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Preface

These are notes for a six week summer course on approximation theory that I offer oc-
casionally at Bowling Green State University. Our summer classes meet for 90 minutes,
five days a week, for a total of 45 hours. But the pace is somewhat leisurely and there is
probably not quite enough material here for a “regulation” one semester (45 hour) course.
On the other hand, there is more than enough material here for a one quarter (30 hour)

course and evidently enough for a five or six week summer course.

I should stress that my presentation here is by no means original: I borrow heavily
from a number of well known texts on approximation theory (see the list of references at
the end of these notes). I use T. J. Rivlin’s book, An Introduction to the Approzimation
of Functions, as a complementary text and thus you will see many references to Rivlin
throughout the notes. Also, a few passages here and there are taken from my book, Real
Analysis. In particular, large portions of these notes are based on copyrighted material.
They are offered here solely as an aid to teachers and students of approximation theory
and are intended for limited personal use only. I should also point out that I am not an
expert in approximation theory and I make no claims that the material presented here is

in current fashion among experts in the field.

My interest in approximation theory stems from its beauty, its utility, and its rich
history. There are also many connections that can be drawn to questions in both classical
and modern analysis. For the purposes of this short introductory course, I focus on a
handful of classical topics (with a little bit of modern terminology here and there) and
“name” theorems. Indeed, the Weierstrass approximation theorem, along with its various

relatives, is the central theme of the course.

In terms of prerequisites, I assume at least a one semester course in advanced calcu-
lus or real analysis (compactness, completeness, uniform convergence, uniform continuity,
normed spaces, etc.) along with a course in linear algebra. The first chapter, entitled
Preliminaries, contains four brief appendices that provide an all too brief review of such
topics; they are included in order to make the notes as self-contained as possible. The
course is designed for beginning master’s students (in both pure and applied mathemat-
ics), but should be largely accessible to advanced undergraduates. From my experience,

there are plenty of topics here that even advanced PhD students will find entertaining.
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Introduction

In 1853, the great Russian mathematician, P. L. Chebyshev [Cebysev], while working on a
problem of linkages, devices which translate the linear motion of a steam engine into the

circular motion of a wheel, considered the following problem:

Given a continuous function f defined on a closed interval [a,b] and a positive
integer n, can we “represent” f by a polynomial p(z) = > }_, apz®, of degree
at most n, in such a way that the maximum error at any point z in [a,b] is
controlled? In particular, is it possible to construct p in such a way that the error

B < inimized?
ar;lg;(b |f(x) — p(z)| is minimize

This problem raises several questions, the first of which Chebyshev himself ignored:

— Why should such a polynomial even exist?

If it does, can we hope to construct it?

— If it exists, is it also unique?

What happens if we change the measure of the error to, say, fab |f(2) —p(x)]? da?

Chebyshev’s problem is perhaps best understood by rephrasing it in modern terms.
What we have here is a problem of linear approximation in a normed linear space. Recall

that a norm on a (real) vector space X is a nonnegative function on X satisfying
|z|| > 0, and ||z|]| =0 <= = =0
ozl = lall2] for a € R
|z +yll < [[=]] + [ly]| for any z, y € X.

Any norm on X induces a metric or distance function by setting dist(x,y) = ||z — y||. The

abstract version of our problem(s) can now be restated:

— Given a subset (or even a subspace) Y of X and a point & € X, is there an
element y € Y which is “nearest” to x; that is, can we find a vector y € Y such
that ||z —y|| = in{/ |x — z||? If there is such a “best approximation” to x from

z€

elements of Y, is it unique?
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Examples

1. In X = R" with its usual norm |[(zx)_,]2 = (X, |:1;k|2>1/2, the problem has
a complete solution for any subspace (or, indeed, any closed convex set) Y. This
problem is often considered in Calculus or Linear Algebra where it is called “least-
squares approximation.” A large part of the current course will be taken up with
least-squares approximations, too. For now let’s simply note that the problem changes

character dramatically if we consider a different norm on R".

Consider X = R? under the norm ||(z,y)| = max{|z|,|y|}, and consider the

subspace Y = {(0,y) : y € R} (i.e., the y-axis). It’s not hard to see that the point

z = (1,0) € R? has infinitely many nearest points in Y; indeed, every point (0,y),
—1 <y <1, is nearest to x.

2. There are many norms we might consider on R". Of particular interest are the (-

norms; that is, the scale of norms:

n 1/p
(i)l = (Z ka|p> . 1<p<oeo,
k=1

and
o) o = g el
It’s easy to see that || - |1 and || - ||« define norms. The other cases take a bit more

work; we’ll supply full details later.

3. Our original problem concerns X = C[a,b], the space of all continuous functions
f :la,b] — R under the uniform norm ||f|| = max, |f(2)]. The word “uniform” is

used because convergence in this norm is the same as uniform convergence on [a,bl:
Ifn = fll =0 <= fo = fonla,b].

In this case we're interested in approximations by elements of Y = P,,, the subspace
of all polynomials of degree at most n in C[a,b]. It’s not hard to see that P, is a
finite-dimensional subspace of C[a,b] of dimension exactly n + 1. (Why?)

If we consider the subspace Y = P consisting of all polynomials in X = Cla,b],

we readily see that the existence of best approximations can be problematic. It follows
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from the Weierstrass theorem, for example, that each f € C[a,b] has distance 0
from P but, since not every f € C[a,b] is a polynomial (why?), we can’t hope for
a best approximating polynomial to exist in every case. For example, the function
f(z) = xsin(1/x) is continuous on [0, 1 ] but can’t possibly agree with any polynomial

on [0,1]. (Why?)

The key to the problem of polynomial approximation is the fact that each P, is
finite-dimensional. To see this, it will be most efficient to consider the abstract setting of

finite-dimensional subspaces of arbitrary normed spaces.
“Soft” Approximation

Lemma. LetV be a finite-dimensional vector space. Then, all normson V are equivalent.
That is, it || - || and |||-]|| are norms on V', then there exist constants 0 < A, B < oo such
that

Allell < llelll < B ]

for all vectors x € V.

PROOF. Suppose that V is n-dimensional and that || - || is a norm on V. Fix a basis
€1,...,€, for V and consider the norm

n
= lail = ll(ai)izalh
1 =1

7

E a;€;

=1

for v =3 1 aje; € V. Since ey, .., e, is a basis for V, it’s not hard to see that || - || is,

indeed, a norm on V. It now suffices to show that || - || and || - |1 are equivalent. (Why?)

One inequality is easy to show; indeed, notice that

n n
<3l el < g et ) Yol = 5
1=

=1

7

E a;€;

=1

7

E a;€;

=1

1
The real work comes in establishing the other inequality.
To begin, notice that we’ve actually set-up a correspondence between R" and V;

specifically, the map (a;)/; — >, aie; is obviously both one-to-one and onto. Moreover,

this correspondence is an isometry between (R™, || -||1) and (V| - ]|1)-
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Now the inequality we’ve just established shows that the function « — ||z|| is contin-

uous on the space (V.|| - ||1) since
izl =1yl < lle =yl < Bllz =yl
for any «, y € V. Thus, || - || assumes a minimum value on the compact set
S={x eV |zl =1}

(Why is S compact?) In particular, there is some A > 0 such that ||z|| > A whenever
|z|ls = 1. (Why can we assume that A > 07) The inequality we need now follows from

the homogeneity of the norm:

Corollary. Given a < b (fixed) and a positive integer n, there exist 0 < A,, B, < o

> A= ||e] = All]. 0

4

(constants which may depend on n) such that

7

g akxk
k=0

"
A, E lag| < max
a<xz<b
k=0 - -

n
f;l3nj£:|akL
k=0

Exercise

Find explicit “formulas” for A, and B,, above. (This can be done without any fancy

theorems.) If it helps, you may consider the case [a,b] =[0,1].

Corollary. Let Y be a finite-dimensional normed space and let M > 0. Then, any closed
ball {y € Y : ||y|| < M} is compact.

PROOF. Again suppose that Y is n-dimensional and that ey, ..., e, is a basis for Y. From

our previous lemma we know that there is some constant A > 0 such that

n
A il <
=1

for all x =31 a;e; € Y. In particular,

7

g a;€;

=1

7

g a;€;

=1

M
Ala;| < <M = |ai|§zfori:1,...,n.
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Thus, {y € Y : ||ly|]| < M} is a closed subset (why?) of the compact set

a M
{x:Zaiei:|ai|§—,izl,...,n}. O

=1

Corollary. Every finite-dimensional normed space is complete. In particular, if Y is a

finite-dimensional subspace of a normed linear space X, then Y is a closed subset of X.

Theorem. Let Y be a finite-dimensional subspace of a normed linear space X, and let

@ € X. Then, there exists a (not necessarily unique) y* € Y such that
. )
r— = min ||z —
lv =yl = min Jlo =y
for all y € Y. That is, there is a best approximation to x by elements of Y .

Proor. First notice that since 0 € Y, we know that a nearest point y* will satisfy
|l — y*|| < |||l = |]l+ = 0]]. Thus, it suffices to look for y* among the vectors y € Y
satisfying ||l — y|| < ||z]|. It will be convenient to use a slightly larger set of vectors,

though. By the triangle inequality,
[ —yll < [[z]] = llyll < [l =yl +[[z]] < 2[l]]
Thus, we may restrict our attention to those y’s in the compact set
K={yeY: |yl <2z}
To finish the proof, we need only notice that the function f(y) = ||x — y|| is continuous:
[f(y) = F)] = |lle =yl = lle = 2l | < [ly = =],

hence attains a minimum value at some point y* € K. [

Corollary. For each f € C[a,b]|, and each positive integer n, there is a (not necessarily

unique) polynomial p¥ € P, such that

* || . .
If—prl = min If —pll
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Corollary. Given f € Cla,b] and a (fixed) positive integer n, there exists a constant

R < oo such that if
< || £1l;

"
Hf — Z akxk
k=0

then max |ag| < R.
0<k<n

Examples

Nothing in our Corollary says that p} will be a polynomial of degree exactly n—rather, a
polynomial of degree at most n. For example, the best approximation to f(z) = = by a
polynomial of degree at most 3 is, of course, p(x) = x. Even examples of non-polynomial
functions are easy to come by; for instance, the best linear approximation to f(z) = |z|
on [—1,1] is actually the constant function p(x) = 1/2, and this makes for an entertaining

exercise.

Before we leave these “soft” arguments behind, let’s discuss the problem of uniqueness

of best approximations. First, let’s see why we want best approximations to be unique:

Lemma. LetY be a finite-dimensional subspace of a normed linear space X, and suppose
that each v € X has a unique nearest point y, € Y. Then, the nearest point map x — y,

1s continuous.

PROOF. Let’s write P(x) = y, for the nearest point map, and let’s suppose that =, — «
in X. We want to show that P(x,) — P(x), and for this it’s enough to show that there is
a subsequence of (P(x,)) which converges to P(z). (Why?)

Since the sequence () is bounded in X, say ||z,|| < M for all n, we have
[P (o)l < ||P(2n) =zl + lznll < 2)lzall < 2M.

Thus, (P(x,)) is a bounded sequence in Y, a finite-dimensional space. As such, by passing
to a subsequence, we may suppose that (P(x,)) converges to some element Py € Y. (How?)

Now we need to show that Py = P(x). But
[P(zn) = @nll < [[P(x) —anl  (why?),
for any n, and hence, letting n — oo,

[Po = zf] < [|[P(x) — x|
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Since nearest points in ¥ are unique, we must have Py = P(z). O

Exercise

Let X be a normed linear space and let P : X — X. Show that P is continuous at x € X
if and only if, whenever x,, — « in X, some subsequence of (P(x,)) converges to P(x).
[Hint: The forward direction is easy; for the backward implication, suppose that (P(x,))

fails to converge to P(x) and work toward a contradiction.]

It should be pointed out that the nearest point map is, in general, nonlinear and, as
such, can be very difficult to work with. Later we’ll see at least one case in which nearest

point maps always turn out to be linear.

We next observe that the set of best approximations is always pretty reasonable:

Theorem. Let Y be a subspace of a normed linear space X, and let x € X. The set Y,,

consisting of all best approximations to x out of Y, is a bounded, convex set.

PROOF. As we've seen, the set Y, is a subset of {y € X : ||y|| < 2|jz||} and, hence, is
bounded.

Now recall that a subset K of a vector space V is said to be convex if K contains the

line segment joining any pair of its points. Specifically, K is convex if
r,ye K, 0<A<1l= A+ (1-Nye€K.
Now, y1, y2 € Y, means that
lr = y2ll = llo = g2l = min |l — y]|.

Next, given 0 < A < 1, set y* = Ay; + (1 — \)y2. We want to show that y* € Y,, but notice
that we at least have y* € Y. Finally, we estimate:
le = y* [l = [l = (Ayr + (1 = Mg
= Az —y1) + (1 = A)(z — )|
S AMle =yl + (1 = A)flz — w2

= min ||z —y]|.
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Hence, ||z — y*|| = min||x — y||; that is, y* € Y,. O
yey

Exercise

If, in addition, Y is finite-dimensional, show that Y, is closed (hence compact).

If Y, contains more than one point, then, in fact, it contains an entire line segment.
Thus, Y, is either empty, contains exactly one point, or contains infinitely many points.
This observation gives us a sufficient condition for uniqueness of nearest points: If our
normed space X contains no line segments on any sphere {x € X : ||z|| = r}, then any

best approximation (out of any set) will be unique.

A norm || - || on a vector space X is said to be strictly convex if, for any = # y € X
with ||z|| = r = |ly||, we always have ||[Ax + (1 — AN)y|| < r for any 0 < A < 1. That is,
the open line segment between any pair of points on the surface of the ball of radius r in
X lies entirely inside the ball. We often simply say that the space X is strictly convex,
with the understanding that a property of the norm in X is implied. Here’s an immediate

corollary to our last result:

Corollary. If X has a strictly convex norm, then, for any subspace Y of X and any point
x € X, there can be at most one best approximation to x out of Y. That is, Y, is either

empty or consists of a single point.

In order to arrive at a condition that’s somewhat easier to check, let’s translate our

original definition into a statement about the triangle inequality in X.

Lemma. X has a strictly convex norm if and only if the triangle inequality is strict on

non-parallel vectors; that is, if and only if

v#ay, y#av, ala € R = |lz +y| < |l=] + [yl

PROOF. First suppose that X is strictly convex, and let * and y be non-parallel vectors

in X. Then, in particular, the vectors z/||z|| and y/||y|| must be different. (Why?) Hence,

[l ) x ( [yl ) y H
+ < 1.
H(WN+HM\IWH ]| + Nyl / llyll

That is, ||z + y|| < ||lz]| + ||y]|-
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Next suppose that the triangle inequality is strict on non-parallel vectors, and let
r #y € X with ||z]] = r = |ly]|. If  and y are parallel, then we must have y = —u.
(Why?) In this case,
Az + (1 =Nyl = 22 = 1 =] <,

since |2\ — 1| < 1 whenever 0 < A < 1. Otherwise,  and y are non-parallel. In this case,

for any 0 < A < 1, the vectors Az and (1 — \)y are likewise non-parallel. Thus,

Az + (1 =Nyl < Mzll + (1 = M)yl = &

Examples

1. The usual norm on C|a,b] is not strictly convex (and so the problem of uniqueness

of best approximations is all the more interesting to tackle). For example, if f(z) = «
and g(x) = % in C[0,1], then |[f] =1 = |lgll, £ # g. while [[f + g]| = 2. (Why?)

2. The usual norm on R™ is strictly convex, as is any one of the norms || - ||,, 1 < p < oo.
(We'll prove these facts shortly.) The norms || - |1 and || - ||eo, on the other hand, are
not strictly convex. (Why?)

Appendix A

For completeness, we supply a few of the missing details concerning the ¢,-norms. We
begin with a handful of classical inequalities of independent interest. First recall that we

have defined a scale of “norms” on R" by setting:

n 1/p
uxup:(zw) C l<pee
=1

and

[#floe = max |z,
1<:<n

where @ = (2;)_; € R". Please note that the case p = 2 gives the usual Euclidean norm
on R" and that the cases p =1 and p = oo clearly give rise to legitimate norms on R™.

Common parlance is to refer to these expressions as (,-norms and to refer to the space

(R ][ - |lp) as €. The space of all infinite sequences x = (2, )52, for which the analogous
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infinite sum (or supremum) ||z||, is finite is referred to as ¢,. What’s more, there is a

“continuous” analogue of this scale: We might also consider the norms
b 1/p
£l = (/ |f(:1;)|pd:1;> ,  1<p<oo,

[fllee = sup [f(z)],

a<z<b

and

where f isin C[a,b] (or is simply Lebesgue integrable). The subsequent discussion actually

covers all of these cases, but we will settle for writing our proofs in the R™ setting only.

Lemma. (Young’s inequality): Let 1 < p < oo, and let 1 < ¢ < oo be defined by

]lj + % = 1; that is, ¢ = ]%. Then, for any a, b > 0, we have

1 1
ab < —agP + =1,
p q
Moreover, equality can only occur if a? = b?. (We refer to p and ¢ as conjugate exponents;

note that p satisfies p = q%l. Please note that the case p = ¢ = 2 yields the familiar

arithmetic-geometric mean inequality:.)

PrROOF. A quick calculation before we begin:

—(p—1 1
¢-1=-L j-p-le-U__1
p—1 p—1 p—1

Now we just estimate areas; for this you might find it helpful to draw the graph of y = 2P~}

(or, equivalently, the graph of = y?~!). Comparing areas we get:

a b
1 1
abg/ :sz_ld:zj—l—/ yq_ldy:—ap—l——bq.
0 0 P q

The case for equality also follows easily from the graph of y = 2?71 (or = y?~1), since

b= aP~1 = q?/4 means that o = b¢. [

Corollary. (Hoélder’s inequality): Let 1 < p < oo, and let 1 < ¢ < oo be defined by

%—I—%: 1. Then, for any ay,...,a, and by,...,b, in R we have:

n n l/p n 1/‘1
Zlaibilé(Zlailp) (w) |

(Please note that the case p = ¢ = 2 yields the familiar Cauchy-Schwarz inequality.)
Moreover, equality in Holder’s inequality can only occur if there exist nonnegative

scalars a and (3 such that « |a;|P = B |b;|? for alli =1,...,n.
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PROOF. Let A = (377, |ai|p)1/p and let B = (3., |bi|‘1)1/q. We may clearly assume
that A, B # 0 (why?), and hence we may divide (and appeal to Young’s inequality):
|aibi| _ Jail” | |bil
< + .
AB — pAr  ¢B¢

Adding, we get:

1 — 1 — 1 — 1 1

—— a;bi| < — a;|’ + —- bil! = -+ -=1

AB;| | pAp;H qu;H >t
That is, Y ., |aib;| < AB.

The case for equality in Holder’s inequality follows from what we know about Young’s
inequality: Equality in Holder’s inequality means that either A = 0, or B = 0, or else
|a;|? /pAP = |b;|7/qB? for all i = 1,...,n. In short, there must exist nonnegative scalars «

and 3 such that o |a;|P = 3 |b;|? for alli =1,...,n. O

Notice, too, that the case p =1 (¢ = o0) works, and is easy:
n n
2 Jaibs| < (2 |ai|> (1%% |bi|> .
1= 1=

Exercise

When does equality occur in the case p =1 (¢ = 00)?

Finally, an application of Holder’s inequality leads to an easy proof that ||-||, is actually
a norm. It will help matters here if we first make a simple observation: If 1 < p < oo and

if g = ]%, notice that

n (p=1)/p
[ Clai" =) ], = (Z |az‘|p> = [lall;™".
i=1

Lemma. (Minkowski’s inequality): Let 1 < p < oo and let a = (a;){—;, b = (b;); € R™
Then, |la+0[l, < [lall, +[15]],-

PrROOF. In order to prove the triangle inequality, we once again let ¢ be defined by

]lj + % = 1, and now we use Holder’s inequality to estimate:

D lai+ bl = fai+ bl - Jai + b
i=1

=1



Preliminaries 12

7

< Z|ai|‘|ai‘|‘bi|p_l + Z|bi|‘|ai‘|‘bi|p_1
i=1 1=1

< llallp - I Clai +b:"7)iZills + llyllp - I Clas + 0P ™)z llg

= |la+ b5~ ({lall, + (18]l
That is, |la + b} < |la + bHJJ;_l (llellp + 1|8]lp), and the triangle inequality follows. O

If 1 < p < oo, then equality in Minkowski’s inequality can only occur if @ and b
are parallel; that is, the {,-norm is strictly convex for 1 < p < oo. Indeed, if ||a + b, =
||la||p41b]|p, then either @ = 0, or b = 0, or else a, b # 0 and we have equality at each stage of
our proof. Now equality in the first inequality means that |a; +b;| = |a;|+ |b;|, which easily
implies that a; and b; have the same sign. Next, equality in our application of Holder’s
inequality implies that there are nonnegative scalars C' and D such that |a;|? = C'|a; +b;|?
and |b;|? = D la; + b;|P for all « = 1,...,n. Thus, a; = Eb; for some scalar E and all
=1

RN

Of course, the triangle inequality also holds in either of the cases p = 1 or p =

(with much simpler proofs).

Exercises
When does equality occur in the triangle inequality in the cases p = 1 or p = 00?7 In
particular, show that neither of the norms || - || or || - ||eo s strictly convex.

Appendix B

Next, we provide a brief review of completeness and compactness. Such review is doomed
to inadequacy; the reader unfamiliar with these concepts would be well served to consult
a text on advanced calculus such as Analysis in Euclidean Spaces by K. Hoffman, or

Principles of Mathematical Analysis by W. Rudin.

To begin, we recall that a subset A of normed space X (such as R or R") is said to be
closed if A is closed under the taking of sequential limits. That is, A is closed if, whenever
(ayn) is a sequence from A converging to some point x € X, we always have © € A. It’s not
hard to see that any closed interval, such as [a,b] or [a, ), is, indeed, a closed subset of

R in this sense. There are, however, much more complicated examples of closed sets in R.
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A normed space X is said to be complete if every Cauchy sequence from X converges
(to a point in X). It is a familiar fact from Calculus that R is complete, as is R”. In fact,
the completeness of R is often assumed as an axiom (in the form of the least upper bound
axiom). There are, however, many examples of normed spaces which are not complete;

that is, there are examples of normed spaces in which Cauchy sequences need not converge.

We say that a subset A of a normed space X is complete if every Cauchy sequence
from A converges to a point in A. Please note here that we require not only that Cauchy
sequences from A converge, but also that the limit be back in A. As you might imagine,

the completeness of A depends on properties of both A and the containing space X.

First note that a complete subset is necessarily also closed. Indeed, since every con-

vergent sequence is also Cauchy, it follows that a complete subset is closed.

Exercise

If A is a complete subset of a normed space X, show that A is also closed.

If the containing space X is itself complete, then it’s easy to tell which of its subsets
are complete. Indeed, since every Cauchy sequence in X converges (somewhere), all we

need to know is whether the subset is closed.

Exercise

Let A be a subset of a complete normed space X. Show that A is complete if and only if
A is a closed subset of X. In particular, please note that every closed subset of R (or R")

is complete.

Finally, we recall that a subset A of a normed space X is said to be compact if every
sequence from A has a subsequence which converges to a point in A. Again, since we
have insisted that certain limits remain in A, it’s not hard to see that compact sets are

necessarily also closed.

Exercise

If A is a compact subset of a normed space X, show that A is also closed.

Moreover, since a Cauchy sequence with a convergent subsequence must itself converge
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(why?), we actually have that every compact set is necessarily complete.

Exercise

If A is a compact subset of a normed space X, show that A is also complete.

Since the compactness of a subset A has something to do with every sequence in A,
it’s not hard to believe that it is a more stringent property than the others we’ve considered

so far. In particular, it’s not hard to see that a compact set must be bounded.

Exercise

If A is a compact subset of a normed space X, show that A is also bounded. [Hint: If not,

then A would contain a sequence (a,, ) with ||a,| — oo.]

Now 1t is generally not so easy to describe the compact subsets of a particular normed
space X, however, it is quite easy to describe the compact subsets of R (or R™). This

well-known result goes by many names; we will refer to it as the Heine-Borel theorem.

Theorem. A subset A of R (or R") is compact if and only if A is both closed and
bounded.

PrROOF. One direction of the proof is easy: As we've already seen, compact sets in R
are necessarily closed and bounded. For the other direction, notice that if A is a bounded
subset of R, then it follows from the Bolzano-Weierstrass theorem that every sequence
from A has a subsequence which converges in R. If A is also a closed set, then this limit
must, in fact, be back in A. Thus, every sequence in A has a subsequence converging to a

point in A. O

Appendix C

We next offer a brief review of pointwise and uniform convergence. We begin with an

elementary example:

Example

(a) For each n = 1,2,3,..., consider the function f,(z) = e* 4+ £ for 2 € R. Note that

for each (fixed) @ the sequence (f,(x))72, converges to f(x) = e” because

fule) — ) = 2

0 as n — oo.
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In this case we say that the sequence of functions (f,) converges pointwise to the
function f on R. But notice, too, that the rate of convergence depends on z. In
particular, in order to get |fn(z) — f(x)| < 1/2 we would need to take n > 2|x|. Thus,
at © = 2, the inequality is satisfied for all n > 4, while at x = 1000, the inequality is

satisfied only for n > 2000. In short, the rate of convergence is not uniform in .

(b) Consider the same sequence of functions as above, but now let’s suppose that we
restrict that values of x to the interval [—5,5]. Of course, we still have that f,(z) —
f(z) for each (fixed) x in [—5,5]; in other words, we still have that (f,) converges
pointwise to f on [—5,5]. But notice that the rate of convergence is now uniform over

z in [—=5,5]. To see this, just rewrite the initial calculation:

2]

5
|[fn(e) = f(2)] = — < — for ze€[=5,5],
n n
and notice that the upper bound 5/n tends to 0, as n — oo, independent of the choice
of x. In this case, we say that (f,) converges uniformly to f on [—5,5]. The point
here is that the notion of uniform convergence depends on the underlying domain as

well as on the sequence of functions at hand.

With this example in mind, we now offer formal definitions of pointwise and uniform
convergence. In both cases we consider a sequence of functions f, : X - R, n=1,2,3,...,
each defined on the same underlying set X, and another function f : X — R (the candidate
for the limit).

We say that (f,) converges pointwise to f on X if, for each @ € X, we have f,(z) —
f(z) as n — oo; thus, for each € X and each £ > 0, we can find an integer N (which
depends on ¢ and which may also depend on ) such that |f,(z) — f(x)| < ¢ whenever
n > N. A convenient shorthand for pointwise convergence is: f, — f on X or, if X is

understood, simply f, — f.

We say that (f,) converges uniformly to f on X if, for each ¢ > 0, we can find
an integer N (which depends on ¢ but not on x) such that |f,(z) — f(z)| < € for each
x € X, provided that n > N. Please notice that the phrase “for each * € X” now occurs
well after the phrase “for each ¢ > 0” and, in particular, that the rate of convergence N

does not depend on z. It should be reasonably clear that uniform convergence implies
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pointwise convergence; in other words, uniform convergence is “stronger” than pointwise
convergence. For this reason, we sometimes use the shorthand: f, = f on X or, if X is

understood, simply f, = f.

The definition of uniform convergence can be simplified by “hiding” one of the quan-
tifiers under different notation; indeed, note that the phrase “|f,(x) — f(x)| < ¢ for any

7 Thus, our

x € X7 is (essentially) equivalent to the phrase “sup,cx |fn(z) — f(2)] < e.
definition may be reworded as follows: (f,) converges uniformly to f on X if, given £ > 0,

there is an integer N such that sup,cx |fn(2) — f(z)] < e for all n > N.

The notion of uniform convergence exists for one very good reason: Continuity is

preserved under uniform limits. This fact is well worth stating.
Exercise

Let X be a subset of R, let f, f, : X - Rforn=1,2,3,..., and let g € X. If each f,
is continuous at xg, and if f, = f on X, then f is continuous at xg. In particular, if each
frn 1s continuous on all of X, then so is f. Give an example showing that this result may

fail if we only assume that f, — f on X.

Appendix D

Lastly, we discuss continuity for linear transformations between normed vector spaces.
Throughout this section, we consider a linear map T : V — W between vector spaces V
and W; that is we suppose that T satisfies T(ax + fy) = oT'(z) + 0T (y) for all @, y € V,
and all scalars a, 3. Please note that every linear map T satisfies T(0) = 0. If we further
suppose that V' is endowed with the norm || - ||, and that W is endowed with the norm

ll|-]|, the we may consider the issue of continuity of the map T

The key result for our purposes is that, for linear maps, continuity—even at a single

point—is equivalent to uniform continuity (and then somel).

Theorem. Let (V.| -||) and (W,|||-|||) be normed vector spaces, and let T : V. — W be a

linear map. Then, the following are equivalent:
(i) T is Lipschitz;

(ii) T is uniformly continuous;
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(iii) T is continuous (everywhere);
(iv) T is continuous at 0 € V;

(v) there is a constant C' < oo such that ||| T'(z)||| < C||z|| for all x € V.

PrROOF. Clearly, (i) = (ii) = (iii) = (iv). We need to show that (iv) = (v), and
that (v) = (i) (for example). The second of these is easier, so let’s start there.

(v) = (i): If condition (v) holds for a linear map T', then T is Lipschitz (with constant
€) since || T(x) — T(w) || = | Tx — y)ll| < Cllx — ]| for any o,y € V.

(iv) = (v): Suppose that T is continuous at 0. Then we may choose a § > 0 so that
I T(e) = I T) — TO)]]| < 1 whenever [lo] = lle — 0] < 5. (How?)

Given 0 # x € V, we may scale by the factor é/| x| to get H dx /||| H = ¢. Hence,
m T(5z/||=||) H‘ < 1. But T(é6z/||z]|) = (&/||z||) T(z), since T is linear, and so we get
| T(2)||| < (1/0)]|«]|. That is, C = 1/ works in condition (v). (Note that since condition

(v) is trivial for @ = 0, we only care about the case @ #0.) [

A linear map satisfying condition (v) of the Theorem (i.e., a continuous linear map)
is often said to be bounded. The meaning in this context is slightly different than usual.
Here it means that 7" maps bounded sets to bounded sets. This follows from the fact
that T is Lipschitz. Indeed, if ||| T(2)]|| < C||z| for all @ € V, then (as we've seen)
| T(x) — T(y)||| < Cl|le — y|| for any =, y € V, and hence T maps the ball about x of
radius r into the ball about T'(x) of radius Cr. In symbols, T(BA:L‘)) C Beo(T(2)). More
generally, T' maps a set of diameter d into a set of diameter at most C'd. There’s no danger
of confusion in our using the word bounded to mean something new here; the ordinary
usage of the word (as applied to functions) is uninteresting for linear maps. A nonzero

linear map always has an unbounded range. (Why?)

The smallest constant that works in (v) is called the norm of the operator T' and is

usually written ||T||. In symbols,

| T ]
|T]| = sup = sup [||T=]|].

o 171 lzl|l=1

Thus, T is bounded (continuous) if and only if ||T]| < oc.
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The fact that all norms on a finite-dimensional normed space are equivalent provides

a final (rather spectacular) corollary.

Corollary. Let V and W be normed vector spaces with V finite-dimensional. Then, every

linear map T : V — W is continuous.

PROOF. Let xy,...,x, be a basis for V and let || 3.1, asail[1 = >0 |as|, as before.
From the Lemma on page 3, we know that there is a constant B < oo such that ||z||; <

B ||z|| for every x € V.

Now if T : (V.|| -||) = (W,|||-]Il) is linear, we get

o) - [ £oee]

< Z|az| Il T(2i) ]l
< (m ) 3 > e
1<5<n
<B (maX | T(x; |||> Zoz T
1<5<n

That is, ||| T'(z) ||| < C||z||, where C'= B max ||| T(x;)||| (a constant depending only on T
1<j<n

and the choice of basis for V). From our last result, T' is continuous (bounded). O
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[Problems marked (>) are essential to a full understanding of the course; we will discuss
most of these in class. Problems marked (%) are of general interest and are offered as a

contribution to your personal growth. Unmarked problems are just for fun.]

The most important collection of functions for our purposes is the space C|a,b], consisting
of all continuous functions f : [a,b] — R. It’s easy to see that C[a,b] is a vector space
under the usual pointwise operations on functions: (f+g¢)(x) = f(2)+g(x) and (af)(x) =
af(x) for a € R. Actually, we will be most interested in the finite-dimensional subspaces

Pn of Cla,b], consisting of all algebraic polynomials of degree at most n.
> 1. The subspace P,, has dimension exactly n + 1. Why?

