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Preface

These are notes for a six week summer course on approximation theory that I o�er oc�

casionally at Bowling Green State University� Our summer classes meet for �	 minutes�

�ve days a week� for a total of 
� hours� But the pace is somewhat leisurely and there is

probably not quite enough material here for a �regulation� one semester �
� hour� course�

On the other hand� there is more than enough material here for a one quarter ��	 hour�

course and evidently enough for a �ve or six week summer course�

I should stress that my presentation here is by no means original� I borrow heavily

from a number of well known texts on approximation theory �see the list of references at

the end of these notes�� I use T� J� Rivlin�s book� An Introduction to the Approximation

of Functions� as a complementary text and thus you will see many references to Rivlin

throughout the notes� Also� a few passages here and there are taken from my book� Real

Analysis� In particular� large portions of these notes are based on copyrighted material�

They are o�ered here solely as an aid to teachers and students of approximation theory

and are intended for limited personal use only� I should also point out that I am not an

expert in approximation theory and I make no claims that the material presented here is

in current fashion among experts in the �eld�

My interest in approximation theory stems from its beauty� its utility� and its rich

history� There are also many connections that can be drawn to questions in both classical

and modern analysis� For the purposes of this short introductory course� I focus on a

handful of classical topics �with a little bit of modern terminology here and there� and

�name� theorems� Indeed� the Weierstrass approximation theorem� along with its various

relatives� is the central theme of the course�

In terms of prerequisites� I assume at least a one semester course in advanced calcu�

lus or real analysis �compactness� completeness� uniform convergence� uniform continuity�

normed spaces� etc�� along with a course in linear algebra� The �rst chapter� entitled

Preliminaries� contains four brief appendices that provide an all too brief review of such

topics� they are included in order to make the notes as self�contained as possible� The

course is designed for beginning master�s students �in both pure and applied mathemat�

ics�� but should be largely accessible to advanced undergraduates� From my experience�

there are plenty of topics here that even advanced PhD students will �nd entertaining�
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Introduction

In ����� the great Russian mathematician� P� L� Chebyshev ��Ceby�sev�� while working on a

problem of linkages� devices which translate the linear motion of a steam engine into the

circular motion of a wheel� considered the following problem�

Given a continuous function f de�ned on a closed interval � a� b � and a positive

integer n� can we �represent� f by a polynomial p�x� �
Pn

k�� akx
k� of degree

at most n� in such a way that the maximum error at any point x in � a� b � is

controlled� In particular� is it possible to construct p in such a way that the error

max
a�x�b

jf�x� � p�x�j is minimized�

This problem raises several questions� the �rst of which Chebyshev himself ignored�

� Why should such a polynomial even exist�

� If it does� can we hope to construct it�

� If it exists� is it also unique�

� What happens if we change the measure of the error to� say�
R b
a
jf�x��p�x�j� dx�

Chebyshev�s problem is perhaps best understood by rephrasing it in modern terms�

What we have here is a problem of linear approximation in a normed linear space� Recall

that a norm on a �real� vector space X is a nonnegative function on X satisfying

kxk � 	� and kxk � 	 �� x � 	

k�xk � j�jkxk for � � R
kx � yk � kxk� kyk for any x� y � X�

Any norm on X induces a metric or distance function by setting dist�x� y� � kx� yk� The

abstract version of our problem�s� can now be restated�

� Given a subset �or even a subspace� Y of X and a point x � X� is there an

element y � Y which is �nearest� to x� that is� can we �nd a vector y � Y such

that kx � yk � inf
z�Y

kx � zk� If there is such a �best approximation� to x from

elements of Y � is it unique�
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Examples

�� In X � R
n with its usual norm k�xk�nk��k� �

�Pn
k�� jxkj�

����
� the problem has

a complete solution for any subspace �or� indeed� any closed convex set� Y � This

problem is often considered in Calculus or Linear Algebra where it is called �least�

squares approximation�� A large part of the current course will be taken up with

least�squares approximations� too� For now let�s simply note that the problem changes

character dramatically if we consider a di�erent norm on Rn�

Consider X � R� under the norm k�x� y�k � maxfjxj� jyjg� and consider the

subspace Y � f�	� y� � y � Rg �i�e�� the y�axis�� It�s not hard to see that the point

x � ��� 	� � R� has in�nitely many nearest points in Y � indeed� every point �	� y��

�� � y � �� is nearest to x�

�� There are many norms we might consider on R
n� Of particular interest are the �p�

norms� that is� the scale of norms�

k�xi�ni��kp �

�
nX

k��

jxkjp
���p

� � � p ���

and

k�xi�ni��k� � max
��i�n

jxij�

It�s easy to see that k � k� and k � k� de�ne norms� The other cases take a bit more

work� we�ll supply full details later�

�� Our original problem concerns X � C� a� b �� the space of all continuous functions

f � � a� b � � R under the uniform norm kfk � max
a�x�b

jf�x�j� The word �uniform� is

used because convergence in this norm is the same as uniform convergence on � a� b ��

kfn � fk � 	 �� fn � f on � a� b ��

In this case we�re interested in approximations by elements of Y � Pn� the subspace

of all polynomials of degree at most n in C� a� b �� It�s not hard to see that Pn is a

�nite�dimensional subspace of C� a� b � of dimension exactly n � �� �Why��

If we consider the subspace Y � P consisting of all polynomials in X � C� a� b ��

we readily see that the existence of best approximations can be problematic� It follows
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from the Weierstrass theorem� for example� that each f � C� a� b � has distance 	

from P but� since not every f � C� a� b � is a polynomial �why��� we can�t hope for

a best approximating polynomial to exist in every case� For example� the function

f�x� � x sin���x� is continuous on � 	� � � but can�t possibly agree with any polynomial

on � 	� � �� �Why��

The key to the problem of polynomial approximation is the fact that each Pn is

�nite�dimensional� To see this� it will be most e�cient to consider the abstract setting of

�nite�dimensional subspaces of arbitrary normed spaces�

�Soft� Approximation

Lemma� Let V be a �nite�dimensional vector space� Then� all norms on V are equivalent�

That is� if k � k and jjj � jjj are norms on V � then there exist constants 	 � A�B � � such

that

A kxk � jjj x jjj � B kxk

for all vectors x � V �

Proof� Suppose that V is n�dimensional and that k � k is a norm on V � Fix a basis

e�� � � � � en for V and consider the norm�����
nX
i��

aiei

�����
�

�

nX
i��

jaij � k�ai�ni��k�

for x �
Pn

i�� aiei � V � Since e�� � � � � en is a basis for V � it�s not hard to see that k � k� is�

indeed� a norm on V � It now su�ces to show that k � k and k � k� are equivalent� �Why��

One inequality is easy to show� indeed� notice that�����
nX
i��

aiei

����� �
nX
i��

jaij keik �
�

max
��i�n

keik
� nX

i��

jaij � B

�����
nX
i��

aiei

�����
�

�

The real work comes in establishing the other inequality�

To begin� notice that we�ve actually set�up a correspondence between Rn and V �

speci�cally� the map �ai�ni�� 	�
Pn

i�� aiei is obviously both one�to�one and onto� Moreover�

this correspondence is an isometry between �Rn� k � k�� and �V� k � k���
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Now the inequality we�ve just established shows that the function x 	� kxk is contin�

uous on the space �V� k � k�� since

�� kxk � kyk �� � kx� yk � B kx� yk�

for any x� y � V � Thus� k � k assumes a minimum value on the compact set

S � fx � V � kxk� � �g�

�Why is S compact�� In particular� there is some A � 	 such that kxk � A whenever

kxk� � �� �Why can we assume that A � 	�� The inequality we need now follows from

the homogeneity of the norm����� x

kxk�

���� � A �� kxk � A kxk��

Corollary� Given a � b ��xed� and a positive integer n� there exist 	 � An� Bn � �
�constants which may depend on n� such that

An

nX
k��

jakj � max
a�x�b

�����
nX

k��

akx
k

����� � Bn

nX
k��

jakj�

Exercise

Find explicit �formulas� for An and Bn� above� �This can be done without any fancy

theorems�� If it helps� you may consider the case � a� b � � � 	� � ��

Corollary� Let Y be a �nite�dimensional normed space and let M � 	� Then� any closed

ball fy � Y � kyk �Mg is compact�

Proof� Again suppose that Y is n�dimensional and that e�� � � � � en is a basis for Y � From

our previous lemma we know that there is some constant A � 	 such that

A

nX
i��

jaij �
�����

nX
i��

aiei

�����
for all x �

Pn
i�� aiei � Y � In particular�

A jaij �
�����

nX
i��

aiei

����� �M �� jaij � M

A
for i � �� � � � � n�
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Thus� fy � Y � kyk �Mg is a closed subset �why�� of the compact set�
x �

nX
i��

aiei � jaij � M

A
� i � �� � � � � n

	
�

Corollary� Every �nite�dimensional normed space is complete� In particular� if Y is a

�nite�dimensional subspace of a normed linear space X� then Y is a closed subset of X�

Theorem� Let Y be a �nite�dimensional subspace of a normed linear space X� and let

x � X� Then� there exists a �not necessarily unique� y� � Y such that

kx � y�k � min
y�Y

kx � yk

for all y � Y � That is� there is a best approximation to x by elements of Y �

Proof� First notice that since 	 � Y � we know that a nearest point y� will satisfy

kx � y�k � kxk � kx � 	k� Thus� it su�ces to look for y� among the vectors y � Y

satisfying kx � yk � kxk� It will be convenient to use a slightly larger set of vectors�

though� By the triangle inequality�

kx� yk � kxk �� kyk � kx � yk � kxk � �kxk�

Thus� we may restrict our attention to those y�s in the compact set

K � fy � Y � kyk � �kxkg�

To �nish the proof� we need only notice that the function f�y� � kx� yk is continuous�

jf�y� � f�z�j �
�� kx � yk � kx � zk �� � ky � zk�

hence attains a minimum value at some point y� � K�

Corollary� For each f � C� a� b �� and each positive integer n� there is a �not necessarily

unique� polynomial p�n � Pn such that

kf � p�nk � min
p�Pn

kf � pk�
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Corollary� Given f � C� a� b � and a ��xed� positive integer n� there exists a constant

R �� such that if �����f �
nX

k��

akx
k

����� � kfk�

then max
��k�n

jakj � R�

Examples

Nothing in our Corollary says that p�n will be a polynomial of degree exactly n�rather� a

polynomial of degree at most n� For example� the best approximation to f�x� � x by a

polynomial of degree at most � is� of course� p�x� � x� Even examples of non�polynomial

functions are easy to come by� for instance� the best linear approximation to f�x� � jxj
on ���� � � is actually the constant function p�x� � ���� and this makes for an entertaining

exercise�

Before we leave these �soft� arguments behind� let�s discuss the problem of uniqueness

of best approximations� First� let�s see why we want best approximations to be unique�

Lemma� Let Y be a �nite�dimensional subspace of a normed linear space X� and suppose

that each x � X has a unique nearest point yx � Y � Then� the nearest point map x 	� yx

is continuous�

Proof� Let�s write P �x� � yx for the nearest point map� and let�s suppose that xn � x

in X� We want to show that P �xn� � P �x�� and for this it�s enough to show that there is

a subsequence of �P �xn�� which converges to P �x�� �Why��

Since the sequence �xn� is bounded in X� say kxnk �M for all n� we have

kP �xn�k � kP �xn� � xnk� kxnk � �kxnk � �M�

Thus� �P �xn�� is a bounded sequence in Y � a �nite�dimensional space� As such� by passing

to a subsequence� we may suppose that �P �xn�� converges to some element P� � Y � �How��

Now we need to show that P� � P �x�� But

kP �xn� � xnk � kP �x� � xnk �why���

for any n� and hence� letting n���

kP� � xk � kP �x� � xk�
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Since nearest points in Y are unique� we must have P� � P �x��

Exercise

Let X be a normed linear space and let P � X � X� Show that P is continuous at x � X

if and only if� whenever xn � x in X� some subsequence of �P �xn�� converges to P �x��

�Hint� The forward direction is easy� for the backward implication� suppose that �P �xn��

fails to converge to P �x� and work toward a contradiction��

It should be pointed out that the nearest point map is� in general� nonlinear and� as

such� can be very di�cult to work with� Later we�ll see at least one case in which nearest

point maps always turn out to be linear�

We next observe that the set of best approximations is always pretty reasonable�

Theorem� Let Y be a subspace of a normed linear space X� and let x � X� The set Yx�

consisting of all best approximations to x out of Y � is a bounded� convex set�

Proof� As we�ve seen� the set Yx is a subset of fy � X � kyk � �kxkg and� hence� is

bounded�

Now recall that a subset K of a vector space V is said to be convex if K contains the

line segment joining any pair of its points� Speci�cally� K is convex if

x� y � K� 	 � � � � �� �x � ��� ��y � K�

Now� y�� y� � Yx means that

kx � y�k � kx� y�k � min
y�Y

kx � yk�

Next� given 	 � � � �� set y� � �y� � �����y�� We want to show that y� � Yx� but notice

that we at least have y� � Y � Finally� we estimate�

kx � y�k � kx� ��y� � ��� ��y��k
� k��x � y�� � ��� ���x � y��k
� �kx� y�k� ��� ��kx � y�k
� min

y�Y
kx � yk�
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Hence� kx� y�k � min
y�Y

kx� yk� that is� y� � Yx�

Exercise

If� in addition� Y is �nite�dimensional� show that Yx is closed �hence compact��

If Yx contains more than one point� then� in fact� it contains an entire line segment�

Thus� Yx is either empty� contains exactly one point� or contains in�nitely many points�

This observation gives us a su�cient condition for uniqueness of nearest points� If our

normed space X contains no line segments on any sphere fx � X � kxk � rg� then any

best approximation �out of any set� will be unique�

A norm k � k on a vector space X is said to be strictly convex if� for any x 
� y � X

with kxk � r � kyk� we always have k�x � �� � ��yk � r for any 	 � � � �� That is�

the open line segment between any pair of points on the surface of the ball of radius r in

X lies entirely inside the ball� We often simply say that the space X is strictly convex�

with the understanding that a property of the norm in X is implied� Here�s an immediate

corollary to our last result�

Corollary� If X has a strictly convex norm� then� for any subspace Y of X and any point

x � X� there can be at most one best approximation to x out of Y � That is� Yx is either

empty or consists of a single point�

In order to arrive at a condition that�s somewhat easier to check� let�s translate our

original de�nition into a statement about the triangle inequality in X�

Lemma� X has a strictly convex norm if and only if the triangle inequality is strict on

non�parallel vectors� that is� if and only if

x 
� �y� y 
� �x� all � � R�� kx � yk � kxk � kyk�

Proof� First suppose that X is strictly convex� and let x and y be non�parallel vectors

in X� Then� in particular� the vectors x�kxk and y�kyk must be di�erent� �Why�� Hence������ kxk
kxk� kyk

�
x

kxk �

� kyk
kxk � kyk

�
y

kyk
���� � ��

That is� kx � yk � kxk � kyk�
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Next suppose that the triangle inequality is strict on non�parallel vectors� and let

x 
� y � X with kxk � r � kyk� If x and y are parallel� then we must have y � �x�

�Why�� In this case�

k�x � �� � �� yk � j��� �j kxk � r�

since j��� �j � � whenever 	 � � � �� Otherwise� x and y are non�parallel� In this case�

for any 	 � � � �� the vectors �x and �� � �� y are likewise non�parallel� Thus�

k�x � �� � �� yk � �kxk� ��� ��kyk � r�

Examples

�� The usual norm on C� a� b � is not strictly convex �and so the problem of uniqueness

of best approximations is all the more interesting to tackle�� For example� if f�x� � x

and g�x� � x� in C� 	� � �� then kfk � � � kgk� f 
� g� while kf � gk � �� �Why��

�� The usual norm on Rn is strictly convex� as is any one of the norms k � kp� � � p ���

�We�ll prove these facts shortly�� The norms k � k� and k � k�� on the other hand� are

not strictly convex� �Why��

Appendix A

For completeness� we supply a few of the missing details concerning the �p�norms� We

begin with a handful of classical inequalities of independent interest� First recall that we

have de�ned a scale of �norms� on Rn by setting�

kxkp �

�
nX
i��

jxijp
���p

� � � p ���

and

kxk� � max
��i�n

jxij�

where x � �xi�ni�� � Rn� Please note that the case p � � gives the usual Euclidean norm

on Rn and that the cases p � � and p � � clearly give rise to legitimate norms on Rn�

Common parlance is to refer to these expressions as �p�norms and to refer to the space

�Rn� k � kp� as �np � The space of all in�nite sequences x � �xn��n�� for which the analogous
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in�nite sum �or supremum� kxkp is �nite is referred to as �p� What�s more� there is a

�continuous� analogue of this scale� We might also consider the norms

kfkp �

�Z b

a

jf�x�jp dx
���p

� � � p ���

and

kfk� � sup
a�x�b

jf�x�j�

where f is in C� a� b � �or is simply Lebesgue integrable�� The subsequent discussion actually

covers all of these cases� but we will settle for writing our proofs in the Rn setting only�

Lemma� �Young�s inequality�� Let � � p � �� and let � � q � � be de�ned by

�
p � �

q � �� that is� q � p
p�� � Then� for any a� b � 	� we have

ab � �

p
ap �

�

q
bq�

Moreover� equality can only occur if ap � bq� �We refer to p and q as conjugate exponents�

note that p satis�es p � q
q�� � Please note that the case p � q � � yields the familiar

arithmetic�geometric mean inequality��

Proof� A quick calculation before we begin�

q � � �
p

p� �
� � �

p� �p � ��

p� �
�

�

p� �
�

Now we just estimate areas� for this you might �nd it helpful to draw the graph of y � xp��

�or� equivalently� the graph of x � yq���� Comparing areas we get�

ab �
Z a

�

xp�� dx �

Z b

�

yq�� dy �
�

p
ap �

�

q
bq�

The case for equality also follows easily from the graph of y � xp�� �or x � yq���� since

b � ap�� � ap�q means that ap � bq�

Corollary� �H
older�s inequality�� Let � � p � �� and let � � q � � be de�ned by

�
p � �

q � �� Then� for any a�� � � � � an and b�� � � � � bn in R we have�

nX
i��

jaibij �
�

nX
i��

jaijp
���p� nX

i��

jbijq
���q

�

�Please note that the case p � q � � yields the familiar Cauchy�Schwarz inequality��

Moreover� equality in H�older�s inequality can only occur if there exist nonnegative

scalars � and � such that � jaijp � � jbijq for all i � �� � � � � n�
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Proof� Let A � �
Pn

i�� jaijp�
��p

and let B � �
Pn

i�� jbijq�
��q

� We may clearly assume

that A� B 
� 	 �why��� and hence we may divide �and appeal to Young�s inequality��

jaibij
AB

� jaijp
pAp

�
jbijq
qBq

�

Adding� we get�

�

AB

nX
i��

jaibij � �

pAp

nX
i��

jaijp �
�

qBq

nX
i��

jbijq �
�

p
�

�

q
� ��

That is�
Pn

i�� jaibij � AB�

The case for equality in H
older�s inequality follows from what we know about Young�s

inequality� Equality in H
older�s inequality means that either A � 	� or B � 	� or else

jaijp�pAp � jbijq�qBq for all i � �� � � � � n� In short� there must exist nonnegative scalars �

and � such that � jaijp � � jbijq for all i � �� � � � � n�

Notice� too� that the case p � � �q � �� works� and is easy�

nX
i��

jaibij �
�

nX
i��

jaij
��

max
��i�n

jbij
�
�

Exercise

When does equality occur in the case p � � �q � ���

Finally� an application of H
older�s inequality leads to an easy proof that k�kp is actually

a norm� It will help matters here if we �rst make a simple observation� If � � p �� and

if q � p
p�� � notice that

�� � jaijp���ni��

��
q

�

�
nX
i��

jaijp
��p����p

� kakp��p �

Lemma� �Minkowski�s inequality�� Let � � p �� and let a � �ai�ni��� b � �bi�ni�� � Rn�

Then� ka � bkp � kakp � kbkp�

Proof� In order to prove the triangle inequality� we once again let q be de�ned by

�
p

� �
q

� �� and now we use H
older�s inequality to estimate�

nX
i��

jai � bijp �
nX
i��

jai � bij � jai � bijp��
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�
nX
i��

jaij � jai � bijp�� �
nX
i��

jbij � jai � bijp��

� kakp � k � jai � bijp���ni��kq � kykp � k � jai � bijp���ni��kq
� ka � bkp��p � kakp � kbkp� �

That is� ka � bkpp � ka � bkp��p � kakp � kbkp�� and the triangle inequality follows�

If � � p � �� then equality in Minkowski�s inequality can only occur if a and b

are parallel� that is� the �p�norm is strictly convex for � � p � �� Indeed� if ka � bkp �

kakp�kbkp� then either a � 	� or b � 	� or else a� b 
� 	 and we have equality at each stage of

our proof� Now equality in the �rst inequality means that jai�bij � jaij� jbij� which easily

implies that ai and bi have the same sign� Next� equality in our application of H
older�s

inequality implies that there are nonnegative scalars C and D such that jaijp � C jai�bijp
and jbijp � D jai � bijp for all i � �� � � � � n� Thus� ai � E bi for some scalar E and all

i � �� � � � � n�

Of course� the triangle inequality also holds in either of the cases p � � or p � �
�with much simpler proofs��

Exercises

When does equality occur in the triangle inequality in the cases p � � or p � �� In

particular� show that neither of the norms k � k� or k � k� is strictly convex�

Appendix B

Next� we provide a brief review of completeness and compactness� Such review is doomed

to inadequacy� the reader unfamiliar with these concepts would be well served to consult

a text on advanced calculus such as Analysis in Euclidean Spaces by K� Ho�man� or

Principles of Mathematical Analysis by W� Rudin�

To begin� we recall that a subset A of normed space X �such as R or Rn� is said to be

closed if A is closed under the taking of sequential limits� That is� A is closed if� whenever

�an� is a sequence from A converging to some point x � X� we always have x � A� It�s not

hard to see that any closed interval� such as � a� b � or � a���� is� indeed� a closed subset of

R in this sense� There are� however� much more complicated examples of closed sets in R�
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A normed space X is said to be complete if every Cauchy sequence from X converges

�to a point in X�� It is a familiar fact from Calculus that R is complete� as is Rn� In fact�

the completeness of R is often assumed as an axiom �in the form of the least upper bound

axiom�� There are� however� many examples of normed spaces which are not complete�

that is� there are examples of normed spaces in which Cauchy sequences need not converge�

We say that a subset A of a normed space X is complete if every Cauchy sequence

from A converges to a point in A� Please note here that we require not only that Cauchy

sequences from A converge� but also that the limit be back in A� As you might imagine�

the completeness of A depends on properties of both A and the containing space X�

First note that a complete subset is necessarily also closed� Indeed� since every con�

vergent sequence is also Cauchy� it follows that a complete subset is closed�

Exercise

If A is a complete subset of a normed space X� show that A is also closed�

If the containing space X is itself complete� then it�s easy to tell which of its subsets

are complete� Indeed� since every Cauchy sequence in X converges �somewhere�� all we

need to know is whether the subset is closed�

Exercise

Let A be a subset of a complete normed space X� Show that A is complete if and only if

A is a closed subset of X� In particular� please note that every closed subset of R �or Rn�

is complete�

Finally� we recall that a subset A of a normed space X is said to be compact if every

sequence from A has a subsequence which converges to a point in A� Again� since we

have insisted that certain limits remain in A� it�s not hard to see that compact sets are

necessarily also closed�

Exercise

If A is a compact subset of a normed space X� show that A is also closed�

Moreover� since a Cauchy sequence with a convergent subsequence must itself converge
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�why��� we actually have that every compact set is necessarily complete�

Exercise

If A is a compact subset of a normed space X� show that A is also complete�

Since the compactness of a subset A has something to do with every sequence in A�

it�s not hard to believe that it is a more stringent property than the others we�ve considered

so far� In particular� it�s not hard to see that a compact set must be bounded�

Exercise

If A is a compact subset of a normed space X� show that A is also bounded� �Hint� If not�

then A would contain a sequence �an� with kank ����

Now it is generally not so easy to describe the compact subsets of a particular normed

space X� however� it is quite easy to describe the compact subsets of R �or Rn�� This

well�known result goes by many names� we will refer to it as the Heine�Borel theorem�

Theorem� A subset A of R �or Rn� is compact if and only if A is both closed and

bounded�

Proof� One direction of the proof is easy� As we�ve already seen� compact sets in R

are necessarily closed and bounded� For the other direction� notice that if A is a bounded

subset of R� then it follows from the Bolzano�Weierstrass theorem that every sequence

from A has a subsequence which converges in R� If A is also a closed set� then this limit

must� in fact� be back in A� Thus� every sequence in A has a subsequence converging to a

point in A�

Appendix C

We next o�er a brief review of pointwise and uniform convergence� We begin with an

elementary example�

Example

�a� For each n � �� �� �� � � �� consider the function fn�x� � ex � x
n for x � R� Note that

for each ��xed� x the sequence �fn�x���n�� converges to f�x� � ex because

jfn�x� � f�x�j �
jxj
n
� 	 as n���
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In this case we say that the sequence of functions �fn� converges pointwise to the

function f on R� But notice� too� that the rate of convergence depends on x� In

particular� in order to get jfn�x��f�x�j � ��� we would need to take n � �jxj� Thus�

at x � �� the inequality is satis�ed for all n � 
� while at x � �			� the inequality is

satis�ed only for n � �			� In short� the rate of convergence is not uniform in x�

�b� Consider the same sequence of functions as above� but now let�s suppose that we

restrict that values of x to the interval ���� � �� Of course� we still have that fn�x� �
f�x� for each ��xed� x in ���� � �� in other words� we still have that �fn� converges

pointwise to f on ���� � �� But notice that the rate of convergence is now uniform over

x in ���� � �� To see this� just rewrite the initial calculation�

jfn�x� � f�x�j �
jxj
n
� �

n
for x � ���� � ��

and notice that the upper bound ��n tends to 	� as n��� independent of the choice

of x� In this case� we say that �fn� converges uniformly to f on ���� � �� The point

here is that the notion of uniform convergence depends on the underlying domain as

well as on the sequence of functions at hand�

With this example in mind� we now o�er formal de�nitions of pointwise and uniform

convergence� In both cases we consider a sequence of functions fn � X � R� n � �� �� �� � � ��

each de�ned on the same underlying set X� and another function f � X � R �the candidate

for the limit��

We say that �fn� converges pointwise to f on X if� for each x � X� we have fn�x� �
f�x� as n � �� thus� for each x � X and each 	 � 	� we can �nd an integer N �which

depends on 	 and which may also depend on x� such that jfn�x� � f�x�j � 	 whenever

n � N � A convenient shorthand for pointwise convergence is� fn � f on X or� if X is

understood� simply fn � f �

We say that �fn� converges uniformly to f on X if� for each 	 � 	� we can �nd

an integer N �which depends on 	 but not on x� such that jfn�x� � f�x�j � 	 for each

x � X� provided that n � N � Please notice that the phrase �for each x � X� now occurs

well after the phrase �for each 	 � 	� and� in particular� that the rate of convergence N

does not depend on x� It should be reasonably clear that uniform convergence implies
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pointwise convergence� in other words� uniform convergence is �stronger� than pointwise

convergence� For this reason� we sometimes use the shorthand� fn � f on X or� if X is

understood� simply fn � f �

The de�nition of uniform convergence can be simpli�ed by �hiding� one of the quan�

ti�ers under di�erent notation� indeed� note that the phrase �jfn�x� � f�x�j � 	 for any

x � X� is �essentially� equivalent to the phrase �supx�X jfn�x� � f�x�j � 	�� Thus� our

de�nition may be reworded as follows� �fn� converges uniformly to f on X if� given 	 � 	�

there is an integer N such that supx�X jfn�x� � f�x�j � 	 for all n � N �

The notion of uniform convergence exists for one very good reason� Continuity is

preserved under uniform limits� This fact is well worth stating�

Exercise

Let X be a subset of R� let f � fn � X � R for n � �� �� �� � � �� and let x� � X� If each fn

is continuous at x�� and if fn � f on X� then f is continuous at x�� In particular� if each

fn is continuous on all of X� then so is f � Give an example showing that this result may

fail if we only assume that fn � f on X�

Appendix D

Lastly� we discuss continuity for linear transformations between normed vector spaces�

Throughout this section� we consider a linear map T � V � W between vector spaces V

and W � that is we suppose that T satis�es T ��x � �y� � �T �x� � �T �y� for all x� y � V �

and all scalars �� �� Please note that every linear map T satis�es T �	� � 	� If we further

suppose that V is endowed with the norm k � k� and that W is endowed with the norm

jjj � jjj � the we may consider the issue of continuity of the map T �

The key result for our purposes is that� for linear maps� continuity�even at a single

point�is equivalent to uniform continuity �and then some ��

Theorem� Let �V� k � k � and �W� jjj � jjj � be normed vector spaces� and let T � V �W be a

linear map� Then� the following are equivalent�

�i� T is Lipschitz�

�ii� T is uniformly continuous�
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�iii� T is continuous �everywhere��

�iv� T is continuous at 	 � V �

�v� there is a constant C �� such that jjj T �x� jjj � Ckxk for all x � V �

Proof� Clearly� �i� �� �ii� �� �iii� �� �iv�� We need to show that �iv� �� �v�� and

that �v� �� �i� �for example�� The second of these is easier� so let�s start there�

�v� �� �i�� If condition �v� holds for a linear map T � then T is Lipschitz �with constant

C� since jjj T �x� � T �y� jjj � jjj T �x � y� jjj � Ckx� yk for any x� y � V �

�iv� �� �v�� Suppose that T is continuous at 	� Then we may choose a 
 � 	 so that

jjj T �x� jjj � jjj T �x� � T �	� jjj � � whenever kxk � kx � 	k � 
� �How��

Given 	 
� x � V � we may scale by the factor 
�kxk to get
�� 
x�kxk�� � 
� Hence������� T

�

x�kxk� ������ � �� But T

�

x�kxk� � �
�kxk�T �x�� since T is linear� and so we get

jjj T �x� jjj � ���
�kxk� That is� C � ��
 works in condition �v�� �Note that since condition

�v� is trivial for x � 	� we only care about the case x 
� 	��

A linear map satisfying condition �v� of the Theorem �i�e�� a continuous linear map�

is often said to be bounded� The meaning in this context is slightly di�erent than usual�

Here it means that T maps bounded sets to bounded sets� This follows from the fact

that T is Lipschitz� Indeed� if jjj T �x� jjj � Ckxk for all x � V � then �as we�ve seen�

jjj T �x� � T �y� jjj � Ckx � yk for any x� y � V � and hence T maps the ball about x of

radius r into the ball about T �x� of radius Cr� In symbols� T
�
Br�x�

� � BCr�T �x��� More

generally� T maps a set of diameter d into a set of diameter at most Cd� There�s no danger

of confusion in our using the word bounded to mean something new here� the ordinary

usage of the word �as applied to functions� is uninteresting for linear maps� A nonzero

linear map always has an unbounded range� �Why��

The smallest constant that works in �v� is called the norm of the operator T and is

usually written kTk� In symbols�

kTk � sup
x���

jjj Tx jjj
kxk � sup

kxk��

jjj Tx jjj �

Thus� T is bounded �continuous� if and only if kTk ���
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The fact that all norms on a �nite�dimensional normed space are equivalent provides

a �nal �rather spectacular� corollary�

Corollary� Let V andW be normed vector spaces with V �nite�dimensional� Then� every

linear map T � V �W is continuous�

Proof� Let x�� � � � � xn be a basis for V and let kPn
i�� �ixik� �

Pn
i�� j�ij� as before�

From the Lemma on page �� we know that there is a constant B � � such that kxk� �
B kxk for every x � V �

Now if T � �V� k � k � � �W� jjj � jjj � is linear� we get�����
�����
����� T

�
nX
i��

�ixi

� �����
�����
����� �

�����
�����
�����

nX
i��

�iT �xi�

�����
�����
�����

�
nX
i��

j�ij jjj T �xi� jjj

�
�

max
��j�n

jjj T �xj � jjj
� nX

i��

j�ij

� B

�
max
��j�n

jjj T �xj � jjj
������

nX
i��

�ixi

����� �
That is� jjj T �x� jjj � Ckxk� where C � B max

��j�n
jjj T �xj � jjj �a constant depending only on T

and the choice of basis for V �� From our last result� T is continuous �bounded��



Problem Set� Function SpacesMath ��� �������

�Problems marked ��� are essential to a full understanding of the course� we will discuss

most of these in class� Problems marked ��� are of general interest and are o�ered as a

contribution to your personal growth� Unmarked problems are just for fun��

The most important collection of functions for our purposes is the space C� a� b �� consisting

of all continuous functions f � � a� b � � R� It�s easy to see that C� a� b � is a vector space

under the usual pointwise operations on functions� �f �g��x� � f�x��g�x� and ��f��x� �

�f�x� for � � R� Actually� we will be most interested in the �nite�dimensional subspaces

Pn of C� a� b �� consisting of all algebraic polynomials of degree at most n�

� �� The subspace Pn has dimension exactly n � �� Why�

Another useful subset of C� a� b � is the collection lipK�� consisting of all those f �s which

satisfy a Lipschitz condition of order � � 	 with constant 	 � K � �� i�e�� those f �s for

which jf�x� � f�y�j � K jx � yj� for all x� y in � a� b �� �Some authors would say that f is

H�older continuous with exponent ���

� �� �a� Show that lipK� is� indeed� a subset of C� a� b ��

�b� If � � �� show that lipK� contains only the constant functions�

�c� Show that
p
x is in lip������ and that sinx is in lip�� on � 	� � ��

�d� Show that the collection lip�� consisting of all those f �s which are in lipK� for

some K� is a subspace of C� a� b ��

�e� Show that lip� contains all the polynomials�

�f� If f � lip� for some � � 	� show that f � lip� for all 	 � � � ��

�g� Given 	 � � � �� show that x� is in lip�� on � 	� � � but not in lip� for any � � ��

