variable.

model for the physical process itself, but a model of our own understanding of the
physical process. It defines what might be called our “state of knowledge” about the
physical process, which is essentially a model for our uncertainty about the physical
process.

A random variable represents a numerical attribute of the state of the physical
process. In the following subsections, these concepts are illustrated by using the
numerical score from tossing dice as an example of a random variable.

3.2.1 An Example of a Random Variable

EXAMPLE 3.1: Score from Tossing a Die A die (plural of dice) is a cube with
its six faces marked by patterns of one to six dots. It is thrown onto a flat surface
such that it tumbles about and comes to rest with one of these faces on top. This can
be considered an unknown process in the sense that which face will wind up on top
is not reliably predictable before the toss. The tossing of a die in this manner is an
example of a statistical experiment for defining a statistical model for the process.
Each toss of the die can result in but one oufcome, corresponding to which one of the
six faces of the die is on top when it comes to rest. Let us label these outcomes @,
Op, Oy Og, U, Op. The set of all possible outcomes of a statistical experiment is
called a sample space. The sample space for the statistical experiment with one die is
the set & = {0, Oy, O, Oy, O, Or}.
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A random variable assigns real numbers to outcomes. There is an integral
number of dots on each face of the die. This defines a “dot function” d : & — N on
the sample space ., where d(() is the number of dots showing for the outcome @ of
the statistical experiment. Assign the values

dO)=1, dO)=3,  dC,)=S5,
dO) =2, dO)=4,  dC,)=6.

This function is an example of a random variable. The useful statistical properties of
this random variable will depend upon the probability space defined by statistical
experiments with the die.

Events and sigma algebras. The statistical properties of the random variable d
depend on the probabilities of sets of outcomes (called events) forming what is
called a sigma algebra' of subsets of the sample space .. Any collection of events
that includes the sample space itself, the empty set (the set with no elements), and the
set unions and set complements of all its members is called a sigma algebra over the
sample space. The set of all subsets of ¥ is a sigma algebra with 26 = 64 events.

The probability space for a fair die. A die is considered “fair” if, in a large
number of tosses, all outcomes tend to occur with equal frequency. The relative
frequency of any outcome is defined as the ratio of the number of occurrences of that
outcome to the number of occurrences of all outcomes. Relative frequencies of
outcomes of a statistical experiment are called probabilities. Note that, by this
definition, the sum of the probabilities of all outcomes will always be equal to 1. This
defines a probability p(&) for every event & (a set of outcomes) equal to

#(&)

p(&) = )

where #(&) is the cardinality of &, equal to the number of outcomes ¢ € &. Note
that this assigns probability zero to the empty set and probability one to the sample
space.

The probability distribution of the random variable d is a nondecreasing function
P,(x) defined for every real number x as the probability of the event for which the
score is less than x. It has the formal definition

Py(x) & p(d~" (=00, x)),

d™" (00, x)) E{01d(0) < x}.

'Such a collection of subsets &; of a set & is called an algebra because it is a Boolean algebra with respect
to the operations of set union (&, U&,), set intersection (& N ¢&,), and set complement (¥\&)—
corresponding to the logical operations or, and, and not, respectively. The “sigma” refers to the
summation symbol X, which is used for defining the additive properties of the associated probability
measure. However, the lowercase symbol ¢ is used for abbreviating “sigma algebra” to “g-algebra.”
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For every real value of x, the set {()|d((V) < x} is an event. For example,

Py(1) = p(d~' (=00, 1)))
= p({01d(0) < 1})
=p({}) (the empty set)
=0,
Py(1.0---01) = p(d~"((—o0, 1.0--- 01)))
= p({0]d(0) < 1.0---01})
=p({0.) =3

P6.0---01) = p(&) =1,

as plotted in Figure 3.2. Note that P, is not a continuous function in this particular
example.