Another useful subset of C[a,b] is the collection lipy o, consisting of all those f’s which
satisfy a Lipschitz condition of order o« > 0 with constant 0 < K < oo; 1.e., those f’s for
which [f(z) — f(y)| < K |x —y|® for all @, y in [a,b]. [Some authors would say that f is

Hélder continuous with exponent a.]
* 2. Show that lipj o is, indeed, a subset of Cla,b].

)

b) If @ > 1, show that lip o contains only the constant functions.
) Show that \/z isin lip;(1/2) and that sinz is in lip;1 on [0,1].
)

Show that the collection lip o, consisting of all those f’s which are in lipja for

some K, is a subspace of C[a,b].
(e) Show that lip1 contains all the polynomials.
(f) If f € lipa for some o > 0, show that f € lipg for all 0 < 8 < a.
(g) Given 0 < a < 1, show that « is in lip;a on [0, 1] but not in lip 8 for any 7 > o.

We will also want to consider a norm on the vector space Cla,bl; we typically use the
uniform or sup norm (Rivlin calls this the Chebyshev norm) defined by || f|| = max, | f(2)].
AT

[Some authors write || fl, or || f]]cc-]

* 3. Show that P, and lip-« are closed subsets of C[a,b] (under the sup norm). Is lip a
closed? A bit harder: Show that lip 1 is both first category and dense in C[a,b].

> * 4. Fix n and consider the norm ||p|l1 = >_;_, |ak| for p(z) = ap + a1z + - -+ apz™ € Py.
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Show that there are constants 0 < A,, B, < oo such that A,||p|l1 < ||| < Brllpll1s

where ||p|| = max |p(z)|. Do A, and B,, really depend on n?
a<z<b

We will occasionally consider spaces of real-valued functions defined on finite sets; that
is, we will consider R™ under various norms. (Why is this the same?) We define a scale
of norms on R" by ||z]|, = (>, |:1;i|p)1/p, where © = (21,...,2,) and 1 < p < oo (we
need p > 1 in order for this expression to be a legitimate norm, but the expression makes
perfect sense for any p > 0, and even for p < 0 provided no z; is 0). Notice, please, that

the usual norm on R™ is given by ||z2.

5. Show that lim ||z||, = max |z;|. For this reason we define ||z|oc = max |z;|. Thus
>0

1<i<n 1<i<n
R™ under the norm || - ||oc is the same as C({1,2,...,n}) with its usual norm.
6. Assuming z; # 0 for : = 1,...,n, compute pl_i)rél_i_ |||, and pli)r_noo || -

7. Consider R? under the norm ||x||,. Draw the graph of the unit sphere {z : ||z|, = 1}

for various values of p (especially p = 1, 2, o).

8. (Young’s inequality): Let 1 < p < oo and let ¢ satisfy ]lj + % = 1. Show that
ab < ]ljap + %bq for all a, b > 0 with equality if and only if a? = 1.
9. (Holder’s inequality): Let 1 < p < oo and let ¢ satisfy ]lj + % = 1. Show that
n n 1 n 1
(a) Yo o bi] < (i Jeal?)? (0, [bi])' . and
b b 1/p b 1/¢q
(b) f7 1f() g(o)lda < (f 1F ()l da) ™ () lg(a)|? do)
Describe the case for equality in each inequality. What happens if p=1 (¢ = o0)?
10. (Minkowski’s inequality): For 1 < p < oo, show that
() (S lai + b)Y < (S fail?)7 + (S if)” and tha
b 1/p b 1/p b
) (f7 1) + gl de) < (S 1F @I de) " + () lg(o)lr do)

1/p

Describe the case for equality in each inequality. What happens if p = co?

Exercise 10 shows that || - ||, is indeed a norm for 1 < p < co. We write L,[a,b] to mean
the vector space of functions on [ a,b] for which the integral norm is defined and finite, we

write () to mean the vector space of sequences of length n; that is, R" supplied with the
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oo

norm || - ||, and we write ¢, to mean the vector space of infinite sequences = = (z,)5%,

for which ||z||, < co. In each space, the usual algebraic operations are defined pointwise

(or coordinatewise) and the norm is understood to be || - ||,.

A normed space (X, ]| - ||) is said to be strictly convex if ||@ + y|| = ||| + ||y|| always
implies that = and y lie in the same direction; that is, either * = ay or y = ax for some
nonnegative scalar . Equivalently, X is strictly convex if the triangle inequality is always

strict on nonparallel vectors.
11. Prove that the following are equivalent:

(a) (X,]| - ) is strictly convex.

(b) If 2, y € X are nonparallel, then 5 5

rT+y
—| < 1.

12. Show that L, and (, are strictly convex for 1 < p < oco. Show also that this fails in

) Jel il

(c¢) If © #y € X with ||z|| =1 = ||ly||, then

case p = 1. [Hint: This is actually a statement about the function |¢t|P, 1 < p < o0.]

Strictly convex spaces are of interest when considering the problem of nearest points: Given
a nonempty subset I{ of a normed space X and a point = ¢ I{, we ask whether there is a
best approximation to = from elements of I{; that is, we want to know if there exist one

or more points yo € K satisfying
|z = yo|| = inf ||z —y|| = dist (z, K).
yeK

It’s not hard to see that a satisfactory answer to this question will require that we take K
to be a closed set in X (for otherwise the points in K \ K wouldn’t have nearest points).
Less easy to see is that we typically also want to assume that K is a convex set. Recall
that a subset K of a vector space X is sald to be convex if it contains the line segment

joining any pair of its points; that is, K is convex if
r,ye K, 0<A<1l= A+ (1-Nye€K.

Obviously, any subspace of X is a convex set and, for our purposes at least, this is the

most important example.

« 13. Let X be a normed space and let B = {z € X : ||z|| < 1}. Show that B is a closed

convex set.
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. Consider R? under the norm || - ||so. Let B = {y € R?: ||y||oc < 1} and let 2 = (2,0).

Show that there are infinitely many points in B nearest to z.

15. (a) Let K = {f € L1[0,1]: f > 0 and ||f][s = 1}. Show that K is a closed convex
set in L1[0,1], that 0 ¢ K, and that every point in K is a nearest point to 0.
(b) Let K ={f € C[0,1]: f(0) =0 and fol f =1}. Again, show that K is a closed
convex set in C[0, 1], that 0 ¢ I, but that no point in K is nearest to 0.
16. Let K be a compact convex set in a strictly convex space X and let + € X. Show
that = has a unique nearest point yg € K.
17. Let K be a closed subset of a complete normed space X. Prove that K is convex if

and only if K is midpoint convex; that is, if and only if (v + y)/2 € K whenever z,
y € K. Is this result true in more general settings? For example, can you prove it
without assuming completeness? Or, for that matter, is it true for arbitrary sets in

any vector space (i.e., without even assuming the presence of a norm)?



MATH 682 Approximation by Algebraic Polynomials 5/20/98

Introduction

Let’s begin with some notation. Throughout, we're concerned with the problem of best
(uniform) approximation of a given function f € C[a,b] by elements from P,,, the subspace
of algebraic polynomials of degree at most n in C[a,b]. We know that the problem has a

solution (possibly more than one), which we’ve chosen to write as p¥. We set
En(f) = min [f —pl = |If = Pl

Since Py, C Py for each n, it’s clear that E,(f) > E,41(f) for each n. Our goal in this

chapter is to prove that E,(f) — 0. We’ll accomplish this by proving:

Theorem. (The Weierstrass Approximation Theorem, 1885): Let f € C[a,b]. Then,

for every ¢ > 0, there is a polynomial p such that ||f — p|| < e.

It follows from the Weierstrass theorem that p;, = f for each f € C[a,b]. (Why?)
This is an important first step in determining the exact nature of E,(f) as a function of

f and n. We'll look for much more precise information in later sections.

Now there are many proofs of the Weierstrass theorem (a mere three are outlined in
the exercises, but there are hundreds!), and all of them start with one simplification: The

underlying interval [a,b] is of no consequence.

Lemma. If the Weierstrass theorem holds for C[0,1], then it also holds for C[a,b], and
conversely. In fact, C[0,1] and C|a,b] are, for all practical purposes, identical: They
are linearly isometric as normed spaces, order isomorphic as lattices, and isomorphic as

algebras (rings).

Proor. We'll settle for proving only the first assertion; the second is outlined in the

exercises (and uses a similar argument).

Given f € C|a,b], notice that the function

g(:z;)zf(a—l—(b—a)x), 0<a<1,



Algebraic Polynomials 24

defines an element of C[0,1]. Now, given £ > 0, suppose that we can find a polynomial p

such that ||g — p|| < ; in other words, suppose that

max ‘f(a—l— (b—a):z;) —p(l‘)‘ < €.

0<z<1
t—a

(Why?) But if p(x) is a polynomial in x, then ¢(¢t) = p <z:‘;> is a polynomial in ¢ (again,

Then,

max
a<t<b

why?) satisfying || f — ¢|| < e.

The proof of the converse is entirely similar: If g(x) is an element of C[0,1], then

flty=g <z:z>, a <t <b, defines an element of C|a,b]. Moreover, if ¢(¢) is a polynomial

in t approximating f(¢), then p(x) = ¢(a 4+ (b — a)x) is a polynomial in & approximating

g(2). The remaining details are left as an exercise. [

The point to our first result is that it suffices to prove the Weierstrass theorem for
any interval we like; [0,1] and [—1,1] are popular choices, but it hardly matters which

interval we use.

Bernstein’s Proof

The proof of the Weierstrass theorem we present here is due to the great Russian math-
ematician S. N. Bernstein in 1912. Bernstein’s proof is of interest to us for a variety of
reasons; perhaps most important is that Bernstein actually displays a sequence of polyno-
mials that approximate a given f € C[0,1]. Moreover, as we’ll see later, Bernstein’s proof

generalizes to yield a powerful, unifying theorem, called the Bohman-Korovkin theorem.

If f is any bounded function on [0, 1], we define the sequence of Bernstein polynomials

for f by ]
B0 =35 (7) (3)Ha-ort osest

Please note that B,(f) is a polynomial of degree at most n. Also, it’s easy to see that

(Bn(f)>(0) = f(0), and (Bn(f)>(1) = f(1). In general, (Bn(f)>(:1;) is an average of
the numbers f(k/n), k = 0,...,n. Bernstein’s theorem states that B,(f) = f for each

f € C[0,1]. Surprisingly, the proof actually only requires that we check three easy cases:

folr) =1, fi(z) =2, and folz) =2
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This, and more, is the content of the following lemma.

Lemma. (1) Bn(fO) = fo and Bn(fl) = fl-
() Ba(f2) = (1= L) fo+ - i, and hence Bu(f2) = fo

(iii) i(ﬁ—x>2<z>xk(l—x)"_k: Mg %, if 0<z<1.

n
k=0

(iv) Given 6 > 0 and 0 < x < 1, let F denote the set of k’s in {0,...,n} for which

> §. Then Z (Z):L‘k(l — x)"_k < L

kel

‘k
— =
22

Proor. That B,(fo) = fo follows from the binomial formula:

i (Z)l‘k(l )" =le (1) =1

k=0

To see that B, (f1) = fi1, first notice that for £ > 1 we have

%(Z) " (& —(?)!_(i)i I (Z:D

Consequently,
Z % (Z)l'k(l . x)n—k - (Z : 1)1”6_1(1 . x)n—k
k=0 k=1
n—1 1
= x (n B )l’j(l — x)("_l)_j = x.
=0~/

Next, to compute B, (f2), we rewrite twice:
EN*(n\ k(n—-1\ n-1 k—1(n—1 PRNCE AT
n k) n\k—-1/ =n n—1\k—-1 n\k—1) "=
1 n—2 1/n—-1
=(1-= — if k> 2.
() o). e
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Thus,
> (5) (D)o
_ (1 _ %) kz; (Z ) ;):pk(l _ o)t >

(-3)+
=|1l1——)2" 4 — =z,
n n

which establishes (ii) since ||Bn(f2) — f2]| = %Hfl — f2]] = 0 as n — oc.

_|_
3| =
3
TN
o>~ 03
[
— =
~—

=
=l
—

|
=
3

|

=l

To prove (iii) we combine the results in (i) and (ii) and simplify. Since ((k/n)—z)* =

(k/n)? — 2z(k/n) + 22, we get

"k 2 1 1
Z (——:1;) <n>:1;k(1—:1;)"_k = (1— —) 22 4+ Zx — 227 + 22
n k n n

k=0

for 0 <z <1.

Finally, to prove (iv), note that 1 < ((k/n) — x)? /6 for k € F, and hence

TN
> 03
~—
=
=l
—
|
=
3
|
=l
I
| =
N
3| >
|
=
——
(Y]
TN
> 03
~—
=
=l
—
|
=
3
|
=l

Now we’re ready for the proof of Bernstein’s theorem:

PrOOF. Let f € C[0,1] and let £ > 0. Then, since f is uniformly continuous, there is

a 0 > 0 such that |f(z) — f(y)| < /2 whenever | — y| < . Now we use the previous

lemma to estimate || f — By, (f)||. First notice that since the numbers (})z*(1 — z)"~* are
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nonnegative and sum to 1, we have

7() — Ba(D@] = |f(e) - no (2 (E) at1 -yt

IA

> |fte) (S)\ (3) =

Now fix n (to be specified in a moment) and let F' denote the set of k’s in {0,...,n} for
which |(k/n)—x| > 6. Then |f(z)— f(k/n)| < e/2for k ¢ F, while |f(z)— f(k/n)| < 2|/ f]
for k € F. Thus,

£2) = (Bal ) )
<53 (D)oot ean S (F)eta o

k¢F keF
€ 1
2 4nd?’
< e, provided that n > ||f]|/e6*. O

A

L+ 2071 -

from (iv) of the Lemma,

Landau’s Proof

Just because it’s good for us, let’s give a second proof of Weierstrass’s theorem. This one
is due to Landau in 1908. First, given f € C[0,1], notice that it suffices to approximate
f —p, where p is any polynomial. (Why?) In particular, by subtracting the linear function
FO)+a2(f(1)—f(0)), we may suppose that f(0) = f(1) = 0 and, hence, that f = 0 outside

[0,1]. That is, we may suppose that f is defined and uniformly continuous on all of R.

Again we will display a sequence of polynomials that converge uniformly to f; this

time we define
1

Ly(x) = ¢y flx +1) (1 —t*)"dt,

-1
where ¢,, 1s chosen so that
1
cn/ (1 —t3)"dt = 1.
-1
Note that by our assumptions on f, we may rewrite this expression as

L(2) :cn/ _xf(:zﬁ—l—t)(l—tz)"dt:cn/o F) (1 — (¢t —2)*)™ dt.

—T
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Written this way, it’s clear that L, is a polynomial in = of degree at most n.

We first need to estimate ¢,. An easy induction argument will convince you that

(1 —3)" >1—nt?, and so we get

1 ) 1/v/n ) 4 1
1—t "dtZQ/ l—nt?)dt = —= > —,
JLmrazz 0w g 7

from which it follows that ¢, < y/n. In particular, for any 0 < ¢ < 1,

1
cn/ (1—tH)"dt < /n(1-6)" =0  (n— o),
)
which is the inequality we’ll need.

Next, let ¢ > 0 be given, and choose 0 < § < 1 such that
|f(z) — fly)] < e/2 whenever |z —y| < 4.

Then, since ¢,(1 —*)" > 0 and integrates to 1, we get

| Ln(z) — f(2)] =

o | 1[f(x+t)—f(x)](1—t2)"dt‘

<o [ Ifta+0) = fla)l(1 - )"

é 1
< —cn/ (1—t2)"dt—|—2Hchn/ (1 — %)™ dt
2 " Jo 5

< S+2)fllvRL-8)" <e,

provided that n is sufficiently large. [

A third proof of the Weierstrass theorem, due to Lebesgue in 1898, is outlined in the
exercises. Lebesgue’s proof is of particular interest since it inspired Stone’s version of the

Weierstrass theorem; we’ll discuss the Stone-Weierstrass theorem a bit later in the course.

Before we go on, let’s stop and make an observation or two: While the Bernstein
polynomials B, (f) offer a convenient and explicit polynomial approximation to f, they
are by no means the best approximations. Indeed, recall that if fi(x) = 2 and fo(x) = 22,
then B,(f2) = (1 — %)fz + %fl # f5. Clearly, the best approximation to f; out of P,

should be f; itself whenever n > 2. On the other hand, since we always have

En(f) <IIf = Ba(DIl - (why?),
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a detailed understanding of Bernstein’s proof will lend insight into the general problem of

polynomial approximation. Our next project, then, is to improve upon our estimate of the

error |[f — Bn(f)]-

Improved Estimates

To begin, we will need a bit more notation. The modulus of continuity of a bounded

function f on the interval [a,b] is defined by

wi(d) = wy([a,b];6) = sup{|f(z) — f(y)| : v,y € [a,b], |z —y| < &}

for any é > 0. Note that w¢(d) is a measure of the “c” that goes along with ¢ (in the

definition of uniform continuity); literally, we have written ¢ = w¢(J) as a function of 4.

Here are a few easy facts about the modulus of continuity:

Exercises
1. We always have |f(z) — f(y)| <ws(|z —y|) for any « # y € [a,b].
2. If 0 < ¢ <4, then wy(d') <wy(d).
3. f is uniformly continuous if and only if ws(§) — 0 as § — 0F.
4. If f' exists and is bounded on [a,b], then ws(d) < K for some constant .

5. More generally, we say that f satisfies a Lipschitz condition of order o with constant
K, where 0 < o < land 0 < K < oo, if |f(2) — f(y)] < K|z — y|® for all z, y. We
abbreviate this statement by the symbols: f € lipj-a. Check that if f € lipa, then
we(d) < K6 for all 6 > 0.

For the time being, we actually only need one simple fact about wy(4):

Lemma. Let f be a bounded function on [a,b] and let 6 > 0. Then, ws(nd) < nwys(d)
for n = 1,2,.... Consequently, ws(A) < (1 + A)wy(d) for any A > 0.

PrOOF. Given = < y with |z — y| < nd, split the interval [z,y] into n pieces, each of

length at most 6. Specifically, if we set zx =  + k(y — 2)/n, for k = 0,1,...,n, then
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2k — 2k—1] < 6 for any k > 1, and so

[f(z) = Fly)| =

Zf(zk) — f(zr=1)

< 1A — Forn)
< nwy(9).
Thus, wg(nd) < nwy(d).

The second assertion follows from the first (and one of our exercises). Given A > 0,

choose an integer n so that n — 1 < A < n. Then,
wWr(AG) Sws(nd) <nws(d) < (14 A)wy(d). O
We next repeat the proof of Bernstein’s theorem, making a few minor adjustments
here and there.

Theorem. For any bounded function f on [0,1] we have

I = a0 < 3eos (2 )

In particular, if f € C[0,1], then E,(f) < %wf(%) — 0 as n — oo.

)G)0-a
(Z)Mu — 2k

ProoF. We first do some term juggling:

3 (f(x) _f (S)

o -1 (%))

|[f(2) = Bu(f)(2)] =

7

D

k=0

IA

IA
(]
&
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k=0
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where the third inequality follows from our previous Lemma (by taking A = \/n ‘:1; — —‘
and § = % ). All that remains is to estimate the sum, and for this we’ll use Cauchy-
Schwarz (and our earlier observations about Bernstein polynomials). Since each of the

terms (})a*(1 — )"~ is nonnegative, we have

kz Lk
: 2 A Qo] @]
- _1]”2 1
= |1 N
Finally,
)= Bapl <er( =) [+ v | = (). .
Examples

1. If f € lipya, it follows that ||f — B,(f)|| < £Kn~%/? and hence E, (f) < 2Kn=/2.

2. As a particular case of the first example, consider f(x) = ‘:1; — %‘ on [0,1]. Then
felip)l,and so ||f — B,(f)| < %n_l/z. But, as Rivlin points out (see Remark 3 on

p. 16 of his book), ||f — B.(f)| > %n_l/z. Thus, we can’t hope to improve on the

power of n in this estimate. Nevertheless, we will see an improvement in our estimate
of E,(f).
The Bohman-Korovkin Theorem

The real value to us in Bernstein’s approach is that the map f +— B, (f), while providing
a simple formula for an approximating polynomial, is also linear and positive. In other

words,

Bn(f +9) = Bu(f) + Balg),
B.(af) =aBn(f), a€R,
and

B,(f) >0 whenever f >0.

As it happens, any positive, linear map T : C[0,1] — C[0,1] is necessarily also continuous!
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Lemma. If T : C[a,b] — C[a,b] is both positive and linear, then T is continuous.

ProoF. First note that a positive, linear map is also monotone. That is, T satisfies

T(f) < T(g) whenever f < g. (Why?) Thus, for any f € C[a,b], we have

—f f < |fl= =T(F), T(f) < T(If]);

that is, |T(f)| < T(|f]). But now |f| <||f]| - 1, where 1 denotes the constant 1 function,

and so we get

T(HI <TAf) < NAIT).

Thus,
ITCHI < NANT )

for any f € C[a,b]. Finally, since T is linear, it follows that T is Lipschitz with constant
IT()]]:
1T(f) = T = I1T(f = I < [T f = gll-

Consequently, T is continuous. [

Now positive, linear maps abound in analysis, so this is a fortunate turn of events.
What’s more, Bernstein’s theorem generalizes very nicely when placed in this new setting.
The following elegant theorem was proved (independently) by Bohman and Korovkin in,

roughly, 1952.

Theorem. Let T, : C[0,1] — C[0,1] be a sequence of positive, linear maps, and suppose

that T,,(f) — f uniformly in each of the three cases

folx) =1, fi(z) =2, and folz) =22
Then, T,,(f) — [ uniformly for every f € C[0,1].

The prootf of the Bohman-Korovkin theorem is essentially identical to the proof of
Bernstein’s theorem except, of course, we write T,,(f) in place of B, (f). For full details,
see Cheney’s book An Introduction to Approzimation Theory, Chelsea, 1982. Rather than

proving the theorem, let’s settle for a quick application.
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Example

Let f € C[0,1] and, for each n, let L,(f) be the “polygonal” approximation to f with
nodes at k/n, k= 0,1,...,n. That is, L, (f) is linear on each subinterval [(k—1)/n, k/n]
and agrees with f at each of the endpoints L,(f)(k/n) = f(k/n). Then, L,(f) — f
uniformly for each f € C[0,1]. This is actually an easy calculation all by itself, but let’s

see why the Bohman-Korovkin theorem makes short work of it.

That L, (f) is positive and linear is (nearly) obvious; that L, (fo) = fo and L,(f1) = f1
are really easy since, in fact, L,(f) = f for any linear function f. We just need to show
that L,(f2) = f2. But a picture will convince you that the maximum distance between

L, (f2) and f3 on the interval [(k —1)/n, k/n] is at most

<k>2 (k—1>2 2% —1 2
- _ — < Z
n n nZ —n

That is, || f2 — Ln(f2)]] £2/n — 0 as n — oo.

[Note that L, is a linear projection from C[0,1] onto the subspace of polygonal
functions based on the nodes k/n, &k = 0,...,n. An easy calculation, similar in spirit
to the example above, will show that ||f — L,(f)|| < 2ws(1/n) — 0 as n — oo for any
fec[o,1]]
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One of our first tasks will be to give a constructive proof of Weierstrass’s Theorem, stating
that each f € C[a,b] is the uniform limit of a sequence of polynomials. As it happens, the
choice of interval [a,b] is inconsequential: If Weierstrass’s theorem is true for one, then

it’s true for all.

18. Define 0 : [0,1] — [a,b] by o(t) = a4+ t(b— a) for 0 <t < 1, and define a transfor-
mation T, : Cla,b] — C[0,1] by (T5(f))(t) = f(o(t)). Prove that T, satisfies:

s(f+9)=T,(f) +Ts(9) and Ty(cf) = c¢To(f) for ¢ € R.

(a
(b

To(fg) = To(f)To(g). In particular, T, maps polynomials to polynomials.

1o (O = N1£1I-

e) T, is both one-to-one and onto. Moreover, (T,)™! = T,-:1.

) T

)

(¢) To(f) £ Ty(g) if and only if f < g.

(d)

(e)

The point to exercise 18 is that Cla,b] and C[0,1] are identical as vector spaces, metric
spaces, algebras, and lattices. For all practical purposes, they are one and the same space.

While Bernstein’s proof of the Weierstrass theorem (below) will prove most useful for our

purposes, there are many others; two of these (in the case of C[0,1]) are sketched below.

* 19. (Landau’s proof): For each n =1,2,... and 0 < § < 1, define [,,($) = f;(l —a*)" da

Show that 1,,(6)/I,(0) — 0 as n — oo for any § > 0. Now, given f € C[0,1] with
f(0) = f(1) = 0, show that the polynomial L, (z) = (21,,(0))~! fol fO(1—(t—a)?)" dt
converges uniformly to f(z) on [0,1] as n — oo. [Hint: You may assume that f =0
outside of [0, 1].] To get the result for general f € C[0,1], we simply need to subtract
the linear function f(0) + «(f(1) — f(0)).

20. (Lebesgue’s proof): Given f € C[0,1], first show that f can be uniformly approxi-
mated by a polygonal function. Specifically, given a positive integer N, define L(x)
by the conditions L(k/N) = f(k/N) for k = 0,1,...,N, and L(x) is linear for
k/N <z < (k+1)/N; show that || f — L|| is small provided that N is sufficiently large.
The function L(z) can be written (uniquely) as a linear combination of the “angles”
or(r) =|e—k/N|+2—k/N and pn(z) = 1; the equation L(z) = Eszo crpr(x) can
be solved since the system of equations L(k/N) = Eszo erpr(k/N), k =0,...,N,
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24.

25.

26.

27.

28.

29,
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can be solved (uniquely) for cg,...,cn. (How?) To finish the proof, we need to show

that || can be approximated by polynomials on any interval [a,b]. (Why?)

. Here’s an elementary proof that there is a sequence of polynomials (P, ) converging

uniformly to |z| on [—1,1].
(a) Define (P,) recursively by Ppi1(2) = Py(2) + [ — Pa(2)?]/2, where Py(z) = 0.
Clearly, each P, is a polynomial.

(b) Check that 0 < P,(z) < Pyyi(z) < /x for 0 < z < 1. Use Dini’s theorem to
conclude that P,(z) = v/z on [0,1].

(¢) Pn(z?) is also a polynomial, and P,(2%) = || on [—1,1].

The result in problem 19 (or 20) shows that the polynomials are dense in C[0,1].

Using the results in 18, conclude that the polynomials are also dense in C[a,b].

How do we know that there are non-polynomial elements in C'[0,1]? In other words,

is it possible that every element of C[0, 1] agrees with some polynomial on [0,1]?

Let (@, ) be a sequence of polynomials of degree m,,, and suppose that (@, ) converges

uniformly to f on [a,b], where f is not a polynomial. Show that m,, — oc.

If feC[-1,1] (or C*7) is an even function, show that f may be uniformly approxi-

mated by even polynomials (or even trig polynomials).

If f € C[0,1] and if f(0) = f(1) = 0, show that the sequence of polynomials
Soreo (D) f(k/n)] (1 — &)"~F with integer coefficients converges uniformly to f
(where [z] denotes the greatest integer in «). The same trick works for any f € C[a,b]
provided that 0 < a < b < 1.

If p is a polynomial and ¢ > 0, prove that there is a polynomial ¢ with rational
coefficients such that |[p — ¢|| < ¢ on [0,1]. Conclude that C[0,1] is separable.

k

Let (2;) be a sequence of numbers in (0,1) such that lim = 37" 2}

n— 00

k=0,1,2,.... Show that lim %E?:l f(x;) exists for every f € C[0,1].
n—>00

exists for every

If feC[0,1]andif fol 2" f(x)dx = 0 for each n =0,1,2,..., show that f = 0. [Hint:
Using the Weierstrass theorem, show that fol f2=0]

The next proof of the Weierstrass theorem that we consider is quite explicit; we actually
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display a sequence of polynomials that converges uniformly to a given f € C[0,1]. Given

f € C[0,1], we define the sequence (Bn(f)>zo:1 of Bernstein polynomials for f by

— éf(%) : (Z)x’“(l — )"k,

Please note that B,(f) is a polynomial of degree at most n. Also, it’s easy to see that

(Bn(f)>(0) = f(0) and (Bn(f)>(1) = f(1). In general, (Bn(f)>(:1;) is an average of
the numbers f(k/n), k = 0,...,n. Bernstein’s theorem states that the sequence B, (f)
converges uniformly to f for each f € C[0,1]; the proof is rather simple once we have a

few facts about the Bernstein polynomials at our disposal. For later reference, let’s write

folr) =1, fi(z) =2, and folz) =2

Among other things, the following exercise establishes Bernstein’s theorem for these three

polynomials. Curiously, these few special cases will imply the general result.

30. (i

) Bu(fo) = fo and B,(f1) = f. [Hint: Use the binomial theorem.]
(i) B

)

)

W(f2) = (1—2) o+ 2 f1, and hence (B,(f2)) converges uniformly to fo.
(i) i (5 —2)" () ab(1—a)n =202 <L if 0 <o <1,
(iv) Given § > 0 and 0 < z < 1, let F denote the set of k’s in {0,...,n} for which
|£ — 2| > 6. Then Y cp () (1 —2)" % < 1.

31. Show that |B,(f)| < Bn(|f]), and that B,(f) > 0 whenever f > 0. Conclude that
[Bn(HI < IIF]I-

32. If f is a bounded function on [0,1], show that B,(f)(z) — f(z) at each point of
continuity of f.

33. (Bohman, Korovkin) Let (T},) be a sequence of monotone linear operators on C[0,1];
that is, each T, is a linear map from C[0,1] into itself satisfying Tn(f) < Thn(g)
whenever f < g. Suppose also that T,(fo) = fo, Tu(f1) = fi. and To(f2) = fo.
Prove that T,(f) = f for every f € C[0,1]. [Hint: Mimic the proof of Bernstein’s
theorem.]

34. Find B,(f) for f(x) = 2. [Hint: k* = (k — 1)(k — 2) + 3(k — 1) + 1.] The same
method of calculation can be used to show that B, (f) € Py, whenever f € P, and

n>m.
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* 35. Let f be continuously differentiable on [a,b], and let £ > 0. Show that there is a

polynomial p such that ||f — p|| < ¢ and ||f' —p'|| < e.

36. Suppose that f € Cla,b] is twice continuously differentiable and has f” > 0. Prove
that the best linear approximation to f on [a,b] is ag + a1 where a9 = f'(¢),
a; = [f(a) + f(c) + f'(c)(a + ¢)]/2, and where ¢ is the unique solution to f'(c¢) =
(f(6) = f(a))/(b—a).

The next several exercises concern the modulus of continuity. Given a bounded real-valued

function f defined on some interval I, we define wy, the modulus of continuity of f, by

wi(l;6) = ws(0) = sup{|f(x) = fy)| s,y e I, Ja —y| <6}, >0,

Note, for example, that if f is uniformly continuous, then w¢(d) — 0 as 6 — 0. Indeed,
the statement that |f(x) — f(y)| < e whenever |x — y| < § is equivalent to the statement
that w¢(d) < e. On the other hand, if the graph of f has a jump of magnitude 1, say, then
wg(d) > 1 for all 6 > 0.

> 37. If f satisfies the Lipschitz condition |f(z) — f(y)| < K|o —y|, what can you say about
w? Caleulate w, for g(z) = /z.

38. If f € C[a,b], show that w(§; + 82) < wy(d1) + wys(d2) and that ws(d) | 0 as ¢ | 0.
Use this to show that w; is continuous for § > 0. Finally, show that the modulus of
continuity of w; is again w;.

> 39. (a) If 2 = cosf, where —1 < x < 1, and if g(8) = f(cos 8), show that w,([—7,7],d) =
wyl[0,71,8) < wp([~1,1]:4).
(b) If g(2) = f(az+b) for ¢ < 2 < d, show that wy([c,d]; §) = ws([ac+b, ad+b]; ad).

40. Let f be continuously differentiable on [0,1]. Show that (B, (f)') converges uniformly
to f' by showing that |[Bn(f') — (Bny1(f)) || < ws (1/(n + 1)). [In order to see
why this is of interest, find a uniformly convergent sequence of polynomials whose

derivatives fail to converge uniformly. Compare this result with problem 35.]
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Introduction

A (real) trigonometric polynomial, or trig polynomial for short, is a function of the form

ao—l—z<akcoskx—|—bksinkx>, (%)
k=1
where ag,...,a, and by,...,b, are real numbers. The degree of a trig polynomial is the

highest frequency occurring in any representation of the form (x); thus, (%) has degree n
provided that one of a, or b, is nonzero. We will use 7,, to denote the collection of trig
polynomials of degree at most n, and 7 to denote the collection of all trig polynomials

(i.e., the union of the T,’s).