We will also want to consider a norm on the vector space C� a� b �� we typically use the

uniform or sup norm �Rivlin calls this the Chebyshev norm� de�ned by kfk � max
a�x�b

jf�x�j�
�Some authors write kfku or kfk���

� �� Show that Pn and lipK� are closed subsets of C� a� b � �under the sup norm�� Is lip�

closed� A bit harder� Show that lip � is both �rst category and dense in C� a� b ��

� � �� Fix n and consider the norm kpk� �
Pn

k�� jakj for p�x� � a� � a�x� � � �� anx
n � Pn�
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Show that there are constants 	 � An� Bn � � such that Ankpk� � kpk � Bnkpk��
where kpk � max

a�x�b
jp�x�j� Do An and Bn really depend on n �

We will occasionally consider spaces of real�valued functions de�ned on �nite sets� that

is� we will consider Rn under various norms� �Why is this the same�� We de�ne a scale

of norms on R
n by kxkp � �

Pn
i�� jxijp�

��p
� where x � �x�� � � � � xn� and � � p � � �we

need p � � in order for this expression to be a legitimate norm� but the expression makes

perfect sense for any p � 	� and even for p � 	 provided no xi is 	�� Notice� please� that

the usual norm on Rn is given by kxk��
�� Show that lim

p��
kxkp � max

��i�n
jxij� For this reason we de�ne kxk� � max

��i�n
jxij� Thus

Rn under the norm k � k� is the same as C�f�� �� � � � � ng� with its usual norm�

	� Assuming xi 
� 	 for i � �� � � � � n� compute lim
p���

kxkp and lim
p���

kxkp�


� Consider R� under the norm kxkp� Draw the graph of the unit sphere fx � kxkp � �g
for various values of p �especially p � �� �� ���

� �� �Young�s inequality�� Let � � p � � and let q satisfy �
p � �

q � �� Show that

ab � �
p a

p � �
q b

q for all a� b � 	 with equality if and only if ap � bq�

� �� �H
older�s inequality�� Let � � p �� and let q satisfy �
p � �

q � �� Show that

�a�
Pn

i�� jai bij � �
Pn

i�� jaijp�
��p

�
Pn

i�� jbijq�
��q

� and

�b�
R b
a
jf�x� g�x�j dx �


R b
a
jf�x�jp dx

���p 
R b
a
jg�x�jq dx

���q
�

Describe the case for equality in each inequality� What happens if p � � �q � ���

� �
� �Minkowski�s inequality�� For � � p ��� show that

�a� �
Pn

i�� jai � bijp���p � �
Pn

i�� jaijp�
��p

� �
Pn

i�� jbijp�
��p

and that

�b�

R b

a
jf�x� � g�x�jp dx

���p
�

R b

a
jf�x�jp dx

���p
�

R b

a
jg�x�jp dx

���p
�

Describe the case for equality in each inequality� What happens if p � ��

Exercise �
 shows that k � kp is indeed a norm for � � p ��� We write Lp� a� b � to mean

the vector space of functions on � a� b � for which the integral norm is de�ned and �nite� we

write �np to mean the vector space of sequences of length n� that is� Rn supplied with the
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norm k � kp� and we write �p to mean the vector space of in�nite sequences x � �xn��n��

for which kxkp � �� In each space� the usual algebraic operations are de�ned pointwise

�or coordinatewise� and the norm is understood to be k � kp�
A normed space �X� k � k� is said to be strictly convex if kx � yk � kxk � kyk always

implies that x and y lie in the same direction� that is� either x � �y or y � �x for some

nonnegative scalar �� Equivalently� X is strictly convex if the triangle inequality is always

strict on nonparallel vectors�

��� Prove that the following are equivalent�

�a� �X� k � k� is strictly convex�

�b� If x� y � X are nonparallel� then

����x � y

�

���� � kxk� kyk
�

�

�c� If x 
� y � X with kxk � � � kyk� then

����x � y

�

���� � ��

��� Show that Lp and �p are strictly convex for � � p � �� Show also that this fails in

case p � �� �Hint� This is actually a statement about the function jtjp� � � p ����

Strictly convex spaces are of interest when considering the problem of nearest points� Given

a nonempty subset K of a normed space X and a point x �� K� we ask whether there is a

best approximation to x from elements of K� that is� we want to know if there exist one

or more points y� � K satisfying

kx� y�k � inf
y�K

kx� yk � dist �x�K��

It�s not hard to see that a satisfactory answer to this question will require that we take K

to be a closed set in X �for otherwise the points in K nK wouldn�t have nearest points��

Less easy to see is that we typically also want to assume that K is a convex set� Recall

that a subset K of a vector space X is said to be convex if it contains the line segment

joining any pair of its points� that is� K is convex if

x� y � K� 	 � � � � �� �x � ��� ��y � K�

Obviously� any subspace of X is a convex set and� for our purposes at least� this is the

most important example�

� ��� Let X be a normed space and let B � fx � X � kxk � �g� Show that B is a closed

convex set�
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��� Consider R� under the norm k � k�� Let B � fy � R� � kyk� � �g and let x � ��� 	��

Show that there are in�nitely many points in B nearest to x�

��� �a� Let K � ff � L�� 	� � � � f � 	 and kfk� � �g� Show that K is a closed convex

set in L�� 	� � �� that 	 �� K� and that every point in K is a nearest point to 	�

�b� Let K � ff � C� 	� � � � f�	� � 	 and
R �
� f � �g� Again� show that K is a closed

convex set in C� 	� � �� that 	 �� K� but that no point in K is nearest to 	�

�	� Let K be a compact convex set in a strictly convex space X and let x � X� Show

that x has a unique nearest point y� � K�

�
� Let K be a closed subset of a complete normed space X� Prove that K is convex if

and only if K is midpoint convex� that is� if and only if �x � y��� � K whenever x�

y � K� Is this result true in more general settings� For example� can you prove it

without assuming completeness� Or� for that matter� is it true for arbitrary sets in

any vector space �i�e�� without even assuming the presence of a norm��



Approximation by Algebraic PolynomialsMath ��� �������

Introduction

Let�s begin with some notation� Throughout� we�re concerned with the problem of best

�uniform� approximation of a given function f � C� a� b � by elements from Pn� the subspace

of algebraic polynomials of degree at most n in C� a� b �� We know that the problem has a

solution �possibly more than one�� which we�ve chosen to write as p�n� We set

En�f� � min
p�Pn

kf � pk � kf � p�nk�

Since Pn � Pn�� for each n� it�s clear that En�f� � En���f� for each n� Our goal in this

chapter is to prove that En�f� � 	� We�ll accomplish this by proving�

Theorem� �The Weierstrass Approximation Theorem� ������ Let f � C� a� b �� Then�

for every 	 � 	� there is a polynomial p such that kf � pk � 	�

It follows from the Weierstrass theorem that p�n � f for each f � C� a� b �� �Why��

This is an important �rst step in determining the exact nature of En�f� as a function of

f and n� We�ll look for much more precise information in later sections�

Now there are many proofs of the Weierstrass theorem �a mere three are outlined in

the exercises� but there are hundreds �� and all of them start with one simpli�cation� The

underlying interval � a� b � is of no consequence�

Lemma� If the Weierstrass theorem holds for C� 	� � �� then it also holds for C� a� b �� and

conversely� In fact� C� 	� � � and C� a� b � are� for all practical purposes� identical� They

are linearly isometric as normed spaces� order isomorphic as lattices� and isomorphic as

algebras �rings��

Proof� We�ll settle for proving only the �rst assertion� the second is outlined in the

exercises �and uses a similar argument��

Given f � C� a� b �� notice that the function

g�x� � f
�
a � �b � a�x

�
� 	 � x � ��
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de�nes an element of C� 	� � �� Now� given 	 � 	� suppose that we can �nd a polynomial p

such that kg � pk � 	� in other words� suppose that

max
��x��

��f�a � �b� a�x
� � p�x�

�� � 	�

Then�

max
a�t�b

����f�t� � p

�
t� a

b� a

����� � 	�

�Why�� But if p�x� is a polynomial in x� then q�t� � p


t�a
b�a
�

is a polynomial in t �again�

why�� satisfying kf � qk � 	�

The proof of the converse is entirely similar� If g�x� is an element of C� 	� � �� then

f�t� � g


t�a
b�a
�

� a � t � b� de�nes an element of C� a� b �� Moreover� if q�t� is a polynomial

in t approximating f�t�� then p�x� � q�a � �b � a�x� is a polynomial in x approximating

g�x�� The remaining details are left as an exercise�

The point to our �rst result is that it su�ces to prove the Weierstrass theorem for

any interval we like� � 	� � � and ���� � � are popular choices� but it hardly matters which

interval we use�

Bernstein�s Proof

The proof of the Weierstrass theorem we present here is due to the great Russian math�

ematician S� N� Bernstein in ����� Bernstein�s proof is of interest to us for a variety of

reasons� perhaps most important is that Bernstein actually displays a sequence of polyno�

mials that approximate a given f � C� 	� � �� Moreover� as we�ll see later� Bernstein�s proof

generalizes to yield a powerful� unifying theorem� called the Bohman�Korovkin theorem�

If f is any bounded function on � 	� � �� we de�ne the sequence of Bernstein polynomials

for f by �
Bn�f�

�
�x� �

nX
k��

f

�
k

n

�
�
�
n

k

�
xk�� � x�n�k� 	 � x � ��

Please note that Bn�f� is a polynomial of degree at most n� Also� it�s easy to see that�
Bn�f�

�
�	� � f�	�� and

�
Bn�f�

�
��� � f���� In general�

�
Bn�f�

�
�x� is an average of

the numbers f�k�n�� k � 	� � � � � n� Bernstein�s theorem states that Bn�f� � f for each

f � C� 	� � �� Surprisingly� the proof actually only requires that we check three easy cases�

f��x� � �� f��x� � x� and f��x� � x��
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This� and more� is the content of the following lemma�

Lemma� �i� Bn�f�� � f� and Bn�f�� � f��

�ii� Bn�f�� �



�� �

n

�
f� �

�

n
f�� and hence Bn�f��� f��

�iii�
nX

k��


k
n
� x
���n

k

�
xk�� � x�n�k �

x�� � x�

n
� �


n
� if 	 � x � ��

�iv� Given 
 � 	 and 	 � x � �� let F denote the set of k�s in f	� � � � � ng for which���k
n
� x
��� � 
� Then

X
k�F

�
n

k

�
xk��� x�n�k � �


n
�
�

Proof� That Bn�f�� � f� follows from the binomial formula�

nX
k��

�
n

k

�
xk�� � x�n�k � �x � �� � x��n � ��

To see that Bn�f�� � f�� �rst notice that for k � � we have

k

n

�
n

k

�
�

�n� ��  

�k � ��  �n � k�  
�

�
n� �

k � �

�
�

Consequently�

nX
k��

k

n

�
n

k

�
xk�� � x�n�k � x

nX
k��

�
n� �

k � �

�
xk����� x�n�k

� x

n��X
j��

�
n� �

j

�
xj ��� x��n����j � x�

Next� to compute Bn�f��� we rewrite twice�

�
k

n

���
n

k

�
�

k

n

�
n� �

k � �

�
�

n� �

n
� k � �

n� �

�
n� �

k � �

�
�

�

n

�
n� �

k � �

�
� if k � �

�

�
�� �

n

��
n� �

k � �

�
�

�

n

�
n� �

k � �

�
� if k � ��
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Thus�

nX
k��

�
k

n

���
n

k

�
xk�� � x�n�k

�

�
�� �

n

� nX
k��

�
n� �

k � �

�
xk�� � x�n�k �

�

n

nX
k��

�
n� �

k � �

�
xk��� x�n�k

�

�
�� �

n

�
x� �

�

n
x�

which establishes �ii� since kBn�f��� f�k � �
nkf� � f�k � 	 as n���

To prove �iii� we combine the results in �i� and �ii� and simplify� Since ��k�n��x�� �

�k�n�� � �x�k�n� � x�� we get

nX
k��

�
k

n
� x

���
n

k

�
xk��� x�n�k �

�
�� �

n

�
x� �

�

n
x� �x� � x�

�
�

n
x�� � x� � �


n
�

for 	 � x � ��

Finally� to prove �iv�� note that � � ��k�n� � x���
� for k � F � and hence

X
k�F

�
n

k

�
xk�� � x�n�k � �


�

X
k�F


k
n
� x
���n

k

�
xk��� x�n�k

� �


�

nX
k��


k
n
� x
���n

k

�
xk�� � x�n�k

� �


n
�
� from �iii��

Now we�re ready for the proof of Bernstein�s theorem�

Proof� Let f � C� 	� � � and let 	 � 	� Then� since f is uniformly continuous� there is

a 
 � 	 such that jf�x� � f�y�j � 	�� whenever jx � yj � 
� Now we use the previous

lemma to estimate kf �Bn�f�k� First notice that since the numbers
�
n
k

�
xk��� x�n�k are
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nonnegative and sum to �� we have

jf�x� �Bn�f��x�j �

�����f�x� �
nX

k��

�
n

k

�
f

�
k

n

�
xk��� x�n�k

�����
�

�����
nX

k��

�
f�x� � f

�
k

n

���
n

k

�
xk��� x�n�k

�����
�

nX
k��

����f�x� � f

�
k

n

������nk
�
xk�� � x�n�k�

Now �x n �to be speci�ed in a moment� and let F denote the set of k�s in f	� � � � � ng for

which j�k�n��xj � 
� Then jf�x��f �k�n�j � 	�� for k �� F � while jf�x��f�k�n�j � �kfk
for k � F � Thus���f�x� � �Bn�f�

�
�x�
��

� 	

�

X
k��F

�
n

k

�
xk��� x�n�k � �kfk

X
k�F

�
n

k

�
xk��� x�n�k

�
	

�
� � � �kfk � �


n
�
� from �iv� of the Lemma�

� 	� provided that n � kfk�	
��

Landau�s Proof

Just because it�s good for us� let�s give a second proof of Weierstrass�s theorem� This one

is due to Landau in ��	�� First� given f � C� 	� � �� notice that it su�ces to approximate

f �p� where p is any polynomial� �Why�� In particular� by subtracting the linear function

f�	��x�f����f �	��� we may suppose that f�	� � f��� � 	 and� hence� that f 
 	 outside

� 	� � �� That is� we may suppose that f is de�ned and uniformly continuous on all of R�

Again we will display a sequence of polynomials that converge uniformly to f � this

time we de�ne

Ln�x� � cn

Z �

��
f�x � t� �� � t��n dt�

where cn is chosen so that

cn

Z �

��
�� � t��n dt � ��

Note that by our assumptions on f � we may rewrite this expression as

Ln�x� � cn

Z ��x

�x
f�x � t� �� � t��n dt � cn

Z �

�

f�t� �� � �t � x���n dt�
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Written this way� it�s clear that Ln is a polynomial in x of degree at most n�

We �rst need to estimate cn� An easy induction argument will convince you that

��� t��n � �� nt�� and so we getZ �

��
��� t��n dt � �

Z ��
p
n

�

��� nt�� dt �



�
p
n
�

�p
n
�

from which it follows that cn �
p
n� In particular� for any 	 � 
 � ��

cn

Z �

�

�� � t��n dt �
p
n ��� 
��n � 	 �n����

which is the inequality we�ll need�

Next� let 	 � 	 be given� and choose 	 � 
 � � such that

jf�x� � f�y�j � 	�� whenever jx � yj � 
�

Then� since cn��� t��n � 	 and integrates to �� we get

jLn�x� � f�x�j �

����cn Z �

�

�
f�x � t�� f�x�



��� t��n dt

����
� cn

Z �

�

jf�x � t� � f�x�j�� � t��n dt

� 	

�
cn

Z �

�

�� � t��n dt � �kfk cn
Z �

�

�� � t��n dt

� 	

�
� �kfkpn ��� 
��n � 	�

provided that n is su�ciently large�

A third proof of the Weierstrass theorem� due to Lebesgue in ����� is outlined in the

exercises� Lebesgue�s proof is of particular interest since it inspired Stone�s version of the

Weierstrass theorem� we�ll discuss the Stone�Weierstrass theorem a bit later in the course�

Before we go on� let�s stop and make an observation or two� While the Bernstein

polynomials Bn�f� o�er a convenient and explicit polynomial approximation to f � they

are by no means the best approximations� Indeed� recall that if f��x� � x and f��x� � x��

then Bn�f�� � �� � �
n �f� � �

nf� 
� f�� Clearly� the best approximation to f� out of Pn
should be f� itself whenever n � �� On the other hand� since we always have

En�f� � kf �Bn�f�k �why���
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a detailed understanding of Bernstein�s proof will lend insight into the general problem of

polynomial approximation� Our next project� then� is to improve upon our estimate of the

error kf �Bn�f�k�

Improved Estimates

To begin� we will need a bit more notation� The modulus of continuity of a bounded

function f on the interval � a� b � is de�ned by

�f �
� � �f �� a� b �� 
� � sup
�jf�x� � f�y�j � x� y � � a� b �� jx� yj � 


�
for any 
 � 	� Note that �f �
� is a measure of the �	� that goes along with 
 �in the

de�nition of uniform continuity�� literally� we have written 	 � �f �
� as a function of 
�

Here are a few easy facts about the modulus of continuity�

Exercises

�� We always have jf�x� � f�y�j � �f � jx � yj � for any x 
� y � � a� b ��

�� If 	 � 
� � 
� then �f �
�� � �f �
��

�� f is uniformly continuous if and only if �f �
� � 	 as 
 � 	��


� If f � exists and is bounded on � a� b �� then �f �
� � K
 for some constant K�

�� More generally� we say that f satis�es a Lipschitz condition of order � with constant

K� where 	 � � � � and 	 � K � �� if jf�x� � f�y�j � Kjx � yj� for all x� y� We

abbreviate this statement by the symbols� f � lipK�� Check that if f � lipK�� then

�f �
� � K
� for all 
 � 	�

For the time being� we actually only need one simple fact about �f �
��

Lemma� Let f be a bounded function on � a� b � and let 
 � 	� Then� �f �n
� � n�f �
�

for n � �� �� � � �� Consequently� �f ��
� � �� � ���f �
� for any � � 	�

Proof� Given x � y with jx � yj � n 
� split the interval �x� y � into n pieces� each of

length at most 
� Speci�cally� if we set zk � x � k�y � x��n� for k � 	� �� � � � � n� then
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jzk � zk��j � 
 for any k � �� and so

jf�x� � f�y�j �

�����
nX

k��

f�zk�� f�zk���

�����
�

nX
k��

jf�zk� � f�zk���j

� n�f �
��

Thus� �f �n
� � n�f �
��

The second assertion follows from the �rst �and one of our exercises�� Given � � 	�

choose an integer n so that n� � � � � n� Then�

�f ��
� � �f �n 
� � n�f �
� � �� � ���f �
��

We next repeat the proof of Bernstein�s theorem� making a few minor adjustments

here and there�

Theorem� For any bounded function f on � 	� � � we have

kf �Bn�f�k � �

�
�f

�
�p
n

�
�

In particular� if f � C� 	� � �� then En�f� � �
� �f � �p

n
� � 	 as n���

Proof� We �rst do some term juggling�

jf�x� �Bn�f��x�j �

�����
nX

k��

�
f�x� � f

�
k

n

���
n

k

�
xk��� x�n�k

�����
�

nX
k��

����f�x� � f

�
k

n

������nk
�
xk��� x�n�k

�
nX

k��

�f

�����x� k

n

������nk
�
xk��� x�n�k

� �f

�
�p
n

� nX
k��

�
� �

p
n

����x� k

n

���� ��nk
�
xk��� x�n�k

� �f

�
�p
n

� �
� �

p
n

nX
k��

����x � k

n

���� �nk
�
xk��� x�n�k

�
�
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where the third inequality follows from our previous Lemma �by taking � �
p
n
��x � k

n

��
and 
 � �p

n
�� All that remains is to estimate the sum� and for this we�ll use Cauchy�

Schwarz �and our earlier observations about Bernstein polynomials�� Since each of the

terms
�
n
k

�
xk��� x�n�k is nonnegative� we have

nX
k��

����x � k

n

���� �nk
�
xk��� x�n�k

�
�

nX
k��

����x� k

n

����� �nk
�
xk��� x�n�k

����
�
�

nX
k��

�
n

k

�
xk��� x�n�k

����

�
�

�


n

����
�

�

�
p
n
�

Finally�

jf�x� �Bn�f��x�j � �f

�
�p
n

��
� �

p
n � �

�
p
n

�
�

�

�
�f

�
�p
n

�
�

Examples

�� If f � lipK�� it follows that kf �Bn�f�k � �
�Kn���� and hence En�f� � �

�Kn�����

�� As a particular case of the �rst example� consider f�x� �
��x � �

�

�� on � 	� � �� Then

f � lip��� and so kf �Bn�f�k � �
� n

����� But� as Rivlin points out �see Remark � on

p� �� of his book�� kf � Bn�f�k � �
� n

����� Thus� we can�t hope to improve on the

power of n in this estimate� Nevertheless� we will see an improvement in our estimate

of En�f��

The Bohman�Korovkin Theorem

The real value to us in Bernstein�s approach is that the map f 	� Bn�f�� while providing

a simple formula for an approximating polynomial� is also linear and positive� In other

words�

Bn�f � g� � Bn�f� � Bn�g��

Bn��f� � �Bn�f�� � � R�
and

Bn�f� � 	 whenever f � 	�

As it happens� any positive� linear map T � C� 	� � � � C� 	� � � is necessarily also continuous 
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Lemma� If T � C� a� b � � C� a� b � is both positive and linear� then T is continuous�

Proof� First note that a positive� linear map is also monotone� That is� T satis�es

T �f� � T �g� whenever f � g� �Why�� Thus� for any f � C� a� b �� we have

�f� f � jf j �� �T �f�� T �f� � T �jf j��

that is� jT �f�j � T �jf j�� But now jf j � kfk � �� where � denotes the constant � function�

and so we get

jT �f�j � T �jf j� � kfkT ����

Thus�

kT �f�k � kfk kT ���k

for any f � C� a� b �� Finally� since T is linear� it follows that T is Lipschitz with constant

kT ���k�
kT �f� � T �g�k � kT �f � g�k � kT ���k kf � gk�

Consequently� T is continuous�

Now positive� linear maps abound in analysis� so this is a fortunate turn of events�

What�s more� Bernstein�s theorem generalizes very nicely when placed in this new setting�

The following elegant theorem was proved �independently� by Bohman and Korovkin in�

roughly� �����

Theorem� Let Tn � C� 	� � � � C� 	� � � be a sequence of positive� linear maps� and suppose

that Tn�f� � f uniformly in each of the three cases

f��x� � �� f��x� � x� and f��x� � x��

Then� Tn�f� � f uniformly for every f � C� 	� � ��

The proof of the Bohman�Korovkin theorem is essentially identical to the proof of

Bernstein�s theorem except� of course� we write Tn�f� in place of Bn�f�� For full details�

see Cheney�s book An Introduction to Approximation Theory� Chelsea� ����� Rather than

proving the theorem� let�s settle for a quick application�
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Example

Let f � C� 	� � � and� for each n� let Ln�f� be the �polygonal� approximation to f with

nodes at k�n� k � 	� �� � � � � n� That is� Ln�f� is linear on each subinterval � �k����n� k�n �

and agrees with f at each of the endpoints Ln�f��k�n� � f�k�n�� Then� Ln�f� � f

uniformly for each f � C� 	� � �� This is actually an easy calculation all by itself� but let�s

see why the Bohman�Korovkin theorem makes short work of it�

That Ln�f� is positive and linear is �nearly� obvious� that Ln�f�� � f� andLn�f�� � f�

are really easy since� in fact� Ln�f� � f for any linear function f � We just need to show

that Ln�f�� � f�� But a picture will convince you that the maximum distance between

Ln�f�� and f� on the interval � �k � ���n� k�n � is at most�
k

n

��

�
�
k � �

n

��

�
�k � �

n�
� �

n
�

That is� kf� � Ln�f��k � ��n� 	 as n���

�Note that Ln is a linear projection from C� 	� � � onto the subspace of polygonal

functions based on the nodes k�n� k � 	� � � � � n� An easy calculation� similar in spirit

to the example above� will show that kf � Ln�f�k � ��f ���n� � 	 as n � � for any

f � C� 	� � ���
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One of our �rst tasks will be to give a constructive proof of Weierstrass�s Theorem� stating

that each f � C� a� b � is the uniform limit of a sequence of polynomials� As it happens� the

choice of interval � a� b � is inconsequential� If Weierstrass�s theorem is true for one� then

it�s true for all�

� � ��� De�ne 
 � � 	� � � � � a� b � by 
�t� � a � t�b � a� for 	 � t � �� and de�ne a transfor�

mation T� � C� a� b � � C� 	� � � by �T��f���t� � f�
�t��� Prove that T� satis�es�

�a� T��f � g� � T��f� � T��g� and T��cf� � c T��f� for c � R�

�b� T��fg� � T��f�T��g�� In particular� T� maps polynomials to polynomials�

�c� T��f� � T��g� if and only if f � g�

�d� kT��f�k � kfk�
�e� T� is both one�to�one and onto� Moreover� �T���� � T��� �

The point to exercise �� is that C� a� b � and C� 	� � � are identical as vector spaces� metric

spaces� algebras� and lattices� For all practical purposes� they are one and the same space�

While Bernstein�s proof of the Weierstrass theorem �below� will prove most useful for our

purposes� there are many others� two of these �in the case of C� 	� � �� are sketched below�

� ��� �Landau�s proof�� For each n � �� �� � � � and 	 � 
 � �� de�ne In�
� �
R �
�

���x��n dx�

Show that In�
��In�	� � 	 as n � � for any 
 � 	� Now� given f � C� 	� � � with

f�	� � f��� � 	� show that the polynomial Ln�x� � ��In�	����
R �
� f�t�����t�x���n dt

converges uniformly to f�x� on � 	� � � as n��� �Hint� You may assume that f 
 	

outside of � 	� � ��� To get the result for general f � C� 	� � �� we simply need to subtract

the linear function f�	� � x�f��� � f�	���

� �
� �Lebesgue�s proof�� Given f � C� 	� � �� �rst show that f can be uniformly approxi�

mated by a polygonal function� Speci�cally� given a positive integer N � de�ne L�x�

by the conditions L�k�N� � f�k�N� for k � 	� �� � � � �N � and L�x� is linear for

k�N � x � �k����N � show that kf�Lk is small provided that N is su�ciently large�

The function L�x� can be written �uniquely� as a linear combination of the �angles�

�k�x� � jx� k�N j�x� k�N and �N�x� � �� the equation L�x� �
PN

k�� ck�k�x� can

be solved since the system of equations L�k�N� �
PN

k�� ck�k�k�N�� k � 	� � � � �N �
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can be solved �uniquely� for c�� � � � � cN � �How�� To �nish the proof� we need to show

that jxj can be approximated by polynomials on any interval � a� b �� �Why��

� ��� Here�s an elementary proof that there is a sequence of polynomials �Pn� converging

uniformly to jxj on ���� � ��

�a� De�ne �Pn� recursively by Pn���x� � Pn�x� � �x � Pn�x������ where P��x� � 	�

Clearly� each Pn is a polynomial�

�b� Check that 	 � Pn�x� � Pn���x� � p
x for 	 � x � �� Use Dini�s theorem to

conclude that Pn�x��
p
x on � 	� � ��

�c� Pn�x�� is also a polynomial� and Pn�x��� jxj on ���� � ��

� � ��� The result in problem �� �or �
� shows that the polynomials are dense in C� 	� � ��

Using the results in ��� conclude that the polynomials are also dense in C� a� b ��

� � ��� How do we know that there are non�polynomial elements in C� 	� � �� In other words�

is it possible that every element of C� 	� � � agrees with some polynomial on � 	� � ��

��� Let �Qn� be a sequence of polynomials of degree mn� and suppose that �Qn� converges

uniformly to f on � a� b �� where f is not a polynomial� Show that mn ���

��� If f � C���� � � �or C��� is an even function� show that f may be uniformly approxi�

mated by even polynomials �or even trig polynomials��

�	� If f � C� 	� � � and if f�	� � f��� � 	� show that the sequence of polynomialsPn
k��

��
n
k

�
f�k�n�



xk�� � x�n�k with integer coe�cients converges uniformly to f

�where �x� denotes the greatest integer in x�� The same trick works for any f � C� a� b �

provided that 	 � a � b � ��

�
� If p is a polynomial and 	 � 	� prove that there is a polynomial q with rational

coe�cients such that kp� qk � 	 on � 	� � �� Conclude that C� 	� � � is separable�

��� Let �xi� be a sequence of numbers in �	� �� such that lim
n��

�
n

Pn
i�� x

k
i exists for every

k � 	� �� �� � � �� Show that lim
n��

�
n

Pn
i�� f�xi� exists for every f � C� 	� � ��

��� If f � C� 	� � � and if
R �
�
xnf�x� dx � 	 for each n � 	� �� �� � � �� show that f 
 	� �Hint�

Using the Weierstrass theorem� show that
R �
� f

� � 	��

The next proof of the Weierstrass theorem that we consider is quite explicit� we actually
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display a sequence of polynomials that converges uniformly to a given f � C� 	� � �� Given

f � C� 	� � �� we de�ne the sequence
�
Bn�f�

��
n��

of Bernstein polynomials for f by

�
Bn�f�

�
�x� �

nX
k��

f

�
k

n

�
�
�
n

k

�
xk��� x�n�k�

Please note that Bn�f� is a polynomial of degree at most n� Also� it�s easy to see that�
Bn�f�

�
�	� � f�	� and

�
Bn�f�

�
��� � f���� In general�

�
Bn�f�

�
�x� is an average of

the numbers f�k�n�� k � 	� � � � � n� Bernstein�s theorem states that the sequence Bn�f�

converges uniformly to f for each f � C� 	� � �� the proof is rather simple once we have a

few facts about the Bernstein polynomials at our disposal� For later reference� let�s write

f��x� � �� f��x� � x� and f��x� � x��

Among other things� the following exercise establishes Bernstein�s theorem for these three

polynomials� Curiously� these few special cases will imply the general result�

� �
� �i� Bn�f�� � f� and Bn�f�� � f�� �Hint� Use the binomial theorem��

�ii� Bn�f�� �
�
�� �

n

�
f� � �

nf�� and hence �Bn�f��� converges uniformly to f��

�iii�
Pn

k��

�
k
n � x

�� �n
k

�
xk��� x�n�k � x���x�

n � �
�n � if 	 � x � ��

�iv� Given 
 � 	 and 	 � x � �� let F denote the set of k�s in f	� � � � � ng for which�� k
n � x

�� � 
� Then
P

k�F
�
n
k

�
xk�� � x�n�k � �

�n�� �

� ��� Show that jBn�f�j � Bn�jf j�� and that Bn�f� � 	 whenever f � 	� Conclude that

kBn�f�k � kfk�
��� If f is a bounded function on � 	� � �� show that Bn�f��x� � f�x� at each point of

continuity of f �

��� �Bohman� Korovkin� Let �Tn� be a sequence of monotone linear operators on C� 	� � ��

that is� each Tn is a linear map from C� 	� � � into itself satisfying Tn�f� � Tn�g�

whenever f � g� Suppose also that Tn�f�� � f�� Tn�f�� � f�� and Tn�f�� � f��

Prove that Tn�f� � f for every f � C� 	� � �� �Hint� Mimic the proof of Bernstein�s

theorem��

��� Find Bn�f� for f�x� � x�� �Hint� k� � �k � ���k � �� � ��k � �� � ��� The same

method of calculation can be used to show that Bn�f� � Pm whenever f � Pm and

n � m�
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� ��� Let f be continuously di�erentiable on � a� b �� and let 	 � 	� Show that there is a

polynomial p such that kf � pk � 	 and kf � � p�k � 	�

�	� Suppose that f � C� a� b � is twice continuously di�erentiable and has f �� � 	� Prove

that the best linear approximation to f on � a� b � is a� � a�x where a� � f ��c��

a� � �f�a� � f�c� � f ��c��a � c����� and where c is the unique solution to f ��c� �

�f�b� � f�a����b � a��

The next several exercises concern the modulus of continuity� Given a bounded real�valued

function f de�ned on some interval I� we de�ne �f � the modulus of continuity of f � by

�f �I� 
� � �f �
� � sup
�jf�x� � f�y�j � x� y � I� jx� yj � 


�
� 
 � 	�

Note� for example� that if f is uniformly continuous� then �f �
� � 	 as 
 � 	� Indeed�

the statement that jf�x� � f�y�j � 	 whenever jx � yj � 
 is equivalent to the statement

that �f �
� � 	� On the other hand� if the graph of f has a jump of magnitude �� say� then

�f �
� � � for all 
 � 	�

� �
� If f satis�es the Lipschitz condition jf�x��f�y�j � Kjx�yj� what can you say about

�f� Calculate �g for g�x� �
p
x�

��� If f � C� a� b �� show that �f �
� � 
�� � �f �
�� � �f �
�� and that �f �
� � 	 as 
 � 	�

Use this to show that �f is continuous for 
 � 	� Finally� show that the modulus of

continuity of �f is again �f �

� ��� �a� If x � cos �� where �� � x � �� and if g��� � f�cos ��� show that �g����� � �� 
� �

�g�� 	� � �� 
� � �f ����� � �� 
��

�b� If g�x� � f�ax�b� for c � x � d� show that �g�� c� d �� 
� � �f �� ac�b� ad�b �� a
��

�
� Let f be continuously di�erentiable on � 	� � �� Show that �Bn�f��� converges uniformly

to f � by showing that kBn�f �� � �Bn���f��� k � �f �����n � ���� �In order to see

why this is of interest� �nd a uniformly convergent sequence of polynomials whose

derivatives fail to converge uniformly� Compare this result with problem ����
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Introduction

A �real� trigonometric polynomial� or trig polynomial for short� is a function of the form

a� �
nX

k��

�
ak cos kx � bk sinkx

�
� ���

where a�� � � � � an and b�� � � � � bn are real numbers� The degree of a trig polynomial is the

highest frequency occurring in any representation of the form ���� thus� ��� has degree n

provided that one of an or bn is nonzero� We will use Tn to denote the collection of trig

polynomials of degree at most n� and T to denote the collection of all trig polynomials