3.2.2 Probability Distributions and Densities

Random variables fare required to have the property that, for every real a and b such
that —oo < a < b < 400, the outcomes ¢ such that a < () < b are an event
& € o/. This property is needed for defining the probability distribution function Py
of fas

def

P(x)E p( £~ ((—00. x)), (3.2)
I (~00, ) E(0 € #| £(0) <x}. (3.3)

Piix) = p(d" ((—oo. _J.'}})

5 10
SCORE x=d(@)

Fig. 3.2 Probability distribution of scores from a fair die.
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The probability distribution function may not be a differentiable function. However,
if it is differentiable, then its derivative

P = S Py (3.4)

is called the probability density function of the random wvariable, f, and the
differential

py(x) dx = dPy(x) (3.5)

is the probability measure of f defined on a sigma algebra containing the open
intervals (called the Borel* algebra over %t).

A vector-valued random variable is a vector with random variables as its
components. An analogous derivation applies to vector-valued random variables,
for which the analogous probability measures are defined on the Borel algebras over
Nn".

3.2.3 Gaussian Probability Densities

The probability distribution of the average score from tossing » dice (i.e., the total
number of dots divided by the number of dice) tends toward a particular type of
distribution as n — oo, called a Gaussian distribution. Tt is the limit of many such
distributions, and it is common to many models for random phenomena. It is
commonly used in stochastic system models for the distributions of random
variables.

Univariate Gaussian Probability Distributions. The notation ./"(%, ¢2) is used to
denote a probability distribution with density function

-2
exp[_lﬁ], (3.6)

(x) = :
P = V2no
where
x=E{x) 3.7

is the mean of the distribution (a term that will be defined later on, in Section 3.4.2)
and ¢? is its variance (also defined in Section 3.4.2). The “.4"” stands for “normal,”

*Named for the French mathematician Félix Borel (1871-1956).

31t is called the Laplace distribution in France. It has had many discoverers besides Gauss and Laplace,
including the American mathematician Robert Adrian (1775-1843). The physicist Gabriel Lippman
(1845-1921) is credited with the observation that “mathematicians think it [the normal distribution] is a
law of nature and physicists are convinced that it is a mathematical theorem.”
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another name for the Gaussian distribution. Because so many other things are called
normal in mathematics, it is less confusing if we call it Gaussian.

Gaussian Expectation Operators and Generating Functions. Because the
Gaussian probability density function depends only on the difference x — x, the
expectation operator

+00
E sy = J FOp() dx (3.8)
1 e —(x—%)%/202
= G J_Oo f(x)e dx (3.9
1 +00 2 2
- = Jf fxc+D)e "7 gy (3.10)

has the form of a convolution integral. This has important implications for problems
in which it must be implemented numerically, because the convolution can be
implemented more efficiently as a fast Fourier transform of f, followed by a
pointwise product of its transform with the Fourier transform of p, followed by an
inverse fast Fourier transform of the result. One does not need to take the numerical
Fourier transform of p, because its Fourier transform can be expressed analytically in
closed form. Recall that the Fourier transform of p is called its generating function.
Gaussian generating functions are also (possibly scaled) Gaussian density functions:

1 oo 10)
W) =—— x)e' > dx 3.11
po)=—=| o @1
1 00 efxz/Zaz )
=— e dx 3.12
V2T J_oo V2no ( )
_ 9 (—1/2)we?
=——c¢ , 3.13
V2n (3.13)

a Gaussian density function with variance ¢~2. Here we have used a probability-
preserving form of the Fourier transform, defined with the factor of 1/4/27 in front
of the integral. If other forms of the Fourier transform are used, the result is not a
probability distribution but a scaled probability distribution.

3.2.3.1 Vector-Valued (Multivariate) Gaussian Distributions. The formula
for the n-dimensional Gaussian distribution .A"(x, P), where the mean x is an n-
vector and the covariance P is an n X n symmetric positive-definite matrix, is

1/Da=)"P (=) (3.14)

P = e b
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The multivariate Gaussian generating function has the form

1
) EE— LR (3.15)

Vv (2n)"det P!

where o is an n-vector. This is also a multivariate Gaussian probability distribution
N(0, P7Y) if the scaled form of the Fourier transform shown in Equation 3.11 is
used.