It is convenient to take the space of all continuous 27-periodic functions on R as the
containing space for T,; a space we denote by C?™. The space C'?*™ has several equivalent
descriptions. For one, it’s obvious that C*™ is a subspace of C'(R), the space of all con-
tinuous functions on R. But we might also consider C*™ as a subspace of C[0, 2] in the
following way: The 27-periodic continuous functions on R may be identified with the set
of functions f € C[0,2r] satisfying f(0) = f(2x). Each such f extends to a 27-periodic
element of C'(R) in an obvious way, and it’s not hard to see that the condition f(0) = f(27)
defines a subspace of C[0,27]. As a third description, it is often convenient to identify C*7
with the collection C(T), consisting of all the continuous real-valued functions on T, where

T is the unit circle in the complex plane C. That is, we simply make the identifications
B and  f(6) «— F(e).

In any case, each f € C?7 is uniformly continuous and uniformly bounded on all of R, and
is completely determined by its values on any interval of length 27. In particular, we may

(and will) endow C?™ with the sup norm:

If]l = max [f(z)] = max][f(z)].

0<e<2m rE€R

Our goal in this chapter is to prove what is sometimes called Weierstrass’s second

theorem (also from 1885).
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Theorem. (Weierstrass’s Second Theorem, 1885) Let f € C*™. Then, for every ¢ > 0,

there exists a trig polynomial T such that ||f — T < e.

Ultimately, we will give several different proofs of this theorem. Weierstrass gave a
separate proof of this result in the same paper containing his theorem on approximation
by algebraic polynomials, but it was later pointed out by Lebesgue (1898) that the two
theorems are, in fact, equivalent. Lebesgue’s proof is based on several elementary obser-

Y

vations. We will outline these elementary facts as “exercises with hints,” supplying a few

proofs here and there, but leaving full details to the reader.

We first justify the use of the word “polynomial” in describing ().

Lemma. cosnz and sin(n + 1)z /sina can be written as polynomials of degree exactly n

in cos x for any integer n > 0.

PrROOF. Using the recurrence formula cos kx + cos(k — 2)x = 2 cos(k — 1)x cos x it’s not
hard to see that cos2z = 2cos?z — 1, cos 3z = 4cos®x — 3cosz, and cos4r = Scos? z —
8cos?x + 1. More generally, by induction, cosnz is a polynomial of degree n in cosx
with leading coefficient 2"~!. Using this fact and the identity sin(k + 1)z — sin(k — 1)z =
2coskx sina (along with another easy induction argument), it follows that sin(n+ 1)z can
be written as sin x times a polynomial of degree n in cos x with leading coefficient 2.

)2k = (cos2 T — 1)k we have

(Z) (7sin :zj)k cos"k :1;]
k=0

[n/2] .
— Z <2k> (cos2 T — 1)k cos”" "2k g,

k=0

Alternatively, notice that by writing (isin

cosne = Re[(cosx +isinx)"] = Re

The coefficient of cos™ & in this expansion is then
[n/2] n 1<~ /n
= — =2 1
> (5) =52 (1)
k=0 k=0

(All the binomial coefficients together sum to (1 4+ 1) = 2", but the even or odd terms

taken separately sum to exactly half this amount since (1 + (—1))" =0.)
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Similarly,

n+1
1
sin(n + 1)x = Im [(cosx + isin :1;)"""1] =Im [Z ( Z )(z sin :1;) cos"t1—k ]
k=0
[n/2]

1
= Z n (cos? z — 1)* cos" *F zsinz,
2k + 1

2k+1 _

where we've written (7sin ) z(cos2 T — 1)k sin z. The coefficient of cos™ xsin x is

[n/2] n+1
1 1 1
) nrly 2 ) L) on, 0
2k +1 2 k

Corollary. Any trig polynomial (*) may be written as P(cosx) 4+ Q(cos ) sinx, where
P and @ are algebraic polynomials of degree at most n and n — 1, respectively. If (%)

represents an even function, then it can be written using only cosines.

Corollary. The collection T, consisting of all trig polynomials, is both a subspace and
a subring of C*™ (that is, T is closed under both linear combinations and products). In

other words, T is a subalgebra of C*7.

It’s not hard to see that the procedure we’ve described above can be reversed; that is,
each algebraic polynomial in cosz and sina can be written in the form (*). For example,
4cos® 2 = 3cosz + cos3z. But, rather than duplicate our efforts, let’s use a bit of linear

algebra. First, the 2n + 1 functions
A={1, cosz, cos2z, ..., cosnzx, sinz, sinzx, ..., sinnzx },

are linearly independent; the easiest way to see this is to notice that we may define an

inner product on C'?™ under which these functions are orthogonal. Specifically,

:/Oﬂf(x)g(x)dx:(), <f,f>:/0ﬁf(x)2dx7é0

for any pair of functions f # g € A. (We'll pursue this direction in greater detail later in
the course.) Second, we’ve shown that each element of A lives in the space spanned by

the 2n + 1 functions

2 . . —1 .
B=A{1, cosz, cos“x, ..., cos" x, sinx, coszsinx, ..., cos" " xsinz }.
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That is,
Tn = span A C spanB.

By comparing dimensions, we have
2n+ 1 =dim7, = dim(span.A) < dim(spanB) < 2n + 1,

and hence we must have span A = span B. The point here is that 7, is a finite-dimensional
subspace of C?™ of dimension 2n + 1, and we may use either one of these sets of functions

as a basis for 7,.

Before we leave these issues behind, let’s summarize the situation for complex trig
polynomials; i.e., the case where we allow complex coefficients in (*). Now it’s clear that

every trig polynomial (*), whether real or complex, can be written as

7

2 ene, (1)

k=—n

where the ¢;’s are complex; that is, a trig polynomial is actually a polynomial (over C) in
z = e and 7 = ¢~**. Conversely, every polynomial (*#) can be written in the form (%),
using complex ay’s and by ’s. Thus, the complex trig polynomials of degree n form a vector
space of dimension 2n+1 over C (hence of dimension 2(2n+1) when considered as a vector
space over R). But, not every polynomial in z and Zz represents a real trig polynomial.
Rather, the real trig polynomials are the real parts of the complex trig polynomials. To
see this, notice that (x#) represents a real-valued function if and only if

n n n

§ : ckezkx: § : Ckeikx: § : E_kezkx;

k=—n k=—n k=—n

that is, ¢ = ¢_j for each k. In particular, cg must be real, and hence

7

n
E ckezkx = co + E (ckezkx + c_ke—zkx)
k=1

k=—n
= co + Z(ckeikx + Eke—ikx)
k=1
= co + Z[(ck + ¢x) coska + i(c, — cx) sinka |
k=1

=co+ Z[QRe(ck) cos kx — 2Im(cg) sin k:z;],
k=1
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which is of the form (%) with a; and b, real.
Conversely, given any real trig polynomial (%), we have
n . i a —Zb ikx a —I_Zb —ikx
ao—l—z<akcoskx—|—bksmkx> :GO‘|-Z {(%) ethe o (%) etk ] ,
k=1 k=1
which of of the form (x*) with ¢ = ¢_j for each k.

It’s time we returned to approximation theory! Since we've been able to identify C*7

with a subspace of C[0,27], and since 7, is a finite-dimensional subspace of C*™, we have

Corollary. Each f € C?™ has a best approximation (on all of R) out of T,. If f is an

even function, then it has a best approximation which is also even.

PrROOF. We only need to prove the second claim, so suppose that f € C?7 is even and
that T € 7T, satisfies

If =T7| = min [[f - T]|.
7T,

Then, since f is even, f(:z;) = T*(—x) is also a best approximation to f out of 7,; indeed,

If = T || = max| f() = T*(~)|

rE€R

— mmax| f(—e) - T*(c)]
rE€R

— wmax |f(e) = T*(a)] = |If = T°||.
rE€R

But now, the even trig polynomial

T(x)+T*(x) _ T*(—x) 4+ T*(x)
2 2

is also a best approximation out of 7, since

(f=T)+(f-T")
2

-7 _T*
< I f HJ;Hf (. If=TI. 0

TeT,

W—fHZH

We next give (de la Vallée Poussin’s version of) Lebesgue’s proof of Weierstrass’s

second theorem; that is, we will deduce the second theorem from the first.
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Theorem. Let f € C?™ and let ¢ > 0. Then, there is a trig polynomial T such that

If = T|| = max |f(z) — T(z)| <e.
rE€R

PrOOF. We will prove that Weierstrass’s first theorem for C[—1,1] implies his second

theorem for C%7.
Step 1. If f is even, then f may be uniformly approximated by even trig polynomials.

If f is even, then it’s enough to approximate f on the interval [0, 7]. In this case, we
may consider the function ¢g(y) = f(arccosy), —1 <y < 1,in C[—1,1]. By Weierstrass’s
first theorem, there is an algebraic polynomial p(y) such that

max |f(arccosy) — p(y)| = max |f(x) — p(cosz)| < e.
—1<y<t 0<a<n

But T'(z) = p(cos ) is an even trig polynomial! Hence,

If = T|| = max |f(z) — T(z)| <e.
rE€R

Let’s agree to abbreviate ||f —T|| <cas f~T.
Step 2. Given f € C?7, there is a trig polynomial T such that 2f(z)sin® z ~ T(z).

Each of the functions f(z) + f(—2) and [f(x) — f(—x)]sinx is even. Thus, we may

choose even trig polynomials 7T} and T3 such that

fz)+ f(—z)~ Ti(z)  and  [f(z) = f(—2)]sinz = Ty(z).
Multiplying the first expression by sin? z, the second by sinz, and adding, we get

2f(x) sinfz ~ Ty (x) sin?a + Th(x)sine = T3(x),

where T5(x) is still a trig polynomial, and where “a~” now means “within 2¢” (since

|sina | < 1).

Step 3. Given f € C*7, there is a trig polynomial T such that 2f(x) cos? x &~ T(z), where

“~” means “within 2¢.”

Repeat Step 2 for f(x — x/2) and translate: We first choose a trig polynomial Ty (x)
such that

2f <:1; — g) sin & ~ Ty ().
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That is,
2f(x) cos® & = Ts(x),

where T5(x) is a trig polynomial.

Finally, by combining the conclusions of Steps 2 and 3, we find that there is a trig

polynomial Ts(x) such that f ~ Ts(x), where, again, “~” means “within 2¢.” O

Just for fun, let’s complete the circle and show that Weierstrass’s second theorem
for C?™ implies his first theorem for C'[—1,1]. Since, as we'll see, it’s possible to give an

independent proof of the second theorem, this is a meaningful exercise.

Theorem. Given f € C[—1,1] and ¢ > 0, there exists an algebraic polynomial p such
that ||f —p|| < e.

PROOF. Given f € C[—1,1], the function f(cosz) is an even function in C**. By our
Corollary to Weierstrass’s second theorem, we may approximate f(cosx) by an even trig
polynomial:

f(cos:z;) A~ ag + a1 cosx + az cos2x + - -+ + a, cosn.

But, as we’ve seen, cos kx can be written as an algebraic polynomial in cos x. Hence, there

is some algebraic polynomial p such that f(cos )~ p(cosx). That is,

max |f(cosx) — p(cosx)| = max |f(t) — p(t)] < e. O
0<e<m —1<t<1

The algebraic polynomials T),(x) satisfying
Ty(cosx) =cosnx, forn=0,1,2,...,

are called the Chebyshev polynomials of the first kind. Please note that this formula
uniquely defines T}, as a polynomial of degree exactly n, and hence uniquely determines

the values of T, (x) for |x| > 1, too. The algebraic polynomials U, (x) satisfying

i 1
Un(cosz) = w, forn=0,1,2,...,

sinx
are called the Chebyshev polynomials of the second kind. Likewise, note that this formula

uniquely defines U,, as a polynomial of degree exactly n.
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We will discover many intriguing properties of the Chebyshev polynomials in the next

chapter. For now, let’s settle for just one: The recurrence formula we gave earlier
cosne = 2cosx cos(n — 1)x — cos(n — 2)x

now becomes

To(x) =2aTh_q(x) = Th_o(x), n>2

— Y

where To(z) = 1 and T1(x) = x. This recurrence relation (along with the initial cases Tp
and T7) may be taken as a definition for the Chebyshev polynomials of the first kind. At
any rate, it’s now easy to list any number of the Chebyshev polynomials T},; for example,
the next few are Ty(z) = 22% — 1, T3(x) = 42® — 32, Ty(x) = 8z* — 82% + 1, and Ts(z) =
162° — 2023 + b,



>

MATH 682 Problem Set: Trigonometric Polynomials 5/26/98

A (real) trigonometric polynomial, or trig polynomial for short, is a function of the form

ao—l—z<akcoskx—|—bksinkx>, (%)
k=1
where ag, ...,a, and by,...,b, are real numbers. We will use 7, to denote the collection

of trig polynomials of degree at most n, considered as a subspace C?7, the space of all
continuous 2x-periodic functions on R. The space C'?*™ may, in turn, be considered as a
subspace of C[0,27]. Indeed, the 27-periodic continuous functions on R may be identified
with the subspace of C[0,27 ] consisting of those f’s which satisfy f(0) = f(2x). As an
alternate description, it is often convenient to instead identify C?™ with the collection
C(T), consisting of all continuous real-valued functions on T, where T is the unit circle in

the complex plane C. In this case, we simply make the identifications

B and  f(6) «— F(e).

41. (a) By using the recurrence formulas cos kx + cos(k — 2)x = 2cos(k — 1)z cosx and
sin(k + 1)z — sin(k — 1)x = 2 cos kx sin x, show that each of the functions cos kx
and sin(k + 1)x/sin @ may be written as algebraic polynomials of degree exactly

k in cosz. In each case, what is the coefficient of cos® z?

b) Equivalently, use the binomial formula to write the real and imaginary parts of
q Y, g yp
(cosa +isina)™ = cosna + isinne as algebraic polynomials in cos 2 and sin x.

Again, what are the leading coefficients of these polynomials?

(¢) If P(x,y) is an algebraic polynomial (in two variables) of degree at most n, show
that P(cosx,sinx) may be written as Q(cosz) + R(cosx)sinx, where @ and
R are algebraic polynomials (in one variable) of degrees at most n and n — 1,

respectively.

(d) Show that cos™ x can be written as a linear combination of the functions cos kz,
E=1,...,n, and that cos” ! zsinz can be written as a linear combinations of
the functions sinkx, k = 1,...,n. Thus, each polynomial P(cos x,sinx) in cosx

and sinx can be written in the form ().
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(e) If (%) represents an even function, show that it can be written using only cosines.
Conversely, if P(x,y) is an even polynomial, show that P(cosz,sinx) can be

written using only cosines.
42. Show that 7, has dimension exactly 2n + 1 (as a vector space over R).

43. We might also consider complex trig polynomials; that is, functions of the form (%) in

which we now allow the a;’s and bt’s to be complex numbers.

a) Show that every trig polynomial. whether real or complex, may be written as
Y g poly s plex, Y

7

> ere™, (15)

k=—n

where the ¢;’s are complex. Thus, complex trig polynomials are just algebraic

polynomials in z and z, where z = ¢'* € T.
(b) Show that (#%) is real-valued if and only if ¢; = c_j for any k.

(c¢) If (#*) is a real-valued function, show that it may be written as a real trig poly-

nomial; that is, it may be written in the form (%) using only real coefficients.
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We next discuss Chebyshev’s solution to the problem of best polynomial approximation
from 1854. Given that there was no reason to believe that the problem even had a solution,
let alone a unique solution, Chebyshev’s accomplishment should not be underestimated.
Chebyshev might very well have been able to prove Weierstrass’s result—30 years early—
had the thought simply occurred to him! Chebyshev’s original papers are apparently
rather sketchy. It wasn’t until 1903 that full details were given by Kirchberger. Curiously,
Kirchberger’s proofs foreshadow very modern techniques such as convexity and separation
arguments. The presentation we’ll give owes much to Haar and to de la Vallée Poussin

(both from around 1918).

We begin with an easy observation:

Lemma. Let f € C[a,b] and let p = p¥, be a best approximation to f out of P,. Then,

there are at least two distinct points x1, x5 € [a,b] such that

Flea) = plar) = =(F(z2) — ple2)) = [If —pll-
That is, f — p attains both of the values +||f — p||.

PROOF. Let’s write E = E,(f) = ||f — p|| = max |f(z) — p(x)|. If the conclusion of the
a<z<b

Lemma is false, then we might as well suppose that f(x1) — p(x1) = E, for some z1, but

that

¢ = Ifiib(f(x) —p(z)) > —E.

In particular, E 4+ e # 0 and so ¢ = p+ (E + €)/2 is an element of P, with ¢ # p. We

claim that ¢ is a better approximation to f than p. Here’s why:

B-(555) = s - - (55) = o (BF).
(555) = s -a0) = - (55°).

F—e¢

or

That is,

=gl < ( ) < B = |f-pl.
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a contradiction. [

Corollary. The best approximating constant to f € Ca,b] is

1 )
py = = | max f(x) + min f(x)],
a<z<b a<z<b

and

Eo(f) = 5 | max fl) — min f(2)

a<z<b a<z<b

Proor. Exercise.

Now all of this is meant as motivation for the general case, which essentially repeats
the observation of our first Lemma inductively. A little experimentation will convince you
that a best linear approximation, for example, would imply the existence of three points

(at least) at which f — pi alternates between +||f — p7||-

A bit of notation will help us set up the argument for the general case: Given ¢ in
Cla,b], we’ll say that @ € [a,b] is a (4) point for g (respectively, a (—) point for g) if
g(x) = |lg|| (respectively, g(x) = —||g]|). A set of distinct point a < xg < 21 < -+ < 2, <b
will be called an alternating set for g if the x;’s are alternately (+) points and (—) points;
that is, if

lg(z)l = llgll,  #=0,1,....m,
and
glxi) = —g(xi—1), 1=1,2,...,n.

Using this notation, we will be able to characterize the polynomial of best approximation.
Since the following three theorems are particularly important, we will number them for

future reference. Our first result is where all the fighting takes place:

Theorem 1. Let f € C[a,b], and suppose that p = p} is a best approximation to f out
of P,. Then, there is an alternating set for f — p consisting of at least n + 2 points.

ProoF. If f € P,, there’s nothing to show. (Why?) Thus, we may suppose that f ¢ P,
and, hence, that E = E,(f) =||f —p|| > 0.
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Now consider the (uniformly) continuous function ¢ = f — p. We may partition [a,b]

by way of a = tg < t; < --- < t, = b into sufficiently small intervals so that
o(2) — o) < B/2 whenever  w,y € [ tina ]

Here’s why we’d want to do such a thing: If [¢;,¢;41] contains a (4) point for ¢ = f — p,
then ¢ is positive on all of [¢;,¢;41]. Indeed,

r,y € [ti,tiy1] and p(z)=FE = (y)>E/2>0.

Similarly, if [#;,%;41] contains a (—) point for ¢, then ¢ is negative on all of [#;,t;41].

Consequently, no interval [¢;,¢,11] can contain both (+) points and (—) points.

Call [t;,t;41] a (+) interval (respectively, a (—) interval) if it contains a (+) point
(respectively, a (—) point) for ¢ = f —p. Notice that no (+) interval can even touch a
(—) interval. In other words, a (4) interval and a (—) interval must be strictly separated

(by some interval containing a zero for ).

We now relabel the (+) and (—) intervals from left to right, ignoring the “neither”
intervals. There’s no harm in supposing that the first “signed” interval is a (+) interval.

Thus, we suppose that our relabeled intervals are written

L, Iy,... I (4) intervals,
Ipov1, I 42, ooy Ihy (—) intervals,
Ip w1 I 42,0 Ik, (—=1)™~! intervals,

where Ij, is the last (4) interval before we reach the first (—) interval, Iy, +1. And so on.

For later reference, we let S denote the union of all the “signed” intervals [¢;,¢;41 |;
that is, S = U;n:1 Ii;, and we let N denote the union of all the “neither” intervals [titig |-
Thus, S and N are compact sets with S U N = [a,b] (note that while S and N aren’t

quite disjoint, they are at least “non-overlapping”—their interiors are disjoint).

Our goal here is to show that m > n 4+ 2. (So far we only know that m > 2!) Let’s

suppose that m < n + 2 and see what goes wrong.
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Since any (+) interval is strictly separated from any (—) interval, we can find points

Z1y.vvyZm—1 € N such that

max [, <z <minlg, 41

max [, < zo < min [, 41

And now we construct the offending polynomial:

a(x) = (21— )(z2 = )+ (s — ).

Notice that ¢ € P, since m — 1 < n. (Here is the only use we’ll make of the assumption
m < n+ 2!) We're going to show that p+ A\q € P, is a better approximation to f than p,

for some suitable scalar A.

We first claim that ¢ and f — p have the same sign. Indeed, ¢ has no zeros in any
of the (4) intervals, hence is of constant sign on any such interval. Thus, ¢ > 0 on
I,..., Iy, because each (z; — ) > 0 on these intervals; ¢ < 0 on I, 41,..., I, because

here (z; — ) < 0, while (z; — ) > 0 for 7 > 1; and so on.

We next find A\. Let e = max|f(x) — p(«)|, where N is the union of all the subin-
zEN

tervals [;,t;41 ] which are neither (+) intervals nor (—) intervals. Then, e < E. (Why?)
Now choose A > 0 so that A||¢|| < min{E — e, E/2}. We claim that p + Aq is a better

approximation to f than p. One case is easy: If + € N, then

[f(@) = (p(x) + Ag(2))| < [f(z) = p(e)]| + Alg(e)] < e+ Allg] < E.

On the other hand, if + ¢ N, then x is in either a (4) interval or a (—) interval. In
particular, we know that |f(x) — p(z)| > E/2 > M||q|| and that f(z)— p(x) and Ag(x) have

the same sign. Thus,

|[f(2) = (p(2) + Aq(z))| = [f(z) = p(a)] = Alg(2)]

< E—Xminl¢(z)] < E,
€S
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since ¢ is nonzero on S. This contradiction finishes the proof. (Phew!) O
Remarks

1. It should be pointed out that the number n 4+ 2 here is actually 1 + dim P,,.

2. Notice, too, that if f — p} alternates in sign n + 2 times, then f — pJ must have at
least n+ 1 zeros. Thus, p} actually agrees with f (or “interpolates” f) at n+ 1 points.

We’re now ready to establish the uniqueness of the polynomial of best approximation.

Theorem 2. Let f € Cla,b]. Then, the polynomial of best approximation to f out of

P, 1s unique.

PROOF. Suppose that p, ¢ € P, both satisty ||f — p|| = ||f — q|| = En(f) = E. Then,

as we've seen, their average r = (p + ¢)/2 € Py, is also best: ||f —r|| = E since f —r =
(f=p)2+(f—a)/2
By Theorem 1, f — r has an alternating set zg, 1, ..., Z,41, containing n + 2 points.

Thus, for each 1,

(f =p)(@i) + (f —@)(zi) = £2E (alternating),

while

“E < (f —p)ad), (f - o)) < E.

But this means that

(f =p)(z:) = (f —@)(z;) = £FE (alternating)

for each i. (Why?) That is, g, #1,...,Zp4+1 is an alternating set for both f—p and f —gq.
In particular, the polynomial ¢ —p = (f — p) — (f — ¢) has n + 2 zeros! Since ¢ —p € P,

we must have p=¢. [0
Finally, we come full circle:

Theorem 3. Let f € Cla,b], and let p € P,. If f — p has an alternating set containing
n 42 (or more) points, then p is the best approximation to f out of P,,.
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Proor. Let zg,x1,..., 2,41 be an alternating set for f—p, and suppose that some ¢ € P,
is a better approximation to f than p; that is, ||f — ¢|| < ||f — p||- In particular, then, we

must have
|fli) = plxa)| = If = pll > [If —all = [f(zi) — ql(x:)]

for each ¢ = 0,1,...,n+ 1. Now the inequality |a| > |b| implies that a and a — b have the
same sign (why?), hence ¢ —p = (f — p) — (f — ¢) alternates in sign n 4 2 times (because
f—p does). But then, ¢ —p would have at least n+1 zeros. Since g —p € P,,, we must have
q = p, which is a contradiction. Thus, p is the best approximation to f out of P,. O

Example (taken from Rivlin)

While an alternating set for f — p} is supposed to have at least n + 2 points, it may well
have more than n + 2 points; thus, alternating sets need not be unique. For example,
consider the function f(x) = sin4dx on [—7, 7 ]. Since there are 8 points where f alternates
between +1, it follows that p{ = 0 and that there are 4 x 4 = 16 different alternating
sets consisting of exactly 2 points (not to mention all those with more than 2 points). In
addition, notice that we actually have pi = --- = p§ = 0, but that p* # 0. (Why?)

Exercise

Show that y = x — 1/8 is the best linear approximation to y = 22 on [0, 1].
Essentially repeating the proof given for Theorem 3 yields a lower bound for E,(f).

Theorem. Let f € Cla,b], and suppose that ¢ € P,, is such that f(x;) — q(x;) alternates
msign at n+2 points a < vg <21 < ... < xpq1 < b, Then,

E,(f) > min  |f(x;)— qlei)].

ProoOF. If the inequality fails, then the best approximation p = p} would satisfy

max [f(2i) —p(xi)] < En(f) < min  [f(2i) — g(@i)]-
1<i<n+1 1<i<n+1

Now we could repeat (essentially) the same argument used in the proof of Theorem 3 to

arrive at a contradiction. The details are left as an exercise. [
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Even for relatively simple functions, the problem of actually finding the polynomial
of best approximation is genuinely difficult (even computationally). We end this section

by stating two important problems that Chebyshev was able to solve.

Problem

*
n—1°

Find the polynomial p}_, € P of degree at most n — 1, that best approximates
f(z) = a™ on the interval [—1,1]. (This particular choice of interval makes for a tidy
solution; we’ll discuss the general situation later.)
Since p¥ _; is to minimize max |@"™ — p}_, (x)|, our first problem is equivalent to:
lz<1

Problem

Find the monic polynomial of degree n which deviates least from 0 on [—1,1]. In other

words, find the monic polynomial of degree n which has smallest norm in C[—1,1].

We’ll give two solutions to this problem (which we know has a unique solution, of

course). First, let’s simplify our notation. We write
ple) =a™ —pl_,(x) (the solution),

and

M = |pll = Ep—1 (2" [=1,1]).

All we know about p is that it has an alternating set —1 < 29 < 21 < -+ < 2, < 1
containing (n — 1) + 2 = n + 1 points; that is, |p(z;)| = M and p(x;41) = —p(a;) for all 1.
Using this tiny bit of information, Chebyshev was led to compare the polynomials p? and
p’. Watch closely!

Step 1. At any x; in (—1, 1), we must have p’(x;) = 0 (because p(x;) is a relative extreme
value for p). But, p’ is a polynomial of degree n — 1 and so can have at most n — 1 zeros.

Thus, we must have
r; € (—=1,1) and p'(x;)=0, for i=1,...
(in fact, @1,...,2,-1 are all the zeros of p’) and

zo=-1, p'(x0)#0, xp_1=1, p'(xn_1)#0.
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Step 2. Now consider the polynomial M? — p? € Py,. We know that M? — (p(z;))* =0
for i = 0,1,...,n, and that M* — p? > 0 on [~1,1]. Thus, xy,...,7,—1 must be double
roots (at least) of M? — p?. But this makes for 2(n — 1) + 2 = 2n roots already, so we
must have them all. Hence, z1,...,x,_1 are double roots, x¢ and x,, are simple roots, and

these are all the roots of M? — p?.

Step 3. Next consider (p)? € Pyrn_1). We know that (p’)? has a double root at each
of x1,...,2,—1 (and no other roots), hence (1 — 2?)(p’(z))? has a double root at each
T1,...,2n—1, and simple roots at x¢ and x,. Since (1 — xz)(p’(:z:))z € Pan, we've found all

of its roots.
Here’s the point to all this “rooting”:

Step 4. Since M? — (p(x))? and (1 —2?)(p’(x))* are polynomials of the same degree with
the same roots, they are, up to a constant multiple, the same polynomial! It’s easy to see
what constant, too: The leading coefficient of p is 1 while the leading coefficient of p’ is

n; thus,
(- ) (2)?

n2

M? — (p(x))* =

After tidying up,
P m

VME=(p(a))? VI-a?

We really should have an extra & here, but we know that p’ is positive on some interval;

we’ll simply assume that it’s positive on [—1, 2 |. Now, upon integrating,

arccos (p](\;)> = narccosx + C
or
p(x) = M cos(narccosx + C).
But p(—1) = =M (because p’(—1) > 0), so
cos(hm+C)=—-1 = C=mr (withn+m odd)
— p(x) = £ M cos(n arccos x)

— p(cosx) = £ M cosna.

Look familiar? Since we know that cosna is a polynomial of degree n with leading coeffi-

cient 2"~1 (the n-th Chebyshev polynomial T}, ), the solution to our problem must be

plz) = 27" T, (2).
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Since |T,(z)] <1 for |z| <1 (why?), the minimum norm is M =21 O

Next we give a “fancy” solution, based on our characterization of best approximations

(Theorem 3) and a few simple properties of the Chebyshev polynomials.

Theorem. For any n > 1, the formula p(z) = 2" — 27" T, (z) defines a polynomial

p € Pn_1 satisfying

27"t = max 2" — p(x)| < max|z" — g(z)]

e <1 e <1

for any other q € Pp_1.

PRrROOF. We know that 27" T, (2) has leading coefficient 1, and so p € P,,—1. Now set

zp =cos((n —k)r/n)for k=0,1,...,n. Then, -1 =g <23 <--- <, =1 and
To(xk) = Ta(cos((n — k)r/n)) = cos((n — k)r) = (—1)"_k.

Since |Ty,(2)] = |Tn(cos0)] = |cosnb| < 1, for —1 <z < 1, we've found an alternating set
for T, containing n + 1 points.

In other words, 2" — p(x) = 27"t T, (2) satisfies |2 — p(z)] < 27"F! and, for each
kE=0,1,...,n, has 2} — p(zg) = 27" T, (xx) = (—1)" %271 By our characterization
of best approximations (Theorem 3), p must be the best approximation to z" out of

Prn_1. O

Corollary. The monic polynomial of degree exactly n having smallest norm in C[a,b] is
(b—a)" 2v —b—a
— T, | — ).
ongn—1 b—a

Proor. Exercise. [Hint: If p(x) is a polynomial of degree n with leading coefficient 1,

then p(x) = p((2¢ — b — a)/(b — a)) is a polynomial of degree n with leading coefficient

2" /(b —a)™. Moreover, max |p(z)] = max |[p(x)|]
a<z<b —1<z<1

Properties of the Chebyshev Polynomials

As we've seen, the Chebyshev polynomial T),(x) is the (unique, real) polynomial of degree

n (having leading coefficient 1 if n = 0, and 2"~! if n > 1) such that T},(cos8) = cosné
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for all §. The Chebyshev polynomials have dozens of interesting properties and satisfy all

sorts of curious equations. We’'ll catalogue just a few.
Cl. T,(z) =2aT,_1(x) — Tjy—a(x) for n > 2.

PrOOF. It follows from the trig identity cosnf = 2cosf cos(n — 1)§ — cos(n — 2)6 that
Tn(cos) = 2cos8T,_1(cos@) — T,,_o(cosB) for all ; that is, the equation T, (x) =
20 Tp—1(x) — Th—2(x) holds for all —1 < & < 1. But since both sides are polynomials,

equality must hold for all . [
The next two properties are proved in essentially the same way:
C2. Tp(2) + Tn(2) = 5 [Tomgn(@) + Tmn(a)] for m > n.
C3. T (Th(z)) = Trn ().
C4. Tp(z) =Lz + Va2 —1)" + (z — Va2 —1)"].

ProOOF. First notice that the expression on the right-hand side is actually a polynomial
since, on combining the binomial expansions of (z + Va2 —1)" and (v — Va2 —1)", the
odd powers of /&% — 1 cancel. Next, for x = cos¥,

T,(x) = To(cosf) = cosnb = 3 (e 4 ")

= —[(cos 0+ isin6)" + (cosf — isin6)"]
[(z+ivVI—22 )" + (2 —iv/I—a2)"]
(e + V22— 1)+ (z— Va2 —1)"].

We’ve shown that these two polynomials agree for || < 1, hence they must agree for all z

N — N = DN -

(real or complex, for that matter). [

For real = with |x| > 1, the expression %[(:1; + Va2 —=1)" + (x —Va? -1 )"] equals

cosh(n cosh™ z). In other words,
C5. T,(coshx) = coshna for all real .

The next property also follows from property C4.
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C6. T,(x) < (x| + Va2 —1)" for || > 1.

An approach similar to the proof of property C4 allows us to write ™ in terms of the

Chebyshev polynomials Ty, 11, ..., T),.