�i�e�� the union of the Tn�s��

It is convenient to take the space of all continuous ���periodic functions on R as the

containing space for Tn� a space we denote by C��� The space C�� has several equivalent

descriptions� For one� it�s obvious that C�� is a subspace of C�R�� the space of all con�

tinuous functions on R� But we might also consider C�� as a subspace of C� 	� �� � in the

following way� The ���periodic continuous functions on R may be identi�ed with the set

of functions f � C� 	� �� � satisfying f�	� � f����� Each such f extends to a ���periodic

element of C�R� in an obvious way� and it�s not hard to see that the condition f�	� � f����

de�nes a subspace of C� 	� �� �� As a third description� it is often convenient to identify C��

with the collection C�T�� consisting of all the continuous real�valued functions on T� where

T is the unit circle in the complex plane C � That is� we simply make the identi�cations

� �� ei� and f��� �� f�ei���

In any case� each f � C�� is uniformly continuous and uniformly bounded on all of R� and

is completely determined by its values on any interval of length ��� In particular� we may

�and will� endow C�� with the sup norm�

kfk � max
��x���

jf�x�j � max
x�R

jf�x�j�

Our goal in this chapter is to prove what is sometimes called Weierstrass�s second

theorem �also from ������
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Theorem� �Weierstrass�s Second Theorem� ����� Let f � C��� Then� for every 	 � 	�

there exists a trig polynomial T such that kf � Tk � 	�

Ultimately� we will give several di�erent proofs of this theorem� Weierstrass gave a

separate proof of this result in the same paper containing his theorem on approximation

by algebraic polynomials� but it was later pointed out by Lebesgue ������ that the two

theorems are� in fact� equivalent� Lebesgue�s proof is based on several elementary obser�

vations� We will outline these elementary facts as �exercises with hints�� supplying a few

proofs here and there� but leaving full details to the reader�

We �rst justify the use of the word �polynomial� in describing ����

Lemma� cosnx and sin�n � ��x� sinx can be written as polynomials of degree exactly n

in cosx for any integer n � 	�

Proof� Using the recurrence formula cos kx � cos�k � ��x � � cos�k � ��x cos x it�s not

hard to see that cos �x � � cos� x � �� cos �x � 
 cos� x � � cosx� and cos 
x � � cos� x �
� cos� x � �� More generally� by induction� cosnx is a polynomial of degree n in cosx

with leading coe�cient �n��� Using this fact and the identity sin�k � ��x� sin�k � ��x �

� cos kx sinx �along with another easy induction argument�� it follows that sin�n���x can

be written as sinx times a polynomial of degree n in cosx with leading coe�cient �n�

Alternatively� notice that by writing �i sinx��k � �cos� x � ��k we have

cosnx � Re ��cos x � i sinx�n� � Re

�
nX
k��

�
n

k

�
�i sinx�k cosn�k x

�

�

	n��
X
k��

�
n

�k

�
�cos� x� ��k cosn��k x�

The coe�cient of cosn x in this expansion is then

	n��
X
k��

�
n

�k

�
�

�

�

nX
k��

�
n

k

�
� �n���

�All the binomial coe�cients together sum to �� � ��n � �n� but the even or odd terms

taken separately sum to exactly half this amount since �� � �����n � 	��
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Similarly�

sin�n � ��x � Im
�
�cos x � i sinx�n��



� Im

�
n��X
k��

�
n � �

k

�
�i sinx�k cosn���k x

�

�

	n��
X
k��

�
n � �

�k � �

�
�cos� x� ��k cosn��k x sinx�

where we�ve written �i sinx��k�� � i�cos� x � ��k sinx� The coe�cient of cosn x sinx is

	n��
X
k��

�
n � �

�k � �

�
�

�

�

n��X
k��

�
n � �

k

�
� �n�

Corollary� Any trig polynomial ��� may be written as P �cos x� � Q�cos x� sinx� where

P and Q are algebraic polynomials of degree at most n and n � �� respectively� If ���
represents an even function� then it can be written using only cosines�

Corollary� The collection T � consisting of all trig polynomials� is both a subspace and

a subring of C�� �that is� T is closed under both linear combinations and products�� In

other words� T is a subalgebra of C���

It�s not hard to see that the procedure we�ve described above can be reversed� that is�

each algebraic polynomial in cosx and sinx can be written in the form ���� For example�


 cos� x � � cosx � cos �x� But� rather than duplicate our e�orts� let�s use a bit of linear

algebra� First� the �n � � functions

A � f �� cosx� cos �x� � � � � cosnx� sinx� sin �x� � � � � sinnx g�

are linearly independent� the easiest way to see this is to notice that we may de�ne an

inner product on C�� under which these functions are orthogonal� Speci�cally�

hf� gi �

Z ��

�

f�x� g�x� dx � 	� hf� fi �

Z ��

�

f�x�� dx 
� 	

for any pair of functions f 
� g � A� �We�ll pursue this direction in greater detail later in

the course�� Second� we�ve shown that each element of A lives in the space spanned by

the �n � � functions

B � f �� cosx� cos� x� � � � � cosn x� sinx� cosx sin x� � � � � cosn�� x sinx g�
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That is�

Tn 
 spanA � spanB�

By comparing dimensions� we have

�n � � � dimTn � dim�spanA� � dim�spanB� � �n � ��

and hence we must have spanA � spanB� The point here is that Tn is a �nite�dimensional

subspace of C�� of dimension �n� �� and we may use either one of these sets of functions

as a basis for Tn�

Before we leave these issues behind� let�s summarize the situation for complex trig

polynomials� i�e�� the case where we allow complex coe�cients in ���� Now it�s clear that

every trig polynomial ���� whether real or complex� can be written as

nX
k��n

cke
ikx� ����

where the ck�s are complex� that is� a trig polynomial is actually a polynomial �over C � in

z � eix and !z � e�ix� Conversely� every polynomial ���� can be written in the form ����
using complex ak�s and bk�s� Thus� the complex trig polynomials of degree n form a vector

space of dimension �n�� over C �hence of dimension ���n��� when considered as a vector

space over R�� But� not every polynomial in z and !z represents a real trig polynomial�

Rather� the real trig polynomials are the real parts of the complex trig polynomials� To

see this� notice that ���� represents a real�valued function if and only if

nX
k��n

cke
ikx �

nX
k��n

ckeikx �
nX

k��n
!c�keikx�

that is� ck � !c�k for each k� In particular� c� must be real� and hence

nX
k��n

cke
ikx � c� �

nX
k��

�cke
ikx � c�ke�ikx�

� c� �
nX

k��

�cke
ikx � !cke

�ikx�

� c� �
nX

k��

�
�ck � !ck� cos kx � i�ck � !ck� sin kx



� c� �

nX
k��

�
�Re�ck� cos kx� �Im�ck� sin kx



�
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which is of the form ��� with ak and bk real�

Conversely� given any real trig polynomial ���� we have

a� �
nX

k��

�
ak cos kx � bk sin kx

�
� a� �

nX
k��

��
ak � ibk

�

�
eikx �

�
ak � ibk

�

�
e�ikx

�
�

which of of the form ���� with ck � !c�k for each k�

It�s time we returned to approximation theory Since we�ve been able to identify C��

with a subspace of C� 	� �� �� and since Tn is a �nite�dimensional subspace of C��� we have

Corollary� Each f � C�� has a best approximation �on all of R� out of Tn� If f is an

even function� then it has a best approximation which is also even�

Proof� We only need to prove the second claim� so suppose that f � C�� is even and

that T � � Tn satis�es

kf � T �k � min
T�Tn

kf � Tk�

Then� since f is even� eT �x� � T ���x� is also a best approximation to f out of Tn� indeed�

kf � eT k � max
x�R

jf�x� � T ���x�j

� max
x�R

jf��x� � T ��x�j

� max
x�R

jf�x� � T ��x�j � kf � T �k�

But now� the even trig polynomial

bT �x� �
eT �x� � T ��x�

�
�
T ���x� � T ��x�

�

is also a best approximation out of Tn since

kf � bT k �

����� �f � eT � � �f � T ��
�

����� � kf � eT k� kf � T �k
�

� min
T�Tn

kf � Tk�

We next give �de la Vall"ee Poussin�s version of� Lebesgue�s proof of Weierstrass�s

second theorem� that is� we will deduce the second theorem from the �rst�
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Theorem� Let f � C�� and let 	 � 	� Then� there is a trig polynomial T such that

kf � Tk � max
x�R

jf�x� � T �x�j � 	�

Proof� We will prove that Weierstrass�s �rst theorem for C���� � � implies his second

theorem for C���

Step �� If f is even� then f may be uniformly approximated by even trig polynomials�

If f is even� then it�s enough to approximate f on the interval � 	� � �� In this case� we

may consider the function g�y� � f�arccos y�� �� � y � �� in C���� � �� By Weierstrass�s

�rst theorem� there is an algebraic polynomial p�y� such that

max
���y��

jf�arccos y� � p�y�j � max
��x��

jf�x� � p�cos x�j � 	�

But T �x� � p�cosx� is an even trig polynomial Hence�

kf � Tk � max
x�R

jf�x� � T �x�j � 	�

Let�s agree to abbreviate kf � Tk � 	 as f � T �

Step �� Given f � C��� there is a trig polynomial T such that �f�x� sin� x � T �x��

Each of the functions f�x� � f��x� and �f�x� � f��x�� sin x is even� Thus� we may

choose even trig polynomials T� and T� such that

f�x� � f��x� � T��x� and �f�x� � f��x�� sin x � T��x��

Multiplying the �rst expression by sin� x� the second by sinx� and adding� we get

�f�x� sin� x � T��x� sin� x � T��x� sin x 
 T��x��

where T��x� is still a trig polynomial� and where ��� now means �within �	� �since

j sinx j � ���

Step �� Given f � C��� there is a trig polynomial T such that �f�x� cos� x � T �x�� where

��� means �within �	��

Repeat Step � for f�x � ���� and translate� We �rst choose a trig polynomial T��x�

such that

�f


x � �

�

�
sin� x � T��x��
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That is�

�f�x� cos� x � T��x��

where T��x� is a trig polynomial�

Finally� by combining the conclusions of Steps � and �� we �nd that there is a trig

polynomial T��x� such that f � T��x�� where� again� ��� means �within �	��

Just for fun� let�s complete the circle and show that Weierstrass�s second theorem

for C�� implies his �rst theorem for C���� � �� Since� as we�ll see� it�s possible to give an

independent proof of the second theorem� this is a meaningful exercise�

Theorem� Given f � C���� � � and 	 � 	� there exists an algebraic polynomial p such

that kf � pk � 	�

Proof� Given f � C���� � �� the function f�cos x� is an even function in C��� By our

Corollary to Weierstrass�s second theorem� we may approximate f�cos x� by an even trig

polynomial�

f�cos x� � a� � a� cosx � a� cos �x � � � �� an cosnx�

But� as we�ve seen� cos kx can be written as an algebraic polynomial in cosx� Hence� there

is some algebraic polynomial p such that f�cos x� � p�cosx�� That is�

max
��x��

jf�cos x� � p�cosx�j � max
���t��

jf�t� � p�t�j � 	�

The algebraic polynomials Tn�x� satisfying

Tn�cosx� � cosnx� for n � 	� �� �� � � � �

are called the Chebyshev polynomials of the �rst kind� Please note that this formula

uniquely de�nes Tn as a polynomial of degree exactly n� and hence uniquely determines

the values of Tn�x� for jxj � �� too� The algebraic polynomials Un�x� satisfying

Un�cosx� �
sin�n � ��x

sinx
� for n � 	� �� �� � � � �

are called the Chebyshev polynomials of the second kind� Likewise� note that this formula

uniquely de�nes Un as a polynomial of degree exactly n�
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We will discover many intriguing properties of the Chebyshev polynomials in the next

chapter� For now� let�s settle for just one� The recurrence formula we gave earlier

cosnx � � cosx cos�n � ��x � cos�n� ��x

now becomes

Tn�x� � �xTn���x� � Tn���x�� n � ��

where T��x� � � and T��x� � x� This recurrence relation �along with the initial cases T�

and T�� may be taken as a de�nition for the Chebyshev polynomials of the �rst kind� At

any rate� it�s now easy to list any number of the Chebyshev polynomials Tn� for example�

the next few are T��x� � �x� � �� T��x� � 
x� � �x� T��x� � �x� � �x� � �� and T��x� �

��x� � �	x� � �x�
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A �real� trigonometric polynomial� or trig polynomial for short� is a function of the form

a� �

nX
k��

�
ak cos kx � bk sinkx

�
� ���

where a�� � � � � an and b�� � � � � bn are real numbers� We will use Tn to denote the collection

of trig polynomials of degree at most n� considered as a subspace C��� the space of all

continuous ���periodic functions on R� The space C�� may� in turn� be considered as a

subspace of C� 	� �� �� Indeed� the ���periodic continuous functions on Rmay be identi�ed

with the subspace of C� 	� �� � consisting of those f �s which satisfy f�	� � f����� As an

alternate description� it is often convenient to instead identify C�� with the collection

C�T�� consisting of all continuous real�valued functions on T� where T is the unit circle in

the complex plane C � In this case� we simply make the identi�cations

� �� ei� and f��� �� f�ei���

� ��� �a� By using the recurrence formulas cos kx � cos�k � ��x � � cos�k � ��x cosx and

sin�k � ��x � sin�k � ��x � � cos kx sinx� show that each of the functions cos kx

and sin�k � ��x� sinx may be written as algebraic polynomials of degree exactly

k in cosx� In each case� what is the coe�cient of cosk x�

�b� Equivalently� use the binomial formula to write the real and imaginary parts of

�cos x � i sinx�n � cosnx � i sinnx as algebraic polynomials in cosx and sinx�

Again� what are the leading coe�cients of these polynomials�

�c� If P �x� y� is an algebraic polynomial �in two variables� of degree at most n� show

that P �cosx� sinx� may be written as Q�cos x� � R�cos x� sinx� where Q and

R are algebraic polynomials �in one variable� of degrees at most n and n � ��

respectively�

�d� Show that cosn x can be written as a linear combination of the functions cos kx�

k � �� � � � � n� and that cosn�� x sinx can be written as a linear combinations of

the functions sin kx� k � �� � � � � n� Thus� each polynomial P �cos x� sinx� in cosx

and sinx can be written in the form ����
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�e� If ��� represents an even function� show that it can be written using only cosines�

Conversely� if P �x� y� is an even polynomial� show that P �cos x� sinx� can be

written using only cosines�

��� Show that Tn has dimension exactly �n � � �as a vector space over R��

��� We might also consider complex trig polynomials� that is� functions of the form ��� in

which we now allow the ak�s and bk�s to be complex numbers�

�a� Show that every trig polynomial� whether real or complex� may be written as

nX
k��n

cke
ikx� ����

where the ck�s are complex� Thus� complex trig polynomials are just algebraic

polynomials in z and !z� where z � eix � T�

�b� Show that ���� is real�valued if and only if !ck � c�k for any k�

�c� If ���� is a real�valued function� show that it may be written as a real trig poly�

nomial� that is� it may be written in the form ��� using only real coe�cients�
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We next discuss Chebyshev�s solution to the problem of best polynomial approximation

from ���
� Given that there was no reason to believe that the problem even had a solution�

let alone a unique solution� Chebyshev�s accomplishment should not be underestimated�

Chebyshev might very well have been able to prove Weierstrass�s result��	 years early�

had the thought simply occurred to him Chebyshev�s original papers are apparently

rather sketchy� It wasn�t until ��	� that full details were given by Kirchberger� Curiously�

Kirchberger�s proofs foreshadow very modern techniques such as convexity and separation

arguments� The presentation we�ll give owes much to Haar and to de la Vall"ee Poussin

�both from around ������

We begin with an easy observation�

Lemma� Let f � C� a� b � and let p � p�n be a best approximation to f out of Pn� Then�
there are at least two distinct points x�� x� � � a� b � such that

f�x�� � p�x�� � ��f�x��� p�x��� � kf � pk�

That is� f � p attains both of the values �kf � pk�

Proof� Let�s write E � En�f� � kf � pk � max
a�x�b

jf�x� � p�x�j� If the conclusion of the

Lemma is false� then we might as well suppose that f�x�� � p�x�� � E� for some x�� but

that

e � min
a�x�b

�f�x� � p�x�� � �E�

In particular� E � e 
� 	 and so q � p � �E � e��� is an element of Pn with q 
� p� We

claim that q is a better approximation to f than p� Here�s why�

E �
�
E � e

�

�
� f�x� � p�x� �

�
E � e

�

�
� e�

�
E � e

�

�
�

or �
E � e

�

�
� f�x� � q�x� � �

�
E � e

�

�
�

That is�

kf � qk �
�
E � e

�

�
� E � kf � pk�
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a contradiction�

Corollary� The best approximating constant to f � C� a� b � is

p�� �
�

�

�� max
a�x�b

f�x� � min
a�x�b

f�x�

�� �
and

E��f� �
�

�

�� max
a�x�b

f�x� � min
a�x�b

f�x�

�� �
Proof� Exercise�

Now all of this is meant as motivation for the general case� which essentially repeats

the observation of our �rst Lemma inductively� A little experimentation will convince you

that a best linear approximation� for example� would imply the existence of three points

�at least� at which f � p�� alternates between �kf � p��k�
A bit of notation will help us set up the argument for the general case� Given g in

C� a� b �� we�ll say that x � � a� b � is a ��� point for g �respectively� a ��� point for g� if

g�x� � kgk �respectively� g�x� � �kgk�� A set of distinct point a � x� � x� � � � � � xn � b

will be called an alternating set for g if the xi�s are alternately ��� points and ��� points�

that is� if

jg�xi�j � kgk� i � 	� �� � � � � n�

and

g�xi� � �g�xi���� i � �� �� � � � � n�

Using this notation� we will be able to characterize the polynomial of best approximation�

Since the following three theorems are particularly important� we will number them for

future reference� Our �rst result is where all the �ghting takes place�

Theorem �� Let f � C� a� b �� and suppose that p � p�n is a best approximation to f out

of Pn� Then� there is an alternating set for f � p consisting of at least n� � points�

Proof� If f � Pn� there�s nothing to show� �Why�� Thus� we may suppose that f �� Pn
and� hence� that E � En�f� � kf � pk � 	�
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Now consider the �uniformly� continuous function � � f � p� We may partition � a� b �

by way of a � t� � t� � � � � � tn � b into su�ciently small intervals so that

j��x�� ��y�j � E�� whenever x� y � � ti� ti�� ��

Here�s why we�d want to do such a thing� If � ti� ti�� � contains a ��� point for � � f � p�

then � is positive on all of � ti� ti�� �� Indeed�

x� y � � ti� ti�� � and ��x� � E �� ��y� � E�� � 	�

Similarly� if � ti� ti�� � contains a ��� point for �� then � is negative on all of � ti� ti�� ��

Consequently� no interval � ti� ti�� � can contain both ��� points and ��� points�

Call � ti� ti�� � a ��� interval �respectively� a ��� interval� if it contains a ��� point

�respectively� a ��� point� for � � f �p� Notice that no ��� interval can even touch a

��� interval� In other words� a ��� interval and a ��� interval must be strictly separated

�by some interval containing a zero for ���

We now relabel the ��� and ��� intervals from left to right� ignoring the �neither�

intervals� There�s no harm in supposing that the �rst �signed� interval is a ��� interval�

Thus� we suppose that our relabeled intervals are written

I�� I�� � � � � Ik� ��� intervals�

Ik���� Ik���� � � � � Ik� ��� intervals�

� � � � � � � � � � � � � � � � �

Ikm����� Ik���� � � � � Ikm ����m�� intervals�

where Ik� is the last ��� interval before we reach the �rst ��� interval� Ik���� And so on�

For later reference� we let S denote the union of all the �signed� intervals � ti� ti�� ��

that is� S �
Sm
j�� Ikj � and we let N denote the union of all the �neither� intervals � ti� ti�� ��

Thus� S and N are compact sets with S � N � � a� b � �note that while S and N aren�t

quite disjoint� they are at least �non�overlapping��their interiors are disjoint��

Our goal here is to show that m � n � �� �So far we only know that m � � � Let�s

suppose that m � n � � and see what goes wrong�
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Since any ��� interval is strictly separated from any ��� interval� we can �nd points

z�� � � � � zm�� � N such that

max Ik� � z� � min Ik���

max Ik� � z� � min Ik���

� � � � � � � � � � � � � � � � � � � �

max Ikm�� � zm�� � min Ikm����

And now we construct the o�ending polynomial�

q�x� � �z� � x��z� � x� � � � �zm�� � x��

Notice that q � Pn since m � � � n� �Here is the only use we�ll make of the assumption

m � n� � � We�re going to show that p� �q � Pn is a better approximation to f than p�

for some suitable scalar ��

We �rst claim that q and f � p have the same sign� Indeed� q has no zeros in any

of the ��� intervals� hence is of constant sign on any such interval� Thus� q � 	 on

I�� � � � � Ik� because each �zj � x� � 	 on these intervals� q � 	 on Ik���� � � � � Ik� because

here �z� � x� � 	� while �zj � x� � 	 for j � �� and so on�

We next �nd �� Let e � max
x�N

jf�x� � p�x�j� where N is the union of all the subin�

tervals � ti� ti�� � which are neither ��� intervals nor ��� intervals� Then� e � E� �Why��

Now choose � � 	 so that �kqk � minfE � e�E��g� We claim that p � �q is a better

approximation to f than p� One case is easy� If x � N � then

jf�x� � �p�x� � �q�x��j � jf�x� � p�x�j � �jq�x�j � e � �kqk � E�

On the other hand� if x �� N � then x is in either a ��� interval or a ��� interval� In

particular� we know that jf�x�� p�x�j � E�� � �kqk and that f�x�� p�x� and �q�x� have

the same sign� Thus�

jf�x� � �p�x� � �q�x��j � jf�x� � p�x�j � �jq�x�j
� E � � min

x�S
jq�x�j � E�
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since q is nonzero on S� This contradiction �nishes the proof� �Phew �

Remarks

�� It should be pointed out that the number n � � here is actually � � dimPn�

�� Notice� too� that if f � p�n alternates in sign n � � times� then f � p�n must have at

least n�� zeros� Thus� p�n actually agrees with f �or �interpolates� f� at n�� points�

We�re now ready to establish the uniqueness of the polynomial of best approximation�

Theorem �� Let f � C� a� b �� Then� the polynomial of best approximation to f out of

Pn is unique�

Proof� Suppose that p� q � Pn both satisfy kf � pk � kf � qk � En�f� � E� Then�

as we�ve seen� their average r � �p � q��� � Pn is also best� kf � rk � E since f � r �

�f � p��� � �f � q����

By Theorem �� f � r has an alternating set x�� x�� � � � � xn��� containing n� � points�

Thus� for each i�

�f � p��xi� � �f � q��xi� � ��E �alternating��

while

�E � �f � p��xi�� �f � q��xi� � E�

But this means that

�f � p��xi� � �f � q��xi� � �E �alternating�

for each i� �Why�� That is� x�� x�� � � � � xn�� is an alternating set for both f � p and f � q�

In particular� the polynomial q � p � �f � p�� �f � q� has n � � zeros Since q � p � Pn�

we must have p � q�

Finally� we come full circle�

Theorem �� Let f � C� a� b �� and let p � Pn� If f � p has an alternating set containing

n � � �or more� points� then p is the best approximation to f out of Pn�
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Proof� Let x�� x�� � � � � xn�� be an alternating set for f�p� and suppose that some q � Pn
is a better approximation to f than p� that is� kf � qk � kf � pk� In particular� then� we

must have

jf�xi�� p�xi�j � kf � pk � kf � qk � jf�xi� � q�xi�j

for each i � 	� �� � � � � n � �� Now the inequality jaj � jbj implies that a and a� b have the

same sign �why��� hence q � p � �f � p�� �f � q� alternates in sign n � � times �because

f�p does�� But then� q�p would have at least n�� zeros� Since q�p � Pn� we must have

q � p� which is a contradiction� Thus� p is the best approximation to f out of Pn�

Example �taken from Rivlin�

While an alternating set for f � p�n is supposed to have at least n � � points� it may well

have more than n � � points� thus� alternating sets need not be unique� For example�

consider the function f�x� � sin 
x on ���� � �� Since there are � points where f alternates

between ��� it follows that p�� � 	 and that there are 
 � 
 � �� di�erent alternating

sets consisting of exactly � points �not to mention all those with more than � points�� In

addition� notice that we actually have p�� � � � � � p�� � 	� but that p�
 
� 	� �Why��

Exercise

Show that y � x � ��� is the best linear approximation to y � x� on � 	� � ��

Essentially repeating the proof given for Theorem � yields a lower bound for En�f��

Theorem� Let f � C� a� b �� and suppose that q � Pn is such that f�xi�� q�xi� alternates

in sign at n � � points a � x� � x� � � � � � xn�� � b� Then�

En�f� � min
i�������n��

jf�xi�� q�xi�j�

Proof� If the inequality fails� then the best approximation p � p�n would satisfy

max
��i�n��

jf�xi�� p�xi�j � En�f� � min
��i�n��

jf�xi�� q�xi�j�

Now we could repeat �essentially� the same argument used in the proof of Theorem � to

arrive at a contradiction� The details are left as an exercise�
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Even for relatively simple functions� the problem of actually �nding the polynomial

of best approximation is genuinely di�cult �even computationally�� We end this section

by stating two important problems that Chebyshev was able to solve�

Problem

Find the polynomial p�n�� � P�n��� of degree at most n � �� that best approximates

f�x� � xn on the interval ���� � �� �This particular choice of interval makes for a tidy

solution� we�ll discuss the general situation later��

Since p�n�� is to minimize max
jxj��

jxn � p�n���x�j� our �rst problem is equivalent to�

Problem

Find the monic polynomial of degree n which deviates least from 	 on ���� � �� In other

words� �nd the monic polynomial of degree n which has smallest norm in C���� � ��

We�ll give two solutions to this problem �which we know has a unique solution� of

course�� First� let�s simplify our notation� We write

p�x� � xn � p�n���x� �the solution��

and

M � kpk � En���xn� ���� � ���

All we know about p is that it has an alternating set �� � x� � x� � � � � � xn � �

containing �n� �� � � � n� � points� that is� jp�xi�j � M and p�xi��� � �p�xi� for all i�

Using this tiny bit of information� Chebyshev was led to compare the polynomials p� and

p �� Watch closely 

Step �� At any xi in ���� ��� we must have p ��xi� � 	 �because p�xi� is a relative extreme

value for p�� But� p � is a polynomial of degree n� � and so can have at most n� � zeros�

Thus� we must have

xi � ���� �� and p ��xi� � 	� for i � �� � � � � n� ��

�in fact� x�� � � � � xn�� are all the zeros of p �� and

x� � ��� p ��x�� 
� 	� xn�� � �� p ��xn��� 
� 	�
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Step �� Now consider the polynomial M� � p� � P�n� We know that M� � �p�xi��� � 	

for i � 	� �� � � � � n� and that M� � p� � 	 on ���� � �� Thus� x�� � � � � xn�� must be double

roots �at least� of M� � p�� But this makes for ��n � �� � � � �n roots already� so we

must have them all� Hence� x�� � � � � xn�� are double roots� x� and xn are simple roots� and

these are all the roots of M� � p��

Step �� Next consider �p ��� � P��n���� We know that �p ��� has a double root at each

of x�� � � � � xn�� �and no other roots�� hence �� � x���p ��x��� has a double root at each

x�� � � � � xn��� and simple roots at x� and xn� Since ���x���p ��x��� � P�n� we�ve found all

of its roots�

Here�s the point to all this �rooting��

Step �� Since M�� �p�x��� and ���x���p ��x��� are polynomials of the same degree with

the same roots� they are� up to a constant multiple� the same polynomial It�s easy to see

what constant� too� The leading coe�cient of p is � while the leading coe�cient of p � is

n� thus�

M� � �p�x��� �
��� x���p ��x���

n�
�

After tidying up�
p ��x�p

M� � �p�x���
�

np
� � x�

�

We really should have an extra � here� but we know that p � is positive on some interval�

we�ll simply assume that it�s positive on ���� x� �� Now� upon integrating�

arccos

�
p�x�

M

�
� n arccosx �C

or

p�x� � M cos�n arccosx � C��

But p���� � �M �because p ����� � 	�� so

cos�n� � C� � �� �� C � m� �with n � m odd�

�� p�x� � �M cos�n arccos x�

�� p�cos x� � �M cosnx�

Look familiar� Since we know that cosnx is a polynomial of degree n with leading coe��

cient �n�� �the n�th Chebyshev polynomial Tn�� the solution to our problem must be

p�x� � ��n�� Tn�x��
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Since jTn�x�j � � for jxj � � �why��� the minimum norm is M � ��n���

Next we give a �fancy� solution� based on our characterization of best approximations

�Theorem �� and a few simple properties of the Chebyshev polynomials�

Theorem� For any n � �� the formula p�x� � xn � ��n�� Tn�x� de�nes a polynomial

p � Pn�� satisfying

��n�� � max
jxj��

jxn � p�x�j � max
jxj��

jxn � q�x�j

for any other q � Pn���

Proof� We know that ��n�� Tn�x� has leading coe�cient �� and so p � Pn��� Now set

xk � cos��n � k���n� for k � 	� �� � � � � n� Then� �� � x� � x� � � � � � xn � � and

Tn�xk� � Tn�cos��n � k���n�� � cos��n� k��� � ����n�k�

Since jTn�x�j � jTn�cos ��j � j cosn�j � �� for �� � x � �� we�ve found an alternating set

for Tn containing n � � points�

In other words� xn � p�x� � ��n�� Tn�x� satis�es jxn � p�x�j � ��n�� and� for each

k � 	� �� � � � � n� has xnk � p�xk� � ��n�� Tn�xk� � ����n�k��n��� By our characterization

of best approximations �Theorem ��� p must be the best approximation to xn out of

Pn���

Corollary� The monic polynomial of degree exactly n having smallest norm in C� a� b � is

�b � a�n

�n�n��
� Tn

�
�x� b � a

b � a

�
�

Proof� Exercise� �Hint� If p�x� is a polynomial of degree n with leading coe�cient ��

then #p�x� � p���x � b � a���b � a�� is a polynomial of degree n with leading coe�cient

�n��b � a�n� Moreover� max
a�x�b

jp�x�j � max
���x��

j#p�x�j��

Properties of the Chebyshev Polynomials

As we�ve seen� the Chebyshev polynomial Tn�x� is the �unique� real� polynomial of degree

n �having leading coe�cient � if n � 	� and �n�� if n � �� such that Tn�cos �� � cosn�
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for all �� The Chebyshev polynomials have dozens of interesting properties and satisfy all

sorts of curious equations� We�ll catalogue just a few�

C�� Tn�x� � �xTn���x� � Tn���x� for n � ��

Proof� It follows from the trig identity cosn� � � cos � cos�n � ��� � cos�n � ��� that

Tn�cos �� � � cos � Tn���cos �� � Tn���cos �� for all �� that is� the equation Tn�x� �

�xTn���x� � Tn���x� holds for all �� � x � �� But since both sides are polynomials�

equality must hold for all x�

The next two properties are proved in essentially the same way�

C�� Tm�x� � Tn�x� � �
�

�
Tm�n�x� � Tm�n�x�



for m � n�

C�� Tm�Tn�x�� � Tmn�x��

C�� Tn�x� � �
�

�
�x �

p
x� � � �n � �x�px� � � �n



�

Proof� First notice that the expression on the right�hand side is actually a polynomial

since� on combining the binomial expansions of �x �
p
x� � � �n and �x �px� � � �n� the

odd powers of
p
x� � � cancel� Next� for x � cos ��

Tn�x� � Tn�cos �� � cosn� �
�

�
�ein� � e�in��

�
�

�

�
�cos � � i sin ��n � �cos � � i sin ��n



�

�

�

��
x � i

p
�� x�

�n
�
�
x � i

p
�� x�

�n

�

�

�

��
x �

p
x� � �

�n
�
�
x �

p
x� � �

�n

�

We�ve shown that these two polynomials agree for jxj � �� hence they must agree for all x

�real or complex� for that matter��

For real x with jxj � �� the expression �
�

�
�x �

p
x� � � �n � �x �px� � � �n



equals

cosh�n cosh�� x�� In other words�

C�� Tn�coshx� � coshnx for all real x�

The next property also follows from property C��
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C	� Tn�x� � �jxj �p
x� � � �n for jxj � ��

An approach similar to the proof of property C� allows us to write xn in terms of the

Chebyshev polynomials T�� T�� � � � � Tn�

C
� For n odd� �nxn �

	n��
X
k��

�
n

k

�
�Tn��k�x�� for n even� �T� should be replaced by T��

Proof� For �� � x � ��

�nxn � �n�cos ��n � �ei� � e�i��n

� ein� �

�
n

�

�
ei�n���� �

�
n

�

�
ei�n���� � � � �

� � ��
�

n

n� �

�
e�i�n���� �

�
n

n� �

�
e�i�n���� � e�in�

� � cosn� �

�
n

�

�
� cos�n � ��� �

�
n

�

�
� cos�n� 
�� � � � �

� �Tn�x� �

�
n

�

�
�Tn���x� �

�
n

�

�
�Tn���x� � � � � �

where� if n is even� the last term in this last sum is
�

n
	n��


�
T� �since the central term in the

binomial expansion� namely
�

n
	n��


�
�
�

n
	n��


�
T�� isn�t doubled in this case��

C�� The zeros of Tn are x
�n�
k � cos���k � �����n�� k � �� � � � � n� They�re real� simple� and

lie in the open interval ���� ���

Proof� Just check But notice� please� that the zeros are listed here in decreasing order

�because cosine decreases��

C�� Between two consecutive zeros of Tn� there is precisely one root of Tn���

Proof� It�s not hard to check that

�k � �

�n
�

�k � �

� �n � ��
�

�k � �

�n
�

for k � �� � � � � n� �� which means that x�n�k � x
�n���
k � x

�n�
k���

C�
� Tn and Tn�� have no common zeros�
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Proof� Although this is immediate from property C�� there�s another way to see it�

Tn�x�� � 	 � Tn���x�� implies that Tn���x�� � 	 by property C�� Repeating this

observation� we would have Tk�x�� � 	 for every k � n� including k � 	� No good 

T��x� � � has no zeros�

C��� The set fx�n�k � � � k � n� n � �� �� � � �g is dense in ���� � ��

Proof� Since cosx is �strictly� monotone on � 	� � �� it�s enough to know that the set

f��k������ngk�n is dense in � 	� � �� and for this it�s enough to know that f��k�����ngk�n
is dense in � 	� � �� �Why�� But

�k � �

�n
�

k

n
� �

�n
� k

n

for n large� that is� the set f��k � ����ngk�n is dense among the rationals in � 	� � ��

It�s interesting to note here that the distribution of the roots fx�n�k gk�n can be esti�

mated �see Natanson� Constructive Function Theory� Vol� I� pp� 
������ For large n� the

number of roots of Tn that lie in an interval �x� x � $x � � ���� � � is approximately

n$x

�
p

�� x�
�

In particular� for n large� the roots of Tn are �thickest� near the endpoints ���

In probabilistic terms� this means that if we assign equal probability to each of the

roots x
�n�
� � � � � � x

�n�
n �that is� if we think of each root as the position of a point with mass

��n�� then the density of this probability distribution �or the density of the system of point

masses� at a point x is approximately ���
p

�� x� for large n� In still other words� this

tells us that the probability that a root of Tn lies in the interval � a� b � is approximately

�

�

Z b

a

�p
�� x�

dx �

C��� The Chebyshev polynomials are mutually orthogonal relative to the weight w�x� �

��� x������ on ���� � ��

Proof� For m 
� n the substitution x � cos � yieldsZ �

��
Tn�x�Tm�x�

dxp
�� x�

�

Z �

�

cosm� cosn� d� � 	�
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while for m � n we getZ �

��
T �
n�x�

dxp
�� x�

�

Z �

�

cos� n� d� �

�
� if n � 	
��� if n � 	�

C��� jT �n�x�j � n� for �� � x � �� and jT �n����j � n��

Proof� For �� � x � � we have

d

dx
Tn�x� �

d
d� Tn�cos ��

d
d� cos �

�
n sinn�

sin �
�

Thus� jT �n�x�j � n� because j sinn�j � nj sin �j �which can be easily checked by induction�

for example�� At x � ��� we interpret this derivative formula as a limit �as � � 	 and

� � �� and �nd that jT �n����j � n��

As we�ll see later� each p � Pn satis�es jp ��x�j � kpkn� � kpkT �n��� for �� � x � ��

and this is� of course� best possible� As it happens� Tn�x� has the largest possible rate of

growth outside of ���� � � among all polynomials of degree n� Speci�cally�

Theorem� Let p � Pn and let kpk � max
���x��

jp�x�j� Then� for any x� with jx�j � � and

any k � 	� �� � � � � n we have

jp�k��x��j � kpk jT �k�
n �x��j�

where p�k� is the k�th derivative of p�

We�ll prove only the case k � 	� In other words� we�ll check that jp�x��j � kpk jTn�x��j�
The more general case is in Rivlin� Theorem ���	� p� ���

Proof� Since all the zeros of Tn lie in ���� ��� we know that Tn�x�� 
� 	� Thus� we may

consider the polynomial

q�x� �
p�x��

Tn�x��
Tn�x� � p�x� � Pn�

If the claim is false� then

kpk �
���� p�x��

Tn�x��

���� �
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Now at each of the points yk � cos�k��n�� k � 	� �� � � � � n� we have Tn�yk� � ����k and�

hence�

q�yk� � ����k
p�x��

Tn�x��
� p�yk��

Since jp�yk�j � kpk� it follows that q alternates in sign at these n� � points� In particular�

q must have at least n zeros in ���� ��� But q�x�� � 	� by design� and jx�j � �� That is�

we�ve found n � � zeros for a polynomial of degree n� So� q 
 	� that is�

p�x� �
p�x��

Tn�x��
Tn�x��

But then�

jp���j �

���� p�x��

Tn�x��

���� � kpk�

since Tn��� � Tn�cos 	� � �� which is a contradiction�

Corollary� Let p � Pn and let kpk � max
���x��

jp�x�j� Then� for any x� with jx�j � �� we

have

jp�x��j � kpk
�
jx�j�

q
x�� � �

�n
�

Rivlin�s proof of our last Theorem in the general case uses the following observation�

C��� For x � � and k � 	� �� � � � � n� we have T
�k�
n �x� � 	�

Proof� Exercise� �Hint� It follows from Rolle�s theorem that T
�k�
n is never zero for

x � �� �Why�� Now just compute T
�k�
n �����

Uniform Approximation by Trig Polynomials

We end this section by summarizing �without proofs� the analogues of Theorems ���

for uniform approximation by trig polynomials� Throughout� f � C�� and Tn denotes the

collection of trig polynomials of degree at most n�

�� f has a best approximation T � � Tn�

�� f �T � has an alternating set containing �n�� �or more� points in � 	� ���� �Note here

that �n� � � � � dimTn��

�� T � is unique�
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�� If T � Tn is such that f � T has an alternating set containing �n � � or more points

in � 	� ���� then T � T ��

The proofs of ��� are very similar to the corresponding results for algebraic polyno�

mials� As you might imagine� � is where all the �ghting takes place� and there are a few

technical di�culties to cope with� Nevertheless� we�ll swallow these facts whole and apply

them with a clear conscience to a few examples�

Example

For m � n� the best approximation to f�x� � A cosmx � B sinmx out of Tn is 	 

Proof� We may write f�x� � R cosm�x�x�� for some R and x�� �How�� Now we need

only display a su�ciently large alternating set for f �in some interval of length ����

Setting xk � x� � k��m� k � �� �� � � � � �m� we get f�xk� � R cos k� � R����k and

xk � �x�� x� � ���� Since m � n� it follows that �m � �n � ��

Example

The best approximation to

f�x� � a� �
n��X
k��

�
ak cos kx � bk sinkx

�
out of Tn is

T �x� � a� �

nX
k��

�
ak cos kx � bk sinkx

�
�

and kf � Tk �
q
a�n�� � b�n�� in C���

Proof� By our last example� the best approximation to f � T out of Tn is 	� hence T

must be the best approximation to f � �Why�� The last assertion is easy to check� Since

we can always write A cosmx � B sinmx �
p
A� �B� � cosm�x � x��� for some x�� it

follows that kf � Tk �
q
a�n�� � b�n�� �

Finally� let�s make a simple connection between the two types of polynomial approxi�

mation�
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Theorem� Let f � C���� � � and de�ne � � C�� by ���� � f�cos ��� Then�

En�f� � min
p�Pn

kf � pk � min
T�Tn

k�� Tk 
 ET
n ����

Proof� Suppose that p��x� �
Pn

k�� akx
k is the best approximation to f out of Pn�

Then� bT ��� � p��cos �� is in Tn and� clearly�

max
���x��

jf�x� � p��x�j � max
������

jf�cos �� � p��cos ��j�

Thus� kf � p�k � k�� bTk � min
T�Tn

k�� Tk�

On the other hand� since � is even� we know that T �� its best approximation out of Tn�

is also even� Thus� T ���� � q�cos �� for some algebraic polynomial q � Pn� Consequently�

k�� T �k � kf � qk � min
p�Pn

kf � pk�

Remarks

�� Once we know that min
p�Pn

kf � pk � min
T�Tn

k� � Tk� it follows that we must also have

T ���� � p��cos ���

�� Each even � � C�� corresponds to an f � C���� � � by f�x� � ��arccosx� and� of

course� the conclusions of the Theorem and of Remark � hold in this case� too�

�� Whenever we speak of even trig polynomials� the Chebyshev polynomials are lurking

somewhere in the background� Indeed� let T ��� be an even trig polynomial� write

x � cos �� as usual� and consider the following cryptic equation�

T ��� �

nX
k��

ak cos k� �

nX
k��

akTk�cos �� � p�cos ���

where p�x� �
Pn

k�� akTk�x� � Pn�



Problem Set� Chebyshev PolynomialsMath ��� �������

We�ve shown that cosn� and sin�n � ���� sin � can be written as algebraic polynomials

of degree n in cos �� we use this observation to de�ne the Chebyshev polynomials� The

Chebyshev polynomials of the �rst kind �Tn�x�� are de�ned by Tn�cos �� � cosn�� for

n � 	� �� �� � � �� while the Chebyshev polynomials of the second kind �Un�x�� are de�ned

by Un�cos �� � sin�n � ���� sin � for n � 	� �� �� � � ��

� ��� Establish the following properties of Tn�x��

�i� T��x� � �� T��x� � x� and Tn�x� � �xTn���x� � Tn���x� for n � ��

�ii� Tn�x� is a polynomial of degree n having leading coe�cient �n�� for n � �� and

containing only even �resp�� odd� powers of x if n is even �resp�� odd��

�iii� jTn�x�j � � for �� � x � �� when does equality occur� Where are the zeros of

Tn�x�� Show that between two consecutive zeros of Tn�x� there is exactly one

zero of Tn���x�� Can Tn�x� and Tn���x� have a common zero�

�iv� jT �n�x�j � n� for �� � x � �� and jT �n����j � n��

�v� Tm�x� � Tn�x� � �
�

�
Tm�n�x� � Tm�n�x�



for m � n�

�vi� Tm�Tn�x�� � Tmn�x��

�vii� Evaluate

Z �

��
Tn�x�Tm�x�

dxp
�� x�

�

�viii� Show that Tn is a solution to �� � x��y�� � xy� � n�y � 	�

�ix� Tn�x� � �
�

�
�x �

p
x� � � �n � �x �px� � � �n



for any x� real or complex�

�x� Re
�P�

n�� t
nein�

�
�
P�

n�� t
n cosn� �

�� t cos �

�� �t cos � � t�
for �� � t � �� that is�P�

n�� t
nTn�x� �

�� tx

�� �tx � t�
�this is a generating function for Tn� it�s closely

related to the Poisson kernel��

�xi� Find analogues of �i���x� �if possible� for Un�x��

� ��� Show that every p � Pn has a unique representation as p � a� � a�T� � � � � � anTn�

Find this representation in the case p�x� � xn�



Chebyshev Polynomials ��

� �	� The polynomial of degree n having leading coe�cient � and deviating least from 	 on

���� � � is given by Tn�x���n��� On an arbitrary interval � a� b � we would instead take

�b � a�n

��n��
Tn

�
�x � b � a

b � a

�
�

Is this solution unique� Explain�

�
� If p is a polynomial on � a� b � of degree n having leading coe�cient an � 	� then

kpk � an�b � a�n���n��� If b � a � 
� then no polynomial of degree exactly n with

integer coe�cients can satisfy kpk � � �compare this with problem �� on the �Uniform

Approximation by Polynomials� problem set��

��� Given p � Pn� show that jp�x�j � kpk jTn�x�j for jxj � ��

��� If p � Pn with kpk � � on ���� � �� and if jp�xi�j � � at n� � distinct point x�� � � � � xn

in ���� � �� show that either p � ��� or else p � �Tn� �Hint� One approach is to

compare the polynomials �� p� and �� � x���p �����

�
� Compute T
�k�
n ��� for k � 	� �� � � � � n� where T

�k�
n is the k�th derivative of Tn� For x � �

and k � 	� �� � � � � n� show that T
�k�
n �x� � 	�



Examples� Chebyshev Polynomials in PracticeMath ��� �������

The following examples are cribbed from the book Chebyshev Polynomials� by L� Fox and

I� B� Parker �Oxford University Press� ������

As we�ve seen� the Chebyshev polynomals can be generated by a recurrence relation� By

reversing the procedure� we could solve for xn in terms of T�� T�� � � � � Tn �we�ll do this

calculation in class�� Here are the �rst few terms in each of these relations�

T��x� � �

T��x� � x

T��x� � �x� � �

T��x� � 
x� � �x

T��x� � �x� � �x� � �

T��x� � ��x� � �	x� � �x

� � T��x�

x � T��x�

x� � �T��x� � T��x����

x� � ��T��x� � T��x���


x� � ��T��x� � 
T��x� � T��x����

x� � ��	T��x� � �T��x� � T��x�����

Note the separation of even and odd terms in each case� Writing ordinary� garden variety

polynomials in their equivalent Chebyshev form has some distinct advantages for numerical

computations� Here�s why�

�� x � x� � x� � x� �
��

�
T��x� � �



T��x� � T��x� � �



T��x� �

�

�
T��x�

�after some simpli�cation�� Now we see at once that we can get a cubic approximation to

�� x� x� � x� � x� on ���� � � with error at most ��� by simply dropping the T� term on

the right�hand side �since jT��x�j � ��� whereas simply using �� x � x� � x� as our cubic

approximation could cause an error as big as �� Pretty slick This gimmick of truncating

the equivalent Chebyshev form is called economization�

As a second example we note that a polynomial with small norm on ���� � � may have

annoyingly large coe�cients�

�� � x���� � �� �	x� � 
�x� � ��	x� � ��	x� � ���x��

� ��	x�� � ��	x�� � 
�x�� � �	x�� � x��
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but in Chebyshev form �look out ��

��� x���� �
�

��
����

�
������T��x� � ������	T��x� � ������	T��x� � �����	T��x�

� �����	T��x� � ����	
T���x� � 
��
�T���x� � ���
	T���x�

� ��	T���x� � �	T���x� � T���x�
�

The largest coe�cient is now only about 	��� and the omission of the last three terms

produces a maximum error of about 	�			
� Not bad�

As a last example� consider the Taylor polynomial ex �
Pn

k�� x
k�k � xn��e���n � �� 

�with remainder�� where �� � x� � � �� Taking n � �� the truncated series has error no

greater than e�� � 	�			�� But if we �economize� the �rst six terms� then�

�X
k��

xk�k � �����	�T��x� � ����	��T��x� � 	����
�T��x� � 	�	

��T��x�

� 	�		�
�T��x� � 	�			��T��x� � 	�				
T��x��

The initial approximation already has an error of about 	�			�� so we can certainly drop

the T� term without any additional error� Even dropping the T� term causes an error of

no more than 	�		� �or thereabouts�� The resulting approximation has a far smaller error

than the corresponding truncated Taylor series� e�� � 	�	���

The approach used in our last example has the decided disadvantage that we must �rst

decide where to truncate the Taylor series�which might converge very slowly� A better

approach would be to write ex as a series involving Chebyshev polynomials directly� That

is� if possible� we want to write ex �
P�

k�� akTk�x�� If the ak�s are absolutely summable�

it will be very easy to estimate any truncation error� We�ll get some idea on how to go

about this when we talk about �least�squares� approximation� As it happens� such a series

is easy to �nd �it�s rather like a Fourier series�� and its partial sums are remarkably good

uniform approximations�
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Our goal in this section is to prove the following result �as well as discuss its rami�cations��

In fact� this result is so fundamental that we will present three proofs 

Theorem� Let x�� x�� � � � � xn be distinct points� and let y�� y�� � � � � yn be arbitrary points

in R� Then� there exists a unique polynomial p � Pn satisfying p�xi� � yi� i � 	� �� � � � � n�

First notice that uniqueness is obvious� Indeed� if two polynomials p� q � Pn agree at

n � � points� then p 
 q� �Why�� The real work comes in proving existence�

First Proof� �Vandermonde�s determinant�� We seek c�� c�� � � � � cn so that p�x� �Pn
k�� ckx

k satis�es

p�xi� �
nX

k��

ckx
k
i � yi� i � 	� �� � � � � n�

That is� we need to solve a system of n � � linear equations for the ci�s� In matrix form�������
� x� x�� � � � xn�

� x� x�� � � � xn�
���

���
���

� � �
���

� xn x�n � � � xnn

������
������
c�

c�
���
cn

������ �

������
y�

y�
���
yn

������ �
This equation always has a unique solution because the coe�cient matrix has determinant

D �
Y

��j	i�n

�xi � xj � 
� 	�

�D is called Vandermonde�s determinant� note that D � 	 if x� � x� � � � � � xn�� Since

this fact is of independent interest� we�ll sketch a short proof below�

Lemma� D �
Q

��j	i�n
�xi � xj ��

Proof� Consider

V �x�� x�� � � � � xn��� x� �

�������������

� x� x�� � � � xn�

� x� x�� � � � xn�
���

���
���

� � �
���

� xn�� x�n�� � � � xnn��
� x x� � � � xn

�������������
�
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V �x�� x�� � � � � xn��� x� is a polynomial of degree n in x� and it�s 	 whenever x � xi� i �

	� �� � � � � n � �� Thus� V �x�� � � � � x� � c
Qn��
i�� �x � xi�� by comparing roots and degree�

However� it�s easy to see that the coe�cient of xn in V �x�� � � � � x� is V �x�� � � � � xn����

Thus� V �x�� � � � � x� � V �x�� � � � � xn���
Qn��
i�� �x � xi�� The result now follows by induction

and the obvious case
���� x�
� x�

��� � x� � x��

Second Proof� �Lagrange interpolation�� We could de�ne p immediately if we had

polynomials �i�x� � Pn� i � 	� � � � � n� such that �i�xj � � 
i�j �where 
i�j is Kronecker�s

delta� that is� 
i�j � 	 for i 
� j� and 
i�j � � for i � j�� Indeed� p�x� �
Pn

i�� yi �i�x�

would then work as our interpolating polynomial� In short� notice that the polynomials

f��� ��� � � � � �ng would form a �particularly convenient� basis for Pn�

We�ll give two formulas for �i�x��

�a�� Clearly� �i�x� �
Y
j ��i

x� xj
xi � xj

works�

�b�� Start with W �x� � �x � x���x � x�� � � � �x � xn�� and notice that the polynomial we

need satis�es

�i�x� � ai � W �x�

x� xi

for some ai � R� �Why�� But then� � � �i�xi� � aiW
��xi� �again� why��� that is�

�i�x� �
W �x�

�x � xi�W ��xi�
�

Please note that �i�x� is a multiple of the polynomial
Q
j ��i �x � xj�� for i � 	� � � � � n� and

that p�x� is then a suitable linear combination of such polynomials�

Third Proof� �Newton�s formula�� We seek p�x� of the form

p�x� � a� � a��x � x�� � a��x � x���x � x�� � � � � � an�x � x�� � � � �x � xn����

�Please note that xn does not appear on the right�hand side�� This form makes it almost

e�ortless to solve for the ai�s by plugging�in the xi�s� i � 	� � � � � n� ��

y� � p�x�� � a�

y� � p�x�� � a� � a��x� � x�� �� a� �
y� � a�
x� � x�

�
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Continuing� we �nd

a� �
y� � a� � a��x� � x��

�x� � x���x� � x��

a� �
y� � a� � a��x� � x��� a��x� � x���x� � x��

�x� � x���x� � x���x� � x��

and so on� �Natanson� Vol� III� gives another formula for the ai�s��

Example

As a quick means of comparing these three solutions� let�s �nd the interpolating polynomial

�quadratic� passing through ��� ��� ������� and ��� ��� You�re invited to check the following�

Vandermonde� p�x� � �	� ��
� x � �

� x
��

Lagrange� p�x� � �x � ���x � �� � �x � ���x � �� � �
� �x � ���x � ���

Newton� p�x� � �� ��x� �� � �
� �x � ���x � ���

As you might have already surmised� Lagrange�s method is the easiest to apply by

hand� although Newton�s formula has much to recommend it too �it�s especially well�suited

to situations where we introduce additional nodes�� We next set up the necessary notation

to discuss the �ner points of Lagrange�s method�

Given n� � distinct points a � x� � x� � � � � � xn � b �sometimes called nodes�� we

�rst form the polynomials

W �x� �
nY
i��

�x � xi�

and

�i�x� �
Y
j ��i

x � xj
xi � xj

�
W �x�

�x � xi�W ��xi�
�

The Lagrange interpolation formula is

Ln�f��x� �

nX
i��

f�xi� �i�x��

That is� Ln�f� is the unique polynomial in Pn that agrees with f at the xi�s� In particular�

notice that we must have Ln�p� � p whenever p � Pn� In fact� Ln is a linear projection

from C� a� b � onto Pn� �Why is Ln�f� linear in f��
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Typically we�re given �or construct� an array of nodes�

X

�����������
x
���
�

x
���
� x

���
�

x
���
� x

���
� x

���
�

���
� � �

and form the corresponding sequence of projections

Ln�f��x� �
nX
i��

f�x
�n�
i � �

�n�
i �x��

An easy �but admittedly pointless� observation is that for a given f � C� a� b � we can always

�nd an array X so that Ln�f� � p�n� the polynomial of best approximation to f out of Pn
�since f�p�n has n�� zeros� we may use these for the xi�s�� Thus� kLn�f��fk � En�f� � 	

in this case� However� the problem of convergence changes character dramatically if we

�rst choose X and then consider Ln�f�� In general� there�s no reason to believe that Ln�f�

converges to f � In fact� quite the opposite is true�

Theorem� �Faber� ���
� Given any array of nodes X in � a� b �� there is some f � C� a� b �

for which kLn�f� � fk is unbounded�

The problem here has little to do with interpolation and everything to do with pro�

jections�

Theorem� �Kharshiladze� Lozinski� ��
�� For each n� let Ln be a continuous� linear

projection from C� a� b � onto Pn� Then� there is some f � C� a� b � for which kLn�f� � fk
is unbounded�

Evidently� the operators Ln aren�t positive �monotone�� for otherwise the Bohman�

Korovkin theorem �and the fact that Ln is a projection onto Pn� would imply that Ln�f�

converges uniformly to f for every f � C� a� b ��

The proofs of these theorems are long and di�cult�we�ll save them for another day�

�Some of you may recognize the Principle of Uniform Boundedness at work here�� The

real point here is that we can�t have everything� A positive result about convergence of

interpolation will require that we impose some extra conditions on the functions f we want

to approximate� As a �rst step in this direction� we prove that if f has su�ciently many

derivatives� then the error kLn�f� � fk can at least be measured�
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Theorem� Suppose that f has n � � continuous derivatives on � a� b �� Let a � x� �

x� � � � � � xn � b� let p � Pn be the polynomial that interpolates f at the xi�s� and let

W �x� �
Qn
i���x � xi�� Then�

kf � pk � �

�n � �� 
kf �n���k kWk�

Proof� We�ll prove the Theorem by showing that� given x in � a� b �� there is a � in �a� b�

with

f�x� � p�x� �
�

�n � �� 
f �n������W �x�� ���

If x is one of the xi�s� then both sides of this formula are 	 and we�re done� Otherwise�

W �x� 
� 	 and we may set � � �f�x� � p�x���W �x�� Now consider

��t� � f�t� � p�t� � �W �t��

Clearly� ��xi� � 	 for each i � 	� �� � � � � n and� by our choice of �� we also have ��x� � 	�

Here comes Rolle�s theorem Since � has n � � distinct zeros in � a� b �� we must have

��n������ � 	 for some � in �a� b�� �Why�� Hence�

	 � ��n������ � f �n������ � p�n������ � �W �n������

� f �n������ �
�
f�x� � p�x�

W �x�

�
� �n � �� 

because p has degree at most n and W is monic and degree n� ��

Observations

�� Equation ��� is called the Lagrange formula with remainder� �Compare this result to

Taylor�s formula with remainder��

�� The term f �n������ is actually a continuous function of x� That is� �f�x��p�x���W �x�

is continuous� its value at an xi is �f ��xi� � p ��xi���W ��xi� �why�� and W ��xi� �Q
j ��i�xi � xj� 
� 	�

�� On any interval � a� b �� using any nodes� the sequence of Lagrange interpolating poly�

nomials for ex converge uniformly to ex� In this case�

kex � Ln�ex�k � c

�n � �� 
�b � a�n
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where c � kexk in C� a� b �� The same would hold true for any in�nitely di�erentiable

function satisfying� say� kf �n�k �Mn �any entire function� for example��

�� On ���� � �� the norm of
Qn
i���x� xi� is minimized by taking xi � cos���i� �����n��

the zeros of the n�th Chebyshev polynomial Tn� �Why�� As Rivlin points out� the

zeros of the Chebyshev polynomials are a nearly optimal choice for the nodes if good

uniform approximation is desired�

The question of convergence of interpolation is actually very closely related to the

analogous question for the convergence of Fourier series�and the answer here is nearly

the same� We�ll have more to say about this analogy later� First� let�s note that Ln is

continuous �bounded�� this will give us our �rst bit of insight into Faber�s negative result�

Lemma� kLn�f�k � kfk��Pn
i�� j�i�x�j�� for any f � C� a� b ��

Proof� Exercise�

The numbers %n �
��Pn

i�� j�i�x�j
�� are called the Lebesgue numbers associated to this

process� It�s not hard to see that %n is the smallest possible constant that will work in

this inequality �in other words� kLnk � %n�� Indeed� if�����
nX
i��

j�i�x�j
����� �

nX
i��

j�i�x��j�

then we can �nd an f � C� a� b � with kfk � � and f�xi� � sgn��i�x��� for all i� �How��

Then�

kLn�f�k � jLn�f��x��j �

�����
nX
i��

sgn��i�x��� �i�x��

����� �
nX
i��

j�i�x��j � %nkfk�

As it happens� %n � c logn �this is where the hard work comes in� see Rivlin or Natanson

for further details�� and� in particular� %n �� as n���

A simple application of the triangle inequality will allow us to bring En�f� back into

the picture�
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Lemma� �Lebesgue�s theorem� kf � Ln�f�k � �� � %n�En�f�� for any f � C� a� b ��

Proof� Let p� be the best approximation to f out of Pn� Then� since Ln�p�� � p�� we

have

kf � Ln�f�k � kf � p�k� kLn�f � p��k
� �� � %n� kf � p�k � �� � %n�En�f��

Appendix

Although we won�t need anything quite so fancy� it is of some interest to discuss more

general problems of interpolation� We again suppose that we are given distinct points

x� � � � � � xn in � a� b �� but now we suppose that we are given an array of information

y� y�� y��� � � � y
�m��
�

y� y�� y��� � � � y
�m��
�

���
���

���
���

yn y�n y��n � � � y
�mn�
n �

where each mi is a nonnegative integer� Our problem is to �nd the polynomial p of least

degree that incorporates all of this data by satisfying

p�x�� � y� p ��x�� � y�� � � � p�m���x�� � y
�m��
�

p�x�� � y� p ��x�� � y�� � � � p�m���x�� � y
�m��
�

���
���

���
p�xn� � yn p ��xn� � y�n � � � p�mn��xn� � y

�mn�
n �

In other words� we specify not only the value of p at each xi� but also the �rst mi derivatives

of p at xi� This is often referred to as the problem of Hermite interpolation�

Since the problem has a total of m� � m� � � � � � mn � n � � �degrees of freedom��

it won�t come as any surprise that is has a �unique� solution p of degree �at most� N �

m� � m� � � � � � mn � n� Rather than discuss this particular problem any further� let�s

instead discuss the general problem of linear interpolation�

The notational framework for our problem is an n�dimensional vector space X on

which m linear� real�valued functions �or linear functionals� L�� � � � � Lm are de�ned� The

general problem of linear interpolation asks whether the system of equations

Li�f� � yi� i � �� � � � �m ���



Interpolation ��

has a �unique� solution f � X for any given set of scalars y�� � � � � ym � R� Since a linear

functional is completely determined by its values on any basis� we would next be led to

consider a basis f�� � � � � fn for X� and from here it is a small step to rewrite ��� as a matrix

equation� That is� we seek a solution f � a�f� � � � �� anfn satisfying

a�L��f�� � � � � � anL��fn� � y�

a�L��f�� � � � � � anL��fn� � y�

���

a�Lm�f�� � � � �� anLm�fn� � ym�

If we are to guarantee a solution a�� � � � � an for each choice of y�� � � � � ym� then we�ll need

to have m � n and� moreover� the matrix �Li�fj �� will have to be nonsingular�

Lemma� Let X be an n�dimensional vector space with basis f�� � � � � fn� and let L�� � � � � Ln

be linear functionals on X� Then� L�� � � � � Ln are linearly independent if and only if the

matrix �Li�fj �� is nonsingular� that is� if and only if det
�
Li�fj�

� 
� 	�

Proof� If �Li�fj�� is singular� then the matrix equation

c�L��f�� � � � �� cnLn�f�� � 	

c�L��f�� � � � �� cnLn�f�� � 	

���

c�L��fn� � � � �� cnLn�fn� � 	

has a nontrivial solution c�� � � � � cn� Thus� the functional c�L� � � � �� cnLn satis�es

�c�L� � � � �� cnLn��fi� � 	� i � �� � � � � n�

Since f�� � � � � fn form a basis for X� this means that

�c�L� � � � �� cnLn��f� � 	

for all f � X� That is� c�L� � � � �� cnLn � 	 �the zero functional�� and so L�� � � � � Ln are

linearly dependent�

Conversely� if L�� � � � � Ln are linearly dependent� just reverse the steps in the �rst part

of the proof to see that �Li�fj �� is singular�
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Theorem� Let X be an n�dimensional vector space and let L�� � � � � Ln be linear function�

als on X� Then� the interpolation problem

Li�f� � yi� i � �� � � � � n ���

always has a �unique� solution f � X for any choice of scalars y�� � � � � yn if and only if

L�� � � � � Ln are linearly independent�

Proof� Let f�� � � � � fn be a basis for X� Then� ��� is equivalent to the system of equations

a�L��f�� � � � �� anL��fn� � y�

a�L��f�� � � � �� anL��fn� � y�

���

a�Ln�f�� � � � �� anLn�fn� � yn

����

by taking f � a�f� � � � �� anfn� Thus� ��� always has a solution if and only if ���� always

has a solution if and only if �Li�fj �� is nonsingular if and only if L�� � � � � Ln are linearly

independent� In any of these cases� note that the solution must be unique�

In the case of Lagrange interpolation� X � Pn and Li is evaluation at xi� i�e�� Li�f� �

f�xi�� which is easily seen to be linear in f � Moreover� L�� � � � � Ln are linearly independent

provided that x�� � � � � xn are distinct� �Why��

In the case of Hermite interpolation� the linear functionals are of the form Lx�k�f� �

f �k��x�� di�erentiation composed with a point evaluation� If x 
� y� then Lx�k and Ly�m

are independent for any k and m� if k 
� m� then Lx�k and Lx�m are independent� �How

would you check this��
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Throughout� x�� x�� � � � � xn are distinct points in some interval � a� b �� and V �x�� x�� � � � � xn�

denotes the Vandermonde determinant�

V �x�� x�� � � � � xn� �

����������
� x� x�� � � � xn�

� x� x�� � � � xn�
���

���
���

� � �
���

� xn x�n � � � xnn

����������
�

� � ��� Show by induction that V �x�� x�� � � � � xn� �
Q

��j	i�n
�xi � xj��

�Hint� In order to reduce to the n�n case� replace cj � the j�th column� by cj�x�cj���

starting on the right with j � n� Factor and use the induction hypothesis��

��� Let y�� y�� � � � � yn � Rbe given� Show that the polynomial p � Pn satisfying p�xi� � yi�

i � 	� �� � � � � n� may be written as

p�x� � c

����������
	 � x x� � � � xn

y� � x� x�� � � � xn�
���

���
���

� � �
���

yn � xn x�n � � � xnn

����������
�

where c is a certain constant� Find c and prove the formula�

��� Given f � C� a� b �� let Ln�f� denote the polynomial of degree at most n that agrees

with f at the xi�s� Prove that Ln is a linear projection onto Pn� That is� show that

Ln��f � �g� � �Ln�f� � �Ln�g�� and that Ln�f� � f if and only if f � Pn�

��� Let �i�x�� i � 	� �� � � � � n� denote the Lagrange interpolating polynomials of degree

at most n associated with the nodes x�� x�� � � � � xn� that is� �i�xj � � 
i�j � Show thatPn
i�� �i�x� 
 � and� more generally� that

Pn
i�� x

k
i �i�x� � xk� for k � 	� �� � � � � n�

��� If �i and Ln are as above� show that the error in the Lagrange interpolation formula

is �Ln�f� � f��x� �
Pn

i��� f�xi� � f�x� � �i�x��

�	� With �i and Ln as above� show that kLn�f�k � %nkfk� where %n �
��Pn

i�� j�i�x�j���

Show that no smaller number % has this property for all f � C� a� b ��
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In this section we consider a question of computational interest� Since best approximations

are often very hard to �nd� how might we approximate the best approximation� The

answer to this question lies in approximations over �nite sets� Here�s the plan�

��� Fix a �nite subset Xm of � a� b � consisting of m distinct points a � x� � � � � � xm � b�

and �nd the best approximation to f out of Pn considered as a subspace of C�Xm��

In other words� if we call the best approximation p�n�Xm�� then

max
��i�m

jf�xi� � p�n�Xm��xi�j � min
p�Pn

max
��i�m

jf�xi�� p�xi�j 
 En�f �Xm��

��� Argue that this process converges �in some sense� to the best approximation on all

of � a� b � provided that Xm �gets big� as m��� In actual practice� there�s no need

to worry about p�n�Xm� converging to p�n �the best approximation on all of � a� b ���

rather� we will argue that En�f �Xm� � En�f� and appeal to �abstract nonsense��

��� Find an e�cient strategy for carrying out items ��� and ����

Observations

�� If m � n � �� then En�f �Xm� � 	� That is� we can always �nd a polynomial p � Pn
that agrees with f at n� � �or fewer� points� �How�� Of course� p won�t be unique if

m � n� �� �Why�� In any case� we might as well assume that m � n� �� In fact� as

we�ll see� the case m � n � � is all that we really need to worry about�

�� If X � Y � � a� b �� then En�f �X� � En�f �Y � � En�f�� Indeed� if p � Pn is the best

approximation on Y � then

En�f �X� � max
x�X

jf�x� � p�x�j � max
x�Y

jf�x� � p�x�j � En�f �Y ��

Consequently� we expect En�f �Xm� to increase to En�f� as Xm �gets big��

Now if we were to repeat our earlier work on characterizing best approximations�

restricting ourselves to Xm everywhere� here�s what we�d get�
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Theorem� Let m � n � �� Then�

�i� p � Pn is a best approximation to f on Xm if and only if f � p has an alternating set

containing n�� points out of Xm� that is� f �p � �En�f �Xm�� alternately� on Xm�

�ii� p�n�Xm� is unique�

Next let�s see how this reduces our study to the case m � n � ��

Theorem� Fix n� m � n � �� and f � C� a� b ��

�i� If p�n � Pn is best on all of � a� b �� then there is a subsetX�
n�� of � a� b �� containing n��

points� such that p�n � p�n�X�
n���� Moreover� En�f �Xn��� � En�f� � En�f �X�

n���

for any other subset Xn�� of � a� b �� with equality if and only if p�n�Xn��� � p�n�

�ii� If p�n�Xm� � Pn is best on Xm� then there is a subset X�
n�� of Xm such that

p�n�Xm� � p�n�X�
n��� and En�f �Xm� � En�f �X�

n���� For any other Xn�� � Xm

we have En�f �Xn��� � En�f �X�
n��� � En�f �Xm�� with equality if and only if

p�n�Xn��� � p�n�Xm��

Proof� �i�� Let X�
n�� be an alternating set for f�p�n over � a� b � containing exactly n��

points� Then� X�
n�� is also an alternating set for f �p�n over X�

n��� That is� for x � X�
n���

��f�x� � p�n�x�� � En�f� � max
y�X�

n��

jf�y� � p�n�y�j�

So� by uniqueness of best approximations on X�
n��� we must have p�n � p�n�X�

n��� and

En�f� � En�f �X�
n���� The second assertion follows from a similar argument using the

uniqueness of p�n on � a� b ��

�ii�� This is just �i� with � a� b � replaced everywhere by Xm�

Here�s the point� Through some as yet undisclosed method� we choose Xm with

m � n � � �in fact� m �� n � �� such that En�f �Xm� � En�f� � En�f �Xm� � 	� and

then we search for the �best� Xn�� � Xm� meaning the largest value of En�f �Xn���� We

then take p�n�Xn��� as an approximation for p�n� As we�ll see momentarily� p�n�Xn��� can

be computed directly and explicitly�
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Now suppose that the elements of Xn�� are a � x� � x� � � � � � xn�� � b� let

p � p�n�Xn��� be p�x� � a� � a�x � � � �� anx
n� and let

E � En�f �Xn��� � max
��i�n��

jf�xi� � p�xi�j�

In order to compute p and E� we use the fact that f�xi� � p�xi� � �E� alternately� and

write �for instance�
f�x�� � E � p�x��

f�x�� � �E � p�x��

���

f�xn��� � ����n��E � p�xn���

�where the �E column� might� instead� read �E� E� � � �� ����nE�� That is� in order to

�nd p and E� we need to solve a system of n � � linear equations in the n � � unknowns

E� a�� � � � � an� The determinant of this system is �up to sign���������
� � x� � � � xn�

�� � x� � � � xn�
���

���
� � �

���
����n�� � xn � � � xnn

�������� � A� � A� � � � �� An�� � 	�

where we have expanded by cofactors along the �rst column and have used the fact that

each minor Ak is a Vandermonde determinant �and hence each Ak � 	�� If we apply

Cramer�s rule to �nd E we get

E �
f�x��A� � f�x��A� � � � � � ����n��f�xn���An��

A� � A� � � � �� An��

� ��f�x��� ��f�x�� � � � �� ����n���n��f�xn����

where �i � 	 and
Pn��

i�� �� � �� Moreover� these same �i�s satisfy
Pn��

i�� ����i�iq�xi� � 	

for every polynomial q � Pn since E � En�q�Xn��� � 	 for polynomials of degree at most

n �and since Cramer�s rule supplies the same coe�cients for all f �s��

It may be instructive to see a more explicit solution to this problem� For this� recall

that since we have n � � points we may interpolate exactly out of Pn��� Given this� our

original problem can be rephrased quite succinctly�
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Let p be the �unique� polynomial in Pn�� satisfying p�xi� � f�xi�� i � 	� �� � � � � n� ��

and let e be the �unique� polynomial in Pn�� satisfying e�xi� � ����i� i � 	� �� � � � � n � ��

If it is possible to �nd a scalar � so that p � �e � Pn� then p � �e � p�n�Xn��� and

j�j � En�f �Xn���� Why� Because f � �p � �e� � �e � ��� alternately� on Xn�� and so

j�j � max
x�Xn��

jf�x� � �p�x� � �e�x��j� Thus� we need to compare leading coe�cients of p

and e�

Now if p has degree less than n � �� then p � p�n�Xn��� and En�f �Xn��� � 	� Thus�

� � 	 would do nicely in this case� Otherwise� p has degree exactly n� � and the question

is whether e does too� Now�

e�x� �
n��X
i��

����i

W ��xi�
� W �x�

�x � xi�
�

where W �x� �
Qn��
i�� �x � xi�� and so the leading coe�cient of e is

Pn��
i�� ����i�W ��xi��

We�ll be done if we can convince ourselves that this is nonzero� But

W ��xi� �
Y
j ��i

�xi � xj� � ����n�i��
i��Y
j��

�xi � xj�
n��Y
j�i��

�xj � xi��

hence ����i�W ��xi� is of constant sign ����n��� Finally� since

p�x� �
n��X
i��

f�xi�

W ��xi�
� W �x�

�x � xi�
�

p has leading coe�cient
Pn��

i�� f�xi��W ��xi� and it�s easy to �nd the value of ��

Conclusion� p�n�Xn��� � p� �e� where

� �

Pn��
i�� f�xi��W ��xi�Pn��
i�� ����i�W ��xi�

�
n��X
i��

����i�if�xi�

and

�i �
��jW ��xi�jPn��
j�� ��jW ��xj �j

�

and j�j � En�f �Xn���� Moreover�
Pn��

i�� ����i�iq�xi� � 	 for every q � Pn�
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Example

Find the best linear approximation to f�x� � x� on X� � f	� ���� ���� �g � � 	� � ��

We seek p�x� � a� � a�x and we need only consider subsets of X� of size � � � � ��

There are four�

X��� � f	� ���� ���g� X��� � f	� ���� �g� X��� � f	� ���� �g� X��� � f���� ���� �g�

In each case we �nd a p and a � �� E in our earlier setup�� For instance� in the case of

X��� we would solve the system of equations f�x� � �� � p�x� for x � 	� ���� ��

	 � ���� � a�
�

�
� ����� � a� �

�

�
a�

� � ���� � a� � a�

���� ���! ��
���� �

�

�

a� � ��

�

a� � �

In the other three cases you would �nd that ���� � ����� ���� � ���� and ���� � �����

Since we need the largest �� we�re done� X��� �or X���� works� and p���X���x� � x � ����

�Recall that the best approximation on all of � 	� � � is p���x� � x� �����

Where does this leave us� We still need to know that there is some hope of �nding an

initial set Xm with En�f� � 	 � En�f �Xm� � En�f�� and we need a more e�cient means

of searching through the
�
m
n��

�
subsets Xn�� � Xm� In order to attack the problem of

�nding an initial Xm� we�ll need a few classical inequalities� We won�t directly attack the

second problem� instead� we�ll outline an algorithm that begins with an initial set X�
n���

containing exactly n� � points� which is then �improved� to some X�
n�� by changing only

a single point�

The Inequalities of Markov and Bernstein

In order to discuss the convergence of approximations over �nite sets� we will need to know

that di�erentiation is bounded on Pn �a fact that is nearly obvious by itself��

The inequality we�ll use is due to A� A� Markov from �����
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Theorem� If p � Pn� and if jp�x�j � � for jxj � �� then jp ��x�j � n� for jxj � ��

Moreover� jp ��x�j � n� can only occur at x � ��� and only when p � �Tn� the Chebyshev

polynomial of degree n�

Markov�s brother� V� A� Markov� later improved on this� in ����� by showing that

jp�k��x�j � T
�k�
n ���� We�ve alluded to this fact already �see Rivlin� p� ���� and even more

is true� For our purposes� it�s enough to have some bound on di�erentiation� in particular�

we�ll only use

kp �k � n�kpk and kp ��k � n�kpk�

where k � k is the norm in C���� � ��

About �	 years after Markov� in ����� Bernstein asked for a similar bound for the

derivative of a complex polynomial over the unit disk jzj � �� Now the maximum modulus

theorem tells us that we may reduce to the case jzj � �� that is� z � ei�� and so Bernstein

was able to restate the problem in terms of trig polynomials�

Theorem� If S � Tn� and if jS���j � �� then jS ����j � n� Equality is only possible for

S��� � sinn�� � ����

Our plan is to deduce Markov�s inequality from Bernstein�s inequality by a method of

proof due to P"olya and Szeg
o in ����� To begin� let�s consider the Lagrange interpolation

formula in the case where xi � cos���i � �����n�� i � �� � � � � n� are the zeros of the

Chebyshev polynomial Tn� Recall that we have �� � xn � xn�� � � � � � x� � ��

Lemma �� Each polynomial p � Pn�� may be written

p�x� �
�

n

nX
i��

p�xi� � ����i��
q

�� x�i �
Tn�x�

x � xi
�

Proof� We know that the Lagrange interpolation formula is exact for polynomials of

degree � n� and we know that� up to a constant multiple� Tn�x� is the product W �x� �

�x � x�� � � � �x � xn�� All that remains is to compute T �n�xi�� But recall that for x � cos �

we have

T �n�x� �
n sinn�

sin �
�

n sinn�p
�� cos� �

�
n sinn�p

�� x�
�
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But for xi � cos���i � �����n�� i�e�� for �i � ��i � �����n� it follows that sinn�i �

sin���i � ������ � ����i��� that is�

�

T �n�xi�
�

����i��
p

�� x�i
n

�

Lemma �� For any polynomial p � Pn��� we have

max
���x��

jp�x�j � max
���x��

��np�� x� p�x�
���

Proof� To save wear and tear� let�s write M � max
���x��

��np�� x� p�x�
���

First consider an x in the interval �xn� x� �� that is� jxj � cos����n� � x�� In this case

we can estimate
p

�� x� from below�

p
�� x� �

q
�� x�� �

r
�� cos�


 �

�n

�
� sin


 �

�n

�
� �

n
�

because sin � � ���� for 	 � � � ��� �from the mean value theorem�� Hence� for jxj �
cos����n�� we get jp�x�j � n

p
�� x� jp�x�j �M �

Now� for x�s outside the interval �xn� x� �� we apply our interpolation formula� In this

case� each of the factors x � xi is of the same sign� Thus�

jp�x�j �
�

n

�����
nX
i��

p�xi�
����i��

p
�� x�i Tn�x�

x� xi

�����
� M

n�

nX
i��

���� Tn�x�

x� xi

���� �
M

n�

�����
nX
i��

Tn�x�

x� xi

����� �
But�

nX
i��

Tn�x�

x � xi
� T �n�x� �why��

and we know that jT �n�x�j � n�� Thus� jp�x�j �M �

We next turn our attention to trig polynomials� As usual� given an algebraic poly�

nomial p � Pn� we will sooner or later consider S��� � p�cos ��� In this case� S���� �

p ��cos �� sin � is an odd trig polynomial of degree at most n and jS����j � jp ��cos �� sin �j �
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jp ��x�
p

�� x� j� Conversely� if S � Tn is an odd trig polynomial� then S���� sin � is even�

and so may be written S���� sin � � p�cos �� for some algebraic polynomial p of degree at

most n� �� From Lemma ��

max
������

���� S���

sin �

���� � max
������

jp�cos ��j � n max
������

jp�cos �� sin �j � n max
������

jS���j�

This proves

Corollary� If S � Tn is an odd trig polynomial� then

max
������

���� S���

sin �

���� � n max
������

jS���j�

Now we�re ready for Bernstein�s inequality�

Bernstein�s Inequality� If S � Tn� then

max
������

jS ����j � n max
������

jS���j�

Proof� We �rst de�ne an auxiliary function f��� �� �
�
S�� � �� � S�� � ��


"
�� For �

�xed� f��� �� is an odd trig polynomial in � of degree at most n� Consequently�����f��� ��

sin �

���� � n max
������

jf��� ��j � n max
������

jS���j�

But

S���� � lim
���

S�� � �� � S��� ��

��
� lim

���

f��� ��

sin �
�

and hence jS����j � n max
������

jS���j�

Finally� we prove Markov�s inequality�

Markov�s Inequality� If p � Pn� then

max
���x��

jp ��x�j � n� max
���x��

jp�x�j�
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Proof� We know that S��� � p�cos �� is a trig polynomial of degree at most n satisfying

max
���x��

jp�x�j � max
������

jp�cos ��j�

Since S���� � p ��cos �� sin � is also trig polynomial of degree at most n� Bernstein�s in�

equality yields

max
������

jp��cos �� sin �j � n max
������

jp�cos ��j�

In other words�

max
���x��

��p ��x�
p

�� x�
�� � n max

���x��
jp�x�j�

Since p � � Pn��� the desired inequality now follows easily from Lemma ��

max
���x��

jp ��x�j � n max
���x��

��p ��x�
p

�� x�
�� � n� max

���x��
jp�x�j�

Convergence of Approximations over Finite Sets

In order to simplify things here� we will make several assumptions� For one� we will

consider only approximation over the interval I � ���� � �� As before� we consider a �xed

f � C���� � � and a �xed integer n � 	� �� �� � � �� For each integer m � � we choose a �nite

subset Xm � I� consisting of m points �� � x� � � � � � xm � �� in addition� we will

assume that x� � �� and xm � �� If we put


m � max
x�I

min
��i�m

jx� xij � 	�

then each x � I is within 
m of some xi� If Xm consists of equally spaced points� for

example� it�s easy to see that 
m � ���m� ���

Our goal is to prove

Theorem� If 
m � 	� then En�f �Xm� � En�f��

And we would hope to accomplish this in such a way that 
m is a measurable quantity�

depending on f � m� and a prescribed tolerance 	 � En�f �Xm� �En�f��

As a �rst step in this direction� let�s bring Markov�s inequality into the picture�
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Lemma� Suppose that �m 
 
�mn
��� � �� Then� for any p � Pn� we have

��� max
���x��

jp�x�j � �� � �m��� max
��i�m

jp�xi�j

and

��� �p����� � �� 
m� � 
mn
��� � �m��� max

��i�m
jp�xi�j�

Proof� ���� Take a in ���� � � with jp�a�j � kpk� If a � �� � Xm� we�re done �since

��� �m��� � ��� Otherwise� we�ll have �� � a � � and p ��a� � 	� Next� choose xi � Xm

with ja � xij � 
m and apply Taylor�s theorem�

p�xi� � p�a� � �xi � a� p ��a� �
�xi � a��

�
p ���c��

for some c in ���� ��� Re�writing� we have

jp�a�j � jp�xi�j � 
�m
�
jp ���c�j�

And now we bring in Markov�

kpk � max
��i�m

jp�xi�j �

�mn

�

�
kpk�

which is what we need�

���� The real point here is that each p � Pn is Lipschitz with constant n�kpk� Indeed�

jp�s� � p�t�j � j�s� t� p ��c�j � js� tj kp � k � n�kpk js � tj

�from the mean value theorem and Markov�s inequality�� Thus� �p�
� � 
n�kpk and�

combining this with ���� we get

�p�
m� � 
mn
�kpk � 
mn

���� �m��� max
��i�m

jp�xi�j�

Now we�re ready to compare En�f �Xm� to En�f�� Our result won�t be as good as

Rivlin�s �he uses a fancier version of Markov�s inequality�� but it will be a bit easier to

prove� As in the Lemma� we�ll suppose that

�m �

�mn

�

�
� ��

and we�ll set

$m �

mn

�

�� �m
�

�Note that as 
m � 	 we also have �m � 	 and $m � 	��
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Theorem� For f � C���� � ��

En�f �Xm� � En�f� � �� � $m�En�f �Xm� � �f ����� � �� 
m� � $m kfk�

Consequently� if 
m � 	� then En�f �Xm� � En�f� �as m����

Proof� Let p � p�n�Xm� � Pn be the best approximation to f on Xm� Recall that

max
��i�m

jf�xi� � p�xi�j � En�f �Xm� � En�f� � kf � pk�

Our plan is to estimate kf � pk�
Let x � ���� � � and choose xi � Xm with jx � xij � 
m� Then�

jf�x� � p�x�j � jf�x� � f�xi�j� jf�xi�� p�xi�j� jp�xi� � p�x�j
� �f �
m� � En�f �Xm� � �p�
m�

� �f �
m� � En�f �Xm� � $m max
��i�m

jp�xi�j�

where we�ve used ��� from the previous Lemma to estimate �p�
m�� All that remains is to

revise this last estimate� eliminating reference to p� For this we use the triangle inequality

again�
max
��i�m

jp�xi�j � max
��i�m

jf�xi�� p�xi�j � max
��i�m

jf�xi�j

� En�f �Xm� � kfk�
Putting all the pieces together gives us our result�

En�f� � �f �
m� � En�f �Xm� � $m

�
En�f �Xm� � kfk 
�

As Rivlin points out� it is quite possible to give a lower bound on m in the case of� say�

equally spaced points� which will give En�f �Xm� � En�f� � En�f �Xm� � 	� but this is

surely an ine�cient approach to the problem� Instead� we�ll discuss the one point exchange

algorithm�

The One Point Exchange Algorithm

We�re given f � C���� � �� n� and 	 � 	�
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�� Pick a starting �reference� Xn��� A convenient choice is the set xi � cos


n���i
n�� �

�
�

i � 	� �� � � � � n��� These are the �peak points� of Tn��� that is� Tn���xi� � ����n���i

�and so Tn�� is the polynomial e from our �Conclusion���

�� Find p � p�n�Xn��� and � �by solving a system of linear equations�� Recall that

j�j � jf�xi�� p�xi�j � kf � p�k � kf � pk�

where p� is the best approximation to f on all of ���� � ��

�� Find �approximately� if necessary� the �error function� e�x� � f�x� � p�x� and any

point � where jf����p���j � kf �pk� �According to Powell� this can be accomplished

using �local quadratic �ts���

�� Replace an appropriate xi by � so that the new reference X �
n�� � fx��� x��� � � �g has the

properties that f�x�i� � p�x�i� alternates in sign� and that jf�x�i� � p�x�i�j � j�j for all

i� The new polynomial p� � p�n�X �
n��� and new �� must then satisfy

j�j � min
��i�n��

jf�x�i� � p�x�i�j � max
��i�n��

jf�x�i�� p��x�i�j � j��j�

This is an observation due to de la Vall"ee Poussin� Since f � p alternates in sign on

an alternating set for f � p�� it follows that f � p� increases the minimum error over

this set� �See the Theorem on page �� of �Characterization of Best Approximation�

for a precise statement�� Again according to Powell� the new p� and �� can be found

quickly through matrix �updating� techniques� �Since we�ve only changed one of the

xi�s� only one row of the matrix on page �� needs to be changed��

�� The new �� satis�es j��j � kf � p�k � kf � p�k� and the calculation stops when

kf � p�k � j��j � jf����� p�����j � j��j � 	�



A Brief Introduction to Fourier SeriesMath ��� ������

The Fourier series of a ���periodic �bounded� integrable� function f is

a�
�

�
�X
k��

�
ak cos kx � bk sinkx

�
�

where the coe�cients are de�ned by

ak �
�

�

Z �

��
f�t� cos kt dt and bk �

�

�

Z �

��
f�t� sin kt dt�

Please note that if f is Riemann integrable on ���� � �� then each of these integrals is

well�de�ned and �nite� indeed�

jakj � �

�

Z �

��
jf�t�j dt

and so� for example� we would have jakj � �kfk for f � C���

We write the partial sums of the series as

sn�f��x� �
a�
�

�
nX

k��

�
ak cos kx � bk sin kx

�
�

Now while sn�f� need not converge pointwise to f �in fact� it may even diverge at a given

point�� and while sn�f� is not typically a good uniform approximation to f � it is still a

very natural choice for an approximation to f in the �least�squares� sense �which we�ll

make precise shortly�� Said in other words� the Fourier series for f provides a useful

representation for f even if it fails to converge pointwise to f �

Observations

�� The functions �� cosx� cos �x� � � �� sinx� sin �x� � � �� are orthogonal on ���� � �� That is�Z �

��
cosmx cosnxdx �

Z �

��
sinmx sinnxdx �

Z �

��
cosmx sinnxdx � 	

for any m 
� n �and the last equation even holds for m � n��Z �

��
cos�mxdx �

Z �

��
sin�mxdx � �



Fourier Series ��

for any m 
� 	� and� of course�
R �
�� � dx � ���

�� What this means is that if T �x� � ��
� �

Pn
k��

�
�k cos kx � �k sin kx

�
� then

�

�

Z �

��
T �x� cosmxdx �

�m
�

Z �

��
cos�mxdx � �m

for m 
� 	� while
�

�

Z �

��
T �x� dx �

��

��

Z �

��
dx � ���

That is� if T � Tn� then T is actually equal to its own Fourier series�

�� The partial sum operator sn�f� is a linear projection from C�� onto Tn�

�� If T �x� � ��
� �

Pn
k��

�
�k cos kx � �k sin kx

�
is a trig polynomial� then

�

�

Z �

��
f�x�T �x� dx �

��

��

Z �

��
f�x� dx �

nX
k��

�k
�

Z �

��
f�x� cos kx dx

�
nX

k��

�k
�

Z �

��
f�x� sinkx dx

�
��a�

�
�

nX
k��

�
�kak � �kbk

�
�

where �ak� and �bk� are the Fourier coe�cients for f � �This should remind you of the

dot product of the coe�cients��

�� Motivated by �� �� and �� we de�ne the inner product of two elements f � g � C�� by

hf� gi �
�

�

Z �

��
f�x� g�x� dx�

Note that from � we have hf� sn�f�i � hsn�f�� sn�f�i for any n� �Why��

	� If some f � C�� has ak � bk � 	 for all k� then f 
 	�

Indeed� by � �or linearity of the integral�� this means thatZ �

��
f�x�T �x� dx � 	

for any trig polynomial T � But from Weierstrass�s second theorem we know that f is

the uniform limit of some sequence of trig polynomials �Tn�� Thus�Z �

��
f�x�� dx � lim

n��

Z �

��
f�x�Tn�x� dx � 	�
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Since f is continuous� this easily implies that f 
 	�


� If f � g � C�� have the same Fourier series� then f 
 g� Hence� the Fourier series for

an f � C�� provides a representation for f �even if the series fails to converge to f��

�� The coe�cients a�� a�� � � � � an and b�� b�� � � � � bn minimize the expression

��a�� a�� � � � � bn� �

Z �

��

�
f�x� � sn�f��x�


�
dx�

It�s not hard to see� for example� that

� �

� ak
�

Z �

��
�
�
f�x� � sn�f��x�



cos kx dx � 	

precisely when ak satis�esZ �

��
f�x� cos kx dx � ak

Z �

��
cos� kx dx�

�� The partial sum sn�f� is the best approximation to f out of Tn relative to the L�

norm

kfk� �
q
hf� fi �

�
�

�

Z �

��
f�x�� dx

����

�

�Be forewarned� Some authors prefer ���� in place of ����� That is�

kf � sn�f�k� � min
T�Tn

kf � Tk��

Moreover� using � and �� we have

kf � sn�f�k�� � hf � sn�f�� f � sn�f�i
� hf� fi � � hf� sn�f�i � hsn�f�� sn�f�i
� kfk�� � ksn�f�k��

�
�

�

Z �

��
f�x�� dx � a��

�
�

nX
k��

�a�k � b�k��

�This should remind you of the Pythagorean theorem��

�
� It follows from � that

�

�

Z �

��
sn�f��x�� dx �

a��
�

�
nX

k��

�
a�k � b�k

� � �

�

Z �

��
f�x�� dx�
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In other symbols� ksn�f�k� � kfk�� In particular� the Fourier coe�cients of any

f � C�� are square summable� �Why��

��� If f � C��� then its Fourier coe�cients �an� and �bn� tend to zero as n���

��� It follows from �
 and Weierstrass�s second theorem that sn�f� � f in the L� norm

whenever f � C��� Indeed� given 	 � 	� choose a trig polynomial T such that

kf � Tk � 	� Then� since sn�T � � T for large enough n� we have

kf � sn�f�k� � kf � Tk� � ksn�T � f�k�
� �kf � Tk� � �

p
� kf � Tk � �

p
� 	�

�Compare this calculation with Lebesgue�s Theorem� page �
��

By way of comparison� let�s give a simple class of functions whose Fourier partial sums

provide good uniform approximations�

Theorem� If f �� � C��� then the Fourier series for f converges absolutely and uniformly

to f �

Proof� First notice that integration by�parts leads to an estimate on the order of growth

of the Fourier coe�cients of f �

�ak �

Z �

��
f�x� cos kx dx �

Z �

��
f�x� d

�
sin kx

k

�
� ��

k

Z �

��
f ��x� sin kx dx

�because f is ���periodic�� Thus� jakj � �kf � k�k � 	 as k � �� Now we integrate

by�parts again�

��kak �

Z �

��
f ��x� sinkx dx �

Z �

��
f ��x� d

�
cos kx

k

�
�

�

k

Z �

��
f ���x� cos kx dx

�because f � is ���periodic�� Thus� jakj � �kf �� k�k� � 	 as k � �� More importantly�

this inequality �along with the Weierstrass M�test� implies that the Fourier series for f is

both uniformly and absolutely convergent������a�� �
�X
k��

�
ak cos kx � bk sinkx

������ � ���a�� ����
�X
k��

�jakj� jbkj
� � C

�X
k��

�

k�
�
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But why should the series actually converge to f � Well� if we call the sum

g�x� �
a�
�

�

�X
k��

�
ak cos kx � bk sinkx

�
�

then g � C�� �why�� and g has the same Fourier coe�cients as f �why��� Hence �by 
��

g � f �

Our next chore is to �nd a closed expression for sn�f�� For this we�ll need a couple of

trig identities� the �rst two need no explanation�

cos kt cos kx � sin kt sinkx � cos k�t� x�

� cos� sin� � sin�� � ��� sin�� � ��

�
�

� cos � � cos �� � � � �� cosn� �
sin �n � �

�� �

� sin �
��

Here�s a short proof for the third�

sin �
�� �

nX
k��

� cos k� sin �
�� � sin �

�� �

nX
k��

�
sin �k � �

�� � � sin �k � �
� � �



� sin �n � �
� � ��

The function

Dn�t� �
sin �n � �

� � t

� sin �
� t

is called Dirichlet�s kernel� It plays an important role in our next calculation�

Now we�re ready to re�write our formula for sn�f��

sn�f��x� � �
�a� �

nX
k��

�
ak cos kx � bk sinkx

�

�
�

�

Z �

��
f�t�

�
�
� �

nX
k��

cos kt cos kx � sinkt sinkx

�
dt

�
�

�

Z �

��
f�t�

�
�
� �

nX
k��

cos k�t� x�

�
dt

�
�

�

Z �

��
f�t� � sin �n � �

� � �t � x�

� sin �
� �t� x�

dt

�
�

�

Z �

��
f�t�Dn�t� x� dt �

�

�

Z �

��
f�x � t�Dn�t� dt�
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It now follows easily that sn�f� is linear in f �because integration against Dn is linear��

that sn�f� � Tn �because Dn � Tn�� and� in fact� that sn�Tm� � Tmin�m�n�� In other words�

sn is indeed a linear projection onto Tn�

While we know that sn�f� is a good approximation to f in the L� norm� a better

understanding of its e�ectiveness as a uniform approximation will require a better under�

standing of the Dirichlet kernel Dn� Here are a few pertinent facts�

Lemma� �a� Dn is even�

�b�
�

�

Z �

��
Dn�t� dt �

�

�

Z �

�

Dn�t� dt � ��

�c� jDn�t�j � n � �
� and Dn�	� � n � �

� �

�d�
j sin �n � �

� � t j
t

� jDn�t�j � �

�t
for 	 � t � ��

�e� If �n �
�

�

Z �

��
jDn�t�j dt� then




��
logn � �n � � � log n�

Proof� �a�� �b�� and �c� are relatively clear from the fact that

Dn�t� � �
�

� cos t � cos �t � � � �� cosnt�

�Notice� too� that �b� follows from the fact that sn��� � ��� For �d� we use a more delicate

estimate� Since ���� � sin � � � for 	 � � � ���� it follows that �t�� � � sin�t��� � t for

	 � t � �� Hence�
�

�t
� j sin �n � �

�
� t j

� sin �
� t

� j sin �n � �
�
� t j

t

for 	 � t � �� Next� the upper estimate in �e� is easy�

�

�

Z �

�

jDn�t�j dt �
�

�

Z �

�

j sin �n � �
� � t j

� sin �
�t

dt

� �

�

Z ��n

�

�n � �
�
� dt �

�

�

Z �

��n

�

�t
dt

�
�n � �

�n
� log � � logn � � � logn�

The lower estimate takes some work�

�

�

Z �

�

jDn�t�j dt �
�

�

Z �

�

j sin �n � �
� � t j

� sin �
� t

dt � �

�

Z �

�

j sin �n � �
� � t j

t
dt
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�
�

�

Z �n��
� ��

�

j sinx j
x

dx � �

�

Z n�

�

j sinx j
x

dx

�
�

�

nX
k��

Z k�

�k����

j sinx j
x

dx

� �

�

nX
k��

�

k�

Z k�

�k����
j sinx j dx �




��

nX
k��

�

k

� 


��
logn�

because
Pn

k��
�
k � logn�

The numbers �n � kDnk� � �
�

R �
�� jDn�t�j dt are called the Lebesgue numbers asso�

ciated to this process �compare this to the terminology we used for interpolation�� The

point here is that �n gives the norm of the partial sum operator �projection� on C�� and

�just as with interpolation� �n �� as n��� As a matter of no small curiosity� notice

that� from Observation �
� the norm of sn as an operator on L� is ��

Corollary� If f � C��� then

jsn�f��x�j � �

�

Z �

��
jf�x � t�j jDn�t�j dt � �nkfk� ���

In particular� ksn�f�k � �nkfk � �� � logn�kfk�

If we approximate the function sgnDn by a continuous function f of norm one� then

sn�f��	� � �

�

Z �

��
jDn�t�j dt � �n�

Thus� �n is the smallest constant that works in ���� The fact that the partial sum operators

are not uniformly bounded on C��� along with the Baire category theorem� tells us that

there must be some f � C�� for which ksn�f�k is unbounded� But� as we�ve seen� this has

more to do with projections than it does with Fourier series�

Theorem� �Kharshiladze� Lozinski� For each n� let Ln be a continuous� linear projection

from C�� onto Tn� Then� there is some f � C�� for which kLn�f� � fk is unbounded�

Although our last Corollary may not look very useful� it does give us some information

about the e�ectiveness of sn�f� as a uniform approximation to f � Speci�cally� we have

Lebesgue�s theorem�
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Theorem� If f � C��� and if we set ET
n �f� � min

T�Tn
kf � Tk� then

ET
n �f� � kf � sn�f�k � �
 � logn�ET

n �f��

Proof� Let T � be the best uniform approximation to f out of Tn� Then� since sn�T �� �

T �� we get

kf � sn�f�k � kf � T �k� ksn�T � � f�k � �
 � log n� kf � T �k�

As an application of Lebesgue�s theorem� let�s speak brie&y about �Chebyshev se�

ries�� a notion that �ts neatly in between our discussions of approximation by algebraic

polynomials and by trig polynomials�

Theorem� Suppose that f � C���� � � is twice continously di	erentiable� Then� f may

be written as a uniformly and absolutely convergent Chebyshev series� that is� f�x� �P�
k�� akTk�x�� where

P�
k�� jakj ���

Proof� As usual� consider ���� � f�cos �� � C��� Since � is even and twice di�eren�

tiable� its Fourier series is an absolutely and uniformly convergent cosine series�

f�cos �� � ���� �
�X
k��

ak cos k� �
�X
k��

akTk�cos ���

where jakj � �k� �� k�k�� Thus� f�x� �
P�

k�� akTk�x��

If we write Sn�f��x� �
Pn

k�� akTk�x�� we get an interesting consequence of this

Theorem� First� notice that

Sn�f��cos �� � sn�������

Thus� from Lebesgue�s theorem�

En�f� � kf � Sn�f�kC	���� 
 � k�� sn���kC��

� �
 � logn�ET
n ��� � �
 � log n�En�f��

For n � 
		� this reads

En�f� � kf � Sn�f�k � �	En�f��
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That is� for numerical purposes� the error incurred by using
Pn

k�� akTk�x� to approximate

f is within one decimal place accuracy of the best approximation Notice� too� that En�f�

would be very easy to estimate in this case since

En�f� � kf � Sn�f�k �

�����X
k
n

akTk

����� �
X
k
n

jakj � � k� �� k
X
k
n

�

k�
�

Lebesgue�s theorem should remind you of our �fancy� version of Bernstein�s theorem�

if we knew that ET
n �f� log n � 	 as n � �� then we�d know that sn�f� converged uni�

formly to f � Our goal� then� is to improve our estimates on ET
n �f�� and the idea behind

these improvements is to replace Dn by a better kernel �with regard to uniform approx�

imation�� Before we pursue anything quite so delicate as an estimate on ET
n �f�� though�

let�s investigate a simple �and useful� replacement for Dn�

Since the sequence of partial sums �sn� need not converge to f � we might try looking

at their arithmetic means �or Ces'aro sums��


n �
s� � s� � � � � � sn��

n
�

�These averages typically have better convergence properties than the partial sums them�

selves� Consider 
n in the �scalar� case sn � ����n� for example�� Speci�cally� we set


n�f��x� �
�

n

h
s��f��x� � � � �� sn���f��x�

i
�

�

�

Z �

��
f�x � t�

�
�

n

n��X
k��

Dk�t�

�
dt �

�

�

Z �

��
f�x � t�Kn�t� dt�

where Kn � �D� � D� � � � � � Dn����n is called Fej
er�s kernel� The same techniques we

used earlier can be applied to �nd a closed form for 
n�f� which� of course� reduces to

simplifying �D� � D� � � � �� Dn����n� As before� we begin with a trig identity�

� sin �
n��X
k��

sin ��k � ��� �
n��X
k��

�
cos �k� � cos ��k � ���



� �� cos �n� � � sin� n��

Thus�

Kn�t� �
�

n

n��X
k��

sin ��k � �� t��

� sin �t���
�

sin��nt���

�n sin��t���
�
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Please note that Kn is even� nonnegative� and �
�

R �
��Kn�t� dt � �� Thus� 
n�f� is

a positive� linear map from C�� onto Tn �but it�s not a projection�why��� satisfying

k
n�f�k� � kfk� �why���

Now the arithmetic mean operator 
n�f� is still a good approximation f in L� norm�

Indeed�

kf � 
n�f�k� �
�

n

�����
n��X
k��

�f � sk�f��

�����
�

� �

n

n��X
k��

kf � sk�f�k� � 	

as n � � �since kf � sk�f�k� � 	�� But� more to the point� 
n�f� is actually a good

uniform approximation to f � a fact that we�ll call Fej
er�s theorem�

Theorem� If f � C��� then 
n�f� converges uniformly to f as n���

Note that� since 
n�f� � Tn� Fej"er�s theorem implies Weierstrass�s second theorem�

Curiously� Fej"er was only �� years old when he proved this result �about ��		� while

Weierstrass was �� at the time he proved his approximation theorems�

We�ll give two proofs of Fej"er�s theorem� one with details� one without� But both

follow from quite general considerations� First�

Theorem� Suppose that kn � C�� satis�es

�a� kn � 	�

�b�
�

�

Z �

��
kn�t� dt � �� and

�c�

Z
��jtj��

kn�t� dt� 	 for every 
 � 	�

Then�
�

�

Z �

��
f�x � t� kn�t� dt � f�x� for each f � C���

Proof� Let 	 � 	� Since f is uniformly continuous� we may choose 
 � 	 so that

jf�x� � f�x � t�j � 	� for any x� whenever jtj � 
� Next� we use the fact that kn is

nonnegative and integrates to � to write����f�x� � �

�

Z �

��
f�x � t� kn�t� dt

���� �
�

�

����Z �

��

�
f�x� � f�x � t�



kn�t� dt

����
� �

�

Z �

��

��f�x� � f�x � t�
�� kn�t� dt
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� 	

�

Z
jtj	�

kn�t� dt �
�kfk
�

Z
��jtj��

kn�t� dt

� 	 � 	 � �	�

for n su�ciently large�

To see that Fej"er�s kernel satis�es the conditions of the Theorem is easy� In particular�

�c� follows from the fact that Kn�t� � 	 on the set 
 � jtj � �� Indeed� since sin�t���

increases on 
 � t � � we have

Kn�t� �
sin��nt���

�n sin��t���
� �

�n sin��
���
� 	�

Our second proof� or sketch� really� is based on a variant of the Bohman�Korovkin

theorem for C��� due to Korovkin� In this setting� the three �test cases� are

f��x� � �� f��x� � cosx� and f��x� � sinx�

Theorem� Let �Ln� be a sequence of positive� linear maps on C��� If Ln�f� � f for

each of the three functions f��x� � �� f��x� � cosx� and f��x� � sinx� then Ln�f� � f

for every f � C���

We won�t prove this theorem� rather� we�ll check that 
n�f� � f in each of the three

test cases� Since sn is a projection� this is painfully simple 


n�f�� � �
n �f� � f� � � � � � f�� � f��


n�f�� � �
n �	 � f� � � � �� f�� � n��

n � f� � f��


n�f�� � �
n �	 � f� � � � �� f�� � n��

n � f� � f��

Kernel operators abound in analysis� for example� Landau�s proof of the Weierstrass

theorem uses the kernel Ln�x� � cn�� � x��n� And� in the next section� we�ll encounter

Jackson�s kernel Jn�t� � cn sin� nt�n� sin� t� which is essentially the square of Fej"er�s kernel�

While we will have no need for a general theory of such operators� please note that the key

to their utility is the fact that they�re nonnegative 
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Lastly� a word or two about Fourier series involving complex coe�cients� Most modern

textbooks consider the case of a ���periodic� integrable function f � R� C and de�ne the

Fourier series of f by
�X

k���
cke

ikt�

where now we have only one formula for the ck�s�

ck �
�

��

Z �

��
f�t� e�ikt dt�

but� of course� the ck�s may well be complex� This somewhat simpler approach has other

advantages� for one� the exponentials eikt are now an orthonormal set �relative to the

normalizing constant ������ And� if we remain consistent with this choice and de�ne the

L� norm by

kfk� �

�
�

��

Z �

��
jf�t�j� dt

����

�

then we have the simpler estimate kfk� � kfk for f � C���

The Dirichlet and Fejer kernels are essentially the same in this case� too� except that

we would now write sn�f��x� �
Pn

k��n cke
ikx� Given this� the Dirichlet and Fej"er kernels

can be written

Dn�x� �
nX

k��n
eikx � � �

nX
k��

�eikx � e�ikx�

� � � �
nX

k��

cos kx

�
sin �n � �

� �x

sin �
� x

and

Kn�x� �
�

n

n��X
m��

mX
k��m

eikx �
nX

k��n

�
�� jkj

n

�
eikx

�
�

n

n��X
m��

sin �m � �
� �x

sin �
� x

�
sin��nt���

n sin��t���
�
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In other words� each is twice its real coe�cient counterpart� Since the choice of normalizing

constant ���� versus ����� and sometimes even ��
p
� or ��

p
�� � has a �small� e�ect on

these formulas� you may �nd some variation in other textbooks�
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� �
� De�ne f�x� � �� � x�� for 	 � x � ��� and extend f to a ���periodic continuous

function on R in the obvious way� Check that the Fourier series for f is ���� �



P�

n�� cosnx�n�� Since this series is uniformly convergent� it actually converges to f �

In particular� note that setting x � 	 yields the familiar formula
P�

n�� ��n� � �����

��� �a� Given n � � and 	 � 	� show that there is a continuous function f � C��

satisfying kfk � � and �
�

R �
�� jf�t� � sgnDn�t�j dt � 	��n � ���

�b� Show that sn�f��	� � �n � 	 and� hence� that ksn�f�k � �n � 	�

��� �a� If f � k � C��� prove that g�x� �
R �
�� f�x � t� k�t� dt is also in C���

�b� If we only assume that f is ���periodic and Riemann integrable on ���� � � �but

still k � C���� is g still continuous�

�c� If we simply assume that f and k are ���periodic and Riemann integrable on

���� � �� is g still continuous�

	
� Suppose that kn � C�� satis�es

kn � 	�
�

�

Z �

��
kn�t� dt � �� and

Z
��jtj��

kn�t� dt� 	 �n���

for every 
 � 	� If f is Riemann integrable� show that �
�

R �
�� f�x � t� kn�t� dt� f�x�

pointwise� as n��� at each point of continuity of f � In particular� 
n�f��x� � f�x�

at each point of continuity of f �

� 	�� Given f � g � C��� we de�ne the convolution of f and g� written f � g� by

�f � g��x� �
�

�

Z �

��
f�t� g�x � t� dt�

�Compare this integral with that used in problem ����

�a� Show that f � g � g � f and that f � g � C���

�b� If one of f or g is a trig polynomial� show that f � g is again a trig polynomial

�of the same degree��

�c� If one of f or g is continuously di�erentiable� show that f � g is likewise continu�

ously di�erentiable and �nd an integral formula for �f � g���x��
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We continue our investigations of the �middle ground� between algebraic and trigonometric

approximation by presenting several results due to the great American mathematician

Dunham Jackson �from roughly ����������� The �rst of these results will give us the best

possible estimate of En�f� in terms of �f and n�

Jackson�s Theorem �� If f � C��� then ET
n �f� � ��f ����� � �� �

n ��

Theorem � should be viewed as an improvement over Bernstein�s Theorem� which

stated that En�f� � �
��f � �p

n
� for f � C���� � �� As we�ll see� the proof of Theorem �

not only mimics the proof of Bernstein�s result� but also uses some of the ideas we talked

about in the last section� In particular� the proof we�ll give involves integration against an

�improved� Dirichlet kernel�

Before we dive into the proof� let�s list several immediate and important Corollaries�

Corollary� Weierstrass�s second theorem �since �f � �n � � 	 for any f � C�� ��

Corollary� The Dini�Lipschitz theorem� If �f � �
n

� log n� 	 as n��� then the Fourier

series for f converges uniformly to f �

Proof� From Lebesgue�s theorem�

kf � sn�f�k � �
 � logn�ET
n �f� � � �
 � logn��f

�
�

n

�
� 	�

Jackson�s Theorem �� If f � C���� � �� then En�f� � ��f ����� � �� �
n ��

Proof� Let ���� � f�cos ��� Then� as we�ve seen�

En�f� � ET
n ��� � ���

�
���� � ��

�

n

�
� ��f

�
���� � ��

�

n

�
�

where the last inequality follows from the fact that

j����� ����j � jf�cos�� � f�cos ��j � �f �j cos�� cos� j� � �f �j�� � j��
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Corollary� If f � lipK� on ���� � �� then En�f� � �Kn��� �Recall that Bernstein�s

theorem gives only n������

Corollary� If f � C���� � � has a bounded derivative� then En�f� � �
n kf � k�

Corollary� If f � C���� � � has a continuous derivative� then En�f� � �
n
En���f � ��

Proof� Let p� � Pn�� be the best uniform approximation to f � and consider p�x� �R x
�� p

��t� dt � Pn� From the previous Corollary�

En�f� � En�f � p� �Why��

� �

n
kf � � p�k �

�

n
En���f � ��

Iterating this last inequality will give the following result�

Corollary� If f � C���� � � is k�times continuously di	erentiable� then

En�f� � �k��

n�n� �� � � � �n� k � ��
�k

�
�

n� k

�
�

where �k is the modulus of continuity of f �k��

Well� enough corollaries� It�s time we proved Jackson�s Theorem �� Now Jackson�s

approach was to show that

�

�

Z �

��
f�x � t� � cn

�
sinnt

sin t

��

dt � f�x��

where Jn�t� � cn�sinnt� sin t�� is the �improved� kernel we alluded to earlier �it�s essen�

tially the square of Fej"er�s kernel�� The approach we�ll take� due to Korovkin� proves the

existence of a suitable kernel without giving a tidy formula for it� On the other hand�

it�s relatively easy to outline the idea� The key here is that Jn�t� should be an even�

nonnegative� trig polynomial of degree n with �
�

R �
�� Jn�t� dt � �� In other words�

Jn�t� �
�

�
�

nX
k��

�k�n cos kt

�why is the �rst term �(���� where ���n� � � � � �n�n must be chosen so that Jn�t� � 	� As�

suming we can �nd such �k�n�s� here�s what we get�
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Lemma� If f � C��� then���� f�x� � �

�

Z �

��
f�x � t�Jn�t� dt

���� � �f

�
�

n

�
�
�

� � n�

r
�� ���n

�

�
�

Proof� We already know how the �rst several lines of the proof will go����� f�x� � �

�

Z �

��
f�x � t�Jn�t� dt

���� �
�

�

����Z �

��

�
f�x� � f�x � t�



Jn�t� dt

����
� �

�

Z �

��
jf�x� � f�x � t�jJn�t� dt

� �

�

Z �

��
�f � jtj �Jn�t� dt�

Next we borrow a trick from Bernstein� We replace �f � jtj � by

�f � jtj � � �f

�
njtj � �

n

�
� �

� � njtj ��f � �

n

�
�

and so the last integral on the right�hand side� above� is dominated by

�f

�
�

n

�
� �

�

Z �

��

�
� � njtj �Jn�t� dt � �f

�
�

n

�
�
�
� �

n

�

Z �

��
jtjJn�t� dt

�
�

All that remains is to estimate
R �
�� jtjJn�t� dt� and for this we�ll appeal to the Cauchy�

Schwarz inequality �again� compare this to the proof of Bernstein�s theorem��

�

�

Z �

��
jtjJn�t� dt �

�

�

Z �

��
jtjJn�t����Jn�t���� dt

�
�

�

�

Z �

��
jtj� Jn�t� dt

�����
�

�

Z �

��
Jn�t� dt

����

�

�
�

�

Z �

��
jtj� Jn�t� dt

����

�

But�

jtj� �
�
� sin

�
t

�

���
�

��

�
��� cos t ��

So�

�

�

Z �

��
jtjJn�t� dt �

�
��

�
� �

�

Z �

��
��� cos t�Jn�t� dt

����

� �

r
�� ���n

�
�



Jackson�s Theorems �	�

Now we still have to prove that we can actually �nd a suitable choice of scalars

���n� � � � � �n�n� We already know that we need to choose the �k�n�s so that Jn�t� will be

nonnegative� but now it�s clear that we also want ���n to be very close to �� To get us

started� let�s �rst see why it�s easy to generate nonnegative cosine polynomials� Given real

numbers c�� � � � � cn� note that

	 �
�����

nX
k��

cke
ikx

�����
�

�

�
nX

k��

cke
ikx

�#$ nX
j��

cje
�ijx

%A �
X
k�j

ckcje
i�k�j�x

�
nX

k��

c�k �
X
k
j

ckcj
�
ei�k�j�x � ei�j�k�x

�
�

nX
k��

c�k � �
X
k
j

ckcj cos�k � j�x

�
nX

k��

c�k � �
n��X
k��

ckck�� cosx � � � �� �c�cn cosnx� ���

In particular� we need to �nd c�� � � � � cn with

nX
k��

c�k �
�

�
and ���n � �

n��X
k��

ckck�� � ��

What we�ll do is �nd ck�s with
Pn��

k�� ckck�� �
Pn

k�� c
�
k� and then normalize� But� in fact�

we won�t actually �nd anything�we�ll simply write down a choice of ck�s that happens to

work Consider�

nX
k��

sin

�
k � �

n � �
�

�
sin

�
k � �

n � �
�

�
�

nX
k��

sin

�
k � �

n � �
�

�
sin

�
k

n � �
�

�

�
�

�

nX
k��

�
sin

�
k

n � �
�

�
� sin

�
k � �

n � �
�

��
sin

�
k � �

n � �
�

�
�

By changing the index of summation� it�s easy to see that �rst two sums are equal and�

hence� each is equal to the average of the two� Next we re�write this last sum� using the

trig identity �
�

�
sinA � sinB

�
� cos

�
A�B
�

�
sin
�
A�B
�

�
� to get

nX
k��

sin

�
k � �

n � �
�

�
sin

�
k � �

n � �
�

�
� cos

�
�

n � �

� nX
k��

sin�
�
k � �

n � �
�

�
�
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Since cos



�
n��

�
� � for large n� we�ve done it If we de�ne ck � c � sin



k��
n�� �

�
� where

c is chosen so that
Pn

k�� c
�
k � ���� and if we de�ne Jn�x� using ���� then Jn�x� � 	 and

���n � cos



�
n��

�
�why��� The estimate needed in our Lemma becomes

r
�� ���n

�
�

vuut �� cos



�
n��

�
�

� sin

�
�

�n � 


�
� �

�n
�

and so we have

ET
n �f� �

�
� �

��

�

�
�f

�
�

n

�
� ��f

�
�

n

�
�

Jackson�s theorems are what we might call direct theorems� If we know something

about f � then we can say something about En�f�� There is also the notion of an inverse

theorem� meaning that if we know something about En�f�� we should be able to say

something about f � In other words� we would expect an inverse theorem to be� more or

less� the converse of some direct theorem� Now inverse theorems are typically much harder

to prove than direct theorems� but in order to have some idea of what such theorems might

tell us �and to see some of the techniques used in their proofs�� we present one of the easier

inverse theorems� due to Bernstein� This result gives the converse to one of our corollaries

to Jackson�s theorem �see the top of page �	���

Theorem� If f � C�� satis�es ET
n �f� � An��� for some constants A and 	 � � � ��

then f � lipK� for some constant K�

Proof� For each n� choose Un � Tn so that kf � Unk � An��� Then� in particular�

�Un� converges uniformly to f � Now if we set V� � U� and Vn � U�n � U�n�� for n � ��

then Vn � T�n and f �
P�

n�� Vn� Indeed�

kVnk � kU�n � fk� kU�n�� � fk � A ��n��� � A ��n����� � B � ��n��

which is summable� thus� the �telescoping� series
P�

n�� Vn converges uniformly to f �

�Why��

Next we estimate jf�x�� f�y�j using �nitely many of the Vn�s� the precise number to

be speci�ed later� Using the mean value theorem and Bernstein�s inequality we get

jf�x� � f�y�j �
�X
n��

jVn�x� � Vn�y�j
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�
m��X
n��

jVn�x� � Vn�y�j � �

�X
n�m

kVnk

�

m��X
n��

jV �n��n�j jx� yj � �

�X
n�m

kVnk

� jx� yj
m��X
n��

�nkVnk � �
�X

n�m

kVnk

� jx� yj
m��X
n��

B �n����� � �
�X

n�m

B ��n�

� C
h
jx � yj � �m����� � ��m�

i
� ����

where we�ve used� in the fourth line� the fact that Vn � T�n and� in the last line� standard

estimates for geometric series� Now we want the right�hand side to be dominated by a

constant times jx� yj�� In other words� if we set jx� yj � 
� then we want


 � �m����� � ��m� � D � 
�

or� equivalently�

��m
������ � ��m
��� � D�

Thus� we should choose m so that �m
 is both bounded above and bounded away from

zero� For example� if 	 � 
 � �� we could choose m so that � � �m
 � ��

In order to better explain the phrase �more or less the converse of some direct theo�

rem�� let�s see how the previous result falls apart when � � �� Although we might hope

that ET
n �f� � A�n would imply that f � lipK�� it happens not to be true� The best result

in this regard is due to Zygmund� who gave necessary and su�cient conditions on f so

that ET
n �f� � A�n �and these conditions do not characterize lipK� functions�� Instead of

pursuing Zygmund�s result� we�ll settle for simple �surgery� on our previous result� keeping

an eye out for what goes wrong� This result is again due to Bernstein�

Theorem� If f � C�� satis�es ET
n �f� � A�n� then �f �
� � K
j log 
 j for some constant

K and all 
 su�ciently small�

Proof� If we repeat the previous proof� setting � � �� only a few lines change� In

particular� the conclusion of that long string of inequalites ���� would now read

jf�x� � f�y�j � C
� jx� yj �m � ��m



� C

�
m
 � ��m



�
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Clearly� the right�hand side cannot be dominated by a constant times 
� as we might have

hoped� for this would force m to be bounded �independent of 
�� which in turn bounds 


away from zero� But� if we again think of �m
 as the �variable� in this inequality� then the

term m
 suggests that the correct order of magnitude of the right�hand side is 
j log 
 j�
Thus� we would try to �nd a constant D so that

m
 � ��m � D � 
j log 
 j
or

m��m
� � � � D � ��m
�j log 
 j�

Now if we take 	 � 
 � ���� then log � � � log 
 � j log 
 j� Hence� if we again choose

m � � so that � � �m
 � �� we�ll get

m log � � log 
 � log � �� m �
log �� log 


log �
�

�

log �
j log 
 j

and� �nally�

m��m
� � � � �m� � � �m � �

log �
j log 
 j � �

log �
��m
� j log 
 j�
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Given a positive �except possibly at �nitely many points�� Riemann integrable weight

function w�x� on � a� b �� the expression

hf� gi �

Z b

a

f�x� g�x�w�x� dx

de�nes an inner product on C� a� b � and

kfk� �

�Z b

a

f�x�� w�x� dx

����

�
p
hf� fi

de�nes a strictly convex norm on C� a� b �� Thus� given a �nite dimensional subspace E of

C� a� b � and an element f � C� a� b �� there is a unique g � E such that

kf � gk� � min
h�E

kf � hk��

We say that g is the least�squares approximation to f out of E �relative to w��

Now if we apply the Gram�Schmidt procedure to the sequence �� x� x�� � � �� we will

arrive at a sequence �Qn� of orthogonal polynomials relative to the above inner product�

In this special case� however� the Gram�Schmidt procedure simpli�es substantially�

Theorem� The following procedure de�nes a sequence �Qn� of orthogonal polynomials

�relative to w�� Set�

Q��x� � �� Q��x� � x� a�� and Qn���x� � �x� an�Qn�x� � bnQn���x��

for n � �� where

an � hxQn� Qn i
"hQn� Qn i and bn � hxQn� Qn�� i

"hQn��� Qn�� i

�and where xQn is shorthand for the polynomial xQn�x���

Proof� It�s easy to see from these formulas that Qn is a monic polynomial of degree

exactly n� In particular� the Qn�s are linearly independent �and nonzero��
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Now we checked in class that Q�� Q�� and Q� are mutually orthogonal� so let�s use

induction and check that Qn�� is orthogonal to each Qk� k � n� First�

hQn��� Qn i � hxQn� Qn i � anhQn� Qn i � bnhQn��� Qn i � 	

and

hQn��� Qn�� i � hxQn� Qn�� i � anhQn� Qn�� i � bnhQn��� Qn�� i � 	�

since hQn��� Qn i � 	� Next� we take k � n� � and use the recurrence formula twice�

hQn��� Qk i � hxQn� Qk i � anhQn� Qk i � bnhQn��� Qk i

� hxQn� Qk i � hQn� xQk i �Why��

� hQn� Qk�� � akQk � bkQk�� i � 	�

since k � � � n�

Observations

�� Using the same trick as above� we have

bn � hxQn� Qn�� i
"hQn��� Qn�� i � hQn� Qn i

"hQn��� Qn�� i � 	�

�� Each p � Pn can be uniquely written p �
Pn

i�� �iQi� where �i � h p�Qi i
"hQi� Qi i�

�� If Q is any monic polynomial of degree exactly n� then Q � Qn �
Pn��

i�� �iQi �why��

and hence

kQk�� � kQnk�� �
n��X
i��

��
i kQik�� � kQnk���

unless Q � Qn� That is� Qn has the least k � k� norm of all monic polynomials of

degree n�

�� The Qn�s are unique in the following sense� If �Pn� is another sequence of orthogonal

polynomials such that Pn has degree exactly n� then Pn � �nQn for some �n 
� 	�

�Why�� Consequently� there�s no harm in referring to the Qn�s as the sequence of

orthogonal polynomials relative to w�

�� For n � � note that
R b
a
Qn�t�w�t� dt � hQ�� Qni � 	�
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Examples

�� On ���� � �� the Chebyshev polynomials of the �rst kind �Tn� are orthogonal relative

to the weight w�x� � ��
p

�� x��Z �

��
Tm�x�Tn�x�

dxp
�� x�

�

Z �

�

cosm� cosn� d� �

���
	� m 
� n
�� m � n � 	
���� m � n 
� 	�

Since Tn has degree exactly n� this must be the right choice� Notice� too� that

�p
�
T�� T�� T�� � � � are orthonormal relative to the weight ���

p
�� x��

In terms of the inductive procedure given above� we must have Q� � T� � �

and Qn � ��n��Tn for n � �� �Why�� From this it follows that an � 	� b� � ����

and bn � ��
 for n � �� �Why�� That is� the recurrence formula given in our �rst

Theorem reduces to the familar relationship Tn���x� � �xTn�x��Tn���x�� Curiously�

Qn � ��n��Tn minimizes both

max
���x��

jp�x�j and

�Z �

��
p�x��

dxp
�� x�

����

over all monic polynomials of degree exactly n�

The Chebyshev polynomials also satisfy ���x��T ��n �x�� xT �n�x� � n� Tn�x� � 	�

Since this is a polynomial identity� it su�ces to check it for all x � cos �� In this case�

T �n�x� �
n sinn�

sin �

and

T ��n �x� �
n� cosn� sin � � n sinn� cos �

sin� � �� sin ��
�

Hence�

�� � x��T ��n �x� � xT �n�x� � n� Tn�x�

� �n� cosn� � n sinn� cot � � n sinn� cot � � n� cos � � 	

�� On ���� � �� the Chebyshev polynomials of the second kind �Un� are orthogonal relative

to the weight w�x� �
p

�� x��Z �

��
Um�x�Un�x� �� � x��

dxp
�� x�

�

Z �

�

sin �m � ���

sin �
� sin �n � ���

sin �
� sin� � d� �

�
	� m 
� n
���� m � n�
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While we�re at it� notice that

T �n�x� �
n sinn�

sin �
� nUn���x��

As a rule� the derivatives of a sequence of orthogonal polynomials are again orthogonal

polynomials� but relative to a di�erent weight�

�� On ���� � � with weight w�x� 
 �� the sequence �Pn� of Legendre polynomials are

orthogonal� and are typically normalized by Pn��� � �� The �rst few Legendre poly�

nomials are P��x� � �� P��x� � x� P��x� � �
� x

� � �
� � and P��x� � �

� x
� � �

� x� �Check

this � After we�ve seen a few more examples� we�ll come back and give an explicit

formula for Pn�

�� All of the examples we�ve seen so far are special cases of the following� On ���� � ��

consider the weight w�x� � �� � x���� � x�� � where �� � � ��� The corresponding

orthogonal polynomials �P
�����
n � are called the Jacobi polynomials and are typically

normalized by requiring that

P �����
n ��� �

�
n � �

�

�

 �� � ���� � �� � � � �� � n�

n 
�

It follows that P
�����
n � Pn�

P �����������
n �

� � � � � � � � ��n� ��

�nn 
Tn�

and

P ���������
n �

� � � � � � � � ��n � ��

�n�n � �� 
Un�

The polynomials P
�����
n are called ultraspherical polynomials�

�� There are also several classical examples of orthogonal polynomials on unbounded

intervals� In particular�

�	��� w�x� � e�x Laguerre polynomials�

�	��� w�x� � x�e�x generalized Laguerre polynomials�

������ w�x� � e�x
�

Hermite polynomials�

Since Qn is orthogonal to every element of Pn��� a fuller understanding of Qn will

follow from a characterization of the orthogonal complement of Pn��� We begin with an

easy fact about least�squares approximations in inner product spaces�
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Lemma� Let E be a �nite dimensional subspace of an inner product space X� and let

x � X n E� Then� y� � E is the least�squares approximation to x out of E �a�k�a� the

nearest point to x in E� if and only if hx� y�� yi � 	 for every y � E� that is� if and only

if �x � y�� � E�

Proof� �We�ve taken E to be �nite dimensional so that nearest points will exist� since

X is an inner product space� nearest points must also be unique �see the exercises for a

proof that every inner product norm is strictly convex���

���� First suppose that �x � y�� � E� Then� given any y � E� we have

kx � yk�� � k�x � y�� � �y� � y�k�� � kx � y�k�� � ky� � yk���

because y� � y � E and� hence� �x � y�� � �y� � y�� Thus� kx � yk � kx � y�k unless

y � y�� that is� y� is the �unique� nearest point to x in E�

���� Suppose that x � y� is not orthogonal to E� Then� there is some y � E

with kyk � � such that � � hx � y�� yi 
� 	� Now I claim that y� � �y � E is a better

approximation to x than y� �and y���y 
� y�� of course�� that is� y� is not the least�squares

approximation to x� To see this� we again compute�

kx� �y� � �y�k�� � k�x � y��� �yk�� � h�x � y�� � �y� �x � y�� � �yi
� kx � y�k�� � �� hx � y�� yi � ��

� kx � y�k�� � �� � kx� y�k���
Thus� we must have hx � y�� yi � 	 for every y � E�

Lemma �� �Integration by�parts��Z b

a

u�n�v �
nX
k��

����k��u�n�k�v�k���
ib
a

� ����n
Z b

a

uv�n��

Now if v is a polynomial of degree � n� then v�n� � 	 and we get�

Lemma �� f � C� a� b � satis�es

Z b

a

f�x� p�x�w�x� dx � 	 for all polynomials p � Pn�� if
and only if there is an n�times di	erentiable function u on � a� b � satisfying fw � u�n� and

u�k��a� � u�k��b� � 	 for all k � 	� �� � � � � n� ��

Proof� One direction is clear from Lemma �� Given u as above� we would have
R b
a
fpw �R b

a
u�n�p � ����n

R b
a
up�n� � 	�
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So� suppose we have that
R b
a
fpw � 	 for all p � Pn��� By integrating fw repeatedly�

choosing constants appropriately� we may de�ne a function u satisfying fw � u�n� and

u�k��a� � 	 for all k � 	� �� � � � � n � �� We want to show that the hypotheses on f force

u�k��b� � 	 for all k � 	� �� � � � � n� ��

Now Lemma � tells us that

	 �

Z b

a

fpw �
nX

k��

����k��u�n�k��b� p�k����b�

for all p � Pn��� But the numbers p�b�� p��b�� � � � � p�n����b� are completely arbitrary� that

is �again by integrating repeatedly� choosing our constants as we please�� we can �nd

polynomials pk of degree k � n such that p
�k�
k �b� 
� 	 and p

�j�
k �b� � 	 for j 
� k� In

fact� pk�x� � �x � b�k works just �ne In any case� we must have u�k��b� � 	 for all

k � 	� �� � � � � n � ��

Rolle�s theorem tells us a bit more about the functions orthogonal to Pn���

Lemma �� If w�x� � 	 in �a� b�� and if f � C� a� b � satis�es

Z b

a

f�x� p�x�w�x� dx � 	 for

all polynomials p � Pn��� then f has at least n distinct zeros in the open interval �a� b��

Proof� Write fw � u�n�� where u�k��a� � u�k��b� � 	 for all k � 	� �� � � � � n � �� In

particular� since u�a� � u�b� � 	� Rolle�s theorem tells us that u� would have at least one

zero in �a� b�� But then u��a� � u��c� � u��b� � 	� and so u�� must have at least two zeros

in �a� b�� Continuing� we �nd that fw � u�n� must have at least n zeros in �a� b�� Since

w � 	� the result follows�

Corollary� Let �Qn� be the sequence of orthogonal polynomials associated to a given

weight w with w � 	 in �a� b�� Then� the roots of Qn are real� simple� and lie in �a� b��

Lemma �� If p� is the least�squares approximation to f � C� a� b � out of Pn��� and if

w � 	 in �a� b�� then f � p� has at least n distinct zeros in �a� b��

Proof� The least�squares approximation satis�es h f � p�� p i � 	 for all p � Pn���

The sheer volume of literature on orthogonal polynomials and other �special func�

tions� is truly staggering� We�ll content ourselves with the Legendre and the Chebyshev
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polynomials� In particular� let�s return to the problem of �nding an explicit formula for

the Legendre polynomials� We could� as Rivlin does� use induction and a few observations

that simplify the basic recurrence formula �you�re encouraged to read this� see pp� ����
��

Instead we�ll give a simple �but at �rst sight intimidating� formula that is of use in more

general settings than ours�

Lemma � �with w 
 � and � a� b � � ���� � �� says that if we want to �nd a polynomial

f of degree n that is orthogonal to Pn��� then we�ll need to take a polynomial for u�

and this u will have to be divisible by �x � ��n�x � ��n� �Why�� That is� we must have

Pn�x� � cn � Dn
�
�x� � ��n



� where D denotes di�erentiation� and where we �nd cn by

evaluating the right�hand side at x � ��

Lemma �� �Leibniz�s formula� Dn�fg� �
nX

k��

�
n

k

�
Dk�f�Dn�k �g��

Proof� Induction and the fact that
�
n��
k��
�

�
�
n��
k

�
�
�
n
k

�
�

Consequently� Q�x� � Dn
�
�x���n�x���n



�
Pn

k��

�
n
k

�
Dk�x���nDn�k�x���n and

it follows that Q��� � �nn and Q���� � ����n�nn � This� �nally� gives us the formula

discovered by Rodrigues in ���
�

Pn�x� �
�

�nn 
Dn
�
�x� � ��n



�

The Rodrigues formula is quite useful �and easily generalizes to the Jacobi polynomials��

Observations

	� By Lemma �� the roots of Pn are real� distinct� and lie in ���� ���


� �x� � ��n �
Pn

k������k
�
n
k

�
x�n��k� If we apply �

�nn� D
n and simplify� we get another

formula for the Legendre polynomials�

Pn�x� �
�

�n

	n��
X
k��

����k
�
n

k

��
�n� �k

n

�
xn��k�

In particular� if n is even �odd�� then Pn is even �odd�� Notice� too� that if we letePn denote the polynomial given by the standard construction� then we must have

Pn � ��n
�
�n
n

� ePn�
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�� In terms of our standard recurrence formula� it follows that an � 	 �because xPn�x��

is always odd�� It remains to compute bn� First� integrating by parts�Z �

��
Pn�x�� dx � xPn�x��

i�
��

�
Z �

��
x � �Pn�x�P �n�x� dx�

or hPn� Pn i � � � �hPn� xP �n i� But xP �n � nPn � lower degree terms� hence�

hPn� xP �n i � nhPn� Pn i� Thus� hPn� Pn i � ����n � ��� Using this and the fact

that Pn � ��n
�
�n
n

� ePn� we�d �nd that bn � n���
n� � ��� Thus�

Pn�� � ��n��
�

�n � �

n � �

�ePn�� � ��n��
�

�n � �

n � �

��
x ePn � n�

�
n� � ��
ePn���

�
�n� �

n � �
xPn � n

n � �
Pn���

That is� the Legendre polynomials satisfy the recurrence formula

�n � ��Pn���x� � ��n � ��xPn�x� � nPn���x��

�� It follows from � that the sequence bPn �
q

�n��
�

Pn is orthonormal on ���� � ��

�
� The Legendre polynomials satisfy ��� x��P ��n �x�� �xP �n�x� � n �n� ��Pn�x� � 	� If

we set u � �x� � ��n� that is� if u�n� � �nn Pn� note that u��x� � �� � �nxu� Now we

apply Dn�� to both sides of this last equation �using Leibniz�s formula� and simplify�

u�n����x� � �� � �n � ��u�n��� �x �
�n � ��n

�
u�n� � � �n

�
u�n���x � �n � ��u�n�



�� ��� x��u�n��� � �xu�n��� � n �n � ��u�n� � 	�

��� Through a series of exercises� similar in spirit to �
� Rivlin shows that jPn�x�j � � on