3.2.4 Joint Probabilities and Conditional Probabilities

The joint probability of two events &, and &, is the probability of their set
intersection p(&,N &},), which is the probability that both events occur. The joint
probability of independent events is the product of their probabilities.

The conditional probability of event &, given that event &, has occurred, is
defined as the probability of & in the “conditioned” probability space with sample
space &,. This is a probability space defined on the sigma algebra

A6, ={6NE,

& e o) (3.16)

of the set intersections of all events & € .o/ (the original sigma algebra) with the
conditioning event & .. The probability measure on the “conditioned” sigma algebra
o/|& is defined in terms of the joint probabilities in the original probability space by
the rule

pENE,)

&) =22 <
p(&1&,) )

(3.17)

where p(& N &) is the joint probability of & and & .. Equation 3.17 is called Bayes’
rule®.

EXAMPLE 3.2: Experiment with Two Dice Consider a toss with two dice in
which one die has come to rest before the other and just enough of its face is visible
to show that it contains either four or five dots. The question is: What is the
probability distribution of the score, given that information?

The probability space for two dice. This example illustrates just how rapidly the
sizes of probability spaces grow with the “problem size” (in this case, the number of
dice). For a single die, the sample space has 6 outcomes and the sigma algebra has
64 events. For two dice, the sample space has 36 possible outcomes (6 independent
outcomes for each of two dice) and 23 = 68, 719, 476, 736 possible events. If each

“Discovered by the English clergyman and mathematician Thomas Bayes (1702—1761). Conditioning on
impossible events is not defined. Note that the conditional probability is based on the assumption that &',
has occurred. This would seem to imply that &, is an event with nonzero probability, which one might
expect from practical applications of Bayes’ rule.
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5 10
{(a) Two dice without conditioning

Fix|0;€{04,0.})

Ya

5 10

(b} Two dice with conditioning

Fig. 3.3 Probability distributions of dice scores.

die is fair and their outcomes are independent, then all outcomes with two dice have
probability (}) x (}) = 7 and the probability of any event is the number of outcomes
in the event divided by 36 (the number of outcomes in the sample space). Using the
same notation as the previous (one-die) example, let the outcome from tossing a pair
of dice be represented by an ordered pair (in parentheses) of the outcomes of the first
and second die, respectively. Then the score s((¢;, ¢;)) = d(C,) + d(C;), where ),
represents the outcome of the first die and (; represents the outcome of the second
die. The corresponding probability distribution function of the score x for two dice is
shown in Figure 3.3a.

The event corresponding to the condition that the first die have either four or five
dots showing contains all outcomes in which 0; = @, or (/,, which is the set

Ec={(04,0,).(Og, Op), (O, O.), (Og, O), (g, Op), (O, Or)
(@e’ (ﬁa)v (@e’ @b)’ ((Qev (Qc)’ (@e’ @d)’ ((96’ (96)’ (@e’ 01)}’

of 12 outcomes. It has probability p(&,) = 12 =1.
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By applying Bayes’ rule, the conditional probabilities of all events corresponding
to unique scores can be calculated as shown in Figure 3.4. The corresponding
probability distribution function for two dice with this conditioning is shown in
Figure 3.3b.

3.3 STATISTICAL PROPERTIES OF RANDOM VARIABLES

3.3.1 Expected Values of Random Variables

Expected values. The symbol E is used as an operator on random variables. It is
called the expectancy, expected value, or average operator, and the expression
§ (f(x)) is used to denote the expected value of the function f applied to the
ensemble of possible values of the random variable x. The symbol under the £
indicates the random variable (RV) over which the expected value is to be evaluated.
When the RV in question is obvious from context, the symbol underneath the E will
be eliminated. If the argument of the expectancy operator is also obvious from
context, the angular brackets can also be disposed with, using Ex instead of E(x), for
example.

Moments. The nth moment of a scalar RV x with probability density p(x) is
defined by the formula

o0

0 ) & [ p) (3.18)

THE SCORING EVENTS IN A SAMPLE COND.