[n/2]
C7. For n odd, 2"z™ = Z <Z>2Tn_2k($); for n even, 2T should be replaced by Tj.
k=0

Proor. For -1 <z <1,

2" =2"(cos0)" = (e Wy e ’)"

_ znO ( i(n— 2)9 ( )ei(n—4)9 4.
n —i(n—4)6 n —i(n—2)6 —ind
O e O

= 2cosnf + 7;)200s n—2)0+ <g>2COS(n—4)9—|—"'

)
(

— 2T () + (T)QTn_z(x) + <g>2Tn_4(:z;) I

where, if n is even, the last term in this last sum is <[ /2]>T0 (since the central term in the

binomial expansion, namely <[n72]> = <[n/2]>T0, isn’t doubled in this case). [

C8. The zeros of T, are l’;cn) = cos((2k — 1)7/2n), k = 1,...,n. They're real, simple, and

lie in the open interval (—1,1).

PrOOF. Just check! But notice, please, that the zeros are listed here in decreasing order

(because cosine decreases). [
C9. Between two consecutive zeros of T}, there is precisely one root of T}, _1.

Proor. It’s not hard to check that

2k —1 < 2k — 1 < 2k +1
n 2(n—1) on

for k =1,...,n — 1, which means that :L'gcn) > :L';Cn D :1;567:_)1 O

C10. T, and 7T}, _1 have no common zeros.
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Proor. Although this is immediate from property C9, there’s another way to see it:
Tn(xg) = 0 = Tph_1(xo) implies that T, _2(x9) = 0 by property Cl. Repeating this
observation, we would have Tjy(x9) = 0 for every k < n, including & = 0. No good!

To(x) =1 has no zeros. [
C11. The set {:z:gcn) :1<k<n,n=12,...}isdensein [—1,1].

PROOF. Since cosx is (strictly) monotone on [0,7], it’s enough to know that the set
{(2k —1)7/2n} , is dense in [0, 7 |, and for this it’s enough to know that {(2k —1)/2n}y ,
is dense in [0,1]. (Why?) But

o~
~o

k-1 k 1 _k
N n

2n n 2n

for n large; that is, the set {(2k —1)/2n} ,, is dense among the rationals in [0,1]. O

It’s interesting to note here that the distribution of the roots {wgcn)}k,n can be esti-
mated (see Natanson, Constructive Function Theory, Vol. 1, pp. 48-51). For large n, the
number of roots of T, that lie in an interval [z, 2 + Az ] C [—1,1] is approximately

nAx
w1 — 22

In particular, for n large, the roots of T), are “thickest” near the endpoints +1.

In probabilistic terms, this means that if we assign equal probability to each of the
roots :1;(()”), e ,:1;5[‘) (that is, if we think of each root as the position of a point with mass
1/n), then the density of this probability distribution (or the density of the system of point
masses) at a point x is approximately 1/7y/1 — 22 for large n. In still other words, this

tells us that the probability that a root of T), lies in the interval [a,b] is approximately

1 /” 1

— ——dx.

T J. V91— 22

C12. The Chebyshev polynomials are mutually orthogonal relative to the weight w(x) =
(1—2%)"2 on [-1,1].

Proor. For m # n the substitution = = cos 6 yields

1 d(E T
T.(x)T,, _— = . fdo =0,
/_1 (x) (x) Vi /0 cosmb cosn
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while for m = n we get

1 T .
dz T i n=0
2.y @ 2 _
/_1 T (x) — /0 cos” né do {71_/2 00 O
C13. |T!(2)] < n? for —1 <z <1, and [T/ (£1)| = n

PrROOF. For —1 < z < 1 we have

iT (x) = %Tn(cose) _ n sin nf
de ™" %COSG sin ¢

Thus, |T! (2)| < n? because |sinnf| < n|sinf| (which can be easily checked by induction,
for example). At @ = +1, we interpret this derivative formula as a limit (as § — 0 and

6 — =) and find that |T)(&1)| = n?. O

As we'll see later, each p € P, satisfies |p/(z)| < ||p|[n? = ||p|| Th(1) for —1 < 2 <1,
and this is, of course, best possible. As it happens, T, (x) has the largest possible rate of
growth outside of [—1,1] among all polynomials of degree n. Specifically:

Theorem. Let p € P, and let ||p|| = max |p(z)|. Then, for any xo with |z9| > 1 and
—1<z<1
any k=0,1,....n we have

[P (o)l < TP (o)l

where p'*) is the k-th derivative of p.

We’ll prove only the case k = 0. In other words, we’ll check that |p(zo)| < ||p|| |Tn(20)]-

The more general case is in Rivlin, Theorem 1.10, p. 31.

PROOF. Since all the zeros of T), lie in (—1,1), we know that T},(xg) # 0. Thus, we may

consider the polynomial

If the claim is false, then
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Now at each of the points y; = cos(km/n), k = 0,1,...,n, we have T,,(y;) = (—1)F and,
hence,

qyr) = (—1)'“1]3:?;3) — p(Yk)-

Since |p(yx)| < ||p||, it follows that ¢ alternates in sign at these n 4+ 1 points. In particular,

g must have at least n zeros in (—1,1). But ¢(xg) = 0, by design, and |zo| > 1. That is,

we’ve found n + 1 zeros for a polynomial of degree n. So, ¢ = 0; that is,

But then,

) = | 2

since Tp,(1) = Ty, (cos0) = 1, which is a contradiction. [

\ > Il

Corollary. Let p € P, and let ||p|| = max |p(x)|. Then, for any xo with |zo| > 1, we
—1<z<1

(o) < gl (Jool + /531 )

Rivlin’s proof of our last Theorem in the general case uses the following observation:

have

Cl14. For z > 1 and k=0,1,...,n, we have T,Sk)(:z;) > 0.

Proor. Exercise. [Hint: It follows from Rolle’s theorem that T,S’“) is never zero for
x> 1. (Why?) Now just compute T,gk)(l).]
Uniform Approximation by Trig Polynomials

We end this section by summarizing (without proofs) the analogues of Theorems 1-3
for uniform approximation by trig polynomials. Throughout, f € C?™ and 7,, denotes the

collection of trig polynomials of degree at most n.

1. f has a best approximation T* € T,.

2. f—T* has an alternating set containing 2n+2 (or more) points in [0,27). (Note here

that 2n +2 =1+ dim7,.)

3. T is unique.
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4. If T € T, is such that f — T has an alternating set containing 2n + 2 or more points
in [0,27), then T' = T*.

The proofs of 1-4 are very similar to the corresponding results for algebraic polyno-
mials. As you might imagine, 2 is where all the fighting takes place, and there are a few
technical difficulties to cope with. Nevertheless, we’ll swallow these facts whole and apply

them with a clear conscience to a few examples.

Example

For m > n, the best approximation to f(x) = Acos ma + Bsinma out of T, is 0!

PROOF. We may write f(z) = Rcosm(x — x¢) for some R and xq. (How?) Now we need
only display a sufficiently large alternating set for f (in some interval of length 27).

Setting x = 2o + kr/m, k = 1,2,...,2m, we get f(zz) = Rcoskr = R(—1)¥ and
zp € (20,20 + 27]. Since m > n, it follows that 2m > 2n +2. O

Example

The best approximation to

n+1

flz) =ao + Z(ak cos kx + by sin k:z;)
k=1

out of 7, is

7

T(x) =ap+ Z(ak cos kx + by sin k:z;),
k=1

and ||f = T| = 1/@721_1_1 —I—b,%_i_1 in C?7,

PrOOF. By our last example, the best approximation to f — T out of 7, is 0, hence T
must be the best approximation to f. (Why?) The last assertion is easy to check: Since
we can always write Acosma 4+ Bsinma = VA% + B? - cosm(x — xg), for some zg, it

follows that ||f — T|| = y/a2,, +b2,,. O

Finally, let’s make a simple connection between the two types of polynomial approxi-

mation:
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Theorem. Let f € C[—1,1] and define p € C*™ by p(6) = f(cos ). Then,

En(f) = min ||f = p|| = min |[¢ = T|| = E; ().
pEP, TET,

PROOF. Suppose that p*(z) = Y p_,apz" is the best approximation to f out of P,.
Then, T(G) = p*(cosf) is in T, and, clearly,

max |f(x) —p"(x)] = max |f(cosf) —p*(cosB)|.
—1<z<1 0<o<2m

Thus, [|f = p*l| = llp = T[] = min |l = T|.
TeT,

On the other hand, since ¢ is even, we know that 7™, its best approximation out of T,

is also even. Thus, T*(0) = ¢(cos 8) for some algebraic polynomial ¢ € P,,. Consequently,
le =T =|If = ¢l = min ||f—pl|l. O

PEPn
Remarks
1. Once we know that min ||f — p|| = min || — T, it follows that we must also have
pEP, TET,

T*(0) = p*(cos 9).
2. Each even ¢ € C*™ corresponds to an f € C[—1,1] by f(x) = ¢(arccosx) and, of

course, the conclusions of the Theorem and of Remark 1 hold in this case, too.

3. Whenever we speak of even trig polynomials, the Chebyshev polynomials are lurking
somewhere in the background. Indeed, let T'(8) be an even trig polynomial, write

x = cosf, as usual, and consider the following cryptic equation:

n n

T(0) = Z ar cos kf = Z ayTx(cos ) = p(cosB),

where p(z) = 1_o axTi(z) € Py.
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We’ve shown that cosnf and sin(n 4 1)0/sin 6 can be written as algebraic polynomials

of degree n in cos@; we use this observation to define the Chebyshev polynomials. The
Chebyshev polynomials of the first kind (T, (x)) are defined by T),(cos ) = cosnf, for
n = 0,1,2,..., while the Chebyshev polynomials of the second kind (U,(x)) are defined
by Up(cos @) =sin(n + 1)8/sinf for n =0,1,2,.. ..

> 44. Establish the following properties of T,,(z).

(xi)

To(x) =1, Th(x) = @, and T (x) = 2¢Tp—1(x) — Th—a2(x) for n > 2.

T, (z) is a polynomial of degree n having leading coefficient 2"~1 for n > 1, and
containing only even (resp., odd) powers of x if n is even (resp., odd).

|T(x)| < 1for —1 < & < 1; when does equality occur? Where are the zeros of

T, (x)? Show that between two consecutive zeros of T, (x) there is exactly one

zero of T,_1(x). Can T),(x) and T),—1(«) have a common zero?
|T! (2)] < n? for =1 <@ <1, and |TL(£1)| = n?.
To(x)+ Th(x) = %[Tm+n(:1;) + Tm_n(:zj)] for m > n.

Tn(Tn(2)) = Trn(2).

1
dz
Evaluate Tolz) Th(z) —.
(2) Tin () T2

Show that T), is a solution to (1 — 22)y" — 2y’ + n*y = 0.

[y

Th(x) = %[(:1; + Va2 —1)" 4 (x —vVa? — 1)"] for any x, real or complex.
1 —tcosf
1 —2tcos +t2

(this is a generating function for T,; it’s closely

for —1 <t < 1; that is,

Re (Y sot"e™?) = 35iot" cosnf =
1—tx
> T, = - 7

related to the Poisson kernel).

Find analogues of (i)—(x) (if possible) for Uy, (z).

> 45. Show that every p € P, has a unique representation as p = ag + a1 1y + -+ + a,Ty.

Find this representation in the case p(x) = a".
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47.

48.

49.

50.
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. The polynomial of degree n having leading coefficient 1 and deviating least from 0 on

[—1,1] is given by T,,(z)/2"~!. On an arbitrary interval [a,b] we would instead take

(b—a)" 2o —b—a
922n—1 Tn b—a )

Is this solution unique? Explain.

If p is a polynomial on [a,b] of degree n having leading coefficient a, > 0, then
lpll > an(b — a)?/22"~1. If b — a > 4, then no polynomial of degree exactly n with
integer coefficients can satisfy ||p|| < 2 (compare this with problem 26 on the “Uniform

Approximation by Polynomials” problem set).

Given p € Py, show that |p(x)| < ||p|||Tn(x)| for || > 1.

If pe P, with ||p]| =1 on [—1,1], and if |p(x;)| = 1 at n 4 1 distinct point g, ..., z,
n [—1,1], show that either p = +1, or else p = +T),,. [Hint: One approach is to
compare the polynomials 1 — p? and (1 — 2?)(p”)?.]

Compute T,gk)(l) for k =0,1,...,n, where T® is the k-th derivative of T,. Forz >1
and k =0,1,...,n, show that T,Sk)(:z;) > 0.
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The following examples are cribbed from the book Chebyshev Polynomuials, by L. Fox and
I. B. Parker (Oxford University Press, 1968).

As we’ve seen, the Chebyshev polynomals can be generated by a recurrence relation. By
reversing the procedure, we could solve for z" in terms of Ty, Th,..., T, (well do this

calculation in class). Here are the first few terms in each of these relations:

To(z) =1 1= Ty(x)

Ty(z) == x =T (x)

Tr(z) = 22* — 1 2? = (To(z) + Ta(x))/2

Ts(z) = 42® — 3z 2® = (3Ti(x) + T3(x))/4

Ty(z) = 8z* — 82 + 1 = (3Tp(2) + 4T (x) + Tu(x))/8
Ts(z) = 162° — 202° + 5z 2’ = (10Ty () + 5 T5(x) + Ts(x))/16

Note the separation of even and odd terms in each case. Writing ordinary, garden variety
polynomials in their equivalent Chebyshev form has some distinct advantages for numerical

computations. Here’s why:

15 7 1 1
l—a+2?—23+2% = FTQ(J}) — ZTl(l') + Ty(x) — ZT;;(J/‘) + §T4(:1;)
(after some simplification). Now we see at once that we can get a cubic approximation to
1 -2+ 2% — 23+ 2% on [~1,1] with error at most 1/8 by simply dropping the Ty term on

3

the right-hand side (since |Ty(z)| < 1), whereas simply using 1 — 2 + 2? — 2® as our cubic

approximation could cause an error as big as 1. Pretty slick! This gimmick of truncating

the equivalent Chebyshev form is called economization.

As a second example we note that a polynomial with small norm on [—1,1] may have

annoyingly large coefficients:

(1 —2?)1% =1 —102* + 452* — 1202° + 2102® — 25221°

+ 210212 — 1202 + 452'% — 1028 + 22°
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but in Chebyshev form (look out!):

1
524,288
+ 38,760 Tg(l’) — 15,504 Tlo(l‘) + 4,845 le(l‘) — 1,140 T14($)

(1 —2*)t° {92,378 To(x) — 167,960 T» () + 125,970 Ty () — 77,520 T (=)

+ 190 T16($) —20 T18(1:) + T20(x)}

The largest coefficient is now only about 0.3, and the omission of the last three terms

produces a maximum error of about 0.0004. Not bad.

As a last example, consider the Taylor polynomial e® = Y ,_z%/k! + 2" T1et /(n + 1)
(with remainder), where —1 < 2, £ < 1. Taking n = 6, the truncated series has error no

greater than e/7! ~ 0.0005. But if we “economize” the first six terms, then:

6
> ¥k =1.26606 To(x) + 1.13021 Ty (x) + 0.27148 Ty () + 0.04427 Ty(x)
k=0
+ 0.00547 Ty («) 4 0.00052 T5(x) 4+ 0.00004 Tg(x).
The initial approximation already has an error of about 0.0005, so we can certainly drop
the Ts term without any additional error. Even dropping the T5 term causes an error of

no more than 0.001 (or thereabouts). The resulting approximation has a far smaller error

than the corresponding truncated Taylor series: e/5! ~ 0.023.

The approach used in our last example has the decided disadvantage that we must first
decide where to truncate the Taylor series—which might converge very slowly. A better
approach would be to write ¥ as a series involving Chebyshev polynomials directly. That
is, if possible, we want to write e = >/~ aTk(x). If the a;’s are absolutely summable,
it will be very easy to estimate any truncation error. We’'ll get some idea on how to go
about this when we talk about “least-squares” approximation. As it happens, such a series
is easy to find (it’s rather like a Fourier series), and its partial sums are remarkably good

uniform approximations.
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Our goal in this section is to prove the following result (as well as discuss its ramifications).

In fact, this result is so fundamental that we will present three proofs!

Theorem. Let xg,xq,...,x, be distinct points, and let yo,y1,...,Yyn be arbitrary points

in R. Then, there exists a unique polynomial p € P,, satistving p(x;) = y;, ¢ =0,1,...,n.

First notice that uniqueness is obvious. Indeed, if two polynomials p, ¢ € P,, agree at

n 4 1 points, then p = ¢. (Why?) The real work comes in proving existence.

FIrRST PROOF. (Vandermonde’s determinant.) We seek ¢o,¢q,...,¢, so that p(x) =

n k .
Y ko Ckx" satisfies

7

plri) =Y ek =y, i=01,..n

k=0

That is, we need to solve a system of n 4+ 1 linear equations for the ¢;’s. In matrix form:

2 n
1 29 25 -+ 2§ co Yo
2 n
1wy 2y -0 C1 Y1
1 =z A c
n n n n Yn

This equation always has a unique solution because the coefficient matrix has determinant
D = H (x; —xj) #0.
0<5<i<n

(D is called Vandermonde’s determinant; note that D > 0 if g < 21 < -+ < x,.) Since

this fact is of independent interest, we’ll sketch a short proof below. [

Lemma. D = ] (2;—x;).
0<5<i<n

Proor. Consider

1 2 3 e alk

1 = x? SRR A5
Vi(zg,@1,...,&p_1,2) =

L wpor 25y Ty1

1 x z? x"
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V(zg,21,...,2n—1,2) is a polynomial of degree n in x, and it’s 0 whenever & = x;, 1 =

0,1,...,n — 1. Thus, V(zg,...,2) = ¢ H?:_Ol(x — 1), by comparing roots and degree.

However, it’s easy to see that the coefficient of +™ in V(xo,...,2) is V(zg,...,xn_1).
Thus, V(zo,...,2) = V(zg,...,2n-1) H?:_ol (x — ;). The result now follows by induction
and the obvious case i if =z —z9. U

SECOND PROOF. (Lagrange interpolation.) We could define p immediately if we had
polynomials ¢;(z) € P,, i = 0,...,n, such that {;(z;) = 6; ; (where §; ; is Kronecker’s
delta; that is, 6; ; = 0 for ¢ # j, and 6; ; = 1 for ¢ = j). Indeed, p(z) = > 7, yi li(x)
would then work as our interpolating polynomial. In short, notice that the polynomials

{lo,l1,...,0,} would form a (particularly convenient) basis for P,.

We’ll give two formulas for (;(x):

(a). Clearly, (;(x) = H
JF#i

(b). Start with W(z) = (x — 29)(x — x1)--- (¥ — x,,), and notice that the polynomial we

works.
T —

need satisfies
W)

li(z) = a; -
() =a T — x

for some a; € R. (Why?) But then, 1 = (;(x;) = a;W'(x;) (again, why?); that is,

(v —ay)) W(x;)

li(x) =

Please note that ¢;(x) is a multiple of the polynomial Hj;éi (x —aj), for it =0,...,n, and

that p(x) is then a suitable linear combination of such polynomials. [

THIRD PROOF. (Newton’s formula.) We seek p(x) of the form
plx) =ao+ a1(x — xo) + az(x —xo)(x —a1) + -+ +an(® —a0) - (x —xp_1).

(Please note that x, does not appear on the right-hand side.) This form makes it almost

effortless to solve for the a;’s by plugging-in the z;’s, 1 =0,...,n — 1.

Yo = p(xo) = ao

—a
y1 = p(xy) =ag + ar(x1 —xg) = a1 = J1 °.
1 — o
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Continuing, we find

Y2 —ao —Gl(l‘z —51?0)

T s — o) (w2 — 1)

Yz — ao — G1($3 - 51?0) - G2(51?3 - 51?0)(51?3 - 51?1)

(x5 — x0)(w3 — 1)(x3 — 72)

az —
and so on. [Natanson, Vol. III, gives another formula for the a;’s.] O

Example

As a quick means of comparing these three solutions, let’s find the interpolating polynomial

(quadratic) passing through (1,2), (2, —1), and (3,1). You're invited to check the following:
Vandermonde: p(z) =10 — % T+ g:zjz.

Lagrange: p(z)=(x —2)(x —3)+ (¢ — 1)(z —3) + %(:1; — 1)(x — 2).
Newton: p(z)=2-—3(x—1)+ g(:z; — 1)(x — 2).

As you might have already surmised, Lagrange’s method is the easiest to apply by
hand, although Newton’s formula has much to recommend it too (it’s especially well-suited
to situations where we introduce additional nodes). We next set up the necessary notation

to discuss the finer points of Lagrange’s method.

Given n + 1 distinet points a < 2o < 21 < -+ < 2, < b (sometimes called nodes), we

first form the polynomials
W) = [ - )
=0

and
B r—x; Wix)
li(x) = Exi—xj (=) W)

The Lagrange interpolation formula is

That is, L, (f) is the unique polynomial in P,, that agrees with f at the x;’s. In particular,
notice that we must have L,(p) = p whenever p € P,. In fact, L, is a linear projection

from C[a,b] onto P,. [Why is L, (f) linear in f7?]
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Typically we're given (or construct) an array of nodes:

2
l‘(()l) l‘gl)
x(()Z) 1'52) léZ)

and form the corresponding sequence of projections

Zf N ).

An easy (but admittedly pointless) observatlon is that for a given f € C[a,b] we can always
find an array X so that L,(f) = p?, the polynomial of best approximation to f out of P,
(since f—p?* has n+1 zeros, we may use these for the x;’s). Thus, |L,(f)—f|| = En(f) = 0
in this case. However, the problem of convergence changes character dramatically if we
first choose X and then consider L, (f). In general, there’s no reason to believe that L, (f)

converges to f. In fact, quite the opposite is true:

Theorem. (Faber, 1914) Given any array of nodes X in [a,b], there is some f € C[a,b]
for which ||L,(f) — f]| is unbounded.

The problem here has little to do with interpolation and everything to do with pro-

Jjections:

Theorem. (Kharshiladze, Lozinski, 1941) For each n, let L, be a continuous, linear
projection from C|a,b] onto P,. Then, there is some f € Cla,b] for which ||L,(f) — f||

is unbounded.

Evidently, the operators L, aren’t positive (monotone), for otherwise the Bohman-
Korovkin theorem (and the fact that L,, is a projection onto P, ) would imply that L, (f)

converges uniformly to f for every f € Cla,b].

The proofs of these theorems are long and difficult—we’ll save them for another day.
(Some of you may recognize the Principle of Uniform Boundedness at work here.) The
real point here is that we can’t have everything: A positive result about convergence of
interpolation will require that we impose some extra conditions on the functions f we want
to approximate. As a first step in this direction, we prove that if f has sufficiently many

derivatives, then the error ||L,(f) — f|| can at least be measured.
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Theorem. Suppose that f has n 4+ 1 continuous derivatives on [a,b]. Let a < zp <
r1 < - < ap < Db, let p € P, be the polynomial that interpolates f at the x;’s, and let
W(z) = H?:O(SL‘ — x;). Then,

1

e 1L

1f—pl <

ProOF. We'll prove the Theorem by showing that, given @ in [«a,b], there is a ¢ in (a,b)
with

1
(n+1)!

If = is one of the z;’s, then both sides of this formula are 0 and we're done. Otherwise,

W(x) # 0 and we may set A = [f(x) — p(x)]/W (). Now consider

flz) —p(z) = FUT W (). (+)

@(t) = f(t) —p(t) — AW ().

Clearly, ¢(x;) = 0 for each ¢ = 0,1,...,n and, by our choice of A, we also have ¢(x) = 0.
Here comes Rolle’s theorem! Since ¢ has n 4 2 distinct zeros in [a,b], we must have

@D (€) = 0 for some € in (a,b). (Why?) Hence,
0= ") = FE(O = p V(G = AW

= f(n+1)(§) _ (f(x%/?_;;(w» “(n+1)!

because p has degree at most n and W is monic and degree n 4+ 1. [

Observations

1. Equation (%) is called the Lagrange formula with remainder. [Compare this result to

Taylor’s formula with remainder.]

2. The term f ("1 (¢) is actually a continuous function of . That is, [f(z)—p(x)]/W (z)
is continuous; its value at an x; is [f'(z;) — p/(x:)]/W'(x;) (why?) and W'(z;) =
Hj;éi(xi — ;) # 0.

3. On any interval [«,b], using any nodes, the sequence of Lagrange interpolating poly-

nomials for ¥ converge uniformly to e®. In this case,

c

(n+1)!

le® = La(e®)]] < (b—a)"
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where ¢ = ||e”|| in C[a,b]. The same would hold true for any infinitely differentiable
function satisfying, say, ||f (|| < M" (any entire function, for example).

4. On [-1,1], the norm of [[_,(z — #;) is minimized by taking z; = cos((2i — 1)x/2n),
the zeros of the n-th Chebyshev polynomial T,,. (Why?) As Rivlin points out, the
zeros of the Chebyshev polynomials are a nearly optimal choice for the nodes if good

uniform approximation is desired.

The question of convergence of interpolation is actually very closely related to the
analogous question for the convergence of Fourier series—and the answer here is nearly
the same. We’'ll have more to say about this analogy later. First, let’s note that L, is

continuous (bounded); this will give us our first bit of insight into Faber’s negative result.
Lemma. |[Lo(f)]l < [1f] | S0 li(e)| || for any f € Cla,b]
Proor. Exercise.

The numbers A,, = HE?:O |0i(2)] H are called the Lebesgue numbers associated to this
process. It’s not hard to see that A, is the smallest possible constant that will work in

this inequality (in other words, ||L,|| = A,). Indeed, if

> 1t H =3 Iti(ao)l

then we can find an f € C[a,b] with |[f]| = 1 and f(x;) = sgn({i(xo)) for all 1. (How?)
Then,

7

S sgn((i(xo)) £i(zo0)

=0

7

= lti(zo)l = Al ]I

=0

1L (DI = [Ln(f)(o)| =

As it happens, A, > ¢ logn (this is where the hard work comes in; see Rivlin or Natanson

for further details), and, in particular, A,, = oo as n — oc.

A simple application of the triangle inequality will allow us to bring E,(f) back into

the picture:
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Lemma. (Lebesgue’s theorem) |[f — L,(f)|| < (1+ Ay) En(f), for any f € Cla,b].

PROOF. Let p* be the best approximation to f out of P,. Then, since L, (p*) = p*, we

have

1f = La(HIl < IF =27l + I Lu(f =P
S T+ A)F =PIl = (14 An) Ea(F). U

N

Appendix

Although we won’t need anything quite so fancy, it is of some interest to discuss more

general problems of interpolation. We again suppose that we are given distinct points

g < -+ < T in [a,b], but now we suppose that we are given an array of information
vo b vl oy
viooyoyl y"
Yn  Yn Yn ",

where each m; is a nonnegative integer. Our problem is to find the polynomial p of least

degree that incorporates all of this data by satisfying

p(zo) =yo  p'(zo) =yb ... p(zo) = yi™
plr) =y plla) =y, ... pm(zy)=yl™
plan) =yn pllan) =y, ... p(m")(:lin):ygm")-

In other words, we specify not only the value of p at each x;, but also the first m; derivatives

of p at x;. This is often referred to as the problem of Hermite interpolation.

Since the problem has a total of mg +m; +--- + m, + n 4+ 1 “degrees of freedom,”
it won’t come as any surprise that is has a (unique) solution p of degree (at most) N =
mo + my1 + -+ + my, + n. Rather than discuss this particular problem any further, let’s

instead discuss the general problem of linear interpolation.

The notational framework for our problem is an n-dimensional vector space X on
which m linear, real-valued functions (or linear functionals) Ly, ..., Ly, are defined. The

general problem of linear interpolation asks whether the system of equations
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has a (unique) solution f € X for any given set of scalars y1,...,ym € R. Since a linear
functional is completely determined by its values on any basis, we would next be led to
consider a basis f1,..., f, for X, and from here it is a small step to rewrite (%) as a matrix

equation. That is, we seek a solution f = ayf1 + -+ + a, fn satisfying
arLi(fi)+- 4+ anli(fn) =01
arLa(f1) + - 4+ anla(fn) = y2

If we are to guarantee a solution aq, ..., a, for each choice of y1,...,y,,, then we’ll need

to have m = n and, moreover, the matrix [L;(f;)] will have to be nonsingular.

Lemma. Let X be an n-dimensional vector space with basis f1,..., fn, andlet Ly,..., L,
be linear functionals on X. Then, Ly,...,L, are linearly independent if and only if the
matrix [L;(f;)] is nonsingular; that is, if and only if det (Ll(f])> # 0.

ProoF. If [L;(f;)] is singular, then the matrix equation

ali(fi)+-+enln(fi)=0
ali(fa)+ -+ enln(f2)=0

has a nontrivial solution ¢y, ..., ¢,. Thus, the functional ¢y Ly + --- 4+ ¢, L,, satisfies
(c1lhi 4+ cln)(fi) =0, 1=1,...,n.
Since fi,..., fn form a basis for X, this means that
(c1lh 4+ -+ cnLln)(f) =0

for all f € X. That is, 4Ly + - -+ + ¢ Ly, = 0 (the zero functional), and so Lq,..., L, are
linearly dependent.

Conversely, if Lq,..., L, are linearly dependent, just reverse the steps in the first part

of the proof to see that [L;(f;)] is singular. [
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Theorem. Let X be an n-dimensional vector space and let Ly, ..., L, be linear function-

als on X. Then, the interpolation problem

Li(f)y=vyi, i=1,....n (%)
always has a (unique) solution f € X for any choice of scalars yi,...,y, if and only if
Ly,...,L, are linearly independent.

PROOF. Let fi1,..., f, beabasisfor X. Then, (%) is equivalent to the system of equations

arLi(fi)+ -+ anla(fn) =01
arLa(f1)+ -+ anLa(fn) = y2

by taking f = ay fi +- -4 an fn. Thus, (%) always has a solution if and only if (**) always
has a solution if and only if [L;(f;)] is nonsingular if and only if Lq,..., L, are linearly

independent. In any of these cases, note that the solution must be unique. [

In the case of Lagrange interpolation, X = P, and L; is evaluation at x;; i.e., L;(f) =
f(x;), which is easily seen to be linear in f. Moreover, Lo, ..., L, are linearly independent

provided that g, ..., 2, are distinct. (Why?)

In the case of Hermite interpolation, the linear functionals are of the form L, x(f) =
f(k)(:zj), differentiation composed with a point evaluation. If x # y, then L, ; and Ly
are independent for any k and m; if k& # m, then L, ; and L, ,, are independent. (How

would you check this?)
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Throughout, xg, x1, ..

6/2/98

Problem Set: Lagrange Interpolation

., &y are distinet points in some interval [a,b], and V(zg, 21,...,25)

denotes the Vandermonde determinant:

51.

52.

53.

54.

55.

56.

2
1 20 zg xy
2
1 o 27 xy
Vi(zg,1,...,2pn) = ‘
2 n
1z, 2z x,
Show by induction that V(zg,21,...,2,) = ] (2 — ;).
0<5<i<n

[Hint: In order to reduce to the n xn case, replace c;, the j-th column, by ¢; —zgc;_1,

starting on the right with 5 = n. Factor and use the induction hypothesis.]

Let yo,y1,--.,Yn € Rbe given. Show that the polynomial p € P, satisfying p(x;) = v,
1 =0,1,...,n, may be written as
0 1 =z 2? x”
yo 1 a9 i - al
plz) =¢c| " :
oy 2 . on
Yn Tn xn xn

where ¢ is a certain constant. Find ¢ and prove the formula.

Given f € Cla,b], let L,(f) denote the polynomial of degree at most n that agrees

with f at the x;’s. Prove that L,, is a linear projection onto P,,. That is, show that
Ly(af +Bg) =aL,(f)+ BL,(g), and that L,(f) = f if and only if f € P,.

Let ¢;(x), 1 = 0,1,..

.,n, denote the Lagrange interpolating polynomials of degree

at most n associated with the nodes xg,zq,..
D i i) =
If /; and L,, are as above, show that the error in the Lagrange interpolation formula
is (Ln(f) = £)(w) = 2ol flai) — f() ] i),

With ¢; and L, as above, show that ||[L,(f)|| < A,||f]|, where A,, = HE?:O |0i(2)] H

., &y that is, {;(z;) = &; ;. Show that

1 and, more generally, that >\ 250;(z) = 2%, for k =0,1,...

, M.

Show that no smaller number A has this property for all f € C[a,b].
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In this section we consider a question of computational interest: Since best approximations

are often very hard to find, how might we approximate the best approximation? The

answer to this question lies in approximations over finite sets. Here’s the plan:

(1)

(3)

Fix a finite subset X, of [«a,b] consisting of m distinct points a < a1 < -+ < @, < b,
and find the best approximation to f out of P, considered as a subspace of C(X,,).