���� � �� See pp� ����
 of Rivlin for details�

Given an orthogonal sequence� it makes sense to consider �generalized Fourier series�

relative to the sequence and to �nd analogues of the Dirichlet kernel� Lebesgue�s theorem�

and so on� In case of the Legendre polynomials we have the following�

Example� The �Fourier�Legendre� series for f � C���� � � is given by
P

kh f� bPk i bPk�
where bPk �

r
�k � �

�
Pk and h f� bPk i �

Z �

��
f�x� bPk �x� dx�
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The partial sum operator Sn�f� �
Pn

k��h f� bPk i bPk is a linear projection onto Pn and may

be written as

Sn�f��x� �

Z �

��
f�t�Kn�t� x� dt�

where Kn�t� x� �
Pn

k��
bPk�t� bPk�x�� �Why��

Since the bPk�s are orthonormal� we have

nX
k��

jh f� bPk ij� � kSn�f�k�� � kfk�� �
�X
k��

jh f� bPk ij��
and so the generalized Fourier coe�cients h f� bPk i are square summable� in particular�

h f� bPk i � 	 as k � �� As in the case of Fourier series� the fact that the polynomials

�i�e�� the span of the bPk�s� are dense in C� a� b � implies that Sn�f� actually converges to f

in the k � k� norm� These same observations remain valid for any sequence of orthogonal

polynomials� The real question remains� just as with Fourier series� whether Sn�f� is a

good uniform �or even pointwise� approximation to f �

If you�re willing to swallow the fact that jPn�x�j � �� then

jKn�t� x�j �
nX

k��

r
�k � �

�

r
�k � �

�
�

�

�

nX
k��

��k � �� �
�n � ���

�
�

Hence� kSn�f�k � �n � ���kfk� That is� the �Lebesgue numbers� for this process are at

most �n � ���� The analogue of Lebesgue�s theorem in this case would then read�

kf � Sn�f�k � Cn�En�f��

Thus� Sn�f� � f whenever n�En�f� � 	� and Jackson�s theorem tells us when this will

happen� If f is twice continuously di	erentiable� then the Fourier�Legendre series for f

converges uniformly to f on ���� � ��

The Christo�el�Darboux Identity

It would also be of interest to have a closed form for Kn�t� x�� That this is indeed always

possible� for any sequence of orthogonal polynomials� is a very important fact�

Using our original notation� let �Qn� be the sequence of monic orthogonal polynomials

corresponding to a given weight w� and let � bQn� be the orthonormal counterpart of �Qn��
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in other words� Qn � �n bQn� where �n �
p
hQn� Qn i � It will help things here if you recall

�from Observation � on page ���� that ��n � bn�
�
n���

As with the Legendre polynomials� each f � C� a� b � is represented by the generalized

Fourier series
P

kh f� bQk i bQk � with partial sum operator

Sn�f��x� �

Z b

a

f�t�Kn�t� x�w�t� dt�

where Kn�t� x� �
Pn

k��
bQk�t� bQk�x�� As before� Sn is a projection onto Pn� in particular�

Sn��� � � for every n�

Theorem� �Christo�el�Darboux� The kernel Kn�t� x� can be written

nX
k��

bQk�t� bQk�x� � �n���
��
n

bQn���t� bQn�x� � bQn�t� bQn���x�

t� x
�

Proof� We begin with the standard recurrence formulas

Qn���t� � �t� an�Qn�t� � bnQn���t�

Qn���x� � �x � an�Qn�x� � bnQn���x�

�where b� � 	�� Multiplying the �rst by Qn�x�� the second by Qn�t�� and subtracting�

Qn���t�Qn�x� �Qn�t�Qn���x�

� �t� x�Qn�t�Qn�x� � bn
�
Qn�t�Qn���x� � Qn�x�Qn���t�



�and again� b� � 	�� If we divide both sides of this equation by ��n we get

���n
�
Qn���t�Qn�x� �Qn�t�Qn���x�



� �t� x� bQn�t� bQn�x� � ���n��

�
Qn�t�Qn���x� � Qn�x�Qn���t�



�

Thus� we may repeat the process� arriving �nally at

���n
�
Qn���t�Qn�x� �Qn�t�Qn���x�



� �t� x�

nX
k��

bQn�t� bQn�x��

The Christo�el�Darboux identity now follows by writing Qn � �n bQn� etc�

And we now have a version of the Dini�Lipschitz theorem�



Orthogonal Polynomials ���

Theorem� Let f � C� a� b � and suppose that at some point x� in � a� b � we have

�i� f is Lipschitz at x�� that is� jf�x�� � f�x�j � Kjx� � xj for some constant K and all

x in � a� b �� and

�ii� the sequence � bQn�x��� is bounded�

Then� the series
P

kh f� bQk i bQk�x�� converges to f�x���

Proof� First note that the sequence �n���
��
n is bounded� Indeed� by Cauchy�Schwarz�

��n�� � hQn��� Qn�� i � hQn��� xQn i
� kQn��k� � kx k � kQnk� � maxfjaj� jbjg�n���n�

Thus� �n���
��
n � c � maxfjaj� jbjg� Now� using the Christo�el�Darboux identity�

Sn�f��x��� f�x�� �

Z b

a

�
f�t� � f�x��



Kn�t� x��w�t� dt

� �n���
��
n

Z b

a

f�t� � f�x��

t� x�

� bQn���t� bQn�x��� bQn�t� bQn���x��


w�t� dt

� �n���
��
n

� hh� bQn�� i bQn�x��� hh� bQn i bQn���x��


�

where h�t� � �f�t� � f�x�����t � x��� But h is bounded �and continuous everywhere

except� possibly� at x�� by hypothesis �i�� �n���
��
n is bounded� and bQn�x�� is bounded by

hypothesis �ii�� All that remains is to notice that the numbers hh� bQn i are the generalized

Fourier coe�cients of the bounded� Riemann integrable function h� and so must tend to

zero �since� in fact� they�re even square summable��

We end this section with a negative result� due to Nikolaev�

Theorem� There is no weight w such that every f � C� a� b � has a uniformly convergent

expansion in terms of orthogonal polynomials� In fact� given any w� there is always some

f for which kf � Sn�f�k is unbounded�



Problem Set� Orthogonal PolynomialsMath ��� ���	���

Throughout� w denotes a �xed� positive �except possibly at �nitely many points�� Riemann

integrable weight function on � a� b �� and we consider the inner product on C� a� b � de�ned

by

hf� gi �

Z b

a

f�x� g�x�w�x� dx�

and the associated �strictly convex� norm

kfk� �
q
hf� fi �

�Z b

a

jf�x�j� w�x� dx

����

�

	�� Prove that every inner product norm is strictly convex� Speci�cally� let h�� �i be an

inner product on a vector space X� and let kxk �
p
hx� xi be the associated norm�

Show that�

�a� kx�yk��kx�yk� � � �kxk��kyk�� for all x� y � X �the parallelogram identity��

�b� If kxk � r � kyk and if kx � yk � 
� then
��x�y

�

��� � r� � �
����� In particular���x�y
�

�� � r whenever x 
� y�

We de�ne a sequence of polynomials �Qn� which are mutually orthogonal� relative to w�

by setting Q��x� � �� Q��x� � x� a�� and

Qn���x� � �x � an�Qn�x� � bnQn���x�� for n � �� where

an � hxQn� Qn i
"hQn� Qn i and bn � hxQn� Qn�� i

"hQn��� Qn�� i

�and where xQn is shorthand for the polynomial xQn�x���

	�� Check that Qn is a monic polynomial of degree exactly n�

	�� If �Pn� is another sequence of orthogonal polynomials such that Pn has degree exactly

n� for each n� show that Pn � �nQn for some �n 
� 	� In particular� if Pn is a monic

polynomial� then Pn � Qn� �Hint� Choose �n so that Pn � �nQn � Pn�� and note

that �Pn � �nQn� � Pn��� Conclude that Pn � �nQn � 	��

	�� Check that hxQn� Qn�� i � hQn� Qn i� and conclude that bn � 	 for each n�
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		� Given f � C� a� b � and n � 	� prove that q�n � Pn is the least�squares approximation

to f out of Pn �with respect to w� if and only if

hf � q�n � p i �

Z b

a

�f�x� � q�n�x�� p�x�w�x� dx � 	

for every p � Pn� that is� if and only if �f � q�n� � Pn�

	
� If f � C� a� b � but f �� Pn� show that f � q�n changes sign at n� � �or more� points in

�a� b�� �Hint� If not� show that there is a polynomial p � Pn such that �f � q�n� p � 	

�but �f � q�n� p 
� 	� in �a� b�� Now appeal to the result in problem 		 to arrive at a

contradiction��

	�� Show that the least�squares approximation to f�x� � xn out of Pn�� �relative to w�

is q�n���x� � xn �Qn�x��

	�� Show that Qn has n distinct� simple zeros in �a� b�� �Hint� Combine 	
 and 	���



� Given f � C� a� b �� let p�n denote the best uniform approximation to f out of Pn and

let q�n denote the least�squares approximation to f out of Pn� Show that kf � q�nk� �
kf � p�nk� and conclude that kf � q�nk� � 	 as n���


�� Show that the Chebyshev polynomials of the �rst kind� �Tn�� and of the second kind�

�Un�� satisfy the identities

Tn�x� � Un�x� � xUn���x� and �� � x��Un���x� � xTn�x� � Tn���x��


�� Show that the Chebyshev polynomials of the second kind� �Un�� satisfy the recurrence

relation

Un���x� � �xUn�x� � Un���x�� n � ��

where U��x� � � and U��x� � �x� �Please compare this with the recurrence relation

satis�ed by the Tn�s �
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Numerical integration� or quadrature� is the process of approximating the value of a de�nite

integral
R b
a
f�x�w�x� dx based only on a �nite number of values or �samples� of f �much

like a Riemann sum�� A linear quadrature formula takes the form

Z b

a

f�x�w�x� dx �
nX

k��

Akf�xk��

where the nodes �xk� and the weights �Ak� are at our disposal� �Note that both sides of

the formula are linear in f ��

Example� Consider the quadrature formula

I�f� �

Z �

��
f�x� dx � �

n

n��X
k��n

f

�
�k � �

�n

�
� In�f��

If f is continuous� then we clearly have In�f� � R �
�� f as n � �� �Why�� But in the

particular case f�x� � x� we have �after some simpli�cation�

In�f� �
�

n

n��X
k��n

�
�k � �

�n

��

�
�

�n�

n��X
k��

��k � ��� �
�

�
� �

�n�
�

That is� j In�f� � I�f� j � ���n�� In particular� we would need to take n � ��	 to get

���n� � �	��� for example� and this would require that we perform over ��	 evaluations

of f � We�d like a method that converges a bit faster In other words� there�s no shortage

of quadrature formulas�we just want faster ones�

One reasonable requirement for our proposed quadrature formula is that it be exact

for polynomials of low degree� As it happens� this is easy to come by�

Lemma �� Given w�x� on � a� b � and nodes a � x� � � � � � xn � b� there exist unique

weights A�� � � � � An such that

Z b

a

p�x�w�x� dx �
nX
i��

Ai p�xi�
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for all polynomials p � Pn���

Proof� Let ��� � � � � �n be the Lagrange interpolating polynomials of degree n� � associ�

ated to the nodes x�� � � � � xn� and recall that we have p �
Pn

i�� p�xi� �i for all p � Pn���
Hence� Z b

a

p�x�w�x� dx �
nX
i��

p�xi�

Z b

a

�i�x�w�x� dx�

That is� Ai �
R b
a
�i�x�w�x� dx works� To see that this is the only choice� suppose thatZ b

a

p�x�w�x� dx �
nX
i��

Bi p�xi�

is exact for all p � Pn��� and set p � �j �

Aj �

Z b

a

�j�x�w�x� dx �
nX
i��

Bi �j�xi� � Bj�

The point here is that ��� � � � � �n form a basis for Pn�� and integration is linear� thus�

integration is completely determined by its action on the basis�that is� by the n values

Ai � I��i�� i � �� � � � � n�

Said another way� the n point evaluations 
i�p� � p�xi� satisfy Pn�� � �
Tn
i�� ker 
i� �

f	g� and it follows that every linear� real�valued function on Pn�� must be a linear com�

bination of the 
i�s� Here�s why� Since the xi�s are distinct� Pn�� may be identi�ed with

R
n by way of the isomorphism p 	� �p�x��� � � � � p�xn��� A linear� real�valued function on

Pn�� must� then� correspond to some linear� real�valued function on Rn� In other words�

it�s given by inner product against some �xed vector �A�� � � � � An�� in particular� we must

have I�p� �
Pn

i��Ai p�xi��

In any case� we now have our quadrature formula� For f � C� a� b � we de�ne In�f� �Pn
i��Ai f�xi�� where Ai �

R b
a �i�x�w�x� dx� But notice that the proof of our last result

suggests an alternate way of writing our quadrature formula� Indeed� if Ln���f��x� �Pn
i�� f�xi��i�x� is the Lagrange interpolating polynomial for f of degree n � � based on

the nodes x�� � � � � xn� thenZ b

a

�Ln���f���x�w�x� dx �
nX
i��

f�xi�

Z b

a

�i�x�w�x� dx �
nX
i��

Ai f�xi��
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In summary� In�f� � I�Ln���f�� � I�f�� that is�

In�f� �
nX
i��

Ai f�xi� �

Z b

a

�Ln���f���x�w�x� dx �
Z b

a

f�x�w�x� dx � I�f��

where Ln�� is the Lagrange interpolating polynomial of degree n� � based on the nodes

x�� � � � � xn� This formula is obviously exact for f � Pn���
It�s easy to give a bound on jIn�f�j in terms of kfk� indeed�

jIn�f�j �
nX
i��

jAij jf�xi�j � kfk
�

nX
i��

jAij
�
�

By considering a norm one continuous function f satisfying f�xi� � sgnAi for each i �

�� � � � � n� it�s easy to see that
Pn

i�� jAij is the smallest constant that works in this inequality�

In other words� �n �
Pn

i�� jAij� n � �� �� � � �� are the �Lebesgue numbers� for this process�

As with all previous settings� we want these numbers to be uniformly bounded�

If w�x� 
 � and if f is n�times continuously di�erentiable� we even have an error

estimate for our quadrature formula������
Z b

a

f �
Z b

a

Ln���f�

����� �
Z b

a

jf �Ln���f�j � �

n 
kf �n�k

Z b

a

nY
i��

jx� xij dx

�recall the Theorem on page �� of �A Brief Introduction to Interpolation��� As it happens�

the integral on the right is minimized when the xi�s are taken to be the zeros of the

Chebyshev polynomial Un �see Rivlin� page ����

The fact that a quadrature formula is exact for polynomials of low degree does not by

itself guarantee that the formula is highly accurate� The problem is that
Pn

i��Ai f�xi� may

be estimating a very small quantity through the cancellation of very large quantities� So�

for example� a positive function may yield a negative result in this approximate integral�

This wouldn�t happen if the Ai�s were all positive�and we�ve already seen how useful

positivity can be� Our goal here is to further improve our quadrature formula to have this

property� But we have yet to take advantage of the fact that the xi�s are at our disposal�

We�ll let Gauss show us the way 

Theorem� �Gauss� Fix a weight w�x� on � a� b �� and let �Qn� be the canonical sequence of

orthogonal polynomials relative to w� Given n� let x�� � � � � xn be the zeros of Qn �these all
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lie in �a� b��� and choose A�� � � � � An so that the formula
Pn

i��Aif�xi� �
R b
a
f�x�w�x� dx

is exact for polynomials of degree less than n� Then� in fact� the formula is exact for all

polynomials of degree less than �n�

Proof� Given a polynomial P of degree less than �n� we may divide� P � QnR � S�

where R and S are polynomials of degree less than n� Then�

Z b

a

P �x�w�x� dx �

Z b

a

Qn�x�R�x�w�x� dx �

Z b

a

S�x�w�x� dx

�

Z b

a

S�x�w�x� dx� since deg R � n

�
nX
i��

AiS�xi�� since deg S � n�

But P �xi� � Qn�xi�R�xi� � S�xi� � S�xi�� since Qn�xi� � 	� Hence�
R b
a
P �x�w�x� dx �Pn

i��AiP �xi� for all polynomials P of degree less than �n�

Amazing But� well� not really� P�n�� is of dimension �n� and we had �n numbers

x�� � � � � xn and A�� � � � � An to choose as we saw �t� Said another way� the division algorithm

tells us that P�n�� � QnPn���Pn��� Since QnPn�� � ker�In�� the action of In on P�n��

is the same as its action on a �copy� of Pn���
In still other words� since any polynomial that vanishes at all the xi�s must be divisible

by Qn �and conversely�� we have QnPn�� � P�n�� � �
Tn
i�� ker 
i� � ker�In jP�n���� Thus�

In �factors through� the quotient space P�n���QnPn�� � Pn���
Also not surprising is that this particular choice of xi�s is unique�

Lemma �� Suppose that a � x� � � � � � xn � b and A�� � � � � An are given so that the

equation
R b
a
P �x�w�x� dx �

Pn
i��AiP �xi� is satis�ed for all polynomials P of degree less

than �n� Then� x�� � � � � xn are the zeros of Qn�

Proof� Let Q�x� �
Qn
i���x � xi�� Then� for k � n� the polynomial Q � Qk has degree

n � k � �n� Hence�

Z b

a

Q�x�Qk �x�w�x� dx �
nX
i��

AiQ�xi�Qk�xi� � 	�
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Since Q is a monic polynomial of degree n which is orthogonal to each Qk� k � n� we must

have Q � Qn� Thus� the xi�s are actually the zeros of Qn�

According to Rivlin� the phraseGaussian quadrature is usually reserved for the speci�c

quadrature formula whereby
R �
�� f�x� dx is approximated by

R �
���Ln���f���x� dx� where

Ln���f� is the Lagrange interpolating polynomial to f using the zeros of the n�th Legendre

polynomial as nodes� �What a mouthful � What is actually being described in our version

of Gauss�s theorem is Gaussian�type quadrature�

Before computers� Gaussian quadrature was little more than a curiosity� the roots

of Qn are typically irrational� and certainly not easy to come by� By now� though� it�s

considered a standard quadrature technique� In any case� we still can�t judge the quality

of Gauss�s method without a bit more information�

Gaussian�type Quadrature

First� let�s summarize our rather cumbersome notation�

orthogonal approximate
polynomial zeros weights integral

Q� x
���
� A

���
� I�

Q� x
���
� � x

���
� A

���
� � A

���
� I�

Q� x
���
� � x

���
� � x

���
� A

���
� � A

���
� � A

���
� I�

���
���

���
���

Hidden here is the Lagrange interpolation formula Ln���f� �
Pn

i�� f�x
�n�
i � �

�n���
i � where

�
�n���
i denote the Lagrange polynomials of degree n� � based on x

�n�
� � � � � � x

�n�
n � The n�th

quadrature formula is then

In�f� �

Z b

a

Ln���f��x�w�x� dx �
nX
i��

A
�n�
i f�x

�n�
i � �

Z b

a

f�x�w�x� dx�

which is exact for polynomials of degree less than �n�

By way of one example� Hermite showed that A
�n�
k � ��n for the Chebyshev weight

w�x� � �� � x������ on ���� � �� Remarkably� A
�n�
k doesn�t depend on k The quadrature
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formula in this case reads�Z �

��

f�x� dxp
�� x�

� �

n

nX
k��

f

�
cos

�k � �

�n
�

�
�

Or� if you prefer� Z �

��
f�x� dx � �

n

nX
k��

f

�
cos

�k � �

�n
�

�
sin

�k � �

�n
��

�Why�� You can �nd full details in Natanson�s Constructive Function Theory� Vol� III�

The key result� due to Stieltjes� is that In is positive�

Lemma �� A
�n�
� � � � � � A

�n�
n � 	 and

Pn
i��A

�n�
i �

R b
a
w�x� dx�

Proof� The second assertion is obvious �since In��� � I��� �� For the �rst� �x � � j � n

and notice that ��
�n���
j �� is of degree ��n� �� � �n� Thus�

	 � h ��n���j � �
�n���
j i �

Z b

a

h
�
�n���
j �x�

i�
w�x� dx �

nX
i��

A
�n�
i

h
�
�n���
j �x�n�i �

i�
� A

�n�
j �

because �
�n���
j �x

�n�
i � � 
i�j �

Now our last calculation is quite curious� what we�ve shown is that

A
�n�
j �

Z b

a

�
�n���
j �x�w�x� dx �

Z b

a

h
�
�n���
j �x�

i�
w�x� dx�

The same calculation as above also proves

Corollary� h ��n���i � �
�n���
j i � 	 for i 
� j�

Since A
�n�
� � � � � � A

�n�
n � 	� it follows that In�f� is positive� that is� In�f� � 	 whenever

f � 	� The second assertion in Lemma � tells us that the In�s are uniformly bounded�

jIn�f�j � kfk
nX
i��

A
�n�
i � kfk

Z b

a

w�x� dx�

and this is the same bound that holds for I�f� �
R b
a f�x�w�x� dx itself� Given all of this�

proving that In�f� � I�f� is a piece of cake� The following result is again due to Stieltjes

�"a la Lebesgue��
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Theorem� In the above notation� jIn�f��I�f�j � �

R b

a
w�x� dx

�
E�n���f�� In particular�

In�f� � I�f� for evey f � C� a� b ��

Proof� Let p� be the best uniform approximation to f out of P�n��� Then� since

In�p�� � I�p��� we have

jI�f� � In�f�j � jI�f � p��j � jIn�f � p��j

� kf � p�k
Z b

a

w�x� dx � kf � p�k
nX
i��

A
�n�
i

� � kf � p�k
Z b

a

w�x� dx � �E�n���f�

Z b

a

w�x� dx�

Computational Considerations

You�ve probably been asking yourself� �How do I �nd the Ai�s without integrating�� Well�

�rst let�s recall the de�nition� In the case of Gaussian�type quadrature we have

A
�n�
i �

Z b

a

�
�n���
i �x�w�x� dx �

Z b

a

Qn�x�

�x � x
�n�
i �Q�n�x�n�i �

w�x� dx

�because �W� is the same as Qn here�the xi�s are the zeros of Qn�� Next� consider the

function

�n�x� �

Z b

a

Qn�t� �Qn�x�

t� x
w�t� dt�

Since t�x divides Qn�t��Qn�x�� note that �n is actually a polynomial �of degree at most

n� � � and that

�n�x
�n�
i � �

Z b

a

Qn�t�

t� x
�n�
i

w�t� dt � A
�n�
i Q�n�x

�n�
i ��

Now Q�n�x�n�i � is readily available� we just need to compute �n�x�n�i ��

Claim� The �n�s satisfy the same recurrence formula as the Qn�s

�n���x� � �x� an��n�x� � bn�n���x�� n � ��

but with di	erent starting values

���x� 
 	� and ���x� 

Z b

a

w�x� dx�
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Proof� The formulas for �� and �� are obviously correct� since Q��x� 
 � and Q��x� �

x � a�� We only need to check the recurrence formula itself�

�n���x� �

Z b

a

Qn���t� �Qn���x�

t� x
w�t� dt

�

Z b

a

�t � an�Qn�t� � bnQn���t� � �x � an�Qn�x� � bnQn���x�

t� x
w�t� dt

� �x � an�

Z b

a

Qn�t��Qn�x�

t� x
w�t� dt � bn

Z b

a

Qn���t��Qn���x�

t� x
w�t� dt

� �x � an��n�x� � bn �n���x��

since
R b
a
Qn�t�w�t� dt � 	�

Of course� the derivatives Q�n satisfy a recurrence relation of sorts� too�

Q�n���x� � Qn�x� � �x � an�Q�n�x� � bnQ
�
n���x��

But Q�n�x
�n�
i � can be computed without knowing Q�n�x�� Indeed� Qn�x� �

Qn
i���x�x

�n�
i ��

so we have Q�n�x
�n�
i � �

Q
j ��i�x

�n�
i � x

�n�
j ��

The weights A
�n�
i � or Christo	el numbers� together with the zeros of Qn are tabulated

in a variety of standard cases� See� for example� Handbook of Mathematical Functions with

Formulas� Graphs� and Tables� by Abramowitz and Stegun� eds� In practice� of course� it�s

enough to tabulate data for the case � a� b � � ���� � ��

Applications to Interpolation

Although Ln�f� isn�t typically a good uniform approximation to f � if we interpolate at the

zeros of an orthogonal polynomial Qn��� then Ln�f� will be a good approximation in the

k � k� or k � k� norm generated by the corresponding weight w� Speci�cally� by rewording

our earlier results� it�s easy to get estimates for each of the errors
R b
a
jf � Ln�f�jw andR b

a
jf � Ln�f�j� w� We use essentially the same notation as before� except now we take

Ln�f� �
n��X
i��

f
�
x
�n���
i

�
�
�n�
i �

where x
�n���
� � � � � � x

�n���
n�� are the roots of Qn�� and �

�n�
i is of degree n� This leads to a

quadrature formula that�s exact on polynomials of degree less than ��n � ���
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As we�ve already seen� �
�n�
� � � � � � �

�n�
n�� are orthogonal and so kLn�f�k� may be computed

exactly�

Lemma� kLn�f�k� � kfk

R b

a
w�x� dx

����
�

Proof� Since Ln�f�� is a polynomial of degree � �n � ��n � ��� we have

kLn�f�k�� �

Z b

a

�Ln�f��� w�x� dx

�

n��X
j��

A
�n���
j

�
n��X
i��

f
�
x
�n���
i

�
�
�n�
i

�
x
�n���
j

���

�
n��X
j��

A
�n���
j

h
f
�
x
�n���
j

�i�

� kfk�
n��X
j��

A
�n���
j � kfk�

Z b

a

w�x� dx�

Please note that we also have kfk� � kfk

R b

a
w�x� dx

����
� that is� this same estimate

holds for kfk� itself�

As usual� once we have an estimate for the norm of an operator� we also have an

analogue of Lebesgue�s theorem�

Theorem� kf � Ln�f�k� � �

R b

a w�x� dx
����

En�f��

Proof� Here we go again Let p� be the best uniform approximation to f out of Pn and

use the fact that Ln�p�� � p� to see that�

kf � Ln�f�k� � kf � p�k� � kLn�f � p��k�

� kf � p�k
�Z b

a

w�x� dx

����

� kf � p�k
�Z b

a

w�x� dx

����

� �En�f�

�Z b

a

w�x� dx

����

�

Hence� if we interpolate f � C� a� b � at the zeros of �Qn�� then Ln�f� � f in k � k�
norm� The analogous result for the k � k� norm is now easy�
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Corollary�
R b
a
jf�x� � Ln�f��x�jw�x� dx � �


R b
a
w�x� dx

�
En�f��

Proof� We apply the Cauchy�Schwarz inequality�Z b

a

jf�x� � Ln�f��x�jw�x� dx �

Z b

a

jf�x� � Ln�f��x�j
p
w�x�

p
w�x� dx

�
�Z b

a

jf�x� � Ln�f��x�j� w�x� dx

�����Z b

a

w�x� dx

����

� �En�f�

Z b

a

w�x� dx�

Essentially the same device allows an estimate of
R b
a
f�x� dx in terms of

R b
a
f�x�w�x� dx

�which may be easier to compute��

Corollary� If
R b
a
w�x��� dx is �nite� thenZ b

a

jf�x� �Ln�f��x�j dx �

Z b

a

jf�x� � Ln�f��x�j
p
w�x�

�p
w�x�

dx

�
�Z b

a

jf�x� �Ln�f��x�j� w�x� dx

�����Z b

a

�

w�x�
dx

����

� �En�f�

�Z b

a

w�x� dx

�����Z b

a

�

w�x�
dx

����

�

In particular� the Chebyshev weight satis�esZ �

��

dxp
�� x�

� � and

Z �

��

p
�� x� dx �

�

�
�

Thus� interpolation at the zeros of the Chebyshev polynomials �of the �rst kind� would

provide good� simultaneous approximation in each of the norms k � k�� k � k�� and k � k�
The Moment Problem

Given a positive� continuous weight function w�x� on � a� b �� the number

�k �

Z b

a

xk w�x� dx

is called the k�th moment of w� In physical terms� if we think of w�x� as the density of a

thin rod placed on the interval � a� b �� then �� is the mass of the rod� ����� is its center of
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mass� �� is its moment of inertia �about 	�� and so on� In probabilistic terms� if �� � ��

then w is the probability density function for some random variable� �� is the expected

value� or mean� of this random variable� and ������ is its variance� The moment problem

�or problems� really� concern the inverse procedure� What can be measured in real life are

the moments�can the moments be used to �nd the density function�

Questions� Do the moments determine w� Do di�erent weights have di�erent mo�

ment sequences� If we knew the sequence ��k�� could we �nd w� How do we tell if a

given sequence ��k� is the moment sequence for some positive weight� Do �special�

weights give rise to �special� moment sequences�

Now we�ve already answered one of these questions� The Weierstrass theorem tells us

that di�erent weights have di�erent moment sequences� Said another way� ifZ b

a

xk w�x� dx � 	 for all k � 	� �� �� � � � �

then w 
 	� Indeed� by linearity� this says that
R b
a p�x�w�x� dx � 	 for all polynomials p

which� in turn� tells us that
R b
a w�x�� dx � 	� �Why�� The remaining questions are harder

to answer� We�ll settle for simply stating a few pertinent results�

Given a sequence of numbers ��k�� we de�ne the n�th di�erence sequence �$n�k� by

$��k � �k

$��k � �k � �k��

$n�k � $n���k �$n���k��� n � ��

For example� $��k � �k � ��k�� � �k��� More generally� induction will show that

$n�k �
nX
i��

����i
�
n

i

�
�k�i�

In the case of a weight w on the interval � 	� � �� this sum is easy to recognize as an integral�

Indeed�Z �

�

xk��� x�n w�x� dx �
nX
i��

����i
�
n

i

�Z �

�

xk�i w�x� dx �
nX
i��

����i
�
n

i

�
�k�i�

In particular� if w is nonnegative� then we must have $n�k � 	 for every n and k� This

observation serves as motivation for
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Theorem� The following are equivalent�

�a� ��k� is the moment sequence of some nonnegative weight function w on � 	� � ��

�b� $n�k � 	 for every n and k�

�c� a��� � a��� � � � �� an�n � 	 whenever a� � a�x � � � �� anx
n � 	 for all 	 � x � ��

The equivalence of �a� and �b� is due to Hausdor�� A real sequence satisfying �b� or

�c� is sometimes said to be positive de�nite�

Now dozens of mathematicians worked on various aspects of the moment problem�

Chebyshev� Markov� Stieltjes� Cauchy� Riesz� Fr"echet� and on and on� And several of

them� in particular Cauchy and Stieltjes� noticed the importance of the integral
R b
a
w�t�
x�t dt

in attacking the problem� �Compare this expression to Cauchy�s integral formula�� It was

Stieltjes� however� who gave the �rst complete solution to such a problem�developing his

own integral �by considering
R b
a
dW �t�
x�t �� his own variety of continued fractions� and planting

the seeds for the study of orthogonal polynomials while he was at it We will attempt to

at least sketch a few of these connections�

To begin� let�s �x our notation� To simpli�y things� we suppose that we�re given a

nonnegative weight w�x� on a symmetric interval ��a� a �� and that all of the moments of

w are �nite� We will otherwise stick to our usual notations for �Qn�� the Gaussian�type

quadrature formulas� and so on� Next� we consider the moment�generating function�

Lemma� If x �� ��a� a �� then

Z a

�a

w�t�

x � t
dt �

�X
k��

�k
xk��

�

Proof�
�

x� t
�

�

x
� �

�� �t�x�
�

�X
k��

tk

xk��
� and the sum converges uniformly because

jt�xj � a�jxj � �� Now just multiply by w�t� and integrate�

By way of an example� consider the Chebyshev weight w�x� � ���x������ on ���� � ��

For x � � we haveZ �

��

dt

�x � t�
p

�� t�
�

�p
x� � �

�
set t � �u��� � u��

�

�
�

x

�
�� �

x�

�����
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�
�

x

�
� �

�

�
� �

x�
�

� � �
� � � �

�

� 
� �

x�
� � � �

�
�

using the binomial formula� Thus� we�ve found all the moments�

�� �

Z �

��

dtp
�� t�

� �

��n�� �

Z �

��

t�n��dtp
�� t�

� 	

��n �

Z �

��

t�ndtp
�� t�

�
� � � � � � � � ��n� ��

�nn 
��

Stieltjes proved much more� The integral
R a
�a

w�t�
x�t dt is actually an analytic function of

x in C n ��a� a �� In any case� since x �� ��a� a �� we know that �
x�t is continuous on ��a� a ��

In particular� we can apply our quadrature formulas �and Stieltjes theorem� p� ���� to

write Z a

�a

w�t�

x� t
dt � lim

n��

nX
i��

A
�n�
i

x� x
�n�
i

�

and these sums are recognizable�

Lemma�

nX
i��

A
�n�
i

x � x
�n�
i

�
�n�x�

Qn�x�
�

Proof� Since �n has degree � n and �n�x
�n�
i � 
� 	 for any i� we may appeal to partial�

fractions to write

�n�x�

Qn�x�
�

�n�x�

�x� x
�n�
� � � � � �x � x

�n�
n �

�
nX
i��

ci

x� x
�n�
i

where ci is given by

ci �
�n�x�

Qn�x�
�x � x

�n�
i �

�
x�x

�n�
i

�
�n�x

�n�
i �

Q�n�x
�n�
i �

� A
�n�
i �

Now here�s where the continued fractions come in� Stieltjes recognized the fact that