SPACE OF OUTCOMES (@07, () SCORE  PROB.

CONDITIONED ON ¢, €(04.0.) PEE)
({} - -2 0
{1} - 0
STATISTICAL [{} - 4 0
EXPERIMENT ({00 O} 5 s
. ‘ {{O4: O1) (Oe: O )} & 212
6) = {(0a:0) (O, Op)} ————— —— 7 212
- %.] {00 00) (0. 0)} s
{04 0} .06 O4)} - 9 212

{(Oa: Of): (Oe: O)} ———————— 10 212

{(0.. 0.} — 5 112
L)Y — -0

Fig. 3.4 Conditional scoring probabilities for two dice.
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The nth central moment of x is defined as

10,(0) L E(x — Ex)" (3.19)
o8}
= J (x — Ex)"p(x) dx. (3.20)
—00
The first moment of x is called its mean’:
{o.¢]
n =Ex= J xp(x) dx. (3.21)
—0o0
In general, a function of several arguments such as f(x,),z) has first moment
00
Ef(x,y,z) = JJ J f(x, v, 2)p(x,y,z) dx dy dz. (3.22)

Array Dimensions of Moments. The first moment will be a scalar or a vector,
depending on whether the function f(x, y, z) is scalar or vector valued. Higher order
moments have tensorlike properties, which we can characterize in terms of the
number of subscripts used in defining them as data structures. Vectors are singly
subscripted data structures. The higher order moments of vector-valued variates are
successively higher order data structures. That is, the second moments of vector-
valued RVs are matrices (doubly subscripted data structures), and the third-order
moments will be triply subscripted data structures.

These definitions of a moment apply to discrete-valued random variables if we
simply substitute summations in place of integrations in the definitions.

3.3.2 Functions of Random Variables

A function of RV x is the operation of assigning to each value of x another value, for
example y, according to rule or function. This is represented by

y=/(), (3.23)

where x and y are usually called input and output, respectively. The statistical
properties of y in terms of x are, for example,

Ey = J F(p() dx,

—0Q

(3.24)

o0
B = | s ax
—00
when y is scalar. For vector-valued functions y, similar expressions can be shown.

SWe here restrict the order of the moment to the positive integers. The zeroth-order moment would
otherwise always evaluate to 1.
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The probability density of y can be obtained from the density of x. If Equation
3.23 can be solved for x, yielding the unique solution

x=g). (3.25)
Then we have
) = J&gﬂ (3.26)
ox  lx=g(y)

where p,(v) and p,(x) are the density functions of y and x, respectively. A function of
two RVs, x, y is the process of assigning to each pair of x, y another value, for
example, z, according to the same rule,

z=[(y.%), (3.27)

and similarly functions of » RVs. When x and y in Equation 3.23 are n-dimensional
vectors and if a unique solution for x in terms of y exists,

x =g, (3.28)
Equation 3.26 becomes
plg)]
W(¥) = , (3.29)
)

where the Jacobian |J| is defined as the determinant of the array of partial derivatives

f;/ ox;:

[ N T
ax;  0Ox, ox,,

| = det| 1 9% o, | (3.30)
L Ox;  Ox, ox,, |

3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES

3.4.1 Random Processes (RPs)

A RV was defined as a function x(s) defined for each outcome of an experiment
identified by s. Now if we assign to each outcome s a time function x(#, s), we obtain
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a family of functions called random processes or stochastic processes. A random
process is called discrete if its argument is a discrete variable set as

x(k,s), k=1,2.... (3.31)

It is clear that the value of a random process x(¢) at any particular time # = #,, namely
x(ty, 5), is a random variable [or a random vector if x(¢, s) is vector valued].

3.4.2 Mean, Correlation, and Covariance
Let x(¢) be an n-vector random process. Its mean

oo}

Ex(t) = J x(Op[x(2)] dx(t), (3.32)

—00

which can be expressed elementwise as

oe]

Ex;(t) = J x;(Oplx, ()] dx(r), i=1...n.