In other words, if we call the best approximation p}(X,,), then

max |f(zi) = py(Xm)(zi)| = min max |f(zi) — p(zi)| = En(f; Xm).

1<i<m pEPR 1<i<m
Argue that this process converges (in some sense) to the best approximation on all
of [a,b] provided that X, “gets big” as m — oo. In actual practice, there’s no need
to worry about p!(X,,) converging to p’ (the best approximation on all of [a,b]);

rather, we will argue that E,(f; X,n) — E,.(f) and appeal to “abstract nonsense.”

Find an efficient strategy for carrying out items (1) and (2).

Observations

1.

Ifm <n+1, then E,(f; X,,) = 0. That is, we can always find a polynomial p € P,
that agrees with f at n 4+ 1 (or fewer) points. (How?) Of course, p won’t be unique if
m < n+1. (Why?) In any case, we might as well assume that m > n+ 2. In fact, as

we’ll see, the case m = n 4 2 is all that we really need to worry about.

X CY Cla,b], then E,(f; X) < En(f;Y) < E,(f). Indeed, if p € P, is the best

approximation on Y, then

E.(f;X) < ma |f(z) = ple)| < max f(z) = p(a)] = Eu(f;Y).

Consequently, we expect E,(f; X,,) to increase to E,(f) as X,,, “gets big.”

Now if we were to repeat our earlier work on characterizing best approximations,

restricting ourselves to X,,, everywhere, here’s what we’d get:
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Theorem. Let m > n + 2. Then,

(i) p € Py is a best approximation to f on X, if and only if f — p has an alternating set
containing n + 2 points out of X,,; that is, f —p = +E,(f; X,,), alternately, on X,,.

(ii) p¥(X.,) is unique.
Next let’s see how this reduces our study to the case m = n + 2.

Theorem. Fixn, m >n+2, and f € C[a,b].

(1) If p}, € Py is best on all of [a,b], then there is a subset X}, of [a,b], containing n+2
points, such that p}, = p;, (X ;). Moreover, E,(f; Xny2) < En(f) = En(f; X1 5)

for any other subset X, 42 of [a,b], with equality if and only if p!(X,12) = p}.

(i) If pp(X,) € Pn is best on Xy,, then there is a subset X, of X,, such that
Pr(Xm) = pi(X5y,) and B, (f; X)) = En(f; X} 4,). For any other X, 1, C X,
we have En(f; Xny2) < En(fi X10) = En(f; Xon), with equality if and only if

Pr(Xng2) = pj(Xm).

ProoF. (i): Let X, be an alternating set for f —py over [a,b] containing exactly n +2

points. Then, X, is also an alternating set for f — p}, over X, ,. That is, for z € X}, ,,

£(f(w) = pu(x)) = En(f) = max [f(y) —pu(y)l-

yEXZ+2

So, by uniqueness of best approximations on X} ,, we must have p} = p; (X}, ,) and
E.(f) = Ex(f; X 15). The second assertion follows from a similar argument using the

uniqueness of p* on [a,b].

(ii): This is just (i) with [a,b] replaced everywhere by X,,. O

Here’s the point: Through some as yet undisclosed method, we choose X,, with
m > n+ 2 (in fact, m >> n 4 2) such that E,(f; X)) < E,(f) < E,(f; X)) + ¢, and
then we search for the “best” X, 4o C X,,, meaning the largest value of E,,(f; X42). We
then take pf (X, 4+2) as an approximation for p¥. As we’ll see momentarily, p} (X,42) can

be computed directly and explicitly.
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Now suppose that the elements of X, 19 are a < ¢ < 77 < -+ < Tpp1 < b, let

7

p=pi(Xnt2) be p(x) =ap + a1x + -+ apz™, and let

E = En(f; Xnt2) = max [f(z:) — p(zi)].
0<i<n+1

In order to compute p and E, we use the fact that f(x;) — p(x;) = £ E, alternately, and

write (for instance)

f(zo) = E + p(xo)
f(l'l) =-FK ‘|‘P($1)

F@ni1) = (=1)" T E + p(eny1)

(where the “E column” might, instead, read —E, E, ..., (—=1)"E). That is, in order to
find p and F, we need to solve a system of n + 2 linear equations in the n 4+ 2 unknowns
E, ag,...,a,. The determinant of this system is (up to sign)
1 1 2o -+ 2
1 1 @y oo al

=Ao+ A1+ -+ A1 >0,

e L P
where we have expanded by cofactors along the first column and have used the fact that
each minor A; is a Vandermonde determinant (and hence each Ay > 0). If we apply

Cramer’s rule to find E we get

f(l’o)Ao - f(xl)Al ‘I’ te ‘|‘ (—1)n+1f($n+1)An+1
Ao+ A1+ + A

= Nof(wo) = Mf(@) +--- + (_1)n+1/\n—|—1f(l’n+1),

FE =

where A; > 0 and E?:—i_ol A1 = 1. Moreover, these same \;’s satisfy E?:—i_ol(—l)i/\iq(xi) =0
for every polynomial ¢ € P, since E = E,,(¢; Xy4+2) = 0 for polynomials of degree at most

n (and since Cramer’s rule supplies the same coeflicients for all f’s).

It may be instructive to see a more explicit solution to this problem. For this, recall
that since we have n + 2 points we may interpolate exactly out of P,11. Given this, our

original problem can be rephrased quite succinctly.
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Let p be the (unique) polynomial in P, 41 satisfying p(a;) = f(a;),¢=0,1,...,n+1,
and let e be the (unique) polynomial in P,y satisfying e(z;) = (—=1)*, 4 =0,1,...,n + 1.
If it is possible to find a scalar A so that p — Ae € P,, then p — Ae = p}(X,42) and
N = En(f; Xny2). Why? Because f — (p — Ae) = Ae = £, alternately, on X, 42 and so

I\l = max |[f(z) — (p(x) — Ae(x))|. Thus, we need to compare leading coeflicients of p
-TEXn-|—2
and e.

Now if p has degree less than n 4 1, then p = p! (X, 42) and E,(f; Xp42) = 0. Thus,
A = 0 would do nicely in this case. Otherwise, p has degree exactly n + 1 and the question

is whether e does too. Now,

n+1

6(1‘) — Z I/(V_l)l . W(l‘)

— Wixi) (v —ai)

where W(z) = H?:—i_ol(x — z;), and so the leading coefficient of e is S0 (—1)" /W' (x;).

=0

We'll be done if we can convince ourselves that this is nonzero. But

i—1 n+1
W'(xi) = [J(wi =) = ()" [[@i — =) [] (25—,
oy j=0 j=it1

hence (—1)%/W'(x;) is of constant sign (—1)"T!. Finally, since

n+1

=3 . wts

— W'(xi) (v —a;)

7

p has leading coefficient E?:—i_ol (x;)/W'(x;) and it’s easy to find the value of A.
Conclusion. p}(X,42) = p— Ae, where

S ) /W @),
A = L = —1)*'N\; Fz;
S (1) W () Z( fhurted)

and

o YW(a)]
i VW)l

and |\ = E,(f; Xn42). Moreover, E?:—i_ol(—l)i/\iq(xi) = 0 for every q € P,,.
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Example
Find the best linear approximation to f(z) = 2* on X, = {0,1/3,2/3,1} C [0,1].

We seek p(x) = ag + a1 and we need only consider subsets of X, of size 1 + 2 = 3.

There are four:

X411 ={0,1/3,2/3}, X4 ={0,1/3,1}, X453 =40,2/3,1}, X4, ={1/3,2/3,1}.

In each case we find a p and a A (= E in our earlier setup). For instance, in the case of

X4 2 we would solve the system of equations f(z) = A + p(z) for 2 =0,1/3, 1.

1
0=\ 1 g A2 — 5
1 ) 1 ]
5=+ za = w=-;

1:/\(2)—|—CL0—|—CL1

a1:1

In the other three cases you would find that (") = 1/18, A®) = 1/9, and A = 1/18.
Since we need the largest A\, we're done: Xy o (or Xy 3) works, and p(X4)(z) = 2 — 1/9.

(Recall that the best approximation on all of [0,1] is pj(z) = 2 — 1/8.)

Where does this leave us? We still need to know that there is some hope of finding an
initial set X, with E,(f) —e¢ < E,(f; Xm) < En(f), and we need a more efficient means
of searching through the <n$2> subsets X,,12 C X,,. In order to attack the problem of
finding an initial X,,, we’ll need a few classical inequalities. We won’t directly attack the
second problem; instead, we’ll outline an algorithm that begins with an initial set X2_|_2,
containing exactly n + 2 points, which is then “improved” to some X}, by changing only

a single point.

The Inequalities of Markov and Bernstein

In order to discuss the convergence of approximations over finite sets, we will need to know

that differentiation is bounded on P, (a fact that is nearly obvious by itself).

The inequality we’ll use is due to A. A. Markov from 1889:
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Theorem. If p € P,, and if |p(z)] < 1 for |z| < 1, then [p'(z)] < n? for |z < 1.
Moreover, |p'(x)| = n? can only occur at x = %1, and only when p = £ T, the Chebyshev

polynomial of degree n.

Markov’s brother, V. A. Markov, later improved on this, in 1916, by showing that
IpF ()| < T,gk)(l). We've alluded to this fact already (see Rivlin, p. 31), and even more
is true. For our purposes, it’s enough to have some bound on differentiation; in particular,
we’ll only use

lp" Il < n?llpll and lp"|I < nYlp]l.

where || - || is the norm in C'[—1,1].

About 20 years after Markov, in 1912, Bernstein asked for a similar bound for the
derivative of a complex polynomial over the unit disk |z| < 1. Now the maximum modulus
theorem tells us that we may reduce to the case |z| = 1, that is, z = ¢'?, and so Bernstein

was able to restate the problem in terms of trig polynomials.

Theorem. If S € T,, and if |S(0)| < 1, then |S'(0)| < n. Equality is only possible for
S(6) =sinn(6 — by).

Our plan is to deduce Markov’s inequality from Bernstein’s inequality by a method of
proof due to Polya and Szego in 1928. To begin, let’s consider the Lagrange interpolation
formula in the case where x; = cos((2i — 1)x/2n), ¢+ = 1,...,n, are the zeros of the

Chebyshev polynomial T),. Recall that we have —1 < x,, < 2,1 < --- < a1 < 1.

Lemma 1. FEach polynomial p € P,,_1 may be written

=1

Proor. We know that the Lagrange interpolation formula is exact for polynomials of
degree < n, and we know that, up to a constant multiple, T, () is the product W(z) =
(x — 1)+ (¢ — xp). All that remains is to compute T}, (x;). But recall that for + = cos

we have
nsinnd nsin nf nsin nf

sin :\/1—c0s29:\/1—:1;2'

T, (x) =
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But for ; = cos((2t — 1)7/2n), ie., for §; = (20 — 1)x/2n, it follows that sinnf, =
sin((2¢ — 1)7/2) = (—1)*7!; that is,

Lemma 2. For any polynomial p € P,_1, we have

max |p(z)] < max ‘n 1 —a? p(:z;)‘
—1<z<1 —1<z<1

PROOF. To save wear and tear, let’s write M = max ‘ nyv1—a? p(:z;)‘
—1<z<1

First consider an x in the interval [a,, 2 |; that is, |x| < cos(w/2n) = 2. In this case

we can estimate /1 — 22 from below:

1
V1i—a? > \J1—2? = \/1—cos2 <l> = sin<l> > -,
2n 2n n
because sinf > 26/x for 0 < § < 7/2 (from the mean value theorem). Hence, for |z| <
cos(m/2n), we get |p(x)] < nv1—2a? |p(z)] < M.

Now, for x’s outside the interval [z,, 2 |, we apply our interpolation formula. In this

case, each of the factors * — x; is of the same sign. Thus,

1| (—=1)i='/1 — 2? T, ()
()] = —~ ;p(%) p—

M S| T () M | Tp(z)

nziz:;x—xi n? ;x—xl

But,

DR e (why?)

= LT
and we know that |T)(z)| < n?%. Thus, [p(2)| < M. O
We next turn our attention to trig polynomials. As usual, given an algebraic poly-

nomial p € P,, we will sooner or later consider S(6) = p(cos6). In this case, S'(6) =

p'(cos ) sin 6 is an odd trig polynomial of degree at most n and |S’(8)| = |p'(cos 8)sinf| =
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Ip’(x)v1 —a?|. Conversely, if S € T, is an odd trig polynomial, then S(6)/sinf is even,
and so may be written S(0)/sin § = p(cos 6) for some algebraic polynomial p of degree at

most n — 1. From Lemma 2,

max
0<6<27

= max [p(cosf)] < n max [p(cosf)sinf| = n max |S(0)].

sin ¢ 0<6<2n 0<6<2n 0<6<2n

S(8) ‘

This proves

Corollary. If S € T, is an odd trig polynomial, then

max
0<6<27

< n max |5(0)|.

sin ¢ 0<8<2r

S(8) ‘

Now we’re ready for Bernstein’s inequality.

Bernstein’s Inequality. If S € 7,, then

max [S/(A)] < n max |S(6)|.
0<6<27 0<6<27

PROOF. We first define an auxiliary function f(o,6) = [S(oz +0) — S(a — 9)] /2. For «

fixed, f(a,0) is an odd trig polynomial in 6 of degree at most n. Consequently,

< n max |f(a,0)] < n max |S(6)].

fla,6) ‘

sin ¢ 0<6<27 0<6<27
But
. Sla+6)—S(a—16) . fle,6)
’ - o 9
§(e) = gl—rftl) 26 N gl—rftl) sinf ’

and hence |S'(a)] <n max [S(0)]. O
0<6<27

Finally, we prove Markov’s inequality.

Markov’s Inequality. If p € P,, then

max |p'()] < n? max |p(e)]
—1<z<1 —1<z<1
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PROOF. We know that S(0) = p(cos ) is a trig polynomial of degree at most n satisfying

max |p(x)] = max |p(cosb)|.
—1<z<1 0<o<2m
Since S'(0) = p'(cosB)siné is also trig polynomial of degree at most n, Bernstein’s in-
equality yields

max |p'(cosf)sinf| < n max |p(cosb)]|.
0<6<27 0<6<27

In other words,

max ‘p’(:z;)\/l—xz‘ < n max |p(z)|.

C1<e<1 C1<e<1

Since p’ € P,_1, the desired inequality now follows easily from Lemma 2:

max |p'(z)] < n max ‘p’(:z;)ﬂ‘ < n? max |p(z)). O

C1<e<1 C1<e<1 C1<e<1

Convergence of Approximations over Finite Sets
In order to simplify things here, we will make several assumptions: For one, we will
consider only approximation over the interval I = [—1,1]. As before, we consider a fixed
f €C[-1,1] and a fixed integer n = 0,1,2,.... For each integer m > 1 we choose a finite
subset X,, C I, consisting of m points —1 < zy < -+ < 2z, < 1; 1n addition, we will
assume that vy = —1 and x,, = 1. If we put

dm = max min |z — ;] >0,
zel 1<i<m

then each x € I is within d,, of some z;. If X, consists of equally spaced points, for

example, it’s easy to see that §,, = 1/(m — 1).

Our goal is to prove
Theorem. If §,, — 0, then E,(f; X ) = E.(f).

And we would hope to accomplish this in such a way that §,, is a measurable quantity,

depending on f, m, and a prescribed tolerance ¢ = E,,(f; X ) — En(f).

As a first step in this direction, let’s bring Markov’s inequality into the picture.
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§2.n*/2 < 1. Then, for any p € P, we have

Lemma. Suppose that 7,
< (1—7m)7" max [p(x)]

(1) max  |p(z)|
—1<z<1 1<:<m
and
() wp(-L1}6m) < Fun?(L—7)"! max [p(e)]
1<i<m
ProoF. (1): Take a in [—1,1] with |p(a)] = ||p||. If @« = £1 € X,,, we're done (since

(1 —7»)~! > 1). Otherwise, we'll have —1 < a < 1 and p’(a) = 0. Next, choose z; € X,,

with |a — x;| < §,, and apply Taylor’s theorem:
(v; —a)?

pli) = pla) + (z; —a)p'(a) + 5

Z)//(C)7

for some ¢ in (—1,1). Re-writing, we have
2
[p(a)] < [p(xi)l + 5 p"(e)l.

And now we bring in Markov:
52 nt

Ip|| < max |p(x;)] + 5
1<i<m

121l

which is what we need.
(2): The real point here is that each p € P, is Lipschitz with constant n?||p||. Indeed,

(s =t)p'(c)l < |s = t[llp" | < n*|lpll s — |

p(s) — p(t)] =
(from the mean value theorem and Markov’s inequality). Thus, w,(d) < dn?|p|| and,

combining this with (1), we get
wp(dm) < Gmn®|lpll < 8mn®*(1 = 7)) 7" max [p(z:)].
1<i<m

Now we're ready to compare E,(f; X;) to En(f). Our result won’t be as good as
Rivlin’s (he uses a fancier version of Markov’s inequality), but it will be a bit easier to

prove. As in the Lemma, we’ll suppose that

52 nt
T = m2 <1,
and we’ll set
Ay = 15"_””1:

[Note that as 6, — 0 we also have 7, — 0 and A,, — 0.]
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Theorem. For f € C[-1,1],
En(fiXm) < En(f) < (14+An) En(fi Xm) + wp([-1,1]:0m) + Am|/f]-

Consequently, if &, — 0, then E,(f; Xmn) = En(f) (as m — o0).

PROOF. Let p =p!(X,,) € Py, be the best approximation to f on X,,. Recall that

max |f(z;) —p(z:)| = En(f; Xm) < Eu(f) < |If =1l
1<i<m

Our plan is to estimate ||f — p||.

Let € [-1,1] and choose z; € X, with |# — ;| < d,,. Then,

[f(@) —p(x)] < [f(@) = fl@i)[ + [f(z:) = p(xi)] + |p(wi) — p(x)|
wi(Om) + En(f; Xm) + wp(dm)

wi(dm) + En(fi Xm) + A, max [p(z;)],
1<i<m

IA

IA

where we’ve used (2) from the previous Lemma to estimate w,(d,,). All that remains is to
revise this last estimate, eliminating reference to p. For this we use the triangle inequality

again:

max |p(a;)] < max |f(x;) —p(e;)] + max |f(x;)]
1<i<m 1<i<m 1<i<m

< En(f; Xm) + |IfII-

Putting all the pieces together gives us our result:

Eo(f) € wi(m) + Eu(fiXm) + An[Ea(f; Xm) + 1] O

As Rivlin points out, it is quite possible to give a lower bound on m in the case of, say,
equally spaced points, which will give E,(f; X)) < E,(f) < E,.(f; Xn) + &, but this is
surely an inefficient approach to the problem. Instead, we’ll discuss the one point exchange

algorithm.

The One Point Exchange Algorithm

We're given f € C[—1,1], n, and ¢ > 0.
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n+1
i =0,1,...,n+1. These are the “peak points” of T},41; that is, T}, 41 (2;) = (—1)"+1~¢

. Pick a starting “reference” X, ;2. A convenient choice is the set z; = cos <m 7T>,

(and so Tj,4+1 is the polynomial e from our “Conclusion”).

. Find p = p! (X42) and A (by solving a system of linear equations). Recall that

Al = 1f (o) = pled)] < [If =27l < IIF =2l

where p* is the best approximation to f on all of [—1,1].

. Find (approximately, if necessary) the “error function” e(z) = f(x) — p(z) and any
point n where |f(n)—p(n)| = || f —p||- (According to Powell, this can be accomplished

using “local quadratic fits.”)

. Replace an appropriate x; by 1 so that the new reference X, _, = {2/, 25, ...} has the
properties that f(a!) — p(«}) alternates in sign, and that |f(a) — p(z})| > |A| for all
i. The new polynomial p’ = p} (X, ,) and new A\’ must then satisfy
M o= min () —pleh)] € max [f(eh) —pe)] = VI
0<i<nt1 0<i<nt1
This is an observation due to de la Vallée Poussin: Since f — p alternates in sign on
an alternating set for f — p/, it follows that f — p’ increases the minimum error over
this set. (See the Theorem on page 53 of “Characterization of Best Approximation”
for a precise statement.) Again according to Powell, the new p’ and A can be found

quickly through matrix “updating” techniques. (Since we’ve only changed one of the

x;’s, only one row of the matrix on page 82 needs to be changed.)

. The new \ satisfies |\'| < ||f — p*|| < ||f = P'||, and the calculation stops when

Lf =PI =N = 1f(n") =P () = V] < e
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The Fourier series of a 2r-periodic (bounded, integrable) function f is

ag = ]
> + ;(ak coskx + by sinka),

where the coefficients are defined by

1 [T 1 [7
ap = — f(t) cosktdt and b = — f(t) sinkt dt.

™ ™

Please note that if f is Riemann integrable on [—m, 7], then each of these integrals is

well-defined and finite; indeed,
1 s
jar] < — [ |f(t)]dt
TJ-x
and so, for example, we would have |ag| < 2|/ f|| for f € C*7.
We write the partial sums of the series as

sn(f)(x) = GEO + Z(ak coskx + by, sink:z;).
k=1

Now while s, (f) need not converge pointwise to f (in fact, it may even diverge at a given
point), and while s,(f) is not typically a good uniform approximation to f, it is still a
very natural choice for an approximation to f in the “least-squares” sense (which we’ll
make precise shortly). Said in other words, the Fourier series for f provides a useful

representation for f even if it fails to converge pointwise to f.

Observations

1. The functions 1, cos z, cos 2z, .. ., sina, sin 2z, . .., are orthogonal on [—7, 7). That is,

iy iy iy
/ cosmz cosnx dr = / sinma sinnz dr = / cosmz sinnxdr =0

— T — T — T

for any m # n (and the last equation even holds for m = n),

iy iy
/ cos’ mx dx = / sin?mazdr =7
— T — T
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for any m # 0, and, of course, ffﬂ ldz = 27.
2. What this means is that if T'(z) = % + EZ:1 (ozk cos kx + [ sin k:z;), then

1 T m T
—/ T(x) cosmade = Gm cos’ mz dr = ayy,

T -7 T -7

for m # 0, while

1 T T
;/ T(:z;)d:z;:;—;)_ _ﬂd:z;:ozo.

— T

That is, if T € T,,, then T is actually equal to its own Fourier series.
3. The partial sum operator s,(f) is a linear projection from C*™ onto Ty,.

4. U T(x) =L +> (ozk cos kx + [ sin k:z;) is a trig polynomial, then

1 ™ ao ™ n a ™
il - fla)T(x)dx = ﬁ/_ﬂf(x) dr + ; — _ﬂf(:z;) cos kx dx

T
—I—En:@ ﬂf(:z;) sinkz dx
k=1 T Jon

= 2090 4 Z(Oékak + Brbr),

2
k=1

where (ar) and (bg) are the Fourier coeflicients for f. [This should remind you of the
dot product of the coefficients.]

5. Motivated by 1, 2, and 4, we define the inner product of two elements f, g € C*™ by

(fo) =1 [ rergteyde

Note that from 4 we have (f,s,(f)) = (sn(f), sn(f)) for any n. (Why?)
6. If some f € C*™ has ay = by = 0 for all k, then f = 0.

Indeed, by 4 (or linearity of the integral), this means that
flz)T(x)dx =0

for any trig polynomial 7. But from Weierstrass’s second theorem we know that f is
the uniform limit of some sequence of trig polynomials (7},). Thus,

Y

| f@)?de=lim [ f@)Tala)de =0,
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Since f is continuous, this easily implies that f = 0.

7. If f, g € C*™ have the same Fourier series, then f = g. Hence, the Fourier series for

an f € C?™ provides a representation for f (even if the series fails to converge to f).

8. The coefficients ag, ay,...,a, and by, bs, ..., b, minimize the expression
T 2
plavsarseosbn) = [ [fa) = salla)]* e
It’s not hard to see, for example, that

e — /7T Q[f(:z;) — sn(f)(:zj)] coskrdr =0

0ay, o

precisely when ay satisfies

f(z) coskadx = ak/ cos? kx dz.

— T — T

9. The partial sum s,(f) is the best approximation to f out of T, relative to the Ly

1l = (5. 6) = (%/_:f(x)z dx>1/2.

(Be forewarned: Some authors prefer 1/2x in place of 1/x.) That is,

1101111

1 = sn(f)llz = min ||f =T

TeT,

Moreover, using 4 and 5, we have

Hf _Sn(f)Hg = <f - Sn(f)vf - 3n(f)>
= (f,. /) = 2(fssu(f)) + (sn(f): sn ()
= 1713 = Nsa (I3

1 z "

= — | f@Pde =T =Y (ak 1)),

[This should remind you of the Pythagorean theorem.]

10. It follows from 9 that

n ™

[ aneras = BaY i) < 2 [ et

- k=1 -
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In other symbols, ||s,(f)]lz < |[f]lz. In particular, the Fourier coefficients of any
f € C*™ are square summable. (Why?)
11. If f € C?7, then its Fourier coefficients (a,) and (b,) tend to zero as n — oc.

12. It follows from 10 and Weierstrass’s second theorem that s,(f) — f in the Ly norm
whenever f € C?7. Indeed, given ¢ > 0, choose a trig polynomial T such that

|f = T|| < e. Then, since s,(T) = T for large enough n, we have

If = su(Hll2 S Nf = Tllz + lIsalT = F)ll2
<2|f =Tz < 2V2||f — T|| < 2V2e.

(Compare this calculation with Lebesgue’s Theorem, page 74.)

By way of comparison, let’s give a simple class of functions whose Fourier partial sums

provide good uniform approximations.

Theorem. If f” ¢ C?™, then the Fourier series for f converges absolutely and uniformly

to f.

ProOoOF. First notice that integration by-parts leads to an estimate on the order of growth

of the Fourier coefficients of f:

Tap = f(z) coskadr = / fla)d (smkk:z;) = —% f'(z) sinka dx

because f is 2w-periodic). Thus, |ax| < 2||f'||/k — 0 as & — oo. Now we integrate
( p , g

by-parts again:

—rkay = f(z) sinka dx = fl(z)d (cosk :1;) = E/ f"(z) coska dx

(because f’ is 2x-periodic). Thus, |ag| < 2|[f"||/k* — 0 as k — oo. More importantly,
this inequality (along with the Weierstrass M-test) implies that the Fourier series for f is

both uniformly and absolutely convergent:

oo

— 1
+ > (ael + o) <C Y 5.
k=1

k=1

ao

C;—O + Z(ak coskx + by sink:z;) < | =

k=1
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But why should the series actually converge to f7 Well, if we call the sum
ao - .
g(z) = > + ;(Gk cos kx + by sin k:z;),

then g € C*™ (why?) and ¢ has the same Fourier coefficients as f (why?). Hence (by 7),
g=f. O

Our next chore is to find a closed expression for s, (f). For this we’ll need a couple of

trig identities; the first two need no explanation.

cos kt cos kx + sinktsinkx = cosk(t — )

2cosasinff = sin(a + ) — sin(a — )
%+cos€—|—cosQ€—|—---—|—cosn9: W
Here’s a short proof for the third:

sin%G—l—ZQcoskG sin%Gz sin%G—l—Z[sin(k—l— %)G—Sin(k— %)9] = sin(n + %)9
k=1 k=1

The function
sin (n + %) t
2sin % 1

Dy (t) =

is called Dirichlet’s kernel. It plays an important role in our next calculation.

Now we're ready to re-write our formula for s, (f).

sn(f)(x) = %ao + Z(ak coskx + by, sink:z;)
k=1

1 [ I
S f(t) % + Z cos ktcos kx + sin kt sin kx] dt

- L k=1

:l ﬁf(t) %—|—icosk(t—x>] dt

- L k=1

:l ”f(t)‘sin(n—l—g)(t—x)

) 2sin%(t—:1:)

dt

_! ﬁf(t)pn(t_x)dt:% ﬂf(x—l—t)Dn(t)dt.

T -7
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It now follows easily that s, (f) is linear in f (because integration against D, is linear),
that s,(f) € T, (because D,, € T,), and, in fact, that s,(7m) = Tmin(m,n)- In other words,

sp is indeed a linear projection onto 7T,.

While we know that s,(f) is a good approximation to f in the Ly norm, a better
understanding of its effectiveness as a uniform approximation will require a better under-

standing of the Dirichlet kernel D,,. Here are a few pertinent facts:

Lemma. (a) D, iseven,

1 (" 2 [T
by = | D.)dt=2 [ D.(t)dt =1,
o) [ punar== [ .
(¢) [Dn(t)] <n+3 and D,(0)=n+ 3,
|sin(n+ )|

t

(d) < |Da(t)] < % for 0 <t<r,

1 f7 4
(e) If /\n:;/ | Dy (t)| dt, then Flogn < Ap < 3+ logn.

PROOF. (a), (b), and (c) are relatively clear from the fact that

D, (t) :%—I—cost—l—cos%—l—---—l—cosnt.

(Notice, too, that (b) follows from the fact that s,,(1) = 1.) For (d) we use a more delicate
estimate: Since 20/m <sinf < 6 for 0 < 6 < 7/2, it follows that 2¢/7 < 2sin(¢/2) < t for

0 <t < 7. Hence,
T |sin(n+ £)t]| S |sin(n+ £)t]|

2t = 2singt t

for 0 < t < m. Next, the upper estimate in (e) is easy:

2 [T 2 [T |si Ly¢
—/|Dawwt=-i/'$“7i”'dt
0 0 2sin St

™ ™

2 [/n ) 2 [T &
— =)dt + — — dt
77/0 (n—|—2) +7T/1/n2t

2 1
_ +log 7w 4+ logn < 3 + logn.

™n

IA

The lower estimate takes some work:

9 [T 92 L7 g 1y4 9 17 s 1,
0 0 ;

T T 2sin %t s
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2 [nta)m |sin:1;| 2 ("7 |sinx|
= — —dz > — —dx
T T T Jo T

2 / |s1n:1;|

= — dz
- Z .
2 4 K1

> 2 nrlde = = S 2

- ﬂ'zkﬂ'/ 1)ﬂ|s1n:1;| ‘ ﬂ'zkz::lk
4

> = log n,

because Y, _, % >logn. O
The numbers \, = ||D,|[; = £ f n(t)| dt are called the Lebesgue numbers asso-

ciated to this process (compare this to the terminology we used for interpolation). The
point here is that \, gives the norm of the partial sum operator (projection) on C*™ and
(just as with interpolation) A, — oo as n — co. As a matter of no small curiosity, notice

that, from Observation 10, the norm of s, as an operator on Ls is 1.
Corollary. If f € C?™, then

sal$)@) < 2 [ Ifte + 00 1Da(o]dt < I (+

— T

In particular, ||s,(f)]]| < Aullf]] < (3 +logn)|f].

If we approximate the function sgn D,, by a continuous function f of norm one, then

sn(£)(0) ~ l/ﬁ Do()] dt = A

T — T
Thus, A, is the smallest constant that works in (*). The fact that the partial sum operators
are not uniformly bounded on C?7, along with the Baire category theorem, tells us that
there must be some f € C*7 for which |[s,(f)]| is unbounded. But, as we’ve seen, this has

more to do with projections than it does with Fourier series:

Theorem. (Kharshiladze, Lozinski) For each n, let L, be a continuous, linear projection

from C*™ onto T,. Then, there is some f € C*™ for which ||L,(f) — f|| is unbounded.

Although our last Corollary may not look very useful, it does give us some information
about the effectiveness of s,(f) as a uniform approximation to f. Specifically, we have

Lebesgue’s theorem:
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Theorem. If f € C?7, and if we set El(f) = min ||f —T||, then
7T,

Ey(f) < If =salH) < (4+1logn) E(f).

PROOF. Let T be the best uniform approximation to f out of 7,,. Then, since s,(T*) =

T*, we get

If = sn(DOI < 1F =T+ [lsn (T = Pl < (4 +logn) [|f = T7]. U

As an application of Lebesgue’s theorem, let’s speak briefly about “Chebyshev se-
ries,” a notion that fits neatly in between our discussions of approximation by algebraic

polynomials and by trig polynomials.

Theorem. Suppose that f € C[—1,1] is twice continously differentiable. Then, f may

be written as a uniformly and absolutely convergent Chebyshev series; that is, f(x) =

Y o @ Ti(x), where Y vr lak] < oo.

PROOF. As usual, consider ¢(0) = f(cos8) € C*™. Since ¢ is even and twice differen-
tiable, its Fourier series is an absolutely and uniformly convergent cosine series:

oo oo

flcos @) = p(0) = Z ar cos kf = Zaka(cos 6),

where |ag| < 2|j¢ " ||/k?. Thus, f(z) => 1oy arTi(z). O

If we write S, (f)(z) = > j_oarTk(x), we get an interesting consequence of this

Theorem. First, notice that
Sn(f)(cos 0) = sn(@) ().