�n���x�

Qn���x�
�

b�

�x� a��� b�
�x � a��� � � �

� bn
�x � an�
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�which can be proved by induction�� where b� �
R b
a
w�t� dt� More generally� induction will

show that the n�th convergent of a continued fraction can be written as

An

Bn
�

p�

q� � p�
q� � � � �

� pn
qn

by means of the recurrence formulas

A� � 	

A� � p�

An � qnAn�� � pnAn��

B� � �

B� � q�

Bn � qnBn�� � pnBn��

where n � �� �� 
� � � �� Please note that An and Bn satisfy the same recurrence formula�

but with di�erent starting values �as is the case with �n and Qn��

Again using the Chebyshev weight as an example� for x � � we have

�p
x� � �

�

Z �

��

dt

�x � t�
p

�� t�
�

�

x � ���

x� ���

x� ���

�� �

since an � 	 for all n� b� � ���� and bn � ��
 for n � �� In other words� we�ve just found

a continued fraction expansion for �x� � �������

Appendix

Finally� here is a brief review of some of the fancier bits of linear algebra used in this

chapter� To begin� we discuss sums and quotients of vector spaces�

Each subspace M of a �nite�dimensional X induces an equivalence relation on X by

x � y �� x � y �M�

Standard arguments show that the equivalence classes under this relation are the cosets

�translates� x � M � x � X� That is�

x � M � y � M �� x� y �M �� x � y�
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Equally standard is the induced vector arithmetic

�x �M� � �y � M� � �x � y� � M and ��x � M� � ��x� �M�

where x� y � X and � � R� The collection of cosets �or equivalence classes� is a vector

space under these operations� it�s denoted X�M and called the quotient of X by M � Please

note the the zero vector in X�M is simply M itself�

Associated to the quotient space X�M is the quotient map q�x� � x � M � It�s easy

to check that q � X � X�M is a vector space homomorphism with kernel M � �Why��

Next we recall the isomorphism theorem�

Theorem� Let T � X � Y be a linear map between �nite�dimensional vector spaces� and

let q � X � X� kerT be the quotient map� Then� there exists a �unique� into� isomorphism

S � X� kerT � Y satisfying S�q�x�� � T �x� for every x � X�

Proof� Since q maps onto X� kerT � it�s �legal� to de�ne a map S � X� kerT � Y by

setting S�q�x�� � T �x� for x � X� Please note that S is well�de�ned since

T �x� � T �y� �� T �x � y� � 	 �� x � y � kerT

�� q�x � y� � 	 �� q�x� � q�y��

It�s easy to see that S is linear and so precisely the same argument as above shows that S

is one�to�one�

Corollary� Let T � X � Y be a linear map between �nite�dimensional vector spaces�

Then� the range of T is isomorphic to X� kerT �
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For several weeks now we�ve taken advantage of the fact that the monomials �� x� x�� � � �

have dense linear span in C� 	� � �� What� if anything� is so special about these particular

powers� How about if we consider polynomials of the form
Pn

k�� akx
k� � are they dense�

too� More generally� what can be said about the span of a sequence of monomials �x
n ��

where �� � �� � �� � � � �� Of course� we�ll have to assume that �� � 	� but it�s not hard

to see that we will actually need �� � 	� for otherwise each of the polynomials
Pn

k�� akx

k

vanishes at x � 	 �and so has distance at least � from the constant � function� for example��

If the �n�s are integers� it�s also clear that we�ll have to have �n � � as n � �� But

what else is needed� The answer comes to us from M
untz in ���
� �You sometimes see

the name Otto Sz"asz associated with M
untz�s theorem� because Sz"asz proved a similar

theorem at nearly the same time ��������

Theorem� Let 	 � �� � �� � �� � � � �� Then� the functions �x
n � have dense linear span

in C� 	� � � if and only if �� � 	 and
P�

n�� �
��
n � ��

What M
untz is trying to tell us here is that the �n�s can�t get big too quickly� In

particular� the polynomials of the form
Pn

k�� akx
k� are evidently not dense in C� 	� � �� On

the other hand� the �n�s don�t have to be unbounded� indeed� M
untz�s theorem implies an

earlier result of Bernstein from ����� If 	 � �� � �� � � � � � K �some constant�� then

�� x�� � x�� � � � � have dense linear span in C� 	� � ��

Before we give the proof of M
untz�s theorem� let�s invent a bit of notation� We write

Xn �

�
nX

k��

akx

k � a�� � � � � an � R

	

and� given f � C� 	� � �� we write dist�f�Xn� to denote the distance from f to the space

spanned by �� x
� � � � � � x
n � Let�s also write X �
S�
n��Xn� That is� X is the linear span of

the entire sequence �x
n��n��� The question here is whether X is dense� and we�ll address

the problem by determining whether dist�f�Xn� � 	� as n��� for every f � C� 	� � ��

If we can show that each ��xed� power xm can be uniformly approximated by a linear

combination of x
n �s� then the Weierstrass theorem will tell us that X is dense in C� 	� � ��
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�How�� Surprisingly� the numbers dist�xm�Xn� can be estimated� Our proof won�t give

the best estimate� but it will show how the condition
P�

n�� �
��
n � � comes into the

picture�

Lemma� Let m � 	� Then� dist�xm�Xn� �
nY
k��

������ m

�k

�����
Proof� We may certainly assume that m 
� �n for any n� Given this� we inductively

de�ne a sequence of functions by setting P��x� � xm and

Pn�x� � ��n �m�x
n
Z �

x

t���
n Pn���t� dt

for n � �� For example�

P��x� � ��� �m�x
�
Z �

x

t���
� tm dt � �x
� tm�
�
�
x

� xm � x
� �

By induction� each Pn is of the form xm �Pn
k�� akx


k for some scalars �ak��

Pn�x� � ��n �m�x
n
Z �

x

t���
n Pn���t� dt

� ��n �m�x
n
Z �

x

t���
n
�
tm �

n��X
k��

akt

k

�
dt

� xm � x
n � ��n �m�
n��X
k��

ak
�n � �k

�x
k � x
n��

Finally� kP�k � � and kPnk � j�� m

n
j kPn��k� because

j�n �mjx
n
Z �

x

t���
n dt �
j�n �mj

�n
��� x
n� �

������ m

�n

���� �
Thus�

dist�xm�Xn� � kPnk �
nY

k��

������ m

�k

���� �
The preceding result is due to v� Golitschek� A slightly better estimate� also due to

v� Golitschek ����	�� is dist�xm�Xn� �Qn
k��

jm�
kj
m�
k

�

Now a well�known fact about in�nite products is that� for positive ak�s� the productQ�
k��

���� ak
�� diverges �to 	� if and only if the series

P�
k�� ak diverges �to �� if and only
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if the product
Q�

k��

��� � ak
�� diverges �to ��� In particular�

Qn
k��

���� m

k

��� 	 if and only

if
Pn

k��
�

k
��� That is� dist�xm�Xn� � 	 if and only if

P�
k��

�

k

� �� This proves the

�backward� direction of M
untz�s theorem�

We�ll prove the �forward� direction of M
untz�s theorem by proving a version of M
untz�s

theorem for the space L�� 	� � �� For our purposes� L�� 	� � � denotes the space C� 	� � �

endowed with the norm

kfk� �

�Z �

�

jf�x�j�dx
����

�

although our results are equally valid in the �real� space L�� 	� � � �consisting of square�

integrable� Lebegue measurable functions�� In the latter case� we no longer need to assume

that �� � 	� but we do need to assume that each �n � ���� �in order that x�
n be

integrable on � 	� � ���

Remarkably� the distance from f to the span of x
� � x
� � � � � � x
n can be computed

exactly in the L� norm� For this we�ll need some more notation� Given linearly independent

vectors f�� � � � � fn in an inner product space� we call

G�f�� � � � � fn� �

�������
h f�� f� i � � � h f�� fn i

���
� � �

���
h fn� f� i � � � h fn� fn i

������� � det
� h fi� fj i 
i�j

the Gram determinant of the fk�s�

Lemma� �Gram� Let F be a �nite dimensional subspace of an inner product space V �

and let g � V n F � Then� the distance d from g to F is given by

d � �
G�g� f�� � � � � fn�

G�f�� � � � � fn�
�

where f�� � � � � fn is any basis for F �

Proof� Let f �
Pn

i�� aifi be the best approximation to g out of F � Then� since g � f

is orthogonal to F � we have� in particular� h fj � g i � h fj � g i for all j� that is�

nX
i��

aih fj � fi i � h fj � g i� j � �� � � � � n� ���

Since this system of equations always has a unique solution a�� � � � � an� we must have

G�f�� � � � � fn� 
� 	 �and so the formula in our Lemma at least makes sense��
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Next� notice that

d � � h g � f� g � f i � h g � f� g i � h g� g i � h g� f i�

in other words�

d � �

nX
i��

aih g� fi i � h g� g i� ����

Now consider ��� and ���� as a system of n�� equations in the n�� unknowns a�� � � � � an�

and d �� in matrix form we have�����
� h g� f� i � � � h g� fn i
	 h f�� f� i � � � h f�� fn i
���

� � �
���

���
	 h fn� f� i � � � h fn� fn i

�����
�����
d �

a�
���
an

����� �

�����
h g� g i
h f�� g i

���
h fn� g i

����� �

Solving for d � using Cramer�s rule gives the desired result� expanding along the �rst

column shows that the matrix of coe�cients has determinant G�f�� � � � � fn�� while the

matrix obtained by replacing the �d column� by the right�hand side has determinant

G�g� f�� � � � � fn��

Note� By our last Lemma and induction� every Gram determinant is positive 

In what follows� we will still use Xn to denote the span of x
� � � � � � x
n � but now we�ll

write dist ��f�Xn� to denote the distance from f to Xn in the L� norm�

Theorem� Let m� �k � ���� for k � 	� �� �� � � �� Then�

dist ��x
m�Xn� �

�p
�m � �

nY
k��

jm� �kj
m � �k � �

�

Proof� The proof is based on a determinant formula due to Cauchy�

Y
i�j

�ai � bj�

��������
�

a��b�
� � � �

a��bn
���

� � �
���

�
an�b�

� � � �
an�bn

�������� �
Y
i
j

�ai � aj��bi � bj��

If we consider each of the ai�s and bj �s as �variables�� then each side of the equation is a

polynomial in a�� � � � � an� b�� � � � � bn� �Why�� Now the right�hand side clearly vanishes if
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ai � aj or bi � bj for some i 
� j� but the left�hand side also vanishes in any of these cases�

Thus� the right�hand side divides the left�hand side� But both polynomials have degree

n� � in each of the ai�s and bj �s� �Why�� Thus� the left�hand side is a constant multiple

of the right�hand side� To show that the constant must be �� write the left�hand side as

Y
i��j

�ai � bj�

�����������

� a��b�
a��b�

� � � a��b�
a��bn

a��b�
a��b�

� � � � a��b�
a��bn

���
� � �

���

an�bn
an�b�

� � � an�bn
an�bn��

�

�����������
and now take the limit as b� � �a�� b� � �a�� etc� The expression above tends toQ
i��j�ai � aj�� as does the right�hand side of Cauchy�s formula�

Now� hxp� xq i �
R �
� x

p�q dx � �
p�q�� for p� q � ����� so

G�x
� � � � � � x
n� � det

��
�

�i � �j � �

�
i�j

�
�

Q
i
j��i � �j��Q
i�j��i � �j � ��

�

with a similar formula holding for G�xm� x
� � � � � � x
n �� Substituting these expressions into

our distance formula and taking square roots �nishes the proof�

Now we can determine exactly when X is dense in L�� 	� � �� For easier comparison to

the C� 	� � � case� we suppose that the �n�s are nonnegative�

Theorem� Let 	 � �� � �� � �� � � � �� Then� the functions �x
n � have dense linear span

in L�� 	� � � if and only if
P�

n�� �
��
n � ��

Proof� If
P�

n��
�

n

��� then each of the products
Qn
k��

���� m

k

�� and
Qn
k��

��� � �m���

k

��
converges to some nonzero limit for any m not equal to any �k� Thus� dist ��xm�Xn� 
� 	�

as n��� for any m 
� �k� k � 	� �� �� � � �� In particular� the functions �x
n� cannot have

dense linear span in L�� 	� � ��

Conversely� if
P�

n��
�

n

� �� then
Qn
k��

���� m

k

�� diverges to 	 while
Qn
k��

��� � �m���

k

��
diverges to ��� Thus� dist ��xm�Xn� � 	� as n � �� for every m � ����� Since the

polynomials are dense in L�� 	� � �� this �nishes the proof�

Finally� we can �nish the proof of M
untz�s theorem in the case of C� 	� � �� Suppose

that the functions �x
n � have dense linear span in C� 	� � �� Then� since kfk� � kfk� it
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follows that the functions �x
n� must also have dense linear span in L�� 	� � �� �Why��

Hence�
P�

n��
�

n

� ��

Just for good measure� here�s a second proof of the �backward� direction for C� 	� � �

based on the L�� 	� � � version� Suppose that
P�

n��
�

n

� �� and let m � �� Then������xm �
nX

k��

akx

k

����� �

����� �

m

Z x

�

tm�� dt�
nX

k��

ak
�k

Z x

�

t
k�� dt

�����
�
Z �

�

����� �

m
tm�� �

nX
k��

ak
�k

t
k��
����� dt

�
#$Z �

�

����� �

m
tm�� �

nX
k��

ak
�k

t
k��
�����
�

dt

%A���

�

Now the functions �x
k��� have dense linear span in L�� 	� � � because
P


n
�
�


n�� � ��

Thus� we can �nd ak�s so that the right�hand side of this inequality is less than some 	�

Since this estimate is independent of x� we�ve shown that

max
��x��

�����xm �
nX

k��

akx

k

����� � 	�

Application� Let 	 � �� � �� � �� � � � � withP�
n�� �

��
n � �� and let f be a continuous

function on � 	��� for which c � lim
t��

f�t� exists� Then� f can be uniformly approximated

by �nite linear combinations of the exponentials �e�
nt��n���

Proof� The function g�x� � f�� log x�� for 	 � x � �� and g�	� � c� is continuous on

� 	� � �� In other words� g�e�t� � f�t� for each 	 � t ��� Thus� given 	 � 	� we can �nd

n and a�� � � � � an such that

max
��x��

�����g�x� �
nX

k��

akx

k

����� � max
��t	�

�����f�t� �
nX

k��

ake
�
kt

����� � 	�



The Stone�Weierstrass TheoremMath ���

To begin� an algebra is a vector space A on which there is a multiplication �f� g� 	� fg

�from A �A into A� satisfying

�i� �fg�h � f�gh�� for all f � g� h � A�

�ii� f�g � h� � fg � fh and �f � g�h � fg � gh� for all f � g� h � A�

�iii� ��fg� � ��f�g � f��g�� for all scalars � and all f � g � A�

In other words� an algebra is a ring under vector addition and multiplication� together

with a compatible scalar multiplication� The algebra is commutative if

�iv� fg � gf � for all f � g � A�

And we say that A has an identity element if there is a vector e � A such that

�v� fe � ef � f � for all f � A�

In case A is a normed vector space� we also require that the norm satisfy

�vi� kfgk � kfk kgk
�this simpli�es things a bit�� and in this case we refer to A as a normed algebra� If a

normed algebra is complete� we refer to it as a Banach algebra� Finally� a subset B of an

algebra A is called a subalgebra �of A� if B is itself an algebra �under the same operations��

that is� if B is a �vector� subspace of A which is closed under multiplication�

If A is a normed algebra� then all of the various operations on A �or A � A� are

continuous� For example� since

kfg � hkk � kfg � fk � fk � hkk � kfk kg � kk� kkk kf � hk

it follows that multiplication is continuous� �How�� In particular� if B is a subspace �or

subalgebra� of A� then B� the closure of B� is also a subspace �or subalgebra� of A�

Examples

�� If we de�ne multiplication of vectors �coordinatewise�� then R
n is a commutative

Banach algebra with identity �the vector ��� � � � � ��� when equipped with the norm

kxk� � max
��i�n

jxij�
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�� It�s not hard to identify the subalgebras of Rn among its subspaces� For example� the

subalgebras of R� are f�x� 	� � x � Rg� f�	� y� � y � Rg� and f�x� x� � x � Rg� along

with f�	� 	�g and R��

�� Given a set X� we write B�X� for the space of all bounded� real�valued functions on

X� If we endow B�X� with the sup norm� and if we de�ne arithmetic with functions

pointwise� then B�X� is a commutative Banach algebra with identity �the constant

� function�� The constant functions in B�X� form a subalgebra isomorphic �in every

sense of the word� to R�

�� If X is a metric �or topological� space� then we may consider C�X�� the space of all

continuous� real�valued functions on X� If we again de�ne arithmetic with functions

pointwise� then C�X� is a commutative algebra with identity �the constant � function��

The bounded� continuous functions on X� written Cb�X� � C�X� � B�X�� form a

closed subalgebra of B�X�� If X is compact� then Cb�X� � C�X�� In other words�

if X is compact� then C�X� is itself a closed subalgebra of B�X� and� in particular�

C�X� is a Banach algebra with identity�

�� The polynomials form a dense subalgebra of C� a� b �� The trig polynomials form a

dense subalgebra of C��� These two sentences summarize Weierstrass�s two classical

theorems in modern parlance and form the basis for Stone�s version of the theorem�

Using this new language� we may restate the classical Weierstrass theorem to read�

If a subalgebra A of C� a� b � contains the functions e�x� � � and f�x� � x� then A is

dense in C� a� b �� Any subalgebra of C� a� b � containing � and x actually contains all the

polynomials� thus� our restatement of Weierstrass�s theorem amounts to the observation

that any subalgebra containing a dense set is itself dense in C� a� b ��

Our goal in this section is to prove an analogue of this new version of the Weierstrass

theorem for subalgebras of C�X�� where X is a compact metric space� In particular� we

will want to extract the essence of the functions � and x from this statement� That is� we

seek conditions on a subalgebra A of C�X� that will force A to be dense in C�X�� The

key role played by � and x� in the case of C� a� b �� is that a subalgebra containing these

two functions must actually contain a much larger set of functions� But since we can�t

be assured of anything remotely like polynomials living in the more general C�X� spaces�
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we might want to change our point of view� What we really need is some requirement on

a subalgebra A of C�X� that will allow us to construct a wide variety of functions in A�

And� if A contains a su�ciently rich variety of functions� it might just be possible to show

that A is dense�

Since the two replacement conditions we have in mind make sense in any collection of

real�valued functions� we state them in some generality�

Let A be a collection of real�valued functions on some set X� We say that A separates

points in X if� given x 
� y � X� there is some f � A such that f�x� 
� f�y�� We say that

A vanishes at no point of X if� given x � X� there is some f � A such that f�x� 
� 	�

Examples

	� The single function f�x� � x clearly separates points in � a� b �� and the function e�x� �

� obviously vanishes at no point in � a� b �� Any subalgebra A of C� a� b � containing

these two functions will likewise separate points and vanish at no point in � a� b ��


� The set E of even functions in C���� � � fails to separate points in ���� � �� indeed�

f�x� � f��x� for any even function� However� since the constant functions are even�

E vanishes at no point of ���� � �� It�s not hard to see that E is a proper closed

subalgebra of C���� � �� The set of odd functions will separate points �since f�x� � x

is odd�� but the odd functions all vanish at 	� The set of odd functions is a proper

closed subspace of C���� � �� although not a subalgebra�

�� The set of all functions f � C���� � � for which f�	� � 	 is a proper closed subalgebra

of C���� � �� In fact� this set is a maximal �in the sense of containment� proper closed

subalgebra of C���� � �� Note� however� that this set of functions does separate points

in ���� � � �again� because it contains f�x� � x��

�� It�s easy to construct examples of non�trivial closed subalgebras of C�X�� Indeed�

given any closed subset X� of X� the set A�X�� � ff � C�X� � f vanishes on X�g is

a non�empty� proper subalgebra of C�X�� It�s closed in any reasonable topology on

C�X� because it�s closed under pointwise limits� Subalgebras of the type A�X�� are

of interest because they�re actually ideals in the ring C�X�� That is� if f � C�X��

and if g � A�X��� then fg � A�X���
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As these few examples illustrate� neither of our new conditions� taken separately� is

enough to force a subalgebra of C�X� to be dense� But both conditions together turn

out to be su�cient� In order to better appreciate the utility of these new conditions� let�s

isolate the key computational tool that they permit within an algebra of functions�

Lemma� Let A be an algebra of real�valued functions on some set X� and suppose that

A separates points in X and vanishes at no point of X� Then� given x 
� y � X and a�

b � R� we can �nd an f � A with f�x� � a and f�y� � b�

Proof� Given any pair of distinct points x 
� y � X� the set eA � f�f�x�� f�y�
�

� f � Ag
is a subalgebra of R�� If A separates points in X� then eA is evidently neither f�	� 	�g nor

f�x� x� � x � Rg� If A vanishes at no point� then f�x� 	� � x � Rg and f�	� y� � y � Rg are

both excluded� Thus eA � R�� That is� for any a� b � R� there is some f � A for which

�f�x�� f�y�� � �a� b��

Now we can state Stone�s version of the Weierstrass theorem �for compact metric

spaces�� It should be pointed out that the theorem� as stated� also holds in C�X� when

X is a compact Hausdor� topological space �with the same proof�� but does not hold for

algebras of complex�valued functions over C � More on this later�

Stone�Weierstrass Theorem� �real scalars� Let X be a compact metric space� and let

A be a subalgebra of C�X�� If A separates points in X and vanishes at no point of X�

then A is dense in C�X��

What Cheney calls an �embryonic� version of this theorem appeared in ����� as a small

part of a massive �	� page paper Later versions� appearing in ��
� and ����� bene�tted

from the work of the great Japanese mathematician Kakutani and were somewhat more

palatable to the general mathematical public� But� no matter which version you consult�

you�ll �nd them di�cult to read� For more details� I would recommend you �rst consult

Folland�s Real Analysis� or Simmons�s Topology and Modern Analysis�

As a �rst step in attacking the proof of Stone�s theorem� notice that if A satis�es the

conditions of the theorem� then so does its closure A� �Why�� Thus� we may assume that

A is actually a closed subalgebra of C�X� and prove� instead� that A � C�X�� Now the

closed subalgebras of C�X� inherit more structure than you might �rst imagine�
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Theorem� If A is a subalgebra of C�X�� and if f � A� then jf j � A� Consequently� A is

a sublattice of C�X��

Proof� Let 	 � 	� and consider the function jtj on the interval
��kfk� kfk 
� By the

Weierstrass theorem� there is a polynomial p�t� �
Pn

k�� akt
k such that

�� jtj � p�t�
�� � 	 for

all jtj � kfk� In particular� notice that jp�	�j � ja�j � 	�

Now� since jf�x�j � kfk for all x � X� it follows that
�� jf�x�j � p�f�x��

�� � 	 for all

x � X� But p�f�x�� � �p�f���x�� where p�f� � a��� a�f � � � � � anf
n� and the function

g � a�f � � � � � anf
n � A� since A is an algebra� Thus�

�� jf�x�j � g�x�
�� � ja�j � 	 � �	

for all x � X� In other words� for each 	 � 	� we can supply an element g � A such that

k jf j � gk � �	� That is� jf j � A�

The statement that A is a sublattice of C�X� means that if we�re given f � g � A� then

maxff� gg � A and minff� gg � A� too� But this is actually just a statement about real

numbers� Indeed� since

� maxfa� bg � a � b � ja� bj and � minfa� bg � a � b � ja � bj

it follows that a subspace of C�X� is a sublattice precisely when it contains the absolute

values of all its elements�

The point to our last result is that if we�re given a closed subalgebra A of C�X�� then

A is �closed� in every sense of the word� Sums� products� absolute values� max�s� and

min�s of elements from A� and even limits of sequences of these� are all back in A� This is

precisely the sort of freedom we�ll need if we hope to show that A � C�X��

Please notice that we could have avoided our appeal to the Weierstrass theorem in this

last result� Indeed� we really only need to supply polynomial approximations for the single

function jxj on ���� � �� and this can be done directly� For example� we could appeal instead

to the binomial theorem� using jxj �
p

�� ��� x��� The resulting series can be shown

to converge uniformly on ���� � �� By side�stepping the classical Weierstrass theorem� it

becomes a corollary to Stone�s version �rather than the other way around��

Now we�re ready for the proof of the Stone�Weierstrass theorem� As we�ve already

pointed out� we may assume that we�re given a closed subalgebra �subspace� and sublattice�
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A of C�X� and we want to show that A � C�X�� We�ll break the remainder of the proof

into two steps�

Step �� Given f � C�X�� x � X� and 	 � 	� there is an element gx � A with gx�x� � f�x�

and gx�y� � f�y� � 	 for all y � X�

From our �computational� Lemma� we know that for each y � X� y 
� x� we can �nd

an hy � A so that hy�x� � f�x� and hy�y� � f�y�� Since hy�f is continuous and vanishes

at both x and y� the set Uy � ft � X � hy�t� � f�t��	g is open and contains both x and y�

Thus� the sets �Uy�y ��x form an open cover for X� Since X is compact� �nitely many Uy�s

su�ce� say X � Uy� � � � � � Uyn � Now set gx � maxfhy�� � � � � hyng� Because A is a lattice�

we have gx � A� Note that gx�x� � f�x� since each hyi agrees with f at x� And gx � f � 	

since� given y 
� x� we have y � Uyi for some i� and hence gx�y� � hyi�y� � f�y� � 	�

Step �� Given f � C�X� and 	 � 	� there is an h � A with kf � hk � 	�

From Step �� for each x � X we can �nd some gx � A such that gx�x� � f�x� and

gx�y� � f�y�� 	 for all y � X� And now we reverse the process used in Step �� For each x�

the set Vx � fy � X � gx�y� � f�y��	g is open and contains x� Again� since X is compact�

X � Vx� � � � � Vxm for some x�� � � � � xm� This time� set h � minfgx�� � � � � gxmg � A� As

before� h�y� � f�y�� 	 for all y� since each gxi does so� and h�y� � f�y� � 	 for all y� since

at least one gxi does so�

The conclusion of Step � is that A is dense in C�X�� but� since A is closed� this means

that A � C�X��

Corollary� IfX and Y are compact metric spaces� then the subspace of C�X�Y � spanned

by the functions of the form f�x� y� � g�x�h�y�� g � C�X�� h � C�Y �� is dense in C�X�Y ��

Corollary� If K is a compact subset of Rn� then the polynomials �in n�variables� are

dense in C�K��

Applications to C��

In many texts� the Stone�Weierstrass theorem is used to show that the trig polynomials are

dense in C��� One approach here might be to identify C�� with the closed subalgebra of

C� 	� �� � consisting of those functions f satisfying f�	� � f����� Probably easier� though�
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is to identify C�� with the continuous functions on the unit circle T � fei� � � � Rg �

fz � C � jzj � �g in the complex plane using the identi�cation

f � C�� �� g � C�T�� where g�eit� � f�t��

Under this correspondence� the trig polynomials in C�� match up with �certain� polyno�

mials in z � eit and z � e�it� But� as we�ve seen� even if we start with real�valued trig

polynomials� we�ll end up with polynomials in z and z having complex coe�cients�

Given this� it might make more sense to consider the complex�valued continuous func�

tions on T� We�ll write CC �T� to denote the complex�valued continuous functions on

T� and CR �T� to denote the real�valued continuous functions on T� Similarly� C��
C

is

the space of complex�valued� ���periodic functions on R� while C��
R

stands for the real�

valued� ���periodic functions on R� Now� under the identi�cation we made earlier� we have

CC �T� � C��
C and CR �T� � C��

R � The complex�valued trig polynomials in C��
C now match

up with the full set of polynomials� with complex coe�cients� in z � eit and z � e�it� We�ll

use the Stone�Weierstrass theorem to show that these polynomials are dense in CC �T��

Now the polynomials in z obviously separate points in T and vanish at no point of T�

Nevertheless� the polynomials in z alone are not dense in CC �T�� To see this� here�s a proof

that f�z� � z cannot be uniformly approximated by polynomials in z� First� suppose that

we�re given some polynomial p�z� �
Pn

k�� ckz
k� Then�Z ��

�

f�eit� p�eit� dt �

Z ��

�

eit p�eit� dt �

nX
k��

ck

Z ��

�

ei�k���t dt � 	�

and so

�� �

Z ��

�

f�eit� f�eit� dt �

Z ��

�

f�eit�
�
f�eit� � p�eit�



dt�

because f�z� f�z� � jf�z�j� � �� Now� taking absolute values� we get

�� �
Z ��

�

��f�eit� � p�eit�
�� dt � ��kf � pk�

That is� kf � pk � � for any polynomial p�

We might as well proceed in some generality� Given a compact metric space X� we�ll

write CC �X� for the set of all continuous� complex�valued functions f � X � C � and we
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norm CC �X� by kfk � max
x�X

jf�x�j �where jf�x�j is the modulus of the complex number

f�x�� of course�� CC �X� is a Banach algebra over C � In order to make it clear which �eld

of scalars is involved� we�ll write CR �X� for the real�valued members of CC �X�� Notice�

though� that CR �X� is nothing other than C�X� with a new name�

More generally� we�ll write AC to denote an algebra� over C � of complex�valued func�

tions and AR to denote the real�valued members of AC � It�s not hard to see that AR is

then an algebra� over R� of real�valued functions�

Now if f is in CC �X�� then so is the function f�x� � f�x� �the complex�conjugate of

f�x��� This puts

Ref �
�

�

�
f � f

�
and Imf �

�

�i

�
f � f

�
�

the real and imaginary parts of f � in CR �X� too� Conversely� if g� h � CR �X�� then

g � ih � CC �X��

This simple observation gives us a hint as to how we might apply the Stone�Weierstrass

theorem to subalgebras of CC �X�� Given a subalgebra AC of CC �X�� suppose that we could

prove that AR is dense in CR �X�� Then� given any f � CC �X�� we could approximate Ref

and Imf by elements g� h � AR � But since AR � AC � this means that g � ih � AC � and

g� ih approximates f � That is� AC is dense in CC �X�� Great And what did we really use

here� Well� we need AR to contain the real and imaginary parts of �most� functions in

CC �X�� If we insist that AC separate points and vanish at no point� then AR will contain

�most� of CR �X�� And� to be sure that we get both the real and imaginary parts of each

element of AC � we�ll insist that AC contain the conjugates of each of its members� f � AC

whenever f � AC � That is� we�ll require that AC be self�conjugate �or� as some authors

say� self�adjoint��

Stone�Weierstrass Theorem� �complex scalars� Let X be a compact metric space� and

let AC be a subalgebra� over C � of CC �X�� If AC separates points in X� vanishes at no

point of X� and is self�conjugate� then AC is dense in CC �X��

Proof� Again� write AR for the set of real�valued members of AC � Since AC is self�

conjugate� AR contains the real and imaginary parts of every f � AC �

Ref �
�

�

�
f � f

� � AR and Imf �
�

�i

�
f � f

� � AR �
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Moreover� AR is a subalgebra� over R� of CR �X�� In addition� AR separates points in X

and vanishes at no point of X� Indeed� given x 
� y � X and f � AC with f�x� 
� f�y��

we must have at least one of Ref�x� 
� Ref�y� or Imf�x� 
� Imf�y�� Similarly� f�x� 
� 	

means that at least one of Ref�x� 
� 	 or Imf�x� 
� 	 holds� That is� AR satis�es the

hypotheses of the real�scalar version of the Stone�Weierstrass theorem� Consequently� AR

is dense in CR �X��

Now� given f � CC �X� and 	 � 	� take g� h � AR with kg � Refk � 	�� and

kh � Imfk � 	��� Then� g � ih � AC and kf � �g � ih�k � 	� Thus� AC is dense in

CC �X��

Corollary� The polynomials� with complex coe�cients� in z and z are dense in CC �T�� In

other words� the complex trig polynomials are dense in C��
C
�

Note that it follows from the complex�scalar proof that the real parts of the polyno�

mials in z and z� that is� the real trig polynomials� are dense in CR �T� � C��
R

�

Corollary� The real trig polynomials are dense in C��
R
�

Application� Lipschitz Functions

In most Real Analysis courses� the classical Weierstrass theorem is used to prove that

C� a� b � is separable� Likewise� the Stone�Weierstrass theorem can be used to show that

C�X� is separable� where X is a compact metric space� While we won�t have anything quite

so convenient as polynomials at our disposal� we do� at least� have a familiar collection of

functions to work with�

Given a metric space �X�d �� and 	 � K � �� we�ll write lipK�X� to denote the

collection of all real�valued Lipschitz functions on X with constant at most K� that is�

f � X � R is in lipK�X� if jf�x� � f�y�j � Kd�x� y� for all x� y � X� And we�ll write

lip�X� to denote the set of functions that are in lipK �X� for some K� in other words�

lip�X� �
S�
K�� lipK�X�� It�s easy to see that lip�X� is a subspace of C�X�� in fact� if X

is compact� then lip�X� is even a subalgebra of C�X�� Indeed� given f � lipK�X� and

g � lipM �X�� we have

jf�x�g�x� � f�y�g�y�j � jf�x�g�x� � f�y�g�x�j � jf�y�g�x� � f�y�g�y�j
� Kkgk jx� yj� Mkfk jx � yj�



Stone�Weierstrass ��


Lemma� If X is a compact metric space� then lip�X� is dense in C�X��

Proof� Clearly� lip�X� contains the constant functions and so vanishes at no point of

X� To see that lip�X� separates point in X� we use the fact that the metric d is Lipschitz�

Given x� 
� y� � X� the function f�x� � d�x� y�� satis�es f�x�� � 	 � f�y��� moreover�

f � lip��X� since

jf�x� � f�y�j � jd�x� y��� d�y� y��j � d�x� y��

Thus� by the Stone�Weierstrass Theorem� lip�X� is dense in C�X��

Theorem� If X is a compact metric space� then C�X� is separable�

Proof� It su�ces to show that lip�X� is separable� �Why�� To see this� �rst notice that

lip�X� �
S�
K��EK � where

EK � ff � C�X� � kfk � K and f � lipK�X�g�

�Why�� The sets EK are �uniformly� bounded and equicontinuous� Hence� by the Arzel'a�

Ascoli theorem� each EK is compact in C�X�� Since compact sets are separable� as are

countable unions of compact sets� it follows that lip�X� is separable�

As it happens� the converse is also true �which is why this is interesting�� see Folland�s

Real Analysis for more details�

Theorem� If C�X� is separable� where X is a compact Hausdor	 topological space� then

X is metrizable�
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