For a random sequence, the integral is replaced by a sum.
The correlation of the vector-valued process x(?) is defined by

Ei)n (@) - Elaltn o)
E(x(t)x"(t,)) = : - : , (3.33)
Ele(t)n(6) - Bl (o)
where
Bunys) = | [aempta y@ldsn) dye). 639

The covariance of x(f) is defined by

E([x(t,) — Ex(t)]lx(ty) — Ex(t,)]")
: : (3.35)
=E(x(t)x (1)) — E@(t))E(x (t,)).

When the process x(f) has zero mean (i.e., £x(f) = 0 for all ¢), its correlation and
covariance are equal.

The correlation matrix of two RPs x(¢), an n-vector, and y(¢), an m-vector, is given
by an n x m matrix

Ex(t)y" (1), (3.36)
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where

o¢]

Extyi(t) = j sz-(n)y,-(rz)p[x,-(rl),y,-(a)] dxi(ty) dy,(ty) (3.37)

—00

Similarly, the cross-covariance n x m matrix is

E([x(ty) — Ex(t)]v(1,) — Ev(®)]). (3.38)

3.4.3 Orthogonal Processes and White Noise

Two RPs x(f) and y(¢) are called uncorrelated if their cross-covariance matrix is
identically zero for all ¢, and ¢,:

E([x(t)) — E((t))(1y) — EQ())]'] = 0. (3.39)

The processes x(f) and y(¢) are called orthogonal if their correlation matrix is
identically zero:

Ex(t)y' (1)) = 0. (3.40)

The random process x(7) is called uncorrelated if

E([x(t)) — Ex(t))Ix(ty) — E(6NT) = Oty 6)3(t, — ), (3.41)

where §(7) is the Dirac delta “function”® (actually, a generalized function), defined
by

J” [1 if a<0<b,
S5(t) dt = (3.42)

a 0 otherwise.

Similarly, a random sequence x, is called uncorrelated if
E(lx — E@)lly; — EWp)]') = Ok, ) Ak —)), (3.43)
where A(-) is the Kronecker delta function’, defined by

{1 if k=0
A(k) = (3.44)

0 otherwise.

A white-noise process or sequence is an example of an uncorrelated process or
sequence.

®Named for the English physicist Paul Adrien Maurice Dirac (1902-1984).
"Named for the German mathematician Leopold Kronecker (1823-1891).
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A process x(f) is considered independent if for any choice of distinct times
1, b, ...t,, the random variables x(¢), x(t,), . .., x(t,) are independent. That is,

Pxtty) - -+ Pae)(S15 - 8p) = 1_[1 D) (51)- (3.45)
i=

Independence (all of the moments) implies no correlation (which restricts attention
to the second moments), but the opposite implication is not true, except in such
special cases as Gaussian processes (see Section 3.2.3). Note that whiteness means
uncorrelated in time rather than independent in time (i.e., including all moments),
although this distinction disappears for the important case of white Gaussian
processes (see Chapter 4).

3.4.4 Strict-Sense and Wide-Sense Stationarity

The random process x(f) (or random sequence x;) is called strict-sense stationary if
all its statistics (meaning p[x(¢,), x(t,), ...]) are invariant with respect to shifts of the
time origin:

JZC T YRS Y S |

(3.46)
ZP(XI,XZ,...,.X", tl +8,t2+8,...,tn+8)

The random process x(¢) (or x;) is called wide-sense stationary (WSS) (or “weak-
sense” stationary) if

E{x(t)) = ¢ (a constant) (3.47)

and

E(x(t)x" (1)) = O(t, — 1) = O(1), (3.48)

where Q is a matrix with each element depending only on the difference #, — #; = 7.
Therefore, when x(¢) is stationary in the weak sense, it implies that its first- and
second-order statistics are independent of time origin, while strict stationarity by
definition implies that statistics of all orders are independent of the time origin.

3.4.5 Ergodic Random Processes

A process is considered ergodic8 if all of its statistical parameters, mean, variance,
and so on, can be determined from arbitrarily chosen member functions. A sampled
function x(¢) is ergodic if its time-averaged statistics equal the ensemble averages.