Thus, from Lebesgue’s theorem,

E.(f) < IIf = Sa(Pller=111 = lle = sal@)llc2r
< (d+logn) B, (¢) = (4+logn) Bu(f).

For n < 400, this reads

En(f) < |lf = Su(HIl < 10 En(f).
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That is, for numerical purposes, the error incurred by using > ;' _, axTk(x) to approximate
f is within one decimal place accuracy of the best approximation! Notice, too, that E,(f)

would be very easy to estimate in this case since

Z ap Ty

k>n

En(f) < If =Su(HIl =

< Slad < 200”1 Y 5

k>n k>n

Lebesgue’s theorem should remind you of our “fancy” version of Bernstein’s theorem;
if we knew that EI(f)logn — 0 as n — oo, then we’d know that s,(f) converged uni-
formly to f. Our goal, then, is to improve our estimates on EI(f), and the idea behind
these improvements is to replace D,, by a better kernel (with regard to uniform approx-
imation). Before we pursue anything quite so delicate as an estimate on El(f), though,

let’s investigate a simple (and useful) replacement for D,,.

Since the sequence of partial sums (s, ) need not converge to f, we might try looking

at their arithmetic means (or Cesaro sums):

so+ s+ F+spa

n

Opn =

(These averages typically have better convergence properties than the partial sums them-

selves. Consider oy, in the (scalar) case s, = (—1)", for example.) Specifically, we set

oulx) = = {30<f><x> TR sn_1<f><x>}

n
AT

where K,, = (Do + Dy 4+ --- 4+ Dy_1)/n is called Fejér’s kernel. The same techniques we

1
= — f:z;—l—t
i

— T

1 s
== | fle ) Eu(t)dt,
T — T

used earlier can be applied to find a closed form for o,(f) which, of course, reduces to

simplifying (Do + D1 + -+ 4+ Dy—1)/n. As before, we begin with a trig identity:

n—1 n—1
2sin 8 Z sin (2k + 1)8 = Z [cos2k9 — cos (2k + 2)9]
k=0 k=0

=1 — cos2nf = 2sin® nb.

Thus,
n(2k+1)t/2  sin®(nt/2)
2sin (t/2) © 2nsin®(t/2)
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Please note that K, is even, nonnegative, and %ffﬂ K,(t)dt = 1. Thus, o,(f) is
a positive, linear map from C*T onto 7, (but it’s not a projection—why?), satisfying
lon(Fllz < [ f]l2 (why?).

Now the arithmetic mean operator o, (f) is still a good approximation f in Ly norm.

Indeed,

I —oulle = = | S0 = s | < = SOIF = sal )l =0
k=0 2 k=0

as n — oo (since ||f — sx(f)]lz — 0). But, more to the point, o,(f) is actually a good

uniform approximation to f, a fact that we’ll call Fejér’s theorem:
Theorem. If f € C*7, then o,(f) converges uniformly to f asn — .

Note that, since o,(f) € Tn, Fejér’s theorem implies Weierstrass’s second theorem.
Curiously, Fejér was only 19 years old when he proved this result (about 1900) while

Weierstrass was 75 at the time he proved his approximation theorems.

We'll give two proofs of Fejér’s theorem; one with details, one without. But both

follow from quite general considerations. First:

Theorem. Suppose that k, € C*™ satisfies

(a) kn >0,
1 T

(b) —/ En(t)dt =1, and
™ — T

(c) / En(t)dt — 0 for every § > 0.
s<|t|<m

Y

Then, 1 flx +t)k,(t)dt = f(x) for each f € C*™.
s

-
PrROOF. Let ¢ > 0. Since f is uniformly continuous, we may choose § > 0 so that
|f(z) — f(x +t)| < e, for any =, whenever [t| < §. Next, we use the fact that k, is

nonnegative and integrates to 1 to write

‘f(w)_% ﬂf(fﬂ)kn(t)dt‘ _ !

o

/ﬂ [f(@) = flx +1)] kn(t) dt

— T — T

l/ﬁuw»—ﬂx+wwawﬁ

T -7

IA
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2
< 5/ bty ar + A1 k(1) dit
T J)t|<s T Js<|t<n

< €4 = 2¢,

for n sufficiently large. [

To see that Fejér’s kernel satisfies the conditions of the Theorem is easy: In particular,
(c) follows from the fact that K, () = 0 on the set § < [t| < #. Indeed, since sin(t/2)
increases on § < t < 7 we have

sin®(nt/2)

0.
2nsin®(t/2) ~ 2nsin®(5/2) -

K,(t) =

Our second proof, or sketch, really, is based on a variant of the Bohman-Korovkin

theorem for C2™, due to Korovkin. In this setting, the three “test cases” are
fo(z) =1, fi(x) = cosa, and fa(x) = sinz.

Theorem. Let (L,) be a sequence of positive, linear maps on C*™. If L,(f) = f for
each of the three functions fo(x) = 1, fi(x) = cosx, and f2(x) = sinx, then L,(f) = f
for every f € C*T.

We won'’t prove this theorem; rather, we’ll check that o,,(f) = f in each of the three

test cases. Since s, is a projection, this is painfully simple!

on(fo) %(fo-l-fo-l-"'—l-fo):fm
Un(fl) %(0+f1++f1):n7_1f1:§f17
on(f2) =204+ fo+-+ f2) =21 f, =2 fo

Kernel operators abound in analysis; for example, Landau’s proof of the Weierstrass
theorem uses the kernel L,(z) = ¢,(1 — 2?)". And, in the next section, we’ll encounter
Jackson’s kernel J,,(t) = ¢, sin® nt/n? sin® t, which is essentially the square of Fejér’s kernel.
While we will have no need for a general theory of such operators, please note that the key

to their utility is the fact that they’re nonnegative!
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Lastly, a word or two about Fourier series involving complex coefficients. Most modern
textbooks consider the case of a 27-periodic, integrable function f : R — C and define the

Fourier series of f by
>0

E ckezkt7

k=—c0

where now we have only one formula for the ¢ ’s:

1 T <
=5 | A,

but, of course, the ¢;’s may well be complex. This somewhat simpler approach has other

t

advantages; for one, the exponentials ¢'*' are now an orthonormal set (relative to the

normalizing constant 1/2x). And, if we remain consistent with this choice and define the

r 1/2
1= (5= [ i)

then we have the simpler estimate || f||2 < || f]| for f € C?7.

L; norm by

The Dirichlet and Fejer kernels are essentially the same in this case, too, except that
we would now write s, (f)(z) = > ,__, cke'*®. Given this, the Dirichlet and Fejér kernels

can be written

and

n—1 m n
1 : k :
=13 3 e 3 (1= 1) e
m=0k=—m k=—n
1 nz_: sin (m + %):1;
n = sin % z
sin®(nt/2)

nsin®(t/2)



Fourier Series 102

In other words, each is twice its real coeflicient counterpart. Since the choice of normalizing
constant (1/7 versus 1/2x, and sometimes even 1/\/7 or 1/v/27 ) has a (small) effect on

these formulas, you may find some variation in other textbooks.



*

MATH 682 Problem Set: Fourier Series 6/8/98

57.

58.

59.

60.

61.

Define f(z) = (7 — 2)? for 0 < = < 27, and extend f to a 27-periodic continuous
function on R in the obvious way. Check that the Fourier series for f is 7%/3 +
43> | cosnx/n?. Since this series is uniformly convergent, it actually converges to f.

In particular, note that setting v = 0 yields the familiar formula y -, 1/n* = 7?/6.
(a) Given n > 1 and ¢ > 0, show that there is a continuous function f € C*7
satisfying || f|| = 1 and %ffﬂ |f(t) —sgnD,(t)|dt <e/(n+1).
(b) Show that s,(f)(0) > A, — € and, hence, that |[s,(f)|| > A\n — €.
(a) If f, k € C*™, prove that g(x) = ffﬁ flx +)k(t)dt is also in C*™.
(b) If we only assume that f is 27-periodic and Riemann integrable on [—=, 7] (but
still k € C?7), is g still continuous?
(c¢) If we simply assume that f and k are 27-periodic and Riemann integrable on
[—m, 7], is ¢ still continuous?
Suppose that k, € C*™ satisfies
kn >0, l/” En(t)dt =1, and / En(t)dt — 0 (n — o)
s<|t|<m

— T

for every 4 > 0. If f is Riemann integrable, show that %ffﬂ fla +t)kn(t)dt — f(x)
pointwise, as n — oo, at each point of continuity of f. In particular, o, (f)(x) — f(x)

at each point of continuity of f.
Given f, g € C?™, we define the convolution of f and g, written f * g, by

(Fraw) =2 [ flt)gte ~ )t

(Compare this integral with that used in problem 59.)

(a) Show that f+*¢g =g * f and that f+ g € C*".

(b) If one of f or g is a trig polynomial, show that f % ¢ is again a trig polynomial
(of the same degree).

(c¢) If one of f or g is continuously differentiable, show that f * ¢ is likewise continu-

ously differentiable and find an integral formula for (f * g)'(x).
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We continue our investigations of the “middle ground” between algebraic and trigonometric
approximation by presenting several results due to the great American mathematician
Dunham Jackson (from roughly 1911-1912). The first of these results will give us the best

possible estimate of E,(f) in terms of wy and n.
Jackson’s Theorem 1. If f € C*7, then EL(f) < 6ws([—m, 7]; % ).

Theorem 1 should be viewed as an improvement over Bernstein’s Theorem, which

stated that E,(f) < %wf(ﬁ) for f € C[-1,1]. As we'll see, the proof of Theorem 1

not only mimics the proof of Bernstein’s result, but also uses some of the ideas we talked
about in the last section. In particular, the proof we’ll give involves integration against an

“improved” Dirichlet kernel.

Before we dive into the proof, let’s list several immediate and important Corollaries:
Corollary. Weierstrass’s second theorem (since wy(L) — 0 for any f € C?7).

7

Corollary. The Dini-Lipschitz theorem: If wf(%) logn — 0 as n — oo, then the Fourier

series for f converges uniformly to f.

ProOOF. From Lebesgue’s theorem,

If = (Al < (4+logn) ET(f) < 6(4+logn)wy (%) Lo, O

Jackson’s Theorem 2. If f € C[—1,1], then E,(f) < 6wyp([-1,1];1).

PROOF. Let ¢(8) = f(cosf). Then, as we've seen,

Bu(f) = BXle) < 0w, (I-mnlin) <owr (11,107,

where the last inequality follows from the fact that

[p(a) =@(B)] = [flcosa) = flcos B)] < wi([cosa —cosf]) < wp(la=p]). O
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Corollary. If f € lipga on [—1,1], then E,(f) < 6Kn™. (Recall that Bernstein’s

theorem gives only n~=%/2.)
Corollary. If f € C[-1,1] has a bounded derivative, then E,(f) < S| f'].
Corollary. If f € C[—1,1] has a continuous derivative, then E,(f) < %En_l(f’ ).

PROOF. Let p* € P,,_1 be the best uniform approximation to f’ and consider p(z) =

ffl p*(t)dt € Py. From the previous Corollary,

E.(f) = Eu(f—p)  (Why?)

6 . 6
—f"=p" = —Ena(f'). O
n n

IA

Iterating this last inequality will give the following result:

Corollary. If f € C[—1,1] is k-times continuously differentiable, then

Edf) < 1o Gk:n 1) ().

where wy, is the modulus of continuity of f*.

Well, enough corollaries. It’s time we proved Jackson’s Theorem 1. Now Jackson’s

approach was to show that

1 f7 sin nt

7 f(x—l_t) 'cn<s1nt

T -7

>4dt = f),

where J,(t) = cp(sinnt/sint)?* is the “improved” kernel we alluded to earlier (it’s essen-
tially the square of Fejér’s kernel). The approach we’ll take, due to Korovkin, proves the
existence of a suitable kernel without giving a tidy formula for it. On the other hand,
it’s relatively easy to outline the idea. The key here is that .J,(¢) should be an even,

nonnegative, trig polynomial of degree n with % ffﬂ Jn(t)dt = 1. In other words,

1 "
Jn(t) = 5 + Z Pk cos kt
k=1

(why is the first term 1/27), where pq ..., pn,» must be chosen so that J,(f) > 0. As-

suming we can find such pg ,’s, here’s what we get:
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Lemma. If f ¢ C*7, then

‘f(@—% ﬁf(:l?—l—t)Jn(t)dt‘ < wf<%>.

— T

11— n
14+ nm i]

Proor. We already know how the first several lines of the proof will go:

‘f(x)_% ﬂf($+t)Jn(t)dt‘ _ !

o

/ﬁ [f(x) = Flz +1)] Ju(t) dt‘

— T — T

IA

= TP — fle 4 0] () i

T -7

< 2 [ e

— T

Next we borrow a trick from Bernstein. We replace wy( [t]|) by

st = o (il 2) < (i) (1)),

and so the last integral on the right-hand side, above, is dominated by

wy (%) : %/_:(1+n|t|)Jn(t)dt = wy (%) : {1+;/_: |t|Jn(t)dt] :

All that remains is to estimate ffﬂ |t| Jn(t) dt, and for this we’ll appeal to the Cauchy-

Schwarz inequality (again, compare this to the proof of Bernstein’s theorem).

1 [7 1 [7
—/ It Ja(t)dt = —/ It T ()2 T, (8)1/? dt
n

-7 T J—x

(% /_: |t|2Jn(t)dt>
= (%/_7; |t|2Jn(t)dt>1/2.

IA

But
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Now we still have to prove that we can actually find a suitable choice of scalars
Pins--->Pnn- We already know that we need to choose the py ,’s so that J,(t) will be
nonnegative, but now it’s clear that we also want p; , to be very close to 1. To get us

started, let’s first see why it’s easy to generate nonnegative cosine polynomials. Given real

numbers cg, . .., Cy, note that
k13 2 k13 k13
0 < cheikx _ (Z ckeikx> che—m: _ ZCkC pilk—j)z
k=0 k=0 7=0 k,j
k13
— Eijci + zijckcj<edk—jﬂr+_€Nj—k)x>
k=0 k>
k13
= Zci + ZchCj cos(k — j)x
k=0 k>
n n—1
= Zci + Qchck_H cosx + -+ 2cqe, cosna. (%)
k=0 k=0
In particular, we need to find ¢o,..., ¢, with
n 1 n—1
Zci =3 and Pin =2 Z ckCr+1 ~ 1.
k=0 k=0

What we’ll do 1s find ¢’s with Ez;é CkCht1 R EZ:O ci, and then normalize. But, in fact,
we won'’t actually find anything—we’ll simply write down a choice of ¢;’s that happens to

work! Consider:

(k41 (k42 " (k41 , k
ZSIH T S1n T = ZSIH T S1n T
— n-+2 n-+2 — n-+2 n-+2

1 & [.( k > . <k+2:ﬂ .<k+1 >
= — sin 7 | 4+ sin ™ sin ™.
2k:0 n -+ 2 n -+ 2 n -+ 2

By changing the index of summation, it’s easy to see that first two sums are equal and,

hence, each is equal to the average of the two. Next we re-write this last sum, using the

trig identity %(sinA + sin B) = cos (A;B> sin (A;B>, to get

" (k41 (k42 s "L (k+1
Zsm 7 | sin 7| = cos Zsm 7.
n-+2 n -+ 2 n -+ 2 n -+ 2

k=0
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Since cos <L> ~~ 1 for large n, we’ve done it! If we define ¢ = ¢ - sin <ki 7T> where
n+2 ? n+2 ’

c is chosen so that Y ,_,c2 = 1/2, and if we define J,,(¢) using (%), then J,(z) > 0 and

P1,n = COS <nL_|_2> (why?). The estimate needed in our Lemma becomes

l—pin 1—cos<nj_2> . T T
\| —— = = sin < —
2 2 2n 4+ 4 2n

and so we have
2 1 1
ETn < (142 - ). O
< (5) o (2) <0 ()

Jackson’s theorems are what we might call direct theorems. If we know something

about f, then we can say something about E,(f). There is also the notion of an inverse
theorem, meaning that if we know something about E,(f), we should be able to say
something about f. In other words, we would expect an inverse theorem to be, more or
less, the converse of some direct theorem. Now inverse theorems are typically much harder
to prove than direct theorems, but in order to have some idea of what such theorems might
tell us (and to see some of the techniques used in their proofs), we present one of the easier
inverse theorems, due to Bernstein. This result gives the converse to one of our corollaries

to Jackson’s theorem (see the top of page 105).

Theorem. If f € C?™ satisfies EL (f) < An~%, for some constants A and 0 < a < 1,

then f € lipy-a for some constant I .

PrROOF. For each n, choose U,, € T, so that ||f — U,|| < An™%. Then, in particular,
(Uy) converges uniformly to f. Now if we set Vo = Uy and V,, = Uzn — Upn—1 for n > 1,
then V,, € Ton and f =3 0" V,. Indeed,

IVall < 020 = fll 4 [[Upns = fIl < AQ@")T*+A@Q2")™" = B-27"7,

which is summable; thus, the (telescoping) series Y -V, converges uniformly to f.
(Why?)

Next we estimate |f(z) — f(y)| using finitely many of the V},’s, the precise number to

be specified later. Using the mean value theorem and Bernstein’s inequality we get

@) = F)] < D [Vala) = Valy)l
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m—1

< Y W) = Valw)] + 23 IVl
n=0 n=m
m—1 e%e}

= > Waalle—yl + 2 IVl
n=0 n=m

<

m—1 e%e}
e =yl > 2 Vall + 2 ) |IVal
n=0 n=m

m—1 [eS]
< Je—yl Y B2 4 23" pane
n=0 n=m

< C |le—yl-2mime) 4 gmme ] (4)
where we’ve used, in the fourth line, the fact that V;, € T2» and, in the last line, standard

estimates for geometric series. Now we want the right-hand side to be dominated by a

constant times |x — y|®. In other words, if we set |z — y| = §, then we want
§-omi=e) 4 g=ma L p.go
or, equivalently,
(2m5) =) 4 (2m5)7* < D.
Thus, we should choose m so that 2™ is both bounded above and bounded away from

zero. For example, if 0 < § < 1, we could choose m so that 1 <2™§ < 2. [

In order to better explain the phrase “more or less the converse of some direct theo-
rem,” let’s see how the previous result falls apart when o = 1. Although we might hope
that EL'(f) < A/n would imply that f € lip, 1, it happens not to be true. The best result
in this regard is due to Zygmund, who gave necessary and sufficient conditions on f so
that ELI(f) < A/n (and these conditions do not characterize lipy 1 functions). Instead of
pursuing Zygmund’s result, we’ll settle for simple “surgery” on our previous result, keeping

an eye out for what goes wrong. This result is again due to Bernstein.

Theorem. If f € C?™ satisfies EL(f) < A/n, then wy(§) < K§|logd | for some constant
K and all § sufficiently small.

ProoF. If we repeat the previous proof, setting o = 1, only a few lines change. In

particular, the conclusion of that long string of inequalites (*%) would now read

[fx) = f) < Clla—yl-m + 27"] = C[mé + 277].
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Clearly, the right-hand side cannot be dominated by a constant times ¢, as we might have
hoped, for this would force m to be bounded (independent of §), which in turn bounds ¢
away from zero. But, if we again think of 2™¢ as the “variable” in this inequality, then the
term md suggests that the correct order of magnitude of the right-hand side is 6|logd |.
Thus, we would try to find a constant D so that

mé + 27 < D-4§|logd |
or
m(2™8) + 1 < D-(2™d)|logd |.
Now if we take 0 < § < 1/2, then log2 < —logd = |logd|. Hence, if we again choose
m > 1 so that 1 < 2™§ < 2, we'll get

log2 —logd - 2
log 2 log 2

mlog2+logd <log2 = m< |log d |

and, finally,

i|10g5| < D

m(2™5)+1 < 2m+1 < 3m <

(2™8) |log 4 |. O

log 2 log 2
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Given a positive (except possibly at finitely many points), Riemann integrable weight

function w(x) on [a,b], the expression

(f.g) = / f(x) glz) w(x) da

defines an inner product on Cla,b] and

b 1/2
1l = ( / f<x>2w<x>dx) - VD

defines a strictly convex norm on C|[a,b]|. Thus, given a finite dimensional subspace E of

Cla,b] and an element f € Cla,b], there is a unique ¢ € E such that

If =gl = min[[f — .
heE

We say that ¢ is the least-squares approximation to f out of E (relative to w).

Now if we apply the Gram-Schmidt procedure to the sequence 1,z,2%,..., we will
arrive at a sequence (@, ) of orthogonal polynomials relative to the above inner product.

In this special case, however, the Gram-Schmidt procedure simplifies substantially:

Theorem. The following procedure defines a sequence (@) of orthogonal polynomials

(relative to w). Set:

Qo(x) =1, Qi(zr) =2 —ao, and Qui1(r)= (v — an)@n(r) = bnQn-1(x),

for n > 1, where

ap = <xQn7Qn >/<Qn7Qn> and bn = <xQn7Qn—1 >/<Qn—17Qn—1>

(and where x Q),, is shorthand for the polynomial ¥ Q,(x)).

PrROOF. It’s easy to see from these formulas that (), is a monic polynomial of degree

exactly n. In particular, the @),,’s are linearly independent (and nonzero).



Orthogonal Polynomials 112

Now we checked in class that Qg, J1, and ()3 are mutually orthogonal, so let’s use

induction and check that @),41 is orthogonal to each @, & < n. First,

<Qn+17Qn> = <$Qn7Qn>_an<anQn>_bn<Qn—17Qn> =0

and

<Qn—|—17 Qn—l > — <l’ Qna Qn—l > - an< Qna Qn—l > - bn< Qn—la Qn—l > — 07
since (Qn—1,Q, ) = 0. Next, we take k < n — 1 and use the recurrence formula twice:

<Qn+17Qk> = <xanQk> _an<Qn7Qk> _bn<Qn—17Qk>
=(2Qn,Qr)=(Qn,zQr)  (Why?)
= (Qn, Q1+ arQr + b5 Qr—1) =0,

since k+1<n. O

Observations

1. Using the same trick as above, we have

bn = <xQn7Qn—1 >/<Qn—17Qn—1 > = <Qn7Qn >/<Qn—17Qn—1> > 0.

2. Each p € P, can be uniquely written p = > ;Q;, where o; = (p, Q; >/< Q:, Q).

3. If () is any monic polynomial of degree exactly n, then Q@ = @,, + E?:_Ol ;Q; (why?)

and hence
n—1
QI3 = 1Qal3 + D il > 1Qul3,
=0
unless @ = @,. That is, @, has the least || - ||z norm of all monic polynomials of
degree n.

4. The Q,’s are unique in the following sense: If (P, ) is another sequence of orthogonal
polynomials such that P, has degree exactly n, then P, = «,Q, for some «, # 0.
(Why?) Consequently, there’s no harm in referring to the @),’s as the sequence of

orthogonal polynomials relative to w.

5. For n > 1 note that fab Qn(t)w(t)dt = (Qo,Qrn) = 0.
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Examples

1. On [-1,1], the Chebyshev polynomials of the first kind (7),) are orthogonal relative
to the weight w(x) = 1/V1 — 2.
/1 dx - 0, m#n
Tm(x)Tn(x)iz/ cosmb cosnfdf = ~, m=n=>0
-1 V1—a? 0 /2, m=n%#0.

Since T, has degree exactly n, this must be the right choice. Notice, too, that

% To,T1,Ts, ... are orthonormal relative to the weight 2/7v/1 — 22,

In terms of the inductive procedure given above, we must have Q)9 = Ty = 1
and Q, = 27"T1T, for n > 1. (Why?) From this it follows that a, = 0, by = 1/2,
and b, = 1/4 for n > 2. (Why?) That is, the recurrence formula given in our first
Theorem reduces to the familar relationship Ty, 41 (2) = 22 T, () —T,—1(2). Curiously,

Q,, = 27" T!T, minimizes both

e [plr)] oo (/ 11 o )

over all monic polynomials of degree exactly n.

1/2

The Chebyshev polynomials also satisfy (1 —22) T/ (2) — 2 T} (z) + n? T,(x) = 0.

Since this is a polynomial identity, it suffices to check it for all x = cos . In this case,

nsin nf
T =
n(®) sin 6
and
T;L/(x) _ n? cos n9 si2n g — n sinné cos 8
sin® 6 (— sin 6)
Hence,

(1—2) T}/ (2) =« T (x) +n* Tn(z)

= —n%cosnf +nsinnbcotd —nsinnbcotd +n?cosh =0

2. On [—1,1], the Chebyshev polynomials of the second kind (U,,) are orthogonal relative
to the weight w(x) = V1 — 22.
! dx
Up(z)U, 1 —2?) ———
[ Ol Ut (1 = 5

_/”sin(m—l—l)e sin(n+1)0 0, m#n
0

7/2, m=n.

sin 6 sin 8

-sin29d9:{
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While we’re at it, notice that

innf
T'(2) = o = pU_y(2).

sin 8

As arule, the derivatives of a sequence of orthogonal polynomials are again orthogonal

polynomials, but relative to a different weight.

3. On [—1,1] with weight w(x) = 1, the sequence (P,) of Legendre polynomials are
orthogonal, and are typically normalized by P,(1) = 1. The first few Legendre poly-
nomials are Py(x) =1, Pi(x) =z, Pa(x) = %:1;2 — %, and Ps(x) = g:zj?) — %:1; (Check
this!) After we've seen a few more examples, we’ll come back and give an explicit

formula for P,.

4. All of the examples we've seen so far are special cases of the following: On [—1,1],
consider the weight w(x) = (1 — 2)¥(1 + z)?, where a,3 > —1. The corresponding
orthogonal polynomials (Pn(a’ﬁ)) are called the Jacobi polynomials and are typically

normalized by requiring that

pld) = <n+a> B (oz—l—l)(oz—l—Q)---(oz—l—n)‘

o o n!

It follows that Pn(o,o) = P,,
1-3-5---(2n—1)

2npl

p12-12)

T,,

and
1-3-5---(2n+1)
27(n 4 1)!

pl/2i/2) U,

The polynomials Pn(a’a) are called ultraspherical polynomials.

5. There are also several classical examples of orthogonal polynomials on unbounded

intervals. In particular,

(0, 00) w(x) =e"" Laguerre polynomials,
(0, 00) w(z) =a%™" generalized Laguerre polynomials,
(—o0, 0) w(x) = e’ Hermite polynomials.

Since @), is orthogonal to every element of P, _1, a fuller understanding of ¢},, will
follow from a characterization of the orthogonal complement of P,_;. We begin with an

easy fact about least-squares approximations in inner product spaces.
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Lemma. Let E be a finite dimensional subspace of an inner product space X, and let
x € X\ E. Then, y* € E is the least-squares approximation to x out of E (a.k.a. the
nearest point to x in E) if and only if (x — y*, y) = 0 for every y € E; that is, if and only
if (x —y*) LE.

PROOF. [We've taken E to be finite dimensional so that nearest points will exist; since
X is an inner product space, nearest points must also be unique (see the exercises for a

proof that every inner product norm is strictly convex).]

(<) First suppose that (@ —y*) L E. Then, given any y € E, we have

le =yllz = Iz —y) + @ =l = le =y 2+ lv" =yl

because y* —y € E and, hence, (x —y*) L (y* —y). Thus, ||z —y|| > ||]v — y*|| unless

y = y*; that is, y* is the (unique) nearest point to x in E.

(=) Suppose that @ — y* is not orthogonal to E. Then, there is some y € E
with |ly|]| = 1 such that a = (@ — y*, y) # 0. Now I claim that y* + ay € E is a better
approximation to x than y* (and y*+ay # y*, of course); that is, y* is not the least-squares
approximation to x. To see this, we again compute:

le = (" +an)lz = Iz —y") —aylz = (& —y") —ay. (x —y") — ay)
= Jlz =13 — 20z —y", y) + o

2

= le =yl —o® < |l —y7|3

Thus, we must have (x —y*, y) =0 for everyy € E. [

Lemma 1. (Integration by-parts.)

7

b b b
/ ul™y = Z(—l)k_lu("_k)v(k_l) + (—1)"/ uv'™,

a
k=1

Now if v is a polynomial of degree < n, then v{™ =0 and we get:

b
Lemma 2. f € Cla,b] satisfies / flz)p(x)w(x)dx = 0 for all polynomials p € Pp_q if
and only if there is an n-times differentiable function u on [a,b] satisfying fw = «(") and

uP(a) = u®(b) =0 for all k =0,1,...,n — 1.

. . . . b
PROOF. One direction is clear from Lemma 1: Given u as above, we would have fa fpw =

P = (1) gt =
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So, suppose we have that fab fpw =0 for all p € P,,_1. By integrating fw repeatedly,
choosing constants appropriately, we may define a function u satisfying fw = u(™ and
u(k)(a) =0forall £k =0,1,....,n — 1. We want to show that the hypotheses on f force
u®(b) =0 for all k=0,1,...,n— 1.

Now Lemma 1 tells us that
b n
0 = [ dpw = S0 A0
a k=1

for all p € P,_;. But the numbers p(b), p'(b),...,p" ) (b) are completely arbitrary; that
is (again by integrating repeatedly, choosing our constants as we please), we can find
polynomials py of degree k& < n such that pgck)(b) # 0 and pgcj)(b) =0for j #Fk In
fact, pr(z) = (z — b)* works just fine! In any case, we must have u(¥)(b) = 0 for all

k=0,1,....n—1. O
Rolle’s theorem tells us a bit more about the functions orthogonal to P, _1:

b
Lemma 3. If w(x) >0 in (a,b), and if f € C[a,b] satisfies / flz)p(x)w(x)de =0 for

all polynomials p € P,_1, then f has at least n distinct zeros in the open interval (a,b).

ProOF. Write fw = u'™, where u'®(a) = u®(b) = 0 for all k = 0,1,...,n — 1. In
particular, since u(a) = u(b) = 0, Rolle’s theorem tells us that v’ would have at least one
zero in (a,b). But then u'(a) = u'(¢) = «/(b) = 0, and so u” must have at least two zeros
in (a,b). Continuing, we find that fw = u(™ must have at least n zeros in (a,b). Since

w > 0, the result follows. [l

Corollary. Let (Q,) be the sequence of orthogonal polynomials associated to a given

weight w with w > 0 in (a,b). Then, the roots of Q),, are real, simple, and lie in (a,b).

Lemma 4. If p* is the least-squares approximation to f € C[a,b] out of P,_y, and if

w >0 in (a,b), then f — p* has at least n distinct zeros in (a,b).
PROOF. The least-squares approximation satisfies ( f — p*,p) =0forall p e P,_;. O

The sheer volume of literature on orthogonal polynomials and other “special func-

tions” is truly staggering. We'll content ourselves with the Legendre and the Chebyshev
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polynomials. In particular, let’s return to the problem of finding an explicit formula for
the Legendre polynomials. We could, as Rivlin does, use induction and a few observations
that simplify the basic recurrence formula (you're encouraged to read this; see pp. 53-54).
Instead we’ll give a simple (but at first sight intimidating) formula that is of use in more

general settings than ours.

Lemma 2 (with w =1 and [a,b] = [—1,1]) says that if we want to find a polynomial
f of degree n that is orthogonal to P, _1, then we’ll need to take a polynomial for u,
and this u will have to be divisible by (x — 1)"(« + 1)". (Why?) That is, we must have
P,(z) = ¢, - D" [(:1;2 — 1)"], where D denotes differentiation, and where we find ¢, by
evaluating the right-hand side at = = 1.

n
n

Lemma 5. (Leibniz’s formula) D"(fg) = Z (k) D*(f)D"*(g).

k=0

ProOOF. Induction and the fact that (Z:i) + (";1> = (Z) ]

Consequently, Q(x) = D" [(:1; -z + 1)"] =Y o (Z) D¥(z—1)" D"=k(z+1)" and
it follows that Q(1) = 2"n! and Q(—1) = (—=1)"2"n!. This, finally, gives us the formula
discovered by Rodrigues in 1814:

1

2np!

Pole) =

D" [(e* = 1)),
The Rodrigues formula is quite useful (and easily generalizes to the Jacobi polynomials).

Observations
6. By Lemma 3, the roots of P, are real, distinct, and lie in (-1, 1).

7. (22 - 1)" = EZZQ(—l)k<Z>:1;2"_2k. If we apply ﬁ D™ and simplify, we get another

formula for the Legendre polynomials.

In particular, if n is even (odd), then P, is even (odd). Notice, too, that if we let

P, denote the polynomial given by the standard construction, then we must have

P, =27""(>"\p,.

7



8.

10.