8The term ergodic came originally from the development of statistical mechanics for thermodynamic
systems. It is taken from the Greek words for energy and path. The term was applied by the American
physicist Josiah Willard Gibbs (1839-1903) to the time history (or path) of the state of a thermodynamic
system of constant energy. Gibbs had assumed that a thermodynamic system would eventually take on all
possible states consistent with its energy. It was shown to be impossible from function-theoretic
considerations in the nineteenth century. The so-called ergodic hypothesis of James Clerk Maxwell
(1831-1879) is that the temporal means of a stochastic system are equivalent to the ensemble means. The
concept was given firmer mathematical foundations by George David Birkhoff and John von Neumann
around 1930 and by Norbert Wiener in the 1940s.
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3.4.6 Markov Processes and Sequences

An RP x(¢) is called a Markov process’ if its future state distribution, conditioned on
knowledge of its present state, is not improved by knowledge of previous states:

p@)x(); T <t} = plx(@) (s}, (3.49)

where the times | <t, <t; <--- <,
Similarly, a random sequence (RS) x; is called a Markov sequence if

plxlxgs k <i—1) = plxle_}. (3.50)

The solution to a general first-order differential or difference equation with an
independent process (uncorrelated normal RP) as a forcing function is a Markov
process. That is, if x(f) and x, are n-vectors satisfying

x(t) = F(H)x(t) + G(o)w(r) (3.51)
or

X = Qi + G Wiy, (3.52)

where w(f) and w;_; are r-dimensional independent random processes and
sequences, the solutions x(#) and x; are then vector Markov processes and sequences,
respectively.

3.4.7 Gaussian Processes

An n-dimensional RP x(#) is called Gaussian (or normal) if its probability density
function is Gaussian, as given by the formulas of Section 3.2.3, with covariance
matrix

P = E{|x(t) — E{x(t))|[x(t) — Ex())]") (3.53)

for the random variable x.
Gaussian random processes have some useful properties:

A Gaussian RP x(7) is WSS—and stationary in the strict sense.
Orthogonal Gaussian RPs are independent.
Any linear function of jointly Gaussian RP results in another Gaussian RP.

b=

All statistics of a Gaussian RP are completely determined by its first- and
second-order statistics.

Defined by Andrei Andreevich Markov (1856—1922).



3.4 STATISTICAL PROPERTIES OF RANDOM PROCESSES 73

3.4.8 Simulating Multivariate Gaussian Processes

Cholesky decomposition methods are discussed in Chapter 6 and Appendix B.
We show here how these methods can be used to generate uncorrelated pseudo-
random vector sequences with zero mean (or any specified mean) and a specified
covariance P,

There are many programs that will generate pseudorandom sequences of
uncorrelated Gaussian scalars {si|i = 1,2, 3, ...} with zero mean and unit variance:

E(s;) € /7(0,1) foralli, (3.54)
0 if /%

E(S[Sj) = (3.55)
1 if i=j

These can be used to generate sequences of Gaussian n-vectors x;, with mean zero
and covariance [,

Ue = [Spe1 Swka2 Swrgs T Sn(k+l)]T’ (3.56)
E(u) =0, (3.57)
E(uu) =1, (3.58)

These vectors, in turn, can be used to generate a sequence of n-vectors w, with zero
mean and covariance P. For that purpose, let

cct=p (3.59)

be a Cholesky decomposition of P, and let the sequence of n-vectors w; be generated
according to the rule

wy = Cuy. (3.60)
Then the sequence of vectors {wo, Wi, Wy, ...} will have mean

E(w,) = CE{u,) (3.61)
=0 (3.62)

(an n-vector of zeros) and covariance

E(wewp) = E(Cuy(Cup)") (3.63)
=CI,C" (3.64)
=P. (3.65)
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The same technique can be used to obtain pseudorandom Gaussian vectors with a
given mean v by adding v to each wy. These techniques are used in simulation and
Monte Carlo analysis of stochastic systems.

3.4.9 Power Spectral Density

Let x(f) be a zero-mean scalar stationary RP with autocorrelation ¥ (1),

EQ(@)x(t + 1)) = ¢,(7) (3.60)

The power spectral density (PSD) is defined as

o0
Y. (0) = J lpx(f)e_j‘“T dt (3.67)
—00
and the inverse transform as
1 (* .
V(1) = —J Y. (0)e!" do. (3.68)
2n ) _o

The following are properties of autocorrelation functions:

1. Autocorrelation functions are symmetrical ( “even” functions).
2. An autocorrelation function attains its maximum value at the origin.
3. Its Fourier transform is nonnegative (greater than or equal to zero).

These properties are satisfied by valid autocorrelation functions.
Setting T = 0 in Equation 3.68 gives

o) =00 =5 ] wodo (3.69)

—00
Because of property 1 of the autocorrelation function,
Y (0) =¥ (—w); (3.70)

that is, the PSD is a symmetric function of frequency.
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EXAMPLE 3.3 If (1) = o?¢~*, find the associated PSD:

0 00
Y. () = J o™ e dt + J ole e/ dt
—00 0

2( 1 1 )
=0 —+ -
o—jw o+ jo

200

? + o2’

EXAMPLE 3.4 This is an example of a second-order Markov process generated

by passing WSS white noise with zero mean and unit variance through a second-

order “shaping filter” with the dynamic model of a harmonic resonator. (This is the

same example introduced in Chapter 2 and will be used again in Chapters 4 and 5.)
The transfer function of the dynamic system is

as+b

H()=—F7——.
) §2 4+ 20w,s + wi

Definitions of {, w,, and s are the same as in Example 2.7. The state-space model of
H(s) is given as

= + w(?),
X, (2) —w2  =2lw, || x,(0) b —2alw,
z(t) = x,(t) = x(¢).

The general form of the autocorrelation is

2
— T twll 122 _
Y.(1) = cos@e cos( 1 —{w, 7| 0).

In practice, o2, 0, {, and w,, are chosen to fit empirical data (see Problem 3.13). The
PSD corresponding to the ¥ (7) will have the form

2w+ b
wh 4+ 2w2(20% — Dw? 4+ wh

lP)c (W) =

(The peak of this PSD will not be at the “natural” (undamped) frequency w,,, but at
the “resonant” frequency defined in Example 2.6.)
The block diagram corresponding to the state-space model is shown in Figure 3.5.
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Wi b-2alw, a
+ !
_ X,(1) + x; (1)
{ [ e I
zgw’l
2
Wy

Fig. 3.5 Diagram of a second-order Markov process.

The mean power of a scalar random process is given by the equations

T
By = lim J_sz(t) dt 3.71)
1 lo.¢]
= ZJ,OO\PX((U) dw (3.72)
=0, (3.73)

The cross power spectral density between an RP x and an RP y is given by the
formula

oo}

Y, (0) = J szy(r)e_j“” dt (3.74)

—00

3.5 LINEAR SYSTEM MODELS OF RANDOM PROCESSES
AND SEQUENCES

Assume that a linear system is given by

00

W) = J x(Oh(t, 7) d. (3.75)

where x(?) is input and /(z, 7) is the system weighting function (see Figure 3.6). If the
system is time invariant, then Equation 3.75 becomes

00

y(t) =1 h()x(t — 1)dr. (3.76)
0

x(0) | H(o) | ya)
h@)

Fig. 3.6 Block diagram representation of a linear system.
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This type of integral is called a convolution integral. Manipulation of Equation 3.76
leads to relationships between autocorrelation functions of x(#) and y(?),

v, (1) = J dr, h(ﬁ)J dty (e + 71 — 1), (3.77)
0 0
YD) = L h(T (T — 1), (3.78)
and PSD relationships
W, () = Hjo)¥ (o). (3.79)
Y (0) = [H(jw)PY (), (3.80)

where H is the system transfer function shown in Figure 3.6, defined in Laplace
transform notation as