11.
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In terms of our standard recurrence formula, it follows that @, = 0 (because J}Pn(l')z

is always odd). It remains to compute b,,. First, integrating by parts,
1 1 1
/_1 P,(z)?de = J}Pn(l')z} LT /_1 x-2P,(z) P! (z)dz,
or (Pp,P,) = 2—2(P,, 2P ). But P! = nP, + lower degree terms; hence,
(P,,2P! ) = n(P,,P,). Thus, (P,,P,) = 2/(2n + 1). Using this and the fact
that P, = 2‘"(2:>ﬁn, we’d find that b, = n?/(4n? — 1). Thus,

2n 4+ 2\ ~ 2n 4+ 2 ~ n? ~
P, = 9—n-l P, = o1 P, - ——P,_
+ <n+1> + (n—l—l)[x 4n?—1) """
2
_ n—l—lx o n P
n-+1 n-+1

That is, the Legendre polynomials satisfy the recurrence formula

(n+1)Pyyi(z) = 2n+1)aPy(z) —nPy_q(x).

. It follows from 8 that the sequence P, =,/ 2"2+1 P, is orthonormal on [—1,1].

The Legendre polynomials satisfy (1 —22) P/ (z) — 2z P! () + n(n+1) Py(z) = 0. If
we set u = (22 — 1)"; that is, if «("™) = 2"n!P,, note that u'(z? — 1) = 2nzu. Now we

apply D"t to both sides of this last equation (using Leibniz’s formula) and simplify:

1
(n+1)n o

u("+2)(:1;2 - 1)+ (n+1) w "t 2 4 9 — 9 [u(""H) 4+ (n+1) u(")]

= (1-— :1;2) w2 9t 4y (n+1) w(™ = 0.

Through a series of exercises, similar in spirit to 10, Rivlin shows that |P,(z)| <1 on

[—1,1]. See pp. 63-64 of Rivlin for details.

Given an orthogonal sequence, it makes sense to consider “generalized Fourier series”

relative to the sequence and to find analogues of the Dirichlet kernel, Lebesgue’s theorem,

and so on. In case of the Legendre polynomials we have the following:

Example. The “Fourier-Legendre” series for f € C[—1,1] is given by ) ([, ﬁk>]3k,

where

2k +1
2

1
P = P. and  (f,P)= | f(zx)Py(x)de.
-1
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The partial sum operator Sn(f) = Y r_o( [, A ) Py is a linear projection onto P, and may

be written as

Sn(f)(x) = » F() Kn(t,x) dt,
where K, (t,z) = Y r_ P(t) Pe(z). (Why?)

Since the ﬁk’s are orthonormal, we have
Y AP = 152Dl < IFI3 = D KFPe)l,
k=0 k=0

and so the generalized Fourier coefficients ( f, ﬁk> are square summable; in particular,
(f, ﬁk> — 0 as £ — oo. As in the case of Fourier series, the fact that the polynomials
(i.e., the span of the ﬁk’s) are dense in C[a,b] implies that S, (f) actually converges to f
in the || - || norm. These same observations remain valid for any sequence of orthogonal
polynomials. The real question remains, just as with Fourier series, whether S,(f) is a

good uniform (or even pointwise) approximation to f.

If you're willing to swallow the fact that |P,(x)| < 1, then

" 2%k 41 2k 41 1 — 1)2
I SEE L E R o
k=0 k=0

Hence, ||[Sn(f)]] < (n 4+ 1)?||f||- That is, the “Lebesgue numbers” for this process are at

most (n + 1)?. The analogue of Lebesgue’s theorem in this case would then read:

1f = Su(HI < anEn(f)-

Thus, S,(f) = f whenever n?E,(f) — 0, and Jackson’s theorem tells us when this will
happen: If f is twice continuously differentiable, then the Fourier-Legendre series for f

converges uniformly to f on [—1,1].
The Christoffel-Darboux Identity

It would also be of interest to have a closed form for K, (¢,2). That this is indeed always

possible, for any sequence of orthogonal polynomials, is a very important fact.

Using our original notation, let (@, ) be the sequence of monic orthogonal polynomials

corresponding to a given weight w, and let (@n) be the orthonormal counterpart of (Q,);
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in other words, Q,, = /\n@n7 where A\, = \/ (Qn, @y ). It will help things here if you recall
(from Observation 1 on page 112) that \2 = b, \?

n—1-
As with the Legendre polynomials, each f € C[a,b] is represented by the generalized

Fourier series >, ( f, @k ) @k, with partial sum operator

S.(ie) = [ FOEaltin) wit)at,

where K,(t,2) =Y 1_, @k (1) @k(:p) As before, S, is a projection onto P, ; in particular,

Sn(1) =1 for every n.
Theorem. (Christoffel-Darboux) The kernel K, (t,x) can be written

o1 Qui1 (1) Qn() = @n(t) Quia (2)

t—«x

> Qu(t) Qe(z) = Any
k=0
PrOOF. We begin with the standard recurrence formulas
Qnt1(t) = (t — an) Qn(t) = bn@n-1(t)
Qnt1(z) = (v = an) Qn(z) = bpQn—1(7)
(where by = 0). Multiplying the first by Q,(z), the second by @,(t), and subtracting:
Qn+1(t) Qn(2) — Qn(t) Qi1 ()
= (t=2)Qn(t) @n(r) + bn[Qu(t) Qu-1(2) — Qu(r)Qn-1(t)]
(and again, by = 0). If we divide both sides of this equation by A\? we get
A7 [ Qurt (1) Qul@) — Qu(t) Qura () ]
= (t=2)Qu(t)Qulr) + X2 [Qn(H) Quoa(2) = Qule) @uoa (1]

Thus, we may repeat the process; arriving finally at

7

A2 Qo (1) Qu(2) = Qu(®) Quir ()] = (t—2) Y Qn(t) Qu(2).

k=0

The Christoffel-Darboux identity now follows by writing @), = /\n@n7 ete. [0

And we now have a version of the Dini-Lipschitz theorem:
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Theorem. Let f € C[a,b] and suppose that at some point x¢ in [a,b] we have
(i) f is Lipschitz at xo; that is, |f(zo) — f(z)| < K|zo — 2| for some constant K and all
z in [a,b]; and
(ii) the sequence (@n(l'o)) is bounded.

Then, the series ), ( f, @k ) @k(l'o) converges to f(xg).
PROOF. First note that the sequence \,11A; ! is bounded: Indeed, by Cauchy-Schwarz,

/\721-1-1 = <Qn+17Qn+1> = <Qn+17$Q">
< N@ugallz - 2|l - 1@Qnllz = max{|al, [b]} Apg1An.

Thus, A1\, ' < ¢ = max{|a|,|b]|}. Now, using the Christoffel-Darboux identity,

Sulf)(e0) = flan) = [ [0 = Flao)] Knltszo) w)

~ ~

= et [OEIE(G L 0Que0) = Gutt) G o)l

0

= /\n—l—l/\;l [<h,@n—|—1 > @n(xO) - <h7@n > @n+1($0)]7

where h(t) = (f(t) — f(x0))/(t — 20). But h is bounded (and continuous everywhere
except, possibly, at xg) by hypothesis (i), Ap41A; ! is bounded, and @n(l'o) is bounded by
hypothesis (ii). All that remains is to notice that the numbers ( h, @n ) are the generalized
Fourier coefficients of the bounded, Riemann integrable function h, and so must tend to

zero (since, in fact, they’re even square summable). [
We end this section with a negative result, due to Nikolaev:

Theorem. There is no weight w such that every f € C|a,b] has a uniformly convergent

expansion in terms of orthogonal polynomials. In fact, given any w, there is always some

f for which || f — S,(f)| is unbounded.
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Throughout, w denotes a fixed, positive (except possibly at finitely many points), Riemann
integrable weight function on [a,b], and we consider the inner product on C|a,b] defined

by
(f.a) = / F(2) () i) de,

and the associated (strictly convex) norm

b 1/2
[fll2 = /(. ) = (/ |f(:1i)|2w(:1;)d:1;> )

62. Prove that every inner product norm is strictly convex. Specifically, let (-,-) be an
inner product on a vector space X, and let ||z|| = /(x,2) be the associated norm.
Show that:

(a) ||z +y]|*+]|lz—y||* = 2(||z]|* +]|y||*) for all 2, y € X (the parallelogram identity).

(b) If ||| = r = |jy|| and if |}z — y|| = &, then || ZE2[* = #2 — (§/2)2. In particular,
H%H < r whenever x # y.

We define a sequence of polynomials (@, ) which are mutually orthogonal, relative to w,

by setting Qo(z) = 1, Q1(x) = x — ag, and

Qnt1(z) = (v —an)Qn(x) — by Qn_1(x), for n > 1, where

ap = <xQn7Qn >/<Qn7Qn> and bn = <xQn7Qn—1 >/<Qn—17Qn—1>

(and where x @), is shorthand for the polynomial x @, (x)).
63. Check that @, is a monic polynomial of degree exactly n.

64. If (P,) is another sequence of orthogonal polynomials such that P, has degree exactly
n, for each n, show that P, = «a,,@, for some «a,, # 0. In particular, if P, is a monic
polynomial, then P, = @,. [Hint: Choose a,, so that P, — a,Q, € P,—1 and note
that (P, — n@yn) L Pp_1. Conclude that P, — a,Q, = 0.]

65. Check that (2 Qn,Qn-1) = (Qn,Qr ), and conclude that b, > 0 for each n.
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67.

68.

69.

70.

71.

72.
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Given f € Cla,b] and n > 0, prove that ¢} € P, is the least-squares approximation
to f out of P, (with respect to w) if and only if

(F=deop) = [ () = gy ute) de =0

for every p € Pp,; that is, if and only if (f —¢)) L Ph.

If f € Cla,b] but f ¢ Py, show that f — ¢ changes sign at n + 1 (or more) points in
(a,b). [Hint: If not, show that there is a polynomial p € P,, such that (f —¢})p >0
(but (f —¢t)p # 0) in (a,b). Now appeal to the result in problem 66 to arrive at a

contradiction. ]

Show that the least-squares approximation to f(z) = ™ out of P,_; (relative to w)
is qr_1(2) = 2" — Qu(x).
Show that @, has n distinct, simple zeros in (a,b). [Hint: Combine 67 and 68.]

Given f € Cla,b], let p¥ denote the best uniform approximation to f out of P, and
let ¢ denote the least-squares approximation to f out of P,. Show that ||f — ¢} |2 <

IIf — pi|2 and conclude that || f — ¢*|l2 — 0 as n — co.
Show that the Chebyshev polynomials of the first kind, (T,), and of the second kind,
(U,), satisfy the identities

To(z) = Un(z) — 2 Up—1(z) and (1 —22)Up_y(z) = 2 Tn(2) — Tng1(2).
Show that the Chebyshev polynomials of the second kind, (I, ), satisfy the recurrence

relation

Ung1(x) =22 Up(x) — Up—1(x), n>1,

where Up(z) = 1 and U;y(x) = 2x. [Please compare this with the recurrence relation

satisfied by the T;,’s!]
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Numerical integration, or quadrature, is the process of approximating the value of a definite
integral fab f(z)w(x)dx based only on a finite number of values or “samples” of f (much

like a Riemann sum). A linear quadrature formula takes the form

[ fautode = Y Auf)

where the nodes (x1) and the weights (A) are at our disposal. (Note that both sides of

the formula are linear in f.)

Example. Consider the quadrature formula

I(f) = | fla Z f(2k+1> = L.(f).

-1 k——n

If f is continuous, then we clearly have I,(f) — f_ll f asn — oco. (Why?) But in the

2

particular case f(x) = x* we have (after some simplification)

n—1

_ 1 Z <2k+1> _ #g(%Jrl)? —

1
6n2’

LN

That is, | I,(f) — I(f)]| = 1/6n?. In particular, we would need to take n > 130 to get
1/6n* < 107°, for example, and this would require that we perform over 250 evaluations
of f. We’d like a method that converges a bit faster! In other words, there’s no shortage

of quadrature formulas—we just want faster ones.

One reasonable requirement for our proposed quadrature formula is that it be exact

for polynomials of low degree. As it happens, this is easy to come by.

Lemma 1. Given w(z) on [a,b] and nodes a < 1 < -+ < x, < b, there exist unique

weights Ay, ..., A, such that

[ pereteds = 3" Aipta
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for all polynomials p € P,,_1.

Proor. Let ¢q,...,0, be the Lagrange interpolating polynomials of degree n — 1 associ-
ated to the nodes z1,...,z,, and recall that we have p = >""_ p(z;)(; for all p € Pp_;.

Hence,

/abp(:z:)w(x)dx = ;p(xi)/ab&(x)w(x)dx_

That is, A; = fab li(x) w(x)de works. To see that this is the only choice, suppose that

/ o)) de = 3 Bipler)

is exact for all p € P,_1, and set p = (;:

A = / Ci(x)w(z)de = ZBizj(xi) = B;,. O

The point here is that ¢1,..., ¢, form a basis for P,_; and integration is linear; thus,
integration is completely determined by its action on the basis—that is, by the n values
Ar=I),1=1,...,n.

Said another way, the n point evaluations 6;(p) = p(z;) satisfy Pn_i N ([ )iz, ker§;) =
{0}, and it follows that every linear, real-valued function on P, _; must be a linear com-
bination of the ¢;’s. Here’s why: Since the x;’s are distinct, P,,_1; may be identified with
R™ by way of the isomorphism p — (p(x1),...,p(xyn)). A linear, real-valued function on
Prn—1 must, then, correspond to some linear, real-valued function on R”. In other words,
it’s given by inner product against some fixed vector (Aq,..., A, ); in particular, we must
have I(p) = 00, Aip(a).

In any case, we now have our quadrature formula: For f € C[a,b] we define I,,(f) =
Yo A fz), where A; = fab li(x)w(x)dz. But notice that the proof of our last result
suggests an alternate way of writing our quadrature formula. Indeed, if L,_1(f)(zx) =
S, f(zi)li(x) is the Lagrange interpolating polynomial for f of degree n — 1 based on

the nodes xy,...,x,, then

[Tt uterde = 3 s [ e wade = 3 A fe)
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In summary, I,(f) = I(L,—1(f)) ~ I(f); that is,

L) = S Asw) = [P ed ~ [ fe)ew s = 1)

where L, is the Lagrange interpolating polynomial of degree n — 1 based on the nodes

21,...,2,. This formula is obviously exact for f € P,_1.
It’s easy to give a bound on |I,(f)| in terms of || f||; indeed,
n n
LA < YAl )] <IIf) (Z |Ai|> :
i=1 =1
By considering a norm one continuous function f satisfying f(x;) = sgnA; for each i =
1,...,n,it’s easy to see that ) ., |A;| is the smallest constant that works in this inequality.

In other words, A, = > i, |Ai], n = 1,2,..., are the “Lebesgue numbers” for this process.

As with all previous settings, we want these numbers to be uniformly bounded.

If w(z) =1 and if f is n-times continuously differentiable, we even have an error

estimate for our quadrature formula:

/bf—/bLn—l(f)‘ < [V pspi= Z0rn [ TLie -l ae
a a @ a4 =1

(recall the Theorem on page 72 of “A Brief Introduction to Interpolation”). As it happens,

the integral on the right is minimized when the z;’s are taken to be the zeros of the

Chebyshev polynomial U,, (see Rivlin, page 72).

The fact that a quadrature formula is exact for polynomials of low degree does not by
itself guarantee that the formula is highly accurate. The problem is that > | A; f(x;) may
be estimating a very small quantity through the cancellation of very large quantities. So,
for example, a positive function may yield a negative result in this approximate integral.
This wouldn’t happen if the A;’s were all positive—and we’ve already seen how useful
positivity can be. Our goal here is to further improve our quadrature formula to have this
property. But we have yet to take advantage of the fact that the z;’s are at our disposal.
We'll let Gauss show us the way!

Theorem. (Gauss) Fix a weight w(x) on [a,b], and let (Q,,) be the canonical sequence of

orthogonal polynomials relative to w. Given n, let x1,...,x, be the zeros of @), (these all
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lie in (a,b)), and choose Ay,..., A, so that the formula Y . | A;f(x;) ~ fab flz)w(x)de
is exact for polynomials of degree less than n. Then, in fact, the formula is exact for all

polynomials of degree less than 2n.

PrROOF. Given a polynomial P of degree less than 2n, we may divide: P = Q,R + S,

where R and S are polynomials of degree less than n. Then,

/abP(:z:)w(:I:)dx = /ab Qn(z) R(z)w(z)dz + /ab S(z)w(z)dz
= /ab S(x)w(z)dx, since deg R < n

= ZAiS(xi), since deg S < n.
=1

But P(x;) = Qn(xi) R(x;) + S(x;) = S(x;), since Qn(x;) = 0. Hence, fab P(z)w(z)dx =
Yo A;P(x;) for all polynomials P of degree less than 2n. O

Amazing! But, well, not really: Ps,—1 is of dimension 2n, and we had 2n numbers
T1,...,2, and Ay, ..., A, to choose as we saw fit. Said another way, the division algorithm
tells us that Pap—1 = QnPn—1® Prn-1. Since Q,Pn_1 C ker(1,,), the action of I,, on Pzp_1
is the same as its action on a “copy” of P,_1.

In still other words, since any polynomial that vanishes at all the x;’s must be divisible
by Q. (and conversely), we have Q,Pn_1 = Pan—1 N (i, ker d;) = ker(l,, |p,,_,). Thus,
I,, “factors through” the quotient space Pop—_1/QnPrn—1 = Prn_1.

Also not surprising is that this particular choice of x;’s is unique.

Lemma 2. Suppose that a < v1 < --- < x, < b and Ay,..., A, are given so that the
equation fab P(z)w(z)dx =Y, A;P(x;) is satisfied for all polynomials P of degree less

than 2n. Then, x1,...,x, are the zeros of ().

PrROOF. Let Q(z) = [[;_,(z — 2;). Then, for £ < n, the polynomial @ - Q¢ has degree
n + k < 2n. Hence,

[ e @uintde = 3" 4 Qulr) =0
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Since () is a monic polynomial of degree n which is orthogonal to each Q, & < n, we must

have ) = @),,. Thus, the z;’s are actually the zeros of Q,,. [

According to Rivlin, the phrase Gaussian quadrature is usually reserved for the specific
quadrature formula whereby f_ll f(z)dx is approximated by f_ll(Ln_l(f))(:Jc) dzx, where
L,,—1(f) is the Lagrange interpolating polynomial to f using the zeros of the n-th Legendre
polynomial as nodes. (What a mouthful!) What is actually being described in our version

of Gauss’s theorem is Gaussian-type quadrature.

Before computers, Gaussian quadrature was little more than a curiosity; the roots
of @, are typically irrational, and certainly not easy to come by. By now, though, it’s
considered a standard quadrature technique. In any case, we still can’t judge the quality

of Gauss’s method without a bit more information.

Gaussian-type Quadrature

First, let’s summarize our rather cumbersome notation.

orthogonal approximate
polynomial ZETOS weights integral
Ql l’gl) Agl) Il
Q2 2P 2 AP AP I
Qs x§3)7xg3)7xg3) Ag3)7Ag3)7Ag3) Is

Hidden here is the Lagrange interpolation formula L,_(f) = Y., f(xgn))ﬁgn_l), where

Kgn_l) denote the Lagrange polynomials of degree n — 1 based on l’gn) e ,:1;5{‘). The n-th

Y

quadrature formula is then

I(f) = / Lo_1(f)(2)w(x)de = ZA§">f(x§">) ~ / F(x)w(z)de,

which is exact for polynomials of degree less than 2n.

By way of one example, Hermite showed that A;Cn) = 7 /n for the Chebyshev weight
w(z) = (1 —22)7"/? on [~1,1]. Remarkably, A;Cn) doesn’t depend on k! The quadrature
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formula in this case reads:

/5(1—7 : Zf( S )

Or, if you prefer,

! ( 2k—1 > 2%k —1
Z S1n .
— 2n

(Why?) You can find full details in Natanson’s Constructive Function Theory, Vol. III.

3|>]

The key result, due to Stieltjes, is that [,, is positive:
Lemma 3. Agn), LA >0 and Yo, Agn) = fab w(x)de.

PROOF. The second assertion is obvious (since I,,(1) = I(1)). For the first, fix 1 <j <n
and notice that (K(n 1)) is of degree 2(n — 1) < 2n. Thus,

b 2 n 2
0 < (n7 )y = / {4"—1)(&;)} we)de = Y A {4"‘”@5"5} — 4l
=1

because Kgn_l)(x(n)) =0d;;. O
Now our last calculation is quite curious; what we’ve shown is that
(n) ! n1) S FOIRTPRRE
A7 = /a ;s (v)w(x)dx = /a {Kj (:1;)} w(x)de.
The same calculation as above also proves
Corollary. <€§n_1),£§"_1)> =0 fori # j.

Since Agn), . ,AEJ‘) > 0, it follows that I,,(f) is positive; that is, I,(f) > 0 whenever

f > 0. The second assertion in Lemma 3 tells us that the I,,’s are uniformly bounded:

n b
LGOI < IS AY = |f] / w(e) de
=1 a

and this is the same bound that holds for I(f f flz)w(x)de itself. Given all of this,
proving that I,,(f) — I(f) is a piece of cake. The follovvmg result is again due to Stieltjes
(4 la Lebesgue).
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Theorem. In the above notation, |I,,(f)—I(f)| <2 <fab w(x) d:z;) Esn—1(f). In particular,
I.(f) = I(f) for evey f € C[a,b].

PROOF. Let p* be the best uniform approximation to f out of Ps,_;. Then, since
I,(p*) = I(p*), we have

|I(f)_1n(f)| < |I(f—p*)| + |In(f—p*)|

b k13
Hf_p*H/ w(z)dx + ||f —p* ZAEn)
¢ =1

IA

b

= 2Hf—p*H/ w(z)de = 2E2n_1(f)/ w(x)de. O

a

Computational Considerations

You’ve probably been asking yourself: “How do I find the A;’s without integrating?” Well,

first let’s recall the definition: In the case of Gaussian-type quadrature we have

A7 = [t = [ o O e

(because “W” is the same as @), here—the x;’s are the zeros of @},,). Next, consider the

onl) = / Gl = 9nl) 1) .

Since t — x divides @, (t) — @ (x), note that ¢, is actually a polynomial (of degree at most
n — 1) and that

function

b
@n(l'gn)) = Qn(fi)

?

w(t)ydt = AMQL (™).

a t—2x
Now Q%(Q?En)) is readily available; we just need to compute c,on(:zjgn)).
Claim. The p,’s satisfy the same recurrence formula as the Q),,’s

pnt1(z) = (2 —an)pn(r) —bnpn-(z), n=>1,

but with different starting values

wo(z) =0, and v1(x) = / w(z) da.
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PrROOF. The formulas for ¢ and ¢; are obviously correct, since Qo(z) =1 and Q1 (x) =
x — ag. We only need to check the recurrence formula itself.

@n—l—l(l') _ / Qn—l-l(t) — Qn—l—l(l') w(t) dt

t—«x

— /b (t - an) Qn(t) - ann—l(t) — (:1; — an) Qn(x) + ann—l(x)

t—«x

w(t) dt

t—«x

_ (l‘ . an)/ Qn(ti : i?n(x) w(t) dt — bn/ Qn—l(t) — Qn—l(x) w(t) dt

= (¥ = an) pn(r) = bn pp-1(x),

since fab Qn(H)w(t)dt =0. O
Of course, the derivatives @, satisfy a recurrence relation of sorts, too:

Q;H-l(l') = Qn(z) + (z —ay) Q;z(l') — by Q;z—l(l')

But Q%(Q?En)) can be computed without knowing @/, (z). Indeed, @, (z) = [[1—,(z — J}En))
so we have Q%(Q?En)) = Hj;éi(:zjgn) — :I;En))

The weights Agn), or Christoffel numbers, together with the zeros of (),, are tabulated
in a variety of standard cases. See, for example, Handbook of Mathematical Functions with

Formulas, Graphs, and Tables, by Abramowitz and Stegun, eds. In practice, of course, it’s

enough to tabulate data for the case [a,b] =[—1,1].

Applications to Interpolation

Although L, (f) isn’t typically a good uniform approximation to f, if we interpolate at the
zeros of an orthogonal polynomial Q,,41, then L, (f) will be a good approximation in the
| - |l1 or || - ||]2 norm generated by the corresponding weight w. Specifically, by rewording
our earlier results, it’s easy to get estimates for each of the errors fab |f — Ln(f)|w and

fab |f — La(f)]? w. We use essentially the same notation as before, except now we take
n+1

La(f) = Y fa™) ™),
=1

where :L'gn—i_l), e ,:1;5;:'_11) are the roots of @),41 and Kgn) is of degree n. This leads to a

quadrature formula that’s exact on polynomials of degree less than 2(n 4 1).
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K(")

As we’ve already seen, Kgn), ... Uy are orthogonal and so || L, ( f)||2 may be computed

exactly.

Lemma. [L(f)ls < [IF] (J ww)ds) """

PROOF. Since L,(f)?* is a polynomial of degree < 2n < 2(n + 1), we have

IZn ()12

/deﬁVw@ﬁw

n+1 41 2
n+1 n+1 n nt+1
:ZAE‘JF) Zf($§+)>5§)<$§+)>]
7=1 Li=1
« (nt1) [ o0 (nr1y]?
= > 4 _f<“'j )}
J=1
2 n 2
< APS AT = g /w(x)d:z;. 0
j=1 a

1/2
Please note that we also have || f]|2 < || f]] <fab w(x) d:z;) ; that is, this same estimate

holds for || f||2 itself.

As usual, once we have an estimate for the norm of an operator, we also have an

analogue of Lebesgue’s theorem.

Theorem. |[|f — Ln(f)ll2 < 2<fabw(:1;)d:1;>1/2 E.(f).

PROOF. Here we go again! Let p* be the best uniform approximation to f out of P, and

use the fact that L,(p*) = p* to see that:

If = La(Hllz < NF =2 ll2 + 1Ln(f = P7)ll2

; 1/2
Hf—wu(/zwwdﬁ

1/2

IA

+Hf—ﬁH</1M@¢a

Hence, if we interpolate f € C[a,b] at the zeros of (@), then L,(f) — fin || - |2

norm. The analogous result for the || -||; norm is now easy:
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Corollary. ["|f(x) — Ln(f)(x)|w(z)de < 2<fa" w(:z;)d:z;) Ea(f).

Proor. We apply the Cauchy-Schwarz inequality:

/ () = La(f)(@)| w(e)de = / (&) = La( ()] /(@) v/oole) da

b 1/2 b
(/ |f<$>—Ln<f><x>|2w<w>dx> (/ w(“')dx)

< 2En(f)/ w(x)de. O

1/2

IA

Essentially the same device allows an estimate of fab f(z)dx in terms of fab flz)w(x)de

(which may be easier to compute).

Corollary. If fab w(z)~1 dx is finite, then

/ (@) = La(f)(a)] do = / (&) = Lo(f)(@) Vool2) da

w(z)

b 1/2 b 1/2
([ s wnss)” ([ )
b 1/2 b 1/2
< 2E,(f) (/ w(x) d:z;) (/ w(l:zj) dx) O

In particular, the Chebyshev weight satisfies

! dx ! T
—— =7 and vV1—22dr=—.
/_1\/1—:1?2 /—1 2

Thus, interpolation at the zeros of the Chebyshev polynomials (of the first kind) would

IA

provide good, simultaneous approximation in each of the norms || - |1, || - |2, and || - ||.
The Moment Problem

Given a positive, continuous weight function w(x) on [a,b], the number

b
e = / ¥ w(z) de

is called the k-th moment of w. In physical terms, if we think of w(z) as the density of a
thin rod placed on the interval [«,b], then pg is the mass of the rod, /g is its center of
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mass, [z is its moment of inertia (about 0), and so on. In probabilistic terms, if po = 1,
then w is the probability density function for some random variable, 1 is the expected
value, or mean, of this random variable, and p15 — 7 is its variance. The moment problem
(or problems, really) concern the inverse procedure. What can be measured in real life are

the moments—can the moments be used to find the density function?

Questions: Do the moments determine w? Do different weights have different mo-
ment sequences? If we knew the sequence (), could we find w? How do we tell if a
given sequence (py) is the moment sequence for some positive weight? Do “special”

weights give rise to “special” moment sequences?

Now we’ve already answered one of these questions: The Weierstrass theorem tells us

that different weights have different moment sequences. Said another way, if
b
/ka(:p)dw:0 for all k =0,1,2,...,

then w = 0. Indeed, by linearity, this says that fab p(z)w(x)dx = 0 for all polynomials p
which, in turn, tells us that fab w(z)?* dv = 0. (Why?) The remaining questions are harder

to answer. We'll settle for simply stating a few pertinent results.

Given a sequence of numbers (uy ), we define the n-th difference sequence (A" uy) by

A% = pig
Al = pie — pie41

A"y = A"_l/,Lk — A"_l/,Lk_H, n > 1.

For example, A%py =y, — 2pp41 + pigs2. More generally, induction will show that
A = —1) ;.
[k Z( 1) (Z-)/Meﬂ
1=0
In the case of a weight w on the interval [0, 1], this sum is easy to recognize as an integral.

Indeed,

/0 (L= 2" () de = >y (”) / b () dr — imy @’“"““'

In particular, if w is nonnegative, then we must have A"uy > 0 for every n and k. This

observation serves as motivation for
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Theorem. The following are equivalent:
(a) (uk) is the moment sequence of some nonnegative weight function w on [0,1].
(b) A"uy > 0 for every n and k.

(¢) aopo+ arpr + -+ anpn > 0 whenever ag + a1 + -+ + apa™ >0 for all 0 < < 1.

The equivalence of (a) and (b) is due to Hausdorff. A real sequence satisfying (b) or

(¢) is sometimes said to be positive definite.

Now dozens of mathematicians worked on various aspects of the moment problem:
Chebyshev, Markov, Stieltjes, Cauchy, Riesz, Fréchet, and on and on. And several of
them, in particular Cauchy and Stieltjes, noticed the importance of the integral fab % dt
in attacking the problem. (Compare this expression to Cauchy’s integral formula.) It was

Stieltjes, however, who gave the first complete solution to such a problem—developing his
AW (1)

—-), his own variety of continued fractions, and planting

own integral (by considering fab
the seeds for the study of orthogonal polynomials while he was at it! We will attempt to

at least sketch a few of these connections.

To begin, let’s fix our notation: To simplifiy things, we suppose that we’re given a
nonnegative weight w(x) on a symmetric interval [—a, a], and that all of the moments of
w are finite. We will otherwise stick to our usual notations for (@), the Gaussian-type

quadrature formulas, and so on. Next, we consider the moment-generating function:

Cwl) S
Lemma. If © ¢ [—a,a], then / P dt = s
e k=0
PROOF ! ! ! i : d th iformly b
L —— == = ———, and the sum converges uniformly because
r—t x 1—(t/x) k1’ & Y

k=0
|t/x] < af|x| < 1. Now just multiply by w(¢) and integrate. [

By way of an example, consider the Chebyshev weight w(z) = (1—2?)""/% on [—1,1].

For x > 1 we have

/_1 (x_t)d\t/m = 7:1;:_1 (set t =2u/(1 4 u?))
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_771_|_1 1_|_1-3 1 1_|_
o 2 2? 22020 gt ’
using the binomial formula. Thus, we’ve found all the moments:
/1 dt
= = T
T vie
e la 0
ot = | Vize

bt 1-3-5---(2n —1)

Hon = » m = an’ .

Stieltjes proved much more: The integral fja % dt is actually an analytic function of

v in C\ [—a,a]. In any case, since x ¢ [—a, a], we know that — is continuous on [—a,a].

In particular, we can apply our quadrature formulas (and Stieltjes theorem, p. 132) to

write

Cw(t) s A
/ x—ﬁ”_7£&§: (m)

—a i=1 ¥ — T

and these sums are recognizable:

. A(‘n) ‘Pn(x)
Lemma. —r = .
; T — :L'En) Qn(l')

PROOF. Since ¢, has degree < n and c,on(:zjgn)) # 0 for any ¢, we may appeal to partial-

fractions to write

() pn(2) L

Qn(z) (x—xﬁn))---(x—x%")) - i:1$_$§n)

where ¢; is given by

(n)
() _oenl® )y N
b= Q)

Now here’s where the continued fractions come in: Stieltjes recognized the fact that

Pnt1() _ bo
Qnt1(7) (z — ap) — ( by

r—ay)—

(z —an)
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(which can be proved by induction), where by = fab w(t) dt. More generally, induction will

show that the n-th convergent of a continued fraction can be written as

An P1
By q1 — P2
q2 —
_ Pn
dn
by means of the recurrence formulas
Ag =0 By=1
Ar=p By =q
A, = QnAn—l ‘I’pnAn—Z B, = Qan—l ‘I’pan—Z
where n = 2,3,4,.... Please note that A,, and B,, satisfy the same recurrence formula,

but with different starting values (as is the case with ¢, and @,).

Again using the Chebyshev weight as an example, for > 1 we have

vis B ! dt B vis
@21 /_1 (x —t)W1—12 . 1/2
1/4
1/4

since a, = 0 for all n, by = 1/2, and b, = 1/4 for n > 2. In other words, we’ve just found

a continued fraction expansion for (z? — 1)71/2,

Appendix

Finally, here is a brief review of some of the fancier bits of linear algebra used in this

chapter. To begin, we discuss sums and quotients of vector spaces.

Each subspace M of a finite-dimensional X induces an equivalence relation on X by
r~y <<= v —y €M

Standard arguments show that the equivalence classes under this relation are the cosets

(translates) « + M, + € X. That is,

r+M=y+M <—= v—yeM < x~y.
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Equally standard is the induced vector arithmetic

(c+M)+(y+M)=(x+y)+M and ale + M) = (ax) + M,

where z, y € X and o € R. The collection of cosets (or equivalence classes) is a vector
space under these operations; it’s denoted X /M and called the quotient of X by M. Please
note the the zero vector in X/M is simply M itself.

Associated to the quotient space X /M is the quotient map g(x) = v + M. It's easy
to check that ¢ : X — X/M is a vector space homomorphism with kernel M. (Why?)

Next we recall the isomorphism theorem.
Theorem. Let T : X — Y be a linear map between finite-dimensional vector spaces, and

let ¢ : X — X/kerT be the quotient map. Then, there exists a (unique, into) isomorphism
S:X/kerT — Y satisfying S(q(x)) = T(x) for every x € X.

PROOF. Since ¢ maps onto X/ker T, it’s “legal” to define a map S : X/kerT — Y by
setting S(q(x)) = T(x) for @ € X. Please note that S is well-defined since

Tz)=T(y) < T(r—y)=0 < z—y€kerT
= gl —y) =0 = q(z) = qly).

It’s easy to see that S is linear and so precisely the same argument as above shows that S

1s one-to-one. [

Corollary. Let T : X — Y be a linear map between finite-dimensional vector spaces.

Then, the range of T is isomorphic to X/ kerT.



MATH 682 The Muntz Theorems

For several weeks now we've taken advantage of the fact that the monomials 1,z,z2,...
have dense linear span in C[0,1]. What, if anything, is so special about these particular
powers? How about if we consider polynomials of the form > ;_, akku; are they dense,
too? More generally, what can be said about the span of a sequence of monomials (z*"),
where A\g < Ay < Ay < -+-7 Of course, we'll have to assume that A\g > 0, but it’s not hard
to see that we will actually need A\g = 0, for otherwise each of the polynomials > ;_, apz
vanishes at © = 0 (and so has distance at least 1 from the constant 1 function, for example).
If the A,’s are integers, it’s also clear that we’ll have to have \,, — oo as n — oco. But
what else is needed? The answer comes to us from Miintz in 1914. (You sometimes see

the name Otto Szasz associated with Muntz’s theorem, because Szasz proved a similar

theorem at nearly the same time (1916).)

Theorem. Let 0 < A\g < A\; < Ay < ---. Then, the functions (:1;)‘") have dense linear span
in C[0,1] if and only if \g =0 and Y | A1 = oco.

What Miuntz is trying to tell us here is that the A,’s can’t get big too quickly. In
particular, the polynomials of the form Y ;_, arz® are evidently not dense in C[0,1]. On
the other hand, the \,;’s don’t have to be unbounded; indeed, Muntz’s theorem implies an
earlier result of Bernstein from 1912: If 0 < a1 < a3 < .-+ < K (some constant), then

L, 22 ... have dense linear span in C[0,1].

Before we give the proof of Mintz’s theorem, let’s invent a bit of notation: We write

X, = {Zakx)"‘“ DAQ, ...y Oy ER}

k=0

and, given f € C[0,1], we write dist(f, X, ) to denote the distance from f to the space
spanned by 1,22, ... 2™ . Let’s also write X = US_, X,. That is, X is the linear span of
>0

the entire sequence (2*7)% . The question here is whether X is dense, and we’ll address

the problem by determining whether dist(f, X,,) — 0, as n — oo, for every f € C[0,1].

If we can show that each (fixed) power 2™ can be uniformly approximated by a linear

combination of #*’s, then the Weierstrass theorem will tell us that X is dense in C'[0,1].
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(How?) Surprisingly, the numbers dist(z™, X,,) can be estimated. Our proof won'’t give

the best estimate, but it will show how the condition Y °_ A;! = oo comes into the
picture.
- m
Lemma. Let m > 0. Then, dist(z™,X,) < H 1 - —
Ak

PrOOF. We may certainly assume that m # A, for any n. Given this, we inductively

define a sequence of functions by setting Po(x) = 2™ and

x

1
Pi(z) = (/\1—m):1:>‘1/ Mg g = _phgmea)l o gm
X

By induction, each P, is of the form =™ — Y, _, agx™* for some scalars (ay):

1
P,(x) = (/\n—m):zj)‘"/ i An -1 () dt
1 n—1
= (/\n — m):z;)‘"/ R L Zakt)‘k] dt
z k=0
n—1 a
o m An k A An
= 2™ — 2™ 4+ (N, —m) kz_o m(x )

Finally, || Ps| = 1 and ||P,|| < |1 = 3*| || Pn—1]|, because

1
Ay —
|/\n—m|x>‘"/ p1= e gt = |A7m|(1—ﬁn) < ‘1-% .

Thus,
dist(a™, X,) < ||Pall <

The preceding result is due to v. Golitschek. A slightly better estimate, also due to

v. Golitschek (1970), is dist(z™,X,,) < [[r_; |Z+§: .

Now a well-known fact about infinite products is that, for positive a;’s, the product

Hzil‘l - ak‘ diverges (to 0) if and only if the series >~ | ax diverges (to oo) if and only
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if the product Hzil‘l + ak‘ diverges (to oo). In particular, szl‘l — %‘ — 0 if and only
if >, ;—k — oo. That is, dist(z™, X,,) = 0 if and only if >~ , ;—k = oo. This proves the

“backward” direction of Miintz’s theorem.

We'll prove the “forward” direction of Muntz’s theorem by proving a version of Mtuntz’s
theorem for the space L2[0,1]. For our purposes, L2[0,1] denotes the space C[0,1]

endowed with the norm iy

1

Il = ([ 1orar)
although our results are equally valid in the “real” space L3[0,1] (consisting of square-
integrable, Lebegue measurable functions). In the latter case, we no longer need to assume
that A\ = 0, but we do need to assume that each A\, > —1/2 (in order that 222 be
integrable on [0,1]).

Moo 2™ can be computed

Remarkably, the distance from f to the span of 20, x
exactly in the Ly norm. For this we’ll need some more notation: Given linearly independent

vectors fi,..., fr In an inner product space, we call
<f17f1> <f17fn>

G(fi,... fn) = : : = det[(fi, fi)],
(fasfr) - (fasfn)

the Gram determinant of the fi’s.

Lemma. (Gram) Let F be a finite dimensional subspace of an inner product space V,

and let ¢ € V' \ F. Then, the distance d from g to F is given by

d2 — G(gvflv--'vfn)
G(flv"'vfn) 7

where f1,..., fn is any basis for F.

PROOF. Let f =37 a;f; be the best approximation to g out of F. Then, since g — f
is orthogonal to F', we have, in particular, ( f;,¢) = ( f;,g) for all j; that is,

7

Zai<fjvfi> = <fjvg>7 jzlv"'vn' (*)

=1
Since this system of equations always has a unique solution ay,...,a,, we must have

G(fi,...,fn) # 0 (and so the formula in our Lemma at least makes sense).
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Next, notice that

> ={g—=F9—F) = (9-Fa9) = {9.9) — (9, f);
in other words,

d2+2 (9, fi) = (9,9). ()

Now consider (*) and (*#) as a system of n + 1 equations in the n+ 1 unknowns ay, ..., a,,

and d?: in matrix form we have

1 (g, f1) - (g, fa) d? (9,9)
0 <f17f1> <f17fn> aj <f1,g>

. (farg)

S

0 <fn7f1> <fn7fn>
Solving for d? using Cramer’s rule gives the desired result; expanding along the first

column shows that the matrix of coefficients has determinant G(fi,..., fn), while the

matrix obtained by replacing the “d column” by the right-hand side has determinant
G(g,fl,...,fn). ]

Note: By our last Lemma and induction, every Gram determinant is positive!

In what follows, we will still use X,, to denote the span of #*°, ..., z* but now we’ll

write dist 2 (f, X,,) to denote the distance from f to X,, in the Ly norm.

Theorem. Let m, \y > —1/2 for k =0,1,2,.... Then,

[m — gl

|
disto(z™. X)) = ——=t [ Akl
ist o (2™, Xn) x/2m—|—1kl;[0m—|-/\k—|-1

ProOOF. The proof is based on a determinant formula due to Cauchy:

a1+b1 a1—|—bn
[+v)| = = [](ai — a;)(b: = b)).
i . . i>j

an+b1 T an+bn

If we consider each of the a;’s and b;’s as “variables,” then each side of the equation is a

polynomial in ay,...,a,,b1,...,b,. (Why?) Now the right-hand side clearly vanishes if
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a; = aj or b; = b; for some 7 # j, but the left-hand side also vanishes in any of these cases.
Thus, the right-hand side divides the left-hand side. But both polynomials have degree
n — 1 in each of the a;’s and b;’s. (Why?) Thus, the left-hand side is a constant multiple
of the right-hand side. To show that the constant must be 1, write the left-hand side as

1 a1—|—b1 - a1+b1

ai1+bo ai1+by,

as+bs 1 L. as+bs

a2+b1 a2+bn
H(ai +b;) ) . :
i#] : B :
an+by antby 1

an+b1 an+bn—1

and now take the limit as b — —ay, bs — —as, etc. The expression above tends to

Hi;éj(ai — a;), as does the right-hand side of Cauchy’s formula.

Now,<:1;p,:1;q>:f01:1;p+qd:1;— for p, ¢ > —1/2, so

Pt

1 (N = N2
G(x)\C)?"'vx)\n) = det {7} — Hl>]< ]) 7
Ait A1 [L,;(A+A+1)

with a similar formula holding for G(z™, 20, ..., 2 ). Substituting these expressions into

our distance formula and taking square roots finishes the proof. [l

Now we can determine exactly when X is dense in Ly[0,1]. For easier comparison to

the C[0,1] case, we suppose that the \,,’s are nonnegative.

Theorem. Let 0 < A\g < A\; < Ay < ---. Then, the functions (:1;)‘") have dense linear span
in L,[0,1] if and only if Y~ A1 = oo,

Proor. If> >, ﬁ < 00, then each of the products szl‘l ‘ and [[;_ 1‘1 + (m+1)
converges to some nonzero limit for any m not equal to any Aj. Thus, dist o (2™, X)) 7L> 0,
as n — oo, for any m # Ay, k = 0,1,2,.... In particular, the functions (x*7) cannot have
dense linear span in L2[0,1].

(m+1)

Conversely, if Y77, )\ = 00, then szl‘l ‘ diverges to 0 while [];_ 1‘1 +
diverges to +00. Thus, dist2(2™,X,) — 0, as n — oo, for every m > —1/2. Since the

polynomials are dense in L3[0,1], this finishes the proof. [

Finally, we can finish the proof of Mintz’s theorem in the case of C'[0,1]. Suppose
that the functions (z**) have dense linear span in C[0,1]. Then, since ||f]2 < || f]|, it
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follows that the functions (z*») must also have dense linear span in L,[0,1]. (Why?)
Hence, Y 07 1)\ =oco. [

Just for good measure, here’s a second proof of the “backward” direction for C[0,1]

based on the L,[0, 1] version. Suppose that > 7 = o0, and let m > 1. Then,

nl)\

1
g — e e
ey [
1
AE
0
1
[
1

) have dense linear span in Ly[0, 1] because >, _; x== = oo.
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A g apa™*

k=0
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9 1/2

dt
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Now the functions (l’)‘k_l

Thus, we can find a’s so that the right-hand side of this inequality is less than some ¢.

Since this estimate is independent of x, we’ve shown that

7

A E apz™

k=0

max < €. [l

0<z<1

Application. Let 0 = \g < Ay < Ay < -+~ with) >~ A1 = oo, and let f be a continuous
function on [0, c0) for which ¢ = tlim f(t) exists. Then, f can be uniformly approximated
— 00

—)\nt)oo

by finite linear combinations of the exponentials (e -

PrOOF. The function g(x) = f(—logx), for 0 < < 1, and ¢(0) = ¢, is continuous on
[0,1]. In other words, g(e™") = f(t) for each 0 <t < co. Thus, given ¢ > 0, we can find

n and ag,...,a, such that

7

glx) — Z apa™

k=0

7

f(t) — Z ape Mt

k=0

max < €. [l

0<z<1

= max
0<t<o0




MATH 682 The Stone-Weierstrass Theorem

To begin, an algebra is a vector space A on which there is a multiplication (f,g) — fg

(from A x A into A) satisfying

(i) (fg)h = f(gh), for all f, g. h € A;
(i) flg+h)=fg+ fhand (f +g)h = fg+gh, forall f, g, h € A;
(iii) a(fg) = (af)g = f(ag), for all scalars o and all f, g € A.

In other words, an algebra is a ring under vector addition and multiplication, together

with a compatible scalar multiplication. The algebra is commutative if

(iv) fg=gf, forall f, g € A.

And we say that A has an identity element if there is a vector ¢ € A such that
(v) fe=ef = f, forall f € A.
In case A is a normed vector space, we also require that the norm satisfy

(vi) [[fgll < £ IHIgl

(this simplifies things a bit), and in this case we refer to A as a normed algebra. If a
normed algebra is complete, we refer to it as a Banach algebra. Finally, a subset B of an
algebra A is called a subalgebra (of A) if B is itself an algebra (under the same operations);

that is, if B is a (vector) subspace of A which is closed under multiplication.

If A is a normed algebra, then all of the various operations on A (or A x A) are

continuous. For example, since

Ifg —hEll = [lfg — fk+ fk =Rkl < [fllllg = &I+ [[F[[If =Rl

it follows that multiplication is continuous. (How?) In particular, if B is a subspace (or

subalgebra) of A, then B, the closure of B, is also a subspace (or subalgebra) of A.

Examples

1. If we define multiplication of vectors “coordinatewise,” then R" is a commutative
Banach algebra with identity (the vector (1,...,1)) when equipped with the norm

Jelloe = max fel.
1<i<n
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2. It’s not hard to identify the subalgebras of R™ among its subspaces. For example, the
subalgebras of R? are {(z,0) : « € R}, {(0,y) : y € R}, and {(2,2) : « € R}, along
with {(0,0)} and R2.

3. Given a set X, we write B(X) for the space of all bounded, real-valued functions on
X. If we endow B(X) with the sup norm, and if we define arithmetic with functions
pointwise, then B(X) is a commutative Banach algebra with identity (the constant
1 function). The constant functions in B(X) form a subalgebra isomorphic (in every

sense of the word) to R.

4. If X is a metric (or topological) space, then we may consider C'(X), the space of all
continuous, real-valued functions on X. If we again define arithmetic with functions
pointwise, then C'(X) is a commutative algebra with identity (the constant 1 function).
The bounded, continuous functions on X, written Cy(X) = C(X) N B(X), form a
closed subalgebra of B(X). If X is compact, then Cy(X) = C(X). In other words,
if X is compact, then C(X) is itself a closed subalgebra of B(X) and, in particular,
C(X) is a Banach algebra with identity.

5. The polynomials form a dense subalgebra of C[a,b]. The trig polynomials form a
dense subalgebra of C?™. These two sentences summarize Weierstrass’s two classical

theorems in modern parlance and form the basis for Stone’s version of the theorem.

Using this new language, we may restate the classical Weierstrass theorem to read:
If a subalgebra A of C[a,b] contains the functions e(x) = 1 and f(x) = x, then A is
dense in Cla,b]. Any subalgebra of C[a,b] containing 1 and x actually contains all the
polynomials; thus, our restatement of Weierstrass’s theorem amounts to the observation

that any subalgebra containing a dense set is itself dense in C[a,b].

Our goal in this section is to prove an analogue of this new version of the Weierstrass
theorem for subalgebras of C(X ), where X is a compact metric space. In particular, we
will want to extract the essence of the functions 1 and x from this statement. That is, we
seek conditions on a subalgebra A of C(X) that will force A to be dense in C(X). The
key role played by 1 and z, in the case of C[a,b], is that a subalgebra containing these
two functions must actually contain a much larger set of functions. But since we can’t

be assured of anything remotely like polynomials living in the more general C(X) spaces,
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we might want to change our point of view. What we really need is some requirement on
a subalgebra A of C'(X) that will allow us to construct a wide variety of functions in A.
And, if A contains a sufficiently rich variety of functions, it might just be possible to show

that A is dense.

Since the two replacement conditions we have in mind make sense in any collection of

real-valued functions, we state them in some generality.

Let A be a collection of real-valued functions on some set X. We say that A separates
points in X if, given « # y € X, there is some f € A such that f(z) # f(y). We say that
A vanishes at no point of X if, given # € X, there is some f € A such that f(x) # 0.

Examples

6. The single function f(x) = « clearly separates points in [ a, b], and the function e(z) =
1 obviously vanishes at no point in [a,b]. Any subalgebra A of C[a,b] containing

these two functions will likewise separate points and vanish at no point in [a,b].

7. The set E of even functions in C[—1,1] fails to separate points in [—1,1]; indeed,
f(z) = f(—=) for any even function. However, since the constant functions are even,
E vanishes at no point of [—1,1]. It’s not hard to see that E is a proper closed
subalgebra of C'[—1,1]. The set of odd functions will separate points (since f(z) = «
is odd), but the odd functions all vanish at 0. The set of odd functions is a proper
closed subspace of C[—1,1], although not a subalgebra.

8. The set of all functions f € C[—1,1] for which f(0) = 0 is a proper closed subalgebra
of C[—1,1]. In fact, this set is a maximal (in the sense of containment) proper closed
subalgebra of C[—1,1]. Note, however, that this set of functions does separate points
in [—1,1] (again, because it contains f(z) = x).

9. It’s easy to construct examples of non-trivial closed subalgebras of C(X). Indeed,
given any closed subset Xo of X, the set A(Xo) ={f € C(X) : f vanishes on Xy} is
a non-empty, proper subalgebra of C'(X). It’s closed in any reasonable topology on
C(X) because it’s closed under pointwise limits. Subalgebras of the type A(Xy) are
of interest because they're actually ideals in the ring C(X). That is, if f € C(X),
and if ¢ € A(Xo), then fg € A(Xop).
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As these few examples illustrate, neither of our new conditions, taken separately, is
enough to force a subalgebra of C(X) to be dense. But both conditions together turn
out to be sufficient. In order to better appreciate the utility of these new conditions, let’s

isolate the key computational tool that they permit within an algebra of functions.

Lemma. Let A be an algebra of real-valued functions on some set X, and suppose that
A separates points in X and vanishes at no point of X. Then, given © # y € X and a,
be R, we can find an f € A with f(x) = a and f(y) = b.

PROOF. Given any pair of distinct points « # y € X, the set A = {(f(x), f(y)) : f € A}
is a subalgebra of R2. If A separates points in X, then A is evidently neither {(0,0)} nor
{(x,2) : € R}. If A vanishes at no point, then {(z,0) : € R} and {(0,y) : y € R} are
both excluded. Thus A = R2. That is, for any a, b € R, there is some f € A for which
(f(x), f(y)) = (a,0). O

Now we can state Stone’s version of the Weierstrass theorem (for compact metric
spaces). It should be pointed out that the theorem, as stated, also holds in C'(X) when
X is a compact Hausdorff topological space (with the same proof), but does not hold for

algebras of complex-valued functions over C. More on this later.

Stone-Weierstrass Theorem. (real scalars) Let X be a compact metric space, and let
A be a subalgebra of C(X). If A separates points in X and vanishes at no point of X,
then A is dense in C(X).

What Cheney calls an “embryonic” version of this theorem appeared in 1937, as a small
part of a massive 106 page paper! Later versions, appearing in 1948 and 1962, benefitted
from the work of the great Japanese mathematician Kakutani and were somewhat more
palatable to the general mathematical public. But, no matter which version you consult,
you'll find them difficult to read. For more details, I would recommend you first consult

Folland’s Real Analysis, or Simmons’s Topology and Modern Analysis.
As a first step in attacking the proof of Stone’s theorem, notice that if A satisfies the
conditions of the theorem, then so does its closure A. (Why?) Thus, we may assume that

A is actually a closed subalgebra of C'(X) and prove, instead, that A = C'(X). Now the

closed subalgebras of C(X) inherit more structure than you might first imagine.
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Theorem. If A is a subalgebra of C(X), and if f € A, then |f| € A. Consequently, A is
a sublattice of C(X).

PROOF. Let ¢ > 0, and consider the function |t| on the interval [—HfH, 1Kl ] By the
Weierstrass theorem, there is a polynomial p(t) = >_,_, ast* such that ‘ [t| — p(t) ‘ < ¢ for
all |[t| < ||f]]. In particular, notice that |p(0)| = |ao| < e.

Now, since |f(x)| < ||f]| for all # € X, it follows that ‘ |f(z)] — p(f(2)) ‘ < e for all
r € X. But p(f(2)) = (p(f))(x), where p(f) = apl + a1 f + -+ - + anf", and the function
g=aif+- --+a,f" € A, since A is an algebra. Thus, ‘ |f(z)] — g(x) ‘ < lagl + ¢ < 2¢
for all x € X. In other words, for each ¢ > 0, we can supply an element g € A such that
| |f] — gl| < 2e. That is, |f| € A.

The statement that A is a sublattice of C'(X) means that if we're given f, g € A, then
max{f,g} € A and min{f, g} € A, too. But this is actually just a statement about real

numbers. Indeed, since
2max{a,b} =a+b+ |a— 1| and 2min{a,b} = a+b—|a — b

it follows that a subspace of C'(X) is a sublattice precisely when it contains the absolute

values of all its elements. [

The point to our last result is that if we're given a closed subalgebra A of C'(X), then
A is “closed” in every sense of the word: Sums, products, absolute values, max’s, and
min’s of elements from A, and even limits of sequences of these, are all back in A. This is

precisely the sort of freedom we’ll need if we hope to show that A = C(X).

Please notice that we could have avoided our appeal to the Weierstrass theorem in this
last result. Indeed, we really only need to supply polynomial approximations for the single
function |z| on [—1, 1], and this can be done directly. For example, we could appeal instead
to the binomial theorem, using |z| = m The resulting series can be shown
to converge uniformly on [—1,1]. By side-stepping the classical Weierstrass theorem, it

becomes a corollary to Stone’s version (rather than the other way around).

Now we're ready for the proof of the Stone-Weierstrass theorem. As we’ve already

pointed out, we may assume that we’re given a closed subalgebra (subspace, and sublattice)
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A of C(X) and we want to show that A = C(X). We'll break the remainder of the proof

into two steps:

Step 1: Given f € C(X), € X, and € > 0, there is an element g, € A with g,(2) = f(z)
and g,(y) > f(y) —e for all y € X.

From our “computational” Lemma, we know that for each y € X, y # =, we can find
an hy, € A so that hy(z) = f(z) and hy(y) = f(y). Since hy — f is continuous and vanishes
at both x and y, the set U, = {t € X : hy(t) > f(t)—¢} is open and contains both = and y.
Thus, the sets (Uy)y=, form an open cover for X. Since X is compact, finitely many U,’s
suffice, say X = Uy, U---UU,,. Now set g, = max{hy,,...,hy, }. Because A is a lattice,
we have g, € A. Note that g,(z) = f(z) since each h,,; agrees with f at . And g, > f—¢
since, given y # x, we have y € U,, for some i, and hence g,(y) > hy,(y) > f(y) — .

Step 2: Given f € C(X) and ¢ > 0, there is an h € A with ||f — h|| < e.

From Step 1, for each © € X we can find some g, € A such that g,(x) = f(z) and
9:(y) > f(y)—e for all y € X. And now we reverse the process used in Step 1: For each z,
theset V, ={y € X : g(y) < f(y)+e} is open and contains x. Again, since X is compact,
X =V, U---V,  for some xy,...,2,. This time, set h = min{g,,,...,9.,.} € A. As
before, h(y) > f(y) — e for all y, since each g¢,, does so, and h(y) < f(y) + ¢ for all y, since

at least one g,, does so.

The conclusion of Step 2 is that A is dense in C(X); but, since A is closed, this means
that A=C(X). O

Corollary. If X andY are compact metric spaces, then the subspace of C(X xY') spanned
by the functions of the form f(x,y) = g(x)h(y), g € C(X), h € C(Y), is dense in C(X xY").

Corollary. If I is a compact subset of R", then the polynomials (in n-variables) are

dense in C(K).

Applications to C*7

In many texts, the Stone-Weierstrass theorem is used to show that the trig polynomials are
dense in C?7™. One approach here might be to identify C'?*™ with the closed subalgebra of
C[0,2r] consisting of those functions f satisfying f(0) = f(27). Probably easier, though,
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is to identify C*™ with the continuous functions on the unit circle T = {e!® : § € R} =

{z € C:|z| = 1} in the complex plane using the identification
feC™ - gecC(T), where g(e') = f(1).

Under this correspondence, the trig polynomials in C*™ match up with (certain) polyno-

mials in z = e and 7 = ¢7'". But, as we've seen, even if we start with real-valued trig

polynomials, we’ll end up with polynomials in z and Z having complex coefficients.

Given this, it might make more sense to consider the complex-valued continuous func-
tions on T. We’ll write Cc(T) to denote the complex-valued continuous functions on
T, and Cr(T) to denote the real-valued continuous functions on T. Similarly, C2Z™ is
the space of complex-valued, 27-periodic functions on R, while C2™ stands for the real-
valued, 27-periodic functions on R. Now, under the identification we made earlier, we have
Cco(T) = CZ™ and Cg(T) = CE™. The complex-valued trig polynomials in CZ™ now match
up with the full set of polynomials, with complex coefficients, in z = ¢* and z = e~*. We'll

use the Stone-Weierstrass theorem to show that these polynomials are dense in Cc(T).

Now the polynomials in z obviously separate points in T and vanish at no point of T.
Nevertheless, the polynomials in z alone are not dense in C¢(T). To see this, here’s a proof
that f(z) = Z cannot be uniformly approximated by polynomials in z. First, suppose that

we're given some polynomial p(z) = >, _, cgz*. Then,

27 27 27
/ f(eit)p(eit) dt —= / eit p(eit) dt — Z Ck/ ei(k-l—l)t dt = 07
0 0 0

and so

o = / " f(et)d = / T [F(e) — pl(e™)] .

because f(z) f(z) = |f(2)|* = 1. Now, taking absolute values, we get

2m ] ]
o < / F(e) — p(e)| dt < 2x]|f — p.

That is, || f — p|| = 1 for any polynomial p.

We might as well proceed in some generality: Given a compact metric space X, we’ll

write Cc(X) for the set of all continuous, complex-valued functions f : X — C, and we
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norm Ceo(X) by [|f]| = max |f(x)] (where |f(x)| is the modulus of the complex number
f(x), of course). Cc(X) is a Banach algebra over C. In order to make it clear which field
of scalars is involved, we’ll write Cr(X) for the real-valued members of Cc(X). Notice,

though, that Cr(X) is nothing other than C(X) with a new name.

More generally, we’ll write Ac to denote an algebra, over C, of complex-valued func-
tions and Agp to denote the real-valued members of A¢. It’s not hard to see that Ap is

then an algebra, over R, of real-valued functions.

Now if f is in Cc(X), then so is the function f(x) = f(z) (the complex-conjugate of
f(2)). This puts

Ref=5(f+F) and Imf=_(f~J)

N | —

the real and imaginary parts of f, in Cr(X) too. Conversely, if g, h € Cr(X), then
g+1ih € Co(X).

This simple observation gives us a hint as to how we might apply the Stone-Weierstrass
theorem to subalgebras of Cc(X). Given a subalgebra Ac of Co(X), suppose that we could
prove that Ap is dense in Cr(X). Then, given any f € Cc(X), we could approximate Ref
and Imf by elements g, h € Ar. But since Ap C Ac, this means that g 4+ th € Ac, and
g+ ih approximates f. That is, Ac is dense in Cc(X). Great! And what did we really use
here? Well, we need Ap to contain the real and imaginary parts of “most” functions in
Cco(X). If we insist that A¢ separate points and vanish at no point, then Ap will contain
“most” of Cr(X). And, to be sure that we get both the real and imaginary parts of each
clement of Ac, we'll insist that Ac contain the conjugates of each of its members: f € Ac
whenever f € Ac. That is, we'll require that Ac be self-conjugate (or, as some authors

say, self-adjoint).

Stone-Weierstrass Theorem. (complex scalars) Let X be a compact metric space, and
let Ac be a subalgebra, over C, of Cc(X). If Ac separates points in X, vanishes at no
point of X, and is self-conjugate, then Ac is dense in Cc(X).

PrROOF. Again, write Ap for the set of real-valued members of Ac. Since Ac is self-

conjugate, Ar contains the real and imaginary parts of every f € Ac;

Ref=s(f+F)€As and Tmf=_(f—F)e A

1
2
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Moreover, Ag is a subalgebra, over R, of Cr(X). In addition, Ar separates points in X
and vanishes at no point of X. Indeed, given « # y € X and f € Ac with f(x) # f(y),
we must have at least one of Ref(x) # Ref(y) or Imf(x) # Imf(y). Similarly, f(x) # 0
means that at least one of Ref(x) # 0 or Imf(x) # 0 holds. That is, Ar satisfies the
hypotheses of the real-scalar version of the Stone-Weierstrass theorem. Consequently, Ar

is dense in Cgr(X).

Now, given f € Cc(X) and ¢ > 0, take g, h € Ap with |l¢ — Ref|| < ¢/2 and
|h — Imf|| < /2. Then, g+ ih € Ac and ||f — (g + ¢h)|| < e. Thus, Ac is dense in
Ce(X). O

Corollary. The polynomials, with complex coefficients, in z and Z are dense in Cc(T). In

other words, the complex trig polynomials are dense in CZ™.

Note that it follows from the complex-scalar proof that the real parts of the polyno-

mials in 2z and Z, that is, the real trig polynomials, are dense in Cp(T) = CZ".
Corollary. The real trig polynomials are dense in CE™.

Application: Lipschitz Functions

In most Real Analysis courses, the classical Weierstrass theorem is used to prove that
Cla,b] is separable. Likewise, the Stone-Weierstrass theorem can be used to show that
C(X) is separable, where X is a compact metric space. While we won’t have anything quite
so convenient as polynomials at our disposal, we do, at least, have a familiar collection of

functions to work with.

Given a metric space (X,d), and 0 < K < oo, we'll write lip(X) to denote the
collection of all real-valued Lipschitz functions on X with constant at most K; that is,
f:X = Risinlipg(X) if |[f(z) — fly)] £ Kd(x,y) for all , y € X. And we'll write
lip(X) to denote the set of functions that are in lip,(X) for some K; in other words,
lip(X) = Up—, lipg(X). It's easy to see that lip(X) is a subspace of C'(X); in fact, if X
is compact, then lip(X) is even a subalgebra of C(X). Indeed, given f € lip,(X) and
g € lipy,(X), we have

|f(z)g(z) — f(y)g(y)]

IA

|f(x)g(x) — f(y)g(x)] + | f(y)g(x) — F(y)g(y)]
< Klg|l lv =yl + M| fll |x — yl.
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Lemma. If X is a compact metric space, then lip(X) is dense in C(X).

PrROOF. Clearly, lip(X) contains the constant functions and so vanishes at no point of
X. To see that lip(X) separates point in X, we use the fact that the metric d is Lipschitz:
Given xo # yo € X, the function f(x) = d(x,yo) satisfies f(xg) > 0 = f(yo); moreover,
f €lip;(X) since

[f(z) = fw) = ld(z,y0) —d(y,y0)| < d(z,y).
Thus, by the Stone-Weierstrass Theorem, lip(X) is dense in C'(X). O
Theorem. If X is a compact metric space, then C(X) is separable.

PrOOF. It suffices to show that lip(X) is separable. (Why?) To see this, first notice that
lip(X) = Us—, Ex, where

Egx={feC(X):|[fll <K and f €lip;(X)}.

(Why?) The sets Ex are (uniformly) bounded and equicontinuous. Hence, by the Arzela-
Ascoli theorem, each Ef is compact in C'(X). Since compact sets are separable, as are

countable unions of compact sets, it follows that lip(X) is separable. [

As it happens, the converse is also true (which is why this is interesting); see Folland’s

Real Analysis for more details.

Theorem. If C(X) is separable, where X is a compact Hausdorff topological space, then

X is metrizable.
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